Merge tag 'v5.7-rc7' into perf/core, to pick up fixes
[linux-2.6-microblaze.git] / drivers / platform / chrome / cros_ec_sensorhub_ring.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Chrome OS EC Sensor hub FIFO.
4  *
5  * Copyright 2020 Google LLC
6  */
7
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/iio.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/platform_data/cros_ec_commands.h>
14 #include <linux/platform_data/cros_ec_proto.h>
15 #include <linux/platform_data/cros_ec_sensorhub.h>
16 #include <linux/platform_device.h>
17 #include <linux/sort.h>
18 #include <linux/slab.h>
19
20 /* Precision of fixed point for the m values from the filter */
21 #define M_PRECISION BIT(23)
22
23 /* Only activate the filter once we have at least this many elements. */
24 #define TS_HISTORY_THRESHOLD 8
25
26 /*
27  * If we don't have any history entries for this long, empty the filter to
28  * make sure there are no big discontinuities.
29  */
30 #define TS_HISTORY_BORED_US 500000
31
32 /* To measure by how much the filter is overshooting, if it happens. */
33 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100
34
35 static inline int
36 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
37                            struct cros_ec_sensors_ring_sample *sample)
38 {
39         cros_ec_sensorhub_push_data_cb_t cb;
40         int id = sample->sensor_id;
41         struct iio_dev *indio_dev;
42
43         if (id >= sensorhub->sensor_num)
44                 return -EINVAL;
45
46         cb = sensorhub->push_data[id].push_data_cb;
47         if (!cb)
48                 return 0;
49
50         indio_dev = sensorhub->push_data[id].indio_dev;
51
52         if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
53                 return 0;
54
55         return cb(indio_dev, sample->vector, sample->timestamp);
56 }
57
58 /**
59  * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
60  *
61  * @sensorhub : Sensor Hub object
62  * @sensor_num : The sensor the caller is interested in.
63  * @indio_dev : The iio device to use when a sample arrives.
64  * @cb : The callback to call when a sample arrives.
65  *
66  * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
67  * from the EC.
68  *
69  * Return: 0 when callback is registered.
70  *         EINVAL is the sensor number is invalid or the slot already used.
71  */
72 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
73                                          u8 sensor_num,
74                                          struct iio_dev *indio_dev,
75                                          cros_ec_sensorhub_push_data_cb_t cb)
76 {
77         if (sensor_num >= sensorhub->sensor_num)
78                 return -EINVAL;
79         if (sensorhub->push_data[sensor_num].indio_dev)
80                 return -EINVAL;
81
82         sensorhub->push_data[sensor_num].indio_dev = indio_dev;
83         sensorhub->push_data[sensor_num].push_data_cb = cb;
84
85         return 0;
86 }
87 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
88
89 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
90                                             u8 sensor_num)
91 {
92         sensorhub->push_data[sensor_num].indio_dev = NULL;
93         sensorhub->push_data[sensor_num].push_data_cb = NULL;
94 }
95 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
96
97 /**
98  * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
99  *                                        for FIFO events.
100  * @sensorhub: Sensor Hub object
101  * @on: true when events are requested.
102  *
103  * To be called before sleeping or when noone is listening.
104  * Return: 0 on success, or an error when we can not communicate with the EC.
105  *
106  */
107 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
108                                        bool on)
109 {
110         int ret, i;
111
112         mutex_lock(&sensorhub->cmd_lock);
113         if (sensorhub->tight_timestamps)
114                 for (i = 0; i < sensorhub->sensor_num; i++)
115                         sensorhub->batch_state[i].last_len = 0;
116
117         sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
118         sensorhub->params->fifo_int_enable.enable = on;
119
120         sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
121         sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
122
123         ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
124         mutex_unlock(&sensorhub->cmd_lock);
125
126         /* We expect to receive a payload of 4 bytes, ignore. */
127         if (ret > 0)
128                 ret = 0;
129
130         return ret;
131 }
132
133 static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
134 {
135         s64 v1 = *(s64 *)pv1;
136         s64 v2 = *(s64 *)pv2;
137
138         if (v1 > v2)
139                 return 1;
140         else if (v1 < v2)
141                 return -1;
142         else
143                 return 0;
144 }
145
146 /*
147  * cros_ec_sensor_ring_median: Gets median of an array of numbers
148  *
149  * For now it's implemented using an inefficient > O(n) sort then return
150  * the middle element. A more optimal method would be something like
151  * quickselect, but given that n = 64 we can probably live with it in the
152  * name of clarity.
