Merge tag 'trace-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / drivers / perf / arm_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int armpmu_count_irq_users(const int irq);
30
31 struct pmu_irq_ops {
32         void (*enable_pmuirq)(unsigned int irq);
33         void (*disable_pmuirq)(unsigned int irq);
34         void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39         free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41
42 static const struct pmu_irq_ops pmuirq_ops = {
43         .enable_pmuirq = enable_irq,
44         .disable_pmuirq = disable_irq_nosync,
45         .free_pmuirq = armpmu_free_pmuirq
46 };
47
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50         free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52
53 static const struct pmu_irq_ops pmunmi_ops = {
54         .enable_pmuirq = enable_nmi,
55         .disable_pmuirq = disable_nmi_nosync,
56         .free_pmuirq = armpmu_free_pmunmi
57 };
58
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61         enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65                                    void __percpu *devid)
66 {
67         if (armpmu_count_irq_users(irq) == 1)
68                 free_percpu_irq(irq, devid);
69 }
70
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72         .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73         .disable_pmuirq = disable_percpu_irq,
74         .free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79         if (!prepare_percpu_nmi(irq))
80                 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85         disable_percpu_nmi(irq);
86         teardown_percpu_nmi(irq);
87 }
88
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90                                       void __percpu *devid)
91 {
92         if (armpmu_count_irq_users(irq) == 1)
93                 free_percpu_nmi(irq, devid);
94 }
95
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97         .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98         .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99         .free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106 static bool has_nmi;
107
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110         if (event->hw.flags & ARMPMU_EVT_64BIT)
111                 return GENMASK_ULL(63, 0);
112         else
113                 return GENMASK_ULL(31, 0);
114 }
115
116 static int
117 armpmu_map_cache_event(const unsigned (*cache_map)
118                                       [PERF_COUNT_HW_CACHE_MAX]
119                                       [PERF_COUNT_HW_CACHE_OP_MAX]
120                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
121                        u64 config)
122 {
123         unsigned int cache_type, cache_op, cache_result, ret;
124
125         cache_type = (config >>  0) & 0xff;
126         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
127                 return -EINVAL;
128
129         cache_op = (config >>  8) & 0xff;
130         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
131                 return -EINVAL;
132
133         cache_result = (config >> 16) & 0xff;
134         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
135                 return -EINVAL;
136
137         if (!cache_map)
138                 return -ENOENT;
139
140         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
141
142         if (ret == CACHE_OP_UNSUPPORTED)
143                 return -ENOENT;
144
145         return ret;
146 }
147
148 static int
149 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
150 {
151         int mapping;
152
153         if (config >= PERF_COUNT_HW_MAX)
154                 return -EINVAL;
155
156         if (!event_map)
157                 return -ENOENT;
158
159         mapping = (*event_map)[config];
160         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
161 }
162
163 static int
164 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
165 {
166         return (int)(config & raw_event_mask);
167 }
168
169 int
170 armpmu_map_event(struct perf_event *event,
171                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
172                  const unsigned (*cache_map)
173                                 [PERF_COUNT_HW_CACHE_MAX]
174                                 [PERF_COUNT_HW_CACHE_OP_MAX]
175                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
176                  u32 raw_event_mask)
177 {
178         u64 config = event->attr.config;
179         int type = event->attr.type;
180
181         if (type == event->pmu->type)
182                 return armpmu_map_raw_event(raw_event_mask, config);
183
184         switch (type) {
185         case PERF_TYPE_HARDWARE:
186                 return armpmu_map_hw_event(event_map, config);
187         case PERF_TYPE_HW_CACHE:
188                 return armpmu_map_cache_event(cache_map, config);
189         case PERF_TYPE_RAW:
190                 return armpmu_map_raw_event(raw_event_mask, config);
191         }
192
193         return -ENOENT;
194 }
195
196 int armpmu_event_set_period(struct perf_event *event)
197 {
198         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
199         struct hw_perf_event *hwc = &event->hw;
200         s64 left = local64_read(&hwc->period_left);
201         s64 period = hwc->sample_period;
202         u64 max_period;
203         int ret = 0;
204
205         max_period = arm_pmu_event_max_period(event);
206         if (unlikely(left <= -period)) {
207                 left = period;
208                 local64_set(&hwc->period_left, left);
209                 hwc->last_period = period;
210                 ret = 1;
211         }
212
213         if (unlikely(left <= 0)) {
214                 left += period;
215                 local64_set(&hwc->period_left, left);
216                 hwc->last_period = period;
217                 ret = 1;
218         }
219
220         /*
221          * Limit the maximum period to prevent the counter value
222          * from overtaking the one we are about to program. In
223          * effect we are reducing max_period to account for
224          * interrupt latency (and we are being very conservative).
