Revert "i915: fix remap_io_sg to verify the pgprot"
[linux-2.6-microblaze.git] / drivers / perf / arm_spe_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10
11 #define PMUNAME                                 "arm_spe"
12 #define DRVNAME                                 PMUNAME "_pmu"
13 #define pr_fmt(fmt)                             DRVNAME ": " fmt
14
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41
42 #define ARM_SPE_BUF_PAD_BYTE                    0
43
44 struct arm_spe_pmu_buf {
45         int                                     nr_pages;
46         bool                                    snapshot;
47         void                                    *base;
48 };
49
50 struct arm_spe_pmu {
51         struct pmu                              pmu;
52         struct platform_device                  *pdev;
53         cpumask_t                               supported_cpus;
54         struct hlist_node                       hotplug_node;
55
56         int                                     irq; /* PPI */
57         u16                                     pmsver;
58         u16                                     min_period;
59         u16                                     counter_sz;
60
61 #define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
62 #define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
63 #define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
64 #define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
65 #define SPE_PMU_FEAT_LDS                        (1UL << 4)
66 #define SPE_PMU_FEAT_ERND                       (1UL << 5)
67 #define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
68         u64                                     features;
69
70         u16                                     max_record_sz;
71         u16                                     align;
72         struct perf_output_handle __percpu      *handle;
73 };
74
75 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
76
77 /* Convert a free-running index from perf into an SPE buffer offset */
78 #define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
79
80 /* Keep track of our dynamic hotplug state */
81 static enum cpuhp_state arm_spe_pmu_online;
82
83 enum arm_spe_pmu_buf_fault_action {
84         SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
85         SPE_PMU_BUF_FAULT_ACT_FATAL,
86         SPE_PMU_BUF_FAULT_ACT_OK,
87 };
88
89 /* This sysfs gunk was really good fun to write. */
90 enum arm_spe_pmu_capabilities {
91         SPE_PMU_CAP_ARCH_INST = 0,
92         SPE_PMU_CAP_ERND,
93         SPE_PMU_CAP_FEAT_MAX,
94         SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
95         SPE_PMU_CAP_MIN_IVAL,
96 };
97
98 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
99         [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
100         [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
101 };
102
103 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
104 {
105         if (cap < SPE_PMU_CAP_FEAT_MAX)
106                 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
107
108         switch (cap) {
109         case SPE_PMU_CAP_CNT_SZ:
110                 return spe_pmu->counter_sz;
111         case SPE_PMU_CAP_MIN_IVAL:
112                 return spe_pmu->min_period;
113         default:
114                 WARN(1, "unknown cap %d\n", cap);
115         }
116
117         return 0;
118 }
119
120 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
121                                     struct device_attribute *attr,
122                                     char *buf)
123 {
124         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
125         struct dev_ext_attribute *ea =
126                 container_of(attr, struct dev_ext_attribute, attr);
127         int cap = (long)ea->var;
128
129         return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
130 }
131
132 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
133         &((struct dev_ext_attribute[]) {                                \
134                 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
135         })[0].attr.attr
136
137 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
138         SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
139
140 static struct attribute *arm_spe_pmu_cap_attr[] = {
141         SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
142         SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
143         SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
144         SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
145         NULL,
146 };
147
148 static const struct attribute_group arm_spe_pmu_cap_group = {
149         .name   = "caps",
150         .attrs  = arm_spe_pmu_cap_attr,
151 };
152
153 /* User ABI */
154 #define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
155 #define ATTR_CFG_FLD_ts_enable_LO               0
156 #define ATTR_CFG_FLD_ts_enable_HI               0
157 #define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
158 #define ATTR_CFG_FLD_pa_enable_LO               1
159 #define ATTR_CFG_FLD_pa_enable_HI               1
160 #define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
161 #define ATTR_CFG_FLD_pct_enable_LO              2
162 #define ATTR_CFG_FLD_pct_enable_HI              2
163 #define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
164 #define ATTR_CFG_FLD_jitter_LO                  16
165 #define ATTR_CFG_FLD_jitter_HI                  16
166 #define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
167 #define ATTR_CFG_FLD_branch_filter_LO           32
168 #define ATTR_CFG_FLD_branch_filter_HI           32
169 #define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
170 #define ATTR_CFG_FLD_load_filter_LO             33
171 #define ATTR_CFG_FLD_load_filter_HI             33
172 #define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
173 #define ATTR_CFG_FLD_store_filter_LO            34
174 #define ATTR_CFG_FLD_store_filter_HI            34
175
176 #define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
177 #define ATTR_CFG_FLD_event_filter_LO            0
178 #define ATTR_CFG_FLD_event_filter_HI            63
179
180 #define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
181 #define ATTR_CFG_FLD_min_latency_LO             0
182 #define ATTR_CFG_FLD_min_latency_HI             11
183
184 /* Why does everything I do descend into this? */
185 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
186         (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
187
188 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
189         __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
