Merge tag 'for-5.12/drivers-2021-02-17' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94                                            unsigned nsid);
95
96 /*
97  * Prepare a queue for teardown.
98  *
99  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
100  * the capacity to 0 after that to avoid blocking dispatchers that may be
101  * holding bd_butex.  This will end buffered writers dirtying pages that can't
102  * be synced.
103  */
104 static void nvme_set_queue_dying(struct nvme_ns *ns)
105 {
106         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
107                 return;
108
109         blk_set_queue_dying(ns->queue);
110         blk_mq_unquiesce_queue(ns->queue);
111
112         set_capacity_and_notify(ns->disk, 0);
113 }
114
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117         /*
118          * Only new queue scan work when admin and IO queues are both alive
119          */
120         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121                 queue_work(nvme_wq, &ctrl->scan_work);
122 }
123
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132         if (ctrl->state != NVME_CTRL_RESETTING)
133                 return -EBUSY;
134         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135                 return -EBUSY;
136         return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139
140 static void nvme_failfast_work(struct work_struct *work)
141 {
142         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
143                         struct nvme_ctrl, failfast_work);
144
145         if (ctrl->state != NVME_CTRL_CONNECTING)
146                 return;
147
148         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
149         dev_info(ctrl->device, "failfast expired\n");
150         nvme_kick_requeue_lists(ctrl);
151 }
152
153 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
154 {
155         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
156                 return;
157
158         schedule_delayed_work(&ctrl->failfast_work,
159                               ctrl->opts->fast_io_fail_tmo * HZ);
160 }
161
162 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
163 {
164         if (!ctrl->opts)
165                 return;
166
167         cancel_delayed_work_sync(&ctrl->failfast_work);
168         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
169 }
170
171
172 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
173 {
174         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
175                 return -EBUSY;
176         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
177                 return -EBUSY;
178         return 0;
179 }
180 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
181
182 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
183 {
184         int ret;
185
186         ret = nvme_reset_ctrl(ctrl);
187         if (!ret) {
188                 flush_work(&ctrl->reset_work);
189                 if (ctrl->state != NVME_CTRL_LIVE)
190                         ret = -ENETRESET;
191         }
192
193         return ret;
194 }
195
196 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198         dev_info(ctrl->device,
199                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
200
201         flush_work(&ctrl->reset_work);
202         nvme_stop_ctrl(ctrl);
203         nvme_remove_namespaces(ctrl);
204         ctrl->ops->delete_ctrl(ctrl);
205         nvme_uninit_ctrl(ctrl);
206 }
207
208 static void nvme_delete_ctrl_work(struct work_struct *work)
209 {
210         struct nvme_ctrl *ctrl =
211                 container_of(work, struct nvme_ctrl, delete_work);
212
213         nvme_do_delete_ctrl(ctrl);
214 }
215
216 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
217 {
218         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
219                 return -EBUSY;
220         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
221                 return -EBUSY;
222         return 0;
223 }
224 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
225
226 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
227 {
228         /*
229          * Keep a reference until nvme_do_delete_ctrl() complete,
230          * since ->delete_ctrl can free the controller.
231          */
232         nvme_get_ctrl(ctrl);
233         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234                 nvme_do_delete_ctrl(ctrl);
235         nvme_put_ctrl(ctrl);
236 }
237
238 static blk_status_t nvme_error_status(u16 status)
239 {
240         switch (status & 0x7ff) {
241         case NVME_SC_SUCCESS:
242                 return BLK_STS_OK;
243         case NVME_SC_CAP_EXCEEDED:
244                 return BLK_STS_NOSPC;
245         case NVME_SC_LBA_RANGE:
246         case NVME_SC_CMD_INTERRUPTED:
247         case NVME_SC_NS_NOT_READY:
248                 return BLK_STS_TARGET;
249         case NVME_SC_BAD_ATTRIBUTES:
250         case NVME_SC_ONCS_NOT_SUPPORTED:
251         case NVME_SC_INVALID_OPCODE:
252         case NVME_SC_INVALID_FIELD:
253         case NVME_SC_INVALID_NS:
254                 return BLK_STS_NOTSUPP;
255         case NVME_SC_WRITE_FAULT:
256         case NVME_SC_READ_ERROR:
257         case NVME_SC_UNWRITTEN_BLOCK:
258         case NVME_SC_ACCESS_DENIED:
259         case NVME_SC_READ_ONLY:
260         case NVME_SC_COMPARE_FAILED:
261                 return BLK_STS_MEDIUM;
262         case NVME_SC_GUARD_CHECK:
263         case NVME_SC_APPTAG_CHECK:
264         case NVME_SC_REFTAG_CHECK:
265         case NVME_SC_INVALID_PI:
266                 return BLK_STS_PROTECTION;
267         case NVME_SC_RESERVATION_CONFLICT:
268                 return BLK_STS_NEXUS;
269         case NVME_SC_HOST_PATH_ERROR:
270                 return BLK_STS_TRANSPORT;
271         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
272                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
273         case NVME_SC_ZONE_TOO_MANY_OPEN:
274                 return BLK_STS_ZONE_OPEN_RESOURCE;
275         default:
276                 return BLK_STS_IOERR;
277         }
278 }
279
280 static void nvme_retry_req(struct request *req)
281 {
282         unsigned long delay = 0;
283         u16 crd;
284
285         /* The mask and shift result must be <= 3 */
286         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
287         if (crd)
288                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
289
290         nvme_req(req)->retries++;
291         blk_mq_requeue_request(req, false);
292         blk_mq_delay_kick_requeue_list(req->q, delay);
293 }
294
295 enum nvme_disposition {
296         COMPLETE,
297         RETRY,
298         FAILOVER,
299 };
300
301 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
302 {
303         if (likely(nvme_req(req)->status == 0))
304                 return COMPLETE;
305
306         if (blk_noretry_request(req) ||
307             (nvme_req(req)->status & NVME_SC_DNR) ||
308             nvme_req(req)->retries >= nvme_max_retries)
309                 return COMPLETE;
310
311         if (req->cmd_flags & REQ_NVME_MPATH) {
312                 if (nvme_is_path_error(nvme_req(req)->status) ||
313                     blk_queue_dying(req->q))
314                         return FAILOVER;
315         } else {
316                 if (blk_queue_dying(req->q))
317                         return COMPLETE;
318         }
319
320         return RETRY;
321 }
322
323 static inline void nvme_end_req(struct request *req)
324 {
325         blk_status_t status = nvme_error_status(nvme_req(req)->status);
326
327         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
328             req_op(req) == REQ_OP_ZONE_APPEND)
329                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
330                         le64_to_cpu(nvme_req(req)->result.u64));
331
332         nvme_trace_bio_complete(req);
333         blk_mq_end_request(req, status);
334 }
335
336 void nvme_complete_rq(struct request *req)
337 {
338         trace_nvme_complete_rq(req);
339         nvme_cleanup_cmd(req);
340
341         if (nvme_req(req)->ctrl->kas)
342                 nvme_req(req)->ctrl->comp_seen = true;
343
344         switch (nvme_decide_disposition(req)) {
345         case COMPLETE:
346                 nvme_end_req(req);
347                 return;
348         case RETRY:
349                 nvme_retry_req(req);
350                 return;
351         case FAILOVER:
352                 nvme_failover_req(req);
353                 return;
354         }
355 }
356 EXPORT_SYMBOL_GPL(nvme_complete_rq);
357
358 /*
359  * Called to unwind from ->queue_rq on a failed command submission so that the
360  * multipathing code gets called to potentially failover to another path.
361  * The caller needs to unwind all transport specific resource allocations and
362  * must return propagate the return value.
363  */
364 blk_status_t nvme_host_path_error(struct request *req)
365 {
366         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
367         blk_mq_set_request_complete(req);
368         nvme_complete_rq(req);
369         return BLK_STS_OK;
370 }
371 EXPORT_SYMBOL_GPL(nvme_host_path_error);
372
373 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
374 {
375         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
376                                 "Cancelling I/O %d", req->tag);
377
378         /* don't abort one completed request */
379         if (blk_mq_request_completed(req))
380                 return true;
381
382         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
383         blk_mq_complete_request(req);
384         return true;
385 }
386 EXPORT_SYMBOL_GPL(nvme_cancel_request);
387
388 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
389 {
390         if (ctrl->tagset) {
391                 blk_mq_tagset_busy_iter(ctrl->tagset,
392                                 nvme_cancel_request, ctrl);
393                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
394         }
395 }
396 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
397
398 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
399 {
400         if (ctrl->admin_tagset) {
401                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
402                                 nvme_cancel_request, ctrl);
403                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
404         }
405 }
406 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
407
408 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
409                 enum nvme_ctrl_state new_state)
410 {
411         enum nvme_ctrl_state old_state;
412         unsigned long flags;
413         bool changed = false;
414
415         spin_lock_irqsave(&ctrl->lock, flags);
416
417         old_state = ctrl->state;
418         switch (new_state) {
419         case NVME_CTRL_LIVE:
420                 switch (old_state) {
421                 case NVME_CTRL_NEW:
422                 case NVME_CTRL_RESETTING:
423                 case NVME_CTRL_CONNECTING:
424                         changed = true;
425                         fallthrough;
426                 default:
427                         break;
428                 }
429                 break;
430         case NVME_CTRL_RESETTING:
431                 switch (old_state) {
432                 case NVME_CTRL_NEW:
433                 case NVME_CTRL_LIVE:
434                         changed = true;
435                         fallthrough;
436                 default:
437                         break;
438                 }
439                 break;
440         case NVME_CTRL_CONNECTING:
441                 switch (old_state) {
442                 case NVME_CTRL_NEW:
443                 case NVME_CTRL_RESETTING:
444                         changed = true;
445                         fallthrough;
446                 default:
447                         break;
448                 }
449                 break;
450         case NVME_CTRL_DELETING:
451                 switch (old_state) {
452                 case NVME_CTRL_LIVE:
453                 case NVME_CTRL_RESETTING:
454                 case NVME_CTRL_CONNECTING:
455                         changed = true;
456                         fallthrough;
457                 default:
458                         break;
459                 }
460                 break;
461         case NVME_CTRL_DELETING_NOIO:
462                 switch (old_state) {
463                 case NVME_CTRL_DELETING:
464                 case NVME_CTRL_DEAD:
465                         changed = true;
466                         fallthrough;
467                 default:
468                         break;
469                 }
470                 break;
471         case NVME_CTRL_DEAD:
472                 switch (old_state) {
473                 case NVME_CTRL_DELETING:
474                         changed = true;
475                         fallthrough;
476                 default:
477                         break;
478                 }
479                 break;
480         default:
481                 break;
482         }
483
484         if (changed) {
485                 ctrl->state = new_state;
486                 wake_up_all(&ctrl->state_wq);
487         }
488
489         spin_unlock_irqrestore(&ctrl->lock, flags);
490         if (!changed)
491                 return false;
492
493         if (ctrl->state == NVME_CTRL_LIVE) {
494                 if (old_state == NVME_CTRL_CONNECTING)
495                         nvme_stop_failfast_work(ctrl);
496                 nvme_kick_requeue_lists(ctrl);
497         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
498                 old_state == NVME_CTRL_RESETTING) {
499                 nvme_start_failfast_work(ctrl);
500         }
501         return changed;
502 }
503 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
504
505 /*
506  * Returns true for sink states that can't ever transition back to live.
507  */
508 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
509 {
510         switch (ctrl->state) {
511         case NVME_CTRL_NEW:
512         case NVME_CTRL_LIVE:
513         case NVME_CTRL_RESETTING:
514         case NVME_CTRL_CONNECTING:
515                 return false;
516         case NVME_CTRL_DELETING:
517         case NVME_CTRL_DELETING_NOIO:
518         case NVME_CTRL_DEAD:
519                 return true;
520         default:
521                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
522                 return true;
523         }
524 }
525
526 /*
527  * Waits for the controller state to be resetting, or returns false if it is
528  * not possible to ever transition to that state.
529  */
530 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
531 {
532         wait_event(ctrl->state_wq,
533                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
534                    nvme_state_terminal(ctrl));
535         return ctrl->state == NVME_CTRL_RESETTING;
536 }
537 EXPORT_SYMBOL_GPL(nvme_wait_reset);
538
539 static void nvme_free_ns_head(struct kref *ref)
540 {
541         struct nvme_ns_head *head =
542                 container_of(ref, struct nvme_ns_head, ref);
543
544         nvme_mpath_remove_disk(head);
545         ida_simple_remove(&head->subsys->ns_ida, head->instance);
546         cleanup_srcu_struct(&head->srcu);
547         nvme_put_subsystem(head->subsys);
548         kfree(head);
549 }
550
551 static void nvme_put_ns_head(struct nvme_ns_head *head)
552 {
553         kref_put(&head->ref, nvme_free_ns_head);
554 }
555
556 static void nvme_free_ns(struct kref *kref)
557 {
558         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
559
560         if (ns->ndev)
561                 nvme_nvm_unregister(ns);
562
563         put_disk(ns->disk);
564         nvme_put_ns_head(ns->head);
565         nvme_put_ctrl(ns->ctrl);
566         kfree(ns);
567 }
568
569 void nvme_put_ns(struct nvme_ns *ns)
570 {
571         kref_put(&ns->kref, nvme_free_ns);
572 }
573 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
574
575 static inline void nvme_clear_nvme_request(struct request *req)
576 {
577         if (!(req->rq_flags & RQF_DONTPREP)) {
578                 nvme_req(req)->retries = 0;
579                 nvme_req(req)->flags = 0;
580                 req->rq_flags |= RQF_DONTPREP;
581         }
582 }
583
584 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
585 {
586         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
587 }
588
589 static inline void nvme_init_request(struct request *req,
590                 struct nvme_command *cmd)
591 {
592         if (req->q->queuedata)
593                 req->timeout = NVME_IO_TIMEOUT;
594         else /* no queuedata implies admin queue */
595                 req->timeout = NVME_ADMIN_TIMEOUT;
596
597         req->cmd_flags |= REQ_FAILFAST_DRIVER;
598         nvme_clear_nvme_request(req);
599         nvme_req(req)->cmd = cmd;
600 }
601
602 struct request *nvme_alloc_request(struct request_queue *q,
603                 struct nvme_command *cmd, blk_mq_req_flags_t flags)
604 {
605         struct request *req;
606
607         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
608         if (!IS_ERR(req))
609                 nvme_init_request(req, cmd);
610         return req;
611 }
612 EXPORT_SYMBOL_GPL(nvme_alloc_request);
613
614 static struct request *nvme_alloc_request_qid(struct request_queue *q,
615                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
616 {
617         struct request *req;
618
619         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
620                         qid ? qid - 1 : 0);
621         if (!IS_ERR(req))
622                 nvme_init_request(req, cmd);
623         return req;
624 }
625
626 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
627 {
628         struct nvme_command c;
629
630         memset(&c, 0, sizeof(c));
631
632         c.directive.opcode = nvme_admin_directive_send;
633         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
634         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
635         c.directive.dtype = NVME_DIR_IDENTIFY;
636         c.directive.tdtype = NVME_DIR_STREAMS;
637         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
638
639         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
640 }
641
642 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
643 {
644         return nvme_toggle_streams(ctrl, false);
645 }
646
647 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
648 {
649         return nvme_toggle_streams(ctrl, true);
650 }
651
652 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
653                                   struct streams_directive_params *s, u32 nsid)
654 {
655         struct nvme_command c;
656
657         memset(&c, 0, sizeof(c));
658         memset(s, 0, sizeof(*s));
659
660         c.directive.opcode = nvme_admin_directive_recv;
661         c.directive.nsid = cpu_to_le32(nsid);
662         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
663         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
664         c.directive.dtype = NVME_DIR_STREAMS;
665
666         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
667 }
668
669 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
670 {
671         struct streams_directive_params s;
672         int ret;
673
674         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
675                 return 0;
676         if (!streams)
677                 return 0;
678
679         ret = nvme_enable_streams(ctrl);
680         if (ret)
681                 return ret;
682
683         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
684         if (ret)
685                 goto out_disable_stream;
686
687         ctrl->nssa = le16_to_cpu(s.nssa);
688         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
689                 dev_info(ctrl->device, "too few streams (%u) available\n",
690                                         ctrl->nssa);
691                 goto out_disable_stream;
692         }
693
694         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
695         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
696         return 0;
697
698 out_disable_stream:
699         nvme_disable_streams(ctrl);
700         return ret;
701 }
702
703 /*
704  * Check if 'req' has a write hint associated with it. If it does, assign
705  * a valid namespace stream to the write.
