bb88681f4dc35c386b47cbd571824f06d7cce2bf
[linux-2.6-microblaze.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
27
28 #include "trace.h"
29 #include "nvme.h"
30
31 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
33
34 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36 /*
37  * These can be higher, but we need to ensure that any command doesn't
38  * require an sg allocation that needs more than a page of data.
39  */
40 #define NVME_MAX_KB_SZ  4096
41 #define NVME_MAX_SEGS   127
42
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
45
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58                 "Use SGLs when average request segment size is larger or equal to "
59                 "this size. Use 0 to disable SGLs.");
60
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63         .set = io_queue_depth_set,
64         .get = param_get_int,
65 };
66
67 static int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71 static int write_queues;
72 module_param(write_queues, int, 0644);
73 MODULE_PARM_DESC(write_queues,
74         "Number of queues to use for writes. If not set, reads and writes "
75         "will share a queue set.");
76
77 static int poll_queues;
78 module_param(poll_queues, int, 0644);
79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
81 struct nvme_dev;
82 struct nvme_queue;
83
84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86
87 /*
88  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
89  */
90 struct nvme_dev {
91         struct nvme_queue *queues;
92         struct blk_mq_tag_set tagset;
93         struct blk_mq_tag_set admin_tagset;
94         u32 __iomem *dbs;
95         struct device *dev;
96         struct dma_pool *prp_page_pool;
97         struct dma_pool *prp_small_pool;
98         unsigned online_queues;
99         unsigned max_qid;
100         unsigned io_queues[HCTX_MAX_TYPES];
101         unsigned int num_vecs;
102         int q_depth;
103         int io_sqes;
104         u32 db_stride;
105         void __iomem *bar;
106         unsigned long bar_mapped_size;
107         struct work_struct remove_work;
108         struct mutex shutdown_lock;
109         bool subsystem;
110         u64 cmb_size;
111         bool cmb_use_sqes;
112         u32 cmbsz;
113         u32 cmbloc;
114         struct nvme_ctrl ctrl;
115         u32 last_ps;
116
117         mempool_t *iod_mempool;
118
119         /* shadow doorbell buffer support: */
120         u32 *dbbuf_dbs;
121         dma_addr_t dbbuf_dbs_dma_addr;
122         u32 *dbbuf_eis;
123         dma_addr_t dbbuf_eis_dma_addr;
124
125         /* host memory buffer support: */
126         u64 host_mem_size;
127         u32 nr_host_mem_descs;
128         dma_addr_t host_mem_descs_dma;
129         struct nvme_host_mem_buf_desc *host_mem_descs;
130         void **host_mem_desc_bufs;
131 };
132
133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
134 {
135         int n = 0, ret;
136
137         ret = kstrtoint(val, 10, &n);
138         if (ret != 0 || n < 2)
139                 return -EINVAL;
140
141         return param_set_int(val, kp);
142 }
143
144 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
145 {
146         return qid * 2 * stride;
147 }
148
149 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
150 {
151         return (qid * 2 + 1) * stride;
152 }
153
154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
155 {
156         return container_of(ctrl, struct nvme_dev, ctrl);
157 }
158
159 /*
160  * An NVM Express queue.  Each device has at least two (one for admin
161  * commands and one for I/O commands).
162  */
163 struct nvme_queue {
164         struct nvme_dev *dev;
165         spinlock_t sq_lock;
166         void *sq_cmds;
167          /* only used for poll queues: */
168         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
169         volatile struct nvme_completion *cqes;
170         struct blk_mq_tags **tags;
171         dma_addr_t sq_dma_addr;
172         dma_addr_t cq_dma_addr;
173         u32 __iomem *q_db;
174         u16 q_depth;
175         u16 cq_vector;
176         u16 sq_tail;
177         u16 last_sq_tail;
178         u16 cq_head;
179         u16 last_cq_head;
180         u16 qid;
181         u8 cq_phase;
182         u8 sqes;
183         unsigned long flags;
184 #define NVMEQ_ENABLED           0
185 #define NVMEQ_SQ_CMB            1
186 #define NVMEQ_DELETE_ERROR      2
187 #define NVMEQ_POLLED            3
188         u32 *dbbuf_sq_db;
189         u32 *dbbuf_cq_db;
190         u32 *dbbuf_sq_ei;
191         u32 *dbbuf_cq_ei;
192         struct completion delete_done;
193 };
194
195 /*
196  * The nvme_iod describes the data in an I/O.
197  *
198  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
199  * to the actual struct scatterlist.
200  */
201 struct nvme_iod {
202         struct nvme_request req;
203         struct nvme_queue *nvmeq;
204         bool use_sgl;
205         int aborted;
206         int npages;             /* In the PRP list. 0 means small pool in use */
207         int nents;              /* Used in scatterlist */
208         dma_addr_t first_dma;
209         unsigned int dma_len;   /* length of single DMA segment mapping */
210         dma_addr_t meta_dma;
211         struct scatterlist *sg;
212 };
213
214 static unsigned int max_io_queues(void)
215 {
216         return num_possible_cpus() + write_queues + poll_queues;
217 }
218
219 static unsigned int max_queue_count(void)
220 {
221         /* IO queues + admin queue */
222         return 1 + max_io_queues();
223 }
224
225 static inline unsigned int nvme_dbbuf_size(u32 stride)
226 {
227         return (max_queue_count() * 8 * stride);
228 }
229
230 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
231 {
232         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
233
234         if (dev->dbbuf_dbs)
235                 return 0;
236
237         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
238                                             &dev->dbbuf_dbs_dma_addr,
239                                             GFP_KERNEL);
240         if (!dev->dbbuf_dbs)
241                 return -ENOMEM;
242         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
243                                             &dev->dbbuf_eis_dma_addr,
244                                             GFP_KERNEL);
245         if (!dev->dbbuf_eis) {
246                 dma_free_coherent(dev->dev, mem_size,
247                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
248                 dev->dbbuf_dbs = NULL;
249                 return -ENOMEM;
250         }
251
252         return 0;
253 }
254
255 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
256 {
257         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
258
259         if (dev->dbbuf_dbs) {
260                 dma_free_coherent(dev->dev, mem_size,
261                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262                 dev->dbbuf_dbs = NULL;
263         }
264         if (dev->dbbuf_eis) {
265                 dma_free_coherent(dev->dev, mem_size,
266                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
267                 dev->dbbuf_eis = NULL;
268         }
269 }
270
271 static void nvme_dbbuf_init(struct nvme_dev *dev,
272                             struct nvme_queue *nvmeq, int qid)
273 {
274         if (!dev->dbbuf_dbs || !qid)
275                 return;
276
277         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
278         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
279         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
280         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
281 }
282
283 static void nvme_dbbuf_set(struct nvme_dev *dev)
284 {
285         struct nvme_command c;
286
287         if (!dev->dbbuf_dbs)
288                 return;
289
290         memset(&c, 0, sizeof(c));
291         c.dbbuf.opcode = nvme_admin_dbbuf;
292         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
293         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
294
295         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
296                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
297                 /* Free memory and continue on */
298                 nvme_dbbuf_dma_free(dev);
299         }
300 }
301
302 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
303 {
304         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
305 }
306
307 /* Update dbbuf and return true if an MMIO is required */
308 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
309                                               volatile u32 *dbbuf_ei)
310 {
311         if (dbbuf_db) {
312                 u16 old_value;
313
314                 /*
315                  * Ensure that the queue is written before updating
316                  * the doorbell in memory
317                  */
318                 wmb();
319
320                 old_value = *dbbuf_db;
321                 *dbbuf_db = value;
322
323                 /*
324                  * Ensure that the doorbell is updated before reading the event
325                  * index from memory.  The controller needs to provide similar
326                  * ordering to ensure the envent index is updated before reading
327                  * the doorbell.
328                  */
329                 mb();
330
331                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
332                         return false;
333         }
334
335         return true;
336 }
337
338 /*
339  * Will slightly overestimate the number of pages needed.  This is OK
340  * as it only leads to a small amount of wasted memory for the lifetime of
341  * the I/O.
342  */
343 static int nvme_npages(unsigned size, struct nvme_dev *dev)
344 {
345         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
346                                       dev->ctrl.page_size);
347         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
348 }
349
350 /*
351  * Calculates the number of pages needed for the SGL segments. For example a 4k
352  * page can accommodate 256 SGL descriptors.
353  */
354 static int nvme_pci_npages_sgl(unsigned int num_seg)
355 {
356         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
357 }
358
359 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
360                 unsigned int size, unsigned int nseg, bool use_sgl)
361 {
362         size_t alloc_size;
363
364         if (use_sgl)
365                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
366         else
367                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
368
369         return alloc_size + sizeof(struct scatterlist) * nseg;
370 }
371
372 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
373                                 unsigned int hctx_idx)
374 {
375         struct nvme_dev *dev = data;
376         struct nvme_queue *nvmeq = &dev->queues[0];
377
378         WARN_ON(hctx_idx != 0);
379         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
380         WARN_ON(nvmeq->tags);
381
382         hctx->driver_data = nvmeq;
383         nvmeq->tags = &dev->admin_tagset.tags[0];
384         return 0;
385 }
386
387 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
388 {
389         struct nvme_queue *nvmeq = hctx->driver_data;
390
391         nvmeq->tags = NULL;
392 }
393
394 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
395                           unsigned int hctx_idx)
396 {
397         struct nvme_dev *dev = data;
398         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
399
400         if (!nvmeq->tags)
401                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
402
403         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
404         hctx->driver_data = nvmeq;
405         return 0;
406 }
407
408 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
409                 unsigned int hctx_idx, unsigned int numa_node)
410 {
411         struct nvme_dev *dev = set->driver_data;
412         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
413         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
414         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
415
416         BUG_ON(!nvmeq);
417         iod->nvmeq = nvmeq;
418
419         nvme_req(req)->ctrl = &dev->ctrl;
420         return 0;
421 }
422
423 static int queue_irq_offset(struct nvme_dev *dev)
424 {
425         /* if we have more than 1 vec, admin queue offsets us by 1 */
426         if (dev->num_vecs > 1)
427                 return 1;
428
429         return 0;
430 }
431
432 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
433 {
434         struct nvme_dev *dev = set->driver_data;
435         int i, qoff, offset;
436
437         offset = queue_irq_offset(dev);
438         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
439                 struct blk_mq_queue_map *map = &set->map[i];
440
441                 map->nr_queues = dev->io_queues[i];
442                 if (!map->nr_queues) {
443                         BUG_ON(i == HCTX_TYPE_DEFAULT);
444                         continue;
445                 }
446
447                 /*
448                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
449                  * affinity), so use the regular blk-mq cpu mapping
450                  */
451                 map->queue_offset = qoff;
452                 if (i != HCTX_TYPE_POLL && offset)
453                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
454                 else
455                         blk_mq_map_queues(map);
456                 qoff += map->nr_queues;
457                 offset += map->nr_queues;
458         }
459
460         return 0;
461 }
462
463 /*
464  * Write sq tail if we are asked to, or if the next command would wrap.
