selftests/bpf: Fix xdp_synproxy build failure if CONFIG_NF_CONNTRACK=m/n
[linux-2.6-microblaze.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33 #ifdef CONFIG_DEBUG_LOCK_ALLOC
34 /* lockdep can detect a circular dependency of the form
35  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36  * because dependencies are tracked for both nvme-tcp and user contexts. Using
37  * a separate class prevents lockdep from conflating nvme-tcp socket use with
38  * user-space socket API use.
39  */
40 static struct lock_class_key nvme_tcp_sk_key[2];
41 static struct lock_class_key nvme_tcp_slock_key[2];
42
43 static void nvme_tcp_reclassify_socket(struct socket *sock)
44 {
45         struct sock *sk = sock->sk;
46
47         if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
48                 return;
49
50         switch (sk->sk_family) {
51         case AF_INET:
52                 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53                                               &nvme_tcp_slock_key[0],
54                                               "sk_lock-AF_INET-NVME",
55                                               &nvme_tcp_sk_key[0]);
56                 break;
57         case AF_INET6:
58                 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59                                               &nvme_tcp_slock_key[1],
60                                               "sk_lock-AF_INET6-NVME",
61                                               &nvme_tcp_sk_key[1]);
62                 break;
63         default:
64                 WARN_ON_ONCE(1);
65         }
66 }
67 #else
68 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
69 #endif
70
71 enum nvme_tcp_send_state {
72         NVME_TCP_SEND_CMD_PDU = 0,
73         NVME_TCP_SEND_H2C_PDU,
74         NVME_TCP_SEND_DATA,
75         NVME_TCP_SEND_DDGST,
76 };
77
78 struct nvme_tcp_request {
79         struct nvme_request     req;
80         void                    *pdu;
81         struct nvme_tcp_queue   *queue;
82         u32                     data_len;
83         u32                     pdu_len;
84         u32                     pdu_sent;
85         u32                     h2cdata_left;
86         u32                     h2cdata_offset;
87         u16                     ttag;
88         __le16                  status;
89         struct list_head        entry;
90         struct llist_node       lentry;
91         __le32                  ddgst;
92
93         struct bio              *curr_bio;
94         struct iov_iter         iter;
95
96         /* send state */
97         size_t                  offset;
98         size_t                  data_sent;
99         enum nvme_tcp_send_state state;
100 };
101
102 enum nvme_tcp_queue_flags {
103         NVME_TCP_Q_ALLOCATED    = 0,
104         NVME_TCP_Q_LIVE         = 1,
105         NVME_TCP_Q_POLLING      = 2,
106 };
107
108 enum nvme_tcp_recv_state {
109         NVME_TCP_RECV_PDU = 0,
110         NVME_TCP_RECV_DATA,
111         NVME_TCP_RECV_DDGST,
112 };
113
114 struct nvme_tcp_ctrl;
115 struct nvme_tcp_queue {
116         struct socket           *sock;
117         struct work_struct      io_work;
118         int                     io_cpu;
119
120         struct mutex            queue_lock;
121         struct mutex            send_mutex;
122         struct llist_head       req_list;
123         struct list_head        send_list;
124         bool                    more_requests;
125
126         /* recv state */
127         void                    *pdu;
128         int                     pdu_remaining;
129         int                     pdu_offset;
130         size_t                  data_remaining;
131         size_t                  ddgst_remaining;
132         unsigned int            nr_cqe;
133
134         /* send state */
135         struct nvme_tcp_request *request;
136
137         int                     queue_size;
138         u32                     maxh2cdata;
139         size_t                  cmnd_capsule_len;
140         struct nvme_tcp_ctrl    *ctrl;
141         unsigned long           flags;
142         bool                    rd_enabled;
143
144         bool                    hdr_digest;
145         bool                    data_digest;
146         struct ahash_request    *rcv_hash;
147         struct ahash_request    *snd_hash;
148         __le32                  exp_ddgst;
149         __le32                  recv_ddgst;
150
151         struct page_frag_cache  pf_cache;
152
153         void (*state_change)(struct sock *);
154         void (*data_ready)(struct sock *);
155         void (*write_space)(struct sock *);
156 };
157
158 struct nvme_tcp_ctrl {
159         /* read only in the hot path */
160         struct nvme_tcp_queue   *queues;
161         struct blk_mq_tag_set   tag_set;
162
163         /* other member variables */
164         struct list_head        list;
165         struct blk_mq_tag_set   admin_tag_set;
166         struct sockaddr_storage addr;
167         struct sockaddr_storage src_addr;
168         struct nvme_ctrl        ctrl;
169
170         struct work_struct      err_work;
171         struct delayed_work     connect_work;
172         struct nvme_tcp_request async_req;
173         u32                     io_queues[HCTX_MAX_TYPES];
174 };
175
176 static LIST_HEAD(nvme_tcp_ctrl_list);
177 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
178 static struct workqueue_struct *nvme_tcp_wq;
179 static const struct blk_mq_ops nvme_tcp_mq_ops;
180 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
181 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
182
183 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
184 {
185         return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
186 }
187
188 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
189 {
190         return queue - queue->ctrl->queues;
191 }
192
193 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
194 {
195         u32 queue_idx = nvme_tcp_queue_id(queue);
196
197         if (queue_idx == 0)
198                 return queue->ctrl->admin_tag_set.tags[queue_idx];
199         return queue->ctrl->tag_set.tags[queue_idx - 1];
200 }
201
202 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
203 {
204         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
205 }
206
207 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
208 {
209         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
210 }
211
212 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
213 {
214         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
215 }
216
217 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
218 {
219         return req == &req->queue->ctrl->async_req;
220 }
221
222 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
223 {
224         struct request *rq;
225
226         if (unlikely(nvme_tcp_async_req(req)))
227                 return false; /* async events don't have a request */
228
229         rq = blk_mq_rq_from_pdu(req);
230
231         return rq_data_dir(rq) == WRITE && req->data_len &&
232                 req->data_len <= nvme_tcp_inline_data_size(req->queue);
233 }
234
235 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
236 {
237         return req->iter.bvec->bv_page;
238 }
239
240 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
241 {
242         return req->iter.bvec->bv_offset + req->iter.iov_offset;
243 }
244
245 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
246 {
247         return min_t(size_t, iov_iter_single_seg_count(&req->iter),
248                         req->pdu_len - req->pdu_sent);
249 }
250
251 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
252 {
253         return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
254                         req->pdu_len - req->pdu_sent : 0;
255 }
256
257 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
258                 int len)
259 {
260         return nvme_tcp_pdu_data_left(req) <= len;
261 }
262
263 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
264                 unsigned int dir)
265 {
266         struct request *rq = blk_mq_rq_from_pdu(req);
267         struct bio_vec *vec;
268         unsigned int size;
269         int nr_bvec;
270         size_t offset;
271
272         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
273                 vec = &rq->special_vec;
274                 nr_bvec = 1;
275                 size = blk_rq_payload_bytes(rq);
276                 offset = 0;
277         } else {
278                 struct bio *bio = req->curr_bio;
279                 struct bvec_iter bi;
280                 struct bio_vec bv;
281
282                 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
283                 nr_bvec = 0;
284                 bio_for_each_bvec(bv, bio, bi) {
285                         nr_bvec++;
286                 }
287                 size = bio->bi_iter.bi_size;
288                 offset = bio->bi_iter.bi_bvec_done;
289         }
290
291         iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
292         req->iter.iov_offset = offset;
293 }
294
295 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
296                 int len)
297 {
298         req->data_sent += len;
299         req->pdu_sent += len;
300         iov_iter_advance(&req->iter, len);
301         if (!iov_iter_count(&req->iter) &&
302             req->data_sent < req->data_len) {
303                 req->curr_bio = req->curr_bio->bi_next;
304                 nvme_tcp_init_iter(req, WRITE);
305         }
306 }
307
308 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
309 {
310         int ret;
311
312         /* drain the send queue as much as we can... */
313         do {
314                 ret = nvme_tcp_try_send(queue);
315         } while (ret > 0);
316 }
317
318 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
319 {
320         return !list_empty(&queue->send_list) ||
321                 !llist_empty(&queue->req_list) || queue->more_requests;
322 }
323
324 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
325                 bool sync, bool last)
326 {
327         struct nvme_tcp_queue *queue = req->queue;
328         bool empty;
329
330         empty = llist_add(&req->lentry, &queue->req_list) &&
331                 list_empty(&queue->send_list) && !queue->request;
332
333         /*
334          * if we're the first on the send_list and we can try to send
335          * directly, otherwise queue io_work. Also, only do that if we
336          * are on the same cpu, so we don't introduce contention.
