Merge remote-tracking branch 'regulator/for-5.13' into regulator-linus
[linux-2.6-microblaze.git] / drivers / pci / endpoint / functions / pci-epf-ntb.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Endpoint Function Driver to implement Non-Transparent Bridge functionality
4  *
5  * Copyright (C) 2020 Texas Instruments
6  * Author: Kishon Vijay Abraham I <kishon@ti.com>
7  */
8
9 /*
10  * The PCI NTB function driver configures the SoC with multiple PCIe Endpoint
11  * (EP) controller instances (see diagram below) in such a way that
12  * transactions from one EP controller are routed to the other EP controller.
13  * Once PCI NTB function driver configures the SoC with multiple EP instances,
14  * HOST1 and HOST2 can communicate with each other using SoC as a bridge.
15  *
16  *    +-------------+                                   +-------------+
17  *    |             |                                   |             |
18  *    |    HOST1    |                                   |    HOST2    |
19  *    |             |                                   |             |
20  *    +------^------+                                   +------^------+
21  *           |                                                 |
22  *           |                                                 |
23  * +---------|-------------------------------------------------|---------+
24  * |  +------v------+                                   +------v------+  |
25  * |  |             |                                   |             |  |
26  * |  |     EP      |                                   |     EP      |  |
27  * |  | CONTROLLER1 |                                   | CONTROLLER2 |  |
28  * |  |             <----------------------------------->             |  |
29  * |  |             |                                   |             |  |
30  * |  |             |                                   |             |  |
31  * |  |             |  SoC With Multiple EP Instances   |             |  |
32  * |  |             |  (Configured using NTB Function)  |             |  |
33  * |  +-------------+                                   +-------------+  |
34  * +---------------------------------------------------------------------+
35  */
36
37 #include <linux/delay.h>
38 #include <linux/io.h>
39 #include <linux/module.h>
40 #include <linux/slab.h>
41
42 #include <linux/pci-epc.h>
43 #include <linux/pci-epf.h>
44
45 static struct workqueue_struct *kpcintb_workqueue;
46
47 #define COMMAND_CONFIGURE_DOORBELL      1
48 #define COMMAND_TEARDOWN_DOORBELL       2
49 #define COMMAND_CONFIGURE_MW            3
50 #define COMMAND_TEARDOWN_MW             4
51 #define COMMAND_LINK_UP                 5
52 #define COMMAND_LINK_DOWN               6
53
54 #define COMMAND_STATUS_OK               1
55 #define COMMAND_STATUS_ERROR            2
56
57 #define LINK_STATUS_UP                  BIT(0)
58
59 #define SPAD_COUNT                      64
60 #define DB_COUNT                        4
61 #define NTB_MW_OFFSET                   2
62 #define DB_COUNT_MASK                   GENMASK(15, 0)
63 #define MSIX_ENABLE                     BIT(16)
64 #define MAX_DB_COUNT                    32
65 #define MAX_MW                          4
66
67 enum epf_ntb_bar {
68         BAR_CONFIG,
69         BAR_PEER_SPAD,
70         BAR_DB_MW1,
71         BAR_MW2,
72         BAR_MW3,
73         BAR_MW4,
74 };
75
76 struct epf_ntb {
77         u32 num_mws;
78         u32 db_count;
79         u32 spad_count;
80         struct pci_epf *epf;
81         u64 mws_size[MAX_MW];
82         struct config_group group;
83         struct epf_ntb_epc *epc[2];
84 };
85
86 #define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group)
87
88 struct epf_ntb_epc {
89         u8 func_no;
90         bool linkup;
91         bool is_msix;
92         int msix_bar;
93         u32 spad_size;
94         struct pci_epc *epc;
95         struct epf_ntb *epf_ntb;
96         void __iomem *mw_addr[6];
97         size_t msix_table_offset;
98         struct epf_ntb_ctrl *reg;
99         struct pci_epf_bar *epf_bar;
100         enum pci_barno epf_ntb_bar[6];
101         struct delayed_work cmd_handler;
102         enum pci_epc_interface_type type;
103         const struct pci_epc_features *epc_features;
104 };
105
106 struct epf_ntb_ctrl {
107         u32     command;
108         u32     argument;
109         u16     command_status;
110         u16     link_status;
111         u32     topology;
112         u64     addr;
113         u64     size;
114         u32     num_mws;
115         u32     mw1_offset;
116         u32     spad_offset;
117         u32     spad_count;
118         u32     db_entry_size;
119         u32     db_data[MAX_DB_COUNT];
120         u32     db_offset[MAX_DB_COUNT];
121 } __packed;
122
123 static struct pci_epf_header epf_ntb_header = {
124         .vendorid       = PCI_ANY_ID,
125         .deviceid       = PCI_ANY_ID,
126         .baseclass_code = PCI_BASE_CLASS_MEMORY,
127         .interrupt_pin  = PCI_INTERRUPT_INTA,
128 };
129
130 /**
131  * epf_ntb_link_up() - Raise link_up interrupt to both the hosts
132  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
133  * @link_up: true or false indicating Link is UP or Down
134  *
135  * Once NTB function in HOST1 and the NTB function in HOST2 invoke
136  * ntb_link_enable(), this NTB function driver will trigger a link event to
137  * the NTB client in both the hosts.
138  */
139 static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up)
140 {
141         enum pci_epc_interface_type type;
142         enum pci_epc_irq_type irq_type;
143         struct epf_ntb_epc *ntb_epc;
144         struct epf_ntb_ctrl *ctrl;
145         struct pci_epc *epc;
146         bool is_msix;
147         u8 func_no;
148         int ret;
149
150         for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
151                 ntb_epc = ntb->epc[type];
152                 epc = ntb_epc->epc;
153                 func_no = ntb_epc->func_no;
154                 is_msix = ntb_epc->is_msix;
155                 ctrl = ntb_epc->reg;
156                 if (link_up)
157                         ctrl->link_status |= LINK_STATUS_UP;
158                 else
159                         ctrl->link_status &= ~LINK_STATUS_UP;
160                 irq_type = is_msix ? PCI_EPC_IRQ_MSIX : PCI_EPC_IRQ_MSI;
161                 ret = pci_epc_raise_irq(epc, func_no, irq_type, 1);
162                 if (ret) {
163                         dev_err(&epc->dev,
164                                 "%s intf: Failed to raise Link Up IRQ\n",
165                                 pci_epc_interface_string(type));
166                         return ret;
167                 }
168         }
169
170         return 0;
171 }
172
173 /**
174  * epf_ntb_configure_mw() - Configure the Outbound Address Space for one host
175  *   to access the memory window of other host
176  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
177  * @type: PRIMARY interface or SECONDARY interface
178  * @mw: Index of the memory window (either 0, 1, 2 or 3)
179  *
180  * +-----------------+    +---->+----------------+-----------+-----------------+
181  * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
182  * +-----------------+    |     +----------------+           +-----------------+
183  * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
184  * +-----------------+----+     +----------------+         | |                 |
185  * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
186  * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
187  * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
188  * +-----------------+    |     |----------------+     | |   |                 |
189  * |       BAR4      |    |     |                |     | |   +-----------------+
190  * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
191  * |       BAR5      |    |     |                |   | |     +-----------------+
192  * +-----------------+    +---->-----------------+   | |     |                 |
193  *   EP CONTROLLER 1            |                |   | |     +-----------------+
194  *                              |                |   | +---->+ MSI|X ADDRESS 4 |
195  *                              +----------------+   |       +-----------------+
196  *                      (A)      EP CONTROLLER 2     |       |                 |
197  *                                 (OB SPACE)        |       |                 |
198  *                                                   +------->      MW1        |
199  *                                                           |                 |
200  *                                                           |                 |
201  *                                                   (B)     +-----------------+
202  *                                                           |                 |
203  *                                                           |                 |
204  *                                                           |                 |
205  *                                                           |                 |
206  *                                                           |                 |
207  *                                                           +-----------------+
208  *                                                           PCI Address Space
209  *                                                           (Managed by HOST2)
210  *
211  * This function performs stage (B) in the above diagram (see MW1) i.e., map OB
212  * address space of memory window to PCI address space.
213  *
214  * This operation requires 3 parameters
215  *  1) Address in the outbound address space
216  *  2) Address in the PCI Address space
217  *  3) Size of the address region to be mapped
218  *
219  * The address in the outbound address space (for MW1, MW2, MW3 and MW4) is
220  * stored in epf_bar corresponding to BAR_DB_MW1 for MW1 and BAR_MW2, BAR_MW3
221  * BAR_MW4 for rest of the BARs of epf_ntb_epc that is connected to HOST1. This
222  * is populated in epf_ntb_alloc_peer_mem() in this driver.
223  *
224  * The address and size of the PCI address region that has to be mapped would
225  * be provided by HOST2 in ctrl->addr and ctrl->size of epf_ntb_epc that is
226  * connected to HOST2.
227  *
228  * Please note Memory window1 (MW1) and Doorbell registers together will be
229  * mapped to a single BAR (BAR2) above for 32-bit BARs. The exact BAR that's
230  * used for Memory window (MW) can be obtained from epf_ntb_bar[BAR_DB_MW1],
231  * epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2].