153  *
154  * Warning: the input array gets modified (sorted)!
155  */
156 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
157 {
158         sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
159         return array[length / 2];
160 }
161
162 /*
163  * IRQ Timestamp Filtering
164  *
165  * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
166  * we have to calculate it's timestamp in the AP timebase. There are 3 time
167  * points:
168  *   a - EC timebase, sensor event
169  *   b - EC timebase, IRQ
170  *   c - AP timebase, IRQ
171  *   a' - what we want: sensor even in AP timebase
172  *
173  * While a and b are recorded at accurate times (due to the EC real time
174  * nature); c is pretty untrustworthy, even though it's recorded the
175  * first thing in ec_irq_handler(). There is a very good change we'll get
176  * added lantency due to:
177  *   other irqs
178  *   ddrfreq
179  *   cpuidle
180  *
181  * Normally a' = c - b + a, but if we do that naive math any jitter in c
182  * will get coupled in a', which we don't want. We want a function
183  * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
184  *
185  * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
186  * The slope of the line won't be exactly 1, there will be some clock drift
187  * between the 2 chips for various reasons (mechanical stress, temperature,
188  * voltage). We need to extrapolate values for a future x, without trusting
189  * recent y values too much.
190  *
191  * We use a median filter for the slope, then another median filter for the
192  * y-intercept to calculate this function:
193  *   dx[n] = x[n-1] - x[n]
194  *   dy[n] = x[n-1] - x[n]
195  *   m[n] = dy[n] / dx[n]
196  *   median_m = median(m[n-k:n])
197  *   error[i] = y[n-i] - median_m * x[n-i]
198  *   median_error = median(error[:k])
199  *   predicted_y = median_m * x + median_error
200  *
201  * Implementation differences from above:
202  * - Redefined y to be actually c - b, this gives us a lot more precision
203  * to do the math. (c-b)/b variations are more obvious than c/b variations.
204  * - Since we don't have floating point, any operations involving slope are
205  * done using fixed point math (*M_PRECISION)
206  * - Since x and y grow with time, we keep zeroing the graph (relative to
207  * the last sample), this way math involving *x[n-i] will not overflow
208  * - EC timestamps are kept in us, it improves the slope calculation precision
209  */
210
211 /**
212  * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
213  *
214  * @state: Filter information.
215  * @b: IRQ timestamp, EC timebase (us)
216  * @c: IRQ timestamp, AP timebase (ns)
217  *
218  * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
219  * history.
220  */
221 static void
222 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
223                                      *state,
224                                      s64 b, s64 c)
225 {
226         s64 x, y;
227         s64 dx, dy;
228         s64 m; /* stored as *M_PRECISION */
229         s64 *m_history_copy = state->temp_buf;
230         s64 *error = state->temp_buf;
231         int i;
232
233         /* we trust b the most, that'll be our independent variable */
234         x = b;
235         /* y is the offset between AP and EC times, in ns */
236         y = c - b * 1000;
237
238         dx = (state->x_history[0] + state->x_offset) - x;
239         if (dx == 0)
240                 return; /* we already have this irq in the history */
241         dy = (state->y_history[0] + state->y_offset) - y;
242         m = div64_s64(dy * M_PRECISION, dx);
243
244         /* Empty filter if we haven't seen any action in a while. */
245         if (-dx > TS_HISTORY_BORED_US)
246                 state->history_len = 0;
247
248         /* Move everything over, also update offset to all absolute coords .*/
249         for (i = state->history_len - 1; i >= 1; i--) {
250                 state->x_history[i] = state->x_history[i - 1] + dx;
251                 state->y_history[i] = state->y_history[i - 1] + dy;
252
253                 state->m_history[i] = state->m_history[i - 1];
254                 /*
255                  * Also use the same loop to copy m_history for future
256                  * median extraction.
