nvme: fix irq vs io_queue calculations
[linux-2.6-microblaze.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33 #include <linux/pci-p2pdma.h>
34
35 #include "nvme.h"
36
37 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
38 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
39
40 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
41
42 /*
43  * These can be higher, but we need to ensure that any command doesn't
44  * require an sg allocation that needs more than a page of data.
45  */
46 #define NVME_MAX_KB_SZ  4096
47 #define NVME_MAX_SEGS   127
48
49 static int use_threaded_interrupts;
50 module_param(use_threaded_interrupts, int, 0);
51
52 static bool use_cmb_sqes = true;
53 module_param(use_cmb_sqes, bool, 0444);
54 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55
56 static unsigned int max_host_mem_size_mb = 128;
57 module_param(max_host_mem_size_mb, uint, 0444);
58 MODULE_PARM_DESC(max_host_mem_size_mb,
59         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60
61 static unsigned int sgl_threshold = SZ_32K;
62 module_param(sgl_threshold, uint, 0644);
63 MODULE_PARM_DESC(sgl_threshold,
64                 "Use SGLs when average request segment size is larger or equal to "
65                 "this size. Use 0 to disable SGLs.");
66
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69         .set = io_queue_depth_set,
70         .get = param_get_int,
71 };
72
73 static int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
76
77 static int queue_count_set(const char *val, const struct kernel_param *kp);
78 static const struct kernel_param_ops queue_count_ops = {
79         .set = queue_count_set,
80         .get = param_get_int,
81 };
82
83 static int write_queues;
84 module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
85 MODULE_PARM_DESC(write_queues,
86         "Number of queues to use for writes. If not set, reads and writes "
87         "will share a queue set.");
88
89 static int poll_queues = 0;
90 module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
91 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
92
93 struct nvme_dev;
94 struct nvme_queue;
95
96 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
97
98 /*
99  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
100  */
101 struct nvme_dev {
102         struct nvme_queue *queues;
103         struct blk_mq_tag_set tagset;
104         struct blk_mq_tag_set admin_tagset;
105         u32 __iomem *dbs;
106         struct device *dev;
107         struct dma_pool *prp_page_pool;
108         struct dma_pool *prp_small_pool;
109         unsigned online_queues;
110         unsigned max_qid;
111         unsigned io_queues[HCTX_MAX_TYPES];
112         unsigned int num_vecs;
113         int q_depth;
114         u32 db_stride;
115         void __iomem *bar;
116         unsigned long bar_mapped_size;
117         struct work_struct remove_work;
118         struct mutex shutdown_lock;
119         bool subsystem;
120         u64 cmb_size;
121         bool cmb_use_sqes;
122         u32 cmbsz;
123         u32 cmbloc;
124         struct nvme_ctrl ctrl;
125
126         mempool_t *iod_mempool;
127
128         /* shadow doorbell buffer support: */
129         u32 *dbbuf_dbs;
130         dma_addr_t dbbuf_dbs_dma_addr;
131         u32 *dbbuf_eis;
132         dma_addr_t dbbuf_eis_dma_addr;
133
134         /* host memory buffer support: */
135         u64 host_mem_size;
136         u32 nr_host_mem_descs;
137         dma_addr_t host_mem_descs_dma;
138         struct nvme_host_mem_buf_desc *host_mem_descs;
139         void **host_mem_desc_bufs;
140 };
141
142 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
143 {
144         int n = 0, ret;
145
146         ret = kstrtoint(val, 10, &n);
147         if (ret != 0 || n < 2)
148                 return -EINVAL;
149
150         return param_set_int(val, kp);
151 }
152
153 static int queue_count_set(const char *val, const struct kernel_param *kp)
154 {
155         int n = 0, ret;
156
157         ret = kstrtoint(val, 10, &n);
158         if (n > num_possible_cpus())
159                 n = num_possible_cpus();
160
161         return param_set_int(val, kp);
162 }
163
164 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
165 {
166         return qid * 2 * stride;
167 }
168
169 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
170 {
171         return (qid * 2 + 1) * stride;
172 }
173
174 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
175 {
176         return container_of(ctrl, struct nvme_dev, ctrl);
177 }
178
179 /*
180  * An NVM Express queue.  Each device has at least two (one for admin
181  * commands and one for I/O commands).
182  */
183 struct nvme_queue {
184         struct device *q_dmadev;
185         struct nvme_dev *dev;
186         spinlock_t sq_lock;
187         struct nvme_command *sq_cmds;
188          /* only used for poll queues: */
189         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
190         volatile struct nvme_completion *cqes;
191         struct blk_mq_tags **tags;
192         dma_addr_t sq_dma_addr;
193         dma_addr_t cq_dma_addr;
194         u32 __iomem *q_db;
195         u16 q_depth;
196         s16 cq_vector;
197         u16 sq_tail;
198         u16 last_sq_tail;
199         u16 cq_head;
200         u16 last_cq_head;
201         u16 qid;
202         u8 cq_phase;
203         unsigned long flags;
204 #define NVMEQ_ENABLED           0
205 #define NVMEQ_SQ_CMB            1
206 #define NVMEQ_DELETE_ERROR      2
207         u32 *dbbuf_sq_db;
208         u32 *dbbuf_cq_db;
209         u32 *dbbuf_sq_ei;
210         u32 *dbbuf_cq_ei;
211         struct completion delete_done;
212 };
213
214 /*
215  * The nvme_iod describes the data in an I/O, including the list of PRP
216  * entries.  You can't see it in this data structure because C doesn't let
217  * me express that.  Use nvme_init_iod to ensure there's enough space
218  * allocated to store the PRP list.
219  */
220 struct nvme_iod {
221         struct nvme_request req;
222         struct nvme_queue *nvmeq;
223         bool use_sgl;
224         int aborted;
225         int npages;             /* In the PRP list. 0 means small pool in use */
226         int nents;              /* Used in scatterlist */
227         int length;             /* Of data, in bytes */
228         dma_addr_t first_dma;
229         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
230         struct scatterlist *sg;
231         struct scatterlist inline_sg[0];
232 };
233
234 /*
235  * Check we didin't inadvertently grow the command struct
236  */
237 static inline void _nvme_check_size(void)
238 {
239         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
240         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
241         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
242         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
243         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
244         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
245         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
246         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
247         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
248         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
249         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
250         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
251         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
252 }
253
254 static unsigned int max_io_queues(void)
255 {
256         return num_possible_cpus() + write_queues + poll_queues;
257 }
258
259 static unsigned int max_queue_count(void)
260 {
261         /* IO queues + admin queue */
262         return 1 + max_io_queues();
263 }
264
265 static inline unsigned int nvme_dbbuf_size(u32 stride)
266 {
267         return (max_queue_count() * 8 * stride);
268 }
269
270 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
271 {
272         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
273
274         if (dev->dbbuf_dbs)
275                 return 0;
276
277         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
278                                             &dev->dbbuf_dbs_dma_addr,
279                                             GFP_KERNEL);
280         if (!dev->dbbuf_dbs)
281                 return -ENOMEM;
282         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
283                                             &dev->dbbuf_eis_dma_addr,
284                                             GFP_KERNEL);
285         if (!dev->dbbuf_eis) {
286                 dma_free_coherent(dev->dev, mem_size,
287                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
288                 dev->dbbuf_dbs = NULL;
289                 return -ENOMEM;
290         }
291
292         return 0;
293 }
294
295 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
296 {
297         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
298
299         if (dev->dbbuf_dbs) {
300                 dma_free_coherent(dev->dev, mem_size,
301                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
302                 dev->dbbuf_dbs = NULL;
303         }
304         if (dev->dbbuf_eis) {
305                 dma_free_coherent(dev->dev, mem_size,
306                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
307                 dev->dbbuf_eis = NULL;
308         }
309 }
310
311 static void nvme_dbbuf_init(struct nvme_dev *dev,
312                             struct nvme_queue *nvmeq, int qid)
313 {
314         if (!dev->dbbuf_dbs || !qid)
315                 return;
316
317         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
318         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
319         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
320         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
321 }
322
323 static void nvme_dbbuf_set(struct nvme_dev *dev)
324 {
325         struct nvme_command c;
326
327         if (!dev->dbbuf_dbs)
328                 return;
329
330         memset(&c, 0, sizeof(c));
331         c.dbbuf.opcode = nvme_admin_dbbuf;
332         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
333         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
334
335         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
336                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
337                 /* Free memory and continue on */
338                 nvme_dbbuf_dma_free(dev);
339         }
340 }
341
342 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
343 {
344         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
345 }
346
347 /* Update dbbuf and return true if an MMIO is required */
348 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
349                                               volatile u32 *dbbuf_ei)
350 {
351         if (dbbuf_db) {
352                 u16 old_value;
353
354                 /*
355                  * Ensure that the queue is written before updating
356                  * the doorbell in memory
357                  */
358                 wmb();
359
360                 old_value = *dbbuf_db;
361                 *dbbuf_db = value;
362
363                 /*
364                  * Ensure that the doorbell is updated before reading the event
365                  * index from memory.  The controller needs to provide similar
366                  * ordering to ensure the envent index is updated before reading
367                  * the doorbell.
368                  */
369                 mb();
370
371                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
372                         return false;
373         }
374
375         return true;
376 }
377
378 /*
379  * Max size of iod being embedded in the request payload
380  */
381 #define NVME_INT_PAGES          2
382 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
383
384 /*
385  * Will slightly overestimate the number of pages needed.  This is OK
386  * as it only leads to a small amount of wasted memory for the lifetime of
387  * the I/O.
388  */
389 static int nvme_npages(unsigned size, struct nvme_dev *dev)
390 {
391         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
392                                       dev->ctrl.page_size);
393         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
394 }
395
396 /*
397  * Calculates the number of pages needed for the SGL segments. For example a 4k
398  * page can accommodate 256 SGL descriptors.