706  */
707 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
708                                      struct request *req, u16 *control,
709                                      u32 *dsmgmt)
710 {
711         enum rw_hint streamid = req->write_hint;
712
713         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
714                 streamid = 0;
715         else {
716                 streamid--;
717                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
718                         return;
719
720                 *control |= NVME_RW_DTYPE_STREAMS;
721                 *dsmgmt |= streamid << 16;
722         }
723
724         if (streamid < ARRAY_SIZE(req->q->write_hints))
725                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
726 }
727
728 static void nvme_setup_passthrough(struct request *req,
729                 struct nvme_command *cmd)
730 {
731         memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
732         /* passthru commands should let the driver set the SGL flags */
733         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
734 }
735
736 static inline void nvme_setup_flush(struct nvme_ns *ns,
737                 struct nvme_command *cmnd)
738 {
739         cmnd->common.opcode = nvme_cmd_flush;
740         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
741 }
742
743 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
744                 struct nvme_command *cmnd)
745 {
746         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
747         struct nvme_dsm_range *range;
748         struct bio *bio;
749
750         /*
751          * Some devices do not consider the DSM 'Number of Ranges' field when
752          * determining how much data to DMA. Always allocate memory for maximum
753          * number of segments to prevent device reading beyond end of buffer.
754          */
755         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
756
757         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
758         if (!range) {
759                 /*
760                  * If we fail allocation our range, fallback to the controller
761                  * discard page. If that's also busy, it's safe to return
762                  * busy, as we know we can make progress once that's freed.
763                  */
764                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
765                         return BLK_STS_RESOURCE;
766
767                 range = page_address(ns->ctrl->discard_page);
768         }
769
770         __rq_for_each_bio(bio, req) {
771                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
772                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
773
774                 if (n < segments) {
775                         range[n].cattr = cpu_to_le32(0);
776                         range[n].nlb = cpu_to_le32(nlb);
777                         range[n].slba = cpu_to_le64(slba);
778                 }
779                 n++;
780         }
781
782         if (WARN_ON_ONCE(n != segments)) {
783                 if (virt_to_page(range) == ns->ctrl->discard_page)
784                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
785                 else
786                         kfree(range);
787                 return BLK_STS_IOERR;
788         }
789
790         cmnd->dsm.opcode = nvme_cmd_dsm;
791         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
792         cmnd->dsm.nr = cpu_to_le32(segments - 1);
793         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
794
795         req->special_vec.bv_page = virt_to_page(range);
796         req->special_vec.bv_offset = offset_in_page(range);
797         req->special_vec.bv_len = alloc_size;
798         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
799
800         return BLK_STS_OK;
801 }
802
803 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
804                 struct request *req, struct nvme_command *cmnd)
805 {
806         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
807                 return nvme_setup_discard(ns, req, cmnd);
808
809         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
810         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
811         cmnd->write_zeroes.slba =
812                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
813         cmnd->write_zeroes.length =
814                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
815         cmnd->write_zeroes.control = 0;
816         return BLK_STS_OK;
817 }
818
819 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
820                 struct request *req, struct nvme_command *cmnd,
821                 enum nvme_opcode op)
822 {
823         struct nvme_ctrl *ctrl = ns->ctrl;
824         u16 control = 0;
825         u32 dsmgmt = 0;
826
827         if (req->cmd_flags & REQ_FUA)
828                 control |= NVME_RW_FUA;
829         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
830                 control |= NVME_RW_LR;
831
832         if (req->cmd_flags & REQ_RAHEAD)
833                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
834
835         cmnd->rw.opcode = op;
836         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
837         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
838         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
839
840         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
841                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
842
843         if (ns->ms) {
844                 /*
845                  * If formated with metadata, the block layer always provides a
846                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
847                  * we enable the PRACT bit for protection information or set the
848                  * namespace capacity to zero to prevent any I/O.
849                  */
850                 if (!blk_integrity_rq(req)) {
851                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
852                                 return BLK_STS_NOTSUPP;
853                         control |= NVME_RW_PRINFO_PRACT;
854                 }
855
856                 switch (ns->pi_type) {
857                 case NVME_NS_DPS_PI_TYPE3:
858                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
859                         break;
860                 case NVME_NS_DPS_PI_TYPE1:
861                 case NVME_NS_DPS_PI_TYPE2:
862                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
863                                         NVME_RW_PRINFO_PRCHK_REF;
864                         if (op == nvme_cmd_zone_append)
865                                 control |= NVME_RW_APPEND_PIREMAP;
866                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
867                         break;
868                 }
869         }
870
871         cmnd->rw.control = cpu_to_le16(control);
872         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
873         return 0;
874 }
875
876 void nvme_cleanup_cmd(struct request *req)
877 {
878         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
879                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
880                 struct page *page = req->special_vec.bv_page;
881
882                 if (page == ctrl->discard_page)
883                         clear_bit_unlock(0, &ctrl->discard_page_busy);
884                 else
885                         kfree(page_address(page) + req->special_vec.bv_offset);
886         }
887 }
888 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
889
890 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
891                 struct nvme_command *cmd)
892 {
893         blk_status_t ret = BLK_STS_OK;
894
895         nvme_clear_nvme_request(req);
896
897         memset(cmd, 0, sizeof(*cmd));
898         switch (req_op(req)) {
899         case REQ_OP_DRV_IN:
900         case REQ_OP_DRV_OUT:
901                 nvme_setup_passthrough(req, cmd);
902                 break;
903         case REQ_OP_FLUSH:
904                 nvme_setup_flush(ns, cmd);
905                 break;
906         case REQ_OP_ZONE_RESET_ALL:
907         case REQ_OP_ZONE_RESET:
908                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
909                 break;
910         case REQ_OP_ZONE_OPEN:
911                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
912                 break;
913         case REQ_OP_ZONE_CLOSE:
914                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
915                 break;
916         case REQ_OP_ZONE_FINISH:
917                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
918                 break;
919         case REQ_OP_WRITE_ZEROES:
920                 ret = nvme_setup_write_zeroes(ns, req, cmd);
921                 break;
922         case REQ_OP_DISCARD:
923                 ret = nvme_setup_discard(ns, req, cmd);
924                 break;
925         case REQ_OP_READ:
926                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
927                 break;
928         case REQ_OP_WRITE:
929                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
930                 break;
931         case REQ_OP_ZONE_APPEND:
932                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
933                 break;
934         default:
935                 WARN_ON_ONCE(1);
936                 return BLK_STS_IOERR;
937         }
938
939         cmd->common.command_id = req->tag;
940         trace_nvme_setup_cmd(req, cmd);
941         return ret;
942 }
943 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
944
945 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
946 {
947         struct completion *waiting = rq->end_io_data;
948
949         rq->end_io_data = NULL;
950         complete(waiting);
951 }
952
953 static void nvme_execute_rq_polled(struct request_queue *q,
954                 struct gendisk *bd_disk, struct request *rq, int at_head)
955 {
956         DECLARE_COMPLETION_ONSTACK(wait);
957
958         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
959
960         rq->cmd_flags |= REQ_HIPRI;
961         rq->end_io_data = &wait;
962         blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
963
964         while (!completion_done(&wait)) {
965                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
966                 cond_resched();
967         }
968 }
969
970 /*
971  * Returns 0 on success.  If the result is negative, it's a Linux error code;
972  * if the result is positive, it's an NVM Express status code
973  */
974 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
975                 union nvme_result *result, void *buffer, unsigned bufflen,
976                 unsigned timeout, int qid, int at_head,
977                 blk_mq_req_flags_t flags, bool poll)
978 {
979         struct request *req;
980         int ret;
981
982         if (qid == NVME_QID_ANY)
983                 req = nvme_alloc_request(q, cmd, flags);
984         else
985                 req = nvme_alloc_request_qid(q, cmd, flags, qid);
986         if (IS_ERR(req))
987                 return PTR_ERR(req);
988
989         if (timeout)
990                 req->timeout = timeout;
991
992         if (buffer && bufflen) {
993                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
994                 if (ret)
995                         goto out;
996         }
997
998         if (poll)
999                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
1000         else
1001                 blk_execute_rq(NULL, req, at_head);
1002         if (result)
1003                 *result = nvme_req(req)->result;
1004         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1005                 ret = -EINTR;
1006         else
1007                 ret = nvme_req(req)->status;
1008  out:
1009         blk_mq_free_request(req);
1010         return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1013
1014 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1015                 void *buffer, unsigned bufflen)
1016 {
1017         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1018                         NVME_QID_ANY, 0, 0, false);
1019 }
1020 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1021
1022 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
1023                 unsigned len, u32 seed, bool write)
1024 {
1025         struct bio_integrity_payload *bip;
1026         int ret = -ENOMEM;
1027         void *buf;
1028
1029         buf = kmalloc(len, GFP_KERNEL);
1030         if (!buf)
1031                 goto out;
1032
1033         ret = -EFAULT;
1034         if (write && copy_from_user(buf, ubuf, len))
1035                 goto out_free_meta;
1036
1037         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
1038         if (IS_ERR(bip)) {
1039                 ret = PTR_ERR(bip);
1040                 goto out_free_meta;
1041         }
1042
1043         bip->bip_iter.bi_size = len;
1044         bip->bip_iter.bi_sector = seed;
1045         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
1046                         offset_in_page(buf));
1047         if (ret == len)
1048                 return buf;
1049         ret = -ENOMEM;
1050 out_free_meta:
1051         kfree(buf);
1052 out:
1053         return ERR_PTR(ret);
1054 }
1055
1056 static u32 nvme_known_admin_effects(u8 opcode)
1057 {
1058         switch (opcode) {
1059         case nvme_admin_format_nvm:
1060                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1061                         NVME_CMD_EFFECTS_CSE_MASK;
1062         case nvme_admin_sanitize_nvm:
1063                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1064         default:
1065                 break;
1066         }
1067         return 0;
1068 }
1069
1070 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1071 {
1072         u32 effects = 0;
1073
1074         if (ns) {
1075                 if (ns->head->effects)
1076                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1077                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1078                         dev_warn(ctrl->device,
1079                                  "IO command:%02x has unhandled effects:%08x\n",
1080                                  opcode, effects);
1081                 return 0;
1082         }
1083
1084         if (ctrl->effects)
1085                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1086         effects |= nvme_known_admin_effects(opcode);
1087
1088         return effects;
1089 }
1090 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1091
1092 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1093                                u8 opcode)
1094 {
1095         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1096
1097         /*
1098          * For simplicity, IO to all namespaces is quiesced even if the command
1099          * effects say only one namespace is affected.
1100          */
1101         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1102                 mutex_lock(&ctrl->scan_lock);
1103                 mutex_lock(&ctrl->subsys->lock);
1104                 nvme_mpath_start_freeze(ctrl->subsys);
1105                 nvme_mpath_wait_freeze(ctrl->subsys);
1106                 nvme_start_freeze(ctrl);
1107                 nvme_wait_freeze(ctrl);
1108         }
1109         return effects;
1110 }
1111
1112 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1113 {
1114         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1115                 nvme_unfreeze(ctrl);
1116                 nvme_mpath_unfreeze(ctrl->subsys);
1117                 mutex_unlock(&ctrl->subsys->lock);
1118                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1119                 mutex_unlock(&ctrl->scan_lock);
1120         }
1121         if (effects & NVME_CMD_EFFECTS_CCC)
1122                 nvme_init_identify(ctrl);
1123         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1124                 nvme_queue_scan(ctrl);
1125                 flush_work(&ctrl->scan_work);
1126         }
1127 }
1128
1129 void nvme_execute_passthru_rq(struct request *rq)
1130 {
1131         struct nvme_command *cmd = nvme_req(rq)->cmd;
1132         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1133         struct nvme_ns *ns = rq->q->queuedata;
1134         struct gendisk *disk = ns ? ns->disk : NULL;
1135         u32 effects;
1136
1137         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1138         blk_execute_rq(disk, rq, 0);
1139         nvme_passthru_end(ctrl, effects);
1140 }
1141 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1142
1143 static int nvme_submit_user_cmd(struct request_queue *q,
1144                 struct nvme_command *cmd, void __user *ubuffer,
1145                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1146                 u32 meta_seed, u64 *result, unsigned timeout)
1147 {
1148         bool write = nvme_is_write(cmd);
1149         struct nvme_ns *ns = q->queuedata;
1150         struct block_device *bdev = ns ? ns->disk->part0 : NULL;
1151         struct request *req;
1152         struct bio *bio = NULL;
1153         void *meta = NULL;
1154         int ret;
1155
1156         req = nvme_alloc_request(q, cmd, 0);
1157         if (IS_ERR(req))
1158                 return PTR_ERR(req);
1159
1160         if (timeout)
1161                 req->timeout = timeout;
1162         nvme_req(req)->flags |= NVME_REQ_USERCMD;
1163
1164         if (ubuffer && bufflen) {
1165                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1166                                 GFP_KERNEL);
1167                 if (ret)
1168                         goto out;
1169                 bio = req->bio;
1170                 if (bdev)
1171                         bio_set_dev(bio, bdev);
1172                 if (bdev && meta_buffer && meta_len) {
1173                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1174                                         meta_seed, write);
1175                         if (IS_ERR(meta)) {
1176                                 ret = PTR_ERR(meta);
1177                                 goto out_unmap;
1178                         }
1179                         req->cmd_flags |= REQ_INTEGRITY;
1180                 }
1181         }
1182
1183         nvme_execute_passthru_rq(req);
1184         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1185                 ret = -EINTR;
1186         else
1187                 ret = nvme_req(req)->status;
1188         if (result)
1189                 *result = le64_to_cpu(nvme_req(req)->result.u64);
1190         if (meta && !ret && !write) {
1191                 if (copy_to_user(meta_buffer, meta, meta_len))
1192                         ret = -EFAULT;
1193         }
1194         kfree(meta);
1195  out_unmap:
1196         if (bio)
1197                 blk_rq_unmap_user(bio);
1198  out:
1199         blk_mq_free_request(req);
1200         return ret;
1201 }
1202
1203 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1204 {
1205         struct nvme_ctrl *ctrl = rq->end_io_data;
1206         unsigned long flags;
1207         bool startka = false;
1208
1209         blk_mq_free_request(rq);
1210
1211         if (status) {
1212                 dev_err(ctrl->device,
1213                         "failed nvme_keep_alive_end_io error=%d\n",
1214                                 status);
1215                 return;
1216         }
1217
1218         ctrl->comp_seen = false;
1219         spin_lock_irqsave(&ctrl->lock, flags);
1220         if (ctrl->state == NVME_CTRL_LIVE ||
1221             ctrl->state == NVME_CTRL_CONNECTING)
1222                 startka = true;
1223         spin_unlock_irqrestore(&ctrl->lock, flags);
1224         if (startka)
1225                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1226 }
1227
1228 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1229 {
1230         struct request *rq;
1231
1232         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1233                         BLK_MQ_REQ_RESERVED);
1234         if (IS_ERR(rq))
1235                 return PTR_ERR(rq);
1236
1237         rq->timeout = ctrl->kato * HZ;
1238         rq->end_io_data = ctrl;
1239
1240         blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1241
1242         return 0;
1243 }
1244
1245 static void nvme_keep_alive_work(struct work_struct *work)
1246 {
1247         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1248                         struct nvme_ctrl, ka_work);
1249         bool comp_seen = ctrl->comp_seen;
1250
1251         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1252                 dev_dbg(ctrl->device,
1253                         "reschedule traffic based keep-alive timer\n");
1254                 ctrl->comp_seen = false;
1255                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1256                 return;
1257         }
1258
1259         if (nvme_keep_alive(ctrl)) {
1260                 /* allocation failure, reset the controller */
1261                 dev_err(ctrl->device, "keep-alive failed\n");
1262                 nvme_reset_ctrl(ctrl);
1263                 return;
1264         }
1265 }
1266
1267 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1268 {
1269         if (unlikely(ctrl->kato == 0))
1270                 return;
1271
1272         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1273 }
1274
1275 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1276 {
1277         if (unlikely(ctrl->kato == 0))
1278                 return;
1279
1280         cancel_delayed_work_sync(&ctrl->ka_work);
1281 }
1282 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1283
1284 /*
1285  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1286  * flag, thus sending any new CNS opcodes has a big chance of not working.