190
191 #define GEN_PMU_FORMAT_ATTR(name)                                       \
192         PMU_FORMAT_ATTR(name,                                           \
193         _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
194                              ATTR_CFG_FLD_##name##_LO,                  \
195                              ATTR_CFG_FLD_##name##_HI))
196
197 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
198         ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
199
200 #define ATTR_CFG_GET_FLD(attr, name)                                    \
201         _ATTR_CFG_GET_FLD(attr,                                         \
202                           ATTR_CFG_FLD_##name##_CFG,                    \
203                           ATTR_CFG_FLD_##name##_LO,                     \
204                           ATTR_CFG_FLD_##name##_HI)
205
206 GEN_PMU_FORMAT_ATTR(ts_enable);
207 GEN_PMU_FORMAT_ATTR(pa_enable);
208 GEN_PMU_FORMAT_ATTR(pct_enable);
209 GEN_PMU_FORMAT_ATTR(jitter);
210 GEN_PMU_FORMAT_ATTR(branch_filter);
211 GEN_PMU_FORMAT_ATTR(load_filter);
212 GEN_PMU_FORMAT_ATTR(store_filter);
213 GEN_PMU_FORMAT_ATTR(event_filter);
214 GEN_PMU_FORMAT_ATTR(min_latency);
215
216 static struct attribute *arm_spe_pmu_formats_attr[] = {
217         &format_attr_ts_enable.attr,
218         &format_attr_pa_enable.attr,
219         &format_attr_pct_enable.attr,
220         &format_attr_jitter.attr,
221         &format_attr_branch_filter.attr,
222         &format_attr_load_filter.attr,
223         &format_attr_store_filter.attr,
224         &format_attr_event_filter.attr,
225         &format_attr_min_latency.attr,
226         NULL,
227 };
228
229 static const struct attribute_group arm_spe_pmu_format_group = {
230         .name   = "format",
231         .attrs  = arm_spe_pmu_formats_attr,
232 };
233
234 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
235                                             struct device_attribute *attr,
236                                             char *buf)
237 {
238         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
239
240         return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
241 }
242 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
243
244 static struct attribute *arm_spe_pmu_attrs[] = {
245         &dev_attr_cpumask.attr,
246         NULL,
247 };
248
249 static const struct attribute_group arm_spe_pmu_group = {
250         .attrs  = arm_spe_pmu_attrs,
251 };
252
253 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
254         &arm_spe_pmu_group,
255         &arm_spe_pmu_cap_group,
256         &arm_spe_pmu_format_group,
257         NULL,
258 };
259
260 /* Convert between user ABI and register values */
261 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
262 {
263         struct perf_event_attr *attr = &event->attr;
264         u64 reg = 0;
265
266         reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
267         reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
268         reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
269
270         if (!attr->exclude_user)
271                 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
272
273         if (!attr->exclude_kernel)
274                 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
275
276         if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
277                 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
278
279         return reg;
280 }
281
282 static void arm_spe_event_sanitise_period(struct perf_event *event)
283 {
284         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
285         u64 period = event->hw.sample_period;
286         u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
287                          << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
288
289         if (period < spe_pmu->min_period)
290                 period = spe_pmu->min_period;
291         else if (period > max_period)
292                 period = max_period;
293         else
294                 period &= max_period;
295
296         event->hw.sample_period = period;
297 }
298
299 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
300 {
301         struct perf_event_attr *attr = &event->attr;
302         u64 reg = 0;
303
304         arm_spe_event_sanitise_period(event);
305
306         reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
307         reg |= event->hw.sample_period;
308
309         return reg;
310 }
311
312 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
313 {
314         struct perf_event_attr *attr = &event->attr;
315         u64 reg = 0;
316
317         reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
318         reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
319         reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
320
321         if (reg)
322                 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
323
324         if (ATTR_CFG_GET_FLD(attr, event_filter))
325                 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
326
327         if (ATTR_CFG_GET_FLD(attr, min_latency))
328                 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
329
330         return reg;
331 }
332
333 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
334 {
335         struct perf_event_attr *attr = &event->attr;
336         return ATTR_CFG_GET_FLD(attr, event_filter);
337 }
338
339 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
340 {
341         struct perf_event_attr *attr = &event->attr;
342         return ATTR_CFG_GET_FLD(attr, min_latency)
343                << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
344 }
345
346 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
347 {
348         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
349         u64 head = PERF_IDX2OFF(handle->head, buf);
350
351         memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
352         if (!buf->snapshot)
353                 perf_aux_output_skip(handle, len);
354 }
355
356 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
357 {
358         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
359         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
360         u64 head = PERF_IDX2OFF(handle->head, buf);
361         u64 limit = buf->nr_pages * PAGE_SIZE;
362
363         /*
364          * The trace format isn't parseable in reverse, so clamp
365          * the limit to half of the buffer size in snapshot mode
366          * so that the worst case is half a buffer of records, as
367          * opposed to a single record.