399  */
400 static int nvme_pci_npages_sgl(unsigned int num_seg)
401 {
402         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
403 }
404
405 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
406                 unsigned int size, unsigned int nseg, bool use_sgl)
407 {
408         size_t alloc_size;
409
410         if (use_sgl)
411                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
412         else
413                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
414
415         return alloc_size + sizeof(struct scatterlist) * nseg;
416 }
417
418 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
419 {
420         unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
421                                     NVME_INT_BYTES(dev), NVME_INT_PAGES,
422                                     use_sgl);
423
424         return sizeof(struct nvme_iod) + alloc_size;
425 }
426
427 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
428                                 unsigned int hctx_idx)
429 {
430         struct nvme_dev *dev = data;
431         struct nvme_queue *nvmeq = &dev->queues[0];
432
433         WARN_ON(hctx_idx != 0);
434         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
435         WARN_ON(nvmeq->tags);
436
437         hctx->driver_data = nvmeq;
438         nvmeq->tags = &dev->admin_tagset.tags[0];
439         return 0;
440 }
441
442 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
443 {
444         struct nvme_queue *nvmeq = hctx->driver_data;
445
446         nvmeq->tags = NULL;
447 }
448
449 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
450                           unsigned int hctx_idx)
451 {
452         struct nvme_dev *dev = data;
453         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
454
455         if (!nvmeq->tags)
456                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
457
458         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
459         hctx->driver_data = nvmeq;
460         return 0;
461 }
462
463 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
464                 unsigned int hctx_idx, unsigned int numa_node)
465 {
466         struct nvme_dev *dev = set->driver_data;
467         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
468         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
469         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
470
471         BUG_ON(!nvmeq);
472         iod->nvmeq = nvmeq;
473
474         nvme_req(req)->ctrl = &dev->ctrl;
475         return 0;
476 }
477
478 static int queue_irq_offset(struct nvme_dev *dev)
479 {
480         /* if we have more than 1 vec, admin queue offsets us by 1 */
481         if (dev->num_vecs > 1)
482                 return 1;
483
484         return 0;
485 }
486
487 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
488 {
489         struct nvme_dev *dev = set->driver_data;
490         int i, qoff, offset;
491
492         offset = queue_irq_offset(dev);
493         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
494                 struct blk_mq_queue_map *map = &set->map[i];
495
496                 map->nr_queues = dev->io_queues[i];
497                 if (!map->nr_queues) {
498                         BUG_ON(i == HCTX_TYPE_DEFAULT);
499
500                         /* shared set, resuse read set parameters */
501                         map->nr_queues = dev->io_queues[HCTX_TYPE_DEFAULT];
502                         qoff = 0;
503                         offset = queue_irq_offset(dev);
504                 }
505
506                 /*
507                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
508                  * affinity), so use the regular blk-mq cpu mapping
509                  */
510                 map->queue_offset = qoff;
511                 if (i != HCTX_TYPE_POLL)
512                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
513                 else
514                         blk_mq_map_queues(map);
515                 qoff += map->nr_queues;
516                 offset += map->nr_queues;
517         }
518
519         return 0;
520 }
521
522 /*
523  * Write sq tail if we are asked to, or if the next command would wrap.
524  */
525 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
526 {
527         if (!write_sq) {
528                 u16 next_tail = nvmeq->sq_tail + 1;
529
530                 if (next_tail == nvmeq->q_depth)
531                         next_tail = 0;
532                 if (next_tail != nvmeq->last_sq_tail)
533                         return;
534         }
535
536         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
537                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
538                 writel(nvmeq->sq_tail, nvmeq->q_db);
539         nvmeq->last_sq_tail = nvmeq->sq_tail;
540 }
541
542 /**
543  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
544  * @nvmeq: The queue to use
545  * @cmd: The command to send
546  * @write_sq: whether to write to the SQ doorbell
547  */
548 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
549                             bool write_sq)
550 {
551         spin_lock(&nvmeq->sq_lock);
552         memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
553         if (++nvmeq->sq_tail == nvmeq->q_depth)
554                 nvmeq->sq_tail = 0;
555         nvme_write_sq_db(nvmeq, write_sq);
556         spin_unlock(&nvmeq->sq_lock);
557 }
558
559 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
560 {
561         struct nvme_queue *nvmeq = hctx->driver_data;
562
563         spin_lock(&nvmeq->sq_lock);
564         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
565                 nvme_write_sq_db(nvmeq, true);
566         spin_unlock(&nvmeq->sq_lock);
567 }
568
569 static void **nvme_pci_iod_list(struct request *req)
570 {
571         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
572         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
573 }
574
575 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
576 {
577         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
578         int nseg = blk_rq_nr_phys_segments(req);
579         unsigned int avg_seg_size;
580
581         if (nseg == 0)
582                 return false;
583
584         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
585
586         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
587                 return false;
588         if (!iod->nvmeq->qid)
589                 return false;
590         if (!sgl_threshold || avg_seg_size < sgl_threshold)
591                 return false;
592         return true;
593 }
594
595 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
596 {
597         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
598         int nseg = blk_rq_nr_phys_segments(rq);
599         unsigned int size = blk_rq_payload_bytes(rq);
600
601         iod->use_sgl = nvme_pci_use_sgls(dev, rq);
602
603         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
604                 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
605                 if (!iod->sg)
606                         return BLK_STS_RESOURCE;
607         } else {
608                 iod->sg = iod->inline_sg;
609         }
610
611         iod->aborted = 0;
612         iod->npages = -1;
613         iod->nents = 0;
614         iod->length = size;
615
616         return BLK_STS_OK;
617 }
618
619 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
620 {
621         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
622         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
623         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
624
625         int i;
626
627         if (iod->npages == 0)
628                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
629                         dma_addr);
630
631         for (i = 0; i < iod->npages; i++) {
632                 void *addr = nvme_pci_iod_list(req)[i];
633
634                 if (iod->use_sgl) {
635                         struct nvme_sgl_desc *sg_list = addr;
636
637                         next_dma_addr =
638                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
639                 } else {
640                         __le64 *prp_list = addr;
641
642                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
643                 }
644
645                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
646                 dma_addr = next_dma_addr;
647         }
648
649         if (iod->sg != iod->inline_sg)
650                 mempool_free(iod->sg, dev->iod_mempool);
651 }
652
653 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
654 {
655         int i;
656         struct scatterlist *sg;
657
658         for_each_sg(sgl, sg, nents, i) {
659                 dma_addr_t phys = sg_phys(sg);
660                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
661                         "dma_address:%pad dma_length:%d\n",
662                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
663                         sg_dma_len(sg));
664         }
665 }
666
667 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
668                 struct request *req, struct nvme_rw_command *cmnd)
669 {
670         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
671         struct dma_pool *pool;
672         int length = blk_rq_payload_bytes(req);
673         struct scatterlist *sg = iod->sg;
674         int dma_len = sg_dma_len(sg);
675         u64 dma_addr = sg_dma_address(sg);
676         u32 page_size = dev->ctrl.page_size;
677         int offset = dma_addr & (page_size - 1);
678         __le64 *prp_list;
679         void **list = nvme_pci_iod_list(req);
680         dma_addr_t prp_dma;
681         int nprps, i;
682
683         length -= (page_size - offset);
684         if (length <= 0) {
685                 iod->first_dma = 0;
686                 goto done;
687         }
688
689         dma_len -= (page_size - offset);
690         if (dma_len) {
691                 dma_addr += (page_size - offset);
692         } else {
693                 sg = sg_next(sg);
694                 dma_addr = sg_dma_address(sg);
695                 dma_len = sg_dma_len(sg);
696         }
697
698         if (length <= page_size) {
699                 iod->first_dma = dma_addr;
700                 goto done;
701         }
702
703         nprps = DIV_ROUND_UP(length, page_size);
704         if (nprps <= (256 / 8)) {
705                 pool = dev->prp_small_pool;
706                 iod->npages = 0;
707         } else {
708                 pool = dev->prp_page_pool;
709                 iod->npages = 1;
710         }
711
712         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
713         if (!prp_list) {
714                 iod->first_dma = dma_addr;
715                 iod->npages = -1;
716                 return BLK_STS_RESOURCE;
717         }
718         list[0] = prp_list;
719         iod->first_dma = prp_dma;
720         i = 0;
721         for (;;) {
722                 if (i == page_size >> 3) {
723                         __le64 *old_prp_list = prp_list;
724                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
725                         if (!prp_list)
726                                 return BLK_STS_RESOURCE;
727                         list[iod->npages++] = prp_list;
728                         prp_list[0] = old_prp_list[i - 1];
729                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
730                         i = 1;
731                 }
732                 prp_list[i++] = cpu_to_le64(dma_addr);
733                 dma_len -= page_size;
734                 dma_addr += page_size;
735                 length -= page_size;
736                 if (length <= 0)
737                         break;
738                 if (dma_len > 0)
739                         continue;
740                 if (unlikely(dma_len < 0))
741                         goto bad_sgl;
742                 sg = sg_next(sg);
743                 dma_addr = sg_dma_address(sg);
744                 dma_len = sg_dma_len(sg);
745         }
746
747 done:
748         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
749         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
750
751         return BLK_STS_OK;
752
753  bad_sgl:
754         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
755                         "Invalid SGL for payload:%d nents:%d\n",
756                         blk_rq_payload_bytes(req), iod->nents);
757         return BLK_STS_IOERR;
758 }
759
760 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
761                 struct scatterlist *sg)
762 {
763         sge->addr = cpu_to_le64(sg_dma_address(sg));
764         sge->length = cpu_to_le32(sg_dma_len(sg));
765         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
766 }
767
768 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
769                 dma_addr_t dma_addr, int entries)
770 {
771         sge->addr = cpu_to_le64(dma_addr);
772         if (entries < SGES_PER_PAGE) {
773                 sge->length = cpu_to_le32(entries * sizeof(*sge));
774                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
775         } else {
776                 sge->length = cpu_to_le32(PAGE_SIZE);
777                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
778         }
779 }
780
781 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
782                 struct request *req, struct nvme_rw_command *cmd, int entries)
783 {
784         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
785         struct dma_pool *pool;
786         struct nvme_sgl_desc *sg_list;
787         struct scatterlist *sg = iod->sg;
788         dma_addr_t sgl_dma;
789         int i = 0;
790
791         /* setting the transfer type as SGL */
792         cmd->flags = NVME_CMD_SGL_METABUF;
793
794         if (entries == 1) {
795                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
796                 return BLK_STS_OK;
797         }
798
799         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
800                 pool = dev->prp_small_pool;
801                 iod->npages = 0;
802         } else {
803                 pool = dev->prp_page_pool;
804                 iod->npages = 1;
805         }
806
807         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
808         if (!sg_list) {
809                 iod->npages = -1;
810                 return BLK_STS_RESOURCE;
811         }
812
813         nvme_pci_iod_list(req)[0] = sg_list;
814         iod->first_dma = sgl_dma;
815
816         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
817
818         do {
819                 if (i == SGES_PER_PAGE) {
820                         struct nvme_sgl_desc *old_sg_desc = sg_list;
821                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
822
823                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
824                         if (!sg_list)
825                                 return BLK_STS_RESOURCE;
826
827                         i = 0;
828                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
829                         sg_list[i++] = *link;
830                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
831                 }
832
833                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
834                 sg = sg_next(sg);
835         } while (--entries > 0);
836
837         return BLK_STS_OK;
838 }
839
840 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
841                 struct nvme_command *cmnd)
842 {
843         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
844         struct request_queue *q = req->q;
845         enum dma_data_direction dma_dir = rq_data_dir(req) ?