257                  */
258                 m_history_copy[i] = state->m_history[i - 1];
259         }
260
261         /* Store the x and y, but remember offset is actually last sample. */
262         state->x_offset = x;
263         state->y_offset = y;
264         state->x_history[0] = 0;
265         state->y_history[0] = 0;
266
267         state->m_history[0] = m;
268         m_history_copy[0] = m;
269
270         if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
271                 state->history_len++;
272
273         /* Precalculate things for the filter. */
274         if (state->history_len > TS_HISTORY_THRESHOLD) {
275                 state->median_m =
276                     cros_ec_sensor_ring_median(m_history_copy,
277                                                state->history_len - 1);
278
279                 /*
280                  * Calculate y-intercepts as if m_median is the slope and
281                  * points in the history are on the line. median_error will
282                  * still be in the offset coordinate system.
283                  */
284                 for (i = 0; i < state->history_len; i++)
285                         error[i] = state->y_history[i] -
286                                 div_s64(state->median_m * state->x_history[i],
287                                         M_PRECISION);
288                 state->median_error =
289                         cros_ec_sensor_ring_median(error, state->history_len);
290         } else {
291                 state->median_m = 0;
292                 state->median_error = 0;
293         }
294 }
295
296 /**
297  * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
298  *                                   timebase
299  *
300  * @state: filter information.
301  * @x: any ec timestamp (us):
302  *
303  * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
304  * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
305  *                           should have happened on the AP, with low jitter
306  *
307  * Note: The filter will only activate once state->history_len goes
308  * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
309  * transform.
310  *
311  * How to derive the formula, starting from:
312  *   f(x) = median_m * x + median_error
313  * That's the calculated AP - EC offset (at the x point in time)
314  * Undo the coordinate system transform:
315  *   f(x) = median_m * (x - x_offset) + median_error + y_offset
316  * Remember to undo the "y = c - b * 1000" modification:
317  *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
318  *
319  * Return: timestamp in AP timebase (ns)
320  */
321 static s64
322 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
323                               s64 x)
324 {
325         return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
326                + state->median_error + state->y_offset + x * 1000;
327 }
328
329 /*
330  * Since a and b were originally 32 bit values from the EC,
331  * they overflow relatively often, casting is not enough, so we need to
332  * add an offset.
333  */
334 static void
335 cros_ec_sensor_ring_fix_overflow(s64 *ts,
336                                  const s64 overflow_period,
337                                  struct cros_ec_sensors_ec_overflow_state
338                                  *state)
339 {
340         s64 adjust;
341
342         *ts += state->offset;
343         if (abs(state->last - *ts) > (overflow_period / 2)) {
344                 adjust = state->last > *ts ? overflow_period : -overflow_period;
345                 state->offset += adjust;
346                 *ts += adjust;
347         }
348         state->last = *ts;
349 }
350
351 static void
352 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
353                                              *sensorhub,
354                                              struct cros_ec_sensors_ring_sample
355                                              *sample)
356 {
357         const u8 sensor_id = sample->sensor_id;
358
359         /* If this event is earlier than one we saw before... */
360         if (sensorhub->batch_state[sensor_id].newest_sensor_event >
361             sample->timestamp)
362                 /* mark it for spreading. */
363                 sample->timestamp =
364                         sensorhub->batch_state[sensor_id].last_ts;
365         else
366                 sensorhub->batch_state[sensor_id].newest_sensor_event =
367                         sample->timestamp;
368 }
369
370 /**
371  * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
372  *
373  * @sensorhub: Sensor Hub object.
374  * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
375  * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
376  * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
377  * @in: incoming FIFO event from EC (includes a point, EC timebase).
378  * @out: outgoing event to user space (includes a').
379  *
380  * Process one EC event, add it in the ring if necessary.
381  *
382  * Return: true if out event has been populated.
383  */
384 static bool
385 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
386                                 const struct ec_response_motion_sense_fifo_info
387                                 *fifo_info,
388                                 const ktime_t fifo_timestamp,
389                                 ktime_t *current_timestamp,
390                                 struct ec_response_motion_sensor_data *in,
391                                 struct cros_ec_sensors_ring_sample *out)
392 {
393         const s64 now = cros_ec_get_time_ns();
394         int axis, async_flags;
395
396         /* Do not populate the filter based on asynchronous events. */
397         async_flags = in->flags &
398                 (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
399
400         if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
401                 s64 a = in->timestamp;
402                 s64 b = fifo_info->timestamp;
403                 s64 c = fifo_timestamp;
404
405                 cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
406                                           &sensorhub->overflow_a);
407                 cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
408                                           &sensorhub->overflow_b);
409
410                 if (sensorhub->tight_timestamps) {
411                         cros_ec_sensor_ring_ts_filter_update(
412                                         &sensorhub->filter, b, c);
413                         *current_timestamp = cros_ec_sensor_ring_ts_filter(
414                                         &sensorhub->filter, a);
415                 } else {
416                         s64 new_timestamp;
417
418                         /*
419                          * Disable filtering since we might add more jitter
420                          * if b is in a random point in time.