368          */
369         if (head < limit >> 1)
370                 limit >>= 1;
371
372         /*
373          * If we're within max_record_sz of the limit, we must
374          * pad, move the head index and recompute the limit.
375          */
376         if (limit - head < spe_pmu->max_record_sz) {
377                 arm_spe_pmu_pad_buf(handle, limit - head);
378                 handle->head = PERF_IDX2OFF(limit, buf);
379                 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
380         }
381
382         return limit;
383 }
384
385 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
386 {
387         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
388         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
389         const u64 bufsize = buf->nr_pages * PAGE_SIZE;
390         u64 limit = bufsize;
391         u64 head, tail, wakeup;
392
393         /*
394          * The head can be misaligned for two reasons:
395          *
396          * 1. The hardware left PMBPTR pointing to the first byte after
397          *    a record when generating a buffer management event.
398          *
399          * 2. We used perf_aux_output_skip to consume handle->size bytes
400          *    and CIRC_SPACE was used to compute the size, which always
401          *    leaves one entry free.
402          *
403          * Deal with this by padding to the next alignment boundary and
404          * moving the head index. If we run out of buffer space, we'll
405          * reduce handle->size to zero and end up reporting truncation.
406          */
407         head = PERF_IDX2OFF(handle->head, buf);
408         if (!IS_ALIGNED(head, spe_pmu->align)) {
409                 unsigned long delta = roundup(head, spe_pmu->align) - head;
410
411                 delta = min(delta, handle->size);
412                 arm_spe_pmu_pad_buf(handle, delta);
413                 head = PERF_IDX2OFF(handle->head, buf);
414         }
415
416         /* If we've run out of free space, then nothing more to do */
417         if (!handle->size)
418                 goto no_space;
419
420         /* Compute the tail and wakeup indices now that we've aligned head */
421         tail = PERF_IDX2OFF(handle->head + handle->size, buf);
422         wakeup = PERF_IDX2OFF(handle->wakeup, buf);
423
424         /*
425          * Avoid clobbering unconsumed data. We know we have space, so
426          * if we see head == tail we know that the buffer is empty. If
427          * head > tail, then there's nothing to clobber prior to
428          * wrapping.
429          */
430         if (head < tail)
431                 limit = round_down(tail, PAGE_SIZE);
432
433         /*
434          * Wakeup may be arbitrarily far into the future. If it's not in
435          * the current generation, either we'll wrap before hitting it,
436          * or it's in the past and has been handled already.
437          *
438          * If there's a wakeup before we wrap, arrange to be woken up by
439          * the page boundary following it. Keep the tail boundary if
440          * that's lower.
441          */
442         if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
443                 limit = min(limit, round_up(wakeup, PAGE_SIZE));
444
445         if (limit > head)
446                 return limit;
447
448         arm_spe_pmu_pad_buf(handle, handle->size);
449 no_space:
450         perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
451         perf_aux_output_end(handle, 0);
452         return 0;
453 }
454
455 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
456 {
457         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
458         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
459         u64 limit = __arm_spe_pmu_next_off(handle);
460         u64 head = PERF_IDX2OFF(handle->head, buf);
461
462         /*
463          * If the head has come too close to the end of the buffer,
464          * then pad to the end and recompute the limit.
465          */
466         if (limit && (limit - head < spe_pmu->max_record_sz)) {
467                 arm_spe_pmu_pad_buf(handle, limit - head);
468                 limit = __arm_spe_pmu_next_off(handle);
469         }
470
471         return limit;
472 }
473
474 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
475                                           struct perf_event *event)
476 {
477         u64 base, limit;
478         struct arm_spe_pmu_buf *buf;
479
480         /* Start a new aux session */
481         buf = perf_aux_output_begin(handle, event);
482         if (!buf) {
483                 event->hw.state |= PERF_HES_STOPPED;
484                 /*
485                  * We still need to clear the limit pointer, since the
486                  * profiler might only be disabled by virtue of a fault.
