clk: uniphier: Fix fixed-rate initialization
[linux-2.6-microblaze.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33 enum nvme_tcp_send_state {
34         NVME_TCP_SEND_CMD_PDU = 0,
35         NVME_TCP_SEND_H2C_PDU,
36         NVME_TCP_SEND_DATA,
37         NVME_TCP_SEND_DDGST,
38 };
39
40 struct nvme_tcp_request {
41         struct nvme_request     req;
42         void                    *pdu;
43         struct nvme_tcp_queue   *queue;
44         u32                     data_len;
45         u32                     pdu_len;
46         u32                     pdu_sent;
47         u16                     ttag;
48         __le16                  status;
49         struct list_head        entry;
50         struct llist_node       lentry;
51         __le32                  ddgst;
52
53         struct bio              *curr_bio;
54         struct iov_iter         iter;
55
56         /* send state */
57         size_t                  offset;
58         size_t                  data_sent;
59         enum nvme_tcp_send_state state;
60 };
61
62 enum nvme_tcp_queue_flags {
63         NVME_TCP_Q_ALLOCATED    = 0,
64         NVME_TCP_Q_LIVE         = 1,
65         NVME_TCP_Q_POLLING      = 2,
66 };
67
68 enum nvme_tcp_recv_state {
69         NVME_TCP_RECV_PDU = 0,
70         NVME_TCP_RECV_DATA,
71         NVME_TCP_RECV_DDGST,
72 };
73
74 struct nvme_tcp_ctrl;
75 struct nvme_tcp_queue {
76         struct socket           *sock;
77         struct work_struct      io_work;
78         int                     io_cpu;
79
80         struct mutex            queue_lock;
81         struct mutex            send_mutex;
82         struct llist_head       req_list;
83         struct list_head        send_list;
84         bool                    more_requests;
85
86         /* recv state */
87         void                    *pdu;
88         int                     pdu_remaining;
89         int                     pdu_offset;
90         size_t                  data_remaining;
91         size_t                  ddgst_remaining;
92         unsigned int            nr_cqe;
93
94         /* send state */
95         struct nvme_tcp_request *request;
96
97         int                     queue_size;
98         size_t                  cmnd_capsule_len;
99         struct nvme_tcp_ctrl    *ctrl;
100         unsigned long           flags;
101         bool                    rd_enabled;
102
103         bool                    hdr_digest;
104         bool                    data_digest;
105         struct ahash_request    *rcv_hash;
106         struct ahash_request    *snd_hash;
107         __le32                  exp_ddgst;
108         __le32                  recv_ddgst;
109
110         struct page_frag_cache  pf_cache;
111
112         void (*state_change)(struct sock *);
113         void (*data_ready)(struct sock *);
114         void (*write_space)(struct sock *);
115 };
116
117 struct nvme_tcp_ctrl {
118         /* read only in the hot path */
119         struct nvme_tcp_queue   *queues;
120         struct blk_mq_tag_set   tag_set;
121
122         /* other member variables */
123         struct list_head        list;
124         struct blk_mq_tag_set   admin_tag_set;
125         struct sockaddr_storage addr;
126         struct sockaddr_storage src_addr;
127         struct nvme_ctrl        ctrl;
128
129         struct work_struct      err_work;
130         struct delayed_work     connect_work;
131         struct nvme_tcp_request async_req;
132         u32                     io_queues[HCTX_MAX_TYPES];
133 };
134
135 static LIST_HEAD(nvme_tcp_ctrl_list);
136 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
137 static struct workqueue_struct *nvme_tcp_wq;
138 static const struct blk_mq_ops nvme_tcp_mq_ops;
139 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
140 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
141
142 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
143 {
144         return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
145 }
146
147 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
148 {
149         return queue - queue->ctrl->queues;
150 }
151
152 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
153 {
154         u32 queue_idx = nvme_tcp_queue_id(queue);
155
156         if (queue_idx == 0)
157                 return queue->ctrl->admin_tag_set.tags[queue_idx];
158         return queue->ctrl->tag_set.tags[queue_idx - 1];
159 }
160
161 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
162 {
163         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
164 }
165
166 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
167 {
168         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
169 }
170
171 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
172 {
173         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
176 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
177 {
178         return req == &req->queue->ctrl->async_req;
179 }
180
181 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
182 {
183         struct request *rq;
184
185         if (unlikely(nvme_tcp_async_req(req)))
186                 return false; /* async events don't have a request */
187
188         rq = blk_mq_rq_from_pdu(req);
189
190         return rq_data_dir(rq) == WRITE && req->data_len &&
191                 req->data_len <= nvme_tcp_inline_data_size(req->queue);
192 }
193
194 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
195 {
196         return req->iter.bvec->bv_page;
197 }
198
199 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
200 {
201         return req->iter.bvec->bv_offset + req->iter.iov_offset;
202 }
203
204 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
205 {
206         return min_t(size_t, iov_iter_single_seg_count(&req->iter),
207                         req->pdu_len - req->pdu_sent);
208 }
209
210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
211 {
212         return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
213                         req->pdu_len - req->pdu_sent : 0;
214 }
215
216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
217                 int len)
218 {
219         return nvme_tcp_pdu_data_left(req) <= len;
220 }
221
222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
223                 unsigned int dir)
224 {
225         struct request *rq = blk_mq_rq_from_pdu(req);
226         struct bio_vec *vec;
227         unsigned int size;
228         int nr_bvec;
229         size_t offset;
230
231         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
232                 vec = &rq->special_vec;
233                 nr_bvec = 1;
234                 size = blk_rq_payload_bytes(rq);
235                 offset = 0;
236         } else {
237                 struct bio *bio = req->curr_bio;
238                 struct bvec_iter bi;
239                 struct bio_vec bv;
240
241                 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
242                 nr_bvec = 0;
243                 bio_for_each_bvec(bv, bio, bi) {
244                         nr_bvec++;
245                 }
246                 size = bio->bi_iter.bi_size;
247                 offset = bio->bi_iter.bi_bvec_done;
248         }
249
250         iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
251         req->iter.iov_offset = offset;
252 }
253
254 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
255                 int len)
256 {
257         req->data_sent += len;
258         req->pdu_sent += len;
259         iov_iter_advance(&req->iter, len);
260         if (!iov_iter_count(&req->iter) &&
261             req->data_sent < req->data_len) {
262                 req->curr_bio = req->curr_bio->bi_next;
263                 nvme_tcp_init_iter(req, WRITE);
264         }
265 }
266
267 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
268 {
269         int ret;
270
271         /* drain the send queue as much as we can... */
272         do {
273                 ret = nvme_tcp_try_send(queue);
274         } while (ret > 0);
275 }
276
277 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
278 {
279         return !list_empty(&queue->send_list) ||
280                 !llist_empty(&queue->req_list) || queue->more_requests;
281 }
282
283 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
284                 bool sync, bool last)
285 {
286         struct nvme_tcp_queue *queue = req->queue;
287         bool empty;
288
289         empty = llist_add(&req->lentry, &queue->req_list) &&
290                 list_empty(&queue->send_list) && !queue->request;
291
292         /*
293          * if we're the first on the send_list and we can try to send
294          * directly, otherwise queue io_work. Also, only do that if we
295          * are on the same cpu, so we don't introduce contention.