465  */
466 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
467 {
468         if (!write_sq) {
469                 u16 next_tail = nvmeq->sq_tail + 1;
470
471                 if (next_tail == nvmeq->q_depth)
472                         next_tail = 0;
473                 if (next_tail != nvmeq->last_sq_tail)
474                         return;
475         }
476
477         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
478                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
479                 writel(nvmeq->sq_tail, nvmeq->q_db);
480         nvmeq->last_sq_tail = nvmeq->sq_tail;
481 }
482
483 /**
484  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
485  * @nvmeq: The queue to use
486  * @cmd: The command to send
487  * @write_sq: whether to write to the SQ doorbell
488  */
489 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
490                             bool write_sq)
491 {
492         spin_lock(&nvmeq->sq_lock);
493         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
494                cmd, sizeof(*cmd));
495         if (++nvmeq->sq_tail == nvmeq->q_depth)
496                 nvmeq->sq_tail = 0;
497         nvme_write_sq_db(nvmeq, write_sq);
498         spin_unlock(&nvmeq->sq_lock);
499 }
500
501 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
502 {
503         struct nvme_queue *nvmeq = hctx->driver_data;
504
505         spin_lock(&nvmeq->sq_lock);
506         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
507                 nvme_write_sq_db(nvmeq, true);
508         spin_unlock(&nvmeq->sq_lock);
509 }
510
511 static void **nvme_pci_iod_list(struct request *req)
512 {
513         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
514         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
515 }
516
517 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
518 {
519         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
520         int nseg = blk_rq_nr_phys_segments(req);
521         unsigned int avg_seg_size;
522
523         if (nseg == 0)
524                 return false;
525
526         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
527
528         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
529                 return false;
530         if (!iod->nvmeq->qid)
531                 return false;
532         if (!sgl_threshold || avg_seg_size < sgl_threshold)
533                 return false;
534         return true;
535 }
536
537 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
538 {
539         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
540         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
541         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
542         int i;
543
544         if (iod->dma_len) {
545                 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
546                                rq_dma_dir(req));
547                 return;
548         }
549
550         WARN_ON_ONCE(!iod->nents);
551
552         if (is_pci_p2pdma_page(sg_page(iod->sg)))
553                 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
554                                     rq_dma_dir(req));
555         else
556                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
557
558
559         if (iod->npages == 0)
560                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
561                         dma_addr);
562
563         for (i = 0; i < iod->npages; i++) {
564                 void *addr = nvme_pci_iod_list(req)[i];
565
566                 if (iod->use_sgl) {
567                         struct nvme_sgl_desc *sg_list = addr;
568
569                         next_dma_addr =
570                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
571                 } else {
572                         __le64 *prp_list = addr;
573
574                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
575                 }
576
577                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
578                 dma_addr = next_dma_addr;
579         }
580
581         mempool_free(iod->sg, dev->iod_mempool);
582 }
583
584 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
585 {
586         int i;
587         struct scatterlist *sg;
588
589         for_each_sg(sgl, sg, nents, i) {
590                 dma_addr_t phys = sg_phys(sg);
591                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
592                         "dma_address:%pad dma_length:%d\n",
593                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
594                         sg_dma_len(sg));
595         }
596 }
597
598 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
599                 struct request *req, struct nvme_rw_command *cmnd)
600 {
601         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
602         struct dma_pool *pool;
603         int length = blk_rq_payload_bytes(req);
604         struct scatterlist *sg = iod->sg;
605         int dma_len = sg_dma_len(sg);
606         u64 dma_addr = sg_dma_address(sg);
607         u32 page_size = dev->ctrl.page_size;
608         int offset = dma_addr & (page_size - 1);
609         __le64 *prp_list;
610         void **list = nvme_pci_iod_list(req);
611         dma_addr_t prp_dma;
612         int nprps, i;
613
614         length -= (page_size - offset);
615         if (length <= 0) {
616                 iod->first_dma = 0;
617                 goto done;
618         }
619
620         dma_len -= (page_size - offset);
621         if (dma_len) {
622                 dma_addr += (page_size - offset);
623         } else {
624                 sg = sg_next(sg);
625                 dma_addr = sg_dma_address(sg);
626                 dma_len = sg_dma_len(sg);
627         }
628
629         if (length <= page_size) {
630                 iod->first_dma = dma_addr;
631                 goto done;
632         }
633
634         nprps = DIV_ROUND_UP(length, page_size);
635         if (nprps <= (256 / 8)) {
636                 pool = dev->prp_small_pool;
637                 iod->npages = 0;
638         } else {
639                 pool = dev->prp_page_pool;
640                 iod->npages = 1;
641         }
642
643         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
644         if (!prp_list) {
645                 iod->first_dma = dma_addr;
646                 iod->npages = -1;
647                 return BLK_STS_RESOURCE;
648         }
649         list[0] = prp_list;
650         iod->first_dma = prp_dma;
651         i = 0;
652         for (;;) {
653                 if (i == page_size >> 3) {
654                         __le64 *old_prp_list = prp_list;
655                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
656                         if (!prp_list)
657                                 return BLK_STS_RESOURCE;
658                         list[iod->npages++] = prp_list;
659                         prp_list[0] = old_prp_list[i - 1];
660                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
661                         i = 1;
662                 }
663                 prp_list[i++] = cpu_to_le64(dma_addr);
664                 dma_len -= page_size;
665                 dma_addr += page_size;
666                 length -= page_size;
667                 if (length <= 0)
668                         break;
669                 if (dma_len > 0)
670                         continue;
671                 if (unlikely(dma_len < 0))
672                         goto bad_sgl;
673                 sg = sg_next(sg);
674                 dma_addr = sg_dma_address(sg);
675                 dma_len = sg_dma_len(sg);
676         }
677
678 done:
679         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
680         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
681
682         return BLK_STS_OK;
683
684  bad_sgl:
685         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
686                         "Invalid SGL for payload:%d nents:%d\n",
687                         blk_rq_payload_bytes(req), iod->nents);
688         return BLK_STS_IOERR;
689 }
690
691 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
692                 struct scatterlist *sg)
693 {
694         sge->addr = cpu_to_le64(sg_dma_address(sg));
695         sge->length = cpu_to_le32(sg_dma_len(sg));
696         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
697 }
698
699 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
700                 dma_addr_t dma_addr, int entries)
701 {
702         sge->addr = cpu_to_le64(dma_addr);
703         if (entries < SGES_PER_PAGE) {
704                 sge->length = cpu_to_le32(entries * sizeof(*sge));
705                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
706         } else {
707                 sge->length = cpu_to_le32(PAGE_SIZE);
708                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
709         }
710 }
711
712 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
713                 struct request *req, struct nvme_rw_command *cmd, int entries)
714 {
715         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
716         struct dma_pool *pool;
717         struct nvme_sgl_desc *sg_list;
718         struct scatterlist *sg = iod->sg;
719         dma_addr_t sgl_dma;
720         int i = 0;
721
722         /* setting the transfer type as SGL */
723         cmd->flags = NVME_CMD_SGL_METABUF;
724
725         if (entries == 1) {
726                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
727                 return BLK_STS_OK;
728         }
729
730         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
731                 pool = dev->prp_small_pool;
732                 iod->npages = 0;
733         } else {
734                 pool = dev->prp_page_pool;
735                 iod->npages = 1;
736         }
737
738         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
739         if (!sg_list) {
740                 iod->npages = -1;
741                 return BLK_STS_RESOURCE;
742         }
743
744         nvme_pci_iod_list(req)[0] = sg_list;
745         iod->first_dma = sgl_dma;
746
747         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
748
749         do {
750                 if (i == SGES_PER_PAGE) {
751                         struct nvme_sgl_desc *old_sg_desc = sg_list;
752                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
753
754                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
755                         if (!sg_list)
756                                 return BLK_STS_RESOURCE;
757
758                         i = 0;
759                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
760                         sg_list[i++] = *link;
761                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
762                 }
763
764                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
765                 sg = sg_next(sg);
766         } while (--entries > 0);
767
768         return BLK_STS_OK;
769 }
770
771 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
772                 struct request *req, struct nvme_rw_command *cmnd,
773                 struct bio_vec *bv)
774 {
775         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
776         unsigned int first_prp_len = dev->ctrl.page_size - bv->bv_offset;
777
778         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
779         if (dma_mapping_error(dev->dev, iod->first_dma))
780                 return BLK_STS_RESOURCE;
781         iod->dma_len = bv->bv_len;
782
783         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
784         if (bv->bv_len > first_prp_len)
785                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
786         return 0;
787 }
788
789 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
790                 struct request *req, struct nvme_rw_command *cmnd,
791                 struct bio_vec *bv)
792 {
793         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
794
795         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
796         if (dma_mapping_error(dev->dev, iod->first_dma))
797                 return BLK_STS_RESOURCE;
798         iod->dma_len = bv->bv_len;
799
800         cmnd->flags = NVME_CMD_SGL_METABUF;
801         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
802         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
803         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
804         return 0;
805 }
806
807 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
808                 struct nvme_command *cmnd)
809 {
810         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
811         blk_status_t ret = BLK_STS_RESOURCE;
812         int nr_mapped;
813
814         if (blk_rq_nr_phys_segments(req) == 1) {
815                 struct bio_vec bv = req_bvec(req);
816
817                 if (!is_pci_p2pdma_page(bv.bv_page)) {
818                         if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
819                                 return nvme_setup_prp_simple(dev, req,
820                                                              &cmnd->rw, &bv);
821
822                         if (iod->nvmeq->qid &&
823                             dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
824                                 return nvme_setup_sgl_simple(dev, req,
825                                                              &cmnd->rw, &bv);
826                 }
827         }
828
829         iod->dma_len = 0;
830         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
831         if (!iod->sg)
832                 return BLK_STS_RESOURCE;
833         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
834         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
835         if (!iod->nents)
836                 goto out;
837
838         if (is_pci_p2pdma_page(sg_page(iod->sg)))
839                 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
840                                 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
841         else
842                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
843                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
844         if (!nr_mapped)
845                 goto out;
846
847         iod->use_sgl = nvme_pci_use_sgls(dev, req);
848         if (iod->use_sgl)
849                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
850         else
851                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
852 out:
853         if (ret != BLK_STS_OK)
854                 nvme_unmap_data(dev, req);
855         return ret;
856 }
857
858 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
859                 struct nvme_command *cmnd)
860 {
861         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
862
863         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
864                         rq_dma_dir(req), 0);
865         if (dma_mapping_error(dev->dev, iod->meta_dma))
866                 return BLK_STS_IOERR;
867         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
868         return 0;
869 }
870
871 /*
872  * NOTE: ns is NULL when called on the admin queue.