487                  */
488                 limit = 0;
489                 goto out_write_limit;
490         }
491
492         limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
493                               : arm_spe_pmu_next_off(handle);
494         if (limit)
495                 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
496
497         limit += (u64)buf->base;
498         base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
499         write_sysreg_s(base, SYS_PMBPTR_EL1);
500
501 out_write_limit:
502         write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
503 }
504
505 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
506 {
507         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
508         u64 offset, size;
509
510         offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
511         size = offset - PERF_IDX2OFF(handle->head, buf);
512
513         if (buf->snapshot)
514                 handle->head = offset;
515
516         perf_aux_output_end(handle, size);
517 }
518
519 static void arm_spe_pmu_disable_and_drain_local(void)
520 {
521         /* Disable profiling at EL0 and EL1 */
522         write_sysreg_s(0, SYS_PMSCR_EL1);
523         isb();
524
525         /* Drain any buffered data */
526         psb_csync();
527         dsb(nsh);
528
529         /* Disable the profiling buffer */
530         write_sysreg_s(0, SYS_PMBLIMITR_EL1);
531         isb();
532 }
533
534 /* IRQ handling */
535 static enum arm_spe_pmu_buf_fault_action
536 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
537 {
538         const char *err_str;
539         u64 pmbsr;
540         enum arm_spe_pmu_buf_fault_action ret;
541
542         /*
543          * Ensure new profiling data is visible to the CPU and any external
544          * aborts have been resolved.
545          */
546         psb_csync();
547         dsb(nsh);
548
549         /* Ensure hardware updates to PMBPTR_EL1 are visible */
550         isb();
551
552         /* Service required? */
553         pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
554         if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
555                 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
556
557         /*
558          * If we've lost data, disable profiling and also set the PARTIAL
559          * flag to indicate that the last record is corrupted.
560          */
561         if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
562                 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
563                                              PERF_AUX_FLAG_PARTIAL);
564
565         /* Report collisions to userspace so that it can up the period */
566         if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
567                 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
568
569         /* We only expect buffer management events */
570         switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
571         case SYS_PMBSR_EL1_EC_BUF:
572                 /* Handled below */
573                 break;
574         case SYS_PMBSR_EL1_EC_FAULT_S1:
575         case SYS_PMBSR_EL1_EC_FAULT_S2:
576                 err_str = "Unexpected buffer fault";
577                 goto out_err;
578         default:
579                 err_str = "Unknown error code";
580                 goto out_err;
581         }
582
583         /* Buffer management event */
584         switch (pmbsr &
585                 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
586         case SYS_PMBSR_EL1_BUF_BSC_FULL:
587                 ret = SPE_PMU_BUF_FAULT_ACT_OK;
588                 goto out_stop;
589         default:
590                 err_str = "Unknown buffer status code";
591         }
592
593 out_err:
594         pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
595                            err_str, smp_processor_id(), pmbsr,
596                            read_sysreg_s(SYS_PMBPTR_EL1),
597                            read_sysreg_s(SYS_PMBLIMITR_EL1));
598         ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
599
600 out_stop:
601         arm_spe_perf_aux_output_end(handle);
602         return ret;
603 }
604
605 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
606 {
607         struct perf_output_handle *handle = dev;
608         struct perf_event *event = handle->event;
609         enum arm_spe_pmu_buf_fault_action act;
610
611         if (!perf_get_aux(handle))
612                 return IRQ_NONE;
613
614         act = arm_spe_pmu_buf_get_fault_act(handle);
615         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
616                 return IRQ_NONE;
617
618         /*
619          * Ensure perf callbacks have completed, which may disable the
620          * profiling buffer in response to a TRUNCATION flag.
621          */
622         irq_work_run();
623
624         switch (act) {
625         case SPE_PMU_BUF_FAULT_ACT_FATAL:
626                 /*
627                  * If a fatal exception occurred then leaving the profiling
628                  * buffer enabled is a recipe waiting to happen. Since
629                  * fatal faults don't always imply truncation, make sure
630                  * that the profiling buffer is disabled explicitly before
631                  * clearing the syndrome register.
632                  */
633                 arm_spe_pmu_disable_and_drain_local();
634                 break;
635         case SPE_PMU_BUF_FAULT_ACT_OK:
636                 /*
637                  * We handled the fault (the buffer was full), so resume
638                  * profiling as long as we didn't detect truncation.
639                  * PMBPTR might be misaligned, but we'll burn that bridge
640                  * when we get to it.