1287  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1288  * (but not for any later version).
1289  */
1290 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1291 {
1292         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1293                 return ctrl->vs < NVME_VS(1, 2, 0);
1294         return ctrl->vs < NVME_VS(1, 1, 0);
1295 }
1296
1297 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1298 {
1299         struct nvme_command c = { };
1300         int error;
1301
1302         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1303         c.identify.opcode = nvme_admin_identify;
1304         c.identify.cns = NVME_ID_CNS_CTRL;
1305
1306         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1307         if (!*id)
1308                 return -ENOMEM;
1309
1310         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1311                         sizeof(struct nvme_id_ctrl));
1312         if (error)
1313                 kfree(*id);
1314         return error;
1315 }
1316
1317 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1318 {
1319         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1320 }
1321
1322 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1323                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1324 {
1325         const char *warn_str = "ctrl returned bogus length:";
1326         void *data = cur;
1327
1328         switch (cur->nidt) {
1329         case NVME_NIDT_EUI64:
1330                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1331                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1332                                  warn_str, cur->nidl);
1333                         return -1;
1334                 }
1335                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1336                 return NVME_NIDT_EUI64_LEN;
1337         case NVME_NIDT_NGUID:
1338                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1339                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1340                                  warn_str, cur->nidl);
1341                         return -1;
1342                 }
1343                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1344                 return NVME_NIDT_NGUID_LEN;
1345         case NVME_NIDT_UUID:
1346                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1347                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1348                                  warn_str, cur->nidl);
1349                         return -1;
1350                 }
1351                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1352                 return NVME_NIDT_UUID_LEN;
1353         case NVME_NIDT_CSI:
1354                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1355                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1356                                  warn_str, cur->nidl);
1357                         return -1;
1358                 }
1359                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1360                 *csi_seen = true;
1361                 return NVME_NIDT_CSI_LEN;
1362         default:
1363                 /* Skip unknown types */
1364                 return cur->nidl;
1365         }
1366 }
1367
1368 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1369                 struct nvme_ns_ids *ids)
1370 {
1371         struct nvme_command c = { };
1372         bool csi_seen = false;
1373         int status, pos, len;
1374         void *data;
1375
1376         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1377                 return 0;
1378         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1379                 return 0;
1380
1381         c.identify.opcode = nvme_admin_identify;
1382         c.identify.nsid = cpu_to_le32(nsid);
1383         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1384
1385         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1386         if (!data)
1387                 return -ENOMEM;
1388
1389         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1390                                       NVME_IDENTIFY_DATA_SIZE);
1391         if (status) {
1392                 dev_warn(ctrl->device,
1393                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1394                         nsid, status);
1395                 goto free_data;
1396         }
1397
1398         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1399                 struct nvme_ns_id_desc *cur = data + pos;
1400
1401                 if (cur->nidl == 0)
1402                         break;
1403
1404                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1405                 if (len < 0)
1406                         break;
1407
1408                 len += sizeof(*cur);
1409         }
1410
1411         if (nvme_multi_css(ctrl) && !csi_seen) {
1412                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1413                          nsid);
1414                 status = -EINVAL;
1415         }
1416
1417 free_data:
1418         kfree(data);
1419         return status;
1420 }
1421
1422 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1423                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1424 {
1425         struct nvme_command c = { };
1426         int error;
1427
1428         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1429         c.identify.opcode = nvme_admin_identify;
1430         c.identify.nsid = cpu_to_le32(nsid);
1431         c.identify.cns = NVME_ID_CNS_NS;
1432
1433         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1434         if (!*id)
1435                 return -ENOMEM;
1436
1437         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1438         if (error) {
1439                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1440                 goto out_free_id;
1441         }
1442
1443         error = -ENODEV;
1444         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1445                 goto out_free_id;
1446
1447         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1448             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1449                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1450         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1451             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1452                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1453
1454         return 0;
1455
1456 out_free_id:
1457         kfree(*id);
1458         return error;
1459 }
1460
1461 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1462                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1463 {
1464         union nvme_result res = { 0 };
1465         struct nvme_command c;
1466         int ret;
1467
1468         memset(&c, 0, sizeof(c));
1469         c.features.opcode = op;
1470         c.features.fid = cpu_to_le32(fid);
1471         c.features.dword11 = cpu_to_le32(dword11);
1472
1473         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1474                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1475         if (ret >= 0 && result)
1476                 *result = le32_to_cpu(res.u32);
1477         return ret;
1478 }
1479
1480 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1481                       unsigned int dword11, void *buffer, size_t buflen,
1482                       u32 *result)
1483 {
1484         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1485                              buflen, result);
1486 }
1487 EXPORT_SYMBOL_GPL(nvme_set_features);
1488
1489 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1490                       unsigned int dword11, void *buffer, size_t buflen,
1491                       u32 *result)
1492 {
1493         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1494                              buflen, result);
1495 }
1496 EXPORT_SYMBOL_GPL(nvme_get_features);
1497
1498 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1499 {
1500         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1501         u32 result;
1502         int status, nr_io_queues;
1503
1504         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1505                         &result);
1506         if (status < 0)
1507                 return status;
1508
1509         /*
1510          * Degraded controllers might return an error when setting the queue
1511          * count.  We still want to be able to bring them online and offer
1512          * access to the admin queue, as that might be only way to fix them up.
1513          */
1514         if (status > 0) {
1515                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1516                 *count = 0;
1517         } else {
1518                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1519                 *count = min(*count, nr_io_queues);
1520         }
1521
1522         return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1525
1526 #define NVME_AEN_SUPPORTED \
1527         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1528          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1529
1530 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1531 {
1532         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1533         int status;
1534
1535         if (!supported_aens)
1536                 return;
1537
1538         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1539                         NULL, 0, &result);
1540         if (status)
1541                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1542                          supported_aens);
1543
1544         queue_work(nvme_wq, &ctrl->async_event_work);
1545 }
1546
1547 /*
1548  * Convert integer values from ioctl structures to user pointers, silently
1549  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1550  * kernels.
1551  */
1552 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1553 {
1554         if (in_compat_syscall())
1555                 ptrval = (compat_uptr_t)ptrval;
1556         return (void __user *)ptrval;
1557 }
1558
1559 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1560 {
1561         struct nvme_user_io io;
1562         struct nvme_command c;
1563         unsigned length, meta_len;
1564         void __user *metadata;
1565
1566         if (copy_from_user(&io, uio, sizeof(io)))
1567                 return -EFAULT;
1568         if (io.flags)
1569                 return -EINVAL;
1570
1571         switch (io.opcode) {
1572         case nvme_cmd_write:
1573         case nvme_cmd_read:
1574         case nvme_cmd_compare:
1575                 break;
1576         default:
1577                 return -EINVAL;
1578         }
1579
1580         length = (io.nblocks + 1) << ns->lba_shift;
1581
1582         if ((io.control & NVME_RW_PRINFO_PRACT) &&
1583             ns->ms == sizeof(struct t10_pi_tuple)) {
1584                 /*
1585                  * Protection information is stripped/inserted by the
1586                  * controller.
1587                  */
1588                 if (nvme_to_user_ptr(io.metadata))
1589                         return -EINVAL;
1590                 meta_len = 0;
1591                 metadata = NULL;
1592         } else {
1593                 meta_len = (io.nblocks + 1) * ns->ms;
1594                 metadata = nvme_to_user_ptr(io.metadata);
1595         }
1596
1597         if (ns->features & NVME_NS_EXT_LBAS) {
1598                 length += meta_len;
1599                 meta_len = 0;
1600         } else if (meta_len) {
1601                 if ((io.metadata & 3) || !io.metadata)
1602                         return -EINVAL;
1603         }
1604
1605         memset(&c, 0, sizeof(c));
1606         c.rw.opcode = io.opcode;
1607         c.rw.flags = io.flags;
1608         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1609         c.rw.slba = cpu_to_le64(io.slba);
1610         c.rw.length = cpu_to_le16(io.nblocks);
1611         c.rw.control = cpu_to_le16(io.control);
1612         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1613         c.rw.reftag = cpu_to_le32(io.reftag);
1614         c.rw.apptag = cpu_to_le16(io.apptag);
1615         c.rw.appmask = cpu_to_le16(io.appmask);
1616
1617         return nvme_submit_user_cmd(ns->queue, &c,
1618                         nvme_to_user_ptr(io.addr), length,
1619                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1620 }
1621
1622 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1623                         struct nvme_passthru_cmd __user *ucmd)
1624 {
1625         struct nvme_passthru_cmd cmd;
1626         struct nvme_command c;
1627         unsigned timeout = 0;
1628         u64 result;
1629         int status;
1630
1631         if (!capable(CAP_SYS_ADMIN))
1632                 return -EACCES;
1633         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1634                 return -EFAULT;
1635         if (cmd.flags)
1636                 return -EINVAL;
1637
1638         memset(&c, 0, sizeof(c));
1639         c.common.opcode = cmd.opcode;
1640         c.common.flags = cmd.flags;
1641         c.common.nsid = cpu_to_le32(cmd.nsid);
1642         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1643         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1644         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1645         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1646         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1647         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1648         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1649         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1650
1651         if (cmd.timeout_ms)
1652                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1653
1654         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1655                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1656                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1657                         0, &result, timeout);
1658
1659         if (status >= 0) {
1660                 if (put_user(result, &ucmd->result))
1661                         return -EFAULT;
1662         }
1663
1664         return status;
1665 }
1666
1667 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1668                         struct nvme_passthru_cmd64 __user *ucmd)
1669 {
1670         struct nvme_passthru_cmd64 cmd;
1671         struct nvme_command c;
1672         unsigned timeout = 0;
1673         int status;
1674
1675         if (!capable(CAP_SYS_ADMIN))
1676                 return -EACCES;
1677         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1678                 return -EFAULT;
1679         if (cmd.flags)
1680                 return -EINVAL;
1681
1682         memset(&c, 0, sizeof(c));
1683         c.common.opcode = cmd.opcode;
1684         c.common.flags = cmd.flags;
1685         c.common.nsid = cpu_to_le32(cmd.nsid);
1686         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1687         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1688         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1689         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1690         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1691         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1692         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1693         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1694
1695         if (cmd.timeout_ms)
1696                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1697
1698         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1699                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1700                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1701                         0, &cmd.result, timeout);
1702
1703         if (status >= 0) {
1704                 if (put_user(cmd.result, &ucmd->result))
1705                         return -EFAULT;
1706         }
1707
1708         return status;
1709 }
1710
1711 /*
1712  * Issue ioctl requests on the first available path.  Note that unlike normal
1713  * block layer requests we will not retry failed request on another controller.
1714  */
1715 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1716                 struct nvme_ns_head **head, int *srcu_idx)
1717 {
1718 #ifdef CONFIG_NVME_MULTIPATH
1719         if (disk->fops == &nvme_ns_head_ops) {
1720                 struct nvme_ns *ns;
1721
1722                 *head = disk->private_data;
1723                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1724                 ns = nvme_find_path(*head);
1725                 if (!ns)
1726                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1727                 return ns;
1728         }
1729 #endif
1730         *head = NULL;
1731         *srcu_idx = -1;
1732         return disk->private_data;
1733 }
1734
1735 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1736 {
1737         if (head)
1738                 srcu_read_unlock(&head->srcu, idx);
1739 }
1740
1741 static bool is_ctrl_ioctl(unsigned int cmd)
1742 {
1743         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1744                 return true;
1745         if (is_sed_ioctl(cmd))
1746                 return true;
1747         return false;
1748 }
1749
1750 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1751                                   void __user *argp,
1752                                   struct nvme_ns_head *head,
1753                                   int srcu_idx)
1754 {
1755         struct nvme_ctrl *ctrl = ns->ctrl;
1756         int ret;
1757
1758         nvme_get_ctrl(ns->ctrl);
1759         nvme_put_ns_from_disk(head, srcu_idx);
1760
1761         switch (cmd) {
1762         case NVME_IOCTL_ADMIN_CMD:
1763                 ret = nvme_user_cmd(ctrl, NULL, argp);
1764                 break;
1765         case NVME_IOCTL_ADMIN64_CMD:
1766                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1767                 break;
1768         default:
1769                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1770                 break;
1771         }
1772         nvme_put_ctrl(ctrl);
1773         return ret;
1774 }
1775
1776 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1777                 unsigned int cmd, unsigned long arg)
1778 {
1779         struct nvme_ns_head *head = NULL;
1780         void __user *argp = (void __user *)arg;
1781         struct nvme_ns *ns;
1782         int srcu_idx, ret;
1783
1784         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1785         if (unlikely(!ns))
1786                 return -EWOULDBLOCK;
1787
1788         /*
1789          * Handle ioctls that apply to the controller instead of the namespace
1790          * seperately and drop the ns SRCU reference early.  This avoids a
1791          * deadlock when deleting namespaces using the passthrough interface.
1792          */
1793         if (is_ctrl_ioctl(cmd))
1794                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1795
1796         switch (cmd) {
1797         case NVME_IOCTL_ID:
1798                 force_successful_syscall_return();
1799                 ret = ns->head->ns_id;
1800                 break;
1801         case NVME_IOCTL_IO_CMD:
1802                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1803                 break;
1804         case NVME_IOCTL_SUBMIT_IO:
1805                 ret = nvme_submit_io(ns, argp);
1806                 break;
1807         case NVME_IOCTL_IO64_CMD:
1808                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1809                 break;
1810         default:
1811                 if (ns->ndev)
1812                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1813                 else
1814                         ret = -ENOTTY;
1815         }
1816
1817         nvme_put_ns_from_disk(head, srcu_idx);
1818         return ret;
1819 }
1820
1821 #ifdef CONFIG_COMPAT
1822 struct nvme_user_io32 {
1823         __u8    opcode;
1824         __u8    flags;
1825         __u16   control;
1826         __u16   nblocks;
1827         __u16   rsvd;
1828         __u64   metadata;
1829         __u64   addr;
1830         __u64   slba;
1831         __u32   dsmgmt;
1832         __u32   reftag;
1833         __u16   apptag;
1834         __u16   appmask;
1835 } __attribute__((__packed__));
1836
1837 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1838
1839 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1840                 unsigned int cmd, unsigned long arg)
1841 {
1842         /*
1843          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1844          * between 32 bit programs and 64 bit kernel.
1845          * The cause is that the results of sizeof(struct nvme_user_io),
1846          * which is used to define NVME_IOCTL_SUBMIT_IO,
1847          * are not same between 32 bit compiler and 64 bit compiler.
1848          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1849          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1850          * Other IOCTL numbers are same between 32 bit and 64 bit.
1851          * So there is nothing to do regarding to other IOCTL numbers.