873  */
874 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875                          const struct blk_mq_queue_data *bd)
876 {
877         struct nvme_ns *ns = hctx->queue->queuedata;
878         struct nvme_queue *nvmeq = hctx->driver_data;
879         struct nvme_dev *dev = nvmeq->dev;
880         struct request *req = bd->rq;
881         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
882         struct nvme_command cmnd;
883         blk_status_t ret;
884
885         iod->aborted = 0;
886         iod->npages = -1;
887         iod->nents = 0;
888
889         /*
890          * We should not need to do this, but we're still using this to
891          * ensure we can drain requests on a dying queue.
892          */
893         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
894                 return BLK_STS_IOERR;
895
896         ret = nvme_setup_cmd(ns, req, &cmnd);
897         if (ret)
898                 return ret;
899
900         if (blk_rq_nr_phys_segments(req)) {
901                 ret = nvme_map_data(dev, req, &cmnd);
902                 if (ret)
903                         goto out_free_cmd;
904         }
905
906         if (blk_integrity_rq(req)) {
907                 ret = nvme_map_metadata(dev, req, &cmnd);
908                 if (ret)
909                         goto out_unmap_data;
910         }
911
912         blk_mq_start_request(req);
913         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
914         return BLK_STS_OK;
915 out_unmap_data:
916         nvme_unmap_data(dev, req);
917 out_free_cmd:
918         nvme_cleanup_cmd(req);
919         return ret;
920 }
921
922 static void nvme_pci_complete_rq(struct request *req)
923 {
924         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
925         struct nvme_dev *dev = iod->nvmeq->dev;
926
927         nvme_cleanup_cmd(req);
928         if (blk_integrity_rq(req))
929                 dma_unmap_page(dev->dev, iod->meta_dma,
930                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
931         if (blk_rq_nr_phys_segments(req))
932                 nvme_unmap_data(dev, req);
933         nvme_complete_rq(req);
934 }
935
936 /* We read the CQE phase first to check if the rest of the entry is valid */
937 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
938 {
939         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
940                         nvmeq->cq_phase;
941 }
942
943 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
944 {
945         u16 head = nvmeq->cq_head;
946
947         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
948                                               nvmeq->dbbuf_cq_ei))
949                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
950 }
951
952 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
953 {
954         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
955         struct request *req;
956
957         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
958                 dev_warn(nvmeq->dev->ctrl.device,
959                         "invalid id %d completed on queue %d\n",
960                         cqe->command_id, le16_to_cpu(cqe->sq_id));
961                 return;
962         }
963
964         /*
965          * AEN requests are special as they don't time out and can
966          * survive any kind of queue freeze and often don't respond to
967          * aborts.  We don't even bother to allocate a struct request
968          * for them but rather special case them here.
969          */
970         if (unlikely(nvmeq->qid == 0 &&
971                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
972                 nvme_complete_async_event(&nvmeq->dev->ctrl,
973                                 cqe->status, &cqe->result);
974                 return;
975         }
976
977         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
978         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
979         nvme_end_request(req, cqe->status, cqe->result);
980 }
981
982 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
983 {
984         while (start != end) {
985                 nvme_handle_cqe(nvmeq, start);
986                 if (++start == nvmeq->q_depth)
987                         start = 0;
988         }
989 }
990
991 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
992 {
993         if (nvmeq->cq_head == nvmeq->q_depth - 1) {
994                 nvmeq->cq_head = 0;
995                 nvmeq->cq_phase = !nvmeq->cq_phase;
996         } else {
997                 nvmeq->cq_head++;
998         }
999 }
1000
1001 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1002                                   u16 *end, unsigned int tag)
1003 {
1004         int found = 0;
1005
1006         *start = nvmeq->cq_head;
1007         while (nvme_cqe_pending(nvmeq)) {
1008                 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1009                         found++;
1010                 nvme_update_cq_head(nvmeq);
1011         }
1012         *end = nvmeq->cq_head;
1013
1014         if (*start != *end)
1015                 nvme_ring_cq_doorbell(nvmeq);
1016         return found;
1017 }
1018
1019 static irqreturn_t nvme_irq(int irq, void *data)
1020 {
1021         struct nvme_queue *nvmeq = data;
1022         irqreturn_t ret = IRQ_NONE;
1023         u16 start, end;
1024
1025         /*
1026          * The rmb/wmb pair ensures we see all updates from a previous run of
1027          * the irq handler, even if that was on another CPU.
1028          */
1029         rmb();
1030         if (nvmeq->cq_head != nvmeq->last_cq_head)
1031                 ret = IRQ_HANDLED;
1032         nvme_process_cq(nvmeq, &start, &end, -1);
1033         nvmeq->last_cq_head = nvmeq->cq_head;
1034         wmb();
1035
1036         if (start != end) {
1037                 nvme_complete_cqes(nvmeq, start, end);
1038                 return IRQ_HANDLED;
1039         }
1040
1041         return ret;
1042 }
1043
1044 static irqreturn_t nvme_irq_check(int irq, void *data)
1045 {
1046         struct nvme_queue *nvmeq = data;
1047         if (nvme_cqe_pending(nvmeq))
1048                 return IRQ_WAKE_THREAD;
1049         return IRQ_NONE;
1050 }
1051
1052 /*
1053  * Poll for completions any queue, including those not dedicated to polling.
1054  * Can be called from any context.
1055  */
1056 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1057 {
1058         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1059         u16 start, end;
1060         int found;
1061
1062         /*
1063          * For a poll queue we need to protect against the polling thread
1064          * using the CQ lock.  For normal interrupt driven threads we have
1065          * to disable the interrupt to avoid racing with it.
1066          */
1067         if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1068                 spin_lock(&nvmeq->cq_poll_lock);
1069                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1070                 spin_unlock(&nvmeq->cq_poll_lock);
1071         } else {
1072                 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1073                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1074                 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1075         }
1076
1077         nvme_complete_cqes(nvmeq, start, end);
1078         return found;
1079 }
1080
1081 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1082 {
1083         struct nvme_queue *nvmeq = hctx->driver_data;
1084         u16 start, end;
1085         bool found;
1086
1087         if (!nvme_cqe_pending(nvmeq))
1088                 return 0;
1089
1090         spin_lock(&nvmeq->cq_poll_lock);
1091         found = nvme_process_cq(nvmeq, &start, &end, -1);
1092         spin_unlock(&nvmeq->cq_poll_lock);
1093
1094         nvme_complete_cqes(nvmeq, start, end);
1095         return found;
1096 }
1097
1098 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1099 {
1100         struct nvme_dev *dev = to_nvme_dev(ctrl);
1101         struct nvme_queue *nvmeq = &dev->queues[0];
1102         struct nvme_command c;
1103
1104         memset(&c, 0, sizeof(c));
1105         c.common.opcode = nvme_admin_async_event;
1106         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1107         nvme_submit_cmd(nvmeq, &c, true);
1108 }
1109
1110 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1111 {
1112         struct nvme_command c;
1113
1114         memset(&c, 0, sizeof(c));
1115         c.delete_queue.opcode = opcode;
1116         c.delete_queue.qid = cpu_to_le16(id);
1117
1118         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1119 }
1120
1121 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1122                 struct nvme_queue *nvmeq, s16 vector)
1123 {
1124         struct nvme_command c;
1125         int flags = NVME_QUEUE_PHYS_CONTIG;
1126
1127         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1128                 flags |= NVME_CQ_IRQ_ENABLED;
1129
1130         /*
1131          * Note: we (ab)use the fact that the prp fields survive if no data
1132          * is attached to the request.
1133          */
1134         memset(&c, 0, sizeof(c));
1135         c.create_cq.opcode = nvme_admin_create_cq;
1136         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1137         c.create_cq.cqid = cpu_to_le16(qid);
1138         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1139         c.create_cq.cq_flags = cpu_to_le16(flags);
1140         c.create_cq.irq_vector = cpu_to_le16(vector);
1141
1142         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1143 }
1144
1145 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1146                                                 struct nvme_queue *nvmeq)
1147 {
1148         struct nvme_ctrl *ctrl = &dev->ctrl;
1149         struct nvme_command c;
1150         int flags = NVME_QUEUE_PHYS_CONTIG;
1151
1152         /*
1153          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1154          * set. Since URGENT priority is zeroes, it makes all queues
1155          * URGENT.
1156          */
1157         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1158                 flags |= NVME_SQ_PRIO_MEDIUM;
1159
1160         /*
1161          * Note: we (ab)use the fact that the prp fields survive if no data
1162          * is attached to the request.
1163          */
1164         memset(&c, 0, sizeof(c));
1165         c.create_sq.opcode = nvme_admin_create_sq;
1166         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1167         c.create_sq.sqid = cpu_to_le16(qid);
1168         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1169         c.create_sq.sq_flags = cpu_to_le16(flags);
1170         c.create_sq.cqid = cpu_to_le16(qid);
1171
1172         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1173 }
1174
1175 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1176 {
1177         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1178 }
1179
1180 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1181 {
1182         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1183 }
1184
1185 static void abort_endio(struct request *req, blk_status_t error)
1186 {
1187         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1188         struct nvme_queue *nvmeq = iod->nvmeq;
1189
1190         dev_warn(nvmeq->dev->ctrl.device,
1191                  "Abort status: 0x%x", nvme_req(req)->status);
1192         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1193         blk_mq_free_request(req);
1194 }
1195
1196 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1197 {
1198
1199         /* If true, indicates loss of adapter communication, possibly by a
1200          * NVMe Subsystem reset.
1201          */
1202         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1203
1204         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1205         switch (dev->ctrl.state) {
1206         case NVME_CTRL_RESETTING:
1207         case NVME_CTRL_CONNECTING:
1208                 return false;
1209         default:
1210                 break;
1211         }
1212
1213         /* We shouldn't reset unless the controller is on fatal error state
1214          * _or_ if we lost the communication with it.
1215          */
1216         if (!(csts & NVME_CSTS_CFS) && !nssro)
1217                 return false;
1218
1219         return true;
1220 }
1221
1222 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1223 {
1224         /* Read a config register to help see what died. */
1225         u16 pci_status;
1226         int result;
1227
1228         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1229                                       &pci_status);
1230         if (result == PCIBIOS_SUCCESSFUL)
1231                 dev_warn(dev->ctrl.device,
1232                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1233                          csts, pci_status);
1234         else
1235                 dev_warn(dev->ctrl.device,
1236                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1237                          csts, result);
1238 }
1239
1240 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1241 {
1242         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1243         struct nvme_queue *nvmeq = iod->nvmeq;
1244         struct nvme_dev *dev = nvmeq->dev;
1245         struct request *abort_req;
1246         struct nvme_command cmd;
1247         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1248
1249         /* If PCI error recovery process is happening, we cannot reset or
1250          * the recovery mechanism will surely fail.
