Merge tag 'for-5.9-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / drivers / platform / chrome / cros_ec_sensorhub_ring.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Chrome OS EC Sensor hub FIFO.
4  *
5  * Copyright 2020 Google LLC
6  */
7
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/iio.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/platform_data/cros_ec_commands.h>
14 #include <linux/platform_data/cros_ec_proto.h>
15 #include <linux/platform_data/cros_ec_sensorhub.h>
16 #include <linux/platform_device.h>
17 #include <linux/sort.h>
18 #include <linux/slab.h>
19
20 /* Precision of fixed point for the m values from the filter */
21 #define M_PRECISION BIT(23)
22
23 /* Only activate the filter once we have at least this many elements. */
24 #define TS_HISTORY_THRESHOLD 8
25
26 /*
27  * If we don't have any history entries for this long, empty the filter to
28  * make sure there are no big discontinuities.
29  */
30 #define TS_HISTORY_BORED_US 500000
31
32 /* To measure by how much the filter is overshooting, if it happens. */
33 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100
34
35 static inline int
36 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
37                            struct cros_ec_sensors_ring_sample *sample)
38 {
39         cros_ec_sensorhub_push_data_cb_t cb;
40         int id = sample->sensor_id;
41         struct iio_dev *indio_dev;
42
43         if (id >= sensorhub->sensor_num)
44                 return -EINVAL;
45
46         cb = sensorhub->push_data[id].push_data_cb;
47         if (!cb)
48                 return 0;
49
50         indio_dev = sensorhub->push_data[id].indio_dev;
51
52         if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
53                 return 0;
54
55         return cb(indio_dev, sample->vector, sample->timestamp);
56 }
57
58 /**
59  * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
60  *
61  * @sensorhub : Sensor Hub object
62  * @sensor_num : The sensor the caller is interested in.
63  * @indio_dev : The iio device to use when a sample arrives.
64  * @cb : The callback to call when a sample arrives.
65  *
66  * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
67  * from the EC.
68  *
69  * Return: 0 when callback is registered.
70  *         EINVAL is the sensor number is invalid or the slot already used.
71  */
72 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
73                                          u8 sensor_num,
74                                          struct iio_dev *indio_dev,
75                                          cros_ec_sensorhub_push_data_cb_t cb)
76 {
77         if (sensor_num >= sensorhub->sensor_num)
78                 return -EINVAL;
79         if (sensorhub->push_data[sensor_num].indio_dev)
80                 return -EINVAL;
81
82         sensorhub->push_data[sensor_num].indio_dev = indio_dev;
83         sensorhub->push_data[sensor_num].push_data_cb = cb;
84
85         return 0;
86 }
87 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
88
89 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
90                                             u8 sensor_num)
91 {
92         sensorhub->push_data[sensor_num].indio_dev = NULL;
93         sensorhub->push_data[sensor_num].push_data_cb = NULL;
94 }
95 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
96
97 /**
98  * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
99  *                                        for FIFO events.
100  * @sensorhub: Sensor Hub object
101  * @on: true when events are requested.
102  *
103  * To be called before sleeping or when noone is listening.
104  * Return: 0 on success, or an error when we can not communicate with the EC.
105  *
106  */
107 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
108                                        bool on)
109 {
110         int ret, i;
111
112         mutex_lock(&sensorhub->cmd_lock);
113         if (sensorhub->tight_timestamps)
114                 for (i = 0; i < sensorhub->sensor_num; i++)
115                         sensorhub->batch_state[i].last_len = 0;
116
117         sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
118         sensorhub->params->fifo_int_enable.enable = on;
119
120         sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
121         sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
122
123         ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
124         mutex_unlock(&sensorhub->cmd_lock);
125
126         /* We expect to receive a payload of 4 bytes, ignore. */
127         if (ret > 0)
128                 ret = 0;
129
130         return ret;
131 }
132
133 static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
134 {
135         s64 v1 = *(s64 *)pv1;
136         s64 v2 = *(s64 *)pv2;
137
138         if (v1 > v2)
139                 return 1;
140         else if (v1 < v2)
141                 return -1;
142         else
143                 return 0;
144 }
145
146 /*
147  * cros_ec_sensor_ring_median: Gets median of an array of numbers
148  *
149  * For now it's implemented using an inefficient > O(n) sort then return
150  * the middle element. A more optimal method would be something like
151  * quickselect, but given that n = 64 we can probably live with it in the
152  * name of clarity.