421                          */
422                         new_timestamp = fifo_timestamp -
423                                         fifo_info->timestamp  * 1000 +
424                                         in->timestamp * 1000;
425                         /*
426                          * The timestamp can be stale if we had to use the fifo
427                          * info timestamp.
428                          */
429                         if (new_timestamp - *current_timestamp > 0)
430                                 *current_timestamp = new_timestamp;
431                 }
432         }
433
434         if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
435                 if (sensorhub->tight_timestamps) {
436                         sensorhub->batch_state[in->sensor_num].last_len = 0;
437                         sensorhub->batch_state[in->sensor_num].penul_len = 0;
438                 }
439                 /*
440                  * ODR change is only useful for the sensor_ring, it does not
441                  * convey information to clients.
442                  */
443                 return false;
444         }
445
446         if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
447                 out->sensor_id = in->sensor_num;
448                 out->timestamp = *current_timestamp;
449                 out->flag = in->flags;
450                 if (sensorhub->tight_timestamps)
451                         sensorhub->batch_state[out->sensor_id].last_len = 0;
452                 /*
453                  * No other payload information provided with
454                  * flush ack.
455                  */
456                 return true;
457         }
458
459         if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
460                 /* If we just have a timestamp, skip this entry. */
461                 return false;
462
463         /* Regular sample */
464         out->sensor_id = in->sensor_num;
465         if (*current_timestamp - now > 0) {
466                 /*
467                  * This fix is needed to overcome the timestamp filter putting
468                  * events in the future.
469                  */
470                 sensorhub->future_timestamp_total_ns +=
471                         *current_timestamp - now;
472                 if (++sensorhub->future_timestamp_count ==
473                                 FUTURE_TS_ANALYTICS_COUNT_MAX) {
474                         s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
475                                         sensorhub->future_timestamp_count);
476                         dev_warn_ratelimited(sensorhub->dev,
477                                              "100 timestamps in the future, %lldns shaved on average\n",
478                                              avg);
479                         sensorhub->future_timestamp_count = 0;
480                         sensorhub->future_timestamp_total_ns = 0;
481                 }
482                 out->timestamp = now;
483         } else {
484                 out->timestamp = *current_timestamp;
485         }
486
487         out->flag = in->flags;
488         for (axis = 0; axis < 3; axis++)
489                 out->vector[axis] = in->data[axis];
490
491         if (sensorhub->tight_timestamps)
492                 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
493         return true;
494 }
495
496 /*
497  * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
498  *                                 ringbuffer.
499  *
500  * This is the new spreading code, assumes every sample's timestamp
501  * preceeds the sample. Run if tight_timestamps == true.
502  *
503  * Sometimes the EC receives only one interrupt (hence timestamp) for
504  * a batch of samples. Only the first sample will have the correct
505  * timestamp. So we must interpolate the other samples.
506  * We use the previous batch timestamp and our current batch timestamp
507  * as a way to calculate period, then spread the samples evenly.
508  *
509  * s0 int, 0ms
510  * s1 int, 10ms
511  * s2 int, 20ms
512  * 30ms point goes by, no interrupt, previous one is still asserted
513  * downloading s2 and s3
514  * s3 sample, 20ms (incorrect timestamp)
515  * s4 int, 40ms
516  *
517  * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
518  * has 2 samples in them, we adjust the timestamp of s3.
519  * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
520  * been part of a bigger batch things would have gotten a little
521  * more complicated.
522  *
523  * Note: we also assume another sensor sample doesn't break up a batch
524  * in 2 or more partitions. Example, there can't ever be a sync sensor
525  * in between S2 and S3. This simplifies the following code.
526  */
527 static void
528 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
529                                unsigned long sensor_mask,
530                                struct cros_ec_sensors_ring_sample *last_out)
531 {
532         struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
533         int id;
534
535         for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
536                 for (batch_start = sensorhub->ring; batch_start < last_out;
537                      batch_start = next_batch_start) {
538                         /*
539                          * For each batch (where all samples have the same
540                          * timestamp).