1251          */
1252         mb();
1253         if (pci_channel_offline(to_pci_dev(dev->dev)))
1254                 return BLK_EH_RESET_TIMER;
1255
1256         /*
1257          * Reset immediately if the controller is failed
1258          */
1259         if (nvme_should_reset(dev, csts)) {
1260                 nvme_warn_reset(dev, csts);
1261                 nvme_dev_disable(dev, false);
1262                 nvme_reset_ctrl(&dev->ctrl);
1263                 return BLK_EH_DONE;
1264         }
1265
1266         /*
1267          * Did we miss an interrupt?
1268          */
1269         if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1270                 dev_warn(dev->ctrl.device,
1271                          "I/O %d QID %d timeout, completion polled\n",
1272                          req->tag, nvmeq->qid);
1273                 return BLK_EH_DONE;
1274         }
1275
1276         /*
1277          * Shutdown immediately if controller times out while starting. The
1278          * reset work will see the pci device disabled when it gets the forced
1279          * cancellation error. All outstanding requests are completed on
1280          * shutdown, so we return BLK_EH_DONE.
1281          */
1282         switch (dev->ctrl.state) {
1283         case NVME_CTRL_CONNECTING:
1284                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1285                 /* fall through */
1286         case NVME_CTRL_DELETING:
1287                 dev_warn_ratelimited(dev->ctrl.device,
1288                          "I/O %d QID %d timeout, disable controller\n",
1289                          req->tag, nvmeq->qid);
1290                 nvme_dev_disable(dev, true);
1291                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1292                 return BLK_EH_DONE;
1293         case NVME_CTRL_RESETTING:
1294                 return BLK_EH_RESET_TIMER;
1295         default:
1296                 break;
1297         }
1298
1299         /*
1300          * Shutdown the controller immediately and schedule a reset if the
1301          * command was already aborted once before and still hasn't been
1302          * returned to the driver, or if this is the admin queue.
1303          */
1304         if (!nvmeq->qid || iod->aborted) {
1305                 dev_warn(dev->ctrl.device,
1306                          "I/O %d QID %d timeout, reset controller\n",
1307                          req->tag, nvmeq->qid);
1308                 nvme_dev_disable(dev, false);
1309                 nvme_reset_ctrl(&dev->ctrl);
1310
1311                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1312                 return BLK_EH_DONE;
1313         }
1314
1315         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1316                 atomic_inc(&dev->ctrl.abort_limit);
1317                 return BLK_EH_RESET_TIMER;
1318         }
1319         iod->aborted = 1;
1320
1321         memset(&cmd, 0, sizeof(cmd));
1322         cmd.abort.opcode = nvme_admin_abort_cmd;
1323         cmd.abort.cid = req->tag;
1324         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1325
1326         dev_warn(nvmeq->dev->ctrl.device,
1327                 "I/O %d QID %d timeout, aborting\n",
1328                  req->tag, nvmeq->qid);
1329
1330         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1331                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1332         if (IS_ERR(abort_req)) {
1333                 atomic_inc(&dev->ctrl.abort_limit);
1334                 return BLK_EH_RESET_TIMER;
1335         }
1336
1337         abort_req->timeout = ADMIN_TIMEOUT;
1338         abort_req->end_io_data = NULL;
1339         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1340
1341         /*
1342          * The aborted req will be completed on receiving the abort req.
1343          * We enable the timer again. If hit twice, it'll cause a device reset,
1344          * as the device then is in a faulty state.
1345          */
1346         return BLK_EH_RESET_TIMER;
1347 }
1348
1349 static void nvme_free_queue(struct nvme_queue *nvmeq)
1350 {
1351         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1352                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1353         if (!nvmeq->sq_cmds)
1354                 return;
1355
1356         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1357                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1358                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1359         } else {
1360                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1361                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1362         }
1363 }
1364
1365 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1366 {
1367         int i;
1368
1369         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1370                 dev->ctrl.queue_count--;
1371                 nvme_free_queue(&dev->queues[i]);
1372         }
1373 }
1374
1375 /**
1376  * nvme_suspend_queue - put queue into suspended state
1377  * @nvmeq: queue to suspend
1378  */
1379 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1380 {
1381         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1382                 return 1;
1383
1384         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1385         mb();
1386
1387         nvmeq->dev->online_queues--;
1388         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1389                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1390         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1391                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1392         return 0;
1393 }
1394
1395 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1396 {
1397         int i;
1398
1399         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1400                 nvme_suspend_queue(&dev->queues[i]);
1401 }
1402
1403 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1404 {
1405         struct nvme_queue *nvmeq = &dev->queues[0];
1406
1407         if (shutdown)
1408                 nvme_shutdown_ctrl(&dev->ctrl);
1409         else
1410                 nvme_disable_ctrl(&dev->ctrl);
1411
1412         nvme_poll_irqdisable(nvmeq, -1);
1413 }
1414
1415 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1416                                 int entry_size)
1417 {
1418         int q_depth = dev->q_depth;
1419         unsigned q_size_aligned = roundup(q_depth * entry_size,
1420                                           dev->ctrl.page_size);
1421
1422         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1423                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1424                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1425                 q_depth = div_u64(mem_per_q, entry_size);
1426
1427                 /*
1428                  * Ensure the reduced q_depth is above some threshold where it
1429                  * would be better to map queues in system memory with the
1430                  * original depth
1431                  */
1432                 if (q_depth < 64)
1433                         return -ENOMEM;
1434         }
1435
1436         return q_depth;
1437 }
1438
1439 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1440                                 int qid)
1441 {
1442         struct pci_dev *pdev = to_pci_dev(dev->dev);
1443
1444         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1445                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1446                 if (nvmeq->sq_cmds) {
1447                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1448                                                         nvmeq->sq_cmds);
1449                         if (nvmeq->sq_dma_addr) {
1450                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1451                                 return 0;
1452                         }
1453
1454                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1455                 }
1456         }
1457
1458         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1459                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1460         if (!nvmeq->sq_cmds)
1461                 return -ENOMEM;
1462         return 0;
1463 }
1464
1465 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1466 {
1467         struct nvme_queue *nvmeq = &dev->queues[qid];
1468
1469         if (dev->ctrl.queue_count > qid)
1470                 return 0;
1471
1472         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1473         nvmeq->q_depth = depth;
1474         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1475                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1476         if (!nvmeq->cqes)
1477                 goto free_nvmeq;
1478
1479         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1480                 goto free_cqdma;
1481
1482         nvmeq->dev = dev;
1483         spin_lock_init(&nvmeq->sq_lock);
1484         spin_lock_init(&nvmeq->cq_poll_lock);
1485         nvmeq->cq_head = 0;
1486         nvmeq->cq_phase = 1;
1487         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1488         nvmeq->qid = qid;
1489         dev->ctrl.queue_count++;
1490
1491         return 0;
1492
1493  free_cqdma:
1494         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1495                           nvmeq->cq_dma_addr);
1496  free_nvmeq:
1497         return -ENOMEM;
1498 }
1499
1500 static int queue_request_irq(struct nvme_queue *nvmeq)
1501 {
1502         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1503         int nr = nvmeq->dev->ctrl.instance;
1504
1505         if (use_threaded_interrupts) {
1506                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1507                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1508         } else {
1509                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1510                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1511         }
1512 }
1513
1514 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1515 {
1516         struct nvme_dev *dev = nvmeq->dev;
1517
1518         nvmeq->sq_tail = 0;
1519         nvmeq->last_sq_tail = 0;
1520         nvmeq->cq_head = 0;
1521         nvmeq->cq_phase = 1;
1522         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1523         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1524         nvme_dbbuf_init(dev, nvmeq, qid);
1525         dev->online_queues++;
1526         wmb(); /* ensure the first interrupt sees the initialization */
1527 }
1528
1529 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1530 {
1531         struct nvme_dev *dev = nvmeq->dev;
1532         int result;
1533         u16 vector = 0;
1534
1535         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1536
1537         /*
1538          * A queue's vector matches the queue identifier unless the controller
1539          * has only one vector available.
1540          */
1541         if (!polled)
1542                 vector = dev->num_vecs == 1 ? 0 : qid;
1543         else
1544                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1545
1546         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1547         if (result)
1548                 return result;
1549
1550         result = adapter_alloc_sq(dev, qid, nvmeq);
1551         if (result < 0)
1552                 return result;
1553         else if (result)
1554                 goto release_cq;
1555
1556         nvmeq->cq_vector = vector;
1557         nvme_init_queue(nvmeq, qid);
1558
1559         if (!polled) {
1560                 result = queue_request_irq(nvmeq);
1561                 if (result < 0)
1562                         goto release_sq;
1563         }
1564
1565         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1566         return result;
1567
1568 release_sq:
1569         dev->online_queues--;
1570         adapter_delete_sq(dev, qid);
1571 release_cq:
1572         adapter_delete_cq(dev, qid);
1573         return result;
1574 }
1575
1576 static const struct blk_mq_ops nvme_mq_admin_ops = {
1577         .queue_rq       = nvme_queue_rq,
1578         .complete       = nvme_pci_complete_rq,
1579         .init_hctx      = nvme_admin_init_hctx,
1580         .exit_hctx      = nvme_admin_exit_hctx,
1581         .init_request   = nvme_init_request,
1582         .timeout        = nvme_timeout,
1583 };
1584
1585 static const struct blk_mq_ops nvme_mq_ops = {
1586         .queue_rq       = nvme_queue_rq,
1587         .complete       = nvme_pci_complete_rq,
1588         .commit_rqs     = nvme_commit_rqs,
1589         .init_hctx      = nvme_init_hctx,
1590         .init_request   = nvme_init_request,
1591         .map_queues     = nvme_pci_map_queues,
1592         .timeout        = nvme_timeout,
1593         .poll           = nvme_poll,
1594 };
1595
1596 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1597 {
1598         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1599                 /*
1600                  * If the controller was reset during removal, it's possible
1601                  * user requests may be waiting on a stopped queue. Start the
1602                  * queue to flush these to completion.