153  *
154  * Warning: the input array gets modified (sorted)!
155  */
156 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
157 {
158         sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
159         return array[length / 2];
160 }
161
162 /*
163  * IRQ Timestamp Filtering
164  *
165  * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
166  * we have to calculate it's timestamp in the AP timebase. There are 3 time
167  * points:
168  *   a - EC timebase, sensor event
169  *   b - EC timebase, IRQ
170  *   c - AP timebase, IRQ
171  *   a' - what we want: sensor even in AP timebase
172  *
173  * While a and b are recorded at accurate times (due to the EC real time
174  * nature); c is pretty untrustworthy, even though it's recorded the
175  * first thing in ec_irq_handler(). There is a very good change we'll get
176  * added lantency due to:
177  *   other irqs
178  *   ddrfreq
179  *   cpuidle
180  *
181  * Normally a' = c - b + a, but if we do that naive math any jitter in c
182  * will get coupled in a', which we don't want. We want a function
183  * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
184  *
185  * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
186  * The slope of the line won't be exactly 1, there will be some clock drift
187  * between the 2 chips for various reasons (mechanical stress, temperature,
188  * voltage). We need to extrapolate values for a future x, without trusting
189  * recent y values too much.
190  *
191  * We use a median filter for the slope, then another median filter for the
192  * y-intercept to calculate this function:
193  *   dx[n] = x[n-1] - x[n]
194  *   dy[n] = x[n-1] - x[n]
195  *   m[n] = dy[n] / dx[n]
196  *   median_m = median(m[n-k:n])
197  *   error[i] = y[n-i] - median_m * x[n-i]
198  *   median_error = median(error[:k])
199  *   predicted_y = median_m * x + median_error
200  *
201  * Implementation differences from above:
202  * - Redefined y to be actually c - b, this gives us a lot more precision
203  * to do the math. (c-b)/b variations are more obvious than c/b variations.
204  * - Since we don't have floating point, any operations involving slope are
205  * done using fixed point math (*M_PRECISION)
206  * - Since x and y grow with time, we keep zeroing the graph (relative to
207  * the last sample), this way math involving *x[n-i] will not overflow
208  * - EC timestamps are kept in us, it improves the slope calculation precision
209  */
210
211 /**
212  * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
213  *
214  * @state: Filter information.
215  * @b: IRQ timestamp, EC timebase (us)
216  * @c: IRQ timestamp, AP timebase (ns)
217  *
218  * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
219  * history.
220  */
221 static void
222 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
223                                      *state,
224                                      s64 b, s64 c)
225 {
226         s64 x, y;
227         s64 dx, dy;
228         s64 m; /* stored as *M_PRECISION */
229         s64 *m_history_copy = state->temp_buf;
230         s64 *error = state->temp_buf;
231         int i;
232
233         /* we trust b the most, that'll be our independent variable */
234         x = b;
235         /* y is the offset between AP and EC times, in ns */
236         y = c - b * 1000;
237
238         dx = (state->x_history[0] + state->x_offset) - x;
239         if (dx == 0)
240                 return; /* we already have this irq in the history */
241         dy = (state->y_history[0] + state->y_offset) - y;
242         m = div64_s64(dy * M_PRECISION, dx);
243
244         /* Empty filter if we haven't seen any action in a while. */
245         if (-dx > TS_HISTORY_BORED_US)
246                 state->history_len = 0;
247
248         /* Move everything over, also update offset to all absolute coords .*/
249         for (i = state->history_len - 1; i >= 1; i--) {
250                 state->x_history[i] = state->x_history[i - 1] + dx;
251                 state->y_history[i] = state->y_history[i - 1] + dy;
252
253                 state->m_history[i] = state->m_history[i - 1];
254                 /*
255                  * Also use the same loop to copy m_history for future
256                  * median extraction.