296          */
297         if (queue->io_cpu == raw_smp_processor_id() &&
298             sync && empty && mutex_trylock(&queue->send_mutex)) {
299                 queue->more_requests = !last;
300                 nvme_tcp_send_all(queue);
301                 queue->more_requests = false;
302                 mutex_unlock(&queue->send_mutex);
303         }
304
305         if (last && nvme_tcp_queue_more(queue))
306                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
307 }
308
309 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
310 {
311         struct nvme_tcp_request *req;
312         struct llist_node *node;
313
314         for (node = llist_del_all(&queue->req_list); node; node = node->next) {
315                 req = llist_entry(node, struct nvme_tcp_request, lentry);
316                 list_add(&req->entry, &queue->send_list);
317         }
318 }
319
320 static inline struct nvme_tcp_request *
321 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
322 {
323         struct nvme_tcp_request *req;
324
325         req = list_first_entry_or_null(&queue->send_list,
326                         struct nvme_tcp_request, entry);
327         if (!req) {
328                 nvme_tcp_process_req_list(queue);
329                 req = list_first_entry_or_null(&queue->send_list,
330                                 struct nvme_tcp_request, entry);
331                 if (unlikely(!req))
332                         return NULL;
333         }
334
335         list_del(&req->entry);
336         return req;
337 }
338
339 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
340                 __le32 *dgst)
341 {
342         ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
343         crypto_ahash_final(hash);
344 }
345
346 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
347                 struct page *page, off_t off, size_t len)
348 {
349         struct scatterlist sg;
350
351         sg_init_marker(&sg, 1);
352         sg_set_page(&sg, page, len, off);
353         ahash_request_set_crypt(hash, &sg, NULL, len);
354         crypto_ahash_update(hash);
355 }
356
357 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
358                 void *pdu, size_t len)
359 {
360         struct scatterlist sg;
361
362         sg_init_one(&sg, pdu, len);
363         ahash_request_set_crypt(hash, &sg, pdu + len, len);
364         crypto_ahash_digest(hash);
365 }
366
367 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
368                 void *pdu, size_t pdu_len)
369 {
370         struct nvme_tcp_hdr *hdr = pdu;
371         __le32 recv_digest;
372         __le32 exp_digest;
373
374         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
375                 dev_err(queue->ctrl->ctrl.device,
376                         "queue %d: header digest flag is cleared\n",
377                         nvme_tcp_queue_id(queue));
378                 return -EPROTO;
379         }
380
381         recv_digest = *(__le32 *)(pdu + hdr->hlen);
382         nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
383         exp_digest = *(__le32 *)(pdu + hdr->hlen);
384         if (recv_digest != exp_digest) {
385                 dev_err(queue->ctrl->ctrl.device,
386                         "header digest error: recv %#x expected %#x\n",
387                         le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
388                 return -EIO;
389         }
390
391         return 0;
392 }
393
394 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
395 {
396         struct nvme_tcp_hdr *hdr = pdu;
397         u8 digest_len = nvme_tcp_hdgst_len(queue);
398         u32 len;
399
400         len = le32_to_cpu(hdr->plen) - hdr->hlen -
401                 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
402
403         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
404                 dev_err(queue->ctrl->ctrl.device,
405                         "queue %d: data digest flag is cleared\n",
406                 nvme_tcp_queue_id(queue));
407                 return -EPROTO;
408         }
409         crypto_ahash_init(queue->rcv_hash);
410
411         return 0;
412 }
413
414 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
415                 struct request *rq, unsigned int hctx_idx)
416 {
417         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
418
419         page_frag_free(req->pdu);
420 }
421
422 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
423                 struct request *rq, unsigned int hctx_idx,
424                 unsigned int numa_node)
425 {
426         struct nvme_tcp_ctrl *ctrl = set->driver_data;
427         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
428         struct nvme_tcp_cmd_pdu *pdu;
429         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
430         struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
431         u8 hdgst = nvme_tcp_hdgst_len(queue);
432
433         req->pdu = page_frag_alloc(&queue->pf_cache,
434                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
435                 GFP_KERNEL | __GFP_ZERO);
436         if (!req->pdu)
437                 return -ENOMEM;
438
439         pdu = req->pdu;
440         req->queue = queue;
441         nvme_req(rq)->ctrl = &ctrl->ctrl;
442         nvme_req(rq)->cmd = &pdu->cmd;
443
444         return 0;
445 }
446
447 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
448                 unsigned int hctx_idx)
449 {
450         struct nvme_tcp_ctrl *ctrl = data;
451         struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
452
453         hctx->driver_data = queue;
454         return 0;
455 }
456
457 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
458                 unsigned int hctx_idx)
459 {
460         struct nvme_tcp_ctrl *ctrl = data;
461         struct nvme_tcp_queue *queue = &ctrl->queues[0];
462
463         hctx->driver_data = queue;
464         return 0;
465 }
466
467 static enum nvme_tcp_recv_state
468 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
469 {
470         return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
471                 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
472                 NVME_TCP_RECV_DATA;
473 }
474
475 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
476 {
477         queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
478                                 nvme_tcp_hdgst_len(queue);
479         queue->pdu_offset = 0;
480         queue->data_remaining = -1;
481         queue->ddgst_remaining = 0;
482 }
483
484 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
485 {
486         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
487                 return;
488
489         dev_warn(ctrl->device, "starting error recovery\n");
490         queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
491 }
492
493 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
494                 struct nvme_completion *cqe)
495 {
496         struct nvme_tcp_request *req;
497         struct request *rq;
498
499         rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
500         if (!rq) {
501                 dev_err(queue->ctrl->ctrl.device,
502                         "got bad cqe.command_id %#x on queue %d\n",
503                         cqe->command_id, nvme_tcp_queue_id(queue));
504                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
505                 return -EINVAL;
506         }
507
508         req = blk_mq_rq_to_pdu(rq);
509         if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
510                 req->status = cqe->status;
511
512         if (!nvme_try_complete_req(rq, req->status, cqe->result))
513                 nvme_complete_rq(rq);
514         queue->nr_cqe++;
515
516         return 0;
517 }
518
519 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
520                 struct nvme_tcp_data_pdu *pdu)
521 {
522         struct request *rq;
523
524         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
525         if (!rq) {
526                 dev_err(queue->ctrl->ctrl.device,
527                         "got bad c2hdata.command_id %#x on queue %d\n",
528                         pdu->command_id, nvme_tcp_queue_id(queue));
529                 return -ENOENT;
530         }
531
532         if (!blk_rq_payload_bytes(rq)) {
533                 dev_err(queue->ctrl->ctrl.device,
534                         "queue %d tag %#x unexpected data\n",
535                         nvme_tcp_queue_id(queue), rq->tag);
536                 return -EIO;
537         }
538
539         queue->data_remaining = le32_to_cpu(pdu->data_length);
540
541         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
542             unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
543                 dev_err(queue->ctrl->ctrl.device,
544                         "queue %d tag %#x SUCCESS set but not last PDU\n",
545                         nvme_tcp_queue_id(queue), rq->tag);
546                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
547                 return -EPROTO;
548         }
549
550         return 0;
551 }
552
553 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
554                 struct nvme_tcp_rsp_pdu *pdu)
555 {
556         struct nvme_completion *cqe = &pdu->cqe;
557         int ret = 0;
558
559         /*
560          * AEN requests are special as they don't time out and can
561          * survive any kind of queue freeze and often don't respond to
562          * aborts.  We don't even bother to allocate a struct request
563          * for them but rather special case them here.
564          */
565         if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
566                                      cqe->command_id)))
567                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
568                                 &cqe->result);
569         else
570                 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
571
572         return ret;
573 }
574
575 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
576                 struct nvme_tcp_r2t_pdu *pdu)
577 {
578         struct nvme_tcp_data_pdu *data = req->pdu;
579         struct nvme_tcp_queue *queue = req->queue;
580         struct request *rq = blk_mq_rq_from_pdu(req);
581         u8 hdgst = nvme_tcp_hdgst_len(queue);
582         u8 ddgst = nvme_tcp_ddgst_len(queue);
583
584         req->state = NVME_TCP_SEND_H2C_PDU;
585         req->offset = 0;
586         req->pdu_len = le32_to_cpu(pdu->r2t_length);
587         req->pdu_sent = 0;
588
589         memset(data, 0, sizeof(*data));
590         data->hdr.type = nvme_tcp_h2c_data;
591         data->hdr.flags = NVME_TCP_F_DATA_LAST;
592         if (queue->hdr_digest)
593                 data->hdr.flags |= NVME_TCP_F_HDGST;
594         if (queue->data_digest)
595                 data->hdr.flags |= NVME_TCP_F_DDGST;
596         data->hdr.hlen = sizeof(*data);
597         data->hdr.pdo = data->hdr.hlen + hdgst;
598         data->hdr.plen =
599                 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
600         data->ttag = pdu->ttag;
601         data->command_id = nvme_cid(rq);
602         data->data_offset = pdu->r2t_offset;
603         data->data_length = cpu_to_le32(req->pdu_len);
604 }
605
606 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
607                 struct nvme_tcp_r2t_pdu *pdu)
608 {
609         struct nvme_tcp_request *req;
610         struct request *rq;
611         u32 r2t_length = le32_to_cpu(pdu->r2t_length);
612
613         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
614         if (!rq) {
615                 dev_err(queue->ctrl->ctrl.device,
616                         "got bad r2t.command_id %#x on queue %d\n",
617                         pdu->command_id, nvme_tcp_queue_id(queue));
618                 return -ENOENT;
619         }
620         req = blk_mq_rq_to_pdu(rq);
621
622         if (unlikely(!r2t_length)) {
623                 dev_err(queue->ctrl->ctrl.device,
624                         "req %d r2t len is %u, probably a bug...\n",
625                         rq->tag, r2t_length);
626                 return -EPROTO;
627         }
628
629         if (unlikely(req->data_sent + r2t_length > req->data_len)) {
630                 dev_err(queue->ctrl->ctrl.device,
631                         "req %d r2t len %u exceeded data len %u (%zu sent)\n",
632                         rq->tag, r2t_length, req->data_len, req->data_sent);
633                 return -EPROTO;
634         }
635