337          */
338         if (queue->io_cpu == raw_smp_processor_id() &&
339             sync && empty && mutex_trylock(&queue->send_mutex)) {
340                 queue->more_requests = !last;
341                 nvme_tcp_send_all(queue);
342                 queue->more_requests = false;
343                 mutex_unlock(&queue->send_mutex);
344         }
345
346         if (last && nvme_tcp_queue_more(queue))
347                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
348 }
349
350 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
351 {
352         struct nvme_tcp_request *req;
353         struct llist_node *node;
354
355         for (node = llist_del_all(&queue->req_list); node; node = node->next) {
356                 req = llist_entry(node, struct nvme_tcp_request, lentry);
357                 list_add(&req->entry, &queue->send_list);
358         }
359 }
360
361 static inline struct nvme_tcp_request *
362 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
363 {
364         struct nvme_tcp_request *req;
365
366         req = list_first_entry_or_null(&queue->send_list,
367                         struct nvme_tcp_request, entry);
368         if (!req) {
369                 nvme_tcp_process_req_list(queue);
370                 req = list_first_entry_or_null(&queue->send_list,
371                                 struct nvme_tcp_request, entry);
372                 if (unlikely(!req))
373                         return NULL;
374         }
375
376         list_del(&req->entry);
377         return req;
378 }
379
380 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
381                 __le32 *dgst)
382 {
383         ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
384         crypto_ahash_final(hash);
385 }
386
387 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
388                 struct page *page, off_t off, size_t len)
389 {
390         struct scatterlist sg;
391
392         sg_init_marker(&sg, 1);
393         sg_set_page(&sg, page, len, off);
394         ahash_request_set_crypt(hash, &sg, NULL, len);
395         crypto_ahash_update(hash);
396 }
397
398 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
399                 void *pdu, size_t len)
400 {
401         struct scatterlist sg;
402
403         sg_init_one(&sg, pdu, len);
404         ahash_request_set_crypt(hash, &sg, pdu + len, len);
405         crypto_ahash_digest(hash);
406 }
407
408 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
409                 void *pdu, size_t pdu_len)
410 {
411         struct nvme_tcp_hdr *hdr = pdu;
412         __le32 recv_digest;
413         __le32 exp_digest;
414
415         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
416                 dev_err(queue->ctrl->ctrl.device,
417                         "queue %d: header digest flag is cleared\n",
418                         nvme_tcp_queue_id(queue));
419                 return -EPROTO;
420         }
421
422         recv_digest = *(__le32 *)(pdu + hdr->hlen);
423         nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
424         exp_digest = *(__le32 *)(pdu + hdr->hlen);
425         if (recv_digest != exp_digest) {
426                 dev_err(queue->ctrl->ctrl.device,
427                         "header digest error: recv %#x expected %#x\n",
428                         le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
429                 return -EIO;
430         }
431
432         return 0;
433 }
434
435 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
436 {
437         struct nvme_tcp_hdr *hdr = pdu;
438         u8 digest_len = nvme_tcp_hdgst_len(queue);
439         u32 len;
440
441         len = le32_to_cpu(hdr->plen) - hdr->hlen -
442                 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
443
444         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
445                 dev_err(queue->ctrl->ctrl.device,
446                         "queue %d: data digest flag is cleared\n",
447                 nvme_tcp_queue_id(queue));
448                 return -EPROTO;
449         }
450         crypto_ahash_init(queue->rcv_hash);
451
452         return 0;
453 }
454
455 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
456                 struct request *rq, unsigned int hctx_idx)
457 {
458         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
459
460         page_frag_free(req->pdu);
461 }
462
463 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
464                 struct request *rq, unsigned int hctx_idx,
465                 unsigned int numa_node)
466 {
467         struct nvme_tcp_ctrl *ctrl = set->driver_data;
468         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
469         struct nvme_tcp_cmd_pdu *pdu;
470         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
471         struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
472         u8 hdgst = nvme_tcp_hdgst_len(queue);
473
474         req->pdu = page_frag_alloc(&queue->pf_cache,
475                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
476                 GFP_KERNEL | __GFP_ZERO);
477         if (!req->pdu)
478                 return -ENOMEM;
479
480         pdu = req->pdu;
481         req->queue = queue;
482         nvme_req(rq)->ctrl = &ctrl->ctrl;
483         nvme_req(rq)->cmd = &pdu->cmd;
484
485         return 0;
486 }
487
488 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
489                 unsigned int hctx_idx)
490 {
491         struct nvme_tcp_ctrl *ctrl = data;
492         struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
493
494         hctx->driver_data = queue;
495         return 0;
496 }
497
498 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
499                 unsigned int hctx_idx)
500 {
501         struct nvme_tcp_ctrl *ctrl = data;
502         struct nvme_tcp_queue *queue = &ctrl->queues[0];
503
504         hctx->driver_data = queue;
505         return 0;
506 }
507
508 static enum nvme_tcp_recv_state
509 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
510 {
511         return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
512                 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
513                 NVME_TCP_RECV_DATA;
514 }
515
516 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
517 {
518         queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
519                                 nvme_tcp_hdgst_len(queue);
520         queue->pdu_offset = 0;
521         queue->data_remaining = -1;
522         queue->ddgst_remaining = 0;
523 }
524
525 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
526 {
527         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
528                 return;
529
530         dev_warn(ctrl->device, "starting error recovery\n");
531         queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
532 }
533
534 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
535                 struct nvme_completion *cqe)
536 {
537         struct nvme_tcp_request *req;
538         struct request *rq;
539
540         rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
541         if (!rq) {
542                 dev_err(queue->ctrl->ctrl.device,
543                         "got bad cqe.command_id %#x on queue %d\n",
544                         cqe->command_id, nvme_tcp_queue_id(queue));
545                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
546                 return -EINVAL;
547         }
548
549         req = blk_mq_rq_to_pdu(rq);
550         if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
551                 req->status = cqe->status;
552
553         if (!nvme_try_complete_req(rq, req->status, cqe->result))
554                 nvme_complete_rq(rq);
555         queue->nr_cqe++;
556
557         return 0;
558 }
559
560 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
561                 struct nvme_tcp_data_pdu *pdu)
562 {
563         struct request *rq;
564
565         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
566         if (!rq) {
567                 dev_err(queue->ctrl->ctrl.device,
568                         "got bad c2hdata.command_id %#x on queue %d\n",
569                         pdu->command_id, nvme_tcp_queue_id(queue));
570                 return -ENOENT;
571         }
572
573         if (!blk_rq_payload_bytes(rq)) {
574                 dev_err(queue->ctrl->ctrl.device,
575                         "queue %d tag %#x unexpected data\n",
576                         nvme_tcp_queue_id(queue), rq->tag);
577                 return -EIO;
578         }
579
580         queue->data_remaining = le32_to_cpu(pdu->data_length);
581
582         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
583             unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
584                 dev_err(queue->ctrl->ctrl.device,
585                         "queue %d tag %#x SUCCESS set but not last PDU\n",
586                         nvme_tcp_queue_id(queue), rq->tag);
587                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
588                 return -EPROTO;
589         }
590
591         return 0;
592 }
593
594 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
595                 struct nvme_tcp_rsp_pdu *pdu)
596 {
597         struct nvme_completion *cqe = &pdu->cqe;
598         int ret = 0;
599
600         /*
601          * AEN requests are special as they don't time out and can
602          * survive any kind of queue freeze and often don't respond to
603          * aborts.  We don't even bother to allocate a struct request
604          * for them but rather special case them here.
605          */
606         if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
607                                      cqe->command_id)))
608                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
609                                 &cqe->result);
610         else
611                 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
612
613         return ret;
614 }
615
616 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
617 {
618         struct nvme_tcp_data_pdu *data = req->pdu;
619         struct nvme_tcp_queue *queue = req->queue;
620         struct request *rq = blk_mq_rq_from_pdu(req);
621         u32 h2cdata_sent = req->pdu_len;
622         u8 hdgst = nvme_tcp_hdgst_len(queue);
623         u8 ddgst = nvme_tcp_ddgst_len(queue);
624
625         req->state = NVME_TCP_SEND_H2C_PDU;
626         req->offset = 0;
627         req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
628         req->pdu_sent = 0;
629         req->h2cdata_left -= req->pdu_len;
630         req->h2cdata_offset += h2cdata_sent;
631
632         memset(data, 0, sizeof(*data));
633         data->hdr.type = nvme_tcp_h2c_data;
634         if (!req->h2cdata_left)
635                 data->hdr.flags = NVME_TCP_F_DATA_LAST;
636         if (queue->hdr_digest)
637                 data->hdr.flags |= NVME_TCP_F_HDGST;
638         if (queue->data_digest)
639                 data->hdr.flags |= NVME_TCP_F_DDGST;
640         data->hdr.hlen = sizeof(*data);
641         data->hdr.pdo = data->hdr.hlen + hdgst;
642         data->hdr.plen =
643                 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
644         data->ttag = req->ttag;
645         data->command_id = nvme_cid(rq);
646         data->data_offset = cpu_to_le32(req->h2cdata_offset);
647         data->data_length = cpu_to_le32(req->pdu_len);
648 }
649
650 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
651                 struct nvme_tcp_r2t_pdu *pdu)
652 {
653         struct nvme_tcp_request *req;
654         struct request *rq;
655         u32 r2t_length = le32_to_cpu(pdu->r2t_length);
656         u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
657
658         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
659         if (!rq) {
660                 dev_err(queue->ctrl->ctrl.device,
661                         "got bad r2t.command_id %#x on queue %d\n",
662                         pdu->command_id, nvme_tcp_queue_id(queue));
663                 return -ENOENT;
664         }
665         req = blk_mq_rq_to_pdu(rq);
666
667         if (unlikely(!r2t_length)) {
668                 dev_err(queue->ctrl->ctrl.device,
669                         "req %d r2t len is %u, probably a bug...\n",
670                         rq->tag, r2t_length);
671                 return -EPROTO;
672         }
673
674         if (unlikely(req->data_sent + r2t_length > req->data_len)) {
675                 dev_err(queue->ctrl->ctrl.device,
676                         "req %d r2t len %u exceeded data len %u (%zu sent)\n",
677                         rq->tag, r2t_length, req->data_len, req->data_sent);
678                 return -EPROTO;
679         }
680
681         if (unlikely(r2t_offset < req->data_sent)) {
682                 dev_err(queue->ctrl->ctrl.device,
683                         "req %d unexpected r2t offset %u (expected %zu)\n",