846                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
847         blk_status_t ret = BLK_STS_IOERR;
848         int nr_mapped;
849
850         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
851         iod->nents = blk_rq_map_sg(q, req, iod->sg);
852         if (!iod->nents)
853                 goto out;
854
855         ret = BLK_STS_RESOURCE;
856
857         if (is_pci_p2pdma_page(sg_page(iod->sg)))
858                 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
859                                           dma_dir);
860         else
861                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
862                                              dma_dir,  DMA_ATTR_NO_WARN);
863         if (!nr_mapped)
864                 goto out;
865
866         if (iod->use_sgl)
867                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
868         else
869                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
870
871         if (ret != BLK_STS_OK)
872                 goto out_unmap;
873
874         ret = BLK_STS_IOERR;
875         if (blk_integrity_rq(req)) {
876                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
877                         goto out_unmap;
878
879                 sg_init_table(&iod->meta_sg, 1);
880                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
881                         goto out_unmap;
882
883                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
884                         goto out_unmap;
885
886                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
887         }
888
889         return BLK_STS_OK;
890
891 out_unmap:
892         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
893 out:
894         return ret;
895 }
896
897 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
898 {
899         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
900         enum dma_data_direction dma_dir = rq_data_dir(req) ?
901                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
902
903         if (iod->nents) {
904                 /* P2PDMA requests do not need to be unmapped */
905                 if (!is_pci_p2pdma_page(sg_page(iod->sg)))
906                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
907
908                 if (blk_integrity_rq(req))
909                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
910         }
911
912         nvme_cleanup_cmd(req);
913         nvme_free_iod(dev, req);
914 }
915
916 /*
917  * NOTE: ns is NULL when called on the admin queue.
918  */
919 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
920                          const struct blk_mq_queue_data *bd)
921 {
922         struct nvme_ns *ns = hctx->queue->queuedata;
923         struct nvme_queue *nvmeq = hctx->driver_data;
924         struct nvme_dev *dev = nvmeq->dev;
925         struct request *req = bd->rq;
926         struct nvme_command cmnd;
927         blk_status_t ret;
928
929         /*
930          * We should not need to do this, but we're still using this to
931          * ensure we can drain requests on a dying queue.
932          */
933         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
934                 return BLK_STS_IOERR;
935
936         ret = nvme_setup_cmd(ns, req, &cmnd);
937         if (ret)
938                 return ret;
939
940         ret = nvme_init_iod(req, dev);
941         if (ret)
942                 goto out_free_cmd;
943
944         if (blk_rq_nr_phys_segments(req)) {
945                 ret = nvme_map_data(dev, req, &cmnd);
946                 if (ret)
947                         goto out_cleanup_iod;
948         }
949
950         blk_mq_start_request(req);
951         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
952         return BLK_STS_OK;
953 out_cleanup_iod:
954         nvme_free_iod(dev, req);
955 out_free_cmd:
956         nvme_cleanup_cmd(req);
957         return ret;
958 }
959
960 static void nvme_pci_complete_rq(struct request *req)
961 {
962         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
963
964         nvme_unmap_data(iod->nvmeq->dev, req);
965         nvme_complete_rq(req);
966 }
967
968 /* We read the CQE phase first to check if the rest of the entry is valid */
969 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
970 {
971         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
972                         nvmeq->cq_phase;
973 }
974
975 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
976 {
977         u16 head = nvmeq->cq_head;
978
979         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
980                                               nvmeq->dbbuf_cq_ei))
981                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
982 }
983
984 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
985 {
986         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
987         struct request *req;
988
989         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
990                 dev_warn(nvmeq->dev->ctrl.device,
991                         "invalid id %d completed on queue %d\n",
992                         cqe->command_id, le16_to_cpu(cqe->sq_id));
993                 return;
994         }
995
996         /*
997          * AEN requests are special as they don't time out and can
998          * survive any kind of queue freeze and often don't respond to
999          * aborts.  We don't even bother to allocate a struct request
1000          * for them but rather special case them here.
1001          */
1002         if (unlikely(nvmeq->qid == 0 &&
1003                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
1004                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1005                                 cqe->status, &cqe->result);
1006                 return;
1007         }
1008
1009         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1010         nvme_end_request(req, cqe->status, cqe->result);
1011 }
1012
1013 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1014 {
1015         while (start != end) {
1016                 nvme_handle_cqe(nvmeq, start);
1017                 if (++start == nvmeq->q_depth)
1018                         start = 0;
1019         }
1020 }
1021
1022 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1023 {
1024         if (++nvmeq->cq_head == nvmeq->q_depth) {
1025                 nvmeq->cq_head = 0;
1026                 nvmeq->cq_phase = !nvmeq->cq_phase;
1027         }
1028 }
1029
1030 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1031                                   u16 *end, unsigned int tag)
1032 {
1033         int found = 0;
1034
1035         *start = nvmeq->cq_head;
1036         while (nvme_cqe_pending(nvmeq)) {
1037                 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1038                         found++;
1039                 nvme_update_cq_head(nvmeq);
1040         }
1041         *end = nvmeq->cq_head;
1042
1043         if (*start != *end)
1044                 nvme_ring_cq_doorbell(nvmeq);
1045         return found;
1046 }
1047
1048 static irqreturn_t nvme_irq(int irq, void *data)
1049 {
1050         struct nvme_queue *nvmeq = data;
1051         irqreturn_t ret = IRQ_NONE;
1052         u16 start, end;
1053
1054         /*
1055          * The rmb/wmb pair ensures we see all updates from a previous run of
1056          * the irq handler, even if that was on another CPU.
1057          */
1058         rmb();
1059         if (nvmeq->cq_head != nvmeq->last_cq_head)
1060                 ret = IRQ_HANDLED;
1061         nvme_process_cq(nvmeq, &start, &end, -1);
1062         nvmeq->last_cq_head = nvmeq->cq_head;
1063         wmb();
1064
1065         if (start != end) {
1066                 nvme_complete_cqes(nvmeq, start, end);
1067                 return IRQ_HANDLED;
1068         }
1069
1070         return ret;
1071 }
1072
1073 static irqreturn_t nvme_irq_check(int irq, void *data)
1074 {
1075         struct nvme_queue *nvmeq = data;
1076         if (nvme_cqe_pending(nvmeq))
1077                 return IRQ_WAKE_THREAD;
1078         return IRQ_NONE;
1079 }
1080
1081 /*
1082  * Poll for completions any queue, including those not dedicated to polling.
1083  * Can be called from any context.
1084  */
1085 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1086 {
1087         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1088         u16 start, end;
1089         int found;
1090
1091         /*
1092          * For a poll queue we need to protect against the polling thread
1093          * using the CQ lock.  For normal interrupt driven threads we have
1094          * to disable the interrupt to avoid racing with it.
1095          */
1096         if (nvmeq->cq_vector == -1)
1097                 spin_lock(&nvmeq->cq_poll_lock);
1098         else
1099                 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1100         found = nvme_process_cq(nvmeq, &start, &end, tag);
1101         if (nvmeq->cq_vector == -1)
1102                 spin_unlock(&nvmeq->cq_poll_lock);
1103         else
1104                 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1105
1106         nvme_complete_cqes(nvmeq, start, end);
1107         return found;
1108 }
1109
1110 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1111 {
1112         struct nvme_queue *nvmeq = hctx->driver_data;
1113         u16 start, end;
1114         bool found;
1115
1116         if (!nvme_cqe_pending(nvmeq))
1117                 return 0;
1118
1119         spin_lock(&nvmeq->cq_poll_lock);
1120         found = nvme_process_cq(nvmeq, &start, &end, -1);
1121         spin_unlock(&nvmeq->cq_poll_lock);
1122
1123         nvme_complete_cqes(nvmeq, start, end);
1124         return found;
1125 }
1126
1127 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1128 {
1129         struct nvme_dev *dev = to_nvme_dev(ctrl);
1130         struct nvme_queue *nvmeq = &dev->queues[0];
1131         struct nvme_command c;
1132
1133         memset(&c, 0, sizeof(c));
1134         c.common.opcode = nvme_admin_async_event;
1135         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1136         nvme_submit_cmd(nvmeq, &c, true);
1137 }
1138
1139 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1140 {
1141         struct nvme_command c;
1142
1143         memset(&c, 0, sizeof(c));
1144         c.delete_queue.opcode = opcode;
1145         c.delete_queue.qid = cpu_to_le16(id);
1146
1147         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1148 }
1149
1150 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1151                 struct nvme_queue *nvmeq, s16 vector)
1152 {
1153         struct nvme_command c;
1154         int flags = NVME_QUEUE_PHYS_CONTIG;
1155
1156         if (vector != -1)
1157                 flags |= NVME_CQ_IRQ_ENABLED;
1158
1159         /*
1160          * Note: we (ab)use the fact that the prp fields survive if no data
1161          * is attached to the request.
1162          */
1163         memset(&c, 0, sizeof(c));
1164         c.create_cq.opcode = nvme_admin_create_cq;
1165         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1166         c.create_cq.cqid = cpu_to_le16(qid);
1167         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1168         c.create_cq.cq_flags = cpu_to_le16(flags);
1169         if (vector != -1)
1170                 c.create_cq.irq_vector = cpu_to_le16(vector);
1171         else
1172                 c.create_cq.irq_vector = 0;
1173
1174         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1175 }
1176
1177 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1178                                                 struct nvme_queue *nvmeq)
1179 {
1180         struct nvme_ctrl *ctrl = &dev->ctrl;
1181         struct nvme_command c;
1182         int flags = NVME_QUEUE_PHYS_CONTIG;
1183
1184         /*
1185          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1186          * set. Since URGENT priority is zeroes, it makes all queues
1187          * URGENT.