636         if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
637                 dev_err(queue->ctrl->ctrl.device,
638                         "req %d unexpected r2t offset %u (expected %zu)\n",
639                         rq->tag, le32_to_cpu(pdu->r2t_offset), req->data_sent);
640                 return -EPROTO;
641         }
642
643         nvme_tcp_setup_h2c_data_pdu(req, pdu);
644         nvme_tcp_queue_request(req, false, true);
645
646         return 0;
647 }
648
649 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
650                 unsigned int *offset, size_t *len)
651 {
652         struct nvme_tcp_hdr *hdr;
653         char *pdu = queue->pdu;
654         size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
655         int ret;
656
657         ret = skb_copy_bits(skb, *offset,
658                 &pdu[queue->pdu_offset], rcv_len);
659         if (unlikely(ret))
660                 return ret;
661
662         queue->pdu_remaining -= rcv_len;
663         queue->pdu_offset += rcv_len;
664         *offset += rcv_len;
665         *len -= rcv_len;
666         if (queue->pdu_remaining)
667                 return 0;
668
669         hdr = queue->pdu;
670         if (queue->hdr_digest) {
671                 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
672                 if (unlikely(ret))
673                         return ret;
674         }
675
676
677         if (queue->data_digest) {
678                 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
679                 if (unlikely(ret))
680                         return ret;
681         }
682
683         switch (hdr->type) {
684         case nvme_tcp_c2h_data:
685                 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
686         case nvme_tcp_rsp:
687                 nvme_tcp_init_recv_ctx(queue);
688                 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
689         case nvme_tcp_r2t:
690                 nvme_tcp_init_recv_ctx(queue);
691                 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
692         default:
693                 dev_err(queue->ctrl->ctrl.device,
694                         "unsupported pdu type (%d)\n", hdr->type);
695                 return -EINVAL;
696         }
697 }
698
699 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
700 {
701         union nvme_result res = {};
702
703         if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
704                 nvme_complete_rq(rq);
705 }
706
707 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
708                               unsigned int *offset, size_t *len)
709 {
710         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
711         struct request *rq =
712                 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
713         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
714
715         while (true) {
716                 int recv_len, ret;
717
718                 recv_len = min_t(size_t, *len, queue->data_remaining);
719                 if (!recv_len)
720                         break;
721
722                 if (!iov_iter_count(&req->iter)) {
723                         req->curr_bio = req->curr_bio->bi_next;
724
725                         /*
726                          * If we don`t have any bios it means that controller
727                          * sent more data than we requested, hence error
728                          */
729                         if (!req->curr_bio) {
730                                 dev_err(queue->ctrl->ctrl.device,
731                                         "queue %d no space in request %#x",
732                                         nvme_tcp_queue_id(queue), rq->tag);
733                                 nvme_tcp_init_recv_ctx(queue);
734                                 return -EIO;
735                         }
736                         nvme_tcp_init_iter(req, READ);
737                 }
738
739                 /* we can read only from what is left in this bio */
740                 recv_len = min_t(size_t, recv_len,
741                                 iov_iter_count(&req->iter));
742
743                 if (queue->data_digest)
744                         ret = skb_copy_and_hash_datagram_iter(skb, *offset,
745                                 &req->iter, recv_len, queue->rcv_hash);
746                 else
747                         ret = skb_copy_datagram_iter(skb, *offset,
748                                         &req->iter, recv_len);
749                 if (ret) {
750                         dev_err(queue->ctrl->ctrl.device,
751                                 "queue %d failed to copy request %#x data",
752                                 nvme_tcp_queue_id(queue), rq->tag);
753                         return ret;
754                 }
755
756                 *len -= recv_len;
757                 *offset += recv_len;
758                 queue->data_remaining -= recv_len;
759         }
760
761         if (!queue->data_remaining) {
762                 if (queue->data_digest) {
763                         nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
764                         queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
765                 } else {
766                         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
767                                 nvme_tcp_end_request(rq,
768                                                 le16_to_cpu(req->status));
769                                 queue->nr_cqe++;
770                         }
771                         nvme_tcp_init_recv_ctx(queue);
772                 }
773         }
774
775         return 0;
776 }
777
778 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
779                 struct sk_buff *skb, unsigned int *offset, size_t *len)
780 {
781         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
782         char *ddgst = (char *)&queue->recv_ddgst;
783         size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
784         off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
785         int ret;
786
787         ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
788         if (unlikely(ret))
789                 return ret;
790
791         queue->ddgst_remaining -= recv_len;
792         *offset += recv_len;
793         *len -= recv_len;
794         if (queue->ddgst_remaining)
795                 return 0;
796
797         if (queue->recv_ddgst != queue->exp_ddgst) {
798                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
799                                         pdu->command_id);
800                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
801
802                 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
803
804                 dev_err(queue->ctrl->ctrl.device,
805                         "data digest error: recv %#x expected %#x\n",
806                         le32_to_cpu(queue->recv_ddgst),
807                         le32_to_cpu(queue->exp_ddgst));
808         }
809
810         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
811                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
812                                         pdu->command_id);
813                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
814
815                 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
816                 queue->nr_cqe++;
817         }
818
819         nvme_tcp_init_recv_ctx(queue);
820         return 0;
821 }
822
823 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
824                              unsigned int offset, size_t len)
825 {
826         struct nvme_tcp_queue *queue = desc->arg.data;
827         size_t consumed = len;
828         int result;
829
830         while (len) {
831                 switch (nvme_tcp_recv_state(queue)) {
832                 case NVME_TCP_RECV_PDU:
833                         result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
834                         break;
835                 case NVME_TCP_RECV_DATA:
836                         result = nvme_tcp_recv_data(queue, skb, &offset, &len);
837                         break;
838                 case NVME_TCP_RECV_DDGST:
839                         result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
840                         break;
841                 default:
842                         result = -EFAULT;
843                 }
844                 if (result) {
845                         dev_err(queue->ctrl->ctrl.device,
846                                 "receive failed:  %d\n", result);
847                         queue->rd_enabled = false;
848                         nvme_tcp_error_recovery(&queue->ctrl->ctrl);
849                         return result;
850                 }
851         }
852
853         return consumed;
854 }
855
856 static void nvme_tcp_data_ready(struct sock *sk)
857 {
858         struct nvme_tcp_queue *queue;
859
860         read_lock_bh(&sk->sk_callback_lock);
861         queue = sk->sk_user_data;
862         if (likely(queue && queue->rd_enabled) &&
863             !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
864                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
865         read_unlock_bh(&sk->sk_callback_lock);
866 }
867
868 static void nvme_tcp_write_space(struct sock *sk)
869 {
870         struct nvme_tcp_queue *queue;
871
872         read_lock_bh(&sk->sk_callback_lock);
873         queue = sk->sk_user_data;
874         if (likely(queue && sk_stream_is_writeable(sk))) {
875                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
876                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
877         }
878         read_unlock_bh(&sk->sk_callback_lock);
879 }
880
881 static void nvme_tcp_state_change(struct sock *sk)
882 {
883         struct nvme_tcp_queue *queue;
884
885         read_lock_bh(&sk->sk_callback_lock);
886         queue = sk->sk_user_data;
887         if (!queue)
888                 goto done;
889
890         switch (sk->sk_state) {
891         case TCP_CLOSE:
892         case TCP_CLOSE_WAIT:
893         case TCP_LAST_ACK:
894         case TCP_FIN_WAIT1:
895         case TCP_FIN_WAIT2:
896                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
897                 break;
898         default:
899                 dev_info(queue->ctrl->ctrl.device,
900                         "queue %d socket state %d\n",
901                         nvme_tcp_queue_id(queue), sk->sk_state);
902         }
903
904         queue->state_change(sk);
905 done:
906         read_unlock_bh(&sk->sk_callback_lock);
907 }
908
909 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
910 {
911         queue->request = NULL;
912 }
913
914 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
915 {
916         nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
917 }
918
919 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
920 {
921         struct nvme_tcp_queue *queue = req->queue;
922         int req_data_len = req->data_len;
923
924         while (true) {
925                 struct page *page = nvme_tcp_req_cur_page(req);
926                 size_t offset = nvme_tcp_req_cur_offset(req);
927                 size_t len = nvme_tcp_req_cur_length(req);
928                 bool last = nvme_tcp_pdu_last_send(req, len);
929                 int req_data_sent = req->data_sent;
930                 int ret, flags = MSG_DONTWAIT;
931
932                 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
933                         flags |= MSG_EOR;
934                 else
935                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
936
937                 if (sendpage_ok(page)) {
938                         ret = kernel_sendpage(queue->sock, page, offset, len,
939                                         flags);
940                 } else {
941                         ret = sock_no_sendpage(queue->sock, page, offset, len,
942                                         flags);
943                 }
944                 if (ret <= 0)
945                         return ret;
946
947                 if (queue->data_digest)
948                         nvme_tcp_ddgst_update(queue->snd_hash, page,
949                                         offset, ret);
950
951                 /*
952                  * update the request iterator except for the last payload send
953                  * in the request where we don't want to modify it as we may
954                  * compete with the RX path completing the request.