641                  */
642                 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
643                         arm_spe_perf_aux_output_begin(handle, event);
644                         isb();
645                 }
646                 break;
647         case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
648                 /* We've seen you before, but GCC has the memory of a sieve. */
649                 break;
650         }
651
652         /* The buffer pointers are now sane, so resume profiling. */
653         write_sysreg_s(0, SYS_PMBSR_EL1);
654         return IRQ_HANDLED;
655 }
656
657 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
658 {
659         switch (pmsver) {
660         case ID_AA64DFR0_PMSVER_8_2:
661                 return SYS_PMSEVFR_EL1_RES0_8_2;
662         case ID_AA64DFR0_PMSVER_8_3:
663         /* Return the highest version we support in default */
664         default:
665                 return SYS_PMSEVFR_EL1_RES0_8_3;
666         }
667 }
668
669 /* Perf callbacks */
670 static int arm_spe_pmu_event_init(struct perf_event *event)
671 {
672         u64 reg;
673         struct perf_event_attr *attr = &event->attr;
674         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
675
676         /* This is, of course, deeply driver-specific */
677         if (attr->type != event->pmu->type)
678                 return -ENOENT;
679
680         if (event->cpu >= 0 &&
681             !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
682                 return -ENOENT;
683
684         if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
685                 return -EOPNOTSUPP;
686
687         if (attr->exclude_idle)
688                 return -EOPNOTSUPP;
689
690         /*
691          * Feedback-directed frequency throttling doesn't work when we
692          * have a buffer of samples. We'd need to manually count the
693          * samples in the buffer when it fills up and adjust the event
694          * count to reflect that. Instead, just force the user to specify
695          * a sample period.
696          */
697         if (attr->freq)
698                 return -EINVAL;
699
700         reg = arm_spe_event_to_pmsfcr(event);
701         if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
702             !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
703                 return -EOPNOTSUPP;
704
705         if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
706             !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
707                 return -EOPNOTSUPP;
708
709         if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
710             !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
711                 return -EOPNOTSUPP;
712
713         reg = arm_spe_event_to_pmscr(event);
714         if (!perfmon_capable() &&
715             (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
716                     BIT(SYS_PMSCR_EL1_CX_SHIFT) |
717                     BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
718                 return -EACCES;
719
720         return 0;
721 }
722
723 static void arm_spe_pmu_start(struct perf_event *event, int flags)
724 {
725         u64 reg;
726         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
727         struct hw_perf_event *hwc = &event->hw;
728         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
729
730         hwc->state = 0;
731         arm_spe_perf_aux_output_begin(handle, event);
732         if (hwc->state)
733                 return;
734
735         reg = arm_spe_event_to_pmsfcr(event);
736         write_sysreg_s(reg, SYS_PMSFCR_EL1);
737
738         reg = arm_spe_event_to_pmsevfr(event);
739         write_sysreg_s(reg, SYS_PMSEVFR_EL1);
740
741         reg = arm_spe_event_to_pmslatfr(event);
742         write_sysreg_s(reg, SYS_PMSLATFR_EL1);
743
744         if (flags & PERF_EF_RELOAD) {
745                 reg = arm_spe_event_to_pmsirr(event);
746                 write_sysreg_s(reg, SYS_PMSIRR_EL1);
747                 isb();
748                 reg = local64_read(&hwc->period_left);
749                 write_sysreg_s(reg, SYS_PMSICR_EL1);
750         }
751
752         reg = arm_spe_event_to_pmscr(event);
753         isb();
754         write_sysreg_s(reg, SYS_PMSCR_EL1);
755 }
756
757 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
758 {
759         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
760         struct hw_perf_event *hwc = &event->hw;
761         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
762
763         /* If we're already stopped, then nothing to do */
764         if (hwc->state & PERF_HES_STOPPED)
765                 return;
766
767         /* Stop all trace generation */
768         arm_spe_pmu_disable_and_drain_local();
769
770         if (flags & PERF_EF_UPDATE) {
771                 /*
772                  * If there's a fault pending then ensure we contain it
773                  * to this buffer, since we might be on the context-switch
774                  * path.
775                  */
776                 if (perf_get_aux(handle)) {
777                         enum arm_spe_pmu_buf_fault_action act;
778
779                         act = arm_spe_pmu_buf_get_fault_act(handle);
780                         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
781                                 arm_spe_perf_aux_output_end(handle);
782                         else
783                                 write_sysreg_s(0, SYS_PMBSR_EL1);
784                 }
785
786                 /*
787                  * This may also contain ECOUNT, but nobody else should
788                  * be looking at period_left, since we forbid frequency
789                  * based sampling.