684                         rq->tag, r2t_offset, req->data_sent);
685                 return -EPROTO;
686         }
687
688         req->pdu_len = 0;
689         req->h2cdata_left = r2t_length;
690         req->h2cdata_offset = r2t_offset;
691         req->ttag = pdu->ttag;
692
693         nvme_tcp_setup_h2c_data_pdu(req);
694         nvme_tcp_queue_request(req, false, true);
695
696         return 0;
697 }
698
699 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
700                 unsigned int *offset, size_t *len)
701 {
702         struct nvme_tcp_hdr *hdr;
703         char *pdu = queue->pdu;
704         size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
705         int ret;
706
707         ret = skb_copy_bits(skb, *offset,
708                 &pdu[queue->pdu_offset], rcv_len);
709         if (unlikely(ret))
710                 return ret;
711
712         queue->pdu_remaining -= rcv_len;
713         queue->pdu_offset += rcv_len;
714         *offset += rcv_len;
715         *len -= rcv_len;
716         if (queue->pdu_remaining)
717                 return 0;
718
719         hdr = queue->pdu;
720         if (queue->hdr_digest) {
721                 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
722                 if (unlikely(ret))
723                         return ret;
724         }
725
726
727         if (queue->data_digest) {
728                 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
729                 if (unlikely(ret))
730                         return ret;
731         }
732
733         switch (hdr->type) {
734         case nvme_tcp_c2h_data:
735                 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
736         case nvme_tcp_rsp:
737                 nvme_tcp_init_recv_ctx(queue);
738                 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
739         case nvme_tcp_r2t:
740                 nvme_tcp_init_recv_ctx(queue);
741                 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
742         default:
743                 dev_err(queue->ctrl->ctrl.device,
744                         "unsupported pdu type (%d)\n", hdr->type);
745                 return -EINVAL;
746         }
747 }
748
749 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
750 {
751         union nvme_result res = {};
752
753         if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
754                 nvme_complete_rq(rq);
755 }
756
757 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
758                               unsigned int *offset, size_t *len)
759 {
760         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
761         struct request *rq =
762                 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
763         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
764
765         while (true) {
766                 int recv_len, ret;
767
768                 recv_len = min_t(size_t, *len, queue->data_remaining);
769                 if (!recv_len)
770                         break;
771
772                 if (!iov_iter_count(&req->iter)) {
773                         req->curr_bio = req->curr_bio->bi_next;
774
775                         /*
776                          * If we don`t have any bios it means that controller
777                          * sent more data than we requested, hence error
778                          */
779                         if (!req->curr_bio) {
780                                 dev_err(queue->ctrl->ctrl.device,
781                                         "queue %d no space in request %#x",
782                                         nvme_tcp_queue_id(queue), rq->tag);
783                                 nvme_tcp_init_recv_ctx(queue);
784                                 return -EIO;
785                         }
786                         nvme_tcp_init_iter(req, READ);
787                 }
788
789                 /* we can read only from what is left in this bio */
790                 recv_len = min_t(size_t, recv_len,
791                                 iov_iter_count(&req->iter));
792
793                 if (queue->data_digest)
794                         ret = skb_copy_and_hash_datagram_iter(skb, *offset,
795                                 &req->iter, recv_len, queue->rcv_hash);
796                 else
797                         ret = skb_copy_datagram_iter(skb, *offset,
798                                         &req->iter, recv_len);
799                 if (ret) {
800                         dev_err(queue->ctrl->ctrl.device,
801                                 "queue %d failed to copy request %#x data",
802                                 nvme_tcp_queue_id(queue), rq->tag);
803                         return ret;
804                 }
805
806                 *len -= recv_len;
807                 *offset += recv_len;
808                 queue->data_remaining -= recv_len;
809         }
810
811         if (!queue->data_remaining) {
812                 if (queue->data_digest) {
813                         nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
814                         queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
815                 } else {
816                         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
817                                 nvme_tcp_end_request(rq,
818                                                 le16_to_cpu(req->status));
819                                 queue->nr_cqe++;
820                         }
821                         nvme_tcp_init_recv_ctx(queue);
822                 }
823         }
824
825         return 0;
826 }
827
828 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
829                 struct sk_buff *skb, unsigned int *offset, size_t *len)
830 {
831         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
832         char *ddgst = (char *)&queue->recv_ddgst;
833         size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
834         off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
835         int ret;
836
837         ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
838         if (unlikely(ret))
839                 return ret;
840
841         queue->ddgst_remaining -= recv_len;
842         *offset += recv_len;
843         *len -= recv_len;
844         if (queue->ddgst_remaining)
845                 return 0;
846
847         if (queue->recv_ddgst != queue->exp_ddgst) {
848                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
849                                         pdu->command_id);
850                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
851
852                 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
853
854                 dev_err(queue->ctrl->ctrl.device,
855                         "data digest error: recv %#x expected %#x\n",
856                         le32_to_cpu(queue->recv_ddgst),
857                         le32_to_cpu(queue->exp_ddgst));
858         }
859
860         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
861                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
862                                         pdu->command_id);
863                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
864
865                 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
866                 queue->nr_cqe++;
867         }
868
869         nvme_tcp_init_recv_ctx(queue);
870         return 0;
871 }
872
873 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
874                              unsigned int offset, size_t len)
875 {
876         struct nvme_tcp_queue *queue = desc->arg.data;
877         size_t consumed = len;
878         int result;
879
880         while (len) {
881                 switch (nvme_tcp_recv_state(queue)) {
882                 case NVME_TCP_RECV_PDU:
883                         result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
884                         break;
885                 case NVME_TCP_RECV_DATA:
886                         result = nvme_tcp_recv_data(queue, skb, &offset, &len);
887                         break;
888                 case NVME_TCP_RECV_DDGST:
889                         result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
890                         break;
891                 default:
892                         result = -EFAULT;
893                 }
894                 if (result) {
895                         dev_err(queue->ctrl->ctrl.device,
896                                 "receive failed:  %d\n", result);
897                         queue->rd_enabled = false;
898                         nvme_tcp_error_recovery(&queue->ctrl->ctrl);
899                         return result;
900                 }
901         }
902
903         return consumed;
904 }
905
906 static void nvme_tcp_data_ready(struct sock *sk)
907 {
908         struct nvme_tcp_queue *queue;
909
910         read_lock_bh(&sk->sk_callback_lock);
911         queue = sk->sk_user_data;
912         if (likely(queue && queue->rd_enabled) &&
913             !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
914                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
915         read_unlock_bh(&sk->sk_callback_lock);
916 }
917
918 static void nvme_tcp_write_space(struct sock *sk)
919 {
920         struct nvme_tcp_queue *queue;
921
922         read_lock_bh(&sk->sk_callback_lock);
923         queue = sk->sk_user_data;
924         if (likely(queue && sk_stream_is_writeable(sk))) {
925                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
926                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
927         }
928         read_unlock_bh(&sk->sk_callback_lock);
929 }
930
931 static void nvme_tcp_state_change(struct sock *sk)
932 {
933         struct nvme_tcp_queue *queue;
934
935         read_lock_bh(&sk->sk_callback_lock);
936         queue = sk->sk_user_data;
937         if (!queue)
938                 goto done;
939
940         switch (sk->sk_state) {
941         case TCP_CLOSE:
942         case TCP_CLOSE_WAIT:
943         case TCP_LAST_ACK:
944         case TCP_FIN_WAIT1:
945         case TCP_FIN_WAIT2:
946                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
947                 break;
948         default:
949                 dev_info(queue->ctrl->ctrl.device,
950                         "queue %d socket state %d\n",
951                         nvme_tcp_queue_id(queue), sk->sk_state);
952         }
953
954         queue->state_change(sk);
955 done:
956         read_unlock_bh(&sk->sk_callback_lock);
957 }
958
959 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
960 {
961         queue->request = NULL;
962 }
963
964 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
965 {
966         if (nvme_tcp_async_req(req)) {
967                 union nvme_result res = {};
968
969                 nvme_complete_async_event(&req->queue->ctrl->ctrl,
970                                 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
971         } else {
972                 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
973                                 NVME_SC_HOST_PATH_ERROR);
974         }
975 }
976
977 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
978 {
979         struct nvme_tcp_queue *queue = req->queue;
980         int req_data_len = req->data_len;
981         u32 h2cdata_left = req->h2cdata_left;
982
983         while (true) {
984                 struct page *page = nvme_tcp_req_cur_page(req);
985                 size_t offset = nvme_tcp_req_cur_offset(req);
986                 size_t len = nvme_tcp_req_cur_length(req);
987                 bool last = nvme_tcp_pdu_last_send(req, len);
988                 int req_data_sent = req->data_sent;
989                 int ret, flags = MSG_DONTWAIT;
990
991                 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
992                         flags |= MSG_EOR;
993                 else
994                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
995
996                 if (sendpage_ok(page)) {
997                         ret = kernel_sendpage(queue->sock, page, offset, len,
998                                         flags);
999                 } else {
1000                         ret = sock_no_sendpage(queue->sock, page, offset, len,
1001                                         flags);
1002                 }
1003                 if (ret <= 0)
1004                         return ret;
1005
1006                 if (queue->data_digest)
1007                         nvme_tcp_ddgst_update(queue->snd_hash, page,
1008                                         offset, ret);
1009
1010                 /*
1011                  * update the request iterator except for the last payload send
1012                  * in the request where we don't want to modify it as we may
1013                  * compete with the RX path completing the request.