225          */
226         if (left > (max_period >> 1))
227                 left = (max_period >> 1);
228
229         local64_set(&hwc->prev_count, (u64)-left);
230
231         armpmu->write_counter(event, (u64)(-left) & max_period);
232
233         perf_event_update_userpage(event);
234
235         return ret;
236 }
237
238 u64 armpmu_event_update(struct perf_event *event)
239 {
240         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241         struct hw_perf_event *hwc = &event->hw;
242         u64 delta, prev_raw_count, new_raw_count;
243         u64 max_period = arm_pmu_event_max_period(event);
244
245 again:
246         prev_raw_count = local64_read(&hwc->prev_count);
247         new_raw_count = armpmu->read_counter(event);
248
249         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
250                              new_raw_count) != prev_raw_count)
251                 goto again;
252
253         delta = (new_raw_count - prev_raw_count) & max_period;
254
255         local64_add(delta, &event->count);
256         local64_sub(delta, &hwc->period_left);
257
258         return new_raw_count;
259 }
260
261 static void
262 armpmu_read(struct perf_event *event)
263 {
264         armpmu_event_update(event);
265 }
266
267 static void
268 armpmu_stop(struct perf_event *event, int flags)
269 {
270         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
271         struct hw_perf_event *hwc = &event->hw;
272
273         /*
274          * ARM pmu always has to update the counter, so ignore
275          * PERF_EF_UPDATE, see comments in armpmu_start().
276          */
277         if (!(hwc->state & PERF_HES_STOPPED)) {
278                 armpmu->disable(event);
279                 armpmu_event_update(event);
280                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
281         }
282 }
283
284 static void armpmu_start(struct perf_event *event, int flags)
285 {
286         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
287         struct hw_perf_event *hwc = &event->hw;
288
289         /*
290          * ARM pmu always has to reprogram the period, so ignore
291          * PERF_EF_RELOAD, see the comment below.
292          */
293         if (flags & PERF_EF_RELOAD)
294                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
295
296         hwc->state = 0;
297         /*
298          * Set the period again. Some counters can't be stopped, so when we
299          * were stopped we simply disabled the IRQ source and the counter
300          * may have been left counting. If we don't do this step then we may
301          * get an interrupt too soon or *way* too late if the overflow has
302          * happened since disabling.
303          */
304         armpmu_event_set_period(event);
305         armpmu->enable(event);
306 }
307
308 static void
309 armpmu_del(struct perf_event *event, int flags)
310 {
311         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
312         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
313         struct hw_perf_event *hwc = &event->hw;
314         int idx = hwc->idx;
315
316         armpmu_stop(event, PERF_EF_UPDATE);
317         hw_events->events[idx] = NULL;
318         armpmu->clear_event_idx(hw_events, event);
319         perf_event_update_userpage(event);
320         /* Clear the allocated counter */
321         hwc->idx = -1;
322 }
323
324 static int
325 armpmu_add(struct perf_event *event, int flags)
326 {
327         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
328         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
329         struct hw_perf_event *hwc = &event->hw;
330         int idx;
331
332         /* An event following a process won't be stopped earlier */
333         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
334                 return -ENOENT;
335
336         /* If we don't have a space for the counter then finish early. */
337         idx = armpmu->get_event_idx(hw_events, event);
338         if (idx < 0)
339                 return idx;
340
341         /*
342          * If there is an event in the counter we are going to use then make
343          * sure it is disabled.
344          */
345         event->hw.idx = idx;
346         armpmu->disable(event);
347         hw_events->events[idx] = event;
348
349         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
350         if (flags & PERF_EF_START)
351                 armpmu_start(event, PERF_EF_RELOAD);
352
353         /* Propagate our changes to the userspace mapping. */
354         perf_event_update_userpage(event);
355
356         return 0;
357 }
358
359 static int
360 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
361                                struct perf_event *event)
362 {
363         struct arm_pmu *armpmu;
364
365         if (is_software_event(event))
366                 return 1;
367
368         /*
369          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
370          * core perf code won't check that the pmu->ctx == leader->ctx
371          * until after pmu->event_init(event).