232  */
233 static int epf_ntb_configure_mw(struct epf_ntb *ntb,
234                                 enum pci_epc_interface_type type, u32 mw)
235 {
236         struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
237         struct pci_epf_bar *peer_epf_bar;
238         enum pci_barno peer_barno;
239         struct epf_ntb_ctrl *ctrl;
240         phys_addr_t phys_addr;
241         struct pci_epc *epc;
242         u64 addr, size;
243         int ret = 0;
244         u8 func_no;
245
246         ntb_epc = ntb->epc[type];
247         epc = ntb_epc->epc;
248
249         peer_ntb_epc = ntb->epc[!type];
250         peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
251         peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
252
253         phys_addr = peer_epf_bar->phys_addr;
254         ctrl = ntb_epc->reg;
255         addr = ctrl->addr;
256         size = ctrl->size;
257         if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
258                 phys_addr += ctrl->mw1_offset;
259
260         if (size > ntb->mws_size[mw]) {
261                 dev_err(&epc->dev,
262                         "%s intf: MW: %d Req Sz:%llxx > Supported Sz:%llx\n",
263                         pci_epc_interface_string(type), mw, size,
264                         ntb->mws_size[mw]);
265                 ret = -EINVAL;
266                 goto err_invalid_size;
267         }
268
269         func_no = ntb_epc->func_no;
270
271         ret = pci_epc_map_addr(epc, func_no, phys_addr, addr, size);
272         if (ret)
273                 dev_err(&epc->dev,
274                         "%s intf: Failed to map memory window %d address\n",
275                         pci_epc_interface_string(type), mw);
276
277 err_invalid_size:
278
279         return ret;
280 }
281
282 /**
283  * epf_ntb_teardown_mw() - Teardown the configured OB ATU
284  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
285  * @type: PRIMARY interface or SECONDARY interface
286  * @mw: Index of the memory window (either 0, 1, 2 or 3)
287  *
288  * Teardown the configured OB ATU configured in epf_ntb_configure_mw() using
289  * pci_epc_unmap_addr()
290  */
291 static void epf_ntb_teardown_mw(struct epf_ntb *ntb,
292                                 enum pci_epc_interface_type type, u32 mw)
293 {
294         struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
295         struct pci_epf_bar *peer_epf_bar;
296         enum pci_barno peer_barno;
297         struct epf_ntb_ctrl *ctrl;
298         phys_addr_t phys_addr;
299         struct pci_epc *epc;
300         u8 func_no;
301
302         ntb_epc = ntb->epc[type];
303         epc = ntb_epc->epc;
304
305         peer_ntb_epc = ntb->epc[!type];
306         peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
307         peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
308
309         phys_addr = peer_epf_bar->phys_addr;
310         ctrl = ntb_epc->reg;
311         if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
312                 phys_addr += ctrl->mw1_offset;
313         func_no = ntb_epc->func_no;
314
315         pci_epc_unmap_addr(epc, func_no, phys_addr);
316 }
317
318 /**
319  * epf_ntb_configure_msi() - Map OB address space to MSI address
320  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
321  * @type: PRIMARY interface or SECONDARY interface
322  * @db_count: Number of doorbell interrupts to map
323  *
324  *+-----------------+    +----->+----------------+-----------+-----------------+
325  *|       BAR0      |    |      |   Doorbell 1   +---+------->   MSI ADDRESS   |
326  *+-----------------+    |      +----------------+   |       +-----------------+
327  *|       BAR1      |    |      |   Doorbell 2   +---+       |                 |
328  *+-----------------+----+      +----------------+   |       |                 |
329  *|       BAR2      |           |   Doorbell 3   +---+       |                 |
330  *+-----------------+----+      +----------------+   |       |                 |
331  *|       BAR3      |    |      |   Doorbell 4   +---+       |                 |
332  *+-----------------+    |      |----------------+           |                 |
333  *|       BAR4      |    |      |                |           |                 |
334  *+-----------------+    |      |      MW1       |           |                 |
335  *|       BAR5      |    |      |                |           |                 |
336  *+-----------------+    +----->-----------------+           |                 |
337  *  EP CONTROLLER 1             |                |           |                 |
338  *                              |                |           |                 |
339  *                              +----------------+           +-----------------+
340  *                     (A)       EP CONTROLLER 2             |                 |
341  *                                 (OB SPACE)                |                 |
342  *                                                           |      MW1        |
343  *                                                           |                 |
344  *                                                           |                 |
345  *                                                   (B)     +-----------------+
346  *                                                           |                 |
347  *                                                           |                 |
348  *                                                           |                 |
349  *                                                           |                 |
350  *                                                           |                 |
351  *                                                           +-----------------+
352  *                                                           PCI Address Space
353  *                                                           (Managed by HOST2)
354  *
355  *
356  * This function performs stage (B) in the above diagram (see Doorbell 1,
357  * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
358  * doorbell to MSI address in PCI address space.
359  *
360  * This operation requires 3 parameters
361  *  1) Address reserved for doorbell in the outbound address space
362  *  2) MSI-X address in the PCIe Address space
363  *  3) Number of MSI-X interrupts that has to be configured
364  *
365  * The address in the outbound address space (for the Doorbell) is stored in
366  * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
367  * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
368  * with address for MW1.
369  *
370  * pci_epc_map_msi_irq() takes the MSI address from MSI capability register
371  * and maps the OB address (obtained in epf_ntb_alloc_peer_mem()) to the MSI
372  * address.
373  *
374  * epf_ntb_configure_msi() also stores the MSI data to raise each interrupt
375  * in db_data of the peer's control region. This helps the peer to raise
376  * doorbell of the other host by writing db_data to the BAR corresponding to
377  * BAR_DB_MW1.
378  */
379 static int epf_ntb_configure_msi(struct epf_ntb *ntb,
380                                  enum pci_epc_interface_type type, u16 db_count)
381 {
382         struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
383         u32 db_entry_size, db_data, db_offset;
384         struct pci_epf_bar *peer_epf_bar;
385         struct epf_ntb_ctrl *peer_ctrl;
386         enum pci_barno peer_barno;
387         phys_addr_t phys_addr;
388         struct pci_epc *epc;
389         u8 func_no;
390         int ret, i;
391
392         ntb_epc = ntb->epc[type];
393         epc = ntb_epc->epc;
394
395         peer_ntb_epc = ntb->epc[!type];
396         peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
397         peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
398         peer_ctrl = peer_ntb_epc->reg;
399         db_entry_size = peer_ctrl->db_entry_size;
400
401         phys_addr = peer_epf_bar->phys_addr;
402         func_no = ntb_epc->func_no;
403
404         ret = pci_epc_map_msi_irq(epc, func_no, phys_addr, db_count,
405                                   db_entry_size, &db_data, &db_offset);
406         if (ret) {
407                 dev_err(&epc->dev, "%s intf: Failed to map MSI IRQ\n",
408                         pci_epc_interface_string(type));
409                 return ret;
410         }
411
412         for (i = 0; i < db_count; i++) {
413                 peer_ctrl->db_data[i] = db_data | i;
414                 peer_ctrl->db_offset[i] = db_offset;
415         }
416
417         return 0;
418 }
419
420 /**
421  * epf_ntb_configure_msix() - Map OB address space to MSI-X address
422  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
423  * @type: PRIMARY interface or SECONDARY interface
424  * @db_count: Number of doorbell interrupts to map
425  *
426  *+-----------------+    +----->+----------------+-----------+-----------------+
427  *|       BAR0      |    |      |   Doorbell 1   +-----------> MSI-X ADDRESS 1 |
428  *+-----------------+    |      +----------------+           +-----------------+
429  *|       BAR1      |    |      |   Doorbell 2   +---------+ |                 |
430  *+-----------------+----+      +----------------+         | |                 |
431  *|       BAR2      |           |   Doorbell 3   +-------+ | +-----------------+
432  *+-----------------+----+      +----------------+       | +-> MSI-X ADDRESS 2 |
433  *|       BAR3      |    |      |   Doorbell 4   +-----+ |   +-----------------+
434  *+-----------------+    |      |----------------+     | |   |                 |
435  *|       BAR4      |    |      |                |     | |   +-----------------+
436  *+-----------------+    |      |      MW1       +     | +-->+ MSI-X ADDRESS 3||
437  *|       BAR5      |    |      |                |     |     +-----------------+
438  *+-----------------+    +----->-----------------+     |     |                 |
439  *  EP CONTROLLER 1             |                |     |     +-----------------+
440  *                              |                |     +---->+ MSI-X ADDRESS 4 |
441  *                              +----------------+           +-----------------+
442  *                     (A)       EP CONTROLLER 2             |                 |
443  *                                 (OB SPACE)                |                 |
444  *                                                           |      MW1        |
445  *                                                           |                 |
446  *                                                           |                 |
447  *                                                   (B)     +-----------------+
448  *                                                           |                 |
449  *                                                           |                 |
450  *                                                           |                 |
451  *                                                           |                 |
452  *                                                           |                 |
453  *                                                           +-----------------+
454  *                                                           PCI Address Space
455  *                                                           (Managed by HOST2)
456  *
457  * This function performs stage (B) in the above diagram (see Doorbell 1,
458  * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
459  * doorbell to MSI-X address in PCI address space.
460  *
461  * This operation requires 3 parameters
462  *  1) Address reserved for doorbell in the outbound address space
463  *  2) MSI-X address in the PCIe Address space
464  *  3) Number of MSI-X interrupts that has to be configured
465  *
466  * The address in the outbound address space (for the Doorbell) is stored in
467  * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
468  * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
469  * with address for MW1.
470  *
471  * The MSI-X address is in the MSI-X table of EP CONTROLLER 2 and
472  * the count of doorbell is in ctrl->argument of epf_ntb_epc that is connected
473  * to HOST2. MSI-X table is stored memory mapped to ntb_epc->msix_bar and the
474  * offset is in ntb_epc->msix_table_offset. From this epf_ntb_configure_msix()
475  * gets the MSI-X address and data.
476  *
477  * epf_ntb_configure_msix() also stores the MSI-X data to raise each interrupt
478  * in db_data of the peer's control region. This helps the peer to raise
479  * doorbell of the other host by writing db_data to the BAR corresponding to
480  * BAR_DB_MW1.