1014                  */
1015                 if (req_data_sent + ret < req_data_len)
1016                         nvme_tcp_advance_req(req, ret);
1017
1018                 /* fully successful last send in current PDU */
1019                 if (last && ret == len) {
1020                         if (queue->data_digest) {
1021                                 nvme_tcp_ddgst_final(queue->snd_hash,
1022                                         &req->ddgst);
1023                                 req->state = NVME_TCP_SEND_DDGST;
1024                                 req->offset = 0;
1025                         } else {
1026                                 if (h2cdata_left)
1027                                         nvme_tcp_setup_h2c_data_pdu(req);
1028                                 else
1029                                         nvme_tcp_done_send_req(queue);
1030                         }
1031                         return 1;
1032                 }
1033         }
1034         return -EAGAIN;
1035 }
1036
1037 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1038 {
1039         struct nvme_tcp_queue *queue = req->queue;
1040         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1041         bool inline_data = nvme_tcp_has_inline_data(req);
1042         u8 hdgst = nvme_tcp_hdgst_len(queue);
1043         int len = sizeof(*pdu) + hdgst - req->offset;
1044         int flags = MSG_DONTWAIT;
1045         int ret;
1046
1047         if (inline_data || nvme_tcp_queue_more(queue))
1048                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1049         else
1050                 flags |= MSG_EOR;
1051
1052         if (queue->hdr_digest && !req->offset)
1053                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1054
1055         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1056                         offset_in_page(pdu) + req->offset, len,  flags);
1057         if (unlikely(ret <= 0))
1058                 return ret;
1059
1060         len -= ret;
1061         if (!len) {
1062                 if (inline_data) {
1063                         req->state = NVME_TCP_SEND_DATA;
1064                         if (queue->data_digest)
1065                                 crypto_ahash_init(queue->snd_hash);
1066                 } else {
1067                         nvme_tcp_done_send_req(queue);
1068                 }
1069                 return 1;
1070         }
1071         req->offset += ret;
1072
1073         return -EAGAIN;
1074 }
1075
1076 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1077 {
1078         struct nvme_tcp_queue *queue = req->queue;
1079         struct nvme_tcp_data_pdu *pdu = req->pdu;
1080         u8 hdgst = nvme_tcp_hdgst_len(queue);
1081         int len = sizeof(*pdu) - req->offset + hdgst;
1082         int ret;
1083
1084         if (queue->hdr_digest && !req->offset)
1085                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1086
1087         if (!req->h2cdata_left)
1088                 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1089                                 offset_in_page(pdu) + req->offset, len,
1090                                 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1091         else
1092                 ret = sock_no_sendpage(queue->sock, virt_to_page(pdu),
1093                                 offset_in_page(pdu) + req->offset, len,
1094                                 MSG_DONTWAIT | MSG_MORE);
1095         if (unlikely(ret <= 0))
1096                 return ret;
1097
1098         len -= ret;
1099         if (!len) {
1100                 req->state = NVME_TCP_SEND_DATA;
1101                 if (queue->data_digest)
1102                         crypto_ahash_init(queue->snd_hash);
1103                 return 1;
1104         }
1105         req->offset += ret;
1106
1107         return -EAGAIN;
1108 }
1109
1110 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1111 {
1112         struct nvme_tcp_queue *queue = req->queue;
1113         size_t offset = req->offset;
1114         u32 h2cdata_left = req->h2cdata_left;
1115         int ret;
1116         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1117         struct kvec iov = {
1118                 .iov_base = (u8 *)&req->ddgst + req->offset,
1119                 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1120         };
1121
1122         if (nvme_tcp_queue_more(queue))
1123                 msg.msg_flags |= MSG_MORE;
1124         else
1125                 msg.msg_flags |= MSG_EOR;
1126
1127         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1128         if (unlikely(ret <= 0))
1129                 return ret;
1130
1131         if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1132                 if (h2cdata_left)
1133                         nvme_tcp_setup_h2c_data_pdu(req);
1134                 else
1135                         nvme_tcp_done_send_req(queue);
1136                 return 1;
1137         }
1138
1139         req->offset += ret;
1140         return -EAGAIN;
1141 }
1142
1143 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1144 {
1145         struct nvme_tcp_request *req;
1146         int ret = 1;
1147
1148         if (!queue->request) {
1149                 queue->request = nvme_tcp_fetch_request(queue);
1150                 if (!queue->request)
1151                         return 0;
1152         }
1153         req = queue->request;
1154
1155         if (req->state == NVME_TCP_SEND_CMD_PDU) {
1156                 ret = nvme_tcp_try_send_cmd_pdu(req);
1157                 if (ret <= 0)
1158                         goto done;
1159                 if (!nvme_tcp_has_inline_data(req))
1160                         return ret;
1161         }
1162
1163         if (req->state == NVME_TCP_SEND_H2C_PDU) {
1164                 ret = nvme_tcp_try_send_data_pdu(req);
1165                 if (ret <= 0)
1166                         goto done;
1167         }
1168
1169         if (req->state == NVME_TCP_SEND_DATA) {
1170                 ret = nvme_tcp_try_send_data(req);
1171                 if (ret <= 0)
1172                         goto done;
1173         }
1174
1175         if (req->state == NVME_TCP_SEND_DDGST)
1176                 ret = nvme_tcp_try_send_ddgst(req);
1177 done:
1178         if (ret == -EAGAIN) {
1179                 ret = 0;
1180         } else if (ret < 0) {
1181                 dev_err(queue->ctrl->ctrl.device,
1182                         "failed to send request %d\n", ret);
1183                 if (ret != -EPIPE && ret != -ECONNRESET)
1184                         nvme_tcp_fail_request(queue->request);
1185                 nvme_tcp_done_send_req(queue);
1186         }
1187         return ret;
1188 }
1189
1190 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1191 {
1192         struct socket *sock = queue->sock;
1193         struct sock *sk = sock->sk;
1194         read_descriptor_t rd_desc;
1195         int consumed;
1196
1197         rd_desc.arg.data = queue;
1198         rd_desc.count = 1;
1199         lock_sock(sk);
1200         queue->nr_cqe = 0;
1201         consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1202         release_sock(sk);
1203         return consumed;
1204 }
1205
1206 static void nvme_tcp_io_work(struct work_struct *w)
1207 {
1208         struct nvme_tcp_queue *queue =
1209                 container_of(w, struct nvme_tcp_queue, io_work);
1210         unsigned long deadline = jiffies + msecs_to_jiffies(1);
1211
1212         do {
1213                 bool pending = false;
1214                 int result;
1215
1216                 if (mutex_trylock(&queue->send_mutex)) {
1217                         result = nvme_tcp_try_send(queue);
1218                         mutex_unlock(&queue->send_mutex);
1219                         if (result > 0)
1220                                 pending = true;
1221                         else if (unlikely(result < 0))
1222                                 break;
1223                 }
1224
1225                 result = nvme_tcp_try_recv(queue);
1226                 if (result > 0)
1227                         pending = true;
1228                 else if (unlikely(result < 0))
1229                         return;
1230
1231                 if (!pending)
1232                         return;
1233
1234         } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1235
1236         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1237 }
1238
1239 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1240 {
1241         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1242
1243         ahash_request_free(queue->rcv_hash);
1244         ahash_request_free(queue->snd_hash);
1245         crypto_free_ahash(tfm);
1246 }
1247
1248 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1249 {
1250         struct crypto_ahash *tfm;
1251
1252         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1253         if (IS_ERR(tfm))
1254                 return PTR_ERR(tfm);
1255
1256         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1257         if (!queue->snd_hash)
1258                 goto free_tfm;
1259         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1260
1261         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1262         if (!queue->rcv_hash)
1263                 goto free_snd_hash;
1264         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1265
1266         return 0;
1267 free_snd_hash:
1268         ahash_request_free(queue->snd_hash);
1269 free_tfm:
1270         crypto_free_ahash(tfm);
1271         return -ENOMEM;
1272 }
1273
1274 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1275 {
1276         struct nvme_tcp_request *async = &ctrl->async_req;
1277
1278         page_frag_free(async->pdu);
1279 }
1280
1281 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1282 {
1283         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1284         struct nvme_tcp_request *async = &ctrl->async_req;
1285         u8 hdgst = nvme_tcp_hdgst_len(queue);
1286
1287         async->pdu = page_frag_alloc(&queue->pf_cache,
1288                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1289                 GFP_KERNEL | __GFP_ZERO);
1290         if (!async->pdu)
1291                 return -ENOMEM;
1292
1293         async->queue = &ctrl->queues[0];
1294         return 0;
1295 }
1296
1297 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1298 {
1299         struct page *page;
1300         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1301         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1302
1303         if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1304                 return;
1305
1306         if (queue->hdr_digest || queue->data_digest)
1307                 nvme_tcp_free_crypto(queue);
1308
1309         if (queue->pf_cache.va) {
1310                 page = virt_to_head_page(queue->pf_cache.va);
1311                 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1312                 queue->pf_cache.va = NULL;
1313         }
1314         sock_release(queue->sock);
1315         kfree(queue->pdu);
1316         mutex_destroy(&queue->send_mutex);
1317         mutex_destroy(&queue->queue_lock);
1318 }
1319
1320 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1321 {
1322         struct nvme_tcp_icreq_pdu *icreq;
1323         struct nvme_tcp_icresp_pdu *icresp;
1324         struct msghdr msg = {};
1325         struct kvec iov;
1326         bool ctrl_hdgst, ctrl_ddgst;
1327         u32 maxh2cdata;
1328         int ret;
1329
1330         icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1331         if (!icreq)
1332                 return -ENOMEM;
1333
1334         icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1335         if (!icresp) {
1336                 ret = -ENOMEM;
1337                 goto free_icreq;
1338         }
1339
1340         icreq->hdr.type = nvme_tcp_icreq;
1341         icreq->hdr.hlen = sizeof(*icreq);
1342         icreq->hdr.pdo = 0;
1343         icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1344         icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1345         icreq->maxr2t = 0; /* single inflight r2t supported */
1346         icreq->hpda = 0; /* no alignment constraint */
1347         if (queue->hdr_digest)
1348                 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1349         if (queue->data_digest)
1350                 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1351
1352         iov.iov_base = icreq;
1353         iov.iov_len = sizeof(*icreq);
1354         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1355         if (ret < 0)
1356                 goto free_icresp;
1357
1358         memset(&msg, 0, sizeof(msg));
1359         iov.iov_base = icresp;
1360         iov.iov_len = sizeof(*icresp);
1361         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1362                         iov.iov_len, msg.msg_flags);
1363         if (ret < 0)
1364                 goto free_icresp;
1365
1366         ret = -EINVAL;
1367         if (icresp->hdr.type != nvme_tcp_icresp) {
1368                 pr_err("queue %d: bad type returned %d\n",
1369                         nvme_tcp_queue_id(queue), icresp->hdr.type);
1370                 goto free_icresp;
1371         }
1372
1373         if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1374                 pr_err("queue %d: bad pdu length returned %d\n",
1375                         nvme_tcp_queue_id(queue), icresp->hdr.plen);
1376                 goto free_icresp;
1377         }
1378
1379         if (icresp->pfv != NVME_TCP_PFV_1_0) {
1380                 pr_err("queue %d: bad pfv returned %d\n",
1381                         nvme_tcp_queue_id(queue), icresp->pfv);
1382                 goto free_icresp;
1383         }
1384
1385         ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1386         if ((queue->data_digest && !ctrl_ddgst) ||
1387             (!queue->data_digest && ctrl_ddgst)) {
1388                 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1389                         nvme_tcp_queue_id(queue),
1390                         queue->data_digest ? "enabled" : "disabled",
1391                         ctrl_ddgst ? "enabled" : "disabled");
1392                 goto free_icresp;
1393         }
1394
1395         ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1396         if ((queue->hdr_digest && !ctrl_hdgst) ||
1397             (!queue->hdr_digest && ctrl_hdgst)) {
1398                 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1399                         nvme_tcp_queue_id(queue),
1400                         queue->hdr_digest ? "enabled" : "disabled",
1401                         ctrl_hdgst ? "enabled" : "disabled");
1402                 goto free_icresp;
1403         }
1404
1405         if (icresp->cpda != 0) {
1406                 pr_err("queue %d: unsupported cpda returned %d\n",
1407                         nvme_tcp_queue_id(queue), icresp->cpda);
1408                 goto free_icresp;
1409         }
1410
1411         maxh2cdata = le32_to_cpu(icresp->maxdata);
1412         if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1413                 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1414                        nvme_tcp_queue_id(queue), maxh2cdata);
1415                 goto free_icresp;
1416         }
1417         queue->maxh2cdata = maxh2cdata;
1418
1419         ret = 0;
1420 free_icresp:
1421         kfree(icresp);