541                          */
542                         int batch_len, sample_idx;
543                         struct cros_ec_sensors_ring_sample *batch_end =
544                                 batch_start;
545                         struct cros_ec_sensors_ring_sample *s;
546                         s64 batch_timestamp = batch_start->timestamp;
547                         s64 sample_period;
548
549                         /*
550                          * Skip over batches that start with the sensor types
551                          * we're not looking at right now.
552                          */
553                         if (batch_start->sensor_id != id) {
554                                 next_batch_start = batch_start + 1;
555                                 continue;
556                         }
557
558                         /*
559                          * Do not start a batch
560                          * from a flush, as it happens asynchronously to the
561                          * regular flow of events.
562                          */
563                         if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
564                                 cros_sensorhub_send_sample(sensorhub,
565                                                            batch_start);
566                                 next_batch_start = batch_start + 1;
567                                 continue;
568                         }
569
570                         if (batch_start->timestamp <=
571                             sensorhub->batch_state[id].last_ts) {
572                                 batch_timestamp =
573                                         sensorhub->batch_state[id].last_ts;
574                                 batch_len = sensorhub->batch_state[id].last_len;
575
576                                 sample_idx = batch_len;
577
578                                 sensorhub->batch_state[id].last_ts =
579                                   sensorhub->batch_state[id].penul_ts;
580                                 sensorhub->batch_state[id].last_len =
581                                   sensorhub->batch_state[id].penul_len;
582                         } else {
583                                 /*
584                                  * Push first sample in the batch to the,
585                                  * kifo, it's guaranteed to be correct, the
586                                  * rest will follow later on.
587                                  */
588                                 sample_idx = 1;
589                                 batch_len = 1;
590                                 cros_sensorhub_send_sample(sensorhub,
591                                                            batch_start);
592                                 batch_start++;
593                         }
594
595                         /* Find all samples have the same timestamp. */
596                         for (s = batch_start; s < last_out; s++) {
597                                 if (s->sensor_id != id)
598                                         /*
599                                          * Skip over other sensor types that
600                                          * are interleaved, don't count them.
601                                          */
602                                         continue;
603                                 if (s->timestamp != batch_timestamp)
604                                         /* we discovered the next batch */
605                                         break;
606                                 if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
607                                         /* break on flush packets */
608                                         break;
609                                 batch_end = s;
610                                 batch_len++;
611                         }
612
613                         if (batch_len == 1)
614                                 goto done_with_this_batch;
615
616                         /* Can we calculate period? */
617                         if (sensorhub->batch_state[id].last_len == 0) {
618                                 dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
619                                          id, batch_len - 1);
620                                 goto done_with_this_batch;
621                                 /*
622                                  * Note: we're dropping the rest of the samples
623                                  * in this batch since we have no idea where
624                                  * they're supposed to go without a period
625                                  * calculation.
626                                  */
627                         }
628
629                         sample_period = div_s64(batch_timestamp -
630                                 sensorhub->batch_state[id].last_ts,
631                                 sensorhub->batch_state[id].last_len);
632                         dev_dbg(sensorhub->dev,
633                                 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
634                                 batch_len, id,
635                                 sensorhub->batch_state[id].last_ts,
636                                 sensorhub->batch_state[id].last_len,
637                                 batch_timestamp,
638                                 sample_period);
639
640                         /*
641                          * Adjust timestamps of the samples then push them to
642                          * kfifo.
643                          */
644                         for (s = batch_start; s <= batch_end; s++) {
645                                 if (s->sensor_id != id)
646                                         /*
647                                          * Skip over other sensor types that
648                                          * are interleaved, don't change them.
649                                          */
650                                         continue;
651
652                                 s->timestamp = batch_timestamp +
653                                         sample_period * sample_idx;
654                                 sample_idx++;
655
656                                 cros_sensorhub_send_sample(sensorhub, s);
657                         }
658
659 done_with_this_batch:
660                         sensorhub->batch_state[id].penul_ts =
661                                 sensorhub->batch_state[id].last_ts;
662                         sensorhub->batch_state[id].penul_len =
663                                 sensorhub->batch_state[id].last_len;
664
665                         sensorhub->batch_state[id].last_ts =
666                                 batch_timestamp;
667                         sensorhub->batch_state[id].last_len = batch_len;
668
669                         next_batch_start = batch_end + 1;
670                 }
671         }
672 }
673
674 /*
675  * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
676  * add to ringbuffer (legacy).