257                  */
258                 m_history_copy[i] = state->m_history[i - 1];
259         }
260
261         /* Store the x and y, but remember offset is actually last sample. */
262         state->x_offset = x;
263         state->y_offset = y;
264         state->x_history[0] = 0;
265         state->y_history[0] = 0;
266
267         state->m_history[0] = m;
268         m_history_copy[0] = m;
269
270         if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
271                 state->history_len++;
272
273         /* Precalculate things for the filter. */
274         if (state->history_len > TS_HISTORY_THRESHOLD) {
275                 state->median_m =
276                     cros_ec_sensor_ring_median(m_history_copy,
277                                                state->history_len - 1);
278
279                 /*
280                  * Calculate y-intercepts as if m_median is the slope and
281                  * points in the history are on the line. median_error will
282                  * still be in the offset coordinate system.
283                  */
284                 for (i = 0; i < state->history_len; i++)
285                         error[i] = state->y_history[i] -
286                                 div_s64(state->median_m * state->x_history[i],
287                                         M_PRECISION);
288                 state->median_error =
289                         cros_ec_sensor_ring_median(error, state->history_len);
290         } else {
291                 state->median_m = 0;
292                 state->median_error = 0;
293         }
294 }
295
296 /**
297  * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
298  *                                   timebase
299  *
300  * @state: filter information.
301  * @x: any ec timestamp (us):
302  *
303  * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
304  * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
305  *                           should have happened on the AP, with low jitter
306  *
307  * Note: The filter will only activate once state->history_len goes
308  * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
309  * transform.
310  *
311  * How to derive the formula, starting from:
312  *   f(x) = median_m * x + median_error
313  * That's the calculated AP - EC offset (at the x point in time)
314  * Undo the coordinate system transform:
315  *   f(x) = median_m * (x - x_offset) + median_error + y_offset
316  * Remember to undo the "y = c - b * 1000" modification:
317  *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
318  *
319  * Return: timestamp in AP timebase (ns)
320  */
321 static s64
322 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
323                               s64 x)
324 {
325         return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
326                + state->median_error + state->y_offset + x * 1000;
327 }
328
329 /*
330  * Since a and b were originally 32 bit values from the EC,
331  * they overflow relatively often, casting is not enough, so we need to
332  * add an offset.
333  */
334 static void
335 cros_ec_sensor_ring_fix_overflow(s64 *ts,
336                                  const s64 overflow_period,
337                                  struct cros_ec_sensors_ec_overflow_state
338                                  *state)
339 {
340         s64 adjust;
341
342         *ts += state->offset;
343         if (abs(state->last - *ts) > (overflow_period / 2)) {
344                 adjust = state->last > *ts ? overflow_period : -overflow_period;
345                 state->offset += adjust;
346                 *ts += adjust;
347         }
348         state->last = *ts;
349 }
350
351 static void
352 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
353                                              *sensorhub,
354                                              struct cros_ec_sensors_ring_sample
355                                              *sample)
356 {
357         const u8 sensor_id = sample->sensor_id;
358
359         /* If this event is earlier than one we saw before... */
360         if (sensorhub->batch_state[sensor_id].newest_sensor_event >
361             sample->timestamp)
362                 /* mark it for spreading. */
363                 sample->timestamp =
364                         sensorhub->batch_state[sensor_id].last_ts;
365         else
366                 sensorhub->batch_state[sensor_id].newest_sensor_event =
367                         sample->timestamp;
368 }
369
370 /**
371  * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
372  *
373  * @sensorhub: Sensor Hub object.
374  * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
375  * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
376  * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
377  * @in: incoming FIFO event from EC (includes a point, EC timebase).
378  * @out: outgoing event to user space (includes a').
379  *
380  * Process one EC event, add it in the ring if necessary.
381  *
382  * Return: true if out event has been populated.