481  */
482 static int epf_ntb_configure_msix(struct epf_ntb *ntb,
483                                   enum pci_epc_interface_type type,
484                                   u16 db_count)
485 {
486         const struct pci_epc_features *epc_features;
487         struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
488         struct pci_epf_bar *peer_epf_bar, *epf_bar;
489         struct pci_epf_msix_tbl *msix_tbl;
490         struct epf_ntb_ctrl *peer_ctrl;
491         u32 db_entry_size, msg_data;
492         enum pci_barno peer_barno;
493         phys_addr_t phys_addr;
494         struct pci_epc *epc;
495         size_t align;
496         u64 msg_addr;
497         u8 func_no;
498         int ret, i;
499
500         ntb_epc = ntb->epc[type];
501         epc = ntb_epc->epc;
502
503         epf_bar = &ntb_epc->epf_bar[ntb_epc->msix_bar];
504         msix_tbl = epf_bar->addr + ntb_epc->msix_table_offset;
505
506         peer_ntb_epc = ntb->epc[!type];
507         peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
508         peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
509         phys_addr = peer_epf_bar->phys_addr;
510         peer_ctrl = peer_ntb_epc->reg;
511         epc_features = ntb_epc->epc_features;
512         align = epc_features->align;
513
514         func_no = ntb_epc->func_no;
515         db_entry_size = peer_ctrl->db_entry_size;
516
517         for (i = 0; i < db_count; i++) {
518                 msg_addr = ALIGN_DOWN(msix_tbl[i].msg_addr, align);
519                 msg_data = msix_tbl[i].msg_data;
520                 ret = pci_epc_map_addr(epc, func_no, phys_addr, msg_addr,
521                                        db_entry_size);
522                 if (ret) {
523                         dev_err(&epc->dev,
524                                 "%s intf: Failed to configure MSI-X IRQ\n",
525                                 pci_epc_interface_string(type));
526                         return ret;
527                 }
528                 phys_addr = phys_addr + db_entry_size;
529                 peer_ctrl->db_data[i] = msg_data;
530                 peer_ctrl->db_offset[i] = msix_tbl[i].msg_addr & (align - 1);
531         }
532         ntb_epc->is_msix = true;
533
534         return 0;
535 }
536
537 /**
538  * epf_ntb_configure_db() - Configure the Outbound Address Space for one host
539  *   to ring the doorbell of other host
540  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
541  * @type: PRIMARY interface or SECONDARY interface
542  * @db_count: Count of the number of doorbells that has to be configured
543  * @msix: Indicates whether MSI-X or MSI should be used
544  *
545  * Invokes epf_ntb_configure_msix() or epf_ntb_configure_msi() required for
546  * one HOST to ring the doorbell of other HOST.
547  */
548 static int epf_ntb_configure_db(struct epf_ntb *ntb,
549                                 enum pci_epc_interface_type type,
550                                 u16 db_count, bool msix)
551 {
552         struct epf_ntb_epc *ntb_epc;
553         struct pci_epc *epc;
554         int ret;
555
556         if (db_count > MAX_DB_COUNT)
557                 return -EINVAL;
558
559         ntb_epc = ntb->epc[type];
560         epc = ntb_epc->epc;
561
562         if (msix)
563                 ret = epf_ntb_configure_msix(ntb, type, db_count);
564         else
565                 ret = epf_ntb_configure_msi(ntb, type, db_count);
566
567         if (ret)
568                 dev_err(&epc->dev, "%s intf: Failed to configure DB\n",
569                         pci_epc_interface_string(type));
570
571         return ret;
572 }
573
574 /**
575  * epf_ntb_teardown_db() - Unmap address in OB address space to MSI/MSI-X
576  *   address
577  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
578  * @type: PRIMARY interface or SECONDARY interface
579  *
580  * Invoke pci_epc_unmap_addr() to unmap OB address to MSI/MSI-X address.
581  */
582 static void
583 epf_ntb_teardown_db(struct epf_ntb *ntb, enum pci_epc_interface_type type)
584 {
585         struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
586         struct pci_epf_bar *peer_epf_bar;
587         enum pci_barno peer_barno;
588         phys_addr_t phys_addr;
589         struct pci_epc *epc;
590         u8 func_no;
591
592         ntb_epc = ntb->epc[type];
593         epc = ntb_epc->epc;
594
595         peer_ntb_epc = ntb->epc[!type];
596         peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
597         peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
598         phys_addr = peer_epf_bar->phys_addr;
599         func_no = ntb_epc->func_no;
600
601         pci_epc_unmap_addr(epc, func_no, phys_addr);
602 }
603
604 /**
605  * epf_ntb_cmd_handler() - Handle commands provided by the NTB Host
606  * @work: work_struct for the two epf_ntb_epc (PRIMARY and SECONDARY)
607  *
608  * Workqueue function that gets invoked for the two epf_ntb_epc
609  * periodically (once every 5ms) to see if it has received any commands
610  * from NTB host. The host can send commands to configure doorbell or
611  * configure memory window or to update link status.
612  */
613 static void epf_ntb_cmd_handler(struct work_struct *work)
614 {
615         enum pci_epc_interface_type type;
616         struct epf_ntb_epc *ntb_epc;
617         struct epf_ntb_ctrl *ctrl;
618         u32 command, argument;
619         struct epf_ntb *ntb;
620         struct device *dev;
621         u16 db_count;
622         bool is_msix;
623         int ret;
624
625         ntb_epc = container_of(work, struct epf_ntb_epc, cmd_handler.work);
626         ctrl = ntb_epc->reg;
627         command = ctrl->command;
628         if (!command)
629                 goto reset_handler;
630         argument = ctrl->argument;
631
632         ctrl->command = 0;
633         ctrl->argument = 0;
634
635         ctrl = ntb_epc->reg;
636         type = ntb_epc->type;
637         ntb = ntb_epc->epf_ntb;
638         dev = &ntb->epf->dev;
639
640         switch (command) {
641         case COMMAND_CONFIGURE_DOORBELL:
642                 db_count = argument & DB_COUNT_MASK;
643                 is_msix = argument & MSIX_ENABLE;
644                 ret = epf_ntb_configure_db(ntb, type, db_count, is_msix);
645                 if (ret < 0)
646                         ctrl->command_status = COMMAND_STATUS_ERROR;
647                 else
648                         ctrl->command_status = COMMAND_STATUS_OK;
649                 break;
650         case COMMAND_TEARDOWN_DOORBELL:
651                 epf_ntb_teardown_db(ntb, type);
652                 ctrl->command_status = COMMAND_STATUS_OK;
653                 break;
654         case COMMAND_CONFIGURE_MW:
655                 ret = epf_ntb_configure_mw(ntb, type, argument);
656                 if (ret < 0)
657                         ctrl->command_status = COMMAND_STATUS_ERROR;
658                 else
659                         ctrl->command_status = COMMAND_STATUS_OK;
660                 break;
661         case COMMAND_TEARDOWN_MW:
662                 epf_ntb_teardown_mw(ntb, type, argument);
663                 ctrl->command_status = COMMAND_STATUS_OK;
664                 break;
665         case COMMAND_LINK_UP:
666                 ntb_epc->linkup = true;
667                 if (ntb->epc[PRIMARY_INTERFACE]->linkup &&
668                     ntb->epc[SECONDARY_INTERFACE]->linkup) {
669                         ret = epf_ntb_link_up(ntb, true);
670                         if (ret < 0)
671                                 ctrl->command_status = COMMAND_STATUS_ERROR;
672                         else
673                                 ctrl->command_status = COMMAND_STATUS_OK;
674                         goto reset_handler;
675                 }
676                 ctrl->command_status = COMMAND_STATUS_OK;
677                 break;
678         case COMMAND_LINK_DOWN:
679                 ntb_epc->linkup = false;
680                 ret = epf_ntb_link_up(ntb, false);
681                 if (ret < 0)
682                         ctrl->command_status = COMMAND_STATUS_ERROR;
683                 else
684                         ctrl->command_status = COMMAND_STATUS_OK;
685                 break;
686         default:
687                 dev_err(dev, "%s intf UNKNOWN command: %d\n",
688                         pci_epc_interface_string(type), command);
689                 break;
690         }
691
692 reset_handler:
693         queue_delayed_work(kpcintb_workqueue, &ntb_epc->cmd_handler,
694                            msecs_to_jiffies(5));
695 }
696
697 /**
698  * epf_ntb_peer_spad_bar_clear() - Clear Peer Scratchpad BAR
699  * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
700  *           address.
701  *
702  *+-----------------+------->+------------------+        +-----------------+
703  *|       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
704  *+-----------------+----+   +------------------+<-------+-----------------+
705  *|       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
706  *+-----------------+    +-->+------------------+<-------+-----------------+
707  *|       BAR2      |            Local Memory            |       BAR2      |
708  *+-----------------+                                    +-----------------+
709  *|       BAR3      |                                    |       BAR3      |
710  *+-----------------+                                    +-----------------+
711  *|       BAR4      |                                    |       BAR4      |
712  *+-----------------+                                    +-----------------+
713  *|       BAR5      |                                    |       BAR5      |
714  *+-----------------+                                    +-----------------+
715  *  EP CONTROLLER 1                                        EP CONTROLLER 2
716  *
717  * Clear BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
718  * region. While BAR1 is the default peer scratchpad BAR, an NTB could have
719  * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
720  * This function can get the exact BAR used for peer scratchpad from
721  * epf_ntb_bar[BAR_PEER_SPAD].
722  *
723  * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
724  * gets the address of peer scratchpad from
725  * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
726  */
727 static void epf_ntb_peer_spad_bar_clear(struct epf_ntb_epc *ntb_epc)
728 {
729         struct pci_epf_bar *epf_bar;
730         enum pci_barno barno;
731         struct pci_epc *epc;
732         u8 func_no;
733
734         epc = ntb_epc->epc;
735         func_no = ntb_epc->func_no;
736         barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
737         epf_bar = &ntb_epc->epf_bar[barno];
738         pci_epc_clear_bar(epc, func_no, epf_bar);
739 }
740
741 /**
742  * epf_ntb_peer_spad_bar_set() - Set peer scratchpad BAR
743  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
744  * @type: PRIMARY interface or SECONDARY interface
745  *
746  *+-----------------+------->+------------------+        +-----------------+
747  *|       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
748  *+-----------------+----+   +------------------+<-------+-----------------+
749  *|       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
750  *+-----------------+    +-->+------------------+<-------+-----------------+
751  *|       BAR2      |            Local Memory            |       BAR2      |
752  *+-----------------+                                    +-----------------+
753  *|       BAR3      |                                    |       BAR3      |
754  *+-----------------+                                    +-----------------+
755  *|       BAR4      |                                    |       BAR4      |
756  *+-----------------+                                    +-----------------+
757  *|       BAR5      |                                    |       BAR5      |
758  *+-----------------+                                    +-----------------+
759  *  EP CONTROLLER 1                                        EP CONTROLLER 2
760  *
761  * Set BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
762  * region. While BAR1 is the default peer scratchpad BAR, an NTB could have
763  * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
764  * This function can get the exact BAR used for peer scratchpad from
765  * epf_ntb_bar[BAR_PEER_SPAD].