1422 free_icreq:
1423         kfree(icreq);
1424         return ret;
1425 }
1426
1427 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1428 {
1429         return nvme_tcp_queue_id(queue) == 0;
1430 }
1431
1432 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1433 {
1434         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1435         int qid = nvme_tcp_queue_id(queue);
1436
1437         return !nvme_tcp_admin_queue(queue) &&
1438                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1439 }
1440
1441 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1442 {
1443         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1444         int qid = nvme_tcp_queue_id(queue);
1445
1446         return !nvme_tcp_admin_queue(queue) &&
1447                 !nvme_tcp_default_queue(queue) &&
1448                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1449                           ctrl->io_queues[HCTX_TYPE_READ];
1450 }
1451
1452 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1453 {
1454         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1455         int qid = nvme_tcp_queue_id(queue);
1456
1457         return !nvme_tcp_admin_queue(queue) &&
1458                 !nvme_tcp_default_queue(queue) &&
1459                 !nvme_tcp_read_queue(queue) &&
1460                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1461                           ctrl->io_queues[HCTX_TYPE_READ] +
1462                           ctrl->io_queues[HCTX_TYPE_POLL];
1463 }
1464
1465 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1466 {
1467         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1468         int qid = nvme_tcp_queue_id(queue);
1469         int n = 0;
1470
1471         if (nvme_tcp_default_queue(queue))
1472                 n = qid - 1;
1473         else if (nvme_tcp_read_queue(queue))
1474                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1475         else if (nvme_tcp_poll_queue(queue))
1476                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1477                                 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1478         queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1479 }
1480
1481 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1482                 int qid, size_t queue_size)
1483 {
1484         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1485         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1486         int ret, rcv_pdu_size;
1487
1488         mutex_init(&queue->queue_lock);
1489         queue->ctrl = ctrl;
1490         init_llist_head(&queue->req_list);
1491         INIT_LIST_HEAD(&queue->send_list);
1492         mutex_init(&queue->send_mutex);
1493         INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1494         queue->queue_size = queue_size;
1495
1496         if (qid > 0)
1497                 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1498         else
1499                 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1500                                                 NVME_TCP_ADMIN_CCSZ;
1501
1502         ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1503                         IPPROTO_TCP, &queue->sock);
1504         if (ret) {
1505                 dev_err(nctrl->device,
1506                         "failed to create socket: %d\n", ret);
1507                 goto err_destroy_mutex;
1508         }
1509
1510         nvme_tcp_reclassify_socket(queue->sock);
1511
1512         /* Single syn retry */
1513         tcp_sock_set_syncnt(queue->sock->sk, 1);
1514
1515         /* Set TCP no delay */
1516         tcp_sock_set_nodelay(queue->sock->sk);
1517
1518         /*
1519          * Cleanup whatever is sitting in the TCP transmit queue on socket
1520          * close. This is done to prevent stale data from being sent should
1521          * the network connection be restored before TCP times out.
1522          */
1523         sock_no_linger(queue->sock->sk);
1524
1525         if (so_priority > 0)
1526                 sock_set_priority(queue->sock->sk, so_priority);
1527
1528         /* Set socket type of service */
1529         if (nctrl->opts->tos >= 0)
1530                 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1531
1532         /* Set 10 seconds timeout for icresp recvmsg */
1533         queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1534
1535         queue->sock->sk->sk_allocation = GFP_ATOMIC;
1536         nvme_tcp_set_queue_io_cpu(queue);
1537         queue->request = NULL;
1538         queue->data_remaining = 0;
1539         queue->ddgst_remaining = 0;
1540         queue->pdu_remaining = 0;
1541         queue->pdu_offset = 0;
1542         sk_set_memalloc(queue->sock->sk);
1543
1544         if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1545                 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1546                         sizeof(ctrl->src_addr));
1547                 if (ret) {
1548                         dev_err(nctrl->device,
1549                                 "failed to bind queue %d socket %d\n",
1550                                 qid, ret);
1551                         goto err_sock;
1552                 }
1553         }
1554
1555         if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1556                 char *iface = nctrl->opts->host_iface;
1557                 sockptr_t optval = KERNEL_SOCKPTR(iface);
1558
1559                 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1560                                       optval, strlen(iface));
1561                 if (ret) {
1562                         dev_err(nctrl->device,
1563                           "failed to bind to interface %s queue %d err %d\n",
1564                           iface, qid, ret);
1565                         goto err_sock;
1566                 }
1567         }
1568
1569         queue->hdr_digest = nctrl->opts->hdr_digest;
1570         queue->data_digest = nctrl->opts->data_digest;
1571         if (queue->hdr_digest || queue->data_digest) {
1572                 ret = nvme_tcp_alloc_crypto(queue);
1573                 if (ret) {
1574                         dev_err(nctrl->device,
1575                                 "failed to allocate queue %d crypto\n", qid);
1576                         goto err_sock;
1577                 }
1578         }
1579
1580         rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1581                         nvme_tcp_hdgst_len(queue);
1582         queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1583         if (!queue->pdu) {
1584                 ret = -ENOMEM;
1585                 goto err_crypto;
1586         }
1587
1588         dev_dbg(nctrl->device, "connecting queue %d\n",
1589                         nvme_tcp_queue_id(queue));
1590
1591         ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1592                 sizeof(ctrl->addr), 0);
1593         if (ret) {
1594                 dev_err(nctrl->device,
1595                         "failed to connect socket: %d\n", ret);
1596                 goto err_rcv_pdu;
1597         }
1598
1599         ret = nvme_tcp_init_connection(queue);
1600         if (ret)
1601                 goto err_init_connect;
1602
1603         queue->rd_enabled = true;
1604         set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1605         nvme_tcp_init_recv_ctx(queue);
1606
1607         write_lock_bh(&queue->sock->sk->sk_callback_lock);
1608         queue->sock->sk->sk_user_data = queue;
1609         queue->state_change = queue->sock->sk->sk_state_change;
1610         queue->data_ready = queue->sock->sk->sk_data_ready;
1611         queue->write_space = queue->sock->sk->sk_write_space;
1612         queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1613         queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1614         queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1615 #ifdef CONFIG_NET_RX_BUSY_POLL
1616         queue->sock->sk->sk_ll_usec = 1;
1617 #endif
1618         write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1619
1620         return 0;
1621
1622 err_init_connect:
1623         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1624 err_rcv_pdu:
1625         kfree(queue->pdu);
1626 err_crypto:
1627         if (queue->hdr_digest || queue->data_digest)
1628                 nvme_tcp_free_crypto(queue);
1629 err_sock:
1630         sock_release(queue->sock);
1631         queue->sock = NULL;
1632 err_destroy_mutex:
1633         mutex_destroy(&queue->send_mutex);
1634         mutex_destroy(&queue->queue_lock);
1635         return ret;
1636 }
1637
1638 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1639 {
1640         struct socket *sock = queue->sock;
1641
1642         write_lock_bh(&sock->sk->sk_callback_lock);
1643         sock->sk->sk_user_data  = NULL;
1644         sock->sk->sk_data_ready = queue->data_ready;
1645         sock->sk->sk_state_change = queue->state_change;
1646         sock->sk->sk_write_space  = queue->write_space;
1647         write_unlock_bh(&sock->sk->sk_callback_lock);
1648 }
1649
1650 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1651 {
1652         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1653         nvme_tcp_restore_sock_calls(queue);
1654         cancel_work_sync(&queue->io_work);
1655 }
1656
1657 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1658 {
1659         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1660         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1661
1662         mutex_lock(&queue->queue_lock);
1663         if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1664                 __nvme_tcp_stop_queue(queue);
1665         mutex_unlock(&queue->queue_lock);
1666 }
1667
1668 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1669 {
1670         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1671         int ret;
1672
1673         if (idx)
1674                 ret = nvmf_connect_io_queue(nctrl, idx);
1675         else
1676                 ret = nvmf_connect_admin_queue(nctrl);
1677
1678         if (!ret) {
1679                 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1680         } else {
1681                 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1682                         __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1683                 dev_err(nctrl->device,
1684                         "failed to connect queue: %d ret=%d\n", idx, ret);
1685         }
1686         return ret;
1687 }
1688
1689 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1690                 bool admin)
1691 {
1692         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1693         struct blk_mq_tag_set *set;
1694         int ret;
1695
1696         if (admin) {
1697                 set = &ctrl->admin_tag_set;
1698                 memset(set, 0, sizeof(*set));
1699                 set->ops = &nvme_tcp_admin_mq_ops;
1700                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1701                 set->reserved_tags = NVMF_RESERVED_TAGS;
1702                 set->numa_node = nctrl->numa_node;
1703                 set->flags = BLK_MQ_F_BLOCKING;
1704                 set->cmd_size = sizeof(struct nvme_tcp_request);
1705                 set->driver_data = ctrl;
1706                 set->nr_hw_queues = 1;
1707                 set->timeout = NVME_ADMIN_TIMEOUT;
1708         } else {
1709                 set = &ctrl->tag_set;
1710                 memset(set, 0, sizeof(*set));
1711                 set->ops = &nvme_tcp_mq_ops;
1712                 set->queue_depth = nctrl->sqsize + 1;
1713                 set->reserved_tags = NVMF_RESERVED_TAGS;
1714                 set->numa_node = nctrl->numa_node;
1715                 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1716                 set->cmd_size = sizeof(struct nvme_tcp_request);
1717                 set->driver_data = ctrl;
1718                 set->nr_hw_queues = nctrl->queue_count - 1;
1719                 set->timeout = NVME_IO_TIMEOUT;
1720                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1721         }
1722
1723         ret = blk_mq_alloc_tag_set(set);
1724         if (ret)
1725                 return ERR_PTR(ret);
1726
1727         return set;
1728 }
1729
1730 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1731 {
1732         if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1733                 cancel_work_sync(&ctrl->async_event_work);
1734                 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1735                 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1736         }
1737
1738         nvme_tcp_free_queue(ctrl, 0);
1739 }
1740
1741 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1742 {
1743         int i;
1744
1745         for (i = 1; i < ctrl->queue_count; i++)
1746                 nvme_tcp_free_queue(ctrl, i);
1747 }
1748
1749 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1750 {
1751         int i;
1752
1753         for (i = 1; i < ctrl->queue_count; i++)
1754                 nvme_tcp_stop_queue(ctrl, i);
1755 }
1756
1757 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1758 {
1759         int i, ret;
1760
1761         for (i = 1; i < ctrl->queue_count; i++) {
1762                 ret = nvme_tcp_start_queue(ctrl, i);
1763                 if (ret)
1764                         goto out_stop_queues;
1765         }
1766
1767         return 0;
1768
1769 out_stop_queues:
1770         for (i--; i >= 1; i--)
1771                 nvme_tcp_stop_queue(ctrl, i);
1772         return ret;
1773 }
1774
1775 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1776 {
1777         int ret;
1778
1779         ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1780         if (ret)
1781                 return ret;
1782
1783         ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1784         if (ret)
1785                 goto out_free_queue;
1786
1787         return 0;
1788
1789 out_free_queue:
1790         nvme_tcp_free_queue(ctrl, 0);
1791         return ret;
1792 }
1793
1794 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1795 {
1796         int i, ret;
1797
1798         for (i = 1; i < ctrl->queue_count; i++) {
1799                 ret = nvme_tcp_alloc_queue(ctrl, i, ctrl->sqsize + 1);
1800                 if (ret)
1801                         goto out_free_queues;
1802         }
1803
1804         return 0;
1805
1806 out_free_queues:
1807         for (i--; i >= 1; i--)
1808                 nvme_tcp_free_queue(ctrl, i);
1809
1810         return ret;
1811 }
1812
1813 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1814 {
1815         unsigned int nr_io_queues;
1816
1817         nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1818         nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1819         nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1820
1821         return nr_io_queues;
1822 }
1823
1824 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1825                 unsigned int nr_io_queues)
1826 {
1827         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1828         struct nvmf_ctrl_options *opts = nctrl->opts;
1829
1830         if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1831                 /*
1832                  * separate read/write queues
1833                  * hand out dedicated default queues only after we have
1834                  * sufficient read queues.