383  */
384 static bool
385 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
386                                 const struct ec_response_motion_sense_fifo_info
387                                 *fifo_info,
388                                 const ktime_t fifo_timestamp,
389                                 ktime_t *current_timestamp,
390                                 struct ec_response_motion_sensor_data *in,
391                                 struct cros_ec_sensors_ring_sample *out)
392 {
393         const s64 now = cros_ec_get_time_ns();
394         int axis, async_flags;
395
396         /* Do not populate the filter based on asynchronous events. */
397         async_flags = in->flags &
398                 (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
399
400         if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
401                 s64 a = in->timestamp;
402                 s64 b = fifo_info->timestamp;
403                 s64 c = fifo_timestamp;
404
405                 cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
406                                           &sensorhub->overflow_a);
407                 cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
408                                           &sensorhub->overflow_b);
409
410                 if (sensorhub->tight_timestamps) {
411                         cros_ec_sensor_ring_ts_filter_update(
412                                         &sensorhub->filter, b, c);
413                         *current_timestamp = cros_ec_sensor_ring_ts_filter(
414                                         &sensorhub->filter, a);
415                 } else {
416                         s64 new_timestamp;
417
418                         /*
419                          * Disable filtering since we might add more jitter
420                          * if b is in a random point in time.
421                          */
422                         new_timestamp = c - b * 1000 + a * 1000;
423                         /*
424                          * The timestamp can be stale if we had to use the fifo
425                          * info timestamp.
426                          */
427                         if (new_timestamp - *current_timestamp > 0)
428                                 *current_timestamp = new_timestamp;
429                 }
430         }
431
432         if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
433                 if (sensorhub->tight_timestamps) {
434                         sensorhub->batch_state[in->sensor_num].last_len = 0;
435                         sensorhub->batch_state[in->sensor_num].penul_len = 0;
436                 }
437                 /*
438                  * ODR change is only useful for the sensor_ring, it does not
439                  * convey information to clients.
440                  */
441                 return false;
442         }
443
444         if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
445                 out->sensor_id = in->sensor_num;
446                 out->timestamp = *current_timestamp;
447                 out->flag = in->flags;
448                 if (sensorhub->tight_timestamps)
449                         sensorhub->batch_state[out->sensor_id].last_len = 0;
450                 /*
451                  * No other payload information provided with
452                  * flush ack.
453                  */
454                 return true;
455         }
456
457         if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
458                 /* If we just have a timestamp, skip this entry. */
459                 return false;
460
461         /* Regular sample */
462         out->sensor_id = in->sensor_num;
463         if (*current_timestamp - now > 0) {
464                 /*
465                  * This fix is needed to overcome the timestamp filter putting
466                  * events in the future.
467                  */
468                 sensorhub->future_timestamp_total_ns +=
469                         *current_timestamp - now;
470                 if (++sensorhub->future_timestamp_count ==
471                                 FUTURE_TS_ANALYTICS_COUNT_MAX) {
472                         s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
473                                         sensorhub->future_timestamp_count);
474                         dev_warn_ratelimited(sensorhub->dev,
475                                              "100 timestamps in the future, %lldns shaved on average\n",
476                                              avg);
477                         sensorhub->future_timestamp_count = 0;
478                         sensorhub->future_timestamp_total_ns = 0;
479                 }
480                 out->timestamp = now;
481         } else {
482                 out->timestamp = *current_timestamp;
483         }
484
485         out->flag = in->flags;
486         for (axis = 0; axis < 3; axis++)
487                 out->vector[axis] = in->data[axis];
488
489         if (sensorhub->tight_timestamps)
490                 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
491         return true;
492 }
493
494 /*
495  * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
496  *                                 ringbuffer.
497  *
498  * This is the new spreading code, assumes every sample's timestamp
499  * preceeds the sample. Run if tight_timestamps == true.
500  *
501  * Sometimes the EC receives only one interrupt (hence timestamp) for
502  * a batch of samples. Only the first sample will have the correct
503  * timestamp. So we must interpolate the other samples.
504  * We use the previous batch timestamp and our current batch timestamp
505  * as a way to calculate period, then spread the samples evenly.
506  *
507  * s0 int, 0ms
508  * s1 int, 10ms
509  * s2 int, 20ms
510  * 30ms point goes by, no interrupt, previous one is still asserted
511  * downloading s2 and s3
512  * s3 sample, 20ms (incorrect timestamp)
513  * s4 int, 40ms
514  *
515  * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
516  * has 2 samples in them, we adjust the timestamp of s3.