1852          */
1853         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1854                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1855
1856         return nvme_ioctl(bdev, mode, cmd, arg);
1857 }
1858 #else
1859 #define nvme_compat_ioctl       NULL
1860 #endif /* CONFIG_COMPAT */
1861
1862 static int nvme_open(struct block_device *bdev, fmode_t mode)
1863 {
1864         struct nvme_ns *ns = bdev->bd_disk->private_data;
1865
1866 #ifdef CONFIG_NVME_MULTIPATH
1867         /* should never be called due to GENHD_FL_HIDDEN */
1868         if (WARN_ON_ONCE(ns->head->disk))
1869                 goto fail;
1870 #endif
1871         if (!kref_get_unless_zero(&ns->kref))
1872                 goto fail;
1873         if (!try_module_get(ns->ctrl->ops->module))
1874                 goto fail_put_ns;
1875
1876         return 0;
1877
1878 fail_put_ns:
1879         nvme_put_ns(ns);
1880 fail:
1881         return -ENXIO;
1882 }
1883
1884 static void nvme_release(struct gendisk *disk, fmode_t mode)
1885 {
1886         struct nvme_ns *ns = disk->private_data;
1887
1888         module_put(ns->ctrl->ops->module);
1889         nvme_put_ns(ns);
1890 }
1891
1892 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1893 {
1894         /* some standard values */
1895         geo->heads = 1 << 6;
1896         geo->sectors = 1 << 5;
1897         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1898         return 0;
1899 }
1900
1901 #ifdef CONFIG_BLK_DEV_INTEGRITY
1902 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1903                                 u32 max_integrity_segments)
1904 {
1905         struct blk_integrity integrity;
1906
1907         memset(&integrity, 0, sizeof(integrity));
1908         switch (pi_type) {
1909         case NVME_NS_DPS_PI_TYPE3:
1910                 integrity.profile = &t10_pi_type3_crc;
1911                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1912                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1913                 break;
1914         case NVME_NS_DPS_PI_TYPE1:
1915         case NVME_NS_DPS_PI_TYPE2:
1916                 integrity.profile = &t10_pi_type1_crc;
1917                 integrity.tag_size = sizeof(u16);
1918                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1919                 break;
1920         default:
1921                 integrity.profile = NULL;
1922                 break;
1923         }
1924         integrity.tuple_size = ms;
1925         blk_integrity_register(disk, &integrity);
1926         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1927 }
1928 #else
1929 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1930                                 u32 max_integrity_segments)
1931 {
1932 }
1933 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1934
1935 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1936 {
1937         struct nvme_ctrl *ctrl = ns->ctrl;
1938         struct request_queue *queue = disk->queue;
1939         u32 size = queue_logical_block_size(queue);
1940
1941         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1942                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1943                 return;
1944         }
1945
1946         if (ctrl->nr_streams && ns->sws && ns->sgs)
1947                 size *= ns->sws * ns->sgs;
1948
1949         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1950                         NVME_DSM_MAX_RANGES);
1951
1952         queue->limits.discard_alignment = 0;
1953         queue->limits.discard_granularity = size;
1954
1955         /* If discard is already enabled, don't reset queue limits */
1956         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1957                 return;
1958
1959         blk_queue_max_discard_sectors(queue, UINT_MAX);
1960         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1961
1962         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1963                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1964 }
1965
1966 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1967 {
1968         u64 max_blocks;
1969
1970         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1971             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1972                 return;
1973         /*
1974          * Even though NVMe spec explicitly states that MDTS is not
1975          * applicable to the write-zeroes:- "The restriction does not apply to
1976          * commands that do not transfer data between the host and the
1977          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1978          * In order to be more cautious use controller's max_hw_sectors value
1979          * to configure the maximum sectors for the write-zeroes which is
1980          * configured based on the controller's MDTS field in the
1981          * nvme_init_identify() if available.
1982          */
1983         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1984                 max_blocks = (u64)USHRT_MAX + 1;
1985         else
1986                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1987
1988         blk_queue_max_write_zeroes_sectors(disk->queue,
1989                                            nvme_lba_to_sect(ns, max_blocks));
1990 }
1991
1992 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1993 {
1994         return !uuid_is_null(&ids->uuid) ||
1995                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1996                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1997 }
1998
1999 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
2000 {
2001         return uuid_equal(&a->uuid, &b->uuid) &&
2002                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
2003                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
2004                 a->csi == b->csi;
2005 }
2006
2007 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
2008                                  u32 *phys_bs, u32 *io_opt)
2009 {
2010         struct streams_directive_params s;
2011         int ret;
2012
2013         if (!ctrl->nr_streams)
2014                 return 0;
2015
2016         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2017         if (ret)
2018                 return ret;
2019
2020         ns->sws = le32_to_cpu(s.sws);
2021         ns->sgs = le16_to_cpu(s.sgs);
2022
2023         if (ns->sws) {
2024                 *phys_bs = ns->sws * (1 << ns->lba_shift);
2025                 if (ns->sgs)
2026                         *io_opt = *phys_bs * ns->sgs;
2027         }
2028
2029         return 0;
2030 }
2031
2032 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
2033 {
2034         struct nvme_ctrl *ctrl = ns->ctrl;
2035
2036         /*
2037          * The PI implementation requires the metadata size to be equal to the
2038          * t10 pi tuple size.
2039          */
2040         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
2041         if (ns->ms == sizeof(struct t10_pi_tuple))
2042                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2043         else
2044                 ns->pi_type = 0;
2045
2046         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2047         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
2048                 return 0;
2049         if (ctrl->ops->flags & NVME_F_FABRICS) {
2050                 /*
2051                  * The NVMe over Fabrics specification only supports metadata as
2052                  * part of the extended data LBA.  We rely on HCA/HBA support to
2053                  * remap the separate metadata buffer from the block layer.
2054                  */
2055                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2056                         return -EINVAL;
2057                 if (ctrl->max_integrity_segments)
2058                         ns->features |=
2059                                 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2060         } else {
2061                 /*
2062                  * For PCIe controllers, we can't easily remap the separate
2063                  * metadata buffer from the block layer and thus require a
2064                  * separate metadata buffer for block layer metadata/PI support.
2065                  * We allow extended LBAs for the passthrough interface, though.
2066                  */
2067                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2068                         ns->features |= NVME_NS_EXT_LBAS;
2069                 else
2070                         ns->features |= NVME_NS_METADATA_SUPPORTED;
2071         }
2072
2073         return 0;
2074 }
2075
2076 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2077                 struct request_queue *q)
2078 {
2079         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2080
2081         if (ctrl->max_hw_sectors) {
2082                 u32 max_segments =
2083                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2084
2085                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2086                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2087                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2088         }
2089         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2090         blk_queue_dma_alignment(q, 7);
2091         blk_queue_write_cache(q, vwc, vwc);
2092 }
2093
2094 static void nvme_update_disk_info(struct gendisk *disk,
2095                 struct nvme_ns *ns, struct nvme_id_ns *id)
2096 {
2097         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2098         unsigned short bs = 1 << ns->lba_shift;
2099         u32 atomic_bs, phys_bs, io_opt = 0;
2100
2101         /*
2102          * The block layer can't support LBA sizes larger than the page size
2103          * yet, so catch this early and don't allow block I/O.
2104          */
2105         if (ns->lba_shift > PAGE_SHIFT) {
2106                 capacity = 0;
2107                 bs = (1 << 9);
2108         }
2109
2110         blk_integrity_unregister(disk);
2111
2112         atomic_bs = phys_bs = bs;
2113         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2114         if (id->nabo == 0) {
2115                 /*
2116                  * Bit 1 indicates whether NAWUPF is defined for this namespace
2117                  * and whether it should be used instead of AWUPF. If NAWUPF ==
2118                  * 0 then AWUPF must be used instead.
2119                  */
2120                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2121                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2122                 else
2123                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2124         }
2125
2126         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2127                 /* NPWG = Namespace Preferred Write Granularity */
2128                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2129                 /* NOWS = Namespace Optimal Write Size */
2130                 io_opt = bs * (1 + le16_to_cpu(id->nows));
2131         }
2132
2133         blk_queue_logical_block_size(disk->queue, bs);
2134         /*
2135          * Linux filesystems assume writing a single physical block is
2136          * an atomic operation. Hence limit the physical block size to the
2137          * value of the Atomic Write Unit Power Fail parameter.
2138          */
2139         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2140         blk_queue_io_min(disk->queue, phys_bs);
2141         blk_queue_io_opt(disk->queue, io_opt);
2142
2143         /*
2144          * Register a metadata profile for PI, or the plain non-integrity NVMe
2145          * metadata masquerading as Type 0 if supported, otherwise reject block
2146          * I/O to namespaces with metadata except when the namespace supports
2147          * PI, as it can strip/insert in that case.
2148          */
2149         if (ns->ms) {
2150                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2151                     (ns->features & NVME_NS_METADATA_SUPPORTED))
2152                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
2153                                             ns->ctrl->max_integrity_segments);
2154                 else if (!nvme_ns_has_pi(ns))
2155                         capacity = 0;
2156         }
2157
2158         set_capacity_and_notify(disk, capacity);
2159
2160         nvme_config_discard(disk, ns);
2161         nvme_config_write_zeroes(disk, ns);
2162
2163         set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
2164                 test_bit(NVME_NS_FORCE_RO, &ns->flags));
2165 }
2166
2167 static inline bool nvme_first_scan(struct gendisk *disk)
2168 {
2169         /* nvme_alloc_ns() scans the disk prior to adding it */
2170         return !(disk->flags & GENHD_FL_UP);
2171 }
2172
2173 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2174 {
2175         struct nvme_ctrl *ctrl = ns->ctrl;
2176         u32 iob;
2177
2178         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2179             is_power_of_2(ctrl->max_hw_sectors))
2180                 iob = ctrl->max_hw_sectors;
2181         else
2182                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2183
2184         if (!iob)
2185                 return;
2186
2187         if (!is_power_of_2(iob)) {
2188                 if (nvme_first_scan(ns->disk))
2189                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2190                                 ns->disk->disk_name, iob);
2191                 return;
2192         }
2193
2194         if (blk_queue_is_zoned(ns->disk->queue)) {
2195                 if (nvme_first_scan(ns->disk))
2196                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
2197                                 ns->disk->disk_name);
2198                 return;
2199         }
2200
2201         blk_queue_chunk_sectors(ns->queue, iob);
2202 }
2203
2204 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2205 {
2206         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2207         int ret;
2208
2209         blk_mq_freeze_queue(ns->disk->queue);
2210         ns->lba_shift = id->lbaf[lbaf].ds;
2211         nvme_set_queue_limits(ns->ctrl, ns->queue);
2212
2213         ret = nvme_configure_metadata(ns, id);
2214         if (ret)
2215                 goto out_unfreeze;
2216         nvme_set_chunk_sectors(ns, id);
2217         nvme_update_disk_info(ns->disk, ns, id);
2218
2219         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2220                 ret = nvme_update_zone_info(ns, lbaf);
2221                 if (ret)
2222                         goto out_unfreeze;
2223         }
2224
2225         blk_mq_unfreeze_queue(ns->disk->queue);
2226
2227         if (blk_queue_is_zoned(ns->queue)) {
2228                 ret = nvme_revalidate_zones(ns);
2229                 if (ret && !nvme_first_scan(ns->disk))
2230                         return ret;
2231         }
2232
2233 #ifdef CONFIG_NVME_MULTIPATH
2234         if (ns->head->disk) {
2235                 blk_mq_freeze_queue(ns->head->disk->queue);
2236                 nvme_update_disk_info(ns->head->disk, ns, id);
2237                 blk_stack_limits(&ns->head->disk->queue->limits,
2238                                  &ns->queue->limits, 0);
2239                 blk_queue_update_readahead(ns->head->disk->queue);
2240                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2241         }
2242 #endif
2243         return 0;
2244
2245 out_unfreeze:
2246         blk_mq_unfreeze_queue(ns->disk->queue);
2247         return ret;
2248 }
2249
2250 static char nvme_pr_type(enum pr_type type)
2251 {
2252         switch (type) {
2253         case PR_WRITE_EXCLUSIVE:
2254                 return 1;
2255         case PR_EXCLUSIVE_ACCESS:
2256                 return 2;
2257         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2258                 return 3;
2259         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2260                 return 4;
2261         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2262                 return 5;
2263         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2264                 return 6;
2265         default:
2266                 return 0;
2267         }
2268 };
2269
2270 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2271                                 u64 key, u64 sa_key, u8 op)
2272 {
2273         struct nvme_ns_head *head = NULL;
2274         struct nvme_ns *ns;
2275         struct nvme_command c;
2276         int srcu_idx, ret;
2277         u8 data[16] = { 0, };
2278
2279         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2280         if (unlikely(!ns))
2281                 return -EWOULDBLOCK;
2282
2283         put_unaligned_le64(key, &data[0]);
2284         put_unaligned_le64(sa_key, &data[8]);
2285
2286         memset(&c, 0, sizeof(c));
2287         c.common.opcode = op;
2288         c.common.nsid = cpu_to_le32(ns->head->ns_id);
2289         c.common.cdw10 = cpu_to_le32(cdw10);
2290
2291         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2292         nvme_put_ns_from_disk(head, srcu_idx);
2293         return ret;
2294 }
2295
2296 static int nvme_pr_register(struct block_device *bdev, u64 old,
2297                 u64 new, unsigned flags)
2298 {
2299         u32 cdw10;
2300
2301         if (flags & ~PR_FL_IGNORE_KEY)
2302                 return -EOPNOTSUPP;
2303
2304         cdw10 = old ? 2 : 0;
2305         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2306         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2307         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2308 }
2309
2310 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2311                 enum pr_type type, unsigned flags)
2312 {
2313         u32 cdw10;
2314
2315         if (flags & ~PR_FL_IGNORE_KEY)
2316                 return -EOPNOTSUPP;
2317
2318         cdw10 = nvme_pr_type(type) << 8;
2319         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2320         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2321 }
2322
2323 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2324                 enum pr_type type, bool abort)
2325 {
2326         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2327         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2328 }
2329
2330 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2331 {
2332         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2333         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2334 }
2335
2336 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2337 {
2338         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2339         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2340 }
2341
2342 static const struct pr_ops nvme_pr_ops = {
2343         .pr_register    = nvme_pr_register,
2344         .pr_reserve     = nvme_pr_reserve,
2345         .pr_release     = nvme_pr_release,
2346         .pr_preempt     = nvme_pr_preempt,
2347         .pr_clear       = nvme_pr_clear,
2348 };
2349
2350 #ifdef CONFIG_BLK_SED_OPAL
2351 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2352                 bool send)
2353 {
2354         struct nvme_ctrl *ctrl = data;
2355         struct nvme_command cmd;
2356
2357         memset(&cmd, 0, sizeof(cmd));
2358         if (send)
2359                 cmd.common.opcode = nvme_admin_security_send;
2360         else
2361                 cmd.common.opcode = nvme_admin_security_recv;
2362         cmd.common.nsid = 0;
2363         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2364         cmd.common.cdw11 = cpu_to_le32(len);
2365
2366         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2367                         NVME_QID_ANY, 1, 0, false);
2368 }
2369 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2370 #endif /* CONFIG_BLK_SED_OPAL */
2371
2372 static const struct block_device_operations nvme_bdev_ops = {
2373         .owner          = THIS_MODULE,
2374         .ioctl          = nvme_ioctl,
2375         .compat_ioctl   = nvme_compat_ioctl,
2376         .open           = nvme_open,
2377         .release        = nvme_release,
2378         .getgeo         = nvme_getgeo,
2379         .report_zones   = nvme_report_zones,
2380         .pr_ops         = &nvme_pr_ops,
2381 };
2382
2383 #ifdef CONFIG_NVME_MULTIPATH
2384 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2385 {
2386         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2387
2388         if (!kref_get_unless_zero(&head->ref))
2389                 return -ENXIO;
2390         return 0;
2391 }
2392
2393 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2394 {
2395         nvme_put_ns_head(disk->private_data);
2396 }
2397
2398 const struct block_device_operations nvme_ns_head_ops = {
2399         .owner          = THIS_MODULE,
2400         .submit_bio     = nvme_ns_head_submit_bio,
2401         .open           = nvme_ns_head_open,
2402         .release        = nvme_ns_head_release,
2403         .ioctl          = nvme_ioctl,
2404         .compat_ioctl   = nvme_compat_ioctl,
2405         .getgeo         = nvme_getgeo,
2406         .report_zones   = nvme_report_zones,
2407         .pr_ops         = &nvme_pr_ops,
2408 };
2409 #endif /* CONFIG_NVME_MULTIPATH */
2410
2411 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2412 {
2413         unsigned long timeout =
2414                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2415         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2416         int ret;
2417
2418         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2419                 if (csts == ~0)
2420                         return -ENODEV;
2421                 if ((csts & NVME_CSTS_RDY) == bit)
2422                         break;
2423
2424                 usleep_range(1000, 2000);
2425                 if (fatal_signal_pending(current))
2426                         return -EINTR;
2427                 if (time_after(jiffies, timeout)) {
2428                         dev_err(ctrl->device,
2429                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2430                                 enabled ? "initialisation" : "reset", csts);
2431                         return -ENODEV;
2432                 }
2433         }
2434
2435         return ret;
2436 }
2437
2438 /*
2439  * If the device has been passed off to us in an enabled state, just clear
2440  * the enabled bit.  The spec says we should set the 'shutdown notification
2441  * bits', but doing so may cause the device to complete commands to the
2442  * admin queue ... and we don't know what memory that might be pointing at!