677  *
678  * Note: This assumes we're running old firmware, where every sample's timestamp
679  * is after the sample. Run if tight_timestamps == false.
680  *
681  * If there is a sample with a proper timestamp
682  *
683  *                        timestamp | count
684  *                        -----------------
685  * older_unprocess_out --> TS1      | 1
686  *                         TS1      | 2
687  *                out -->  TS1      | 3
688  *           next_out -->  TS2      |
689  *
690  * We spread time for the samples [older_unprocess_out .. out]
691  * between TS1 and TS2: [TS1+1/4, TS1+2/4, TS1+3/4, TS2].
692  *
693  * If we reach the end of the samples, we compare with the
694  * current timestamp:
695  *
696  * older_unprocess_out --> TS1      | 1
697  *                         TS1      | 2
698  *                 out --> TS1      | 3
699  *
700  * We know have [TS1+1/3, TS1+2/3, current timestamp]
701  */
702 static void
703 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
704                                       unsigned long sensor_mask,
705                                       s64 current_timestamp,
706                                       struct cros_ec_sensors_ring_sample
707                                       *last_out)
708 {
709         struct cros_ec_sensors_ring_sample *out;
710         int i;
711
712         for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
713                 s64 older_timestamp;
714                 s64 timestamp;
715                 struct cros_ec_sensors_ring_sample *older_unprocess_out =
716                         sensorhub->ring;
717                 struct cros_ec_sensors_ring_sample *next_out;
718                 int count = 1;
719
720                 for (out = sensorhub->ring; out < last_out; out = next_out) {
721                         s64 time_period;
722
723                         next_out = out + 1;
724                         if (out->sensor_id != i)
725                                 continue;
726
727                         /* Timestamp to start with */
728                         older_timestamp = out->timestamp;
729
730                         /* Find next sample. */
731                         while (next_out < last_out && next_out->sensor_id != i)
732                                 next_out++;
733
734                         if (next_out >= last_out) {
735                                 timestamp = current_timestamp;
736                         } else {
737                                 timestamp = next_out->timestamp;
738                                 if (timestamp == older_timestamp) {
739                                         count++;
740                                         continue;
741                                 }
742                         }
743
744                         /*
745                          * The next sample has a new timestamp, spread the
746                          * unprocessed samples.
747                          */
748                         if (next_out < last_out)
749                                 count++;
750                         time_period = div_s64(timestamp - older_timestamp,
751                                               count);
752
753                         for (; older_unprocess_out <= out;
754                                         older_unprocess_out++) {
755                                 if (older_unprocess_out->sensor_id != i)
756                                         continue;
757                                 older_timestamp += time_period;
758                                 older_unprocess_out->timestamp =
759                                         older_timestamp;
760                         }
761                         count = 1;
762                         /* The next_out sample has a valid timestamp, skip. */
763                         next_out++;
764                         older_unprocess_out = next_out;
765                 }
766         }
767
768         /* Push the event into the kfifo */
769         for (out = sensorhub->ring; out < last_out; out++)
770                 cros_sensorhub_send_sample(sensorhub, out);
771 }
772
773 /**
774  * cros_ec_sensorhub_ring_handler() - The trigger handler function
775  *
776  * @sensorhub: Sensor Hub object.
777  *
778  * Called by the notifier, process the EC sensor FIFO queue.
779  */
780 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
781 {
782         struct ec_response_motion_sense_fifo_info *fifo_info =
783                 sensorhub->fifo_info;
784         struct cros_ec_dev *ec = sensorhub->ec;
785         ktime_t fifo_timestamp, current_timestamp;
786         int i, j, number_data, ret;
787         unsigned long sensor_mask = 0;
788         struct ec_response_motion_sensor_data *in;
789         struct cros_ec_sensors_ring_sample *out, *last_out;
790
791         mutex_lock(&sensorhub->cmd_lock);
792
793         /* Get FIFO information if there are lost vectors. */
794         if (fifo_info->total_lost) {
795                 int fifo_info_length =
796                         sizeof(struct ec_response_motion_sense_fifo_info) +
797                         sizeof(u16) * sensorhub->sensor_num;
798
799                 /* Need to retrieve the number of lost vectors per sensor */
800                 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
801                 sensorhub->msg->outsize = 1;
802                 sensorhub->msg->insize = fifo_info_length;
803
804                 if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
805                         goto error;
806
807                 memcpy(fifo_info, &sensorhub->resp->fifo_info,
808                        fifo_info_length);
809
810                 /*
811                  * Update collection time, will not be as precise as the
812                  * non-error case.