955                  */
956                 if (req_data_sent + ret < req_data_len)
957                         nvme_tcp_advance_req(req, ret);
958
959                 /* fully successful last send in current PDU */
960                 if (last && ret == len) {
961                         if (queue->data_digest) {
962                                 nvme_tcp_ddgst_final(queue->snd_hash,
963                                         &req->ddgst);
964                                 req->state = NVME_TCP_SEND_DDGST;
965                                 req->offset = 0;
966                         } else {
967                                 nvme_tcp_done_send_req(queue);
968                         }
969                         return 1;
970                 }
971         }
972         return -EAGAIN;
973 }
974
975 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
976 {
977         struct nvme_tcp_queue *queue = req->queue;
978         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
979         bool inline_data = nvme_tcp_has_inline_data(req);
980         u8 hdgst = nvme_tcp_hdgst_len(queue);
981         int len = sizeof(*pdu) + hdgst - req->offset;
982         int flags = MSG_DONTWAIT;
983         int ret;
984
985         if (inline_data || nvme_tcp_queue_more(queue))
986                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
987         else
988                 flags |= MSG_EOR;
989
990         if (queue->hdr_digest && !req->offset)
991                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
992
993         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
994                         offset_in_page(pdu) + req->offset, len,  flags);
995         if (unlikely(ret <= 0))
996                 return ret;
997
998         len -= ret;
999         if (!len) {
1000                 if (inline_data) {
1001                         req->state = NVME_TCP_SEND_DATA;
1002                         if (queue->data_digest)
1003                                 crypto_ahash_init(queue->snd_hash);
1004                 } else {
1005                         nvme_tcp_done_send_req(queue);
1006                 }
1007                 return 1;
1008         }
1009         req->offset += ret;
1010
1011         return -EAGAIN;
1012 }
1013
1014 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1015 {
1016         struct nvme_tcp_queue *queue = req->queue;
1017         struct nvme_tcp_data_pdu *pdu = req->pdu;
1018         u8 hdgst = nvme_tcp_hdgst_len(queue);
1019         int len = sizeof(*pdu) - req->offset + hdgst;
1020         int ret;
1021
1022         if (queue->hdr_digest && !req->offset)
1023                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1024
1025         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1026                         offset_in_page(pdu) + req->offset, len,
1027                         MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1028         if (unlikely(ret <= 0))
1029                 return ret;
1030
1031         len -= ret;
1032         if (!len) {
1033                 req->state = NVME_TCP_SEND_DATA;
1034                 if (queue->data_digest)
1035                         crypto_ahash_init(queue->snd_hash);
1036                 return 1;
1037         }
1038         req->offset += ret;
1039
1040         return -EAGAIN;
1041 }
1042
1043 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1044 {
1045         struct nvme_tcp_queue *queue = req->queue;
1046         size_t offset = req->offset;
1047         int ret;
1048         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1049         struct kvec iov = {
1050                 .iov_base = (u8 *)&req->ddgst + req->offset,
1051                 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1052         };
1053
1054         if (nvme_tcp_queue_more(queue))
1055                 msg.msg_flags |= MSG_MORE;
1056         else
1057                 msg.msg_flags |= MSG_EOR;
1058
1059         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1060         if (unlikely(ret <= 0))
1061                 return ret;
1062
1063         if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1064                 nvme_tcp_done_send_req(queue);
1065                 return 1;
1066         }
1067
1068         req->offset += ret;
1069         return -EAGAIN;
1070 }
1071
1072 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1073 {
1074         struct nvme_tcp_request *req;
1075         int ret = 1;
1076
1077         if (!queue->request) {
1078                 queue->request = nvme_tcp_fetch_request(queue);
1079                 if (!queue->request)
1080                         return 0;
1081         }
1082         req = queue->request;
1083
1084         if (req->state == NVME_TCP_SEND_CMD_PDU) {
1085                 ret = nvme_tcp_try_send_cmd_pdu(req);
1086                 if (ret <= 0)
1087                         goto done;
1088                 if (!nvme_tcp_has_inline_data(req))
1089                         return ret;
1090         }
1091
1092         if (req->state == NVME_TCP_SEND_H2C_PDU) {
1093                 ret = nvme_tcp_try_send_data_pdu(req);
1094                 if (ret <= 0)
1095                         goto done;
1096         }
1097
1098         if (req->state == NVME_TCP_SEND_DATA) {
1099                 ret = nvme_tcp_try_send_data(req);
1100                 if (ret <= 0)
1101                         goto done;
1102         }
1103
1104         if (req->state == NVME_TCP_SEND_DDGST)
1105                 ret = nvme_tcp_try_send_ddgst(req);
1106 done:
1107         if (ret == -EAGAIN) {
1108                 ret = 0;
1109         } else if (ret < 0) {
1110                 dev_err(queue->ctrl->ctrl.device,
1111                         "failed to send request %d\n", ret);
1112                 if (ret != -EPIPE && ret != -ECONNRESET)
1113                         nvme_tcp_fail_request(queue->request);
1114                 nvme_tcp_done_send_req(queue);
1115         }
1116         return ret;
1117 }
1118
1119 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1120 {
1121         struct socket *sock = queue->sock;
1122         struct sock *sk = sock->sk;
1123         read_descriptor_t rd_desc;
1124         int consumed;
1125
1126         rd_desc.arg.data = queue;
1127         rd_desc.count = 1;
1128         lock_sock(sk);
1129         queue->nr_cqe = 0;
1130         consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1131         release_sock(sk);
1132         return consumed;
1133 }
1134
1135 static void nvme_tcp_io_work(struct work_struct *w)
1136 {
1137         struct nvme_tcp_queue *queue =
1138                 container_of(w, struct nvme_tcp_queue, io_work);
1139         unsigned long deadline = jiffies + msecs_to_jiffies(1);
1140
1141         do {
1142                 bool pending = false;
1143                 int result;
1144
1145                 if (mutex_trylock(&queue->send_mutex)) {
1146                         result = nvme_tcp_try_send(queue);
1147                         mutex_unlock(&queue->send_mutex);
1148                         if (result > 0)
1149                                 pending = true;
1150                         else if (unlikely(result < 0))
1151                                 break;
1152                 }
1153
1154                 result = nvme_tcp_try_recv(queue);
1155                 if (result > 0)
1156                         pending = true;
1157                 else if (unlikely(result < 0))
1158                         return;
1159
1160                 if (!pending)
1161                         return;
1162
1163         } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1164
1165         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1166 }
1167
1168 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1169 {
1170         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1171
1172         ahash_request_free(queue->rcv_hash);
1173         ahash_request_free(queue->snd_hash);
1174         crypto_free_ahash(tfm);
1175 }
1176
1177 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1178 {
1179         struct crypto_ahash *tfm;
1180
1181         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1182         if (IS_ERR(tfm))
1183                 return PTR_ERR(tfm);
1184
1185         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1186         if (!queue->snd_hash)
1187                 goto free_tfm;
1188         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1189
1190         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1191         if (!queue->rcv_hash)
1192                 goto free_snd_hash;
1193         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1194
1195         return 0;
1196 free_snd_hash:
1197         ahash_request_free(queue->snd_hash);
1198 free_tfm:
1199         crypto_free_ahash(tfm);
1200         return -ENOMEM;
1201 }
1202
1203 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1204 {
1205         struct nvme_tcp_request *async = &ctrl->async_req;
1206
1207         page_frag_free(async->pdu);
1208 }
1209
1210 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1211 {
1212         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1213         struct nvme_tcp_request *async = &ctrl->async_req;
1214         u8 hdgst = nvme_tcp_hdgst_len(queue);
1215
1216         async->pdu = page_frag_alloc(&queue->pf_cache,
1217                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1218                 GFP_KERNEL | __GFP_ZERO);
1219         if (!async->pdu)
1220                 return -ENOMEM;
1221
1222         async->queue = &ctrl->queues[0];
1223         return 0;
1224 }
1225
1226 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1227 {
1228         struct page *page;
1229         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1230         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1231
1232         if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1233                 return;
1234
1235         if (queue->hdr_digest || queue->data_digest)
1236                 nvme_tcp_free_crypto(queue);
1237
1238         if (queue->pf_cache.va) {
1239                 page = virt_to_head_page(queue->pf_cache.va);
1240                 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1241                 queue->pf_cache.va = NULL;
1242         }
1243         sock_release(queue->sock);
1244         kfree(queue->pdu);
1245         mutex_destroy(&queue->send_mutex);
1246         mutex_destroy(&queue->queue_lock);
1247 }
1248
1249 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1250 {
1251         struct nvme_tcp_icreq_pdu *icreq;
1252         struct nvme_tcp_icresp_pdu *icresp;
1253         struct msghdr msg = {};
1254         struct kvec iov;
1255         bool ctrl_hdgst, ctrl_ddgst;
1256         int ret;
1257
1258         icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1259         if (!icreq)
1260                 return -ENOMEM;
1261
1262         icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1263         if (!icresp) {
1264                 ret = -ENOMEM;
1265                 goto free_icreq;
1266         }
1267
1268         icreq->hdr.type = nvme_tcp_icreq;
1269         icreq->hdr.hlen = sizeof(*icreq);
1270         icreq->hdr.pdo = 0;
1271         icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1272         icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1273         icreq->maxr2t = 0; /* single inflight r2t supported */
1274         icreq->hpda = 0; /* no alignment constraint */
1275         if (queue->hdr_digest)
1276                 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1277         if (queue->data_digest)
1278                 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1279
1280         iov.iov_base = icreq;
1281         iov.iov_len = sizeof(*icreq);
1282         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1283         if (ret < 0)
1284                 goto free_icresp;
1285
1286         memset(&msg, 0, sizeof(msg));
1287         iov.iov_base = icresp;
1288         iov.iov_len = sizeof(*icresp);
1289         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1290                         iov.iov_len, msg.msg_flags);
1291         if (ret < 0)
1292                 goto free_icresp;
1293
1294         ret = -EINVAL;
1295         if (icresp->hdr.type != nvme_tcp_icresp) {
1296                 pr_err("queue %d: bad type returned %d\n",
1297                         nvme_tcp_queue_id(queue), icresp->hdr.type);
1298                 goto free_icresp;
1299         }
1300
1301         if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1302                 pr_err("queue %d: bad pdu length returned %d\n",
1303                         nvme_tcp_queue_id(queue), icresp->hdr.plen);
1304                 goto free_icresp;
1305         }
1306
1307         if (icresp->pfv != NVME_TCP_PFV_1_0) {
1308                 pr_err("queue %d: bad pfv returned %d\n",
1309                         nvme_tcp_queue_id(queue), icresp->pfv);
1310                 goto free_icresp;
1311         }
1312
1313         ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1314         if ((queue->data_digest && !ctrl_ddgst) ||
1315             (!queue->data_digest && ctrl_ddgst)) {
1316                 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1317                         nvme_tcp_queue_id(queue),
1318                         queue->data_digest ? "enabled" : "disabled",
1319                         ctrl_ddgst ? "enabled" : "disabled");
1320                 goto free_icresp;
1321         }
1322
1323         ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1324         if ((queue->hdr_digest && !ctrl_hdgst) ||
1325             (!queue->hdr_digest && ctrl_hdgst)) {
1326                 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1327                         nvme_tcp_queue_id(queue),
1328                         queue->hdr_digest ? "enabled" : "disabled",
1329                         ctrl_hdgst ? "enabled" : "disabled");
1330                 goto free_icresp;
1331         }
1332
1333         if (icresp->cpda != 0) {
1334                 pr_err("queue %d: unsupported cpda returned %d\n",
1335                         nvme_tcp_queue_id(queue), icresp->cpda);
1336                 goto free_icresp;
1337         }
1338
1339         ret = 0;
1340 free_icresp:
1341         kfree(icresp);
1342 free_icreq:
1343         kfree(icreq);
1344         return ret;
1345 }
1346
1347 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1348 {
1349         return nvme_tcp_queue_id(queue) == 0;
1350 }
1351
1352 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1353 {
1354         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1355         int qid = nvme_tcp_queue_id(queue);
1356
1357         return !nvme_tcp_admin_queue(queue) &&
1358                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1359 }
1360
1361 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1362 {
1363         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1364         int qid = nvme_tcp_queue_id(queue);
1365
1366         return !nvme_tcp_admin_queue(queue) &&
1367                 !nvme_tcp_default_queue(queue) &&
1368                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1369                           ctrl->io_queues[HCTX_TYPE_READ];
1370 }
1371
1372 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1373 {
1374         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1375         int qid = nvme_tcp_queue_id(queue);
1376
1377         return !nvme_tcp_admin_queue(queue) &&
1378                 !nvme_tcp_default_queue(queue) &&
1379                 !nvme_tcp_read_queue(queue) &&
1380                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1381                           ctrl->io_queues[HCTX_TYPE_READ] +
1382                           ctrl->io_queues[HCTX_TYPE_POLL];
1383 }
1384
1385 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1386 {
1387         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1388         int qid = nvme_tcp_queue_id(queue);
1389         int n = 0;
1390
1391         if (nvme_tcp_default_queue(queue))
1392                 n = qid - 1;
1393         else if (nvme_tcp_read_queue(queue))
1394                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1395         else if (nvme_tcp_poll_queue(queue))
1396                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1397                                 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1398         queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1399 }
1400
1401 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1402                 int qid, size_t queue_size)
1403 {
1404         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1405         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1406         int ret, rcv_pdu_size;
1407
1408         mutex_init(&queue->queue_lock);
1409         queue->ctrl = ctrl;
1410         init_llist_head(&queue->req_list);
1411         INIT_LIST_HEAD(&queue->send_list);
1412         mutex_init(&queue->send_mutex);
1413         INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1414         queue->queue_size = queue_size;
1415
1416         if (qid > 0)
1417                 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1418         else
1419                 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1420                                                 NVME_TCP_ADMIN_CCSZ;
1421
1422         ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1423                         IPPROTO_TCP, &queue->sock);
1424         if (ret) {
1425                 dev_err(nctrl->device,
1426                         "failed to create socket: %d\n", ret);
1427                 goto err_destroy_mutex;
1428         }
1429
1430         /* Single syn retry */
1431         tcp_sock_set_syncnt(queue->sock->sk, 1);
1432
1433         /* Set TCP no delay */
1434         tcp_sock_set_nodelay(queue->sock->sk);
1435
1436         /*
1437          * Cleanup whatever is sitting in the TCP transmit queue on socket
1438          * close. This is done to prevent stale data from being sent should
1439          * the network connection be restored before TCP times out.