2443  */
2444 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2445 {
2446         int ret;
2447
2448         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2449         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2450
2451         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2452         if (ret)
2453                 return ret;
2454
2455         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2456                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2457
2458         return nvme_wait_ready(ctrl, ctrl->cap, false);
2459 }
2460 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2461
2462 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2463 {
2464         unsigned dev_page_min;
2465         int ret;
2466
2467         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2468         if (ret) {
2469                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2470                 return ret;
2471         }
2472         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2473
2474         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2475                 dev_err(ctrl->device,
2476                         "Minimum device page size %u too large for host (%u)\n",
2477                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2478                 return -ENODEV;
2479         }
2480
2481         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2482                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2483         else
2484                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2485         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2486         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2487         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2488         ctrl->ctrl_config |= NVME_CC_ENABLE;
2489
2490         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2491         if (ret)
2492                 return ret;
2493         return nvme_wait_ready(ctrl, ctrl->cap, true);
2494 }
2495 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2496
2497 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2498 {
2499         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2500         u32 csts;
2501         int ret;
2502
2503         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2504         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2505
2506         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2507         if (ret)
2508                 return ret;
2509
2510         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2511                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2512                         break;
2513
2514                 msleep(100);
2515                 if (fatal_signal_pending(current))
2516                         return -EINTR;
2517                 if (time_after(jiffies, timeout)) {
2518                         dev_err(ctrl->device,
2519                                 "Device shutdown incomplete; abort shutdown\n");
2520                         return -ENODEV;
2521                 }
2522         }
2523
2524         return ret;
2525 }
2526 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2527
2528 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2529 {
2530         __le64 ts;
2531         int ret;
2532
2533         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2534                 return 0;
2535
2536         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2537         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2538                         NULL);
2539         if (ret)
2540                 dev_warn_once(ctrl->device,
2541                         "could not set timestamp (%d)\n", ret);
2542         return ret;
2543 }
2544
2545 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2546 {
2547         struct nvme_feat_host_behavior *host;
2548         int ret;
2549
2550         /* Don't bother enabling the feature if retry delay is not reported */
2551         if (!ctrl->crdt[0])
2552                 return 0;
2553
2554         host = kzalloc(sizeof(*host), GFP_KERNEL);
2555         if (!host)
2556                 return 0;
2557
2558         host->acre = NVME_ENABLE_ACRE;
2559         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2560                                 host, sizeof(*host), NULL);
2561         kfree(host);
2562         return ret;
2563 }
2564
2565 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2566 {
2567         /*
2568          * APST (Autonomous Power State Transition) lets us program a
2569          * table of power state transitions that the controller will
2570          * perform automatically.  We configure it with a simple
2571          * heuristic: we are willing to spend at most 2% of the time
2572          * transitioning between power states.  Therefore, when running
2573          * in any given state, we will enter the next lower-power
2574          * non-operational state after waiting 50 * (enlat + exlat)
2575          * microseconds, as long as that state's exit latency is under
2576          * the requested maximum latency.
2577          *
2578          * We will not autonomously enter any non-operational state for
2579          * which the total latency exceeds ps_max_latency_us.  Users
2580          * can set ps_max_latency_us to zero to turn off APST.
2581          */
2582
2583         unsigned apste;
2584         struct nvme_feat_auto_pst *table;
2585         u64 max_lat_us = 0;
2586         int max_ps = -1;
2587         int ret;
2588
2589         /*
2590          * If APST isn't supported or if we haven't been initialized yet,
2591          * then don't do anything.
2592          */
2593         if (!ctrl->apsta)
2594                 return 0;
2595
2596         if (ctrl->npss > 31) {
2597                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2598                 return 0;
2599         }
2600
2601         table = kzalloc(sizeof(*table), GFP_KERNEL);
2602         if (!table)
2603                 return 0;
2604
2605         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2606                 /* Turn off APST. */
2607                 apste = 0;
2608                 dev_dbg(ctrl->device, "APST disabled\n");
2609         } else {
2610                 __le64 target = cpu_to_le64(0);
2611                 int state;
2612
2613                 /*
2614                  * Walk through all states from lowest- to highest-power.
2615                  * According to the spec, lower-numbered states use more
2616                  * power.  NPSS, despite the name, is the index of the
2617                  * lowest-power state, not the number of states.
2618                  */
2619                 for (state = (int)ctrl->npss; state >= 0; state--) {
2620                         u64 total_latency_us, exit_latency_us, transition_ms;
2621
2622                         if (target)
2623                                 table->entries[state] = target;
2624
2625                         /*
2626                          * Don't allow transitions to the deepest state
2627                          * if it's quirked off.
2628                          */
2629                         if (state == ctrl->npss &&
2630                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2631                                 continue;
2632
2633                         /*
2634                          * Is this state a useful non-operational state for
2635                          * higher-power states to autonomously transition to?
2636                          */
2637                         if (!(ctrl->psd[state].flags &
2638                               NVME_PS_FLAGS_NON_OP_STATE))
2639                                 continue;
2640
2641                         exit_latency_us =
2642                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2643                         if (exit_latency_us > ctrl->ps_max_latency_us)
2644                                 continue;
2645
2646                         total_latency_us =
2647                                 exit_latency_us +
2648                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2649
2650                         /*
2651                          * This state is good.  Use it as the APST idle
2652                          * target for higher power states.
2653                          */
2654                         transition_ms = total_latency_us + 19;
2655                         do_div(transition_ms, 20);
2656                         if (transition_ms > (1 << 24) - 1)
2657                                 transition_ms = (1 << 24) - 1;
2658
2659                         target = cpu_to_le64((state << 3) |
2660                                              (transition_ms << 8));
2661
2662                         if (max_ps == -1)
2663                                 max_ps = state;
2664
2665                         if (total_latency_us > max_lat_us)
2666                                 max_lat_us = total_latency_us;
2667                 }
2668
2669                 apste = 1;
2670
2671                 if (max_ps == -1) {
2672                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2673                 } else {
2674                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2675                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2676                 }
2677         }
2678
2679         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2680                                 table, sizeof(*table), NULL);
2681         if (ret)
2682                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2683
2684         kfree(table);
2685         return ret;
2686 }
2687
2688 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2689 {
2690         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2691         u64 latency;
2692
2693         switch (val) {
2694         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2695         case PM_QOS_LATENCY_ANY:
2696                 latency = U64_MAX;
2697                 break;
2698
2699         default:
2700                 latency = val;
2701         }
2702
2703         if (ctrl->ps_max_latency_us != latency) {
2704                 ctrl->ps_max_latency_us = latency;
2705                 nvme_configure_apst(ctrl);
2706         }
2707 }
2708
2709 struct nvme_core_quirk_entry {
2710         /*
2711          * NVMe model and firmware strings are padded with spaces.  For
2712          * simplicity, strings in the quirk table are padded with NULLs
2713          * instead.
2714          */
2715         u16 vid;
2716         const char *mn;
2717         const char *fr;
2718         unsigned long quirks;
2719 };
2720
2721 static const struct nvme_core_quirk_entry core_quirks[] = {
2722         {
2723                 /*
2724                  * This Toshiba device seems to die using any APST states.  See:
2725                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2726                  */
2727                 .vid = 0x1179,
2728                 .mn = "THNSF5256GPUK TOSHIBA",
2729                 .quirks = NVME_QUIRK_NO_APST,
2730         },
2731         {
2732                 /*
2733                  * This LiteON CL1-3D*-Q11 firmware version has a race
2734                  * condition associated with actions related to suspend to idle
2735                  * LiteON has resolved the problem in future firmware
2736                  */
2737                 .vid = 0x14a4,
2738                 .fr = "22301111",
2739                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2740         }
2741 };
2742
2743 /* match is null-terminated but idstr is space-padded. */
2744 static bool string_matches(const char *idstr, const char *match, size_t len)
2745 {
2746         size_t matchlen;
2747
2748         if (!match)
2749                 return true;
2750
2751         matchlen = strlen(match);
2752         WARN_ON_ONCE(matchlen > len);
2753
2754         if (memcmp(idstr, match, matchlen))
2755                 return false;
2756
2757         for (; matchlen < len; matchlen++)
2758                 if (idstr[matchlen] != ' ')
2759                         return false;
2760
2761         return true;
2762 }
2763
2764 static bool quirk_matches(const struct nvme_id_ctrl *id,
2765                           const struct nvme_core_quirk_entry *q)
2766 {
2767         return q->vid == le16_to_cpu(id->vid) &&
2768                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2769                 string_matches(id->fr, q->fr, sizeof(id->fr));
2770 }
2771
2772 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2773                 struct nvme_id_ctrl *id)
2774 {
2775         size_t nqnlen;
2776         int off;
2777
2778         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2779                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2780                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2781                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2782                         return;
2783                 }
2784
2785                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2786                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2787         }
2788
2789         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2790         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2791                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2792                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2793         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2794         off += sizeof(id->sn);
2795         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2796         off += sizeof(id->mn);
2797         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2798 }
2799
2800 static void nvme_release_subsystem(struct device *dev)
2801 {
2802         struct nvme_subsystem *subsys =
2803                 container_of(dev, struct nvme_subsystem, dev);
2804
2805         if (subsys->instance >= 0)
2806                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2807         kfree(subsys);
2808 }
2809
2810 static void nvme_destroy_subsystem(struct kref *ref)
2811 {
2812         struct nvme_subsystem *subsys =
2813                         container_of(ref, struct nvme_subsystem, ref);
2814
2815         mutex_lock(&nvme_subsystems_lock);
2816         list_del(&subsys->entry);
2817         mutex_unlock(&nvme_subsystems_lock);
2818
2819         ida_destroy(&subsys->ns_ida);
2820         device_del(&subsys->dev);
2821         put_device(&subsys->dev);
2822 }
2823
2824 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2825 {
2826         kref_put(&subsys->ref, nvme_destroy_subsystem);
2827 }
2828
2829 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2830 {
2831         struct nvme_subsystem *subsys;
2832
2833         lockdep_assert_held(&nvme_subsystems_lock);
2834
2835         /*
2836          * Fail matches for discovery subsystems. This results
2837          * in each discovery controller bound to a unique subsystem.
2838          * This avoids issues with validating controller values
2839          * that can only be true when there is a single unique subsystem.
2840          * There may be multiple and completely independent entities
2841          * that provide discovery controllers.
2842          */
2843         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2844                 return NULL;
2845
2846         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2847                 if (strcmp(subsys->subnqn, subsysnqn))
2848                         continue;
2849                 if (!kref_get_unless_zero(&subsys->ref))
2850                         continue;
2851                 return subsys;
2852         }
2853
2854         return NULL;
2855 }
2856
2857 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2858         struct device_attribute subsys_attr_##_name = \
2859                 __ATTR(_name, _mode, _show, NULL)
2860
2861 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2862                                     struct device_attribute *attr,
2863                                     char *buf)
2864 {
2865         struct nvme_subsystem *subsys =
2866                 container_of(dev, struct nvme_subsystem, dev);
2867
2868         return sysfs_emit(buf, "%s\n", subsys->subnqn);
2869 }
2870 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2871
2872 #define nvme_subsys_show_str_function(field)                            \
2873 static ssize_t subsys_##field##_show(struct device *dev,                \
2874                             struct device_attribute *attr, char *buf)   \
2875 {                                                                       \
2876         struct nvme_subsystem *subsys =                                 \
2877                 container_of(dev, struct nvme_subsystem, dev);          \
2878         return sprintf(buf, "%.*s\n",                                   \
2879                        (int)sizeof(subsys->field), subsys->field);      \
2880 }                                                                       \
2881 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2882
2883 nvme_subsys_show_str_function(model);
2884 nvme_subsys_show_str_function(serial);
2885 nvme_subsys_show_str_function(firmware_rev);
2886
2887 static struct attribute *nvme_subsys_attrs[] = {
2888         &subsys_attr_model.attr,
2889         &subsys_attr_serial.attr,
2890         &subsys_attr_firmware_rev.attr,
2891         &subsys_attr_subsysnqn.attr,
2892 #ifdef CONFIG_NVME_MULTIPATH
2893         &subsys_attr_iopolicy.attr,
2894 #endif
2895         NULL,
2896 };
2897
2898 static const struct attribute_group nvme_subsys_attrs_group = {
2899         .attrs = nvme_subsys_attrs,
2900 };
2901
2902 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2903         &nvme_subsys_attrs_group,
2904         NULL,
2905 };
2906
2907 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2908 {
2909         return ctrl->opts && ctrl->opts->discovery_nqn;
2910 }
2911
2912 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2913                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2914 {
2915         struct nvme_ctrl *tmp;
2916
2917         lockdep_assert_held(&nvme_subsystems_lock);
2918
2919         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2920                 if (nvme_state_terminal(tmp))
2921                         continue;
2922
2923                 if (tmp->cntlid == ctrl->cntlid) {
2924                         dev_err(ctrl->device,
2925                                 "Duplicate cntlid %u with %s, rejecting\n",
2926                                 ctrl->cntlid, dev_name(tmp->device));
2927                         return false;
2928                 }
2929
2930                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2931                     nvme_discovery_ctrl(ctrl))
2932                         continue;
2933
2934                 dev_err(ctrl->device,
2935                         "Subsystem does not support multiple controllers\n");
2936                 return false;
2937         }
2938
2939         return true;
2940 }
2941
2942 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2943 {
2944         struct nvme_subsystem *subsys, *found;
2945         int ret;
2946
2947         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2948         if (!subsys)
2949                 return -ENOMEM;
2950
2951         subsys->instance = -1;
2952         mutex_init(&subsys->lock);
2953         kref_init(&subsys->ref);
2954         INIT_LIST_HEAD(&subsys->ctrls);
2955         INIT_LIST_HEAD(&subsys->nsheads);
2956         nvme_init_subnqn(subsys, ctrl, id);
2957         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2958         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2959         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2960         subsys->vendor_id = le16_to_cpu(id->vid);
2961         subsys->cmic = id->cmic;
2962         subsys->awupf = le16_to_cpu(id->awupf);
2963 #ifdef CONFIG_NVME_MULTIPATH
2964         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2965 #endif
2966
2967         subsys->dev.class = nvme_subsys_class;
2968         subsys->dev.release = nvme_release_subsystem;
2969         subsys->dev.groups = nvme_subsys_attrs_groups;
2970         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2971         device_initialize(&subsys->dev);
2972
2973         mutex_lock(&nvme_subsystems_lock);
2974         found = __nvme_find_get_subsystem(subsys->subnqn);
2975         if (found) {
2976                 put_device(&subsys->dev);
2977                 subsys = found;
2978
2979                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2980                         ret = -EINVAL;
2981                         goto out_put_subsystem;
2982                 }
2983         } else {
2984                 ret = device_add(&subsys->dev);
2985                 if (ret) {
2986                         dev_err(ctrl->device,
2987                                 "failed to register subsystem device.\n");
2988                         put_device(&subsys->dev);
2989                         goto out_unlock;
2990                 }
2991                 ida_init(&subsys->ns_ida);
2992                 list_add_tail(&subsys->entry, &nvme_subsystems);
2993         }
2994
2995         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2996                                 dev_name(ctrl->device));
2997         if (ret) {
2998                 dev_err(ctrl->device,
2999                         "failed to create sysfs link from subsystem.\n");
3000                 goto out_put_subsystem;
3001         }
3002
3003         if (!found)
3004                 subsys->instance = ctrl->instance;
3005         ctrl->subsys = subsys;
3006         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3007         mutex_unlock(&nvme_subsystems_lock);
3008         return 0;
3009
3010 out_put_subsystem:
3011         nvme_put_subsystem(subsys);
3012 out_unlock:
3013         mutex_unlock(&nvme_subsystems_lock);
3014         return ret;
3015 }
3016
3017 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3018                 void *log, size_t size, u64 offset)
3019 {
3020         struct nvme_command c = { };
3021         u32 dwlen = nvme_bytes_to_numd(size);
3022
3023         c.get_log_page.opcode = nvme_admin_get_log_page;
3024         c.get_log_page.nsid = cpu_to_le32(nsid);
3025         c.get_log_page.lid = log_page;
3026         c.get_log_page.lsp = lsp;
3027         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3028         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3029         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3030         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3031         c.get_log_page.csi = csi;
3032
3033         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3034 }
3035
3036 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3037                                 struct nvme_effects_log **log)
3038 {
3039         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
3040         int ret;
3041
3042         if (cel)
3043                 goto out;
3044
3045         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3046         if (!cel)
3047                 return -ENOMEM;
3048
3049         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3050                         cel, sizeof(*cel), 0);
3051         if (ret) {
3052                 kfree(cel);
3053                 return ret;
3054         }
3055
3056         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3057 out:
3058         *log = cel;
3059         return 0;
3060 }
3061
3062 /*
3063  * Initialize the cached copies of the Identify data and various controller
3064  * register in our nvme_ctrl structure.  This should be called as soon as
3065  * the admin queue is fully up and running.