1188          */
1189         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1190                 flags |= NVME_SQ_PRIO_MEDIUM;
1191
1192         /*
1193          * Note: we (ab)use the fact that the prp fields survive if no data
1194          * is attached to the request.
1195          */
1196         memset(&c, 0, sizeof(c));
1197         c.create_sq.opcode = nvme_admin_create_sq;
1198         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1199         c.create_sq.sqid = cpu_to_le16(qid);
1200         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1201         c.create_sq.sq_flags = cpu_to_le16(flags);
1202         c.create_sq.cqid = cpu_to_le16(qid);
1203
1204         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1205 }
1206
1207 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1208 {
1209         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1210 }
1211
1212 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1213 {
1214         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1215 }
1216
1217 static void abort_endio(struct request *req, blk_status_t error)
1218 {
1219         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1220         struct nvme_queue *nvmeq = iod->nvmeq;
1221
1222         dev_warn(nvmeq->dev->ctrl.device,
1223                  "Abort status: 0x%x", nvme_req(req)->status);
1224         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1225         blk_mq_free_request(req);
1226 }
1227
1228 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1229 {
1230
1231         /* If true, indicates loss of adapter communication, possibly by a
1232          * NVMe Subsystem reset.
1233          */
1234         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1235
1236         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1237         switch (dev->ctrl.state) {
1238         case NVME_CTRL_RESETTING:
1239         case NVME_CTRL_CONNECTING:
1240                 return false;
1241         default:
1242                 break;
1243         }
1244
1245         /* We shouldn't reset unless the controller is on fatal error state
1246          * _or_ if we lost the communication with it.
1247          */
1248         if (!(csts & NVME_CSTS_CFS) && !nssro)
1249                 return false;
1250
1251         return true;
1252 }
1253
1254 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1255 {
1256         /* Read a config register to help see what died. */
1257         u16 pci_status;
1258         int result;
1259
1260         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1261                                       &pci_status);
1262         if (result == PCIBIOS_SUCCESSFUL)
1263                 dev_warn(dev->ctrl.device,
1264                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1265                          csts, pci_status);
1266         else
1267                 dev_warn(dev->ctrl.device,
1268                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1269                          csts, result);
1270 }
1271
1272 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1273 {
1274         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1275         struct nvme_queue *nvmeq = iod->nvmeq;
1276         struct nvme_dev *dev = nvmeq->dev;
1277         struct request *abort_req;
1278         struct nvme_command cmd;
1279         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1280
1281         /* If PCI error recovery process is happening, we cannot reset or
1282          * the recovery mechanism will surely fail.
1283          */
1284         mb();
1285         if (pci_channel_offline(to_pci_dev(dev->dev)))
1286                 return BLK_EH_RESET_TIMER;
1287
1288         /*
1289          * Reset immediately if the controller is failed
1290          */
1291         if (nvme_should_reset(dev, csts)) {
1292                 nvme_warn_reset(dev, csts);
1293                 nvme_dev_disable(dev, false);
1294                 nvme_reset_ctrl(&dev->ctrl);
1295                 return BLK_EH_DONE;
1296         }
1297
1298         /*
1299          * Did we miss an interrupt?
1300          */
1301         if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1302                 dev_warn(dev->ctrl.device,
1303                          "I/O %d QID %d timeout, completion polled\n",
1304                          req->tag, nvmeq->qid);
1305                 return BLK_EH_DONE;
1306         }
1307
1308         /*
1309          * Shutdown immediately if controller times out while starting. The
1310          * reset work will see the pci device disabled when it gets the forced
1311          * cancellation error. All outstanding requests are completed on
1312          * shutdown, so we return BLK_EH_DONE.
1313          */
1314         switch (dev->ctrl.state) {
1315         case NVME_CTRL_CONNECTING:
1316         case NVME_CTRL_RESETTING:
1317                 dev_warn_ratelimited(dev->ctrl.device,
1318                          "I/O %d QID %d timeout, disable controller\n",
1319                          req->tag, nvmeq->qid);
1320                 nvme_dev_disable(dev, false);
1321                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1322                 return BLK_EH_DONE;
1323         default:
1324                 break;
1325         }
1326
1327         /*
1328          * Shutdown the controller immediately and schedule a reset if the
1329          * command was already aborted once before and still hasn't been
1330          * returned to the driver, or if this is the admin queue.
1331          */
1332         if (!nvmeq->qid || iod->aborted) {
1333                 dev_warn(dev->ctrl.device,
1334                          "I/O %d QID %d timeout, reset controller\n",
1335                          req->tag, nvmeq->qid);
1336                 nvme_dev_disable(dev, false);
1337                 nvme_reset_ctrl(&dev->ctrl);
1338
1339                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1340                 return BLK_EH_DONE;
1341         }
1342
1343         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1344                 atomic_inc(&dev->ctrl.abort_limit);
1345                 return BLK_EH_RESET_TIMER;
1346         }
1347         iod->aborted = 1;
1348
1349         memset(&cmd, 0, sizeof(cmd));
1350         cmd.abort.opcode = nvme_admin_abort_cmd;
1351         cmd.abort.cid = req->tag;
1352         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1353
1354         dev_warn(nvmeq->dev->ctrl.device,
1355                 "I/O %d QID %d timeout, aborting\n",
1356                  req->tag, nvmeq->qid);
1357
1358         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1359                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1360         if (IS_ERR(abort_req)) {
1361                 atomic_inc(&dev->ctrl.abort_limit);
1362                 return BLK_EH_RESET_TIMER;
1363         }
1364
1365         abort_req->timeout = ADMIN_TIMEOUT;
1366         abort_req->end_io_data = NULL;
1367         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1368
1369         /*
1370          * The aborted req will be completed on receiving the abort req.
1371          * We enable the timer again. If hit twice, it'll cause a device reset,
1372          * as the device then is in a faulty state.
1373          */
1374         return BLK_EH_RESET_TIMER;
1375 }
1376
1377 static void nvme_free_queue(struct nvme_queue *nvmeq)
1378 {
1379         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1380                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1381         if (!nvmeq->sq_cmds)
1382                 return;
1383
1384         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1385                 pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1386                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1387         } else {
1388                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1389                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1390         }
1391 }
1392
1393 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1394 {
1395         int i;
1396
1397         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1398                 dev->ctrl.queue_count--;
1399                 nvme_free_queue(&dev->queues[i]);
1400         }
1401 }
1402
1403 /**
1404  * nvme_suspend_queue - put queue into suspended state
1405  * @nvmeq: queue to suspend
1406  */
1407 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1408 {
1409         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1410                 return 1;
1411
1412         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1413         mb();
1414
1415         nvmeq->dev->online_queues--;
1416         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1417                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1418         if (nvmeq->cq_vector == -1)
1419                 return 0;
1420         pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1421         nvmeq->cq_vector = -1;
1422         return 0;
1423 }
1424
1425 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1426 {
1427         struct nvme_queue *nvmeq = &dev->queues[0];
1428
1429         if (shutdown)
1430                 nvme_shutdown_ctrl(&dev->ctrl);
1431         else
1432                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1433
1434         nvme_poll_irqdisable(nvmeq, -1);
1435 }
1436
1437 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1438                                 int entry_size)
1439 {
1440         int q_depth = dev->q_depth;
1441         unsigned q_size_aligned = roundup(q_depth * entry_size,
1442                                           dev->ctrl.page_size);
1443
1444         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1445                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1446                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1447                 q_depth = div_u64(mem_per_q, entry_size);
1448
1449                 /*
1450                  * Ensure the reduced q_depth is above some threshold where it
1451                  * would be better to map queues in system memory with the
1452                  * original depth
1453                  */
1454                 if (q_depth < 64)
1455                         return -ENOMEM;
1456         }
1457
1458         return q_depth;
1459 }
1460
1461 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1462                                 int qid, int depth)
1463 {
1464         struct pci_dev *pdev = to_pci_dev(dev->dev);
1465
1466         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1467                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1468                 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1469                                                 nvmeq->sq_cmds);
1470                 if (nvmeq->sq_dma_addr) {
1471                         set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1472                         return 0; 
1473                 }
1474         }
1475
1476         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1477                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1478         if (!nvmeq->sq_cmds)
1479                 return -ENOMEM;
1480         return 0;
1481 }
1482
1483 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1484 {
1485         struct nvme_queue *nvmeq = &dev->queues[qid];
1486
1487         if (dev->ctrl.queue_count > qid)
1488                 return 0;
1489
1490         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1491                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1492         if (!nvmeq->cqes)
1493                 goto free_nvmeq;
1494
1495         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1496                 goto free_cqdma;
1497
1498         nvmeq->q_dmadev = dev->dev;
1499         nvmeq->dev = dev;
1500         spin_lock_init(&nvmeq->sq_lock);
1501         spin_lock_init(&nvmeq->cq_poll_lock);
1502         nvmeq->cq_head = 0;
1503         nvmeq->cq_phase = 1;
1504         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1505         nvmeq->q_depth = depth;
1506         nvmeq->qid = qid;
1507         nvmeq->cq_vector = -1;
1508         dev->ctrl.queue_count++;
1509
1510         return 0;
1511
1512  free_cqdma:
1513         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1514                                                         nvmeq->cq_dma_addr);
1515  free_nvmeq:
1516         return -ENOMEM;
1517 }
1518
1519 static int queue_request_irq(struct nvme_queue *nvmeq)
1520 {
1521         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1522         int nr = nvmeq->dev->ctrl.instance;
1523
1524         if (use_threaded_interrupts) {
1525                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1526                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1527         } else {
1528                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1529                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1530         }
1531 }
1532
1533 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1534 {
1535         struct nvme_dev *dev = nvmeq->dev;
1536
1537         nvmeq->sq_tail = 0;
1538         nvmeq->last_sq_tail = 0;
1539         nvmeq->cq_head = 0;
1540         nvmeq->cq_phase = 1;
1541         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1542         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1543         nvme_dbbuf_init(dev, nvmeq, qid);
1544         dev->online_queues++;
1545         wmb(); /* ensure the first interrupt sees the initialization */
1546 }
1547
1548 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1549 {
1550         struct nvme_dev *dev = nvmeq->dev;
1551         int result;
1552         s16 vector;
1553
1554         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1555
1556         /*
1557          * A queue's vector matches the queue identifier unless the controller
1558          * has only one vector available.