766  *
767  * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
768  * gets the address of peer scratchpad from
769  * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
770  */
771 static int epf_ntb_peer_spad_bar_set(struct epf_ntb *ntb,
772                                      enum pci_epc_interface_type type)
773 {
774         struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
775         struct pci_epf_bar *peer_epf_bar, *epf_bar;
776         enum pci_barno peer_barno, barno;
777         u32 peer_spad_offset;
778         struct pci_epc *epc;
779         struct device *dev;
780         u8 func_no;
781         int ret;
782
783         dev = &ntb->epf->dev;
784
785         peer_ntb_epc = ntb->epc[!type];
786         peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_CONFIG];
787         peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
788
789         ntb_epc = ntb->epc[type];
790         barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
791         epf_bar = &ntb_epc->epf_bar[barno];
792         func_no = ntb_epc->func_no;
793         epc = ntb_epc->epc;
794
795         peer_spad_offset = peer_ntb_epc->reg->spad_offset;
796         epf_bar->phys_addr = peer_epf_bar->phys_addr + peer_spad_offset;
797         epf_bar->size = peer_ntb_epc->spad_size;
798         epf_bar->barno = barno;
799         epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
800
801         ret = pci_epc_set_bar(epc, func_no, epf_bar);
802         if (ret) {
803                 dev_err(dev, "%s intf: peer SPAD BAR set failed\n",
804                         pci_epc_interface_string(type));
805                 return ret;
806         }
807
808         return 0;
809 }
810
811 /**
812  * epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR
813  * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
814  *           address.
815  *
816  * +-----------------+------->+------------------+        +-----------------+
817  * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
818  * +-----------------+----+   +------------------+<-------+-----------------+
819  * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
820  * +-----------------+    +-->+------------------+<-------+-----------------+
821  * |       BAR2      |            Local Memory            |       BAR2      |
822  * +-----------------+                                    +-----------------+
823  * |       BAR3      |                                    |       BAR3      |
824  * +-----------------+                                    +-----------------+
825  * |       BAR4      |                                    |       BAR4      |
826  * +-----------------+                                    +-----------------+
827  * |       BAR5      |                                    |       BAR5      |
828  * +-----------------+                                    +-----------------+
829  *   EP CONTROLLER 1                                        EP CONTROLLER 2
830  *
831  * Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
832  * self scratchpad region (removes inbound ATU configuration). While BAR0 is
833  * the default self scratchpad BAR, an NTB could have other BARs for self
834  * scratchpad (because of reserved BARs). This function can get the exact BAR
835  * used for self scratchpad from epf_ntb_bar[BAR_CONFIG].
836  *
837  * Please note the self scratchpad region and config region is combined to
838  * a single region and mapped using the same BAR. Also note HOST2's peer
839  * scratchpad is HOST1's self scratchpad.
840  */
841 static void epf_ntb_config_sspad_bar_clear(struct epf_ntb_epc *ntb_epc)
842 {
843         struct pci_epf_bar *epf_bar;
844         enum pci_barno barno;
845         struct pci_epc *epc;
846         u8 func_no;
847
848         epc = ntb_epc->epc;
849         func_no = ntb_epc->func_no;
850         barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
851         epf_bar = &ntb_epc->epf_bar[barno];
852         pci_epc_clear_bar(epc, func_no, epf_bar);
853 }
854
855 /**
856  * epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR
857  * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
858  *           address.
859  *
860  * +-----------------+------->+------------------+        +-----------------+
861  * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
862  * +-----------------+----+   +------------------+<-------+-----------------+
863  * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
864  * +-----------------+    +-->+------------------+<-------+-----------------+
865  * |       BAR2      |            Local Memory            |       BAR2      |
866  * +-----------------+                                    +-----------------+
867  * |       BAR3      |                                    |       BAR3      |
868  * +-----------------+                                    +-----------------+
869  * |       BAR4      |                                    |       BAR4      |
870  * +-----------------+                                    +-----------------+
871  * |       BAR5      |                                    |       BAR5      |
872  * +-----------------+                                    +-----------------+
873  *   EP CONTROLLER 1                                        EP CONTROLLER 2
874  *
875  * Map BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
876  * self scratchpad region. While BAR0 is the default self scratchpad BAR, an
877  * NTB could have other BARs for self scratchpad (because of reserved BARs).
878  * This function can get the exact BAR used for self scratchpad from
879  * epf_ntb_bar[BAR_CONFIG].
880  *
881  * Please note the self scratchpad region and config region is combined to
882  * a single region and mapped using the same BAR. Also note HOST2's peer
883  * scratchpad is HOST1's self scratchpad.
884  */
885 static int epf_ntb_config_sspad_bar_set(struct epf_ntb_epc *ntb_epc)
886 {
887         struct pci_epf_bar *epf_bar;
888         enum pci_barno barno;
889         struct epf_ntb *ntb;
890         struct pci_epc *epc;
891         struct device *dev;
892         u8 func_no;
893         int ret;
894
895         ntb = ntb_epc->epf_ntb;
896         dev = &ntb->epf->dev;
897
898         epc = ntb_epc->epc;
899         func_no = ntb_epc->func_no;
900         barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
901         epf_bar = &ntb_epc->epf_bar[barno];
902
903         ret = pci_epc_set_bar(epc, func_no, epf_bar);
904         if (ret) {
905                 dev_err(dev, "%s inft: Config/Status/SPAD BAR set failed\n",
906                         pci_epc_interface_string(ntb_epc->type));
907                 return ret;
908         }
909
910         return 0;
911 }
912
913 /**
914  * epf_ntb_config_spad_bar_free() - Free the physical memory associated with
915  *   config + scratchpad region
916  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
917  *
918  * +-----------------+------->+------------------+        +-----------------+
919  * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
920  * +-----------------+----+   +------------------+<-------+-----------------+
921  * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
922  * +-----------------+    +-->+------------------+<-------+-----------------+
923  * |       BAR2      |            Local Memory            |       BAR2      |
924  * +-----------------+                                    +-----------------+
925  * |       BAR3      |                                    |       BAR3      |
926  * +-----------------+                                    +-----------------+
927  * |       BAR4      |                                    |       BAR4      |
928  * +-----------------+                                    +-----------------+
929  * |       BAR5      |                                    |       BAR5      |
930  * +-----------------+                                    +-----------------+
931  *   EP CONTROLLER 1                                        EP CONTROLLER 2
932  *
933  * Free the Local Memory mentioned in the above diagram. After invoking this
934  * function, any of config + self scratchpad region of HOST1 or peer scratchpad
935  * region of HOST2 should not be accessed.
936  */
937 static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb)
938 {
939         enum pci_epc_interface_type type;
940         struct epf_ntb_epc *ntb_epc;
941         enum pci_barno barno;
942         struct pci_epf *epf;
943
944         epf = ntb->epf;
945         for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
946                 ntb_epc = ntb->epc[type];
947                 barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
948                 if (ntb_epc->reg)
949                         pci_epf_free_space(epf, ntb_epc->reg, barno, type);
950         }
951 }
952
953 /**
954  * epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad
955  *   region
956  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
957  * @type: PRIMARY interface or SECONDARY interface
958  *
959  * +-----------------+------->+------------------+        +-----------------+
960  * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
961  * +-----------------+----+   +------------------+<-------+-----------------+
962  * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
963  * +-----------------+    +-->+------------------+<-------+-----------------+
964  * |       BAR2      |            Local Memory            |       BAR2      |
965  * +-----------------+                                    +-----------------+
966  * |       BAR3      |                                    |       BAR3      |
967  * +-----------------+                                    +-----------------+
968  * |       BAR4      |                                    |       BAR4      |
969  * +-----------------+                                    +-----------------+
970  * |       BAR5      |                                    |       BAR5      |
971  * +-----------------+                                    +-----------------+
972  *   EP CONTROLLER 1                                        EP CONTROLLER 2
973  *
974  * Allocate the Local Memory mentioned in the above diagram. The size of
975  * CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION
976  * is obtained from "spad-count" configfs entry.
977  *
978  * The size of both config region and scratchpad region has to be aligned,
979  * since the scratchpad region will also be mapped as PEER SCRATCHPAD of
980  * other host using a separate BAR.
981  */
982 static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb,
983                                          enum pci_epc_interface_type type)
984 {
985         const struct pci_epc_features *peer_epc_features, *epc_features;
986         struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
987         size_t msix_table_size, pba_size, align;
988         enum pci_barno peer_barno, barno;
989         struct epf_ntb_ctrl *ctrl;
990         u32 spad_size, ctrl_size;
991         u64 size, peer_size;
992         struct pci_epf *epf;
993         struct device *dev;
994         bool msix_capable;
995         u32 spad_count;
996         void *base;
997
998         epf = ntb->epf;
999         dev = &epf->dev;
1000         ntb_epc = ntb->epc[type];
1001
1002         epc_features = ntb_epc->epc_features;
1003         barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
1004         size = epc_features->bar_fixed_size[barno];
1005         align = epc_features->align;
1006
1007         peer_ntb_epc = ntb->epc[!type];
1008         peer_epc_features = peer_ntb_epc->epc_features;
1009         peer_barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
1010         peer_size = peer_epc_features->bar_fixed_size[peer_barno];
1011
1012         /* Check if epc_features is populated incorrectly */
1013         if ((!IS_ALIGNED(size, align)))
1014                 return -EINVAL;
1015
1016         spad_count = ntb->spad_count;
1017
1018         ctrl_size = sizeof(struct epf_ntb_ctrl);
1019         spad_size = spad_count * 4;
1020
1021         msix_capable = epc_features->msix_capable;
1022         if (msix_capable) {
1023                 msix_table_size = PCI_MSIX_ENTRY_SIZE * ntb->db_count;
1024                 ctrl_size = ALIGN(ctrl_size, 8);
1025                 ntb_epc->msix_table_offset = ctrl_size;
1026                 ntb_epc->msix_bar = barno;
1027                 /* Align to QWORD or 8 Bytes */
1028                 pba_size = ALIGN(DIV_ROUND_UP(ntb->db_count, 8), 8);
1029                 ctrl_size = ctrl_size + msix_table_size + pba_size;
1030         }
1031
1032         if (!align) {
1033                 ctrl_size = roundup_pow_of_two(ctrl_size);
1034                 spad_size = roundup_pow_of_two(spad_size);
1035         } else {
1036                 ctrl_size = ALIGN(ctrl_size, align);
1037                 spad_size = ALIGN(spad_size, align);
1038         }
1039
1040         if (peer_size) {
1041                 if (peer_size < spad_size)
1042                         spad_count = peer_size / 4;
1043                 spad_size = peer_size;
1044         }
1045
1046         /*
1047          * In order to make sure SPAD offset is aligned to its size,
1048          * expand control region size to the size of SPAD if SPAD size
1049          * is greater than control region size.