517  * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
518  * been part of a bigger batch things would have gotten a little
519  * more complicated.
520  *
521  * Note: we also assume another sensor sample doesn't break up a batch
522  * in 2 or more partitions. Example, there can't ever be a sync sensor
523  * in between S2 and S3. This simplifies the following code.
524  */
525 static void
526 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
527                                unsigned long sensor_mask,
528                                struct cros_ec_sensors_ring_sample *last_out)
529 {
530         struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
531         int id;
532
533         for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
534                 for (batch_start = sensorhub->ring; batch_start < last_out;
535                      batch_start = next_batch_start) {
536                         /*
537                          * For each batch (where all samples have the same
538                          * timestamp).
539                          */
540                         int batch_len, sample_idx;
541                         struct cros_ec_sensors_ring_sample *batch_end =
542                                 batch_start;
543                         struct cros_ec_sensors_ring_sample *s;
544                         s64 batch_timestamp = batch_start->timestamp;
545                         s64 sample_period;
546
547                         /*
548                          * Skip over batches that start with the sensor types
549                          * we're not looking at right now.
550                          */
551                         if (batch_start->sensor_id != id) {
552                                 next_batch_start = batch_start + 1;
553                                 continue;
554                         }
555
556                         /*
557                          * Do not start a batch
558                          * from a flush, as it happens asynchronously to the
559                          * regular flow of events.
560                          */
561                         if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
562                                 cros_sensorhub_send_sample(sensorhub,
563                                                            batch_start);
564                                 next_batch_start = batch_start + 1;
565                                 continue;
566                         }
567
568                         if (batch_start->timestamp <=
569                             sensorhub->batch_state[id].last_ts) {
570                                 batch_timestamp =
571                                         sensorhub->batch_state[id].last_ts;
572                                 batch_len = sensorhub->batch_state[id].last_len;
573
574                                 sample_idx = batch_len;
575
576                                 sensorhub->batch_state[id].last_ts =
577                                   sensorhub->batch_state[id].penul_ts;
578                                 sensorhub->batch_state[id].last_len =
579                                   sensorhub->batch_state[id].penul_len;
580                         } else {
581                                 /*
582                                  * Push first sample in the batch to the,
583                                  * kifo, it's guaranteed to be correct, the
584                                  * rest will follow later on.
585                                  */
586                                 sample_idx = 1;
587                                 batch_len = 1;
588                                 cros_sensorhub_send_sample(sensorhub,
589                                                            batch_start);
590                                 batch_start++;
591                         }
592
593                         /* Find all samples have the same timestamp. */
594                         for (s = batch_start; s < last_out; s++) {
595                                 if (s->sensor_id != id)
596                                         /*
597                                          * Skip over other sensor types that
598                                          * are interleaved, don't count them.
599                                          */
600                                         continue;
601                                 if (s->timestamp != batch_timestamp)
602                                         /* we discovered the next batch */
603                                         break;
604                                 if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
605                                         /* break on flush packets */
606                                         break;
607                                 batch_end = s;
608                                 batch_len++;
609                         }
610
611                         if (batch_len == 1)
612                                 goto done_with_this_batch;
613
614                         /* Can we calculate period? */
615                         if (sensorhub->batch_state[id].last_len == 0) {
616                                 dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
617                                          id, batch_len - 1);
618                                 goto done_with_this_batch;
619                                 /*
620                                  * Note: we're dropping the rest of the samples
621                                  * in this batch since we have no idea where
622                                  * they're supposed to go without a period
623                                  * calculation.
624                                  */
625                         }
626
627                         sample_period = div_s64(batch_timestamp -
628                                 sensorhub->batch_state[id].last_ts,
629                                 sensorhub->batch_state[id].last_len);
630                         dev_dbg(sensorhub->dev,
631                                 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
632                                 batch_len, id,
633                                 sensorhub->batch_state[id].last_ts,
634                                 sensorhub->batch_state[id].last_len,
635                                 batch_timestamp,
636                                 sample_period);
637
638                         /*
639                          * Adjust timestamps of the samples then push them to
640                          * kfifo.