1559          */
1560         if (!polled)
1561                 vector = dev->num_vecs == 1 ? 0 : qid;
1562         else
1563                 vector = -1;
1564
1565         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1566         if (result)
1567                 return result;
1568
1569         result = adapter_alloc_sq(dev, qid, nvmeq);
1570         if (result < 0)
1571                 return result;
1572         else if (result)
1573                 goto release_cq;
1574
1575         nvmeq->cq_vector = vector;
1576         nvme_init_queue(nvmeq, qid);
1577
1578         if (vector != -1) {
1579                 result = queue_request_irq(nvmeq);
1580                 if (result < 0)
1581                         goto release_sq;
1582         }
1583
1584         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1585         return result;
1586
1587 release_sq:
1588         nvmeq->cq_vector = -1;
1589         dev->online_queues--;
1590         adapter_delete_sq(dev, qid);
1591 release_cq:
1592         adapter_delete_cq(dev, qid);
1593         return result;
1594 }
1595
1596 static const struct blk_mq_ops nvme_mq_admin_ops = {
1597         .queue_rq       = nvme_queue_rq,
1598         .complete       = nvme_pci_complete_rq,
1599         .init_hctx      = nvme_admin_init_hctx,
1600         .exit_hctx      = nvme_admin_exit_hctx,
1601         .init_request   = nvme_init_request,
1602         .timeout        = nvme_timeout,
1603 };
1604
1605 static const struct blk_mq_ops nvme_mq_ops = {
1606         .queue_rq       = nvme_queue_rq,
1607         .complete       = nvme_pci_complete_rq,
1608         .commit_rqs     = nvme_commit_rqs,
1609         .init_hctx      = nvme_init_hctx,
1610         .init_request   = nvme_init_request,
1611         .map_queues     = nvme_pci_map_queues,
1612         .timeout        = nvme_timeout,
1613         .poll           = nvme_poll,
1614 };
1615
1616 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1617 {
1618         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1619                 /*
1620                  * If the controller was reset during removal, it's possible
1621                  * user requests may be waiting on a stopped queue. Start the
1622                  * queue to flush these to completion.
1623                  */
1624                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1625                 blk_cleanup_queue(dev->ctrl.admin_q);
1626                 blk_mq_free_tag_set(&dev->admin_tagset);
1627         }
1628 }
1629
1630 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1631 {
1632         if (!dev->ctrl.admin_q) {
1633                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1634                 dev->admin_tagset.nr_hw_queues = 1;
1635
1636                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1637                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1638                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1639                 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1640                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1641                 dev->admin_tagset.driver_data = dev;
1642
1643                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1644                         return -ENOMEM;
1645                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1646
1647                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1648                 if (IS_ERR(dev->ctrl.admin_q)) {
1649                         blk_mq_free_tag_set(&dev->admin_tagset);
1650                         return -ENOMEM;
1651                 }
1652                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1653                         nvme_dev_remove_admin(dev);
1654                         dev->ctrl.admin_q = NULL;
1655                         return -ENODEV;
1656                 }
1657         } else
1658                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1659
1660         return 0;
1661 }
1662
1663 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1664 {
1665         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1666 }
1667
1668 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1669 {
1670         struct pci_dev *pdev = to_pci_dev(dev->dev);
1671
1672         if (size <= dev->bar_mapped_size)
1673                 return 0;
1674         if (size > pci_resource_len(pdev, 0))
1675                 return -ENOMEM;
1676         if (dev->bar)
1677                 iounmap(dev->bar);
1678         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1679         if (!dev->bar) {
1680                 dev->bar_mapped_size = 0;
1681                 return -ENOMEM;
1682         }
1683         dev->bar_mapped_size = size;
1684         dev->dbs = dev->bar + NVME_REG_DBS;
1685
1686         return 0;
1687 }
1688
1689 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1690 {
1691         int result;
1692         u32 aqa;
1693         struct nvme_queue *nvmeq;
1694
1695         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1696         if (result < 0)
1697                 return result;
1698
1699         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1700                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1701
1702         if (dev->subsystem &&
1703             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1704                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1705
1706         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1707         if (result < 0)
1708                 return result;
1709
1710         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1711         if (result)
1712                 return result;
1713
1714         nvmeq = &dev->queues[0];
1715         aqa = nvmeq->q_depth - 1;
1716         aqa |= aqa << 16;
1717
1718         writel(aqa, dev->bar + NVME_REG_AQA);
1719         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1720         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1721
1722         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1723         if (result)
1724                 return result;
1725
1726         nvmeq->cq_vector = 0;
1727         nvme_init_queue(nvmeq, 0);
1728         result = queue_request_irq(nvmeq);
1729         if (result) {
1730                 nvmeq->cq_vector = -1;
1731                 return result;
1732         }
1733
1734         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1735         return result;
1736 }
1737
1738 static int nvme_create_io_queues(struct nvme_dev *dev)
1739 {
1740         unsigned i, max, rw_queues;
1741         int ret = 0;
1742
1743         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1744                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1745                         ret = -ENOMEM;
1746                         break;
1747                 }
1748         }
1749
1750         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1751         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1752                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1753                                 dev->io_queues[HCTX_TYPE_READ];
1754         } else {
1755                 rw_queues = max;
1756         }
1757
1758         for (i = dev->online_queues; i <= max; i++) {
1759                 bool polled = i > rw_queues;
1760
1761                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1762                 if (ret)
1763                         break;
1764         }
1765
1766         /*
1767          * Ignore failing Create SQ/CQ commands, we can continue with less
1768          * than the desired amount of queues, and even a controller without
1769          * I/O queues can still be used to issue admin commands.  This might
1770          * be useful to upgrade a buggy firmware for example.
1771          */
1772         return ret >= 0 ? 0 : ret;
1773 }
1774
1775 static ssize_t nvme_cmb_show(struct device *dev,
1776                              struct device_attribute *attr,
1777                              char *buf)
1778 {
1779         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1780
1781         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1782                        ndev->cmbloc, ndev->cmbsz);
1783 }
1784 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1785
1786 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1787 {
1788         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1789
1790         return 1ULL << (12 + 4 * szu);
1791 }
1792
1793 static u32 nvme_cmb_size(struct nvme_dev *dev)
1794 {
1795         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1796 }
1797
1798 static void nvme_map_cmb(struct nvme_dev *dev)
1799 {
1800         u64 size, offset;
1801         resource_size_t bar_size;
1802         struct pci_dev *pdev = to_pci_dev(dev->dev);
1803         int bar;
1804
1805         if (dev->cmb_size)
1806                 return;
1807
1808         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1809         if (!dev->cmbsz)
1810                 return;
1811         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1812
1813         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1814         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1815         bar = NVME_CMB_BIR(dev->cmbloc);
1816         bar_size = pci_resource_len(pdev, bar);
1817
1818         if (offset > bar_size)
1819                 return;
1820
1821         /*
1822          * Controllers may support a CMB size larger than their BAR,
1823          * for example, due to being behind a bridge. Reduce the CMB to
1824          * the reported size of the BAR
1825          */
1826         if (size > bar_size - offset)
1827                 size = bar_size - offset;
1828
1829         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1830                 dev_warn(dev->ctrl.device,
1831                          "failed to register the CMB\n");
1832                 return;
1833         }
1834
1835         dev->cmb_size = size;
1836         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1837
1838         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1839                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1840                 pci_p2pmem_publish(pdev, true);
1841
1842         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1843                                     &dev_attr_cmb.attr, NULL))
1844                 dev_warn(dev->ctrl.device,
1845                          "failed to add sysfs attribute for CMB\n");
1846 }
1847
1848 static inline void nvme_release_cmb(struct nvme_dev *dev)
1849 {
1850         if (dev->cmb_size) {
1851                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1852                                              &dev_attr_cmb.attr, NULL);
1853                 dev->cmb_size = 0;
1854         }
1855 }
1856
1857 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1858 {
1859         u64 dma_addr = dev->host_mem_descs_dma;
1860         struct nvme_command c;
1861         int ret;
1862
1863         memset(&c, 0, sizeof(c));
1864         c.features.opcode       = nvme_admin_set_features;
1865         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1866         c.features.dword11      = cpu_to_le32(bits);
1867         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1868                                               ilog2(dev->ctrl.page_size));
1869         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1870         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1871         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1872
1873         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1874         if (ret) {
1875                 dev_warn(dev->ctrl.device,
1876                          "failed to set host mem (err %d, flags %#x).\n",
1877                          ret, bits);
1878         }
1879         return ret;
1880 }
1881
1882 static void nvme_free_host_mem(struct nvme_dev *dev)
1883 {
1884         int i;
1885
1886         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1887                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1888                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1889
1890                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1891                                 le64_to_cpu(desc->addr));
1892         }
1893
1894         kfree(dev->host_mem_desc_bufs);
1895         dev->host_mem_desc_bufs = NULL;
1896         dma_free_coherent(dev->dev,
1897                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1898                         dev->host_mem_descs, dev->host_mem_descs_dma);
1899         dev->host_mem_descs = NULL;
1900         dev->nr_host_mem_descs = 0;
1901 }
1902
1903 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1904                 u32 chunk_size)
1905 {
1906         struct nvme_host_mem_buf_desc *descs;
1907         u32 max_entries, len;
1908         dma_addr_t descs_dma;
1909         int i = 0;
1910         void **bufs;
1911         u64 size, tmp;
1912
1913         tmp = (preferred + chunk_size - 1);
1914         do_div(tmp, chunk_size);
1915         max_entries = tmp;
1916
1917         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1918                 max_entries = dev->ctrl.hmmaxd;
1919
1920         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1921                         &descs_dma, GFP_KERNEL);
1922         if (!descs)
1923                 goto out;
1924
1925         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1926         if (!bufs)
1927                 goto out_free_descs;
1928
1929         for (size = 0; size < preferred && i < max_entries; size += len) {
1930                 dma_addr_t dma_addr;
1931
1932                 len = min_t(u64, chunk_size, preferred - size);
1933                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1934                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1935                 if (!bufs[i])
1936                         break;
1937
1938                 descs[i].addr = cpu_to_le64(dma_addr);
1939                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1940                 i++;
1941         }
1942
1943         if (!size)
1944                 goto out_free_bufs;
1945
1946         dev->nr_host_mem_descs = i;
1947         dev->host_mem_size = size;
1948         dev->host_mem_descs = descs;
1949         dev->host_mem_descs_dma = descs_dma;
1950         dev->host_mem_desc_bufs = bufs;
1951         return 0;
1952
1953 out_free_bufs:
1954         while (--i >= 0) {
1955                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1956
1957                 dma_free_coherent(dev->dev, size, bufs[i],
1958                                 le64_to_cpu(descs[i].addr));
1959         }
1960
1961         kfree(bufs);
1962 out_free_descs:
1963         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1964                         descs_dma);
1965 out:
1966         dev->host_mem_descs = NULL;
1967         return -ENOMEM;
1968 }
1969
1970 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1971 {
1972         u32 chunk_size;
1973
1974         /* start big and work our way down */
1975         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1976              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1977              chunk_size /= 2) {
1978                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1979                         if (!min || dev->host_mem_size >= min)
1980                                 return 0;
1981                         nvme_free_host_mem(dev);
1982                 }
1983         }
1984
1985         return -ENOMEM;
1986 }
1987
1988 static int nvme_setup_host_mem(struct nvme_dev *dev)
1989 {
1990         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1991         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1992         u64 min = (u64)dev->ctrl.hmmin * 4096;
1993         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1994         int ret;
1995
1996         preferred = min(preferred, max);
1997         if (min > max) {
1998                 dev_warn(dev->ctrl.device,
1999                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2000                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2001                 nvme_free_host_mem(dev);
2002                 return 0;
2003         }
2004
2005         /*
2006          * If we already have a buffer allocated check if we can reuse it.