1050          */
1051         if (spad_size > ctrl_size)
1052                 ctrl_size = spad_size;
1053
1054         if (!size)
1055                 size = ctrl_size + spad_size;
1056         else if (size < ctrl_size + spad_size)
1057                 return -EINVAL;
1058
1059         base = pci_epf_alloc_space(epf, size, barno, align, type);
1060         if (!base) {
1061                 dev_err(dev, "%s intf: Config/Status/SPAD alloc region fail\n",
1062                         pci_epc_interface_string(type));
1063                 return -ENOMEM;
1064         }
1065
1066         ntb_epc->reg = base;
1067
1068         ctrl = ntb_epc->reg;
1069         ctrl->spad_offset = ctrl_size;
1070         ctrl->spad_count = spad_count;
1071         ctrl->num_mws = ntb->num_mws;
1072         ctrl->db_entry_size = align ? align : 4;
1073         ntb_epc->spad_size = spad_size;
1074
1075         return 0;
1076 }
1077
1078 /**
1079  * epf_ntb_config_spad_bar_alloc_interface() - Allocate memory for config +
1080  *   scratchpad region for each of PRIMARY and SECONDARY interface
1081  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1082  *
1083  * Wrapper for epf_ntb_config_spad_bar_alloc() which allocates memory for
1084  * config + scratchpad region for a specific interface
1085  */
1086 static int epf_ntb_config_spad_bar_alloc_interface(struct epf_ntb *ntb)
1087 {
1088         enum pci_epc_interface_type type;
1089         struct device *dev;
1090         int ret;
1091
1092         dev = &ntb->epf->dev;
1093
1094         for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
1095                 ret = epf_ntb_config_spad_bar_alloc(ntb, type);
1096                 if (ret) {
1097                         dev_err(dev, "%s intf: Config/SPAD BAR alloc failed\n",
1098                                 pci_epc_interface_string(type));
1099                         return ret;
1100                 }
1101         }
1102
1103         return 0;
1104 }
1105
1106 /**
1107  * epf_ntb_free_peer_mem() - Free memory allocated in peers outbound address
1108  *   space
1109  * @ntb_epc: EPC associated with one of the HOST which holds peers outbound
1110  *   address regions
1111  *
1112  * +-----------------+    +---->+----------------+-----------+-----------------+
1113  * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
1114  * +-----------------+    |     +----------------+           +-----------------+
1115  * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
1116  * +-----------------+----+     +----------------+         | |                 |
1117  * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
1118  * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
1119  * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
1120  * +-----------------+    |     |----------------+     | |   |                 |
1121  * |       BAR4      |    |     |                |     | |   +-----------------+
1122  * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
1123  * |       BAR5      |    |     |                |   | |     +-----------------+
1124  * +-----------------+    +---->-----------------+   | |     |                 |
1125  *   EP CONTROLLER 1            |                |   | |     +-----------------+
1126  *                              |                |   | +---->+ MSI|X ADDRESS 4 |
1127  *                              +----------------+   |       +-----------------+
1128  *                      (A)      EP CONTROLLER 2     |       |                 |
1129  *                                 (OB SPACE)        |       |                 |
1130  *                                                   +------->      MW1        |
1131  *                                                           |                 |
1132  *                                                           |                 |
1133  *                                                   (B)     +-----------------+
1134  *                                                           |                 |
1135  *                                                           |                 |
1136  *                                                           |                 |
1137  *                                                           |                 |
1138  *                                                           |                 |
1139  *                                                           +-----------------+
1140  *                                                           PCI Address Space
1141  *                                                           (Managed by HOST2)
1142  *
1143  * Free memory allocated in EP CONTROLLER 2 (OB SPACE) in the above diagram.
1144  * It'll free Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3,
1145  * MW4).
1146  */
1147 static void epf_ntb_free_peer_mem(struct epf_ntb_epc *ntb_epc)
1148 {
1149         struct pci_epf_bar *epf_bar;
1150         void __iomem *mw_addr;
1151         phys_addr_t phys_addr;
1152         enum epf_ntb_bar bar;
1153         enum pci_barno barno;
1154         struct pci_epc *epc;
1155         size_t size;
1156
1157         epc = ntb_epc->epc;
1158
1159         for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
1160                 barno = ntb_epc->epf_ntb_bar[bar];
1161                 mw_addr = ntb_epc->mw_addr[barno];
1162                 epf_bar = &ntb_epc->epf_bar[barno];
1163                 phys_addr = epf_bar->phys_addr;
1164                 size = epf_bar->size;
1165                 if (mw_addr) {
1166                         pci_epc_mem_free_addr(epc, phys_addr, mw_addr, size);
1167                         ntb_epc->mw_addr[barno] = NULL;
1168                 }
1169         }
1170 }
1171
1172 /**
1173  * epf_ntb_db_mw_bar_clear() - Clear doorbell and memory BAR
1174  * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
1175  *   address
1176  *
1177  * +-----------------+    +---->+----------------+-----------+-----------------+
1178  * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
1179  * +-----------------+    |     +----------------+           +-----------------+
1180  * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
1181  * +-----------------+----+     +----------------+         | |                 |
1182  * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
1183  * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
1184  * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
1185  * +-----------------+    |     |----------------+     | |   |                 |
1186  * |       BAR4      |    |     |                |     | |   +-----------------+
1187  * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
1188  * |       BAR5      |    |     |                |   | |     +-----------------+
1189  * +-----------------+    +---->-----------------+   | |     |                 |
1190  *   EP CONTROLLER 1            |                |   | |     +-----------------+
1191  *                              |                |   | +---->+ MSI|X ADDRESS 4 |
1192  *                              +----------------+   |       +-----------------+
1193  *                      (A)      EP CONTROLLER 2     |       |                 |
1194  *                                 (OB SPACE)        |       |                 |
1195  *                                                   +------->      MW1        |
1196  *                                                           |                 |
1197  *                                                           |                 |
1198  *                                                   (B)     +-----------------+
1199  *                                                           |                 |
1200  *                                                           |                 |
1201  *                                                           |                 |
1202  *                                                           |                 |
1203  *                                                           |                 |
1204  *                                                           +-----------------+
1205  *                                                           PCI Address Space
1206  *                                                           (Managed by HOST2)
1207  *
1208  * Clear doorbell and memory BARs (remove inbound ATU configuration). In the above
1209  * diagram it clears BAR2 TO BAR5 of EP CONTROLLER 1 (Doorbell BAR, MW1 BAR, MW2
1210  * BAR, MW3 BAR and MW4 BAR).
1211  */
1212 static void epf_ntb_db_mw_bar_clear(struct epf_ntb_epc *ntb_epc)
1213 {
1214         struct pci_epf_bar *epf_bar;
1215         enum epf_ntb_bar bar;
1216         enum pci_barno barno;
1217         struct pci_epc *epc;
1218         u8 func_no;
1219
1220         epc = ntb_epc->epc;
1221
1222         func_no = ntb_epc->func_no;
1223
1224         for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
1225                 barno = ntb_epc->epf_ntb_bar[bar];
1226                 epf_bar = &ntb_epc->epf_bar[barno];
1227                 pci_epc_clear_bar(epc, func_no, epf_bar);
1228         }
1229 }
1230
1231 /**
1232  * epf_ntb_db_mw_bar_cleanup() - Clear doorbell/memory BAR and free memory
1233  *   allocated in peers outbound address space
1234  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1235  * @type: PRIMARY interface or SECONDARY interface
1236  *
1237  * Wrapper for epf_ntb_db_mw_bar_clear() to clear HOST1's BAR and
1238  * epf_ntb_free_peer_mem() which frees up HOST2 outbound memory.
1239  */
1240 static void epf_ntb_db_mw_bar_cleanup(struct epf_ntb *ntb,
1241                                       enum pci_epc_interface_type type)
1242 {
1243         struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
1244
1245         ntb_epc = ntb->epc[type];
1246         peer_ntb_epc = ntb->epc[!type];
1247
1248         epf_ntb_db_mw_bar_clear(ntb_epc);
1249         epf_ntb_free_peer_mem(peer_ntb_epc);
1250 }
1251
1252 /**
1253  * epf_ntb_configure_interrupt() - Configure MSI/MSI-X capaiblity
1254  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1255  * @type: PRIMARY interface or SECONDARY interface
1256  *
1257  * Configure MSI/MSI-X capability for each interface with number of
1258  * interrupts equal to "db_count" configfs entry.
1259  */
1260 static int epf_ntb_configure_interrupt(struct epf_ntb *ntb,
1261                                        enum pci_epc_interface_type type)
1262 {
1263         const struct pci_epc_features *epc_features;
1264         bool msix_capable, msi_capable;
1265         struct epf_ntb_epc *ntb_epc;
1266         struct pci_epc *epc;
1267         struct device *dev;
1268         u32 db_count;
1269         u8 func_no;
1270         int ret;
1271
1272         ntb_epc = ntb->epc[type];
1273         dev = &ntb->epf->dev;
1274
1275         epc_features = ntb_epc->epc_features;
1276         msix_capable = epc_features->msix_capable;
1277         msi_capable = epc_features->msi_capable;
1278
1279         if (!(msix_capable || msi_capable)) {
1280                 dev_err(dev, "MSI or MSI-X is required for doorbell\n");
1281                 return -EINVAL;
1282         }
1283
1284         func_no = ntb_epc->func_no;
1285
1286         db_count = ntb->db_count;
1287         if (db_count > MAX_DB_COUNT) {
1288                 dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT);
1289                 return -EINVAL;
1290         }
1291
1292         ntb->db_count = db_count;
1293         epc = ntb_epc->epc;
1294
1295         if (msi_capable) {
1296                 ret = pci_epc_set_msi(epc, func_no, db_count);
1297                 if (ret) {
1298                         dev_err(dev, "%s intf: MSI configuration failed\n",
1299                                 pci_epc_interface_string(type));
1300                         return ret;
1301                 }
1302         }
1303
1304         if (msix_capable) {
1305                 ret = pci_epc_set_msix(epc, func_no, db_count,
1306                                        ntb_epc->msix_bar,
1307                                        ntb_epc->msix_table_offset);
1308                 if (ret) {
1309                         dev_err(dev, "MSI configuration failed\n");
1310                         return ret;
1311                 }
1312         }
1313
1314         return 0;
1315 }
1316
1317 /**
1318  * epf_ntb_alloc_peer_mem() - Allocate memory in peer's outbound address space
1319  * @dev: The PCI device.