641                          */
642                         for (s = batch_start; s <= batch_end; s++) {
643                                 if (s->sensor_id != id)
644                                         /*
645                                          * Skip over other sensor types that
646                                          * are interleaved, don't change them.
647                                          */
648                                         continue;
649
650                                 s->timestamp = batch_timestamp +
651                                         sample_period * sample_idx;
652                                 sample_idx++;
653
654                                 cros_sensorhub_send_sample(sensorhub, s);
655                         }
656
657 done_with_this_batch:
658                         sensorhub->batch_state[id].penul_ts =
659                                 sensorhub->batch_state[id].last_ts;
660                         sensorhub->batch_state[id].penul_len =
661                                 sensorhub->batch_state[id].last_len;
662
663                         sensorhub->batch_state[id].last_ts =
664                                 batch_timestamp;
665                         sensorhub->batch_state[id].last_len = batch_len;
666
667                         next_batch_start = batch_end + 1;
668                 }
669         }
670 }
671
672 /*
673  * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
674  * add to ringbuffer (legacy).
675  *
676  * Note: This assumes we're running old firmware, where timestamp
677  * is inserted after its sample(s)e. There can be several samples between
678  * timestamps, so several samples can have the same timestamp.
679  *
680  *                        timestamp | count
681  *                        -----------------
682  *          1st sample --> TS1      | 1
683  *                         TS2      | 2
684  *                         TS2      | 3
685  *                         TS3      | 4
686  *           last_out -->
687  *
688  *
689  * We spread time for the samples using perod p = (current - TS1)/4.
690  * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
691  *
692  */
693 static void
694 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
695                                       unsigned long sensor_mask,
696                                       s64 current_timestamp,
697                                       struct cros_ec_sensors_ring_sample
698                                       *last_out)
699 {
700         struct cros_ec_sensors_ring_sample *out;
701         int i;
702
703         for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
704                 s64 timestamp;
705                 int count = 0;
706                 s64 time_period;
707
708                 for (out = sensorhub->ring; out < last_out; out++) {
709                         if (out->sensor_id != i)
710                                 continue;
711
712                         /* Timestamp to start with */
713                         timestamp = out->timestamp;
714                         out++;
715                         count = 1;
716                         break;
717                 }
718                 for (; out < last_out; out++) {
719                         /* Find last sample. */
720                         if (out->sensor_id != i)
721                                 continue;
722                         count++;
723                 }
724                 if (count == 0)
725                         continue;
726
727                 /* Spread uniformly between the first and last samples. */
728                 time_period = div_s64(current_timestamp - timestamp, count);
729
730                 for (out = sensorhub->ring; out < last_out; out++) {
731                         if (out->sensor_id != i)
732                                 continue;
733                         timestamp += time_period;
734                         out->timestamp = timestamp;
735                 }
736         }
737
738         /* Push the event into the kfifo */
739         for (out = sensorhub->ring; out < last_out; out++)
740                 cros_sensorhub_send_sample(sensorhub, out);
741 }
742
743 /**
744  * cros_ec_sensorhub_ring_handler() - The trigger handler function
745  *
746  * @sensorhub: Sensor Hub object.
747  *
748  * Called by the notifier, process the EC sensor FIFO queue.
749  */
750 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
751 {
752         struct ec_response_motion_sense_fifo_info *fifo_info =
753                 sensorhub->fifo_info;
754         struct cros_ec_dev *ec = sensorhub->ec;
755         ktime_t fifo_timestamp, current_timestamp;
756         int i, j, number_data, ret;
757         unsigned long sensor_mask = 0;
758         struct ec_response_motion_sensor_data *in;
759         struct cros_ec_sensors_ring_sample *out, *last_out;
760
761         mutex_lock(&sensorhub->cmd_lock);
762
763         /* Get FIFO information if there are lost vectors. */
764         if (fifo_info->total_lost) {
765                 int fifo_info_length =
766                         sizeof(struct ec_response_motion_sense_fifo_info) +
767                         sizeof(u16) * sensorhub->sensor_num;
768
769                 /* Need to retrieve the number of lost vectors per sensor */
770                 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
771                 sensorhub->msg->outsize = 1;
772                 sensorhub->msg->insize = fifo_info_length;
773
774                 if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
775                         goto error;
776
777                 memcpy(fifo_info, &sensorhub->resp->fifo_info,
778                        fifo_info_length);
779
780                 /*
781                  * Update collection time, will not be as precise as the
782                  * non-error case.