1440          */
1441         sock_no_linger(queue->sock->sk);
1442
1443         if (so_priority > 0)
1444                 sock_set_priority(queue->sock->sk, so_priority);
1445
1446         /* Set socket type of service */
1447         if (nctrl->opts->tos >= 0)
1448                 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1449
1450         /* Set 10 seconds timeout for icresp recvmsg */
1451         queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1452
1453         queue->sock->sk->sk_allocation = GFP_ATOMIC;
1454         nvme_tcp_set_queue_io_cpu(queue);
1455         queue->request = NULL;
1456         queue->data_remaining = 0;
1457         queue->ddgst_remaining = 0;
1458         queue->pdu_remaining = 0;
1459         queue->pdu_offset = 0;
1460         sk_set_memalloc(queue->sock->sk);
1461
1462         if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1463                 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1464                         sizeof(ctrl->src_addr));
1465                 if (ret) {
1466                         dev_err(nctrl->device,
1467                                 "failed to bind queue %d socket %d\n",
1468                                 qid, ret);
1469                         goto err_sock;
1470                 }
1471         }
1472
1473         if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1474                 char *iface = nctrl->opts->host_iface;
1475                 sockptr_t optval = KERNEL_SOCKPTR(iface);
1476
1477                 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1478                                       optval, strlen(iface));
1479                 if (ret) {
1480                         dev_err(nctrl->device,
1481                           "failed to bind to interface %s queue %d err %d\n",
1482                           iface, qid, ret);
1483                         goto err_sock;
1484                 }
1485         }
1486
1487         queue->hdr_digest = nctrl->opts->hdr_digest;
1488         queue->data_digest = nctrl->opts->data_digest;
1489         if (queue->hdr_digest || queue->data_digest) {
1490                 ret = nvme_tcp_alloc_crypto(queue);
1491                 if (ret) {
1492                         dev_err(nctrl->device,
1493                                 "failed to allocate queue %d crypto\n", qid);
1494                         goto err_sock;
1495                 }
1496         }
1497
1498         rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1499                         nvme_tcp_hdgst_len(queue);
1500         queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1501         if (!queue->pdu) {
1502                 ret = -ENOMEM;
1503                 goto err_crypto;
1504         }
1505
1506         dev_dbg(nctrl->device, "connecting queue %d\n",
1507                         nvme_tcp_queue_id(queue));
1508
1509         ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1510                 sizeof(ctrl->addr), 0);
1511         if (ret) {
1512                 dev_err(nctrl->device,
1513                         "failed to connect socket: %d\n", ret);
1514                 goto err_rcv_pdu;
1515         }
1516
1517         ret = nvme_tcp_init_connection(queue);
1518         if (ret)
1519                 goto err_init_connect;
1520
1521         queue->rd_enabled = true;
1522         set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1523         nvme_tcp_init_recv_ctx(queue);
1524
1525         write_lock_bh(&queue->sock->sk->sk_callback_lock);
1526         queue->sock->sk->sk_user_data = queue;
1527         queue->state_change = queue->sock->sk->sk_state_change;
1528         queue->data_ready = queue->sock->sk->sk_data_ready;
1529         queue->write_space = queue->sock->sk->sk_write_space;
1530         queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1531         queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1532         queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1533 #ifdef CONFIG_NET_RX_BUSY_POLL
1534         queue->sock->sk->sk_ll_usec = 1;
1535 #endif
1536         write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1537
1538         return 0;
1539
1540 err_init_connect:
1541         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1542 err_rcv_pdu:
1543         kfree(queue->pdu);
1544 err_crypto:
1545         if (queue->hdr_digest || queue->data_digest)
1546                 nvme_tcp_free_crypto(queue);
1547 err_sock:
1548         sock_release(queue->sock);
1549         queue->sock = NULL;
1550 err_destroy_mutex:
1551         mutex_destroy(&queue->send_mutex);
1552         mutex_destroy(&queue->queue_lock);
1553         return ret;
1554 }
1555
1556 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1557 {
1558         struct socket *sock = queue->sock;
1559
1560         write_lock_bh(&sock->sk->sk_callback_lock);
1561         sock->sk->sk_user_data  = NULL;
1562         sock->sk->sk_data_ready = queue->data_ready;
1563         sock->sk->sk_state_change = queue->state_change;
1564         sock->sk->sk_write_space  = queue->write_space;
1565         write_unlock_bh(&sock->sk->sk_callback_lock);
1566 }
1567
1568 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1569 {
1570         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1571         nvme_tcp_restore_sock_calls(queue);
1572         cancel_work_sync(&queue->io_work);
1573 }
1574
1575 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1576 {
1577         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1578         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1579
1580         mutex_lock(&queue->queue_lock);
1581         if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1582                 __nvme_tcp_stop_queue(queue);
1583         mutex_unlock(&queue->queue_lock);
1584 }
1585
1586 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1587 {
1588         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1589         int ret;
1590
1591         if (idx)
1592                 ret = nvmf_connect_io_queue(nctrl, idx);
1593         else
1594                 ret = nvmf_connect_admin_queue(nctrl);
1595
1596         if (!ret) {
1597                 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1598         } else {
1599                 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1600                         __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1601                 dev_err(nctrl->device,
1602                         "failed to connect queue: %d ret=%d\n", idx, ret);
1603         }
1604         return ret;
1605 }
1606
1607 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1608                 bool admin)
1609 {
1610         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1611         struct blk_mq_tag_set *set;
1612         int ret;
1613
1614         if (admin) {
1615                 set = &ctrl->admin_tag_set;
1616                 memset(set, 0, sizeof(*set));
1617                 set->ops = &nvme_tcp_admin_mq_ops;
1618                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1619                 set->reserved_tags = NVMF_RESERVED_TAGS;
1620                 set->numa_node = nctrl->numa_node;
1621                 set->flags = BLK_MQ_F_BLOCKING;
1622                 set->cmd_size = sizeof(struct nvme_tcp_request);
1623                 set->driver_data = ctrl;
1624                 set->nr_hw_queues = 1;
1625                 set->timeout = NVME_ADMIN_TIMEOUT;
1626         } else {
1627                 set = &ctrl->tag_set;
1628                 memset(set, 0, sizeof(*set));
1629                 set->ops = &nvme_tcp_mq_ops;
1630                 set->queue_depth = nctrl->sqsize + 1;
1631                 set->reserved_tags = NVMF_RESERVED_TAGS;
1632                 set->numa_node = nctrl->numa_node;
1633                 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1634                 set->cmd_size = sizeof(struct nvme_tcp_request);
1635                 set->driver_data = ctrl;
1636                 set->nr_hw_queues = nctrl->queue_count - 1;
1637                 set->timeout = NVME_IO_TIMEOUT;
1638                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1639         }
1640
1641         ret = blk_mq_alloc_tag_set(set);
1642         if (ret)
1643                 return ERR_PTR(ret);
1644
1645         return set;
1646 }
1647
1648 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1649 {
1650         if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1651                 cancel_work_sync(&ctrl->async_event_work);
1652                 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1653                 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1654         }
1655
1656         nvme_tcp_free_queue(ctrl, 0);
1657 }
1658
1659 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1660 {
1661         int i;
1662
1663         for (i = 1; i < ctrl->queue_count; i++)
1664                 nvme_tcp_free_queue(ctrl, i);
1665 }
1666
1667 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1668 {
1669         int i;
1670
1671         for (i = 1; i < ctrl->queue_count; i++)
1672                 nvme_tcp_stop_queue(ctrl, i);
1673 }
1674
1675 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1676 {
1677         int i, ret = 0;
1678
1679         for (i = 1; i < ctrl->queue_count; i++) {
1680                 ret = nvme_tcp_start_queue(ctrl, i);
1681                 if (ret)
1682                         goto out_stop_queues;
1683         }
1684
1685         return 0;
1686
1687 out_stop_queues:
1688         for (i--; i >= 1; i--)
1689                 nvme_tcp_stop_queue(ctrl, i);
1690         return ret;
1691 }
1692
1693 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1694 {
1695         int ret;
1696
1697         ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1698         if (ret)
1699                 return ret;
1700
1701         ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1702         if (ret)
1703                 goto out_free_queue;
1704
1705         return 0;
1706
1707 out_free_queue:
1708         nvme_tcp_free_queue(ctrl, 0);
1709         return ret;
1710 }
1711
1712 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1713 {
1714         int i, ret;
1715
1716         for (i = 1; i < ctrl->queue_count; i++) {
1717                 ret = nvme_tcp_alloc_queue(ctrl, i,
1718                                 ctrl->sqsize + 1);
1719                 if (ret)
1720                         goto out_free_queues;
1721         }
1722
1723         return 0;
1724
1725 out_free_queues:
1726         for (i--; i >= 1; i--)
1727                 nvme_tcp_free_queue(ctrl, i);
1728
1729         return ret;
1730 }
1731
1732 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1733 {
1734         unsigned int nr_io_queues;
1735
1736         nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1737         nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1738         nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1739
1740         return nr_io_queues;
1741 }
1742
1743 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1744                 unsigned int nr_io_queues)
1745 {
1746         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1747         struct nvmf_ctrl_options *opts = nctrl->opts;
1748
1749         if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1750                 /*
1751                  * separate read/write queues
1752                  * hand out dedicated default queues only after we have
1753                  * sufficient read queues.