1320  * @ntb_epc: EPC associated with one of the HOST whose BAR holds peer's outbound
1321  *   address
1322  * @bar: BAR of @ntb_epc in for which memory has to be allocated (could be
1323  *   BAR_DB_MW1, BAR_MW2, BAR_MW3, BAR_MW4)
1324  * @peer_ntb_epc: EPC associated with HOST whose outbound address space is
1325  *   used by @ntb_epc
1326  * @size: Size of the address region that has to be allocated in peers OB SPACE
1327  *
1328  *
1329  * +-----------------+    +---->+----------------+-----------+-----------------+
1330  * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
1331  * +-----------------+    |     +----------------+           +-----------------+
1332  * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
1333  * +-----------------+----+     +----------------+         | |                 |
1334  * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
1335  * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
1336  * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
1337  * +-----------------+    |     |----------------+     | |   |                 |
1338  * |       BAR4      |    |     |                |     | |   +-----------------+
1339  * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
1340  * |       BAR5      |    |     |                |   | |     +-----------------+
1341  * +-----------------+    +---->-----------------+   | |     |                 |
1342  *   EP CONTROLLER 1            |                |   | |     +-----------------+
1343  *                              |                |   | +---->+ MSI|X ADDRESS 4 |
1344  *                              +----------------+   |       +-----------------+
1345  *                      (A)      EP CONTROLLER 2     |       |                 |
1346  *                                 (OB SPACE)        |       |                 |
1347  *                                                   +------->      MW1        |
1348  *                                                           |                 |
1349  *                                                           |                 |
1350  *                                                   (B)     +-----------------+
1351  *                                                           |                 |
1352  *                                                           |                 |
1353  *                                                           |                 |
1354  *                                                           |                 |
1355  *                                                           |                 |
1356  *                                                           +-----------------+
1357  *                                                           PCI Address Space
1358  *                                                           (Managed by HOST2)
1359  *
1360  * Allocate memory in OB space of EP CONTROLLER 2 in the above diagram. Allocate
1361  * for Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, MW4).
1362  */
1363 static int epf_ntb_alloc_peer_mem(struct device *dev,
1364                                   struct epf_ntb_epc *ntb_epc,
1365                                   enum epf_ntb_bar bar,
1366                                   struct epf_ntb_epc *peer_ntb_epc,
1367                                   size_t size)
1368 {
1369         const struct pci_epc_features *epc_features;
1370         struct pci_epf_bar *epf_bar;
1371         struct pci_epc *peer_epc;
1372         phys_addr_t phys_addr;
1373         void __iomem *mw_addr;
1374         enum pci_barno barno;
1375         size_t align;
1376
1377         epc_features = ntb_epc->epc_features;
1378         align = epc_features->align;
1379
1380         if (size < 128)
1381                 size = 128;
1382
1383         if (align)
1384                 size = ALIGN(size, align);
1385         else
1386                 size = roundup_pow_of_two(size);
1387
1388         peer_epc = peer_ntb_epc->epc;
1389         mw_addr = pci_epc_mem_alloc_addr(peer_epc, &phys_addr, size);
1390         if (!mw_addr) {
1391                 dev_err(dev, "%s intf: Failed to allocate OB address\n",
1392                         pci_epc_interface_string(peer_ntb_epc->type));
1393                 return -ENOMEM;
1394         }
1395
1396         barno = ntb_epc->epf_ntb_bar[bar];
1397         epf_bar = &ntb_epc->epf_bar[barno];
1398         ntb_epc->mw_addr[barno] = mw_addr;
1399
1400         epf_bar->phys_addr = phys_addr;
1401         epf_bar->size = size;
1402         epf_bar->barno = barno;
1403         epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
1404
1405         return 0;
1406 }
1407
1408 /**
1409  * epf_ntb_db_mw_bar_init() - Configure Doorbell and Memory window BARs
1410  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1411  * @type: PRIMARY interface or SECONDARY interface
1412  *
1413  * Wrapper for epf_ntb_alloc_peer_mem() and pci_epc_set_bar() that allocates
1414  * memory in OB address space of HOST2 and configures BAR of HOST1
1415  */
1416 static int epf_ntb_db_mw_bar_init(struct epf_ntb *ntb,
1417                                   enum pci_epc_interface_type type)
1418 {
1419         const struct pci_epc_features *epc_features;
1420         struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
1421         struct pci_epf_bar *epf_bar;
1422         struct epf_ntb_ctrl *ctrl;
1423         u32 num_mws, db_count;
1424         enum epf_ntb_bar bar;
1425         enum pci_barno barno;
1426         struct pci_epc *epc;
1427         struct device *dev;
1428         size_t align;
1429         int ret, i;
1430         u8 func_no;
1431         u64 size;
1432
1433         ntb_epc = ntb->epc[type];
1434         peer_ntb_epc = ntb->epc[!type];
1435
1436         dev = &ntb->epf->dev;
1437         epc_features = ntb_epc->epc_features;
1438         align = epc_features->align;
1439         func_no = ntb_epc->func_no;
1440         epc = ntb_epc->epc;
1441         num_mws = ntb->num_mws;
1442         db_count = ntb->db_count;
1443
1444         for (bar = BAR_DB_MW1, i = 0; i < num_mws; bar++, i++) {
1445                 if (bar == BAR_DB_MW1) {
1446                         align = align ? align : 4;
1447                         size = db_count * align;
1448                         size = ALIGN(size, ntb->mws_size[i]);
1449                         ctrl = ntb_epc->reg;
1450                         ctrl->mw1_offset = size;
1451                         size += ntb->mws_size[i];
1452                 } else {
1453                         size = ntb->mws_size[i];
1454                 }
1455
1456                 ret = epf_ntb_alloc_peer_mem(dev, ntb_epc, bar,
1457                                              peer_ntb_epc, size);
1458                 if (ret) {
1459                         dev_err(dev, "%s intf: DoorBell mem alloc failed\n",
1460                                 pci_epc_interface_string(type));
1461                         goto err_alloc_peer_mem;
1462                 }
1463
1464                 barno = ntb_epc->epf_ntb_bar[bar];
1465                 epf_bar = &ntb_epc->epf_bar[barno];
1466
1467                 ret = pci_epc_set_bar(epc, func_no, epf_bar);
1468                 if (ret) {
1469                         dev_err(dev, "%s intf: DoorBell BAR set failed\n",
1470                                 pci_epc_interface_string(type));
1471                         goto err_alloc_peer_mem;
1472                 }
1473         }
1474
1475         return 0;
1476
1477 err_alloc_peer_mem:
1478         epf_ntb_db_mw_bar_cleanup(ntb, type);
1479
1480         return ret;
1481 }
1482
1483 /**
1484  * epf_ntb_epc_destroy_interface() - Cleanup NTB EPC interface
1485  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1486  * @type: PRIMARY interface or SECONDARY interface
1487  *
1488  * Unbind NTB function device from EPC and relinquish reference to pci_epc
1489  * for each of the interface.
1490  */
1491 static void epf_ntb_epc_destroy_interface(struct epf_ntb *ntb,
1492                                           enum pci_epc_interface_type type)
1493 {
1494         struct epf_ntb_epc *ntb_epc;
1495         struct pci_epc *epc;
1496         struct pci_epf *epf;
1497
1498         if (type < 0)
1499                 return;
1500
1501         epf = ntb->epf;
1502         ntb_epc = ntb->epc[type];
1503         if (!ntb_epc)
1504                 return;
1505         epc = ntb_epc->epc;
1506         pci_epc_remove_epf(epc, epf, type);
1507         pci_epc_put(epc);
1508 }
1509
1510 /**
1511  * epf_ntb_epc_destroy() - Cleanup NTB EPC interface
1512  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1513  *
1514  * Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces
1515  */
1516 static void epf_ntb_epc_destroy(struct epf_ntb *ntb)
1517 {
1518         enum pci_epc_interface_type type;
1519
1520         for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
1521                 epf_ntb_epc_destroy_interface(ntb, type);
1522 }
1523
1524 /**
1525  * epf_ntb_epc_create_interface() - Create and initialize NTB EPC interface
1526  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1527  * @epc: struct pci_epc to which a particular NTB interface should be associated
1528  * @type: PRIMARY interface or SECONDARY interface
1529  *
1530  * Allocate memory for NTB EPC interface and initialize it.
1531  */
1532 static int epf_ntb_epc_create_interface(struct epf_ntb *ntb,
1533                                         struct pci_epc *epc,
1534                                         enum pci_epc_interface_type type)
1535 {
1536         const struct pci_epc_features *epc_features;
1537         struct pci_epf_bar *epf_bar;
1538         struct epf_ntb_epc *ntb_epc;
1539         struct pci_epf *epf;
1540         struct device *dev;
1541         u8 func_no;
1542
1543         dev = &ntb->epf->dev;
1544
1545         ntb_epc = devm_kzalloc(dev, sizeof(*ntb_epc), GFP_KERNEL);
1546         if (!ntb_epc)
1547                 return -ENOMEM;
1548
1549         epf = ntb->epf;
1550         if (type == PRIMARY_INTERFACE) {
1551                 func_no = epf->func_no;
1552                 epf_bar = epf->bar;
1553         } else {
1554                 func_no = epf->sec_epc_func_no;
1555                 epf_bar = epf->sec_epc_bar;
1556         }
1557
1558         ntb_epc->linkup = false;
1559         ntb_epc->epc = epc;
1560         ntb_epc->func_no = func_no;
1561         ntb_epc->type = type;
1562         ntb_epc->epf_bar = epf_bar;
1563         ntb_epc->epf_ntb = ntb;
1564
1565         epc_features = pci_epc_get_features(epc, func_no);
1566         if (!epc_features)
1567                 return -EINVAL;
1568         ntb_epc->epc_features = epc_features;
1569
1570         ntb->epc[type] = ntb_epc;
1571
1572         return 0;
1573 }
1574
1575 /**
1576  * epf_ntb_epc_create() - Create and initialize NTB EPC interface
1577  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1578  *
1579  * Get a reference to EPC device and bind NTB function device to that EPC
1580  * for each of the interface. It is also a wrapper to
1581  * epf_ntb_epc_create_interface() to allocate memory for NTB EPC interface
1582  * and initialize it
1583  */
1584 static int epf_ntb_epc_create(struct epf_ntb *ntb)
1585 {
1586         struct pci_epf *epf;
1587         struct device *dev;
1588         int ret;
1589
1590         epf = ntb->epf;
1591         dev = &epf->dev;
1592
1593         ret = epf_ntb_epc_create_interface(ntb, epf->epc, PRIMARY_INTERFACE);
1594         if (ret) {
1595                 dev_err(dev, "PRIMARY intf: Fail to create NTB EPC\n");
1596                 return ret;
1597         }
1598
1599         ret = epf_ntb_epc_create_interface(ntb, epf->sec_epc,
1600                                            SECONDARY_INTERFACE);
1601         if (ret) {
1602                 dev_err(dev, "SECONDARY intf: Fail to create NTB EPC\n");
1603                 goto err_epc_create;
1604         }
1605
1606         return 0;
1607
1608 err_epc_create:
1609         epf_ntb_epc_destroy_interface(ntb, PRIMARY_INTERFACE);
1610
1611         return ret;
1612 }
1613
1614 /**
1615  * epf_ntb_init_epc_bar_interface() - Identify BARs to be used for each of
1616  *   the NTB constructs (scratchpad region, doorbell, memorywindow)
1617  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1618  * @type: PRIMARY interface or SECONDARY interface
1619  *
1620  * Identify the free BARs to be used for each of BAR_CONFIG, BAR_PEER_SPAD,
1621  * BAR_DB_MW1, BAR_MW2, BAR_MW3 and BAR_MW4.