783                  */
784                 fifo_timestamp = cros_ec_get_time_ns();
785         } else {
786                 fifo_timestamp = sensorhub->fifo_timestamp[
787                         CROS_EC_SENSOR_NEW_TS];
788         }
789
790         if (fifo_info->count > sensorhub->fifo_size ||
791             fifo_info->size != sensorhub->fifo_size) {
792                 dev_warn(sensorhub->dev,
793                          "Mismatch EC data: count %d, size %d - expected %d\n",
794                          fifo_info->count, fifo_info->size,
795                          sensorhub->fifo_size);
796                 goto error;
797         }
798
799         /* Copy elements in the main fifo */
800         current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
801         out = sensorhub->ring;
802         for (i = 0; i < fifo_info->count; i += number_data) {
803                 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
804                 sensorhub->params->fifo_read.max_data_vector =
805                         fifo_info->count - i;
806                 sensorhub->msg->outsize =
807                         sizeof(struct ec_params_motion_sense);
808                 sensorhub->msg->insize =
809                         sizeof(sensorhub->resp->fifo_read) +
810                         sensorhub->params->fifo_read.max_data_vector *
811                           sizeof(struct ec_response_motion_sensor_data);
812                 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
813                 if (ret < 0) {
814                         dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
815                         break;
816                 }
817                 number_data = sensorhub->resp->fifo_read.number_data;
818                 if (number_data == 0) {
819                         dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
820                         break;
821                 }
822                 if (number_data > fifo_info->count - i) {
823                         dev_warn(sensorhub->dev,
824                                  "Invalid EC data: too many entry received: %d, expected %d\n",
825                                  number_data, fifo_info->count - i);
826                         break;
827                 }
828                 if (out + number_data >
829                     sensorhub->ring + fifo_info->count) {
830                         dev_warn(sensorhub->dev,
831                                  "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
832                                  i, out - sensorhub->ring, i + number_data,
833                                  fifo_info->count);
834                         break;
835                 }
836
837                 for (in = sensorhub->resp->fifo_read.data, j = 0;
838                      j < number_data; j++, in++) {
839                         if (cros_ec_sensor_ring_process_event(
840                                                 sensorhub, fifo_info,
841                                                 fifo_timestamp,
842                                                 &current_timestamp,
843                                                 in, out)) {
844                                 sensor_mask |= BIT(in->sensor_num);
845                                 out++;
846                         }
847                 }
848         }
849         mutex_unlock(&sensorhub->cmd_lock);
850         last_out = out;
851
852         if (out == sensorhub->ring)
853                 /* Unexpected empty FIFO. */
854                 goto ring_handler_end;
855
856         /*
857          * Check if current_timestamp is ahead of the last sample. Normally,
858          * the EC appends a timestamp after the last sample, but if the AP
859          * is slow to respond to the IRQ, the EC may have added new samples.
860          * Use the FIFO info timestamp as last timestamp then.
861          */
862         if (!sensorhub->tight_timestamps &&
863             (last_out - 1)->timestamp == current_timestamp)
864                 current_timestamp = fifo_timestamp;
865
866         /* Warn on lost samples. */
867         if (fifo_info->total_lost)
868                 for (i = 0; i < sensorhub->sensor_num; i++) {
869                         if (fifo_info->lost[i]) {
870                                 dev_warn_ratelimited(sensorhub->dev,
871                                                      "Sensor %d: lost: %d out of %d\n",
872                                                      i, fifo_info->lost[i],
873                                                      fifo_info->total_lost);
874                                 if (sensorhub->tight_timestamps)
875                                         sensorhub->batch_state[i].last_len = 0;
876                         }
877                 }
878
879         /*
880          * Spread samples in case of batching, then add them to the
881          * ringbuffer.