3066  */
3067 int nvme_init_identify(struct nvme_ctrl *ctrl)
3068 {
3069         struct nvme_id_ctrl *id;
3070         int ret, page_shift;
3071         u32 max_hw_sectors;
3072         bool prev_apst_enabled;
3073
3074         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3075         if (ret) {
3076                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3077                 return ret;
3078         }
3079         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3080         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3081
3082         if (ctrl->vs >= NVME_VS(1, 1, 0))
3083                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3084
3085         ret = nvme_identify_ctrl(ctrl, &id);
3086         if (ret) {
3087                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3088                 return -EIO;
3089         }
3090
3091         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3092                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3093                 if (ret < 0)
3094                         goto out_free;
3095         }
3096
3097         if (!(ctrl->ops->flags & NVME_F_FABRICS))
3098                 ctrl->cntlid = le16_to_cpu(id->cntlid);
3099
3100         if (!ctrl->identified) {
3101                 int i;
3102
3103                 ret = nvme_init_subsystem(ctrl, id);
3104                 if (ret)
3105                         goto out_free;
3106
3107                 /*
3108                  * Check for quirks.  Quirk can depend on firmware version,
3109                  * so, in principle, the set of quirks present can change
3110                  * across a reset.  As a possible future enhancement, we
3111                  * could re-scan for quirks every time we reinitialize
3112                  * the device, but we'd have to make sure that the driver
3113                  * behaves intelligently if the quirks change.
3114                  */
3115                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3116                         if (quirk_matches(id, &core_quirks[i]))
3117                                 ctrl->quirks |= core_quirks[i].quirks;
3118                 }
3119         }
3120
3121         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3122                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3123                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3124         }
3125
3126         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3127         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3128         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3129
3130         ctrl->oacs = le16_to_cpu(id->oacs);
3131         ctrl->oncs = le16_to_cpu(id->oncs);
3132         ctrl->mtfa = le16_to_cpu(id->mtfa);
3133         ctrl->oaes = le32_to_cpu(id->oaes);
3134         ctrl->wctemp = le16_to_cpu(id->wctemp);
3135         ctrl->cctemp = le16_to_cpu(id->cctemp);
3136
3137         atomic_set(&ctrl->abort_limit, id->acl + 1);
3138         ctrl->vwc = id->vwc;
3139         if (id->mdts)
3140                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3141         else
3142                 max_hw_sectors = UINT_MAX;
3143         ctrl->max_hw_sectors =
3144                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3145
3146         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3147         ctrl->sgls = le32_to_cpu(id->sgls);
3148         ctrl->kas = le16_to_cpu(id->kas);
3149         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3150         ctrl->ctratt = le32_to_cpu(id->ctratt);
3151
3152         if (id->rtd3e) {
3153                 /* us -> s */
3154                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3155
3156                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3157                                                  shutdown_timeout, 60);
3158
3159                 if (ctrl->shutdown_timeout != shutdown_timeout)
3160                         dev_info(ctrl->device,
3161                                  "Shutdown timeout set to %u seconds\n",
3162                                  ctrl->shutdown_timeout);
3163         } else
3164                 ctrl->shutdown_timeout = shutdown_timeout;
3165
3166         ctrl->npss = id->npss;
3167         ctrl->apsta = id->apsta;
3168         prev_apst_enabled = ctrl->apst_enabled;
3169         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3170                 if (force_apst && id->apsta) {
3171                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3172                         ctrl->apst_enabled = true;
3173                 } else {
3174                         ctrl->apst_enabled = false;
3175                 }
3176         } else {
3177                 ctrl->apst_enabled = id->apsta;
3178         }
3179         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3180
3181         if (ctrl->ops->flags & NVME_F_FABRICS) {
3182                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3183                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3184                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3185                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3186
3187                 /*
3188                  * In fabrics we need to verify the cntlid matches the
3189                  * admin connect
3190                  */
3191                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3192                         dev_err(ctrl->device,
3193                                 "Mismatching cntlid: Connect %u vs Identify "
3194                                 "%u, rejecting\n",
3195                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3196                         ret = -EINVAL;
3197                         goto out_free;
3198                 }
3199
3200                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3201                         dev_err(ctrl->device,
3202                                 "keep-alive support is mandatory for fabrics\n");
3203                         ret = -EINVAL;
3204                         goto out_free;
3205                 }
3206         } else {
3207                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3208                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3209                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3210                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3211         }
3212
3213         ret = nvme_mpath_init(ctrl, id);
3214         kfree(id);
3215
3216         if (ret < 0)
3217                 return ret;
3218
3219         if (ctrl->apst_enabled && !prev_apst_enabled)
3220                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3221         else if (!ctrl->apst_enabled && prev_apst_enabled)
3222                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3223
3224         ret = nvme_configure_apst(ctrl);
3225         if (ret < 0)
3226                 return ret;
3227         
3228         ret = nvme_configure_timestamp(ctrl);
3229         if (ret < 0)
3230                 return ret;
3231
3232         ret = nvme_configure_directives(ctrl);
3233         if (ret < 0)
3234                 return ret;
3235
3236         ret = nvme_configure_acre(ctrl);
3237         if (ret < 0)
3238                 return ret;
3239
3240         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3241                 ret = nvme_hwmon_init(ctrl);
3242                 if (ret < 0)
3243                         return ret;
3244         }
3245
3246         ctrl->identified = true;
3247
3248         return 0;
3249
3250 out_free:
3251         kfree(id);
3252         return ret;
3253 }
3254 EXPORT_SYMBOL_GPL(nvme_init_identify);
3255
3256 static int nvme_dev_open(struct inode *inode, struct file *file)
3257 {
3258         struct nvme_ctrl *ctrl =
3259                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3260
3261         switch (ctrl->state) {
3262         case NVME_CTRL_LIVE:
3263                 break;
3264         default:
3265                 return -EWOULDBLOCK;
3266         }
3267
3268         nvme_get_ctrl(ctrl);
3269         if (!try_module_get(ctrl->ops->module)) {
3270                 nvme_put_ctrl(ctrl);
3271                 return -EINVAL;
3272         }
3273
3274         file->private_data = ctrl;
3275         return 0;
3276 }
3277
3278 static int nvme_dev_release(struct inode *inode, struct file *file)
3279 {
3280         struct nvme_ctrl *ctrl =
3281                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3282
3283         module_put(ctrl->ops->module);
3284         nvme_put_ctrl(ctrl);
3285         return 0;
3286 }
3287
3288 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3289 {
3290         struct nvme_ns *ns;
3291         int ret;
3292
3293         down_read(&ctrl->namespaces_rwsem);
3294         if (list_empty(&ctrl->namespaces)) {
3295                 ret = -ENOTTY;
3296                 goto out_unlock;
3297         }
3298
3299         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3300         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3301                 dev_warn(ctrl->device,
3302                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3303                 ret = -EINVAL;
3304                 goto out_unlock;
3305         }
3306
3307         dev_warn(ctrl->device,
3308                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3309         kref_get(&ns->kref);
3310         up_read(&ctrl->namespaces_rwsem);
3311
3312         ret = nvme_user_cmd(ctrl, ns, argp);
3313         nvme_put_ns(ns);
3314         return ret;
3315
3316 out_unlock:
3317         up_read(&ctrl->namespaces_rwsem);
3318         return ret;
3319 }
3320
3321 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3322                 unsigned long arg)
3323 {
3324         struct nvme_ctrl *ctrl = file->private_data;
3325         void __user *argp = (void __user *)arg;
3326
3327         switch (cmd) {
3328         case NVME_IOCTL_ADMIN_CMD:
3329                 return nvme_user_cmd(ctrl, NULL, argp);
3330         case NVME_IOCTL_ADMIN64_CMD:
3331                 return nvme_user_cmd64(ctrl, NULL, argp);
3332         case NVME_IOCTL_IO_CMD:
3333                 return nvme_dev_user_cmd(ctrl, argp);
3334         case NVME_IOCTL_RESET:
3335                 dev_warn(ctrl->device, "resetting controller\n");
3336                 return nvme_reset_ctrl_sync(ctrl);
3337         case NVME_IOCTL_SUBSYS_RESET:
3338                 return nvme_reset_subsystem(ctrl);
3339         case NVME_IOCTL_RESCAN:
3340                 nvme_queue_scan(ctrl);
3341                 return 0;
3342         default:
3343                 return -ENOTTY;
3344         }
3345 }
3346
3347 static const struct file_operations nvme_dev_fops = {
3348         .owner          = THIS_MODULE,
3349         .open           = nvme_dev_open,
3350         .release        = nvme_dev_release,
3351         .unlocked_ioctl = nvme_dev_ioctl,
3352         .compat_ioctl   = compat_ptr_ioctl,
3353 };
3354
3355 static ssize_t nvme_sysfs_reset(struct device *dev,
3356                                 struct device_attribute *attr, const char *buf,
3357                                 size_t count)
3358 {
3359         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3360         int ret;
3361
3362         ret = nvme_reset_ctrl_sync(ctrl);
3363         if (ret < 0)
3364                 return ret;
3365         return count;
3366 }
3367 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3368
3369 static ssize_t nvme_sysfs_rescan(struct device *dev,
3370                                 struct device_attribute *attr, const char *buf,
3371                                 size_t count)
3372 {
3373         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3374
3375         nvme_queue_scan(ctrl);
3376         return count;
3377 }
3378 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3379
3380 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3381 {
3382         struct gendisk *disk = dev_to_disk(dev);
3383
3384         if (disk->fops == &nvme_bdev_ops)
3385                 return nvme_get_ns_from_dev(dev)->head;
3386         else
3387                 return disk->private_data;
3388 }
3389
3390 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3391                 char *buf)
3392 {
3393         struct nvme_ns_head *head = dev_to_ns_head(dev);
3394         struct nvme_ns_ids *ids = &head->ids;
3395         struct nvme_subsystem *subsys = head->subsys;
3396         int serial_len = sizeof(subsys->serial);
3397         int model_len = sizeof(subsys->model);
3398
3399         if (!uuid_is_null(&ids->uuid))
3400                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3401
3402         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3403                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3404
3405         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3406                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3407
3408         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3409                                   subsys->serial[serial_len - 1] == '\0'))
3410                 serial_len--;
3411         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3412                                  subsys->model[model_len - 1] == '\0'))
3413                 model_len--;
3414
3415         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3416                 serial_len, subsys->serial, model_len, subsys->model,
3417                 head->ns_id);
3418 }
3419 static DEVICE_ATTR_RO(wwid);
3420
3421 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3422                 char *buf)
3423 {
3424         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3425 }
3426 static DEVICE_ATTR_RO(nguid);
3427
3428 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3429                 char *buf)
3430 {
3431         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3432
3433         /* For backward compatibility expose the NGUID to userspace if
3434          * we have no UUID set
3435          */
3436         if (uuid_is_null(&ids->uuid)) {
3437                 printk_ratelimited(KERN_WARNING
3438                                    "No UUID available providing old NGUID\n");
3439                 return sprintf(buf, "%pU\n", ids->nguid);
3440         }
3441         return sprintf(buf, "%pU\n", &ids->uuid);
3442 }
3443 static DEVICE_ATTR_RO(uuid);
3444
3445 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3446                 char *buf)
3447 {
3448         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3449 }
3450 static DEVICE_ATTR_RO(eui);
3451
3452 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3453                 char *buf)
3454 {
3455         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3456 }
3457 static DEVICE_ATTR_RO(nsid);
3458
3459 static struct attribute *nvme_ns_id_attrs[] = {
3460         &dev_attr_wwid.attr,
3461         &dev_attr_uuid.attr,
3462         &dev_attr_nguid.attr,
3463         &dev_attr_eui.attr,
3464         &dev_attr_nsid.attr,
3465 #ifdef CONFIG_NVME_MULTIPATH
3466         &dev_attr_ana_grpid.attr,
3467         &dev_attr_ana_state.attr,
3468 #endif
3469         NULL,
3470 };
3471
3472 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3473                 struct attribute *a, int n)
3474 {
3475         struct device *dev = container_of(kobj, struct device, kobj);
3476         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3477
3478         if (a == &dev_attr_uuid.attr) {
3479                 if (uuid_is_null(&ids->uuid) &&
3480                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3481                         return 0;
3482         }
3483         if (a == &dev_attr_nguid.attr) {
3484                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3485                         return 0;
3486         }
3487         if (a == &dev_attr_eui.attr) {
3488                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3489                         return 0;
3490         }
3491 #ifdef CONFIG_NVME_MULTIPATH
3492         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3493                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3494                         return 0;
3495                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3496                         return 0;
3497         }
3498 #endif
3499         return a->mode;
3500 }
3501
3502 static const struct attribute_group nvme_ns_id_attr_group = {
3503         .attrs          = nvme_ns_id_attrs,
3504         .is_visible     = nvme_ns_id_attrs_are_visible,
3505 };
3506
3507 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3508         &nvme_ns_id_attr_group,
3509 #ifdef CONFIG_NVM
3510         &nvme_nvm_attr_group,
3511 #endif
3512         NULL,
3513 };
3514
3515 #define nvme_show_str_function(field)                                           \
3516 static ssize_t  field##_show(struct device *dev,                                \
3517                             struct device_attribute *attr, char *buf)           \
3518 {                                                                               \
3519         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3520         return sprintf(buf, "%.*s\n",                                           \
3521                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3522 }                                                                               \
3523 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3524
3525 nvme_show_str_function(model);
3526 nvme_show_str_function(serial);
3527 nvme_show_str_function(firmware_rev);
3528
3529 #define nvme_show_int_function(field)                                           \
3530 static ssize_t  field##_show(struct device *dev,                                \
3531                             struct device_attribute *attr, char *buf)           \
3532 {                                                                               \
3533         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3534         return sprintf(buf, "%d\n", ctrl->field);       \
3535 }                                                                               \
3536 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3537
3538 nvme_show_int_function(cntlid);
3539 nvme_show_int_function(numa_node);
3540 nvme_show_int_function(queue_count);
3541 nvme_show_int_function(sqsize);
3542
3543 static ssize_t nvme_sysfs_delete(struct device *dev,
3544                                 struct device_attribute *attr, const char *buf,
3545                                 size_t count)
3546 {
3547         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3548