1754                  */
1755                 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1756                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1757                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1758                         min(opts->nr_write_queues, nr_io_queues);
1759                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1760         } else {
1761                 /*
1762                  * shared read/write queues
1763                  * either no write queues were requested, or we don't have
1764                  * sufficient queue count to have dedicated default queues.
1765                  */
1766                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1767                         min(opts->nr_io_queues, nr_io_queues);
1768                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1769         }
1770
1771         if (opts->nr_poll_queues && nr_io_queues) {
1772                 /* map dedicated poll queues only if we have queues left */
1773                 ctrl->io_queues[HCTX_TYPE_POLL] =
1774                         min(opts->nr_poll_queues, nr_io_queues);
1775         }
1776 }
1777
1778 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1779 {
1780         unsigned int nr_io_queues;
1781         int ret;
1782
1783         nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1784         ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1785         if (ret)
1786                 return ret;
1787
1788         if (nr_io_queues == 0) {
1789                 dev_err(ctrl->device,
1790                         "unable to set any I/O queues\n");
1791                 return -ENOMEM;
1792         }
1793
1794         ctrl->queue_count = nr_io_queues + 1;
1795         dev_info(ctrl->device,
1796                 "creating %d I/O queues.\n", nr_io_queues);
1797
1798         nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1799
1800         return __nvme_tcp_alloc_io_queues(ctrl);
1801 }
1802
1803 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1804 {
1805         nvme_tcp_stop_io_queues(ctrl);
1806         if (remove) {
1807                 blk_cleanup_queue(ctrl->connect_q);
1808                 blk_mq_free_tag_set(ctrl->tagset);
1809         }
1810         nvme_tcp_free_io_queues(ctrl);
1811 }
1812
1813 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1814 {
1815         int ret;
1816
1817         ret = nvme_tcp_alloc_io_queues(ctrl);
1818         if (ret)
1819                 return ret;
1820
1821         if (new) {
1822                 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1823                 if (IS_ERR(ctrl->tagset)) {
1824                         ret = PTR_ERR(ctrl->tagset);
1825                         goto out_free_io_queues;
1826                 }
1827
1828                 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1829                 if (IS_ERR(ctrl->connect_q)) {
1830                         ret = PTR_ERR(ctrl->connect_q);
1831                         goto out_free_tag_set;
1832                 }
1833         }
1834
1835         ret = nvme_tcp_start_io_queues(ctrl);
1836         if (ret)
1837                 goto out_cleanup_connect_q;
1838
1839         if (!new) {
1840                 nvme_start_queues(ctrl);
1841                 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1842                         /*
1843                          * If we timed out waiting for freeze we are likely to
1844                          * be stuck.  Fail the controller initialization just
1845                          * to be safe.
1846                          */
1847                         ret = -ENODEV;
1848                         goto out_wait_freeze_timed_out;
1849                 }
1850                 blk_mq_update_nr_hw_queues(ctrl->tagset,
1851                         ctrl->queue_count - 1);
1852                 nvme_unfreeze(ctrl);
1853         }
1854
1855         return 0;
1856
1857 out_wait_freeze_timed_out:
1858         nvme_stop_queues(ctrl);
1859         nvme_sync_io_queues(ctrl);
1860         nvme_tcp_stop_io_queues(ctrl);
1861 out_cleanup_connect_q:
1862         nvme_cancel_tagset(ctrl);
1863         if (new)
1864                 blk_cleanup_queue(ctrl->connect_q);
1865 out_free_tag_set:
1866         if (new)
1867                 blk_mq_free_tag_set(ctrl->tagset);
1868 out_free_io_queues:
1869         nvme_tcp_free_io_queues(ctrl);
1870         return ret;
1871 }
1872
1873 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1874 {
1875         nvme_tcp_stop_queue(ctrl, 0);
1876         if (remove) {
1877                 blk_cleanup_queue(ctrl->admin_q);
1878                 blk_cleanup_queue(ctrl->fabrics_q);
1879                 blk_mq_free_tag_set(ctrl->admin_tagset);
1880         }
1881         nvme_tcp_free_admin_queue(ctrl);
1882 }
1883
1884 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1885 {
1886         int error;
1887
1888         error = nvme_tcp_alloc_admin_queue(ctrl);
1889         if (error)
1890                 return error;
1891
1892         if (new) {
1893                 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1894                 if (IS_ERR(ctrl->admin_tagset)) {
1895                         error = PTR_ERR(ctrl->admin_tagset);
1896                         goto out_free_queue;
1897                 }
1898
1899                 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1900                 if (IS_ERR(ctrl->fabrics_q)) {
1901                         error = PTR_ERR(ctrl->fabrics_q);
1902                         goto out_free_tagset;
1903                 }
1904
1905                 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1906                 if (IS_ERR(ctrl->admin_q)) {
1907                         error = PTR_ERR(ctrl->admin_q);
1908                         goto out_cleanup_fabrics_q;
1909                 }
1910         }
1911
1912         error = nvme_tcp_start_queue(ctrl, 0);
1913         if (error)
1914                 goto out_cleanup_queue;
1915
1916         error = nvme_enable_ctrl(ctrl);
1917         if (error)
1918                 goto out_stop_queue;
1919
1920         nvme_start_admin_queue(ctrl);
1921
1922         error = nvme_init_ctrl_finish(ctrl);
1923         if (error)
1924                 goto out_quiesce_queue;
1925
1926         return 0;
1927
1928 out_quiesce_queue:
1929         nvme_stop_admin_queue(ctrl);
1930         blk_sync_queue(ctrl->admin_q);
1931 out_stop_queue:
1932         nvme_tcp_stop_queue(ctrl, 0);
1933         nvme_cancel_admin_tagset(ctrl);
1934 out_cleanup_queue:
1935         if (new)
1936                 blk_cleanup_queue(ctrl->admin_q);
1937 out_cleanup_fabrics_q:
1938         if (new)
1939                 blk_cleanup_queue(ctrl->fabrics_q);
1940 out_free_tagset:
1941         if (new)
1942                 blk_mq_free_tag_set(ctrl->admin_tagset);
1943 out_free_queue:
1944         nvme_tcp_free_admin_queue(ctrl);
1945         return error;
1946 }
1947
1948 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1949                 bool remove)
1950 {
1951         nvme_stop_admin_queue(ctrl);
1952         blk_sync_queue(ctrl->admin_q);
1953         nvme_tcp_stop_queue(ctrl, 0);
1954         nvme_cancel_admin_tagset(ctrl);
1955         if (remove)
1956                 nvme_start_admin_queue(ctrl);
1957         nvme_tcp_destroy_admin_queue(ctrl, remove);
1958 }
1959
1960 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1961                 bool remove)
1962 {
1963         if (ctrl->queue_count <= 1)
1964                 return;
1965         nvme_stop_admin_queue(ctrl);
1966         nvme_start_freeze(ctrl);
1967         nvme_stop_queues(ctrl);
1968         nvme_sync_io_queues(ctrl);
1969         nvme_tcp_stop_io_queues(ctrl);
1970         nvme_cancel_tagset(ctrl);
1971         if (remove)
1972                 nvme_start_queues(ctrl);
1973         nvme_tcp_destroy_io_queues(ctrl, remove);
1974 }
1975
1976 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1977 {
1978         /* If we are resetting/deleting then do nothing */
1979         if (ctrl->state != NVME_CTRL_CONNECTING) {
1980                 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1981                         ctrl->state == NVME_CTRL_LIVE);
1982                 return;
1983         }
1984
1985         if (nvmf_should_reconnect(ctrl)) {
1986                 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1987                         ctrl->opts->reconnect_delay);
1988                 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1989                                 ctrl->opts->reconnect_delay * HZ);
1990         } else {
1991                 dev_info(ctrl->device, "Removing controller...\n");
1992                 nvme_delete_ctrl(ctrl);
1993         }
1994 }
1995
1996 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1997 {
1998         struct nvmf_ctrl_options *opts = ctrl->opts;
1999         int ret;
2000
2001         ret = nvme_tcp_configure_admin_queue(ctrl, new);
2002         if (ret)
2003                 return ret;
2004
2005         if (ctrl->icdoff) {
2006                 ret = -EOPNOTSUPP;
2007                 dev_err(ctrl->device, "icdoff is not supported!\n");
2008                 goto destroy_admin;
2009         }
2010
2011         if (!nvme_ctrl_sgl_supported(ctrl)) {
2012                 ret = -EOPNOTSUPP;
2013                 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2014                 goto destroy_admin;
2015         }
2016
2017         if (opts->queue_size > ctrl->sqsize + 1)
2018                 dev_warn(ctrl->device,
2019                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
2020                         opts->queue_size, ctrl->sqsize + 1);
2021
2022         if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2023                 dev_warn(ctrl->device,
2024                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
2025                         ctrl->sqsize + 1, ctrl->maxcmd);
2026                 ctrl->sqsize = ctrl->maxcmd - 1;
2027         }
2028
2029         if (ctrl->queue_count > 1) {
2030                 ret = nvme_tcp_configure_io_queues(ctrl, new);
2031                 if (ret)
2032                         goto destroy_admin;
2033         }
2034
2035         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2036                 /*
2037                  * state change failure is ok if we started ctrl delete,
2038                  * unless we're during creation of a new controller to
2039                  * avoid races with teardown flow.