372          */
373         if (event->pmu != pmu)
374                 return 0;
375
376         if (event->state < PERF_EVENT_STATE_OFF)
377                 return 1;
378
379         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
380                 return 1;
381
382         armpmu = to_arm_pmu(event->pmu);
383         return armpmu->get_event_idx(hw_events, event) >= 0;
384 }
385
386 static int
387 validate_group(struct perf_event *event)
388 {
389         struct perf_event *sibling, *leader = event->group_leader;
390         struct pmu_hw_events fake_pmu;
391
392         /*
393          * Initialise the fake PMU. We only need to populate the
394          * used_mask for the purposes of validation.
395          */
396         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
397
398         if (!validate_event(event->pmu, &fake_pmu, leader))
399                 return -EINVAL;
400
401         for_each_sibling_event(sibling, leader) {
402                 if (!validate_event(event->pmu, &fake_pmu, sibling))
403                         return -EINVAL;
404         }
405
406         if (!validate_event(event->pmu, &fake_pmu, event))
407                 return -EINVAL;
408
409         return 0;
410 }
411
412 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
413 {
414         struct arm_pmu *armpmu;
415         int ret;
416         u64 start_clock, finish_clock;
417
418         /*
419          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
420          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
421          * do any necessary shifting, we just need to perform the first
422          * dereference.
423          */
424         armpmu = *(void **)dev;
425         if (WARN_ON_ONCE(!armpmu))
426                 return IRQ_NONE;
427
428         start_clock = sched_clock();
429         ret = armpmu->handle_irq(armpmu);
430         finish_clock = sched_clock();
431
432         perf_sample_event_took(finish_clock - start_clock);
433         return ret;
434 }
435
436 static int
437 __hw_perf_event_init(struct perf_event *event)
438 {
439         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
440         struct hw_perf_event *hwc = &event->hw;
441         int mapping;
442
443         hwc->flags = 0;
444         mapping = armpmu->map_event(event);
445
446         if (mapping < 0) {
447                 pr_debug("event %x:%llx not supported\n", event->attr.type,
448                          event->attr.config);
449                 return mapping;
450         }
451
452         /*
453          * We don't assign an index until we actually place the event onto
454          * hardware. Use -1 to signify that we haven't decided where to put it
455          * yet. For SMP systems, each core has it's own PMU so we can't do any
456          * clever allocation or constraints checking at this point.
457          */
458         hwc->idx                = -1;
459         hwc->config_base        = 0;
460         hwc->config             = 0;
461         hwc->event_base         = 0;
462
463         /*
464          * Check whether we need to exclude the counter from certain modes.
465          */
466         if (armpmu->set_event_filter &&
467             armpmu->set_event_filter(hwc, &event->attr)) {
468                 pr_debug("ARM performance counters do not support "
469                          "mode exclusion\n");
470                 return -EOPNOTSUPP;
471         }
472
473         /*
474          * Store the event encoding into the config_base field.
475          */
476         hwc->config_base            |= (unsigned long)mapping;
477
478         if (!is_sampling_event(event)) {
479                 /*
480                  * For non-sampling runs, limit the sample_period to half
481                  * of the counter width. That way, the new counter value
482                  * is far less likely to overtake the previous one unless
483                  * you have some serious IRQ latency issues.
484                  */
485                 hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
486                 hwc->last_period    = hwc->sample_period;
487                 local64_set(&hwc->period_left, hwc->sample_period);
488         }
489
490         if (event->group_leader != event) {
491                 if (validate_group(event) != 0)
492                         return -EINVAL;
493         }
494
495         return 0;
496 }
497
498 static int armpmu_event_init(struct perf_event *event)
499 {
500         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
501
502         /*
503          * Reject CPU-affine events for CPUs that are of a different class to
504          * that which this PMU handles. Process-following events (where
505          * event->cpu == -1) can be migrated between CPUs, and thus we have to
506          * reject them later (in armpmu_add) if they're scheduled on a
507          * different class of CPU.