3549         if (device_remove_file_self(dev, attr))
3550                 nvme_delete_ctrl_sync(ctrl);
3551         return count;
3552 }
3553 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3554
3555 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3556                                          struct device_attribute *attr,
3557                                          char *buf)
3558 {
3559         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3560
3561         return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3562 }
3563 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3564
3565 static ssize_t nvme_sysfs_show_state(struct device *dev,
3566                                      struct device_attribute *attr,
3567                                      char *buf)
3568 {
3569         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3570         static const char *const state_name[] = {
3571                 [NVME_CTRL_NEW]         = "new",
3572                 [NVME_CTRL_LIVE]        = "live",
3573                 [NVME_CTRL_RESETTING]   = "resetting",
3574                 [NVME_CTRL_CONNECTING]  = "connecting",
3575                 [NVME_CTRL_DELETING]    = "deleting",
3576                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3577                 [NVME_CTRL_DEAD]        = "dead",
3578         };
3579
3580         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3581             state_name[ctrl->state])
3582                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3583
3584         return sprintf(buf, "unknown state\n");
3585 }
3586
3587 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3588
3589 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3590                                          struct device_attribute *attr,
3591                                          char *buf)
3592 {
3593         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3594
3595         return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3596 }
3597 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3598
3599 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3600                                         struct device_attribute *attr,
3601                                         char *buf)
3602 {
3603         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3604
3605         return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3606 }
3607 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3608
3609 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3610                                         struct device_attribute *attr,
3611                                         char *buf)
3612 {
3613         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3614
3615         return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3616 }
3617 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3618
3619 static ssize_t nvme_sysfs_show_address(struct device *dev,
3620                                          struct device_attribute *attr,
3621                                          char *buf)
3622 {
3623         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3624
3625         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3626 }
3627 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3628
3629 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3630                 struct device_attribute *attr, char *buf)
3631 {
3632         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3633         struct nvmf_ctrl_options *opts = ctrl->opts;
3634
3635         if (ctrl->opts->max_reconnects == -1)
3636                 return sprintf(buf, "off\n");
3637         return sprintf(buf, "%d\n",
3638                         opts->max_reconnects * opts->reconnect_delay);
3639 }
3640
3641 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3642                 struct device_attribute *attr, const char *buf, size_t count)
3643 {
3644         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3645         struct nvmf_ctrl_options *opts = ctrl->opts;
3646         int ctrl_loss_tmo, err;
3647
3648         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3649         if (err)
3650                 return -EINVAL;
3651
3652         else if (ctrl_loss_tmo < 0)
3653                 opts->max_reconnects = -1;
3654         else
3655                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3656                                                 opts->reconnect_delay);
3657         return count;
3658 }
3659 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3660         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3661
3662 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3663                 struct device_attribute *attr, char *buf)
3664 {
3665         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3666
3667         if (ctrl->opts->reconnect_delay == -1)
3668                 return sprintf(buf, "off\n");
3669         return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3670 }
3671
3672 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3673                 struct device_attribute *attr, const char *buf, size_t count)
3674 {
3675         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3676         unsigned int v;
3677         int err;
3678
3679         err = kstrtou32(buf, 10, &v);
3680         if (err)
3681                 return err;
3682
3683         ctrl->opts->reconnect_delay = v;
3684         return count;
3685 }
3686 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3687         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3688
3689 static struct attribute *nvme_dev_attrs[] = {
3690         &dev_attr_reset_controller.attr,
3691         &dev_attr_rescan_controller.attr,
3692         &dev_attr_model.attr,
3693         &dev_attr_serial.attr,
3694         &dev_attr_firmware_rev.attr,
3695         &dev_attr_cntlid.attr,
3696         &dev_attr_delete_controller.attr,
3697         &dev_attr_transport.attr,
3698         &dev_attr_subsysnqn.attr,
3699         &dev_attr_address.attr,
3700         &dev_attr_state.attr,
3701         &dev_attr_numa_node.attr,
3702         &dev_attr_queue_count.attr,
3703         &dev_attr_sqsize.attr,
3704         &dev_attr_hostnqn.attr,
3705         &dev_attr_hostid.attr,
3706         &dev_attr_ctrl_loss_tmo.attr,
3707         &dev_attr_reconnect_delay.attr,
3708         NULL
3709 };
3710
3711 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3712                 struct attribute *a, int n)
3713 {
3714         struct device *dev = container_of(kobj, struct device, kobj);
3715         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3716
3717         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3718                 return 0;
3719         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3720                 return 0;
3721         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3722                 return 0;
3723         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3724                 return 0;
3725         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3726                 return 0;
3727         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3728                 return 0;
3729
3730         return a->mode;
3731 }
3732
3733 static const struct attribute_group nvme_dev_attrs_group = {
3734         .attrs          = nvme_dev_attrs,
3735         .is_visible     = nvme_dev_attrs_are_visible,
3736 };
3737
3738 static const struct attribute_group *nvme_dev_attr_groups[] = {
3739         &nvme_dev_attrs_group,
3740         NULL,
3741 };
3742
3743 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3744                 unsigned nsid)
3745 {
3746         struct nvme_ns_head *h;
3747
3748         lockdep_assert_held(&subsys->lock);
3749
3750         list_for_each_entry(h, &subsys->nsheads, entry) {
3751                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3752                         return h;
3753         }
3754
3755         return NULL;
3756 }
3757
3758 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3759                 struct nvme_ns_head *new)
3760 {
3761         struct nvme_ns_head *h;
3762
3763         lockdep_assert_held(&subsys->lock);
3764
3765         list_for_each_entry(h, &subsys->nsheads, entry) {
3766                 if (nvme_ns_ids_valid(&new->ids) &&
3767                     nvme_ns_ids_equal(&new->ids, &h->ids))
3768                         return -EINVAL;
3769         }
3770
3771         return 0;
3772 }
3773
3774 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3775                 unsigned nsid, struct nvme_ns_ids *ids)
3776 {
3777         struct nvme_ns_head *head;
3778         size_t size = sizeof(*head);
3779         int ret = -ENOMEM;
3780
3781 #ifdef CONFIG_NVME_MULTIPATH
3782         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3783 #endif
3784
3785         head = kzalloc(size, GFP_KERNEL);
3786         if (!head)
3787                 goto out;
3788         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3789         if (ret < 0)
3790                 goto out_free_head;
3791         head->instance = ret;
3792         INIT_LIST_HEAD(&head->list);
3793         ret = init_srcu_struct(&head->srcu);
3794         if (ret)
3795                 goto out_ida_remove;
3796         head->subsys = ctrl->subsys;
3797         head->ns_id = nsid;
3798         head->ids = *ids;
3799         kref_init(&head->ref);
3800
3801         ret = __nvme_check_ids(ctrl->subsys, head);
3802         if (ret) {
3803                 dev_err(ctrl->device,
3804                         "duplicate IDs for nsid %d\n", nsid);
3805                 goto out_cleanup_srcu;
3806         }
3807
3808         if (head->ids.csi) {
3809                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3810                 if (ret)
3811                         goto out_cleanup_srcu;
3812         } else
3813                 head->effects = ctrl->effects;
3814
3815         ret = nvme_mpath_alloc_disk(ctrl, head);
3816         if (ret)
3817                 goto out_cleanup_srcu;
3818
3819         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3820
3821         kref_get(&ctrl->subsys->ref);
3822
3823         return head;
3824 out_cleanup_srcu:
3825         cleanup_srcu_struct(&head->srcu);
3826 out_ida_remove:
3827         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3828 out_free_head:
3829         kfree(head);
3830 out:
3831         if (ret > 0)
3832                 ret = blk_status_to_errno(nvme_error_status(ret));
3833         return ERR_PTR(ret);
3834 }
3835
3836 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3837                 struct nvme_ns_ids *ids, bool is_shared)
3838 {
3839         struct nvme_ctrl *ctrl = ns->ctrl;
3840         struct nvme_ns_head *head = NULL;
3841         int ret = 0;
3842
3843         mutex_lock(&ctrl->subsys->lock);
3844         head = nvme_find_ns_head(ctrl->subsys, nsid);
3845         if (!head) {
3846                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3847                 if (IS_ERR(head)) {
3848                         ret = PTR_ERR(head);
3849                         goto out_unlock;
3850                 }
3851                 head->shared = is_shared;
3852         } else {
3853                 ret = -EINVAL;
3854                 if (!is_shared || !head->shared) {
3855                         dev_err(ctrl->device,
3856                                 "Duplicate unshared namespace %d\n", nsid);
3857                         goto out_put_ns_head;
3858                 }
3859                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3860                         dev_err(ctrl->device,
3861                                 "IDs don't match for shared namespace %d\n",
3862                                         nsid);
3863                         goto out_put_ns_head;
3864                 }
3865         }
3866
3867         list_add_tail_rcu(&ns->siblings, &head->list);
3868         ns->head = head;
3869         mutex_unlock(&ctrl->subsys->lock);
3870         return 0;
3871
3872 out_put_ns_head:
3873         nvme_put_ns_head(head);
3874 out_unlock:
3875         mutex_unlock(&ctrl->subsys->lock);
3876         return ret;
3877 }
3878
3879 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3880 {
3881         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3882         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3883
3884         return nsa->head->ns_id - nsb->head->ns_id;
3885 }
3886
3887 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3888 {
3889         struct nvme_ns *ns, *ret = NULL;
3890
3891         down_read(&ctrl->namespaces_rwsem);
3892         list_for_each_entry(ns, &ctrl->namespaces, list) {
3893                 if (ns->head->ns_id == nsid) {
3894                         if (!kref_get_unless_zero(&ns->kref))
3895                                 continue;
3896                         ret = ns;
3897                         break;
3898                 }
3899                 if (ns->head->ns_id > nsid)
3900                         break;
3901         }
3902         up_read(&ctrl->namespaces_rwsem);
3903         return ret;
3904 }
3905 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3906
3907 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3908                 struct nvme_ns_ids *ids)
3909 {
3910         struct nvme_ns *ns;
3911         struct gendisk *disk;
3912         struct nvme_id_ns *id;
3913         char disk_name[DISK_NAME_LEN];
3914         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
3915
3916         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3917                 return;
3918
3919         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3920         if (!ns)
3921                 goto out_free_id;
3922
3923         ns->queue = blk_mq_init_queue(ctrl->tagset);
3924         if (IS_ERR(ns->queue))
3925                 goto out_free_ns;
3926
3927         if (ctrl->opts && ctrl->opts->data_digest)
3928                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3929
3930         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3931         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3932                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3933
3934         ns->queue->queuedata = ns;
3935         ns->ctrl = ctrl;
3936         kref_init(&ns->kref);
3937
3938         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3939                 goto out_free_queue;
3940         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3941
3942         disk = alloc_disk_node(0, node);
3943         if (!disk)
3944                 goto out_unlink_ns;
3945
3946         disk->fops = &nvme_bdev_ops;
3947         disk->private_data = ns;
3948         disk->queue = ns->queue;
3949         disk->flags = flags;
3950         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3951         ns->disk = disk;
3952
3953         if (nvme_update_ns_info(ns, id))
3954                 goto out_put_disk;
3955
3956         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3957                 if (nvme_nvm_register(ns, disk_name, node)) {
3958                         dev_warn(ctrl->device, "LightNVM init failure\n");
3959                         goto out_put_disk;
3960                 }
3961         }
3962
3963         down_write(&ctrl->namespaces_rwsem);
3964         list_add_tail(&ns->list, &ctrl->namespaces);
3965         up_write(&ctrl->namespaces_rwsem);
3966
3967         nvme_get_ctrl(ctrl);
3968
3969         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3970
3971         nvme_mpath_add_disk(ns, id);
3972         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3973         kfree(id);
3974
3975         return;
3976  out_put_disk:
3977         /* prevent double queue cleanup */
3978         ns->disk->queue = NULL;
3979         put_disk(ns->disk);
3980  out_unlink_ns:
3981         mutex_lock(&ctrl->subsys->lock);
3982         list_del_rcu(&ns->siblings);
3983         if (list_empty(&ns->head->list))
3984                 list_del_init(&ns->head->entry);
3985         mutex_unlock(&ctrl->subsys->lock);
3986         nvme_put_ns_head(ns->head);
3987  out_free_queue:
3988         blk_cleanup_queue(ns->queue);
3989  out_free_ns:
3990         kfree(ns);
3991  out_free_id:
3992         kfree(id);
3993 }
3994
3995 static void nvme_ns_remove(struct nvme_ns *ns)
3996 {
3997         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3998                 return;
3999
4000         set_capacity(ns->disk, 0);
4001         nvme_fault_inject_fini(&ns->fault_inject);
4002
4003         mutex_lock(&ns->ctrl->subsys->lock);
4004         list_del_rcu(&ns->siblings);
4005         if (list_empty(&ns->head->list))
4006                 list_del_init(&ns->head->entry);
4007         mutex_unlock(&ns->ctrl->subsys->lock);
4008
4009         synchronize_rcu(); /* guarantee not available in head->list */
4010         nvme_mpath_clear_current_path(ns);
4011         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
4012
4013         if (ns->disk->flags & GENHD_FL_UP) {
4014                 del_gendisk(ns->disk);
4015                 blk_cleanup_queue(ns->queue);
4016                 if (blk_get_integrity(ns->disk))
4017                         blk_integrity_unregister(ns->disk);
4018         }
4019
4020         down_write(&ns->ctrl->namespaces_rwsem);
4021         list_del_init(&ns->list);
4022         up_write(&ns->ctrl->namespaces_rwsem);
4023
4024         nvme_mpath_check_last_path(ns);
4025         nvme_put_ns(ns);
4026 }
4027
4028 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4029 {
4030         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4031
4032         if (ns) {
4033                 nvme_ns_remove(ns);
4034                 nvme_put_ns(ns);
4035         }
4036 }
4037
4038 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4039 {
4040         struct nvme_id_ns *id;
4041         int ret = -ENODEV;
4042
4043         if (test_bit(NVME_NS_DEAD, &ns->flags))
4044                 goto out;
4045
4046         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4047         if (ret)
4048                 goto out;
4049
4050         ret = -ENODEV;
4051         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4052                 dev_err(ns->ctrl->device,
4053                         "identifiers changed for nsid %d\n", ns->head->ns_id);
4054                 goto out_free_id;
4055         }
4056
4057         ret = nvme_update_ns_info(ns, id);
4058
4059 out_free_id:
4060         kfree(id);
4061 out:
4062         /*
4063          * Only remove the namespace if we got a fatal error back from the
4064          * device, otherwise ignore the error and just move on.
4065          *
4066          * TODO: we should probably schedule a delayed retry here.