1622  */
1623 static int epf_ntb_init_epc_bar_interface(struct epf_ntb *ntb,
1624                                           enum pci_epc_interface_type type)
1625 {
1626         const struct pci_epc_features *epc_features;
1627         struct epf_ntb_epc *ntb_epc;
1628         enum pci_barno barno;
1629         enum epf_ntb_bar bar;
1630         struct device *dev;
1631         u32 num_mws;
1632         int i;
1633
1634         barno = BAR_0;
1635         ntb_epc = ntb->epc[type];
1636         num_mws = ntb->num_mws;
1637         dev = &ntb->epf->dev;
1638         epc_features = ntb_epc->epc_features;
1639
1640         /* These are required BARs which are mandatory for NTB functionality */
1641         for (bar = BAR_CONFIG; bar <= BAR_DB_MW1; bar++, barno++) {
1642                 barno = pci_epc_get_next_free_bar(epc_features, barno);
1643                 if (barno < 0) {
1644                         dev_err(dev, "%s intf: Fail to get NTB function BAR\n",
1645                                 pci_epc_interface_string(type));
1646                         return barno;
1647                 }
1648                 ntb_epc->epf_ntb_bar[bar] = barno;
1649         }
1650
1651         /* These are optional BARs which don't impact NTB functionality */
1652         for (bar = BAR_MW2, i = 1; i < num_mws; bar++, barno++, i++) {
1653                 barno = pci_epc_get_next_free_bar(epc_features, barno);
1654                 if (barno < 0) {
1655                         ntb->num_mws = i;
1656                         dev_dbg(dev, "BAR not available for > MW%d\n", i + 1);
1657                 }
1658                 ntb_epc->epf_ntb_bar[bar] = barno;
1659         }
1660
1661         return 0;
1662 }
1663
1664 /**
1665  * epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB
1666  * constructs (scratchpad region, doorbell, memorywindow)
1667  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1668  *
1669  * Wrapper to epf_ntb_init_epc_bar_interface() to identify the free BARs
1670  * to be used for each of BAR_CONFIG, BAR_PEER_SPAD, BAR_DB_MW1, BAR_MW2,
1671  * BAR_MW3 and BAR_MW4 for all the interfaces.
1672  */
1673 static int epf_ntb_init_epc_bar(struct epf_ntb *ntb)
1674 {
1675         enum pci_epc_interface_type type;
1676         struct device *dev;
1677         int ret;
1678
1679         dev = &ntb->epf->dev;
1680         for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
1681                 ret = epf_ntb_init_epc_bar_interface(ntb, type);
1682                 if (ret) {
1683                         dev_err(dev, "Fail to init EPC bar for %s interface\n",
1684                                 pci_epc_interface_string(type));
1685                         return ret;
1686                 }
1687         }
1688
1689         return 0;
1690 }
1691
1692 /**
1693  * epf_ntb_epc_init_interface() - Initialize NTB interface
1694  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1695  * @type: PRIMARY interface or SECONDARY interface
1696  *
1697  * Wrapper to initialize a particular EPC interface and start the workqueue
1698  * to check for commands from host. This function will write to the
1699  * EP controller HW for configuring it.
1700  */
1701 static int epf_ntb_epc_init_interface(struct epf_ntb *ntb,
1702                                       enum pci_epc_interface_type type)
1703 {
1704         struct epf_ntb_epc *ntb_epc;
1705         struct pci_epc *epc;
1706         struct pci_epf *epf;
1707         struct device *dev;
1708         u8 func_no;
1709         int ret;
1710
1711         ntb_epc = ntb->epc[type];
1712         epf = ntb->epf;
1713         dev = &epf->dev;
1714         epc = ntb_epc->epc;
1715         func_no = ntb_epc->func_no;
1716
1717         ret = epf_ntb_config_sspad_bar_set(ntb->epc[type]);
1718         if (ret) {
1719                 dev_err(dev, "%s intf: Config/self SPAD BAR init failed\n",
1720                         pci_epc_interface_string(type));
1721                 return ret;
1722         }
1723
1724         ret = epf_ntb_peer_spad_bar_set(ntb, type);
1725         if (ret) {
1726                 dev_err(dev, "%s intf: Peer SPAD BAR init failed\n",
1727                         pci_epc_interface_string(type));
1728                 goto err_peer_spad_bar_init;
1729         }
1730
1731         ret = epf_ntb_configure_interrupt(ntb, type);
1732         if (ret) {
1733                 dev_err(dev, "%s intf: Interrupt configuration failed\n",
1734                         pci_epc_interface_string(type));
1735                 goto err_peer_spad_bar_init;
1736         }
1737
1738         ret = epf_ntb_db_mw_bar_init(ntb, type);
1739         if (ret) {
1740                 dev_err(dev, "%s intf: DB/MW BAR init failed\n",
1741                         pci_epc_interface_string(type));
1742                 goto err_db_mw_bar_init;
1743         }
1744
1745         ret = pci_epc_write_header(epc, func_no, epf->header);
1746         if (ret) {
1747                 dev_err(dev, "%s intf: Configuration header write failed\n",
1748                         pci_epc_interface_string(type));
1749                 goto err_write_header;
1750         }
1751
1752         INIT_DELAYED_WORK(&ntb->epc[type]->cmd_handler, epf_ntb_cmd_handler);
1753         queue_work(kpcintb_workqueue, &ntb->epc[type]->cmd_handler.work);
1754
1755         return 0;
1756
1757 err_write_header:
1758         epf_ntb_db_mw_bar_cleanup(ntb, type);
1759
1760 err_db_mw_bar_init:
1761         epf_ntb_peer_spad_bar_clear(ntb->epc[type]);
1762
1763 err_peer_spad_bar_init:
1764         epf_ntb_config_sspad_bar_clear(ntb->epc[type]);
1765
1766         return ret;
1767 }
1768
1769 /**
1770  * epf_ntb_epc_cleanup_interface() - Cleanup NTB interface
1771  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1772  * @type: PRIMARY interface or SECONDARY interface
1773  *
1774  * Wrapper to cleanup a particular NTB interface.
1775  */
1776 static void epf_ntb_epc_cleanup_interface(struct epf_ntb *ntb,
1777                                           enum pci_epc_interface_type type)
1778 {
1779         struct epf_ntb_epc *ntb_epc;
1780
1781         if (type < 0)
1782                 return;
1783
1784         ntb_epc = ntb->epc[type];
1785         cancel_delayed_work(&ntb_epc->cmd_handler);
1786         epf_ntb_db_mw_bar_cleanup(ntb, type);
1787         epf_ntb_peer_spad_bar_clear(ntb_epc);
1788         epf_ntb_config_sspad_bar_clear(ntb_epc);
1789 }
1790
1791 /**
1792  * epf_ntb_epc_cleanup() - Cleanup all NTB interfaces
1793  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1794  *
1795  * Wrapper to cleanup all NTB interfaces.
1796  */
1797 static void epf_ntb_epc_cleanup(struct epf_ntb *ntb)
1798 {
1799         enum pci_epc_interface_type type;
1800
1801         for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
1802                 epf_ntb_epc_cleanup_interface(ntb, type);
1803 }
1804
1805 /**
1806  * epf_ntb_epc_init() - Initialize all NTB interfaces
1807  * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1808  *
1809  * Wrapper to initialize all NTB interface and start the workqueue
1810  * to check for commands from host.
1811  */
1812 static int epf_ntb_epc_init(struct epf_ntb *ntb)
1813 {
1814         enum pci_epc_interface_type type;
1815         struct device *dev;
1816         int ret;
1817
1818         dev = &ntb->epf->dev;
1819
1820         for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
1821                 ret = epf_ntb_epc_init_interface(ntb, type);
1822                 if (ret) {
1823                         dev_err(dev, "%s intf: Failed to initialize\n",
1824                                 pci_epc_interface_string(type));
1825                         goto err_init_type;
1826                 }
1827         }
1828
1829         return 0;
1830
1831 err_init_type:
1832         epf_ntb_epc_cleanup_interface(ntb, type - 1);
1833
1834         return ret;
1835 }
1836
1837 /**
1838  * epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality
1839  * @epf: NTB endpoint function device
1840  *
1841  * Initialize both the endpoint controllers associated with NTB function device.
1842  * Invoked when a primary interface or secondary interface is bound to EPC
1843  * device. This function will succeed only when EPC is bound to both the
1844  * interfaces.