2007          */
2008         if (dev->host_mem_descs) {
2009                 if (dev->host_mem_size >= min)
2010                         enable_bits |= NVME_HOST_MEM_RETURN;
2011                 else
2012                         nvme_free_host_mem(dev);
2013         }
2014
2015         if (!dev->host_mem_descs) {
2016                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2017                         dev_warn(dev->ctrl.device,
2018                                 "failed to allocate host memory buffer.\n");
2019                         return 0; /* controller must work without HMB */
2020                 }
2021
2022                 dev_info(dev->ctrl.device,
2023                         "allocated %lld MiB host memory buffer.\n",
2024                         dev->host_mem_size >> ilog2(SZ_1M));
2025         }
2026
2027         ret = nvme_set_host_mem(dev, enable_bits);
2028         if (ret)
2029                 nvme_free_host_mem(dev);
2030         return ret;
2031 }
2032
2033 static void nvme_calc_io_queues(struct nvme_dev *dev, unsigned int irq_queues)
2034 {
2035         unsigned int this_w_queues = write_queues;
2036
2037         /*
2038          * Setup read/write queue split
2039          */
2040         if (irq_queues == 1) {
2041                 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2042                 dev->io_queues[HCTX_TYPE_READ] = 0;
2043                 return;
2044         }
2045
2046         /*
2047          * If 'write_queues' is set, ensure it leaves room for at least
2048          * one read queue
2049          */
2050         if (this_w_queues >= irq_queues)
2051                 this_w_queues = irq_queues - 1;
2052
2053         /*
2054          * If 'write_queues' is set to zero, reads and writes will share
2055          * a queue set.
2056          */
2057         if (!this_w_queues) {
2058                 dev->io_queues[HCTX_TYPE_DEFAULT] = irq_queues;
2059                 dev->io_queues[HCTX_TYPE_READ] = 0;
2060         } else {
2061                 dev->io_queues[HCTX_TYPE_DEFAULT] = this_w_queues;
2062                 dev->io_queues[HCTX_TYPE_READ] = irq_queues - this_w_queues;
2063         }
2064 }
2065
2066 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2067 {
2068         struct pci_dev *pdev = to_pci_dev(dev->dev);
2069         int irq_sets[2];
2070         struct irq_affinity affd = {
2071                 .pre_vectors = 1,
2072                 .nr_sets = ARRAY_SIZE(irq_sets),
2073                 .sets = irq_sets,
2074         };
2075         int result = 0;
2076         unsigned int irq_queues, this_p_queues;
2077
2078         /*
2079          * Poll queues don't need interrupts, but we need at least one IO
2080          * queue left over for non-polled IO.
2081          */
2082         this_p_queues = poll_queues;
2083         if (this_p_queues >= nr_io_queues) {
2084                 this_p_queues = nr_io_queues - 1;
2085                 irq_queues = 1;
2086         } else {
2087                 irq_queues = nr_io_queues - this_p_queues;
2088         }
2089         dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2090
2091         /*
2092          * For irq sets, we have to ask for minvec == maxvec. This passes
2093          * any reduction back to us, so we can adjust our queue counts and
2094          * IRQ vector needs.
2095          */
2096         do {
2097                 nvme_calc_io_queues(dev, irq_queues);
2098                 irq_sets[0] = dev->io_queues[HCTX_TYPE_DEFAULT];
2099                 irq_sets[1] = dev->io_queues[HCTX_TYPE_READ];
2100                 if (!irq_sets[1])
2101                         affd.nr_sets = 1;
2102
2103                 /*
2104                  * If we got a failure and we're down to asking for just
2105                  * 1 + 1 queues, just ask for a single vector. We'll share
2106                  * that between the single IO queue and the admin queue.
2107                  */
2108                 if (result >= 0 && irq_queues > 1)
2109                         irq_queues = irq_sets[0] + irq_sets[1] + 1;
2110
2111                 result = pci_alloc_irq_vectors_affinity(pdev, irq_queues,
2112                                 irq_queues,
2113                                 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2114
2115                 /*
2116                  * Need to reduce our vec counts. If we get ENOSPC, the
2117                  * platform should support mulitple vecs, we just need
2118                  * to decrease our ask. If we get EINVAL, the platform
2119                  * likely does not. Back down to ask for just one vector.
2120                  */
2121                 if (result == -ENOSPC) {
2122                         irq_queues--;
2123                         if (!irq_queues)
2124                                 return result;
2125                         continue;
2126                 } else if (result == -EINVAL) {
2127                         irq_queues = 1;
2128                         continue;
2129                 } else if (result <= 0)
2130                         return -EIO;
2131                 break;
2132         } while (1);
2133
2134         return result;
2135 }
2136
2137 static int nvme_setup_io_queues(struct nvme_dev *dev)
2138 {
2139         struct nvme_queue *adminq = &dev->queues[0];
2140         struct pci_dev *pdev = to_pci_dev(dev->dev);
2141         int result, nr_io_queues;
2142         unsigned long size;
2143
2144         nr_io_queues = max_io_queues();
2145         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2146         if (result < 0)
2147                 return result;
2148
2149         if (nr_io_queues == 0)
2150                 return 0;
2151         
2152         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2153
2154         if (dev->cmb_use_sqes) {
2155                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2156                                 sizeof(struct nvme_command));
2157                 if (result > 0)
2158                         dev->q_depth = result;
2159                 else
2160                         dev->cmb_use_sqes = false;
2161         }
2162
2163         do {
2164                 size = db_bar_size(dev, nr_io_queues);
2165                 result = nvme_remap_bar(dev, size);
2166                 if (!result)
2167                         break;
2168                 if (!--nr_io_queues)
2169                         return -ENOMEM;
2170         } while (1);
2171         adminq->q_db = dev->dbs;
2172
2173         /* Deregister the admin queue's interrupt */
2174         pci_free_irq(pdev, 0, adminq);
2175
2176         /*
2177          * If we enable msix early due to not intx, disable it again before
2178          * setting up the full range we need.
2179          */
2180         pci_free_irq_vectors(pdev);
2181
2182         result = nvme_setup_irqs(dev, nr_io_queues);
2183         if (result <= 0)
2184                 return -EIO;
2185
2186         dev->num_vecs = result;
2187         result = max(result - 1, 1);
2188         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2189
2190         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2191                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2192                                         dev->io_queues[HCTX_TYPE_READ],
2193                                         dev->io_queues[HCTX_TYPE_POLL]);
2194
2195         /*
2196          * Should investigate if there's a performance win from allocating
2197          * more queues than interrupt vectors; it might allow the submission
2198          * path to scale better, even if the receive path is limited by the
2199          * number of interrupts.
2200          */
2201
2202         result = queue_request_irq(adminq);
2203         if (result) {
2204                 adminq->cq_vector = -1;
2205                 return result;
2206         }
2207         set_bit(NVMEQ_ENABLED, &adminq->flags);
2208         return nvme_create_io_queues(dev);
2209 }
2210
2211 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2212 {
2213         struct nvme_queue *nvmeq = req->end_io_data;
2214
2215         blk_mq_free_request(req);
2216         complete(&nvmeq->delete_done);
2217 }
2218
2219 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2220 {
2221         struct nvme_queue *nvmeq = req->end_io_data;
2222
2223         if (error)
2224                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2225
2226         nvme_del_queue_end(req, error);
2227 }
2228
2229 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2230 {
2231         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2232         struct request *req;
2233         struct nvme_command cmd;
2234
2235         memset(&cmd, 0, sizeof(cmd));
2236         cmd.delete_queue.opcode = opcode;
2237         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2238
2239         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2240         if (IS_ERR(req))
2241                 return PTR_ERR(req);
2242
2243         req->timeout = ADMIN_TIMEOUT;
2244         req->end_io_data = nvmeq;
2245
2246         init_completion(&nvmeq->delete_done);
2247         blk_execute_rq_nowait(q, NULL, req, false,
2248                         opcode == nvme_admin_delete_cq ?