1835                  */
1836                 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1837                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1838                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1839                         min(opts->nr_write_queues, nr_io_queues);
1840                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1841         } else {
1842                 /*
1843                  * shared read/write queues
1844                  * either no write queues were requested, or we don't have
1845                  * sufficient queue count to have dedicated default queues.
1846                  */
1847                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1848                         min(opts->nr_io_queues, nr_io_queues);
1849                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1850         }
1851
1852         if (opts->nr_poll_queues && nr_io_queues) {
1853                 /* map dedicated poll queues only if we have queues left */
1854                 ctrl->io_queues[HCTX_TYPE_POLL] =
1855                         min(opts->nr_poll_queues, nr_io_queues);
1856         }
1857 }
1858
1859 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1860 {
1861         unsigned int nr_io_queues;
1862         int ret;
1863
1864         nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1865         ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1866         if (ret)
1867                 return ret;
1868
1869         if (nr_io_queues == 0) {
1870                 dev_err(ctrl->device,
1871                         "unable to set any I/O queues\n");
1872                 return -ENOMEM;
1873         }
1874
1875         ctrl->queue_count = nr_io_queues + 1;
1876         dev_info(ctrl->device,
1877                 "creating %d I/O queues.\n", nr_io_queues);
1878
1879         nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1880
1881         return __nvme_tcp_alloc_io_queues(ctrl);
1882 }
1883
1884 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1885 {
1886         nvme_tcp_stop_io_queues(ctrl);
1887         if (remove) {
1888                 blk_cleanup_queue(ctrl->connect_q);
1889                 blk_mq_free_tag_set(ctrl->tagset);
1890         }
1891         nvme_tcp_free_io_queues(ctrl);
1892 }
1893
1894 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1895 {
1896         int ret;
1897
1898         ret = nvme_tcp_alloc_io_queues(ctrl);
1899         if (ret)
1900                 return ret;
1901
1902         if (new) {
1903                 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1904                 if (IS_ERR(ctrl->tagset)) {
1905                         ret = PTR_ERR(ctrl->tagset);
1906                         goto out_free_io_queues;
1907                 }
1908
1909                 ret = nvme_ctrl_init_connect_q(ctrl);
1910                 if (ret)
1911                         goto out_free_tag_set;
1912         }
1913
1914         ret = nvme_tcp_start_io_queues(ctrl);
1915         if (ret)
1916                 goto out_cleanup_connect_q;
1917
1918         if (!new) {
1919                 nvme_start_queues(ctrl);
1920                 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1921                         /*
1922                          * If we timed out waiting for freeze we are likely to
1923                          * be stuck.  Fail the controller initialization just
1924                          * to be safe.
1925                          */
1926                         ret = -ENODEV;
1927                         goto out_wait_freeze_timed_out;
1928                 }
1929                 blk_mq_update_nr_hw_queues(ctrl->tagset,
1930                         ctrl->queue_count - 1);
1931                 nvme_unfreeze(ctrl);
1932         }
1933
1934         return 0;
1935
1936 out_wait_freeze_timed_out:
1937         nvme_stop_queues(ctrl);
1938         nvme_sync_io_queues(ctrl);
1939         nvme_tcp_stop_io_queues(ctrl);
1940 out_cleanup_connect_q:
1941         nvme_cancel_tagset(ctrl);
1942         if (new)
1943                 blk_cleanup_queue(ctrl->connect_q);
1944 out_free_tag_set:
1945         if (new)
1946                 blk_mq_free_tag_set(ctrl->tagset);
1947 out_free_io_queues:
1948         nvme_tcp_free_io_queues(ctrl);
1949         return ret;
1950 }
1951
1952 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1953 {
1954         nvme_tcp_stop_queue(ctrl, 0);
1955         if (remove) {
1956                 blk_cleanup_queue(ctrl->admin_q);
1957                 blk_cleanup_queue(ctrl->fabrics_q);
1958                 blk_mq_free_tag_set(ctrl->admin_tagset);
1959         }
1960         nvme_tcp_free_admin_queue(ctrl);
1961 }
1962
1963 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1964 {
1965         int error;
1966
1967         error = nvme_tcp_alloc_admin_queue(ctrl);
1968         if (error)
1969                 return error;
1970
1971         if (new) {
1972                 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1973                 if (IS_ERR(ctrl->admin_tagset)) {
1974                         error = PTR_ERR(ctrl->admin_tagset);
1975                         goto out_free_queue;
1976                 }
1977
1978                 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1979                 if (IS_ERR(ctrl->fabrics_q)) {
1980                         error = PTR_ERR(ctrl->fabrics_q);
1981                         goto out_free_tagset;
1982                 }
1983
1984                 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1985                 if (IS_ERR(ctrl->admin_q)) {
1986                         error = PTR_ERR(ctrl->admin_q);
1987                         goto out_cleanup_fabrics_q;
1988                 }
1989         }
1990
1991         error = nvme_tcp_start_queue(ctrl, 0);
1992         if (error)
1993                 goto out_cleanup_queue;
1994
1995         error = nvme_enable_ctrl(ctrl);
1996         if (error)
1997                 goto out_stop_queue;
1998
1999         nvme_start_admin_queue(ctrl);
2000
2001         error = nvme_init_ctrl_finish(ctrl);
2002         if (error)
2003                 goto out_quiesce_queue;
2004
2005         return 0;
2006
2007 out_quiesce_queue:
2008         nvme_stop_admin_queue(ctrl);
2009         blk_sync_queue(ctrl->admin_q);
2010 out_stop_queue:
2011         nvme_tcp_stop_queue(ctrl, 0);
2012         nvme_cancel_admin_tagset(ctrl);
2013 out_cleanup_queue:
2014         if (new)
2015                 blk_cleanup_queue(ctrl->admin_q);
2016 out_cleanup_fabrics_q:
2017         if (new)
2018                 blk_cleanup_queue(ctrl->fabrics_q);
2019 out_free_tagset:
2020         if (new)
2021                 blk_mq_free_tag_set(ctrl->admin_tagset);
2022 out_free_queue:
2023         nvme_tcp_free_admin_queue(ctrl);
2024         return error;
2025 }
2026
2027 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2028                 bool remove)
2029 {
2030         nvme_stop_admin_queue(ctrl);
2031         blk_sync_queue(ctrl->admin_q);
2032         nvme_tcp_stop_queue(ctrl, 0);
2033         nvme_cancel_admin_tagset(ctrl);
2034         if (remove)
2035                 nvme_start_admin_queue(ctrl);
2036         nvme_tcp_destroy_admin_queue(ctrl, remove);
2037 }
2038
2039 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2040                 bool remove)
2041 {
2042         if (ctrl->queue_count <= 1)
2043                 return;
2044         nvme_stop_admin_queue(ctrl);
2045         nvme_start_freeze(ctrl);
2046         nvme_stop_queues(ctrl);
2047         nvme_sync_io_queues(ctrl);
2048         nvme_tcp_stop_io_queues(ctrl);
2049         nvme_cancel_tagset(ctrl);
2050         if (remove)
2051                 nvme_start_queues(ctrl);
2052         nvme_tcp_destroy_io_queues(ctrl, remove);
2053 }
2054
2055 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2056 {
2057         /* If we are resetting/deleting then do nothing */
2058         if (ctrl->state != NVME_CTRL_CONNECTING) {
2059                 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2060                         ctrl->state == NVME_CTRL_LIVE);
2061                 return;
2062         }
2063
2064         if (nvmf_should_reconnect(ctrl)) {
2065                 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2066                         ctrl->opts->reconnect_delay);
2067                 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2068                                 ctrl->opts->reconnect_delay * HZ);
2069         } else {
2070                 dev_info(ctrl->device, "Removing controller...\n");
2071                 nvme_delete_ctrl(ctrl);
2072         }
2073 }
2074
2075 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2076 {
2077         struct nvmf_ctrl_options *opts = ctrl->opts;
2078         int ret;
2079
2080         ret = nvme_tcp_configure_admin_queue(ctrl, new);
2081         if (ret)
2082                 return ret;
2083
2084         if (ctrl->icdoff) {
2085                 ret = -EOPNOTSUPP;
2086                 dev_err(ctrl->device, "icdoff is not supported!\n");
2087                 goto destroy_admin;
2088         }
2089
2090         if (!nvme_ctrl_sgl_supported(ctrl)) {
2091                 ret = -EOPNOTSUPP;
2092                 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2093                 goto destroy_admin;
2094         }
2095
2096         if (opts->queue_size > ctrl->sqsize + 1)
2097                 dev_warn(ctrl->device,
2098                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
2099                         opts->queue_size, ctrl->sqsize + 1);
2100
2101         if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2102                 dev_warn(ctrl->device,
2103                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
2104                         ctrl->sqsize + 1, ctrl->maxcmd);
2105                 ctrl->sqsize = ctrl->maxcmd - 1;
2106         }
2107
2108         if (ctrl->queue_count > 1) {
2109                 ret = nvme_tcp_configure_io_queues(ctrl, new);
2110                 if (ret)
2111                         goto destroy_admin;
2112         }
2113
2114         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2115                 /*
2116                  * state change failure is ok if we started ctrl delete,
2117                  * unless we're during creation of a new controller to
2118                  * avoid races with teardown flow.