1603                  */
1604                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1605                 blk_cleanup_queue(dev->ctrl.admin_q);
1606                 blk_mq_free_tag_set(&dev->admin_tagset);
1607         }
1608 }
1609
1610 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1611 {
1612         if (!dev->ctrl.admin_q) {
1613                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1614                 dev->admin_tagset.nr_hw_queues = 1;
1615
1616                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1617                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1618                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1619                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1620                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1621                 dev->admin_tagset.driver_data = dev;
1622
1623                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1624                         return -ENOMEM;
1625                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1626
1627                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1628                 if (IS_ERR(dev->ctrl.admin_q)) {
1629                         blk_mq_free_tag_set(&dev->admin_tagset);
1630                         return -ENOMEM;
1631                 }
1632                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1633                         nvme_dev_remove_admin(dev);
1634                         dev->ctrl.admin_q = NULL;
1635                         return -ENODEV;
1636                 }
1637         } else
1638                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1639
1640         return 0;
1641 }
1642
1643 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1644 {
1645         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1646 }
1647
1648 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1649 {
1650         struct pci_dev *pdev = to_pci_dev(dev->dev);
1651
1652         if (size <= dev->bar_mapped_size)
1653                 return 0;
1654         if (size > pci_resource_len(pdev, 0))
1655                 return -ENOMEM;
1656         if (dev->bar)
1657                 iounmap(dev->bar);
1658         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1659         if (!dev->bar) {
1660                 dev->bar_mapped_size = 0;
1661                 return -ENOMEM;
1662         }
1663         dev->bar_mapped_size = size;
1664         dev->dbs = dev->bar + NVME_REG_DBS;
1665
1666         return 0;
1667 }
1668
1669 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1670 {
1671         int result;
1672         u32 aqa;
1673         struct nvme_queue *nvmeq;
1674
1675         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1676         if (result < 0)
1677                 return result;
1678
1679         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1680                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1681
1682         if (dev->subsystem &&
1683             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1684                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1685
1686         result = nvme_disable_ctrl(&dev->ctrl);
1687         if (result < 0)
1688                 return result;
1689
1690         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1691         if (result)
1692                 return result;
1693
1694         nvmeq = &dev->queues[0];
1695         aqa = nvmeq->q_depth - 1;
1696         aqa |= aqa << 16;
1697
1698         writel(aqa, dev->bar + NVME_REG_AQA);
1699         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1700         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1701
1702         result = nvme_enable_ctrl(&dev->ctrl);
1703         if (result)
1704                 return result;
1705
1706         nvmeq->cq_vector = 0;
1707         nvme_init_queue(nvmeq, 0);
1708         result = queue_request_irq(nvmeq);
1709         if (result) {
1710                 dev->online_queues--;
1711                 return result;
1712         }
1713
1714         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1715         return result;
1716 }
1717
1718 static int nvme_create_io_queues(struct nvme_dev *dev)
1719 {
1720         unsigned i, max, rw_queues;
1721         int ret = 0;
1722
1723         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1724                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1725                         ret = -ENOMEM;
1726                         break;
1727                 }
1728         }
1729
1730         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1731         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1732                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1733                                 dev->io_queues[HCTX_TYPE_READ];
1734         } else {
1735                 rw_queues = max;
1736         }
1737
1738         for (i = dev->online_queues; i <= max; i++) {
1739                 bool polled = i > rw_queues;
1740
1741                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1742                 if (ret)
1743                         break;
1744         }
1745
1746         /*
1747          * Ignore failing Create SQ/CQ commands, we can continue with less
1748          * than the desired amount of queues, and even a controller without
1749          * I/O queues can still be used to issue admin commands.  This might
1750          * be useful to upgrade a buggy firmware for example.
1751          */
1752         return ret >= 0 ? 0 : ret;
1753 }
1754
1755 static ssize_t nvme_cmb_show(struct device *dev,
1756                              struct device_attribute *attr,
1757                              char *buf)
1758 {
1759         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1760
1761         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1762                        ndev->cmbloc, ndev->cmbsz);
1763 }
1764 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1765
1766 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1767 {
1768         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1769
1770         return 1ULL << (12 + 4 * szu);
1771 }
1772
1773 static u32 nvme_cmb_size(struct nvme_dev *dev)
1774 {
1775         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1776 }
1777
1778 static void nvme_map_cmb(struct nvme_dev *dev)
1779 {
1780         u64 size, offset;
1781         resource_size_t bar_size;
1782         struct pci_dev *pdev = to_pci_dev(dev->dev);
1783         int bar;
1784
1785         if (dev->cmb_size)
1786                 return;
1787
1788         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1789         if (!dev->cmbsz)
1790                 return;
1791         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1792
1793         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1794         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1795         bar = NVME_CMB_BIR(dev->cmbloc);
1796         bar_size = pci_resource_len(pdev, bar);
1797
1798         if (offset > bar_size)
1799                 return;
1800
1801         /*
1802          * Controllers may support a CMB size larger than their BAR,
1803          * for example, due to being behind a bridge. Reduce the CMB to
1804          * the reported size of the BAR
1805          */
1806         if (size > bar_size - offset)
1807                 size = bar_size - offset;
1808
1809         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1810                 dev_warn(dev->ctrl.device,
1811                          "failed to register the CMB\n");
1812                 return;
1813         }
1814
1815         dev->cmb_size = size;
1816         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1817
1818         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1819                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1820                 pci_p2pmem_publish(pdev, true);
1821
1822         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1823                                     &dev_attr_cmb.attr, NULL))
1824                 dev_warn(dev->ctrl.device,
1825                          "failed to add sysfs attribute for CMB\n");
1826 }
1827
1828 static inline void nvme_release_cmb(struct nvme_dev *dev)
1829 {
1830         if (dev->cmb_size) {
1831                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1832                                              &dev_attr_cmb.attr, NULL);
1833                 dev->cmb_size = 0;
1834         }
1835 }
1836
1837 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1838 {
1839         u64 dma_addr = dev->host_mem_descs_dma;
1840         struct nvme_command c;
1841         int ret;
1842
1843         memset(&c, 0, sizeof(c));
1844         c.features.opcode       = nvme_admin_set_features;
1845         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1846         c.features.dword11      = cpu_to_le32(bits);
1847         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1848                                               ilog2(dev->ctrl.page_size));
1849         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1850         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1851         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1852
1853         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1854         if (ret) {
1855                 dev_warn(dev->ctrl.device,
1856                          "failed to set host mem (err %d, flags %#x).\n",
1857                          ret, bits);
1858         }
1859         return ret;
1860 }
1861
1862 static void nvme_free_host_mem(struct nvme_dev *dev)
1863 {
1864         int i;
1865
1866         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1867                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1868                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1869
1870                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1871                                le64_to_cpu(desc->addr),
1872                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1873         }
1874
1875         kfree(dev->host_mem_desc_bufs);
1876         dev->host_mem_desc_bufs = NULL;
1877         dma_free_coherent(dev->dev,
1878                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1879                         dev->host_mem_descs, dev->host_mem_descs_dma);
1880         dev->host_mem_descs = NULL;
1881         dev->nr_host_mem_descs = 0;
1882 }
1883
1884 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1885                 u32 chunk_size)
1886 {
1887         struct nvme_host_mem_buf_desc *descs;
1888         u32 max_entries, len;
1889         dma_addr_t descs_dma;
1890         int i = 0;
1891         void **bufs;
1892         u64 size, tmp;
1893
1894         tmp = (preferred + chunk_size - 1);
1895         do_div(tmp, chunk_size);
1896         max_entries = tmp;
1897
1898         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1899                 max_entries = dev->ctrl.hmmaxd;
1900
1901         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1902                                    &descs_dma, GFP_KERNEL);
1903         if (!descs)
1904                 goto out;
1905
1906         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1907         if (!bufs)
1908                 goto out_free_descs;
1909
1910         for (size = 0; size < preferred && i < max_entries; size += len) {
1911                 dma_addr_t dma_addr;
1912
1913                 len = min_t(u64, chunk_size, preferred - size);
1914                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1915                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1916                 if (!bufs[i])
1917                         break;
1918
1919                 descs[i].addr = cpu_to_le64(dma_addr);
1920                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1921                 i++;
1922         }
1923
1924         if (!size)
1925                 goto out_free_bufs;
1926
1927         dev->nr_host_mem_descs = i;
1928         dev->host_mem_size = size;
1929         dev->host_mem_descs = descs;
1930         dev->host_mem_descs_dma = descs_dma;
1931         dev->host_mem_desc_bufs = bufs;
1932         return 0;
1933
1934 out_free_bufs:
1935         while (--i >= 0) {
1936                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1937
1938                 dma_free_attrs(dev->dev, size, bufs[i],
1939                                le64_to_cpu(descs[i].addr),
1940                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1941         }
1942
1943         kfree(bufs);
1944 out_free_descs:
1945         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1946                         descs_dma);
1947 out:
1948         dev->host_mem_descs = NULL;
1949         return -ENOMEM;
1950 }
1951
1952 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1953 {
1954         u32 chunk_size;
1955
1956         /* start big and work our way down */
1957         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1958              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1959              chunk_size /= 2) {
1960                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1961                         if (!min || dev->host_mem_size >= min)
1962                                 return 0;
1963                         nvme_free_host_mem(dev);
1964                 }
1965         }
1966
1967         return -ENOMEM;
1968 }
1969
1970 static int nvme_setup_host_mem(struct nvme_dev *dev)
1971 {
1972         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1973         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1974         u64 min = (u64)dev->ctrl.hmmin * 4096;
1975         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1976         int ret;
1977
1978         preferred = min(preferred, max);
1979         if (min > max) {
1980                 dev_warn(dev->ctrl.device,
1981                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1982                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1983                 nvme_free_host_mem(dev);
1984                 return 0;
1985         }
1986
1987         /*
1988          * If we already have a buffer allocated check if we can reuse it.
1989          */
1990         if (dev->host_mem_descs) {
1991                 if (dev->host_mem_size >= min)
1992                         enable_bits |= NVME_HOST_MEM_RETURN;
1993                 else
1994                         nvme_free_host_mem(dev);
1995         }
1996
1997         if (!dev->host_mem_descs) {
1998                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1999                         dev_warn(dev->ctrl.device,
2000                                 "failed to allocate host memory buffer.\n");
2001                         return 0; /* controller must work without HMB */
2002                 }
2003
2004                 dev_info(dev->ctrl.device,
2005                         "allocated %lld MiB host memory buffer.\n",
2006                         dev->host_mem_size >> ilog2(SZ_1M));
2007         }
2008
2009         ret = nvme_set_host_mem(dev, enable_bits);
2010         if (ret)
2011                 nvme_free_host_mem(dev);
2012         return ret;
2013 }
2014
2015 /*
2016  * nirqs is the number of interrupts available for write and read
2017  * queues. The core already reserved an interrupt for the admin queue.
2018  */
2019 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2020 {
2021         struct nvme_dev *dev = affd->priv;
2022         unsigned int nr_read_queues;
2023
2024         /*
2025          * If there is no interupt available for queues, ensure that
2026          * the default queue is set to 1. The affinity set size is
2027          * also set to one, but the irq core ignores it for this case.
2028          *
2029          * If only one interrupt is available or 'write_queue' == 0, combine
2030          * write and read queues.
2031          *
2032          * If 'write_queues' > 0, ensure it leaves room for at least one read
2033          * queue.