508          */
509         if (event->cpu != -1 &&
510                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
511                 return -ENOENT;
512
513         /* does not support taken branch sampling */
514         if (has_branch_stack(event))
515                 return -EOPNOTSUPP;
516
517         if (armpmu->map_event(event) == -ENOENT)
518                 return -ENOENT;
519
520         return __hw_perf_event_init(event);
521 }
522
523 static void armpmu_enable(struct pmu *pmu)
524 {
525         struct arm_pmu *armpmu = to_arm_pmu(pmu);
526         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
527         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
528
529         /* For task-bound events we may be called on other CPUs */
530         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
531                 return;
532
533         if (enabled)
534                 armpmu->start(armpmu);
535 }
536
537 static void armpmu_disable(struct pmu *pmu)
538 {
539         struct arm_pmu *armpmu = to_arm_pmu(pmu);
540
541         /* For task-bound events we may be called on other CPUs */
542         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
543                 return;
544
545         armpmu->stop(armpmu);
546 }
547
548 /*
549  * In heterogeneous systems, events are specific to a particular
550  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
551  * the same microarchitecture.
552  */
553 static int armpmu_filter_match(struct perf_event *event)
554 {
555         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
556         unsigned int cpu = smp_processor_id();
557         int ret;
558
559         ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
560         if (ret && armpmu->filter_match)
561                 return armpmu->filter_match(event);
562
563         return ret;
564 }
565
566 static ssize_t armpmu_cpumask_show(struct device *dev,
567                                    struct device_attribute *attr, char *buf)
568 {
569         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
570         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
571 }
572
573 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
574
575 static struct attribute *armpmu_common_attrs[] = {
576         &dev_attr_cpus.attr,
577         NULL,
578 };
579
580 static struct attribute_group armpmu_common_attr_group = {
581         .attrs = armpmu_common_attrs,
582 };
583
584 /* Set at runtime when we know what CPU type we are. */
585 static struct arm_pmu *__oprofile_cpu_pmu;
586
587 /*
588  * Despite the names, these two functions are CPU-specific and are used
589  * by the OProfile/perf code.
590  */
591 const char *perf_pmu_name(void)
592 {
593         if (!__oprofile_cpu_pmu)
594                 return NULL;
595
596         return __oprofile_cpu_pmu->name;
597 }
598 EXPORT_SYMBOL_GPL(perf_pmu_name);
599
600 int perf_num_counters(void)
601 {
602         int max_events = 0;
603
604         if (__oprofile_cpu_pmu != NULL)
605                 max_events = __oprofile_cpu_pmu->num_events;
606
607         return max_events;
608 }
609 EXPORT_SYMBOL_GPL(perf_num_counters);
610
611 static int armpmu_count_irq_users(const int irq)
612 {
613         int cpu, count = 0;
614
615         for_each_possible_cpu(cpu) {
616                 if (per_cpu(cpu_irq, cpu) == irq)
617                         count++;
618         }
619
620         return count;
621 }
622
623 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
624 {
625         const struct pmu_irq_ops *ops = NULL;
626         int cpu;
627
628         for_each_possible_cpu(cpu) {
629                 if (per_cpu(cpu_irq, cpu) != irq)
630                         continue;
631
632                 ops = per_cpu(cpu_irq_ops, cpu);
633                 if (ops)
634                         break;
635         }
636
637         return ops;
638 }
639
640 void armpmu_free_irq(int irq, int cpu)
641 {
642         if (per_cpu(cpu_irq, cpu) == 0)
643                 return;
644         if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
645                 return;
646
647         per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
648
649         per_cpu(cpu_irq, cpu) = 0;
650         per_cpu(cpu_irq_ops, cpu) = NULL;
651 }
652
653 int armpmu_request_irq(int irq, int cpu)
654 {
655         int err = 0;
656         const irq_handler_t handler = armpmu_dispatch_irq;
657         const struct pmu_irq_ops *irq_ops;
658
659         if (!irq)
660                 return 0;
661
662         if (!irq_is_percpu_devid(irq)) {
663                 unsigned long irq_flags;
664
665                 err = irq_force_affinity(irq, cpumask_of(cpu));
666
667                 if (err && num_possible_cpus() > 1) {
668                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
669                                 irq, cpu);
670                         goto err_out;
671                 }
672
673                 irq_flags = IRQF_PERCPU |
674                             IRQF_NOBALANCING |
675                             IRQF_NO_THREAD;
676
677                 irq_set_status_flags(irq, IRQ_NOAUTOEN);
678
679                 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
680                                   per_cpu_ptr(&cpu_armpmu, cpu));
681