2040                  */
2041                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2042                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2043                 WARN_ON_ONCE(new);
2044                 ret = -EINVAL;
2045                 goto destroy_io;
2046         }
2047
2048         nvme_start_ctrl(ctrl);
2049         return 0;
2050
2051 destroy_io:
2052         if (ctrl->queue_count > 1) {
2053                 nvme_stop_queues(ctrl);
2054                 nvme_sync_io_queues(ctrl);
2055                 nvme_tcp_stop_io_queues(ctrl);
2056                 nvme_cancel_tagset(ctrl);
2057                 nvme_tcp_destroy_io_queues(ctrl, new);
2058         }
2059 destroy_admin:
2060         nvme_stop_admin_queue(ctrl);
2061         blk_sync_queue(ctrl->admin_q);
2062         nvme_tcp_stop_queue(ctrl, 0);
2063         nvme_cancel_admin_tagset(ctrl);
2064         nvme_tcp_destroy_admin_queue(ctrl, new);
2065         return ret;
2066 }
2067
2068 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2069 {
2070         struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2071                         struct nvme_tcp_ctrl, connect_work);
2072         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2073
2074         ++ctrl->nr_reconnects;
2075
2076         if (nvme_tcp_setup_ctrl(ctrl, false))
2077                 goto requeue;
2078
2079         dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2080                         ctrl->nr_reconnects);
2081
2082         ctrl->nr_reconnects = 0;
2083
2084         return;
2085
2086 requeue:
2087         dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2088                         ctrl->nr_reconnects);
2089         nvme_tcp_reconnect_or_remove(ctrl);
2090 }
2091
2092 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2093 {
2094         struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2095                                 struct nvme_tcp_ctrl, err_work);
2096         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2097
2098         nvme_stop_keep_alive(ctrl);
2099         nvme_tcp_teardown_io_queues(ctrl, false);
2100         /* unquiesce to fail fast pending requests */
2101         nvme_start_queues(ctrl);
2102         nvme_tcp_teardown_admin_queue(ctrl, false);
2103         nvme_start_admin_queue(ctrl);
2104
2105         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2106                 /* state change failure is ok if we started ctrl delete */
2107                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2108                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2109                 return;
2110         }
2111
2112         nvme_tcp_reconnect_or_remove(ctrl);
2113 }
2114
2115 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2116 {
2117         cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2118         cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2119
2120         nvme_tcp_teardown_io_queues(ctrl, shutdown);
2121         nvme_stop_admin_queue(ctrl);
2122         if (shutdown)
2123                 nvme_shutdown_ctrl(ctrl);
2124         else
2125                 nvme_disable_ctrl(ctrl);
2126         nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2127 }
2128
2129 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2130 {
2131         nvme_tcp_teardown_ctrl(ctrl, true);
2132 }
2133
2134 static void nvme_reset_ctrl_work(struct work_struct *work)
2135 {
2136         struct nvme_ctrl *ctrl =
2137                 container_of(work, struct nvme_ctrl, reset_work);
2138
2139         nvme_stop_ctrl(ctrl);
2140         nvme_tcp_teardown_ctrl(ctrl, false);
2141
2142         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2143                 /* state change failure is ok if we started ctrl delete */
2144                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2145                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2146                 return;
2147         }
2148
2149         if (nvme_tcp_setup_ctrl(ctrl, false))
2150                 goto out_fail;
2151
2152         return;
2153
2154 out_fail:
2155         ++ctrl->nr_reconnects;
2156         nvme_tcp_reconnect_or_remove(ctrl);
2157 }
2158
2159 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2160 {
2161         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2162
2163         if (list_empty(&ctrl->list))
2164                 goto free_ctrl;
2165
2166         mutex_lock(&nvme_tcp_ctrl_mutex);
2167         list_del(&ctrl->list);
2168         mutex_unlock(&nvme_tcp_ctrl_mutex);
2169
2170         nvmf_free_options(nctrl->opts);
2171 free_ctrl:
2172         kfree(ctrl->queues);
2173         kfree(ctrl);
2174 }
2175
2176 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2177 {
2178         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2179
2180         sg->addr = 0;
2181         sg->length = 0;
2182         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2183                         NVME_SGL_FMT_TRANSPORT_A;
2184 }
2185
2186 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2187                 struct nvme_command *c, u32 data_len)
2188 {
2189         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2190
2191         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2192         sg->length = cpu_to_le32(data_len);
2193         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2194 }
2195
2196 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2197                 u32 data_len)
2198 {
2199         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2200
2201         sg->addr = 0;
2202         sg->length = cpu_to_le32(data_len);
2203         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2204                         NVME_SGL_FMT_TRANSPORT_A;
2205 }
2206
2207 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2208 {
2209         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2210         struct nvme_tcp_queue *queue = &ctrl->queues[0];
2211         struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2212         struct nvme_command *cmd = &pdu->cmd;
2213         u8 hdgst = nvme_tcp_hdgst_len(queue);
2214
2215         memset(pdu, 0, sizeof(*pdu));
2216         pdu->hdr.type = nvme_tcp_cmd;
2217         if (queue->hdr_digest)
2218                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2219         pdu->hdr.hlen = sizeof(*pdu);
2220         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2221
2222         cmd->common.opcode = nvme_admin_async_event;
2223         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2224         cmd->common.flags |= NVME_CMD_SGL_METABUF;
2225         nvme_tcp_set_sg_null(cmd);
2226
2227         ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2228         ctrl->async_req.offset = 0;
2229         ctrl->async_req.curr_bio = NULL;
2230         ctrl->async_req.data_len = 0;
2231
2232         nvme_tcp_queue_request(&ctrl->async_req, true, true);
2233 }
2234
2235 static void nvme_tcp_complete_timed_out(struct request *rq)
2236 {
2237         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2238         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2239
2240         nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2241         if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2242                 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2243                 blk_mq_complete_request(rq);
2244         }
2245 }
2246
2247 static enum blk_eh_timer_return
2248 nvme_tcp_timeout(struct request *rq, bool reserved)
2249 {
2250         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2251         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2252         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2253
2254         dev_warn(ctrl->device,
2255                 "queue %d: timeout request %#x type %d\n",
2256                 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2257
2258         if (ctrl->state != NVME_CTRL_LIVE) {
2259                 /*
2260                  * If we are resetting, connecting or deleting we should
2261                  * complete immediately because we may block controller
2262                  * teardown or setup sequence
2263                  * - ctrl disable/shutdown fabrics requests
2264                  * - connect requests
2265                  * - initialization admin requests
2266                  * - I/O requests that entered after unquiescing and
2267                  *   the controller stopped responding
2268                  *
2269                  * All other requests should be cancelled by the error
2270                  * recovery work, so it's fine that we fail it here.
2271                  */
2272                 nvme_tcp_complete_timed_out(rq);
2273                 return BLK_EH_DONE;
2274         }
2275
2276         /*
2277          * LIVE state should trigger the normal error recovery which will
2278          * handle completing this request.
2279          */
2280         nvme_tcp_error_recovery(ctrl);
2281         return BLK_EH_RESET_TIMER;
2282 }
2283
2284 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2285                         struct request *rq)
2286 {
2287         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2288         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2289         struct nvme_command *c = &pdu->cmd;
2290
2291         c->common.flags |= NVME_CMD_SGL_METABUF;
2292
2293         if (!blk_rq_nr_phys_segments(rq))
2294                 nvme_tcp_set_sg_null(c);
2295         else if (rq_data_dir(rq) == WRITE &&
2296             req->data_len <= nvme_tcp_inline_data_size(queue))
2297                 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2298         else
2299                 nvme_tcp_set_sg_host_data(c, req->data_len);
2300
2301         return 0;
2302 }
2303
2304 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2305                 struct request *rq)
2306 {
2307         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2308         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2309         struct nvme_tcp_queue *queue = req->queue;
2310         u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2311         blk_status_t ret;
2312
2313         ret = nvme_setup_cmd(ns, rq);
2314         if (ret)
2315                 return ret;
2316
2317         req->state = NVME_TCP_SEND_CMD_PDU;
2318         req->status = cpu_to_le16(NVME_SC_SUCCESS);
2319         req->offset = 0;
2320         req->data_sent = 0;
2321         req->pdu_len = 0;
2322         req->pdu_sent = 0;
2323         req->data_len = blk_rq_nr_phys_segments(rq) ?