790                  */
791                 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
792                 hwc->state |= PERF_HES_UPTODATE;
793         }
794
795         hwc->state |= PERF_HES_STOPPED;
796 }
797
798 static int arm_spe_pmu_add(struct perf_event *event, int flags)
799 {
800         int ret = 0;
801         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
802         struct hw_perf_event *hwc = &event->hw;
803         int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
804
805         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
806                 return -ENOENT;
807
808         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
809
810         if (flags & PERF_EF_START) {
811                 arm_spe_pmu_start(event, PERF_EF_RELOAD);
812                 if (hwc->state & PERF_HES_STOPPED)
813                         ret = -EINVAL;
814         }
815
816         return ret;
817 }
818
819 static void arm_spe_pmu_del(struct perf_event *event, int flags)
820 {
821         arm_spe_pmu_stop(event, PERF_EF_UPDATE);
822 }
823
824 static void arm_spe_pmu_read(struct perf_event *event)
825 {
826 }
827
828 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
829                                    int nr_pages, bool snapshot)
830 {
831         int i, cpu = event->cpu;
832         struct page **pglist;
833         struct arm_spe_pmu_buf *buf;
834
835         /* We need at least two pages for this to work. */
836         if (nr_pages < 2)
837                 return NULL;
838
839         /*
840          * We require an even number of pages for snapshot mode, so that
841          * we can effectively treat the buffer as consisting of two equal
842          * parts and give userspace a fighting chance of getting some
843          * useful data out of it.
844          */
845         if (snapshot && (nr_pages & 1))
846                 return NULL;
847
848         if (cpu == -1)
849                 cpu = raw_smp_processor_id();
850
851         buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
852         if (!buf)
853                 return NULL;
854
855         pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
856         if (!pglist)
857                 goto out_free_buf;
858
859         for (i = 0; i < nr_pages; ++i)
860                 pglist[i] = virt_to_page(pages[i]);
861
862         buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
863         if (!buf->base)
864                 goto out_free_pglist;
865
866         buf->nr_pages   = nr_pages;
867         buf->snapshot   = snapshot;
868
869         kfree(pglist);
870         return buf;
871
872 out_free_pglist:
873         kfree(pglist);
874 out_free_buf:
875         kfree(buf);
876         return NULL;
877 }
878
879 static void arm_spe_pmu_free_aux(void *aux)
880 {
881         struct arm_spe_pmu_buf *buf = aux;
882
883         vunmap(buf->base);
884         kfree(buf);
885 }
886
887 /* Initialisation and teardown functions */
888 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
889 {
890         static atomic_t pmu_idx = ATOMIC_INIT(-1);
891
892         int idx;
893         char *name;
894         struct device *dev = &spe_pmu->pdev->dev;
895
896         spe_pmu->pmu = (struct pmu) {
897                 .module = THIS_MODULE,
898                 .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
899                 .attr_groups    = arm_spe_pmu_attr_groups,
900                 /*
901                  * We hitch a ride on the software context here, so that
902                  * we can support per-task profiling (which is not possible
903                  * with the invalid context as it doesn't get sched callbacks).
904                  * This requires that userspace either uses a dummy event for
905                  * perf_event_open, since the aux buffer is not setup until
906                  * a subsequent mmap, or creates the profiling event in a
907                  * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
908                  * once the buffer has been created.