2034          */
2035         if (!nrirqs) {
2036                 nrirqs = 1;
2037                 nr_read_queues = 0;
2038         } else if (nrirqs == 1 || !write_queues) {
2039                 nr_read_queues = 0;
2040         } else if (write_queues >= nrirqs) {
2041                 nr_read_queues = 1;
2042         } else {
2043                 nr_read_queues = nrirqs - write_queues;
2044         }
2045
2046         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2047         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2048         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2049         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2050         affd->nr_sets = nr_read_queues ? 2 : 1;
2051 }
2052
2053 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2054 {
2055         struct pci_dev *pdev = to_pci_dev(dev->dev);
2056         struct irq_affinity affd = {
2057                 .pre_vectors    = 1,
2058                 .calc_sets      = nvme_calc_irq_sets,
2059                 .priv           = dev,
2060         };
2061         unsigned int irq_queues, this_p_queues;
2062         unsigned int nr_cpus = num_possible_cpus();
2063
2064         /*
2065          * Poll queues don't need interrupts, but we need at least one IO
2066          * queue left over for non-polled IO.
2067          */
2068         this_p_queues = poll_queues;
2069         if (this_p_queues >= nr_io_queues) {
2070                 this_p_queues = nr_io_queues - 1;
2071                 irq_queues = 1;
2072         } else {
2073                 if (nr_cpus < nr_io_queues - this_p_queues)
2074                         irq_queues = nr_cpus + 1;
2075                 else
2076                         irq_queues = nr_io_queues - this_p_queues + 1;
2077         }
2078         dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2079
2080         /* Initialize for the single interrupt case */
2081         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2082         dev->io_queues[HCTX_TYPE_READ] = 0;
2083
2084         /*
2085          * Some Apple controllers require all queues to use the
2086          * first vector.
2087          */
2088         if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2089                 irq_queues = 1;
2090
2091         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2092                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2093 }
2094
2095 static void nvme_disable_io_queues(struct nvme_dev *dev)
2096 {
2097         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2098                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2099 }
2100
2101 static int nvme_setup_io_queues(struct nvme_dev *dev)
2102 {
2103         struct nvme_queue *adminq = &dev->queues[0];
2104         struct pci_dev *pdev = to_pci_dev(dev->dev);
2105         int result, nr_io_queues;
2106         unsigned long size;
2107
2108         nr_io_queues = max_io_queues();
2109
2110         /*
2111          * If tags are shared with admin queue (Apple bug), then
2112          * make sure we only use one IO queue.
2113          */
2114         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2115                 nr_io_queues = 1;
2116
2117         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2118         if (result < 0)
2119                 return result;
2120
2121         if (nr_io_queues == 0)
2122                 return 0;
2123         
2124         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2125
2126         if (dev->cmb_use_sqes) {
2127                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2128                                 sizeof(struct nvme_command));
2129                 if (result > 0)
2130                         dev->q_depth = result;
2131                 else
2132                         dev->cmb_use_sqes = false;
2133         }
2134
2135         do {
2136                 size = db_bar_size(dev, nr_io_queues);
2137                 result = nvme_remap_bar(dev, size);
2138                 if (!result)
2139                         break;
2140                 if (!--nr_io_queues)
2141                         return -ENOMEM;
2142         } while (1);
2143         adminq->q_db = dev->dbs;
2144
2145  retry:
2146         /* Deregister the admin queue's interrupt */
2147         pci_free_irq(pdev, 0, adminq);
2148
2149         /*
2150          * If we enable msix early due to not intx, disable it again before
2151          * setting up the full range we need.
2152          */
2153         pci_free_irq_vectors(pdev);
2154
2155         result = nvme_setup_irqs(dev, nr_io_queues);
2156         if (result <= 0)
2157                 return -EIO;
2158
2159         dev->num_vecs = result;
2160         result = max(result - 1, 1);
2161         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2162
2163         /*
2164          * Should investigate if there's a performance win from allocating
2165          * more queues than interrupt vectors; it might allow the submission
2166          * path to scale better, even if the receive path is limited by the
2167          * number of interrupts.
2168          */
2169         result = queue_request_irq(adminq);
2170         if (result)
2171                 return result;
2172         set_bit(NVMEQ_ENABLED, &adminq->flags);
2173
2174         result = nvme_create_io_queues(dev);
2175         if (result || dev->online_queues < 2)
2176                 return result;
2177
2178         if (dev->online_queues - 1 < dev->max_qid) {
2179                 nr_io_queues = dev->online_queues - 1;
2180                 nvme_disable_io_queues(dev);
2181                 nvme_suspend_io_queues(dev);
2182                 goto retry;
2183         }
2184         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2185                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2186                                         dev->io_queues[HCTX_TYPE_READ],
2187                                         dev->io_queues[HCTX_TYPE_POLL]);
2188         return 0;
2189 }
2190
2191 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2192 {
2193         struct nvme_queue *nvmeq = req->end_io_data;
2194
2195         blk_mq_free_request(req);
2196         complete(&nvmeq->delete_done);
2197 }
2198
2199 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2200 {
2201         struct nvme_queue *nvmeq = req->end_io_data;
2202
2203         if (error)
2204                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2205
2206         nvme_del_queue_end(req, error);
2207 }
2208
2209 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2210 {
2211         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2212         struct request *req;
2213         struct nvme_command cmd;
2214
2215         memset(&cmd, 0, sizeof(cmd));
2216         cmd.delete_queue.opcode = opcode;
2217         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2218
2219         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2220         if (IS_ERR(req))
2221                 return PTR_ERR(req);
2222
2223         req->timeout = ADMIN_TIMEOUT;
2224         req->end_io_data = nvmeq;
2225
2226         init_completion(&nvmeq->delete_done);
2227         blk_execute_rq_nowait(q, NULL, req, false,
2228                         opcode == nvme_admin_delete_cq ?
2229                                 nvme_del_cq_end : nvme_del_queue_end);
2230         return 0;
2231 }
2232
2233 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2234 {
2235         int nr_queues = dev->online_queues - 1, sent = 0;
2236         unsigned long timeout;
2237
2238  retry:
2239         timeout = ADMIN_TIMEOUT;
2240         while (nr_queues > 0) {
2241                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2242                         break;
2243                 nr_queues--;
2244                 sent++;
2245         }
2246         while (sent) {
2247                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2248
2249                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2250                                 timeout);
2251                 if (timeout == 0)
2252                         return false;
2253
2254                 /* handle any remaining CQEs */
2255                 if (opcode == nvme_admin_delete_cq &&
2256                     !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2257                         nvme_poll_irqdisable(nvmeq, -1);
2258
2259                 sent--;
2260                 if (nr_queues)
2261                         goto retry;
2262         }
2263         return true;
2264 }
2265
2266 /*
2267  * return error value only when tagset allocation failed
2268  */
2269 static int nvme_dev_add(struct nvme_dev *dev)
2270 {
2271         int ret;
2272
2273         if (!dev->ctrl.tagset) {
2274                 dev->tagset.ops = &nvme_mq_ops;
2275                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2276                 dev->tagset.nr_maps = 2; /* default + read */
2277                 if (dev->io_queues[HCTX_TYPE_POLL])
2278                         dev->tagset.nr_maps++;
2279                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2280                 dev->tagset.numa_node = dev_to_node(dev->dev);
2281                 dev->tagset.queue_depth =
2282                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2283                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2284                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2285                 dev->tagset.driver_data = dev;
2286
2287                 /*
2288                  * Some Apple controllers requires tags to be unique
2289                  * across admin and IO queue, so reserve the first 32
2290                  * tags of the IO queue.
2291                  */
2292                 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2293                         dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2294
2295                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2296                 if (ret) {
2297                         dev_warn(dev->ctrl.device,
2298                                 "IO queues tagset allocation failed %d\n", ret);
2299                         return ret;
2300                 }
2301                 dev->ctrl.tagset = &dev->tagset;
2302         } else {
2303                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2304
2305                 /* Free previously allocated queues that are no longer usable */
2306                 nvme_free_queues(dev, dev->online_queues);
2307         }
2308
2309         nvme_dbbuf_set(dev);
2310         return 0;
2311 }
2312
2313 static int nvme_pci_enable(struct nvme_dev *dev)
2314 {
2315         int result = -ENOMEM;
2316         struct pci_dev *pdev = to_pci_dev(dev->dev);
2317
2318         if (pci_enable_device_mem(pdev))
2319                 return result;
2320
2321         pci_set_master(pdev);
2322
2323         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2324                 goto disable;
2325
2326         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2327                 result = -ENODEV;
2328                 goto disable;
2329         }
2330
2331         /*
2332          * Some devices and/or platforms don't advertise or work with INTx
2333          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2334          * adjust this later.
2335          */
2336         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2337         if (result < 0)
2338                 return result;
2339
2340         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2341
2342         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2343                                 io_queue_depth);
2344         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2345         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2346         dev->dbs = dev->bar + 4096;
2347
2348         /*
2349          * Some Apple controllers require a non-standard SQE size.
2350          * Interestingly they also seem to ignore the CC:IOSQES register
2351          * so we don't bother updating it here.
2352          */
2353         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2354                 dev->io_sqes = 7;
2355         else
2356                 dev->io_sqes = NVME_NVM_IOSQES;
2357
2358         /*
2359          * Temporary fix for the Apple controller found in the MacBook8,1 and
2360          * some MacBook7,1 to avoid controller resets and data loss.
2361          */
2362         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2363                 dev->q_depth = 2;
2364                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2365                         "set queue depth=%u to work around controller resets\n",
2366                         dev->q_depth);
2367         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2368                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2369                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2370                 dev->q_depth = 64;
2371                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2372                         "set queue depth=%u\n", dev->q_depth);
2373         }
2374
2375         /*
2376          * Controllers with the shared tags quirk need the IO queue to be
2377          * big enough so that we get 32 tags for the admin queue
2378          */
2379         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2380             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2381                 dev->q_depth = NVME_AQ_DEPTH + 2;
2382                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2383                          dev->q_depth);
2384         }
2385
2386
2387         nvme_map_cmb(dev);
2388
2389         pci_enable_pcie_error_reporting(pdev);
2390         pci_save_state(pdev);
2391         return 0;
2392
2393  disable:
2394         pci_disable_device(pdev);
2395         return result;
2396 }
2397
2398 static void nvme_dev_unmap(struct nvme_dev *dev)
2399 {
2400         if (dev->bar)
2401                 iounmap(dev->bar);
2402         pci_release_mem_regions(to_pci_dev(dev->dev));
2403 }
2404
2405 static void nvme_pci_disable(struct nvme_dev *dev)
2406 {
2407         struct pci_dev *pdev = to_pci_dev(dev->dev);
2408
2409         pci_free_irq_vectors(pdev);
2410
2411         if (pci_is_enabled(pdev)) {
2412                 pci_disable_pcie_error_reporting(pdev);
2413                 pci_disable_device(pdev);
2414         }
2415 }
2416
2417 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2418 {
2419         bool dead = true, freeze = false;
2420         struct pci_dev *pdev = to_pci_dev(dev->dev);
2421
2422         mutex_lock(&dev->shutdown_lock);
2423         if (pci_is_enabled(pdev)) {
2424                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2425
2426                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2427                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2428                         freeze = true;
2429                         nvme_start_freeze(&dev->ctrl);
2430                 }
2431                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2432                         pdev->error_state  != pci_channel_io_normal);
2433         }
2434
2435         /*
2436          * Give the controller a chance to complete all entered requests if
2437          * doing a safe shutdown.