2119                  */
2120                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2121                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2122                 WARN_ON_ONCE(new);
2123                 ret = -EINVAL;
2124                 goto destroy_io;
2125         }
2126
2127         nvme_start_ctrl(ctrl);
2128         return 0;
2129
2130 destroy_io:
2131         if (ctrl->queue_count > 1) {
2132                 nvme_stop_queues(ctrl);
2133                 nvme_sync_io_queues(ctrl);
2134                 nvme_tcp_stop_io_queues(ctrl);
2135                 nvme_cancel_tagset(ctrl);
2136                 nvme_tcp_destroy_io_queues(ctrl, new);
2137         }
2138 destroy_admin:
2139         nvme_stop_admin_queue(ctrl);
2140         blk_sync_queue(ctrl->admin_q);
2141         nvme_tcp_stop_queue(ctrl, 0);
2142         nvme_cancel_admin_tagset(ctrl);
2143         nvme_tcp_destroy_admin_queue(ctrl, new);
2144         return ret;
2145 }
2146
2147 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2148 {
2149         struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2150                         struct nvme_tcp_ctrl, connect_work);
2151         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2152
2153         ++ctrl->nr_reconnects;
2154
2155         if (nvme_tcp_setup_ctrl(ctrl, false))
2156                 goto requeue;
2157
2158         dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2159                         ctrl->nr_reconnects);
2160
2161         ctrl->nr_reconnects = 0;
2162
2163         return;
2164
2165 requeue:
2166         dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2167                         ctrl->nr_reconnects);
2168         nvme_tcp_reconnect_or_remove(ctrl);
2169 }
2170
2171 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2172 {
2173         struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2174                                 struct nvme_tcp_ctrl, err_work);
2175         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2176
2177         nvme_stop_keep_alive(ctrl);
2178         flush_work(&ctrl->async_event_work);
2179         nvme_tcp_teardown_io_queues(ctrl, false);
2180         /* unquiesce to fail fast pending requests */
2181         nvme_start_queues(ctrl);
2182         nvme_tcp_teardown_admin_queue(ctrl, false);
2183         nvme_start_admin_queue(ctrl);
2184
2185         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2186                 /* state change failure is ok if we started ctrl delete */
2187                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2188                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2189                 return;
2190         }
2191
2192         nvme_tcp_reconnect_or_remove(ctrl);
2193 }
2194
2195 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2196 {
2197         cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2198         cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2199
2200         nvme_tcp_teardown_io_queues(ctrl, shutdown);
2201         nvme_stop_admin_queue(ctrl);
2202         if (shutdown)
2203                 nvme_shutdown_ctrl(ctrl);
2204         else
2205                 nvme_disable_ctrl(ctrl);
2206         nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2207 }
2208
2209 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2210 {
2211         nvme_tcp_teardown_ctrl(ctrl, true);
2212 }
2213
2214 static void nvme_reset_ctrl_work(struct work_struct *work)
2215 {
2216         struct nvme_ctrl *ctrl =
2217                 container_of(work, struct nvme_ctrl, reset_work);
2218
2219         nvme_stop_ctrl(ctrl);
2220         nvme_tcp_teardown_ctrl(ctrl, false);
2221
2222         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2223                 /* state change failure is ok if we started ctrl delete */
2224                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2225                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2226                 return;
2227         }
2228
2229         if (nvme_tcp_setup_ctrl(ctrl, false))
2230                 goto out_fail;
2231
2232         return;
2233
2234 out_fail:
2235         ++ctrl->nr_reconnects;
2236         nvme_tcp_reconnect_or_remove(ctrl);
2237 }
2238
2239 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2240 {
2241         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2242
2243         if (list_empty(&ctrl->list))
2244                 goto free_ctrl;
2245
2246         mutex_lock(&nvme_tcp_ctrl_mutex);
2247         list_del(&ctrl->list);
2248         mutex_unlock(&nvme_tcp_ctrl_mutex);
2249
2250         nvmf_free_options(nctrl->opts);
2251 free_ctrl:
2252         kfree(ctrl->queues);
2253         kfree(ctrl);
2254 }
2255
2256 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2257 {
2258         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2259
2260         sg->addr = 0;
2261         sg->length = 0;
2262         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2263                         NVME_SGL_FMT_TRANSPORT_A;
2264 }
2265
2266 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2267                 struct nvme_command *c, u32 data_len)
2268 {
2269         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2270
2271         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2272         sg->length = cpu_to_le32(data_len);
2273         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2274 }
2275
2276 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2277                 u32 data_len)
2278 {
2279         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2280
2281         sg->addr = 0;
2282         sg->length = cpu_to_le32(data_len);
2283         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2284                         NVME_SGL_FMT_TRANSPORT_A;
2285 }
2286
2287 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2288 {
2289         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2290         struct nvme_tcp_queue *queue = &ctrl->queues[0];
2291         struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2292         struct nvme_command *cmd = &pdu->cmd;
2293         u8 hdgst = nvme_tcp_hdgst_len(queue);
2294
2295         memset(pdu, 0, sizeof(*pdu));
2296         pdu->hdr.type = nvme_tcp_cmd;
2297         if (queue->hdr_digest)
2298                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2299         pdu->hdr.hlen = sizeof(*pdu);
2300         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2301
2302         cmd->common.opcode = nvme_admin_async_event;
2303         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2304         cmd->common.flags |= NVME_CMD_SGL_METABUF;
2305         nvme_tcp_set_sg_null(cmd);
2306
2307         ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2308         ctrl->async_req.offset = 0;
2309         ctrl->async_req.curr_bio = NULL;
2310         ctrl->async_req.data_len = 0;
2311
2312         nvme_tcp_queue_request(&ctrl->async_req, true, true);
2313 }
2314
2315 static void nvme_tcp_complete_timed_out(struct request *rq)
2316 {
2317         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2318         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2319
2320         nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2321         nvmf_complete_timed_out_request(rq);
2322 }
2323
2324 static enum blk_eh_timer_return
2325 nvme_tcp_timeout(struct request *rq, bool reserved)
2326 {
2327         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2328         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2329         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2330
2331         dev_warn(ctrl->device,
2332                 "queue %d: timeout request %#x type %d\n",
2333                 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2334
2335         if (ctrl->state != NVME_CTRL_LIVE) {
2336                 /*
2337                  * If we are resetting, connecting or deleting we should
2338                  * complete immediately because we may block controller
2339                  * teardown or setup sequence
2340                  * - ctrl disable/shutdown fabrics requests
2341                  * - connect requests
2342                  * - initialization admin requests
2343                  * - I/O requests that entered after unquiescing and
2344                  *   the controller stopped responding
2345                  *
2346                  * All other requests should be cancelled by the error
2347                  * recovery work, so it's fine that we fail it here.
2348                  */
2349                 nvme_tcp_complete_timed_out(rq);
2350                 return BLK_EH_DONE;
2351         }
2352
2353         /*
2354          * LIVE state should trigger the normal error recovery which will
2355          * handle completing this request.
2356          */
2357         nvme_tcp_error_recovery(ctrl);
2358         return BLK_EH_RESET_TIMER;
2359 }
2360
2361 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2362                         struct request *rq)
2363 {
2364         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2365         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2366         struct nvme_command *c = &pdu->cmd;
2367
2368         c->common.flags |= NVME_CMD_SGL_METABUF;
2369
2370         if (!blk_rq_nr_phys_segments(rq))
2371                 nvme_tcp_set_sg_null(c);
2372         else if (rq_data_dir(rq) == WRITE &&
2373             req->data_len <= nvme_tcp_inline_data_size(queue))
2374                 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2375         else
2376                 nvme_tcp_set_sg_host_data(c, req->data_len);
2377
2378         return 0;
2379 }
2380
2381 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2382                 struct request *rq)
2383 {
2384         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2385         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2386         struct nvme_tcp_queue *queue = req->queue;
2387         u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2388         blk_status_t ret;
2389
2390         ret = nvme_setup_cmd(ns, rq);
2391         if (ret)
2392                 return ret;
2393
2394         req->state = NVME_TCP_SEND_CMD_PDU;
2395         req->status = cpu_to_le16(NVME_SC_SUCCESS);
2396         req->offset = 0;
2397         req->data_sent = 0;
2398         req->pdu_len = 0;
2399         req->pdu_sent = 0;
2400         req->h2cdata_left = 0;
2401         req->data_len = blk_rq_nr_phys_segments(rq) ?