2249                                 nvme_del_cq_end : nvme_del_queue_end);
2250         return 0;
2251 }
2252
2253 static bool nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2254 {
2255         int nr_queues = dev->online_queues - 1, sent = 0;
2256         unsigned long timeout;
2257
2258  retry:
2259         timeout = ADMIN_TIMEOUT;
2260         while (nr_queues > 0) {
2261                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2262                         break;
2263                 nr_queues--;
2264                 sent++;
2265         }
2266         while (sent) {
2267                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2268
2269                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2270                                 timeout);
2271                 if (timeout == 0)
2272                         return false;
2273
2274                 /* handle any remaining CQEs */
2275                 if (opcode == nvme_admin_delete_cq &&
2276                     !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2277                         nvme_poll_irqdisable(nvmeq, -1);
2278
2279                 sent--;
2280                 if (nr_queues)
2281                         goto retry;
2282         }
2283         return true;
2284 }
2285
2286 /*
2287  * return error value only when tagset allocation failed
2288  */
2289 static int nvme_dev_add(struct nvme_dev *dev)
2290 {
2291         int ret;
2292
2293         if (!dev->ctrl.tagset) {
2294                 dev->tagset.ops = &nvme_mq_ops;
2295                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2296                 dev->tagset.nr_maps = HCTX_MAX_TYPES;
2297                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2298                 dev->tagset.numa_node = dev_to_node(dev->dev);
2299                 dev->tagset.queue_depth =
2300                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2301                 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2302                 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2303                         dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2304                                         nvme_pci_cmd_size(dev, true));
2305                 }
2306                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2307                 dev->tagset.driver_data = dev;
2308
2309                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2310                 if (ret) {
2311                         dev_warn(dev->ctrl.device,
2312                                 "IO queues tagset allocation failed %d\n", ret);
2313                         return ret;
2314                 }
2315                 dev->ctrl.tagset = &dev->tagset;
2316
2317                 nvme_dbbuf_set(dev);
2318         } else {
2319                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2320
2321                 /* Free previously allocated queues that are no longer usable */
2322                 nvme_free_queues(dev, dev->online_queues);
2323         }
2324
2325         return 0;
2326 }
2327
2328 static int nvme_pci_enable(struct nvme_dev *dev)
2329 {
2330         int result = -ENOMEM;
2331         struct pci_dev *pdev = to_pci_dev(dev->dev);
2332
2333         if (pci_enable_device_mem(pdev))
2334                 return result;
2335
2336         pci_set_master(pdev);
2337
2338         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2339             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2340                 goto disable;
2341
2342         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2343                 result = -ENODEV;
2344                 goto disable;
2345         }
2346
2347         /*
2348          * Some devices and/or platforms don't advertise or work with INTx
2349          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2350          * adjust this later.
2351          */
2352         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2353         if (result < 0)
2354                 return result;
2355
2356         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2357
2358         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2359                                 io_queue_depth);
2360         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2361         dev->dbs = dev->bar + 4096;
2362
2363         /*
2364          * Temporary fix for the Apple controller found in the MacBook8,1 and
2365          * some MacBook7,1 to avoid controller resets and data loss.
2366          */
2367         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2368                 dev->q_depth = 2;
2369                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2370                         "set queue depth=%u to work around controller resets\n",
2371                         dev->q_depth);
2372         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2373                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2374                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2375                 dev->q_depth = 64;
2376                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2377                         "set queue depth=%u\n", dev->q_depth);
2378         }
2379
2380         nvme_map_cmb(dev);
2381
2382         pci_enable_pcie_error_reporting(pdev);
2383         pci_save_state(pdev);
2384         return 0;
2385
2386  disable:
2387         pci_disable_device(pdev);
2388         return result;
2389 }
2390
2391 static void nvme_dev_unmap(struct nvme_dev *dev)
2392 {
2393         if (dev->bar)
2394                 iounmap(dev->bar);
2395         pci_release_mem_regions(to_pci_dev(dev->dev));
2396 }
2397
2398 static void nvme_pci_disable(struct nvme_dev *dev)
2399 {
2400         struct pci_dev *pdev = to_pci_dev(dev->dev);
2401
2402         pci_free_irq_vectors(pdev);
2403
2404         if (pci_is_enabled(pdev)) {
2405                 pci_disable_pcie_error_reporting(pdev);
2406                 pci_disable_device(pdev);
2407         }
2408 }
2409
2410 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2411 {
2412         int i;
2413         bool dead = true;
2414         struct pci_dev *pdev = to_pci_dev(dev->dev);
2415
2416         mutex_lock(&dev->shutdown_lock);
2417         if (pci_is_enabled(pdev)) {
2418                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2419
2420                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2421                     dev->ctrl.state == NVME_CTRL_RESETTING)
2422                         nvme_start_freeze(&dev->ctrl);
2423                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2424                         pdev->error_state  != pci_channel_io_normal);
2425         }
2426
2427         /*
2428          * Give the controller a chance to complete all entered requests if
2429          * doing a safe shutdown.
2430          */
2431         if (!dead) {
2432                 if (shutdown)
2433                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2434         }
2435
2436         nvme_stop_queues(&dev->ctrl);
2437
2438         if (!dead && dev->ctrl.queue_count > 0) {
2439                 if (nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2440                         nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2441                 nvme_disable_admin_queue(dev, shutdown);
2442         }
2443         for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2444                 nvme_suspend_queue(&dev->queues[i]);
2445
2446         nvme_pci_disable(dev);
2447
2448         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2449         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2450
2451         /*
2452          * The driver will not be starting up queues again if shutting down so
2453          * must flush all entered requests to their failed completion to avoid
2454          * deadlocking blk-mq hot-cpu notifier.
2455          */
2456         if (shutdown)
2457                 nvme_start_queues(&dev->ctrl);
2458         mutex_unlock(&dev->shutdown_lock);
2459 }
2460
2461 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2462 {
2463         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2464                                                 PAGE_SIZE, PAGE_SIZE, 0);
2465         if (!dev->prp_page_pool)
2466                 return -ENOMEM;
2467
2468         /* Optimisation for I/Os between 4k and 128k */
2469         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2470                                                 256, 256, 0);
2471         if (!dev->prp_small_pool) {
2472                 dma_pool_destroy(dev->prp_page_pool);
2473                 return -ENOMEM;
2474         }
2475         return 0;
2476 }
2477
2478 static void nvme_release_prp_pools(struct nvme_dev *dev)
2479 {
2480         dma_pool_destroy(dev->prp_page_pool);
2481         dma_pool_destroy(dev->prp_small_pool);
2482 }
2483
2484 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2485 {
2486         struct nvme_dev *dev = to_nvme_dev(ctrl);
2487
2488         nvme_dbbuf_dma_free(dev);
2489         put_device(dev->dev);
2490         if (dev->tagset.tags)
2491                 blk_mq_free_tag_set(&dev->tagset);
2492         if (dev->ctrl.admin_q)
2493                 blk_put_queue(dev->ctrl.admin_q);
2494         kfree(dev->queues);
2495         free_opal_dev(dev->ctrl.opal_dev);
2496         mempool_destroy(dev->iod_mempool);
2497         kfree(dev);
2498 }
2499
2500 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2501 {
2502         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2503
2504         nvme_get_ctrl(&dev->ctrl);
2505         nvme_dev_disable(dev, false);
2506         nvme_kill_queues(&dev->ctrl);
2507         if (!queue_work(nvme_wq, &dev->remove_work))
2508                 nvme_put_ctrl(&dev->ctrl);
2509 }
2510
2511 static void nvme_reset_work(struct work_struct *work)
2512 {
2513         struct nvme_dev *dev =
2514                 container_of(work, struct nvme_dev, ctrl.reset_work);
2515         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2516         int result = -ENODEV;
2517         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2518
2519         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2520                 goto out;
2521
2522         /*
2523          * If we're called to reset a live controller first shut it down before
2524          * moving on.
2525          */
2526         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2527                 nvme_dev_disable(dev, false);
2528
2529         /*
2530          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2531          * initializing procedure here.
2532          */
2533         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2534                 dev_warn(dev->ctrl.device,
2535                         "failed to mark controller CONNECTING\n");
2536                 goto out;
2537         }
2538
2539         result = nvme_pci_enable(dev);
2540         if (result)
2541                 goto out;
2542
2543         result = nvme_pci_configure_admin_queue(dev);
2544         if (result)
2545                 goto out;
2546
2547         result = nvme_alloc_admin_tags(dev);
2548         if (result)
2549                 goto out;
2550
2551         /*
2552          * Limit the max command size to prevent iod->sg allocations going
2553          * over a single page.
2554          */
2555         dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2556         dev->ctrl.max_segments = NVME_MAX_SEGS;
2557
2558         result = nvme_init_identify(&dev->ctrl);
2559         if (result)
2560                 goto out;
2561
2562         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2563                 if (!dev->ctrl.opal_dev)
2564                         dev->ctrl.opal_dev =
2565                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2566                 else if (was_suspend)
2567                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2568         } else {
2569                 free_opal_dev(dev->ctrl.opal_dev);
2570                 dev->ctrl.opal_dev = NULL;
2571         }
2572
2573         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2574                 result = nvme_dbbuf_dma_alloc(dev);
2575                 if (result)
2576                         dev_warn(dev->dev,
2577                                  "unable to allocate dma for dbbuf\n");
2578         }
2579
2580         if (dev->ctrl.hmpre) {
2581                 result = nvme_setup_host_mem(dev);
2582                 if (result < 0)
2583                         goto out;
2584         }
2585
2586         result = nvme_setup_io_queues(dev);
2587         if (result)
2588                 goto out;
2589
2590         /*
2591          * Keep the controller around but remove all namespaces if we don't have
2592          * any working I/O queue.
2593          */
2594         if (dev->online_queues < 2) {
2595                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2596                 nvme_kill_queues(&dev->ctrl);
2597                 nvme_remove_namespaces(&dev->ctrl);
2598                 new_state = NVME_CTRL_ADMIN_ONLY;
2599         } else {
2600                 nvme_start_queues(&dev->ctrl);
2601                 nvme_wait_freeze(&dev->ctrl);
2602                 /* hit this only when allocate tagset fails */
2603                 if (nvme_dev_add(dev))
2604                         new_state = NVME_CTRL_ADMIN_ONLY;
2605                 nvme_unfreeze(&dev->ctrl);
2606         }
2607
2608         /*
2609          * If only admin queue live, keep it to do further investigation or
2610          * recovery.