909                  */
910                 .task_ctx_nr    = perf_sw_context,
911                 .event_init     = arm_spe_pmu_event_init,
912                 .add            = arm_spe_pmu_add,
913                 .del            = arm_spe_pmu_del,
914                 .start          = arm_spe_pmu_start,
915                 .stop           = arm_spe_pmu_stop,
916                 .read           = arm_spe_pmu_read,
917                 .setup_aux      = arm_spe_pmu_setup_aux,
918                 .free_aux       = arm_spe_pmu_free_aux,
919         };
920
921         idx = atomic_inc_return(&pmu_idx);
922         name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
923         if (!name) {
924                 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
925                 return -ENOMEM;
926         }
927
928         return perf_pmu_register(&spe_pmu->pmu, name, -1);
929 }
930
931 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
932 {
933         perf_pmu_unregister(&spe_pmu->pmu);
934 }
935
936 static void __arm_spe_pmu_dev_probe(void *info)
937 {
938         int fld;
939         u64 reg;
940         struct arm_spe_pmu *spe_pmu = info;
941         struct device *dev = &spe_pmu->pdev->dev;
942
943         fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
944                                                    ID_AA64DFR0_PMSVER_SHIFT);
945         if (!fld) {
946                 dev_err(dev,
947                         "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
948                         fld, smp_processor_id());
949                 return;
950         }
951         spe_pmu->pmsver = (u16)fld;
952
953         /* Read PMBIDR first to determine whether or not we have access */
954         reg = read_sysreg_s(SYS_PMBIDR_EL1);
955         if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
956                 dev_err(dev,
957                         "profiling buffer owned by higher exception level\n");
958                 return;
959         }
960
961         /* Minimum alignment. If it's out-of-range, then fail the probe */
962         fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
963         spe_pmu->align = 1 << fld;
964         if (spe_pmu->align > SZ_2K) {
965                 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
966                         fld, smp_processor_id());
967                 return;
968         }
969
970         /* It's now safe to read PMSIDR and figure out what we've got */
971         reg = read_sysreg_s(SYS_PMSIDR_EL1);
972         if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
973                 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
974
975         if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
976                 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
977
978         if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
979                 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
980
981         if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
982                 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
983
984         if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
985                 spe_pmu->features |= SPE_PMU_FEAT_LDS;
986
987         if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
988                 spe_pmu->features |= SPE_PMU_FEAT_ERND;
989
990         /* This field has a spaced out encoding, so just use a look-up */
991         fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
992         switch (fld) {
993         case 0:
994                 spe_pmu->min_period = 256;
995                 break;
996         case 2:
997                 spe_pmu->min_period = 512;
998                 break;
999         case 3:
1000                 spe_pmu->min_period = 768;
1001                 break;
1002         case 4:
1003                 spe_pmu->min_period = 1024;
1004                 break;
1005         case 5:
1006                 spe_pmu->min_period = 1536;
1007                 break;
1008         case 6:
1009                 spe_pmu->min_period = 2048;
1010                 break;
1011         case 7:
1012                 spe_pmu->min_period = 3072;
1013                 break;
1014         default:
1015                 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1016                          fld);
1017                 fallthrough;
1018         case 8:
1019                 spe_pmu->min_period = 4096;
1020         }
1021
1022         /* Maximum record size. If it's out-of-range, then fail the probe */
1023         fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1024         spe_pmu->max_record_sz = 1 << fld;
1025         if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1026                 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1027                         fld, smp_processor_id());
1028                 return;
1029         }
1030
1031         fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1032         switch (fld) {
1033         default:
1034                 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1035                          fld);
1036                 fallthrough;
1037         case 2:
1038                 spe_pmu->counter_sz = 12;
1039         }
1040
1041         dev_info(dev,
1042                  "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1043                  cpumask_pr_args(&spe_pmu->supported_cpus),
1044                  spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1045
1046         spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1047         return;
1048 }
1049
1050 static void __arm_spe_pmu_reset_local(void)
1051 {
1052         /*
1053          * This is probably overkill, as we have no idea where we're
1054          * draining any buffered data to...
1055          */
1056         arm_spe_pmu_disable_and_drain_local();
1057
1058         /* Reset the buffer base pointer */
1059         write_sysreg_s(0, SYS_PMBPTR_EL1);
1060         isb();
1061
1062         /* Clear any pending management interrupts */
1063         write_sysreg_s(0, SYS_PMBSR_EL1);
1064         isb();
1065 }
1066
1067 static void __arm_spe_pmu_setup_one(void *info)
1068 {
1069         struct arm_spe_pmu *spe_pmu = info;
1070
1071         __arm_spe_pmu_reset_local();
1072         enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1073 }
1074
1075 static void __arm_spe_pmu_stop_one(void *info)
1076 {
1077         struct arm_spe_pmu *spe_pmu = info;
1078
1079         disable_percpu_irq(spe_pmu->irq);
1080         __arm_spe_pmu_reset_local();
1081 }
1082
1083 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1084 {
1085         struct arm_spe_pmu *spe_pmu;
1086
1087         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1088         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1089                 return 0;
1090
1091         __arm_spe_pmu_setup_one(spe_pmu);
1092         return 0;
1093 }
1094
1095 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1096 {
1097         struct arm_spe_pmu *spe_pmu;
1098
1099         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1100         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1101                 return 0;
1102
1103         __arm_spe_pmu_stop_one(spe_pmu);
1104         return 0;
1105 }
1106
1107 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1108 {
1109         int ret;
1110         cpumask_t *mask = &spe_pmu->supported_cpus;
1111
1112         /* Make sure we probe the hardware on a relevant CPU */
1113         ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1114         if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1115                 return -ENXIO;
1116
1117         /* Request our PPIs (note that the IRQ is still disabled) */
1118         ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1119                                  spe_pmu->handle);
1120         if (ret)
1121                 return ret;
1122
1123         /*
1124          * Register our hotplug notifier now so we don't miss any events.