2438          */
2439         if (!dead && shutdown && freeze)
2440                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2441
2442         nvme_stop_queues(&dev->ctrl);
2443
2444         if (!dead && dev->ctrl.queue_count > 0) {
2445                 nvme_disable_io_queues(dev);
2446                 nvme_disable_admin_queue(dev, shutdown);
2447         }
2448         nvme_suspend_io_queues(dev);
2449         nvme_suspend_queue(&dev->queues[0]);
2450         nvme_pci_disable(dev);
2451
2452         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2453         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2454         blk_mq_tagset_wait_completed_request(&dev->tagset);
2455         blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2456
2457         /*
2458          * The driver will not be starting up queues again if shutting down so
2459          * must flush all entered requests to their failed completion to avoid
2460          * deadlocking blk-mq hot-cpu notifier.
2461          */
2462         if (shutdown) {
2463                 nvme_start_queues(&dev->ctrl);
2464                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2465                         blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2466         }
2467         mutex_unlock(&dev->shutdown_lock);
2468 }
2469
2470 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2471 {
2472         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2473                                                 PAGE_SIZE, PAGE_SIZE, 0);
2474         if (!dev->prp_page_pool)
2475                 return -ENOMEM;
2476
2477         /* Optimisation for I/Os between 4k and 128k */
2478         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2479                                                 256, 256, 0);
2480         if (!dev->prp_small_pool) {
2481                 dma_pool_destroy(dev->prp_page_pool);
2482                 return -ENOMEM;
2483         }
2484         return 0;
2485 }
2486
2487 static void nvme_release_prp_pools(struct nvme_dev *dev)
2488 {
2489         dma_pool_destroy(dev->prp_page_pool);
2490         dma_pool_destroy(dev->prp_small_pool);
2491 }
2492
2493 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2494 {
2495         struct nvme_dev *dev = to_nvme_dev(ctrl);
2496
2497         nvme_dbbuf_dma_free(dev);
2498         put_device(dev->dev);
2499         if (dev->tagset.tags)
2500                 blk_mq_free_tag_set(&dev->tagset);
2501         if (dev->ctrl.admin_q)
2502                 blk_put_queue(dev->ctrl.admin_q);
2503         kfree(dev->queues);
2504         free_opal_dev(dev->ctrl.opal_dev);
2505         mempool_destroy(dev->iod_mempool);
2506         kfree(dev);
2507 }
2508
2509 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2510 {
2511         nvme_get_ctrl(&dev->ctrl);
2512         nvme_dev_disable(dev, false);
2513         nvme_kill_queues(&dev->ctrl);
2514         if (!queue_work(nvme_wq, &dev->remove_work))
2515                 nvme_put_ctrl(&dev->ctrl);
2516 }
2517
2518 static void nvme_reset_work(struct work_struct *work)
2519 {
2520         struct nvme_dev *dev =
2521                 container_of(work, struct nvme_dev, ctrl.reset_work);
2522         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2523         int result;
2524         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2525
2526         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2527                 result = -ENODEV;
2528                 goto out;
2529         }
2530
2531         /*
2532          * If we're called to reset a live controller first shut it down before
2533          * moving on.
2534          */
2535         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2536                 nvme_dev_disable(dev, false);
2537         nvme_sync_queues(&dev->ctrl);
2538
2539         mutex_lock(&dev->shutdown_lock);
2540         result = nvme_pci_enable(dev);
2541         if (result)
2542                 goto out_unlock;
2543
2544         result = nvme_pci_configure_admin_queue(dev);
2545         if (result)
2546                 goto out_unlock;
2547
2548         result = nvme_alloc_admin_tags(dev);
2549         if (result)
2550                 goto out_unlock;
2551
2552         /*
2553          * Limit the max command size to prevent iod->sg allocations going
2554          * over a single page.
2555          */
2556         dev->ctrl.max_hw_sectors = min_t(u32,
2557                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2558         dev->ctrl.max_segments = NVME_MAX_SEGS;
2559
2560         /*
2561          * Don't limit the IOMMU merged segment size.
2562          */
2563         dma_set_max_seg_size(dev->dev, 0xffffffff);
2564
2565         mutex_unlock(&dev->shutdown_lock);
2566
2567         /*
2568          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2569          * initializing procedure here.
2570          */
2571         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2572                 dev_warn(dev->ctrl.device,
2573                         "failed to mark controller CONNECTING\n");
2574                 result = -EBUSY;
2575                 goto out;
2576         }
2577
2578         result = nvme_init_identify(&dev->ctrl);
2579         if (result)
2580                 goto out;
2581
2582         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2583                 if (!dev->ctrl.opal_dev)
2584                         dev->ctrl.opal_dev =
2585                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2586                 else if (was_suspend)
2587                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2588         } else {
2589                 free_opal_dev(dev->ctrl.opal_dev);
2590                 dev->ctrl.opal_dev = NULL;
2591         }
2592
2593         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2594                 result = nvme_dbbuf_dma_alloc(dev);
2595                 if (result)
2596                         dev_warn(dev->dev,
2597                                  "unable to allocate dma for dbbuf\n");
2598         }
2599
2600         if (dev->ctrl.hmpre) {
2601                 result = nvme_setup_host_mem(dev);
2602                 if (result < 0)
2603                         goto out;
2604         }
2605
2606         result = nvme_setup_io_queues(dev);
2607         if (result)
2608                 goto out;
2609
2610         /*
2611          * Keep the controller around but remove all namespaces if we don't have
2612          * any working I/O queue.
2613          */
2614         if (dev->online_queues < 2) {
2615                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2616                 nvme_kill_queues(&dev->ctrl);
2617                 nvme_remove_namespaces(&dev->ctrl);
2618                 new_state = NVME_CTRL_ADMIN_ONLY;
2619         } else {
2620                 nvme_start_queues(&dev->ctrl);
2621                 nvme_wait_freeze(&dev->ctrl);
2622                 /* hit this only when allocate tagset fails */
2623                 if (nvme_dev_add(dev))
2624                         new_state = NVME_CTRL_ADMIN_ONLY;
2625                 nvme_unfreeze(&dev->ctrl);
2626         }
2627
2628         /*
2629          * If only admin queue live, keep it to do further investigation or
2630          * recovery.
2631          */
2632         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2633                 dev_warn(dev->ctrl.device,
2634                         "failed to mark controller state %d\n", new_state);
2635                 result = -ENODEV;
2636                 goto out;
2637         }
2638
2639         nvme_start_ctrl(&dev->ctrl);
2640         return;
2641
2642  out_unlock:
2643         mutex_unlock(&dev->shutdown_lock);
2644  out:
2645         if (result)
2646                 dev_warn(dev->ctrl.device,
2647                          "Removing after probe failure status: %d\n", result);
2648         nvme_remove_dead_ctrl(dev);
2649 }
2650
2651 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2652 {
2653         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2654         struct pci_dev *pdev = to_pci_dev(dev->dev);
2655
2656         if (pci_get_drvdata(pdev))
2657                 device_release_driver(&pdev->dev);
2658         nvme_put_ctrl(&dev->ctrl);
2659 }
2660
2661 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2662 {
2663         *val = readl(to_nvme_dev(ctrl)->bar + off);
2664         return 0;
2665 }
2666
2667 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2668 {
2669         writel(val, to_nvme_dev(ctrl)->bar + off);
2670         return 0;
2671 }
2672
2673 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2674 {
2675         *val = readq(to_nvme_dev(ctrl)->bar + off);
2676         return 0;
2677 }
2678
2679 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2680 {
2681         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2682
2683         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2684 }
2685
2686 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2687         .name                   = "pcie",
2688         .module                 = THIS_MODULE,
2689         .flags                  = NVME_F_METADATA_SUPPORTED |
2690                                   NVME_F_PCI_P2PDMA,
2691         .reg_read32             = nvme_pci_reg_read32,
2692         .reg_write32            = nvme_pci_reg_write32,
2693         .reg_read64             = nvme_pci_reg_read64,
2694         .free_ctrl              = nvme_pci_free_ctrl,
2695         .submit_async_event     = nvme_pci_submit_async_event,
2696         .get_address            = nvme_pci_get_address,
2697 };
2698
2699 static int nvme_dev_map(struct nvme_dev *dev)
2700 {
2701         struct pci_dev *pdev = to_pci_dev(dev->dev);
2702
2703         if (pci_request_mem_regions(pdev, "nvme"))
2704                 return -ENODEV;
2705
2706         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2707                 goto release;
2708
2709         return 0;
2710   release:
2711         pci_release_mem_regions(pdev);
2712         return -ENODEV;
2713 }
2714
2715 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2716 {
2717         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2718                 /*
2719                  * Several Samsung devices seem to drop off the PCIe bus
2720                  * randomly when APST is on and uses the deepest sleep state.
2721                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2722                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2723                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2724                  * laptops.
2725                  */
2726                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2727                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2728                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2729                         return NVME_QUIRK_NO_DEEPEST_PS;
2730         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2731                 /*
2732                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2733                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2734                  * within few minutes after bootup on a Coffee Lake board -
2735                  * ASUS PRIME Z370-A
2736                  */
2737                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2738                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2739                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2740                         return NVME_QUIRK_NO_APST;
2741         }
2742
2743         return 0;
2744 }
2745
2746 static void nvme_async_probe(void *data, async_cookie_t cookie)
2747 {
2748         struct nvme_dev *dev = data;
2749
2750         flush_work(&dev->ctrl.reset_work);
2751         flush_work(&dev->ctrl.scan_work);
2752         nvme_put_ctrl(&dev->ctrl);
2753 }
2754
2755 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2756 {
2757         int node, result = -ENOMEM;
2758         struct nvme_dev *dev;
2759         unsigned long quirks = id->driver_data;
2760         size_t alloc_size;
2761
2762         node = dev_to_node(&pdev->dev);
2763         if (node == NUMA_NO_NODE)
2764                 set_dev_node(&pdev->dev, first_memory_node);
2765
2766         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2767         if (!dev)
2768                 return -ENOMEM;
2769
2770         dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2771                                         GFP_KERNEL, node);
2772         if (!dev->queues)
2773                 goto free;
2774
2775         dev->dev = get_device(&pdev->dev);
2776         pci_set_drvdata(pdev, dev);
2777
2778         result = nvme_dev_map(dev);
2779         if (result)
2780                 goto put_pci;
2781
2782         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2783         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2784         mutex_init(&dev->shutdown_lock);
2785
2786         result = nvme_setup_prp_pools(dev);
2787         if (result)
2788                 goto unmap;
2789
2790         quirks |= check_vendor_combination_bug(pdev);
2791
2792         /*
2793          * Double check that our mempool alloc size will cover the biggest
2794          * command we support.