813                  */
814                 fifo_timestamp = cros_ec_get_time_ns();
815         } else {
816                 fifo_timestamp = sensorhub->fifo_timestamp[
817                         CROS_EC_SENSOR_NEW_TS];
818         }
819
820         if (fifo_info->count > sensorhub->fifo_size ||
821             fifo_info->size != sensorhub->fifo_size) {
822                 dev_warn(sensorhub->dev,
823                          "Mismatch EC data: count %d, size %d - expected %d\n",
824                          fifo_info->count, fifo_info->size,
825                          sensorhub->fifo_size);
826                 goto error;
827         }
828
829         /* Copy elements in the main fifo */
830         current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
831         out = sensorhub->ring;
832         for (i = 0; i < fifo_info->count; i += number_data) {
833                 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
834                 sensorhub->params->fifo_read.max_data_vector =
835                         fifo_info->count - i;
836                 sensorhub->msg->outsize =
837                         sizeof(struct ec_params_motion_sense);
838                 sensorhub->msg->insize =
839                         sizeof(sensorhub->resp->fifo_read) +
840                         sensorhub->params->fifo_read.max_data_vector *
841                           sizeof(struct ec_response_motion_sensor_data);
842                 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
843                 if (ret < 0) {
844                         dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
845                         break;
846                 }
847                 number_data = sensorhub->resp->fifo_read.number_data;
848                 if (number_data == 0) {
849                         dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
850                         break;
851                 }
852                 if (number_data > fifo_info->count - i) {
853                         dev_warn(sensorhub->dev,
854                                  "Invalid EC data: too many entry received: %d, expected %d\n",
855                                  number_data, fifo_info->count - i);
856                         break;
857                 }
858                 if (out + number_data >
859                     sensorhub->ring + fifo_info->count) {
860                         dev_warn(sensorhub->dev,
861                                  "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
862                                  i, out - sensorhub->ring, i + number_data,
863                                  fifo_info->count);
864                         break;
865                 }
866
867                 for (in = sensorhub->resp->fifo_read.data, j = 0;
868                      j < number_data; j++, in++) {
869                         if (cros_ec_sensor_ring_process_event(
870                                                 sensorhub, fifo_info,
871                                                 fifo_timestamp,
872                                                 &current_timestamp,
873                                                 in, out)) {
874                                 sensor_mask |= BIT(in->sensor_num);
875                                 out++;
876                         }
877                 }
878         }
879         mutex_unlock(&sensorhub->cmd_lock);
880         last_out = out;
881
882         if (out == sensorhub->ring)
883                 /* Unexpected empty FIFO. */
884                 goto ring_handler_end;
885
886         /*
887          * Check if current_timestamp is ahead of the last sample. Normally,
888          * the EC appends a timestamp after the last sample, but if the AP
889          * is slow to respond to the IRQ, the EC may have added new samples.
890          * Use the FIFO info timestamp as last timestamp then.
891          */
892         if (!sensorhub->tight_timestamps &&
893             (last_out - 1)->timestamp == current_timestamp)
894                 current_timestamp = fifo_timestamp;
895
896         /* Warn on lost samples. */
897         if (fifo_info->total_lost)
898                 for (i = 0; i < sensorhub->sensor_num; i++) {
899                         if (fifo_info->lost[i]) {
900                                 dev_warn_ratelimited(sensorhub->dev,
901                                                      "Sensor %d: lost: %d out of %d\n",
902                                                      i, fifo_info->lost[i],
903                                                      fifo_info->total_lost);
904                                 if (sensorhub->tight_timestamps)
905                                         sensorhub->batch_state[i].last_len = 0;
906                         }
907                 }
908
909         /*
910          * Spread samples in case of batching, then add them to the
911          * ringbuffer.