682                 /* If cannot get an NMI, get a normal interrupt */
683                 if (err) {
684                         err = request_irq(irq, handler, irq_flags, "arm-pmu",
685                                           per_cpu_ptr(&cpu_armpmu, cpu));
686                         irq_ops = &pmuirq_ops;
687                 } else {
688                         has_nmi = true;
689                         irq_ops = &pmunmi_ops;
690                 }
691         } else if (armpmu_count_irq_users(irq) == 0) {
692                 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
693
694                 /* If cannot get an NMI, get a normal interrupt */
695                 if (err) {
696                         err = request_percpu_irq(irq, handler, "arm-pmu",
697                                                  &cpu_armpmu);
698                         irq_ops = &percpu_pmuirq_ops;
699                 } else {
700                         has_nmi= true;
701                         irq_ops = &percpu_pmunmi_ops;
702                 }
703         } else {
704                 /* Per cpudevid irq was already requested by another CPU */
705                 irq_ops = armpmu_find_irq_ops(irq);
706
707                 if (WARN_ON(!irq_ops))
708                         err = -EINVAL;
709         }
710
711         if (err)
712                 goto err_out;
713
714         per_cpu(cpu_irq, cpu) = irq;
715         per_cpu(cpu_irq_ops, cpu) = irq_ops;
716         return 0;
717
718 err_out:
719         pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
720         return err;
721 }
722
723 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
724 {
725         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
726         return per_cpu(hw_events->irq, cpu);
727 }
728
729 bool arm_pmu_irq_is_nmi(void)
730 {
731         return has_nmi;
732 }
733
734 /*
735  * PMU hardware loses all context when a CPU goes offline.
736  * When a CPU is hotplugged back in, since some hardware registers are
737  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
738  * junk values out of them.
739  */
740 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
741 {
742         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
743         int irq;
744
745         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
746                 return 0;
747         if (pmu->reset)
748                 pmu->reset(pmu);
749
750         per_cpu(cpu_armpmu, cpu) = pmu;
751
752         irq = armpmu_get_cpu_irq(pmu, cpu);
753         if (irq)
754                 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
755
756         return 0;
757 }
758
759 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
760 {
761         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
762         int irq;
763
764         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
765                 return 0;
766
767         irq = armpmu_get_cpu_irq(pmu, cpu);
768         if (irq)
769                 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
770
771         per_cpu(cpu_armpmu, cpu) = NULL;
772
773         return 0;
774 }
775
776 #ifdef CONFIG_CPU_PM
777 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
778 {
779         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
780         struct perf_event *event;
781         int idx;
782
783         for (idx = 0; idx < armpmu->num_events; idx++) {
784                 event = hw_events->events[idx];
785                 if (!event)
786                         continue;
787
788                 switch (cmd) {
789                 case CPU_PM_ENTER:
790                         /*
791                          * Stop and update the counter
792                          */
793                         armpmu_stop(event, PERF_EF_UPDATE);
794                         break;
795                 case CPU_PM_EXIT:
796                 case CPU_PM_ENTER_FAILED:
797                          /*
798                           * Restore and enable the counter.
799                           * armpmu_start() indirectly calls
800                           *
801                           * perf_event_update_userpage()
802                           *
803                           * that requires RCU read locking to be functional,
804                           * wrap the call within RCU_NONIDLE to make the
805                           * RCU subsystem aware this cpu is not idle from
806                           * an RCU perspective for the armpmu_start() call
807                           * duration.
808                           */
809                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
810                         break;
811                 default:
812                         break;
813                 }
814         }
815 }
816
817 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
818                              void *v)
819 {
820         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
821         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
822         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
823
824         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
825                 return NOTIFY_DONE;
826
827         /*
828          * Always reset the PMU registers on power-up even if
829          * there are no events running.