2795          */
2796         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2797                                                 NVME_MAX_SEGS, true);
2798         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2799
2800         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2801                                                 mempool_kfree,
2802                                                 (void *) alloc_size,
2803                                                 GFP_KERNEL, node);
2804         if (!dev->iod_mempool) {
2805                 result = -ENOMEM;
2806                 goto release_pools;
2807         }
2808
2809         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2810                         quirks);
2811         if (result)
2812                 goto release_mempool;
2813
2814         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2815
2816         nvme_reset_ctrl(&dev->ctrl);
2817         nvme_get_ctrl(&dev->ctrl);
2818         async_schedule(nvme_async_probe, dev);
2819
2820         return 0;
2821
2822  release_mempool:
2823         mempool_destroy(dev->iod_mempool);
2824  release_pools:
2825         nvme_release_prp_pools(dev);
2826  unmap:
2827         nvme_dev_unmap(dev);
2828  put_pci:
2829         put_device(dev->dev);
2830  free:
2831         kfree(dev->queues);
2832         kfree(dev);
2833         return result;
2834 }
2835
2836 static void nvme_reset_prepare(struct pci_dev *pdev)
2837 {
2838         struct nvme_dev *dev = pci_get_drvdata(pdev);
2839         nvme_dev_disable(dev, false);
2840 }
2841
2842 static void nvme_reset_done(struct pci_dev *pdev)
2843 {
2844         struct nvme_dev *dev = pci_get_drvdata(pdev);
2845         nvme_reset_ctrl_sync(&dev->ctrl);
2846 }
2847
2848 static void nvme_shutdown(struct pci_dev *pdev)
2849 {
2850         struct nvme_dev *dev = pci_get_drvdata(pdev);
2851         nvme_dev_disable(dev, true);
2852 }
2853
2854 /*
2855  * The driver's remove may be called on a device in a partially initialized
2856  * state. This function must not have any dependencies on the device state in
2857  * order to proceed.
2858  */
2859 static void nvme_remove(struct pci_dev *pdev)
2860 {
2861         struct nvme_dev *dev = pci_get_drvdata(pdev);
2862
2863         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2864         pci_set_drvdata(pdev, NULL);
2865
2866         if (!pci_device_is_present(pdev)) {
2867                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2868                 nvme_dev_disable(dev, true);
2869                 nvme_dev_remove_admin(dev);
2870         }
2871
2872         flush_work(&dev->ctrl.reset_work);
2873         nvme_stop_ctrl(&dev->ctrl);
2874         nvme_remove_namespaces(&dev->ctrl);
2875         nvme_dev_disable(dev, true);
2876         nvme_release_cmb(dev);
2877         nvme_free_host_mem(dev);
2878         nvme_dev_remove_admin(dev);
2879         nvme_free_queues(dev, 0);
2880         nvme_uninit_ctrl(&dev->ctrl);
2881         nvme_release_prp_pools(dev);
2882         nvme_dev_unmap(dev);
2883         nvme_put_ctrl(&dev->ctrl);
2884 }
2885
2886 #ifdef CONFIG_PM_SLEEP
2887 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2888 {
2889         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2890 }
2891
2892 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2893 {
2894         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2895 }
2896
2897 static int nvme_resume(struct device *dev)
2898 {
2899         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2900         struct nvme_ctrl *ctrl = &ndev->ctrl;
2901
2902         if (ndev->last_ps == U32_MAX ||
2903             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2904                 nvme_reset_ctrl(ctrl);
2905         return 0;
2906 }
2907
2908 static int nvme_suspend(struct device *dev)
2909 {
2910         struct pci_dev *pdev = to_pci_dev(dev);
2911         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2912         struct nvme_ctrl *ctrl = &ndev->ctrl;
2913         int ret = -EBUSY;
2914
2915         ndev->last_ps = U32_MAX;
2916
2917         /*
2918          * The platform does not remove power for a kernel managed suspend so
2919          * use host managed nvme power settings for lowest idle power if
2920          * possible. This should have quicker resume latency than a full device
2921          * shutdown.  But if the firmware is involved after the suspend or the
2922          * device does not support any non-default power states, shut down the
2923          * device fully.
2924          *
2925          * If ASPM is not enabled for the device, shut down the device and allow
2926          * the PCI bus layer to put it into D3 in order to take the PCIe link
2927          * down, so as to allow the platform to achieve its minimum low-power
2928          * state (which may not be possible if the link is up).
2929          */
2930         if (pm_suspend_via_firmware() || !ctrl->npss ||
2931             !pcie_aspm_enabled(pdev) ||
2932             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) {
2933                 nvme_dev_disable(ndev, true);
2934                 return 0;
2935         }
2936
2937         nvme_start_freeze(ctrl);
2938         nvme_wait_freeze(ctrl);
2939         nvme_sync_queues(ctrl);
2940
2941         if (ctrl->state != NVME_CTRL_LIVE &&
2942             ctrl->state != NVME_CTRL_ADMIN_ONLY)
2943                 goto unfreeze;
2944
2945         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2946         if (ret < 0)
2947                 goto unfreeze;
2948
2949         /*
2950          * A saved state prevents pci pm from generically controlling the
2951          * device's power. If we're using protocol specific settings, we don't
2952          * want pci interfering.
2953          */
2954         pci_save_state(pdev);
2955
2956         ret = nvme_set_power_state(ctrl, ctrl->npss);
2957         if (ret < 0)
2958                 goto unfreeze;
2959
2960         if (ret) {
2961                 /* discard the saved state */
2962                 pci_load_saved_state(pdev, NULL);
2963
2964                 /*
2965                  * Clearing npss forces a controller reset on resume. The
2966                  * correct value will be resdicovered then.
2967                  */
2968                 nvme_dev_disable(ndev, true);
2969                 ctrl->npss = 0;
2970                 ret = 0;
2971         }
2972 unfreeze:
2973         nvme_unfreeze(ctrl);
2974         return ret;
2975 }
2976
2977 static int nvme_simple_suspend(struct device *dev)
2978 {
2979         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2980
2981         nvme_dev_disable(ndev, true);
2982         return 0;
2983 }
2984
2985 static int nvme_simple_resume(struct device *dev)
2986 {
2987         struct pci_dev *pdev = to_pci_dev(dev);
2988         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2989
2990         nvme_reset_ctrl(&ndev->ctrl);
2991         return 0;
2992 }
2993
2994 static const struct dev_pm_ops nvme_dev_pm_ops = {
2995         .suspend        = nvme_suspend,
2996         .resume         = nvme_resume,
2997         .freeze         = nvme_simple_suspend,
2998         .thaw           = nvme_simple_resume,
2999         .poweroff       = nvme_simple_suspend,
3000         .restore        = nvme_simple_resume,
3001 };
3002 #endif /* CONFIG_PM_SLEEP */
3003
3004 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3005                                                 pci_channel_state_t state)
3006 {
3007         struct nvme_dev *dev = pci_get_drvdata(pdev);
3008
3009         /*
3010          * A frozen channel requires a reset. When detected, this method will
3011          * shutdown the controller to quiesce. The controller will be restarted
3012          * after the slot reset through driver's slot_reset callback.
3013          */
3014         switch (state) {
3015         case pci_channel_io_normal:
3016                 return PCI_ERS_RESULT_CAN_RECOVER;
3017         case pci_channel_io_frozen:
3018                 dev_warn(dev->ctrl.device,
3019                         "frozen state error detected, reset controller\n");
3020                 nvme_dev_disable(dev, false);
3021                 return PCI_ERS_RESULT_NEED_RESET;
3022         case pci_channel_io_perm_failure:
3023                 dev_warn(dev->ctrl.device,
3024                         "failure state error detected, request disconnect\n");
3025                 return PCI_ERS_RESULT_DISCONNECT;
3026         }
3027         return PCI_ERS_RESULT_NEED_RESET;
3028 }
3029
3030 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3031 {
3032         struct nvme_dev *dev = pci_get_drvdata(pdev);
3033
3034         dev_info(dev->ctrl.device, "restart after slot reset\n");
3035         pci_restore_state(pdev);
3036         nvme_reset_ctrl(&dev->ctrl);
3037         return PCI_ERS_RESULT_RECOVERED;
3038 }
3039
3040 static void nvme_error_resume(struct pci_dev *pdev)
3041 {
3042         struct nvme_dev *dev = pci_get_drvdata(pdev);
3043
3044         flush_work(&dev->ctrl.reset_work);
3045 }
3046
3047 static const struct pci_error_handlers nvme_err_handler = {
3048         .error_detected = nvme_error_detected,
3049         .slot_reset     = nvme_slot_reset,
3050         .resume         = nvme_error_resume,
3051         .reset_prepare  = nvme_reset_prepare,
3052         .reset_done     = nvme_reset_done,
3053 };
3054
3055 static const struct pci_device_id nvme_id_table[] = {
3056         { PCI_VDEVICE(INTEL, 0x0953),
3057                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3058                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3059         { PCI_VDEVICE(INTEL, 0x0a53),
3060                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3061                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3062         { PCI_VDEVICE(INTEL, 0x0a54),
3063                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3064                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3065         { PCI_VDEVICE(INTEL, 0x0a55),
3066                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3067                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3068         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3069                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3070                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
3071         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3072                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3073         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3074                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3075                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3076         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3077                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3078         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3079                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3080         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3081                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3082         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3083                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3084         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3085                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3086         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3087                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3088         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3089                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3090         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3091                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3092         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3093                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3094         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3095                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3096         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3097                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3098                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3099         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3100         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3101         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3102         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3103                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3104                                 NVME_QUIRK_128_BYTES_SQES |
3105                                 NVME_QUIRK_SHARED_TAGS },
3106         { 0, }
3107 };
3108 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3109
3110 static struct pci_driver nvme_driver = {
3111         .name           = "nvme",
3112         .id_table       = nvme_id_table,
3113         .probe          = nvme_probe,
3114         .remove         = nvme_remove,
3115         .shutdown       = nvme_shutdown,
3116 #ifdef CONFIG_PM_SLEEP
3117         .driver         = {
3118                 .pm     = &nvme_dev_pm_ops,
3119         },
3120 #endif
3121         .sriov_configure = pci_sriov_configure_simple,
3122         .err_handler    = &nvme_err_handler,
3123 };
3124
3125 static int __init nvme_init(void)
3126 {
3127         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3128         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3129         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3130         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3131         return pci_register_driver(&nvme_driver);
3132 }
3133
3134 static void __exit nvme_exit(void)
3135 {
3136         pci_unregister_driver(&nvme_driver);
3137         flush_workqueue(nvme_wq);
3138 }
3139
3140 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3141 MODULE_LICENSE("GPL");
3142 MODULE_VERSION("1.0");
3143 module_init(nvme_init);
3144 module_exit(nvme_exit);