1125          * This will enable the IRQ for any supported CPUs that are already
1126          * up.
1127          */
1128         ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1129                                        &spe_pmu->hotplug_node);
1130         if (ret)
1131                 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1132
1133         return ret;
1134 }
1135
1136 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1137 {
1138         cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1139         free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1140 }
1141
1142 /* Driver and device probing */
1143 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1144 {
1145         struct platform_device *pdev = spe_pmu->pdev;
1146         int irq = platform_get_irq(pdev, 0);
1147
1148         if (irq < 0)
1149                 return -ENXIO;
1150
1151         if (!irq_is_percpu(irq)) {
1152                 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1153                 return -EINVAL;
1154         }
1155
1156         if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1157                 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1158                 return -EINVAL;
1159         }
1160
1161         spe_pmu->irq = irq;
1162         return 0;
1163 }
1164
1165 static const struct of_device_id arm_spe_pmu_of_match[] = {
1166         { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1167         { /* Sentinel */ },
1168 };
1169 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1170
1171 static const struct platform_device_id arm_spe_match[] = {
1172         { ARMV8_SPE_PDEV_NAME, 0},
1173         { }
1174 };
1175 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1176
1177 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1178 {
1179         int ret;
1180         struct arm_spe_pmu *spe_pmu;
1181         struct device *dev = &pdev->dev;
1182
1183         /*
1184          * If kernelspace is unmapped when running at EL0, then the SPE
1185          * buffer will fault and prematurely terminate the AUX session.
1186          */
1187         if (arm64_kernel_unmapped_at_el0()) {
1188                 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1189                 return -EPERM;
1190         }
1191
1192         spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1193         if (!spe_pmu) {
1194                 dev_err(dev, "failed to allocate spe_pmu\n");
1195                 return -ENOMEM;
1196         }
1197
1198         spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1199         if (!spe_pmu->handle)
1200                 return -ENOMEM;
1201
1202         spe_pmu->pdev = pdev;
1203         platform_set_drvdata(pdev, spe_pmu);
1204
1205         ret = arm_spe_pmu_irq_probe(spe_pmu);
1206         if (ret)
1207                 goto out_free_handle;
1208
1209         ret = arm_spe_pmu_dev_init(spe_pmu);
1210         if (ret)
1211                 goto out_free_handle;
1212
1213         ret = arm_spe_pmu_perf_init(spe_pmu);
1214         if (ret)
1215                 goto out_teardown_dev;
1216
1217         return 0;
1218
1219 out_teardown_dev:
1220         arm_spe_pmu_dev_teardown(spe_pmu);
1221 out_free_handle:
1222         free_percpu(spe_pmu->handle);
1223         return ret;
1224 }
1225
1226 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1227 {
1228         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1229
1230         arm_spe_pmu_perf_destroy(spe_pmu);
1231         arm_spe_pmu_dev_teardown(spe_pmu);
1232         free_percpu(spe_pmu->handle);
1233         return 0;
1234 }
1235
1236 static struct platform_driver arm_spe_pmu_driver = {
1237         .id_table = arm_spe_match,
1238         .driver = {
1239                 .name           = DRVNAME,
1240                 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1241                 .suppress_bind_attrs = true,
1242         },
1243         .probe  = arm_spe_pmu_device_probe,
1244         .remove = arm_spe_pmu_device_remove,
1245 };
1246
1247 static int __init arm_spe_pmu_init(void)
1248 {
1249         int ret;
1250
1251         ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1252                                       arm_spe_pmu_cpu_startup,
1253                                       arm_spe_pmu_cpu_teardown);
1254         if (ret < 0)
1255                 return ret;
1256         arm_spe_pmu_online = ret;
1257
1258         ret = platform_driver_register(&arm_spe_pmu_driver);
1259         if (ret)
1260                 cpuhp_remove_multi_state(arm_spe_pmu_online);
1261
1262         return ret;
1263 }
1264
1265 static void __exit arm_spe_pmu_exit(void)
1266 {
1267         platform_driver_unregister(&arm_spe_pmu_driver);
1268         cpuhp_remove_multi_state(arm_spe_pmu_online);
1269 }
1270
1271 module_init(arm_spe_pmu_init);
1272 module_exit(arm_spe_pmu_exit);
1273
1274 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1275 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1276 MODULE_LICENSE("GPL v2");