830          */
831         if (cmd == CPU_PM_EXIT && armpmu->reset)
832                 armpmu->reset(armpmu);
833
834         if (!enabled)
835                 return NOTIFY_OK;
836
837         switch (cmd) {
838         case CPU_PM_ENTER:
839                 armpmu->stop(armpmu);
840                 cpu_pm_pmu_setup(armpmu, cmd);
841                 break;
842         case CPU_PM_EXIT:
843         case CPU_PM_ENTER_FAILED:
844                 cpu_pm_pmu_setup(armpmu, cmd);
845                 armpmu->start(armpmu);
846                 break;
847         default:
848                 return NOTIFY_DONE;
849         }
850
851         return NOTIFY_OK;
852 }
853
854 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
855 {
856         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
857         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
858 }
859
860 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
861 {
862         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
863 }
864 #else
865 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
866 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
867 #endif
868
869 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
870 {
871         int err;
872
873         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
874                                        &cpu_pmu->node);
875         if (err)
876                 goto out;
877
878         err = cpu_pm_pmu_register(cpu_pmu);
879         if (err)
880                 goto out_unregister;
881
882         return 0;
883
884 out_unregister:
885         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
886                                             &cpu_pmu->node);
887 out:
888         return err;
889 }
890
891 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
892 {
893         cpu_pm_pmu_unregister(cpu_pmu);
894         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
895                                             &cpu_pmu->node);
896 }
897
898 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
899 {
900         struct arm_pmu *pmu;
901         int cpu;
902
903         pmu = kzalloc(sizeof(*pmu), flags);
904         if (!pmu) {
905                 pr_info("failed to allocate PMU device!\n");
906                 goto out;
907         }
908
909         pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
910         if (!pmu->hw_events) {
911                 pr_info("failed to allocate per-cpu PMU data.\n");
912                 goto out_free_pmu;
913         }
914
915         pmu->pmu = (struct pmu) {
916                 .pmu_enable     = armpmu_enable,
917                 .pmu_disable    = armpmu_disable,
918                 .event_init     = armpmu_event_init,
919                 .add            = armpmu_add,
920                 .del            = armpmu_del,
921                 .start          = armpmu_start,
922                 .stop           = armpmu_stop,
923                 .read           = armpmu_read,
924                 .filter_match   = armpmu_filter_match,
925                 .attr_groups    = pmu->attr_groups,
926                 /*
927                  * This is a CPU PMU potentially in a heterogeneous
928                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
929                  * and we have taken ctx sharing into account (e.g. with our
930                  * pmu::filter_match callback and pmu::event_init group
931                  * validation).
932                  */
933                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
934         };
935
936         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
937                 &armpmu_common_attr_group;
938
939         for_each_possible_cpu(cpu) {
940                 struct pmu_hw_events *events;
941
942                 events = per_cpu_ptr(pmu->hw_events, cpu);
943                 raw_spin_lock_init(&events->pmu_lock);
944                 events->percpu_pmu = pmu;
945         }
946
947         return pmu;
948
949 out_free_pmu:
950         kfree(pmu);
951 out:
952         return NULL;
953 }
954
955 struct arm_pmu *armpmu_alloc(void)
956 {
957         return __armpmu_alloc(GFP_KERNEL);
958 }
959
960 struct arm_pmu *armpmu_alloc_atomic(void)
961 {
962         return __armpmu_alloc(GFP_ATOMIC);
963 }
964
965
966 void armpmu_free(struct arm_pmu *pmu)
967 {
968         free_percpu(pmu->hw_events);
969         kfree(pmu);
970 }
971
972 int armpmu_register(struct arm_pmu *pmu)
973 {
974         int ret;
975
976         ret = cpu_pmu_init(pmu);
977         if (ret)
978                 return ret;
979
980         if (!pmu->set_event_filter)
981                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
982
983         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
984         if (ret)
985                 goto out_destroy;
986
987         if (!__oprofile_cpu_pmu)
988                 __oprofile_cpu_pmu = pmu;
989
990         pr_info("enabled with %s PMU driver, %d counters available%s\n",
991                 pmu->name, pmu->num_events,
992                 has_nmi ? ", using NMIs" : "");
993
994         return 0;
995
996 out_destroy:
997         cpu_pmu_destroy(pmu);
998         return ret;
999 }
1000
1001 static int arm_pmu_hp_init(void)
1002 {
1003         int ret;
1004
1005         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
1006                                       "perf/arm/pmu:starting",
1007                                       arm_perf_starting_cpu,
1008                                       arm_perf_teardown_cpu);
1009         if (ret)
1010                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1011                        ret);
1012         return ret;
1013 }
1014 subsys_initcall(arm_pmu_hp_init);