912          */
913         if (sensorhub->tight_timestamps)
914                 cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
915                                                last_out);
916         else
917                 cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
918                                                       current_timestamp,
919                                                       last_out);
920
921 ring_handler_end:
922         sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
923         return;
924
925 error:
926         mutex_unlock(&sensorhub->cmd_lock);
927 }
928
929 static int cros_ec_sensorhub_event(struct notifier_block *nb,
930                                    unsigned long queued_during_suspend,
931                                    void *_notify)
932 {
933         struct cros_ec_sensorhub *sensorhub;
934         struct cros_ec_device *ec_dev;
935
936         sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
937         ec_dev = sensorhub->ec->ec_dev;
938
939         if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
940                 return NOTIFY_DONE;
941
942         if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
943                 dev_warn(ec_dev->dev, "Invalid fifo info size\n");
944                 return NOTIFY_DONE;
945         }
946
947         if (queued_during_suspend)
948                 return NOTIFY_OK;
949
950         memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
951                sizeof(*sensorhub->fifo_info));
952         sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
953                 ec_dev->last_event_time;
954         cros_ec_sensorhub_ring_handler(sensorhub);
955
956         return NOTIFY_OK;
957 }
958
959 /**
960  * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
961  *                                     supports it.
962  *
963  * @sensorhub : Sensor Hub object.
964  *
965  * Return: 0 on success.
966  */
967 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
968 {
969         int fifo_info_length =
970                 sizeof(struct ec_response_motion_sense_fifo_info) +
971                 sizeof(u16) * sensorhub->sensor_num;
972
973         /* Allocate the array for lost events. */
974         sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
975                                             GFP_KERNEL);
976         if (!sensorhub->fifo_info)
977                 return -ENOMEM;
978
979         /*
980          * Allocate the callback area based on the number of sensors.
981          * Add one for the sensor ring.
982          */
983         sensorhub->push_data = devm_kcalloc(sensorhub->dev,
984                         sensorhub->sensor_num,
985                         sizeof(*sensorhub->push_data),
986                         GFP_KERNEL);
987         if (!sensorhub->push_data)
988                 return -ENOMEM;
989
990         sensorhub->tight_timestamps = cros_ec_check_features(
991                         sensorhub->ec,
992                         EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
993
994         if (sensorhub->tight_timestamps) {
995                 sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
996                                 sensorhub->sensor_num,
997                                 sizeof(*sensorhub->batch_state),
998                                 GFP_KERNEL);
999                 if (!sensorhub->batch_state)
1000                         return -ENOMEM;
1001         }
1002
1003         return 0;
1004 }
1005
1006 /**
1007  * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
1008  *                                supports it.
1009  *
1010  * @sensorhub : Sensor Hub object.
1011  *
1012  * Return: 0 on success.
1013  */
1014 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
1015 {
1016         struct cros_ec_dev *ec = sensorhub->ec;
1017         int ret;
1018         int fifo_info_length =
1019                 sizeof(struct ec_response_motion_sense_fifo_info) +
1020                 sizeof(u16) * sensorhub->sensor_num;
1021
1022         /* Retrieve FIFO information */
1023         sensorhub->msg->version = 2;
1024         sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
1025         sensorhub->msg->outsize = 1;
1026         sensorhub->msg->insize = fifo_info_length;
1027
1028         ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
1029         if (ret < 0)
1030                 return ret;
1031
1032         /*
1033          * Allocate the full fifo. We need to copy the whole FIFO to set
1034          * timestamps properly.
1035          */
1036         sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1037         sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1038                                        sizeof(*sensorhub->ring), GFP_KERNEL);
1039         if (!sensorhub->ring)
1040                 return -ENOMEM;
1041
1042         sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1043                 cros_ec_get_time_ns();
1044
1045         /* Register the notifier that will act as a top half interrupt. */
1046         sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1047         ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1048                                                &sensorhub->notifier);
1049         if (ret < 0)
1050                 return ret;
1051
1052         /* Start collection samples. */
1053         return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1054 }
1055
1056 void cros_ec_sensorhub_ring_remove(void *arg)
1057 {
1058         struct cros_ec_sensorhub *sensorhub = arg;
1059         struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1060
1061         /* Disable the ring, prevent EC interrupt to the AP for nothing. */
1062         cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1063         blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1064                                            &sensorhub->notifier);
1065 }