882          */
883         if (sensorhub->tight_timestamps)
884                 cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
885                                                last_out);
886         else
887                 cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
888                                                       current_timestamp,
889                                                       last_out);
890
891 ring_handler_end:
892         sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
893         return;
894
895 error:
896         mutex_unlock(&sensorhub->cmd_lock);
897 }
898
899 static int cros_ec_sensorhub_event(struct notifier_block *nb,
900                                    unsigned long queued_during_suspend,
901                                    void *_notify)
902 {
903         struct cros_ec_sensorhub *sensorhub;
904         struct cros_ec_device *ec_dev;
905
906         sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
907         ec_dev = sensorhub->ec->ec_dev;
908
909         if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
910                 return NOTIFY_DONE;
911
912         if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
913                 dev_warn(ec_dev->dev, "Invalid fifo info size\n");
914                 return NOTIFY_DONE;
915         }
916
917         if (queued_during_suspend)
918                 return NOTIFY_OK;
919
920         memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
921                sizeof(*sensorhub->fifo_info));
922         sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
923                 ec_dev->last_event_time;
924         cros_ec_sensorhub_ring_handler(sensorhub);
925
926         return NOTIFY_OK;
927 }
928
929 /**
930  * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
931  *                                     supports it.
932  *
933  * @sensorhub : Sensor Hub object.
934  *
935  * Return: 0 on success.
936  */
937 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
938 {
939         int fifo_info_length =
940                 sizeof(struct ec_response_motion_sense_fifo_info) +
941                 sizeof(u16) * sensorhub->sensor_num;
942
943         /* Allocate the array for lost events. */
944         sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
945                                             GFP_KERNEL);
946         if (!sensorhub->fifo_info)
947                 return -ENOMEM;
948
949         /*
950          * Allocate the callback area based on the number of sensors.
951          * Add one for the sensor ring.
952          */
953         sensorhub->push_data = devm_kcalloc(sensorhub->dev,
954                         sensorhub->sensor_num,
955                         sizeof(*sensorhub->push_data),
956                         GFP_KERNEL);
957         if (!sensorhub->push_data)
958                 return -ENOMEM;
959
960         sensorhub->tight_timestamps = cros_ec_check_features(
961                         sensorhub->ec,
962                         EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
963
964         if (sensorhub->tight_timestamps) {
965                 sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
966                                 sensorhub->sensor_num,
967                                 sizeof(*sensorhub->batch_state),
968                                 GFP_KERNEL);
969                 if (!sensorhub->batch_state)
970                         return -ENOMEM;
971         }
972
973         return 0;
974 }
975
976 /**
977  * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
978  *                                supports it.
979  *
980  * @sensorhub : Sensor Hub object.
981  *
982  * Return: 0 on success.
983  */
984 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
985 {
986         struct cros_ec_dev *ec = sensorhub->ec;
987         int ret;
988         int fifo_info_length =
989                 sizeof(struct ec_response_motion_sense_fifo_info) +
990                 sizeof(u16) * sensorhub->sensor_num;
991
992         /* Retrieve FIFO information */
993         sensorhub->msg->version = 2;
994         sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
995         sensorhub->msg->outsize = 1;
996         sensorhub->msg->insize = fifo_info_length;
997
998         ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
999         if (ret < 0)
1000                 return ret;
1001
1002         /*
1003          * Allocate the full fifo. We need to copy the whole FIFO to set
1004          * timestamps properly.
1005          */
1006         sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1007         sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1008                                        sizeof(*sensorhub->ring), GFP_KERNEL);
1009         if (!sensorhub->ring)
1010                 return -ENOMEM;
1011
1012         sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1013                 cros_ec_get_time_ns();
1014
1015         /* Register the notifier that will act as a top half interrupt. */
1016         sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1017         ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1018                                                &sensorhub->notifier);
1019         if (ret < 0)
1020                 return ret;
1021
1022         /* Start collection samples. */
1023         return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1024 }
1025
1026 void cros_ec_sensorhub_ring_remove(void *arg)
1027 {
1028         struct cros_ec_sensorhub *sensorhub = arg;
1029         struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1030
1031         /* Disable the ring, prevent EC interrupt to the AP for nothing. */
1032         cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1033         blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1034                                            &sensorhub->notifier);
1035 }