2611          */
2612         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2613                 dev_warn(dev->ctrl.device,
2614                         "failed to mark controller state %d\n", new_state);
2615                 goto out;
2616         }
2617
2618         nvme_start_ctrl(&dev->ctrl);
2619         return;
2620
2621  out:
2622         nvme_remove_dead_ctrl(dev, result);
2623 }
2624
2625 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2626 {
2627         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2628         struct pci_dev *pdev = to_pci_dev(dev->dev);
2629
2630         if (pci_get_drvdata(pdev))
2631                 device_release_driver(&pdev->dev);
2632         nvme_put_ctrl(&dev->ctrl);
2633 }
2634
2635 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2636 {
2637         *val = readl(to_nvme_dev(ctrl)->bar + off);
2638         return 0;
2639 }
2640
2641 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2642 {
2643         writel(val, to_nvme_dev(ctrl)->bar + off);
2644         return 0;
2645 }
2646
2647 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2648 {
2649         *val = readq(to_nvme_dev(ctrl)->bar + off);
2650         return 0;
2651 }
2652
2653 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2654 {
2655         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2656
2657         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2658 }
2659
2660 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2661         .name                   = "pcie",
2662         .module                 = THIS_MODULE,
2663         .flags                  = NVME_F_METADATA_SUPPORTED |
2664                                   NVME_F_PCI_P2PDMA,
2665         .reg_read32             = nvme_pci_reg_read32,
2666         .reg_write32            = nvme_pci_reg_write32,
2667         .reg_read64             = nvme_pci_reg_read64,
2668         .free_ctrl              = nvme_pci_free_ctrl,
2669         .submit_async_event     = nvme_pci_submit_async_event,
2670         .get_address            = nvme_pci_get_address,
2671 };
2672
2673 static int nvme_dev_map(struct nvme_dev *dev)
2674 {
2675         struct pci_dev *pdev = to_pci_dev(dev->dev);
2676
2677         if (pci_request_mem_regions(pdev, "nvme"))
2678                 return -ENODEV;
2679
2680         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2681                 goto release;
2682
2683         return 0;
2684   release:
2685         pci_release_mem_regions(pdev);
2686         return -ENODEV;
2687 }
2688
2689 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2690 {
2691         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2692                 /*
2693                  * Several Samsung devices seem to drop off the PCIe bus
2694                  * randomly when APST is on and uses the deepest sleep state.
2695                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2696                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2697                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2698                  * laptops.
2699                  */
2700                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2701                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2702                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2703                         return NVME_QUIRK_NO_DEEPEST_PS;
2704         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2705                 /*
2706                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2707                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2708                  * within few minutes after bootup on a Coffee Lake board -
2709                  * ASUS PRIME Z370-A
2710                  */
2711                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2712                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2713                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2714                         return NVME_QUIRK_NO_APST;
2715         }
2716
2717         return 0;
2718 }
2719
2720 static void nvme_async_probe(void *data, async_cookie_t cookie)
2721 {
2722         struct nvme_dev *dev = data;
2723
2724         nvme_reset_ctrl_sync(&dev->ctrl);
2725         flush_work(&dev->ctrl.scan_work);
2726         nvme_put_ctrl(&dev->ctrl);
2727 }
2728
2729 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2730 {
2731         int node, result = -ENOMEM;
2732         struct nvme_dev *dev;
2733         unsigned long quirks = id->driver_data;
2734         size_t alloc_size;
2735
2736         node = dev_to_node(&pdev->dev);
2737         if (node == NUMA_NO_NODE)
2738                 set_dev_node(&pdev->dev, first_memory_node);
2739
2740         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2741         if (!dev)
2742                 return -ENOMEM;
2743
2744         dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2745                                         GFP_KERNEL, node);
2746         if (!dev->queues)
2747                 goto free;
2748
2749         dev->dev = get_device(&pdev->dev);
2750         pci_set_drvdata(pdev, dev);
2751
2752         result = nvme_dev_map(dev);
2753         if (result)
2754                 goto put_pci;
2755
2756         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2757         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2758         mutex_init(&dev->shutdown_lock);
2759
2760         result = nvme_setup_prp_pools(dev);
2761         if (result)
2762                 goto unmap;
2763
2764         quirks |= check_vendor_combination_bug(pdev);
2765
2766         /*
2767          * Double check that our mempool alloc size will cover the biggest
2768          * command we support.
2769          */
2770         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2771                                                 NVME_MAX_SEGS, true);
2772         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2773
2774         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2775                                                 mempool_kfree,
2776                                                 (void *) alloc_size,
2777                                                 GFP_KERNEL, node);
2778         if (!dev->iod_mempool) {
2779                 result = -ENOMEM;
2780                 goto release_pools;
2781         }
2782
2783         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2784                         quirks);
2785         if (result)
2786                 goto release_mempool;
2787
2788         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2789
2790         nvme_get_ctrl(&dev->ctrl);
2791         async_schedule(nvme_async_probe, dev);
2792
2793         return 0;
2794
2795  release_mempool:
2796         mempool_destroy(dev->iod_mempool);
2797  release_pools:
2798         nvme_release_prp_pools(dev);
2799  unmap:
2800         nvme_dev_unmap(dev);
2801  put_pci:
2802         put_device(dev->dev);
2803  free:
2804         kfree(dev->queues);
2805         kfree(dev);
2806         return result;
2807 }
2808
2809 static void nvme_reset_prepare(struct pci_dev *pdev)
2810 {
2811         struct nvme_dev *dev = pci_get_drvdata(pdev);
2812         nvme_dev_disable(dev, false);
2813 }
2814
2815 static void nvme_reset_done(struct pci_dev *pdev)
2816 {
2817         struct nvme_dev *dev = pci_get_drvdata(pdev);
2818         nvme_reset_ctrl_sync(&dev->ctrl);
2819 }
2820
2821 static void nvme_shutdown(struct pci_dev *pdev)
2822 {
2823         struct nvme_dev *dev = pci_get_drvdata(pdev);
2824         nvme_dev_disable(dev, true);
2825 }
2826
2827 /*
2828  * The driver's remove may be called on a device in a partially initialized
2829  * state. This function must not have any dependencies on the device state in
2830  * order to proceed.
2831  */
2832 static void nvme_remove(struct pci_dev *pdev)
2833 {
2834         struct nvme_dev *dev = pci_get_drvdata(pdev);
2835
2836         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2837         pci_set_drvdata(pdev, NULL);
2838
2839         if (!pci_device_is_present(pdev)) {
2840                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2841                 nvme_dev_disable(dev, true);
2842                 nvme_dev_remove_admin(dev);
2843         }
2844
2845         flush_work(&dev->ctrl.reset_work);
2846         nvme_stop_ctrl(&dev->ctrl);
2847         nvme_remove_namespaces(&dev->ctrl);
2848         nvme_dev_disable(dev, true);
2849         nvme_release_cmb(dev);
2850         nvme_free_host_mem(dev);
2851         nvme_dev_remove_admin(dev);
2852         nvme_free_queues(dev, 0);
2853         nvme_uninit_ctrl(&dev->ctrl);
2854         nvme_release_prp_pools(dev);
2855         nvme_dev_unmap(dev);
2856         nvme_put_ctrl(&dev->ctrl);
2857 }
2858
2859 #ifdef CONFIG_PM_SLEEP
2860 static int nvme_suspend(struct device *dev)
2861 {
2862         struct pci_dev *pdev = to_pci_dev(dev);
2863         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2864
2865         nvme_dev_disable(ndev, true);
2866         return 0;
2867 }
2868
2869 static int nvme_resume(struct device *dev)
2870 {
2871         struct pci_dev *pdev = to_pci_dev(dev);
2872         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2873
2874         nvme_reset_ctrl(&ndev->ctrl);
2875         return 0;
2876 }
2877 #endif
2878
2879 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2880
2881 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2882                                                 pci_channel_state_t state)
2883 {
2884         struct nvme_dev *dev = pci_get_drvdata(pdev);
2885
2886         /*
2887          * A frozen channel requires a reset. When detected, this method will
2888          * shutdown the controller to quiesce. The controller will be restarted
2889          * after the slot reset through driver's slot_reset callback.
2890          */
2891         switch (state) {
2892         case pci_channel_io_normal:
2893                 return PCI_ERS_RESULT_CAN_RECOVER;
2894         case pci_channel_io_frozen:
2895                 dev_warn(dev->ctrl.device,
2896                         "frozen state error detected, reset controller\n");
2897                 nvme_dev_disable(dev, false);
2898                 return PCI_ERS_RESULT_NEED_RESET;
2899         case pci_channel_io_perm_failure:
2900                 dev_warn(dev->ctrl.device,
2901                         "failure state error detected, request disconnect\n");
2902                 return PCI_ERS_RESULT_DISCONNECT;
2903         }
2904         return PCI_ERS_RESULT_NEED_RESET;
2905 }
2906
2907 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2908 {
2909         struct nvme_dev *dev = pci_get_drvdata(pdev);
2910
2911         dev_info(dev->ctrl.device, "restart after slot reset\n");
2912         pci_restore_state(pdev);
2913         nvme_reset_ctrl(&dev->ctrl);
2914         return PCI_ERS_RESULT_RECOVERED;
2915 }
2916
2917 static void nvme_error_resume(struct pci_dev *pdev)
2918 {
2919         struct nvme_dev *dev = pci_get_drvdata(pdev);
2920
2921         flush_work(&dev->ctrl.reset_work);
2922 }
2923
2924 static const struct pci_error_handlers nvme_err_handler = {
2925         .error_detected = nvme_error_detected,
2926         .slot_reset     = nvme_slot_reset,
2927         .resume         = nvme_error_resume,
2928         .reset_prepare  = nvme_reset_prepare,
2929         .reset_done     = nvme_reset_done,
2930 };
2931
2932 static const struct pci_device_id nvme_id_table[] = {
2933         { PCI_VDEVICE(INTEL, 0x0953),
2934                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2935                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2936         { PCI_VDEVICE(INTEL, 0x0a53),
2937                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2938                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2939         { PCI_VDEVICE(INTEL, 0x0a54),
2940                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2941                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2942         { PCI_VDEVICE(INTEL, 0x0a55),
2943                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2944                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2945         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2946                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2947                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
2948         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2949                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2950         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2951                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2952         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2953                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2954         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2955                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2956         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2957                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2958         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2959                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2960         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2961                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2962         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2963                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2964         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2965                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2966         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2967                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2968         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2969         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2970         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2971         { 0, }
2972 };
2973 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2974
2975 static struct pci_driver nvme_driver = {
2976         .name           = "nvme",
2977         .id_table       = nvme_id_table,
2978         .probe          = nvme_probe,
2979         .remove         = nvme_remove,
2980         .shutdown       = nvme_shutdown,
2981         .driver         = {
2982                 .pm     = &nvme_dev_pm_ops,
2983         },
2984         .sriov_configure = pci_sriov_configure_simple,
2985         .err_handler    = &nvme_err_handler,
2986 };
2987
2988 static int __init nvme_init(void)
2989 {
2990         return pci_register_driver(&nvme_driver);
2991 }
2992
2993 static void __exit nvme_exit(void)
2994 {
2995         pci_unregister_driver(&nvme_driver);
2996         flush_workqueue(nvme_wq);
2997         _nvme_check_size();
2998 }
2999
3000 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3001 MODULE_LICENSE("GPL");
3002 MODULE_VERSION("1.0");
3003 module_init(nvme_init);
3004 module_exit(nvme_exit);