2324                                 blk_rq_payload_bytes(rq) : 0;
2325         req->curr_bio = rq->bio;
2326         if (req->curr_bio && req->data_len)
2327                 nvme_tcp_init_iter(req, rq_data_dir(rq));
2328
2329         if (rq_data_dir(rq) == WRITE &&
2330             req->data_len <= nvme_tcp_inline_data_size(queue))
2331                 req->pdu_len = req->data_len;
2332
2333         pdu->hdr.type = nvme_tcp_cmd;
2334         pdu->hdr.flags = 0;
2335         if (queue->hdr_digest)
2336                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2337         if (queue->data_digest && req->pdu_len) {
2338                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2339                 ddgst = nvme_tcp_ddgst_len(queue);
2340         }
2341         pdu->hdr.hlen = sizeof(*pdu);
2342         pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2343         pdu->hdr.plen =
2344                 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2345
2346         ret = nvme_tcp_map_data(queue, rq);
2347         if (unlikely(ret)) {
2348                 nvme_cleanup_cmd(rq);
2349                 dev_err(queue->ctrl->ctrl.device,
2350                         "Failed to map data (%d)\n", ret);
2351                 return ret;
2352         }
2353
2354         return 0;
2355 }
2356
2357 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2358 {
2359         struct nvme_tcp_queue *queue = hctx->driver_data;
2360
2361         if (!llist_empty(&queue->req_list))
2362                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2363 }
2364
2365 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2366                 const struct blk_mq_queue_data *bd)
2367 {
2368         struct nvme_ns *ns = hctx->queue->queuedata;
2369         struct nvme_tcp_queue *queue = hctx->driver_data;
2370         struct request *rq = bd->rq;
2371         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2372         bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2373         blk_status_t ret;
2374
2375         if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2376                 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2377
2378         ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2379         if (unlikely(ret))
2380                 return ret;
2381
2382         blk_mq_start_request(rq);
2383
2384         nvme_tcp_queue_request(req, true, bd->last);
2385
2386         return BLK_STS_OK;
2387 }
2388
2389 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2390 {
2391         struct nvme_tcp_ctrl *ctrl = set->driver_data;
2392         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2393
2394         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2395                 /* separate read/write queues */
2396                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2397                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2398                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2399                 set->map[HCTX_TYPE_READ].nr_queues =
2400                         ctrl->io_queues[HCTX_TYPE_READ];
2401                 set->map[HCTX_TYPE_READ].queue_offset =
2402                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2403         } else {
2404                 /* shared read/write queues */
2405                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2406                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2407                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2408                 set->map[HCTX_TYPE_READ].nr_queues =
2409                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2410                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2411         }
2412         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2413         blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2414
2415         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2416                 /* map dedicated poll queues only if we have queues left */
2417                 set->map[HCTX_TYPE_POLL].nr_queues =
2418                                 ctrl->io_queues[HCTX_TYPE_POLL];
2419                 set->map[HCTX_TYPE_POLL].queue_offset =
2420                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2421                         ctrl->io_queues[HCTX_TYPE_READ];
2422                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2423         }
2424
2425         dev_info(ctrl->ctrl.device,
2426                 "mapped %d/%d/%d default/read/poll queues.\n",
2427                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2428                 ctrl->io_queues[HCTX_TYPE_READ],
2429                 ctrl->io_queues[HCTX_TYPE_POLL]);
2430
2431         return 0;
2432 }
2433
2434 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2435 {
2436         struct nvme_tcp_queue *queue = hctx->driver_data;
2437         struct sock *sk = queue->sock->sk;
2438
2439         if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2440                 return 0;
2441
2442         set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2443         if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2444                 sk_busy_loop(sk, true);
2445         nvme_tcp_try_recv(queue);
2446         clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2447         return queue->nr_cqe;
2448 }
2449
2450 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2451         .queue_rq       = nvme_tcp_queue_rq,
2452         .commit_rqs     = nvme_tcp_commit_rqs,
2453         .complete       = nvme_complete_rq,
2454         .init_request   = nvme_tcp_init_request,
2455         .exit_request   = nvme_tcp_exit_request,
2456         .init_hctx      = nvme_tcp_init_hctx,
2457         .timeout        = nvme_tcp_timeout,
2458         .map_queues     = nvme_tcp_map_queues,
2459         .poll           = nvme_tcp_poll,
2460 };
2461
2462 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2463         .queue_rq       = nvme_tcp_queue_rq,
2464         .complete       = nvme_complete_rq,
2465         .init_request   = nvme_tcp_init_request,
2466         .exit_request   = nvme_tcp_exit_request,
2467         .init_hctx      = nvme_tcp_init_admin_hctx,
2468         .timeout        = nvme_tcp_timeout,
2469 };
2470
2471 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2472         .name                   = "tcp",
2473         .module                 = THIS_MODULE,
2474         .flags                  = NVME_F_FABRICS,
2475         .reg_read32             = nvmf_reg_read32,
2476         .reg_read64             = nvmf_reg_read64,
2477         .reg_write32            = nvmf_reg_write32,
2478         .free_ctrl              = nvme_tcp_free_ctrl,
2479         .submit_async_event     = nvme_tcp_submit_async_event,
2480         .delete_ctrl            = nvme_tcp_delete_ctrl,
2481         .get_address            = nvmf_get_address,
2482 };
2483
2484 static bool
2485 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2486 {
2487         struct nvme_tcp_ctrl *ctrl;
2488         bool found = false;
2489
2490         mutex_lock(&nvme_tcp_ctrl_mutex);
2491         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2492                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2493                 if (found)
2494                         break;
2495         }
2496         mutex_unlock(&nvme_tcp_ctrl_mutex);
2497
2498         return found;
2499 }
2500
2501 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2502                 struct nvmf_ctrl_options *opts)
2503 {
2504         struct nvme_tcp_ctrl *ctrl;
2505         int ret;
2506
2507         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2508         if (!ctrl)
2509                 return ERR_PTR(-ENOMEM);
2510
2511         INIT_LIST_HEAD(&ctrl->list);
2512         ctrl->ctrl.opts = opts;
2513         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2514                                 opts->nr_poll_queues + 1;
2515         ctrl->ctrl.sqsize = opts->queue_size - 1;
2516         ctrl->ctrl.kato = opts->kato;
2517
2518         INIT_DELAYED_WORK(&ctrl->connect_work,
2519                         nvme_tcp_reconnect_ctrl_work);
2520         INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2521         INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2522
2523         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2524                 opts->trsvcid =
2525                         kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2526                 if (!opts->trsvcid) {
2527                         ret = -ENOMEM;
2528                         goto out_free_ctrl;
2529                 }
2530                 opts->mask |= NVMF_OPT_TRSVCID;
2531         }
2532
2533         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2534                         opts->traddr, opts->trsvcid, &ctrl->addr);
2535         if (ret) {
2536                 pr_err("malformed address passed: %s:%s\n",
2537                         opts->traddr, opts->trsvcid);
2538                 goto out_free_ctrl;
2539         }
2540
2541         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2542                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2543                         opts->host_traddr, NULL, &ctrl->src_addr);
2544                 if (ret) {
2545                         pr_err("malformed src address passed: %s\n",
2546                                opts->host_traddr);
2547                         goto out_free_ctrl;
2548                 }
2549         }
2550
2551         if (opts->mask & NVMF_OPT_HOST_IFACE) {
2552                 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2553                         pr_err("invalid interface passed: %s\n",
2554                                opts->host_iface);
2555                         ret = -ENODEV;
2556                         goto out_free_ctrl;
2557                 }
2558         }
2559
2560         if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2561                 ret = -EALREADY;
2562                 goto out_free_ctrl;
2563         }
2564
2565         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2566                                 GFP_KERNEL);
2567         if (!ctrl->queues) {
2568                 ret = -ENOMEM;
2569                 goto out_free_ctrl;
2570         }
2571
2572         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2573         if (ret)
2574                 goto out_kfree_queues;
2575
2576         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2577                 WARN_ON_ONCE(1);
2578                 ret = -EINTR;
2579                 goto out_uninit_ctrl;
2580         }
2581
2582         ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2583         if (ret)
2584                 goto out_uninit_ctrl;
2585
2586         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2587                 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2588
2589         mutex_lock(&nvme_tcp_ctrl_mutex);
2590         list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2591         mutex_unlock(&nvme_tcp_ctrl_mutex);
2592
2593         return &ctrl->ctrl;
2594
2595 out_uninit_ctrl:
2596         nvme_uninit_ctrl(&ctrl->ctrl);
2597         nvme_put_ctrl(&ctrl->ctrl);
2598         if (ret > 0)
2599                 ret = -EIO;
2600         return ERR_PTR(ret);
2601 out_kfree_queues:
2602         kfree(ctrl->queues);
2603 out_free_ctrl:
2604         kfree(ctrl);
2605         return ERR_PTR(ret);
2606 }
2607
2608 static struct nvmf_transport_ops nvme_tcp_transport = {
2609         .name           = "tcp",
2610         .module         = THIS_MODULE,
2611         .required_opts  = NVMF_OPT_TRADDR,
2612         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2613                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2614                           NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2615                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2616                           NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2617         .create_ctrl    = nvme_tcp_create_ctrl,
2618 };
2619
2620 static int __init nvme_tcp_init_module(void)
2621 {
2622         nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2623                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2624         if (!nvme_tcp_wq)
2625                 return -ENOMEM;
2626
2627         nvmf_register_transport(&nvme_tcp_transport);
2628         return 0;
2629 }
2630
2631 static void __exit nvme_tcp_cleanup_module(void)
2632 {
2633         struct nvme_tcp_ctrl *ctrl;
2634
2635         nvmf_unregister_transport(&nvme_tcp_transport);
2636
2637         mutex_lock(&nvme_tcp_ctrl_mutex);
2638         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2639                 nvme_delete_ctrl(&ctrl->ctrl);
2640         mutex_unlock(&nvme_tcp_ctrl_mutex);
2641         flush_workqueue(nvme_delete_wq);
2642
2643         destroy_workqueue(nvme_tcp_wq);
2644 }
2645
2646 module_init(nvme_tcp_init_module);
2647 module_exit(nvme_tcp_cleanup_module);
2648
2649 MODULE_LICENSE("GPL v2");