1845  */
1846 static int epf_ntb_bind(struct pci_epf *epf)
1847 {
1848         struct epf_ntb *ntb = epf_get_drvdata(epf);
1849         struct device *dev = &epf->dev;
1850         int ret;
1851
1852         if (!epf->epc) {
1853                 dev_dbg(dev, "PRIMARY EPC interface not yet bound\n");
1854                 return 0;
1855         }
1856
1857         if (!epf->sec_epc) {
1858                 dev_dbg(dev, "SECONDARY EPC interface not yet bound\n");
1859                 return 0;
1860         }
1861
1862         ret = epf_ntb_epc_create(ntb);
1863         if (ret) {
1864                 dev_err(dev, "Failed to create NTB EPC\n");
1865                 return ret;
1866         }
1867
1868         ret = epf_ntb_init_epc_bar(ntb);
1869         if (ret) {
1870                 dev_err(dev, "Failed to create NTB EPC\n");
1871                 goto err_bar_init;
1872         }
1873
1874         ret = epf_ntb_config_spad_bar_alloc_interface(ntb);
1875         if (ret) {
1876                 dev_err(dev, "Failed to allocate BAR memory\n");
1877                 goto err_bar_alloc;
1878         }
1879
1880         ret = epf_ntb_epc_init(ntb);
1881         if (ret) {
1882                 dev_err(dev, "Failed to initialize EPC\n");
1883                 goto err_bar_alloc;
1884         }
1885
1886         epf_set_drvdata(epf, ntb);
1887
1888         return 0;
1889
1890 err_bar_alloc:
1891         epf_ntb_config_spad_bar_free(ntb);
1892
1893 err_bar_init:
1894         epf_ntb_epc_destroy(ntb);
1895
1896         return ret;
1897 }
1898
1899 /**
1900  * epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind()
1901  * @epf: NTB endpoint function device
1902  *
1903  * Cleanup the initialization from epf_ntb_bind()
1904  */
1905 static void epf_ntb_unbind(struct pci_epf *epf)
1906 {
1907         struct epf_ntb *ntb = epf_get_drvdata(epf);
1908
1909         epf_ntb_epc_cleanup(ntb);
1910         epf_ntb_config_spad_bar_free(ntb);
1911         epf_ntb_epc_destroy(ntb);
1912 }
1913
1914 #define EPF_NTB_R(_name)                                                \
1915 static ssize_t epf_ntb_##_name##_show(struct config_item *item,         \
1916                                       char *page)                       \
1917 {                                                                       \
1918         struct config_group *group = to_config_group(item);             \
1919         struct epf_ntb *ntb = to_epf_ntb(group);                        \
1920                                                                         \
1921         return sprintf(page, "%d\n", ntb->_name);                       \
1922 }
1923
1924 #define EPF_NTB_W(_name)                                                \
1925 static ssize_t epf_ntb_##_name##_store(struct config_item *item,        \
1926                                        const char *page, size_t len)    \
1927 {                                                                       \
1928         struct config_group *group = to_config_group(item);             \
1929         struct epf_ntb *ntb = to_epf_ntb(group);                        \
1930         u32 val;                                                        \
1931         int ret;                                                        \
1932                                                                         \
1933         ret = kstrtou32(page, 0, &val);                                 \
1934         if (ret)                                                        \
1935                 return ret;                                             \
1936                                                                         \
1937         ntb->_name = val;                                               \
1938                                                                         \
1939         return len;                                                     \
1940 }
1941
1942 #define EPF_NTB_MW_R(_name)                                             \
1943 static ssize_t epf_ntb_##_name##_show(struct config_item *item,         \
1944                                       char *page)                       \
1945 {                                                                       \
1946         struct config_group *group = to_config_group(item);             \
1947         struct epf_ntb *ntb = to_epf_ntb(group);                        \
1948         int win_no;                                                     \
1949                                                                         \
1950         sscanf(#_name, "mw%d", &win_no);                                \
1951                                                                         \
1952         return sprintf(page, "%lld\n", ntb->mws_size[win_no - 1]);      \
1953 }
1954
1955 #define EPF_NTB_MW_W(_name)                                             \
1956 static ssize_t epf_ntb_##_name##_store(struct config_item *item,        \
1957                                        const char *page, size_t len)    \
1958 {                                                                       \
1959         struct config_group *group = to_config_group(item);             \
1960         struct epf_ntb *ntb = to_epf_ntb(group);                        \
1961         struct device *dev = &ntb->epf->dev;                            \
1962         int win_no;                                                     \
1963         u64 val;                                                        \
1964         int ret;                                                        \
1965                                                                         \
1966         ret = kstrtou64(page, 0, &val);                                 \
1967         if (ret)                                                        \
1968                 return ret;                                             \
1969                                                                         \
1970         if (sscanf(#_name, "mw%d", &win_no) != 1)                       \
1971                 return -EINVAL;                                         \
1972                                                                         \
1973         if (ntb->num_mws < win_no) {                                    \
1974                 dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
1975                 return -EINVAL;                                         \
1976         }                                                               \
1977                                                                         \
1978         ntb->mws_size[win_no - 1] = val;                                \
1979                                                                         \
1980         return len;                                                     \
1981 }
1982
1983 static ssize_t epf_ntb_num_mws_store(struct config_item *item,
1984                                      const char *page, size_t len)
1985 {
1986         struct config_group *group = to_config_group(item);
1987         struct epf_ntb *ntb = to_epf_ntb(group);
1988         u32 val;
1989         int ret;
1990
1991         ret = kstrtou32(page, 0, &val);
1992         if (ret)
1993                 return ret;
1994
1995         if (val > MAX_MW)
1996                 return -EINVAL;
1997
1998         ntb->num_mws = val;
1999
2000         return len;
2001 }
2002
2003 EPF_NTB_R(spad_count)
2004 EPF_NTB_W(spad_count)
2005 EPF_NTB_R(db_count)
2006 EPF_NTB_W(db_count)
2007 EPF_NTB_R(num_mws)
2008 EPF_NTB_MW_R(mw1)
2009 EPF_NTB_MW_W(mw1)
2010 EPF_NTB_MW_R(mw2)
2011 EPF_NTB_MW_W(mw2)
2012 EPF_NTB_MW_R(mw3)
2013 EPF_NTB_MW_W(mw3)
2014 EPF_NTB_MW_R(mw4)
2015 EPF_NTB_MW_W(mw4)
2016
2017 CONFIGFS_ATTR(epf_ntb_, spad_count);
2018 CONFIGFS_ATTR(epf_ntb_, db_count);
2019 CONFIGFS_ATTR(epf_ntb_, num_mws);
2020 CONFIGFS_ATTR(epf_ntb_, mw1);
2021 CONFIGFS_ATTR(epf_ntb_, mw2);
2022 CONFIGFS_ATTR(epf_ntb_, mw3);
2023 CONFIGFS_ATTR(epf_ntb_, mw4);
2024
2025 static struct configfs_attribute *epf_ntb_attrs[] = {
2026         &epf_ntb_attr_spad_count,
2027         &epf_ntb_attr_db_count,
2028         &epf_ntb_attr_num_mws,
2029         &epf_ntb_attr_mw1,
2030         &epf_ntb_attr_mw2,
2031         &epf_ntb_attr_mw3,
2032         &epf_ntb_attr_mw4,
2033         NULL,
2034 };
2035
2036 static const struct config_item_type ntb_group_type = {
2037         .ct_attrs       = epf_ntb_attrs,
2038         .ct_owner       = THIS_MODULE,
2039 };
2040
2041 /**
2042  * epf_ntb_add_cfs() - Add configfs directory specific to NTB
2043  * @epf: NTB endpoint function device
2044  * @group: A pointer to the config_group structure referencing a group of
2045  *         config_items of a specific type that belong to a specific sub-system.
2046  *
2047  * Add configfs directory specific to NTB. This directory will hold
2048  * NTB specific properties like db_count, spad_count, num_mws etc.,
2049  */
2050 static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf,
2051                                             struct config_group *group)
2052 {
2053         struct epf_ntb *ntb = epf_get_drvdata(epf);
2054         struct config_group *ntb_group = &ntb->group;
2055         struct device *dev = &epf->dev;
2056
2057         config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type);
2058
2059         return ntb_group;
2060 }
2061
2062 /**
2063  * epf_ntb_probe() - Probe NTB function driver
2064  * @epf: NTB endpoint function device
2065  *
2066  * Probe NTB function driver when endpoint function bus detects a NTB
2067  * endpoint function.
2068  */
2069 static int epf_ntb_probe(struct pci_epf *epf)
2070 {
2071         struct epf_ntb *ntb;
2072         struct device *dev;
2073
2074         dev = &epf->dev;
2075
2076         ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL);
2077         if (!ntb)
2078                 return -ENOMEM;
2079
2080         epf->header = &epf_ntb_header;
2081         ntb->epf = epf;
2082         epf_set_drvdata(epf, ntb);
2083
2084         return 0;
2085 }
2086
2087 static struct pci_epf_ops epf_ntb_ops = {
2088         .bind   = epf_ntb_bind,
2089         .unbind = epf_ntb_unbind,
2090         .add_cfs = epf_ntb_add_cfs,
2091 };
2092
2093 static const struct pci_epf_device_id epf_ntb_ids[] = {
2094         {
2095                 .name = "pci_epf_ntb",
2096         },
2097         {},
2098 };
2099
2100 static struct pci_epf_driver epf_ntb_driver = {
2101         .driver.name    = "pci_epf_ntb",
2102         .probe          = epf_ntb_probe,
2103         .id_table       = epf_ntb_ids,
2104         .ops            = &epf_ntb_ops,
2105         .owner          = THIS_MODULE,
2106 };
2107
2108 static int __init epf_ntb_init(void)
2109 {
2110         int ret;
2111
2112         kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM |
2113                                             WQ_HIGHPRI, 0);
2114         ret = pci_epf_register_driver(&epf_ntb_driver);
2115         if (ret) {
2116                 destroy_workqueue(kpcintb_workqueue);
2117                 pr_err("Failed to register pci epf ntb driver --> %d\n", ret);
2118                 return ret;
2119         }
2120
2121         return 0;
2122 }
2123 module_init(epf_ntb_init);
2124
2125 static void __exit epf_ntb_exit(void)
2126 {
2127         pci_epf_unregister_driver(&epf_ntb_driver);
2128         destroy_workqueue(kpcintb_workqueue);
2129 }
2130 module_exit(epf_ntb_exit);
2131
2132 MODULE_DESCRIPTION("PCI EPF NTB DRIVER");
2133 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
2134 MODULE_LICENSE("GPL v2");