2402                                 blk_rq_payload_bytes(rq) : 0;
2403         req->curr_bio = rq->bio;
2404         if (req->curr_bio && req->data_len)
2405                 nvme_tcp_init_iter(req, rq_data_dir(rq));
2406
2407         if (rq_data_dir(rq) == WRITE &&
2408             req->data_len <= nvme_tcp_inline_data_size(queue))
2409                 req->pdu_len = req->data_len;
2410
2411         pdu->hdr.type = nvme_tcp_cmd;
2412         pdu->hdr.flags = 0;
2413         if (queue->hdr_digest)
2414                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2415         if (queue->data_digest && req->pdu_len) {
2416                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2417                 ddgst = nvme_tcp_ddgst_len(queue);
2418         }
2419         pdu->hdr.hlen = sizeof(*pdu);
2420         pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2421         pdu->hdr.plen =
2422                 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2423
2424         ret = nvme_tcp_map_data(queue, rq);
2425         if (unlikely(ret)) {
2426                 nvme_cleanup_cmd(rq);
2427                 dev_err(queue->ctrl->ctrl.device,
2428                         "Failed to map data (%d)\n", ret);
2429                 return ret;
2430         }
2431
2432         return 0;
2433 }
2434
2435 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2436 {
2437         struct nvme_tcp_queue *queue = hctx->driver_data;
2438
2439         if (!llist_empty(&queue->req_list))
2440                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2441 }
2442
2443 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2444                 const struct blk_mq_queue_data *bd)
2445 {
2446         struct nvme_ns *ns = hctx->queue->queuedata;
2447         struct nvme_tcp_queue *queue = hctx->driver_data;
2448         struct request *rq = bd->rq;
2449         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2450         bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2451         blk_status_t ret;
2452
2453         if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2454                 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2455
2456         ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2457         if (unlikely(ret))
2458                 return ret;
2459
2460         blk_mq_start_request(rq);
2461
2462         nvme_tcp_queue_request(req, true, bd->last);
2463
2464         return BLK_STS_OK;
2465 }
2466
2467 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2468 {
2469         struct nvme_tcp_ctrl *ctrl = set->driver_data;
2470         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2471
2472         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2473                 /* separate read/write queues */
2474                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2475                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2476                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2477                 set->map[HCTX_TYPE_READ].nr_queues =
2478                         ctrl->io_queues[HCTX_TYPE_READ];
2479                 set->map[HCTX_TYPE_READ].queue_offset =
2480                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2481         } else {
2482                 /* shared read/write queues */
2483                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2484                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2485                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2486                 set->map[HCTX_TYPE_READ].nr_queues =
2487                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2488                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2489         }
2490         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2491         blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2492
2493         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2494                 /* map dedicated poll queues only if we have queues left */
2495                 set->map[HCTX_TYPE_POLL].nr_queues =
2496                                 ctrl->io_queues[HCTX_TYPE_POLL];
2497                 set->map[HCTX_TYPE_POLL].queue_offset =
2498                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2499                         ctrl->io_queues[HCTX_TYPE_READ];
2500                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2501         }
2502
2503         dev_info(ctrl->ctrl.device,
2504                 "mapped %d/%d/%d default/read/poll queues.\n",
2505                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2506                 ctrl->io_queues[HCTX_TYPE_READ],
2507                 ctrl->io_queues[HCTX_TYPE_POLL]);
2508
2509         return 0;
2510 }
2511
2512 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2513 {
2514         struct nvme_tcp_queue *queue = hctx->driver_data;
2515         struct sock *sk = queue->sock->sk;
2516
2517         if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2518                 return 0;
2519
2520         set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2521         if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2522                 sk_busy_loop(sk, true);
2523         nvme_tcp_try_recv(queue);
2524         clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2525         return queue->nr_cqe;
2526 }
2527
2528 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2529         .queue_rq       = nvme_tcp_queue_rq,
2530         .commit_rqs     = nvme_tcp_commit_rqs,
2531         .complete       = nvme_complete_rq,
2532         .init_request   = nvme_tcp_init_request,
2533         .exit_request   = nvme_tcp_exit_request,
2534         .init_hctx      = nvme_tcp_init_hctx,
2535         .timeout        = nvme_tcp_timeout,
2536         .map_queues     = nvme_tcp_map_queues,
2537         .poll           = nvme_tcp_poll,
2538 };
2539
2540 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2541         .queue_rq       = nvme_tcp_queue_rq,
2542         .complete       = nvme_complete_rq,
2543         .init_request   = nvme_tcp_init_request,
2544         .exit_request   = nvme_tcp_exit_request,
2545         .init_hctx      = nvme_tcp_init_admin_hctx,
2546         .timeout        = nvme_tcp_timeout,
2547 };
2548
2549 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2550         .name                   = "tcp",
2551         .module                 = THIS_MODULE,
2552         .flags                  = NVME_F_FABRICS,
2553         .reg_read32             = nvmf_reg_read32,
2554         .reg_read64             = nvmf_reg_read64,
2555         .reg_write32            = nvmf_reg_write32,
2556         .free_ctrl              = nvme_tcp_free_ctrl,
2557         .submit_async_event     = nvme_tcp_submit_async_event,
2558         .delete_ctrl            = nvme_tcp_delete_ctrl,
2559         .get_address            = nvmf_get_address,
2560 };
2561
2562 static bool
2563 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2564 {
2565         struct nvme_tcp_ctrl *ctrl;
2566         bool found = false;
2567
2568         mutex_lock(&nvme_tcp_ctrl_mutex);
2569         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2570                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2571                 if (found)
2572                         break;
2573         }
2574         mutex_unlock(&nvme_tcp_ctrl_mutex);
2575
2576         return found;
2577 }
2578
2579 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2580                 struct nvmf_ctrl_options *opts)
2581 {
2582         struct nvme_tcp_ctrl *ctrl;
2583         int ret;
2584
2585         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2586         if (!ctrl)
2587                 return ERR_PTR(-ENOMEM);
2588
2589         INIT_LIST_HEAD(&ctrl->list);
2590         ctrl->ctrl.opts = opts;
2591         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2592                                 opts->nr_poll_queues + 1;
2593         ctrl->ctrl.sqsize = opts->queue_size - 1;
2594         ctrl->ctrl.kato = opts->kato;
2595
2596         INIT_DELAYED_WORK(&ctrl->connect_work,
2597                         nvme_tcp_reconnect_ctrl_work);
2598         INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2599         INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2600
2601         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2602                 opts->trsvcid =
2603                         kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2604                 if (!opts->trsvcid) {
2605                         ret = -ENOMEM;
2606                         goto out_free_ctrl;
2607                 }
2608                 opts->mask |= NVMF_OPT_TRSVCID;
2609         }
2610
2611         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2612                         opts->traddr, opts->trsvcid, &ctrl->addr);
2613         if (ret) {
2614                 pr_err("malformed address passed: %s:%s\n",
2615                         opts->traddr, opts->trsvcid);
2616                 goto out_free_ctrl;
2617         }
2618
2619         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2620                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2621                         opts->host_traddr, NULL, &ctrl->src_addr);
2622                 if (ret) {
2623                         pr_err("malformed src address passed: %s\n",
2624                                opts->host_traddr);
2625                         goto out_free_ctrl;
2626                 }
2627         }
2628
2629         if (opts->mask & NVMF_OPT_HOST_IFACE) {
2630                 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2631                         pr_err("invalid interface passed: %s\n",
2632                                opts->host_iface);
2633                         ret = -ENODEV;
2634                         goto out_free_ctrl;
2635                 }
2636         }
2637
2638         if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2639                 ret = -EALREADY;
2640                 goto out_free_ctrl;
2641         }
2642
2643         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2644                                 GFP_KERNEL);
2645         if (!ctrl->queues) {
2646                 ret = -ENOMEM;
2647                 goto out_free_ctrl;
2648         }
2649
2650         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2651         if (ret)
2652                 goto out_kfree_queues;
2653
2654         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2655                 WARN_ON_ONCE(1);
2656                 ret = -EINTR;
2657                 goto out_uninit_ctrl;
2658         }
2659
2660         ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2661         if (ret)
2662                 goto out_uninit_ctrl;
2663
2664         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2665                 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2666
2667         mutex_lock(&nvme_tcp_ctrl_mutex);
2668         list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2669         mutex_unlock(&nvme_tcp_ctrl_mutex);
2670
2671         return &ctrl->ctrl;
2672
2673 out_uninit_ctrl:
2674         nvme_uninit_ctrl(&ctrl->ctrl);
2675         nvme_put_ctrl(&ctrl->ctrl);
2676         if (ret > 0)
2677                 ret = -EIO;
2678         return ERR_PTR(ret);
2679 out_kfree_queues:
2680         kfree(ctrl->queues);
2681 out_free_ctrl:
2682         kfree(ctrl);
2683         return ERR_PTR(ret);
2684 }
2685
2686 static struct nvmf_transport_ops nvme_tcp_transport = {
2687         .name           = "tcp",
2688         .module         = THIS_MODULE,
2689         .required_opts  = NVMF_OPT_TRADDR,
2690         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2691                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2692                           NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2693                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2694                           NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2695         .create_ctrl    = nvme_tcp_create_ctrl,
2696 };
2697
2698 static int __init nvme_tcp_init_module(void)
2699 {
2700         nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2701                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2702         if (!nvme_tcp_wq)
2703                 return -ENOMEM;
2704
2705         nvmf_register_transport(&nvme_tcp_transport);
2706         return 0;
2707 }
2708
2709 static void __exit nvme_tcp_cleanup_module(void)
2710 {
2711         struct nvme_tcp_ctrl *ctrl;
2712
2713         nvmf_unregister_transport(&nvme_tcp_transport);
2714
2715         mutex_lock(&nvme_tcp_ctrl_mutex);
2716         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2717                 nvme_delete_ctrl(&ctrl->ctrl);
2718         mutex_unlock(&nvme_tcp_ctrl_mutex);
2719         flush_workqueue(nvme_delete_wq);
2720
2721         destroy_workqueue(nvme_tcp_wq);
2722 }
2723
2724 module_init(nvme_tcp_init_module);
2725 module_exit(nvme_tcp_cleanup_module);
2726
2727 MODULE_LICENSE("GPL v2");