4067          */
4068         if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
4069                 nvme_ns_remove(ns);
4070 }
4071
4072 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4073 {
4074         struct nvme_ns_ids ids = { };
4075         struct nvme_ns *ns;
4076
4077         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4078                 return;
4079
4080         ns = nvme_find_get_ns(ctrl, nsid);
4081         if (ns) {
4082                 nvme_validate_ns(ns, &ids);
4083                 nvme_put_ns(ns);
4084                 return;
4085         }
4086
4087         switch (ids.csi) {
4088         case NVME_CSI_NVM:
4089                 nvme_alloc_ns(ctrl, nsid, &ids);
4090                 break;
4091         case NVME_CSI_ZNS:
4092                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4093                         dev_warn(ctrl->device,
4094                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4095                                 nsid);
4096                         break;
4097                 }
4098                 nvme_alloc_ns(ctrl, nsid, &ids);
4099                 break;
4100         default:
4101                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4102                         ids.csi, nsid);
4103                 break;
4104         }
4105 }
4106
4107 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4108                                         unsigned nsid)
4109 {
4110         struct nvme_ns *ns, *next;
4111         LIST_HEAD(rm_list);
4112
4113         down_write(&ctrl->namespaces_rwsem);
4114         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4115                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4116                         list_move_tail(&ns->list, &rm_list);
4117         }
4118         up_write(&ctrl->namespaces_rwsem);
4119
4120         list_for_each_entry_safe(ns, next, &rm_list, list)
4121                 nvme_ns_remove(ns);
4122
4123 }
4124
4125 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4126 {
4127         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4128         __le32 *ns_list;
4129         u32 prev = 0;
4130         int ret = 0, i;
4131
4132         if (nvme_ctrl_limited_cns(ctrl))
4133                 return -EOPNOTSUPP;
4134
4135         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4136         if (!ns_list)
4137                 return -ENOMEM;
4138
4139         for (;;) {
4140                 struct nvme_command cmd = {
4141                         .identify.opcode        = nvme_admin_identify,
4142                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4143                         .identify.nsid          = cpu_to_le32(prev),
4144                 };
4145
4146                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4147                                             NVME_IDENTIFY_DATA_SIZE);
4148                 if (ret) {
4149                         dev_warn(ctrl->device,
4150                                 "Identify NS List failed (status=0x%x)\n", ret);
4151                         goto free;
4152                 }
4153
4154                 for (i = 0; i < nr_entries; i++) {
4155                         u32 nsid = le32_to_cpu(ns_list[i]);
4156
4157                         if (!nsid)      /* end of the list? */
4158                                 goto out;
4159                         nvme_validate_or_alloc_ns(ctrl, nsid);
4160                         while (++prev < nsid)
4161                                 nvme_ns_remove_by_nsid(ctrl, prev);
4162                 }
4163         }
4164  out:
4165         nvme_remove_invalid_namespaces(ctrl, prev);
4166  free:
4167         kfree(ns_list);
4168         return ret;
4169 }
4170
4171 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4172 {
4173         struct nvme_id_ctrl *id;
4174         u32 nn, i;
4175
4176         if (nvme_identify_ctrl(ctrl, &id))
4177                 return;
4178         nn = le32_to_cpu(id->nn);
4179         kfree(id);
4180
4181         for (i = 1; i <= nn; i++)
4182                 nvme_validate_or_alloc_ns(ctrl, i);
4183
4184         nvme_remove_invalid_namespaces(ctrl, nn);
4185 }
4186
4187 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4188 {
4189         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4190         __le32 *log;
4191         int error;
4192
4193         log = kzalloc(log_size, GFP_KERNEL);
4194         if (!log)
4195                 return;
4196
4197         /*
4198          * We need to read the log to clear the AEN, but we don't want to rely
4199          * on it for the changed namespace information as userspace could have
4200          * raced with us in reading the log page, which could cause us to miss
4201          * updates.
4202          */
4203         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4204                         NVME_CSI_NVM, log, log_size, 0);
4205         if (error)
4206                 dev_warn(ctrl->device,
4207                         "reading changed ns log failed: %d\n", error);
4208
4209         kfree(log);
4210 }
4211
4212 static void nvme_scan_work(struct work_struct *work)
4213 {
4214         struct nvme_ctrl *ctrl =
4215                 container_of(work, struct nvme_ctrl, scan_work);
4216
4217         /* No tagset on a live ctrl means IO queues could not created */
4218         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4219                 return;
4220
4221         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4222                 dev_info(ctrl->device, "rescanning namespaces.\n");
4223                 nvme_clear_changed_ns_log(ctrl);
4224         }
4225
4226         mutex_lock(&ctrl->scan_lock);
4227         if (nvme_scan_ns_list(ctrl) != 0)
4228                 nvme_scan_ns_sequential(ctrl);
4229         mutex_unlock(&ctrl->scan_lock);
4230
4231         down_write(&ctrl->namespaces_rwsem);
4232         list_sort(NULL, &ctrl->namespaces, ns_cmp);
4233         up_write(&ctrl->namespaces_rwsem);
4234 }
4235
4236 /*
4237  * This function iterates the namespace list unlocked to allow recovery from
4238  * controller failure. It is up to the caller to ensure the namespace list is
4239  * not modified by scan work while this function is executing.
4240  */
4241 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4242 {
4243         struct nvme_ns *ns, *next;
4244         LIST_HEAD(ns_list);
4245
4246         /*
4247          * make sure to requeue I/O to all namespaces as these
4248          * might result from the scan itself and must complete
4249          * for the scan_work to make progress
4250          */
4251         nvme_mpath_clear_ctrl_paths(ctrl);
4252
4253         /* prevent racing with ns scanning */
4254         flush_work(&ctrl->scan_work);
4255
4256         /*
4257          * The dead states indicates the controller was not gracefully
4258          * disconnected. In that case, we won't be able to flush any data while
4259          * removing the namespaces' disks; fail all the queues now to avoid
4260          * potentially having to clean up the failed sync later.
4261          */
4262         if (ctrl->state == NVME_CTRL_DEAD)
4263                 nvme_kill_queues(ctrl);
4264
4265         /* this is a no-op when called from the controller reset handler */
4266         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4267
4268         down_write(&ctrl->namespaces_rwsem);
4269         list_splice_init(&ctrl->namespaces, &ns_list);
4270         up_write(&ctrl->namespaces_rwsem);
4271
4272         list_for_each_entry_safe(ns, next, &ns_list, list)
4273                 nvme_ns_remove(ns);
4274 }
4275 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4276
4277 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4278 {
4279         struct nvme_ctrl *ctrl =
4280                 container_of(dev, struct nvme_ctrl, ctrl_device);
4281         struct nvmf_ctrl_options *opts = ctrl->opts;
4282         int ret;
4283
4284         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4285         if (ret)
4286                 return ret;
4287
4288         if (opts) {
4289                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4290                 if (ret)
4291                         return ret;
4292
4293                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4294                                 opts->trsvcid ?: "none");
4295                 if (ret)
4296                         return ret;
4297
4298                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4299                                 opts->host_traddr ?: "none");
4300         }
4301         return ret;
4302 }
4303
4304 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4305 {
4306         char *envp[2] = { NULL, NULL };
4307         u32 aen_result = ctrl->aen_result;
4308
4309         ctrl->aen_result = 0;
4310         if (!aen_result)
4311                 return;
4312
4313         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4314         if (!envp[0])
4315                 return;
4316         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4317         kfree(envp[0]);
4318 }
4319
4320 static void nvme_async_event_work(struct work_struct *work)
4321 {
4322         struct nvme_ctrl *ctrl =
4323                 container_of(work, struct nvme_ctrl, async_event_work);
4324
4325         nvme_aen_uevent(ctrl);
4326         ctrl->ops->submit_async_event(ctrl);
4327 }
4328
4329 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4330 {
4331
4332         u32 csts;
4333
4334         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4335                 return false;
4336
4337         if (csts == ~0)
4338                 return false;
4339
4340         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4341 }
4342
4343 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4344 {
4345         struct nvme_fw_slot_info_log *log;
4346
4347         log = kmalloc(sizeof(*log), GFP_KERNEL);
4348         if (!log)
4349                 return;
4350
4351         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4352                         log, sizeof(*log), 0))
4353                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4354         kfree(log);
4355 }
4356
4357 static void nvme_fw_act_work(struct work_struct *work)
4358 {
4359         struct nvme_ctrl *ctrl = container_of(work,
4360                                 struct nvme_ctrl, fw_act_work);
4361         unsigned long fw_act_timeout;
4362
4363         if (ctrl->mtfa)
4364                 fw_act_timeout = jiffies +
4365                                 msecs_to_jiffies(ctrl->mtfa * 100);
4366         else
4367                 fw_act_timeout = jiffies +
4368                                 msecs_to_jiffies(admin_timeout * 1000);
4369
4370         nvme_stop_queues(ctrl);
4371         while (nvme_ctrl_pp_status(ctrl)) {
4372                 if (time_after(jiffies, fw_act_timeout)) {
4373                         dev_warn(ctrl->device,
4374                                 "Fw activation timeout, reset controller\n");
4375                         nvme_try_sched_reset(ctrl);
4376                         return;
4377                 }
4378                 msleep(100);
4379         }
4380
4381         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4382                 return;
4383
4384         nvme_start_queues(ctrl);
4385         /* read FW slot information to clear the AER */
4386         nvme_get_fw_slot_info(ctrl);
4387 }
4388
4389 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4390 {
4391         u32 aer_notice_type = (result & 0xff00) >> 8;
4392
4393         trace_nvme_async_event(ctrl, aer_notice_type);
4394
4395         switch (aer_notice_type) {
4396         case NVME_AER_NOTICE_NS_CHANGED:
4397                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4398                 nvme_queue_scan(ctrl);
4399                 break;
4400         case NVME_AER_NOTICE_FW_ACT_STARTING:
4401                 /*
4402                  * We are (ab)using the RESETTING state to prevent subsequent
4403                  * recovery actions from interfering with the controller's
4404                  * firmware activation.
4405                  */
4406                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4407                         queue_work(nvme_wq, &ctrl->fw_act_work);
4408                 break;
4409 #ifdef CONFIG_NVME_MULTIPATH
4410         case NVME_AER_NOTICE_ANA:
4411                 if (!ctrl->ana_log_buf)
4412                         break;
4413                 queue_work(nvme_wq, &ctrl->ana_work);
4414                 break;
4415 #endif
4416         case NVME_AER_NOTICE_DISC_CHANGED:
4417                 ctrl->aen_result = result;
4418                 break;
4419         default:
4420                 dev_warn(ctrl->device, "async event result %08x\n", result);
4421         }
4422 }
4423
4424 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4425                 volatile union nvme_result *res)
4426 {
4427         u32 result = le32_to_cpu(res->u32);
4428         u32 aer_type = result & 0x07;
4429
4430         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4431                 return;
4432
4433         switch (aer_type) {
4434         case NVME_AER_NOTICE:
4435                 nvme_handle_aen_notice(ctrl, result);
4436                 break;
4437         case NVME_AER_ERROR:
4438         case NVME_AER_SMART:
4439         case NVME_AER_CSS:
4440         case NVME_AER_VS:
4441                 trace_nvme_async_event(ctrl, aer_type);
4442                 ctrl->aen_result = result;
4443                 break;
4444         default:
4445                 break;
4446         }
4447         queue_work(nvme_wq, &ctrl->async_event_work);
4448 }
4449 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4450
4451 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4452 {
4453         nvme_mpath_stop(ctrl);
4454         nvme_stop_keep_alive(ctrl);
4455         nvme_stop_failfast_work(ctrl);
4456         flush_work(&ctrl->async_event_work);
4457         cancel_work_sync(&ctrl->fw_act_work);
4458 }
4459 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4460
4461 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4462 {
4463         nvme_start_keep_alive(ctrl);
4464
4465         nvme_enable_aen(ctrl);
4466
4467         if (ctrl->queue_count > 1) {
4468                 nvme_queue_scan(ctrl);
4469                 nvme_start_queues(ctrl);
4470         }
4471 }
4472 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4473
4474 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4475 {
4476         nvme_hwmon_exit(ctrl);
4477         nvme_fault_inject_fini(&ctrl->fault_inject);
4478         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4479         cdev_device_del(&ctrl->cdev, ctrl->device);
4480         nvme_put_ctrl(ctrl);
4481 }
4482 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4483
4484 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4485 {
4486         struct nvme_effects_log *cel;
4487         unsigned long i;
4488
4489         xa_for_each(&ctrl->cels, i, cel) {
4490                 xa_erase(&ctrl->cels, i);
4491                 kfree(cel);
4492         }
4493
4494         xa_destroy(&ctrl->cels);
4495 }
4496
4497 static void nvme_free_ctrl(struct device *dev)
4498 {
4499         struct nvme_ctrl *ctrl =
4500                 container_of(dev, struct nvme_ctrl, ctrl_device);
4501         struct nvme_subsystem *subsys = ctrl->subsys;
4502
4503         if (!subsys || ctrl->instance != subsys->instance)
4504                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4505
4506         nvme_free_cels(ctrl);
4507         nvme_mpath_uninit(ctrl);
4508         __free_page(ctrl->discard_page);
4509
4510         if (subsys) {
4511                 mutex_lock(&nvme_subsystems_lock);
4512                 list_del(&ctrl->subsys_entry);
4513                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4514                 mutex_unlock(&nvme_subsystems_lock);
4515         }
4516
4517         ctrl->ops->free_ctrl(ctrl);
4518
4519         if (subsys)
4520                 nvme_put_subsystem(subsys);
4521 }
4522
4523 /*
4524  * Initialize a NVMe controller structures.  This needs to be called during
4525  * earliest initialization so that we have the initialized structured around
4526  * during probing.
4527  */
4528 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4529                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4530 {
4531         int ret;
4532
4533         ctrl->state = NVME_CTRL_NEW;
4534         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4535         spin_lock_init(&ctrl->lock);
4536         mutex_init(&ctrl->scan_lock);
4537         INIT_LIST_HEAD(&ctrl->namespaces);
4538         xa_init(&ctrl->cels);
4539         init_rwsem(&ctrl->namespaces_rwsem);
4540         ctrl->dev = dev;
4541         ctrl->ops = ops;
4542         ctrl->quirks = quirks;
4543         ctrl->numa_node = NUMA_NO_NODE;
4544         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4545         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4546         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4547         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4548         init_waitqueue_head(&ctrl->state_wq);
4549
4550         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4551         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4552         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4553         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4554
4555         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4556                         PAGE_SIZE);
4557         ctrl->discard_page = alloc_page(GFP_KERNEL);
4558         if (!ctrl->discard_page) {
4559                 ret = -ENOMEM;
4560                 goto out;
4561         }
4562
4563         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4564         if (ret < 0)
4565                 goto out;
4566         ctrl->instance = ret;
4567
4568         device_initialize(&ctrl->ctrl_device);
4569         ctrl->device = &ctrl->ctrl_device;
4570         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4571                         ctrl->instance);
4572         ctrl->device->class = nvme_class;
4573         ctrl->device->parent = ctrl->dev;
4574         ctrl->device->groups = nvme_dev_attr_groups;
4575         ctrl->device->release = nvme_free_ctrl;
4576         dev_set_drvdata(ctrl->device, ctrl);
4577         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4578         if (ret)
4579                 goto out_release_instance;
4580
4581         nvme_get_ctrl(ctrl);
4582         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4583         ctrl->cdev.owner = ops->module;
4584         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4585         if (ret)
4586                 goto out_free_name;
4587
4588         /*
4589          * Initialize latency tolerance controls.  The sysfs files won't
4590          * be visible to userspace unless the device actually supports APST.
4591          */
4592         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4593         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4594                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4595
4596         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4597
4598         return 0;
4599 out_free_name:
4600         nvme_put_ctrl(ctrl);
4601         kfree_const(ctrl->device->kobj.name);
4602 out_release_instance:
4603         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4604 out:
4605         if (ctrl->discard_page)
4606                 __free_page(ctrl->discard_page);
4607         return ret;
4608 }
4609 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4610
4611 /**
4612  * nvme_kill_queues(): Ends all namespace queues
4613  * @ctrl: the dead controller that needs to end
4614  *
4615  * Call this function when the driver determines it is unable to get the
4616  * controller in a state capable of servicing IO.
4617  */
4618 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4619 {
4620         struct nvme_ns *ns;
4621
4622         down_read(&ctrl->namespaces_rwsem);
4623
4624         /* Forcibly unquiesce queues to avoid blocking dispatch */
4625         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4626                 blk_mq_unquiesce_queue(ctrl->admin_q);
4627
4628         list_for_each_entry(ns, &ctrl->namespaces, list)
4629                 nvme_set_queue_dying(ns);
4630
4631         up_read(&ctrl->namespaces_rwsem);
4632 }
4633 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4634
4635 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4636 {
4637         struct nvme_ns *ns;
4638
4639         down_read(&ctrl->namespaces_rwsem);
4640         list_for_each_entry(ns, &ctrl->namespaces, list)
4641                 blk_mq_unfreeze_queue(ns->queue);
4642         up_read(&ctrl->namespaces_rwsem);
4643 }
4644 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4645
4646 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4647 {
4648         struct nvme_ns *ns;
4649
4650         down_read(&ctrl->namespaces_rwsem);
4651         list_for_each_entry(ns, &ctrl->namespaces, list) {
4652                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4653                 if (timeout <= 0)
4654                         break;
4655         }
4656         up_read(&ctrl->namespaces_rwsem);
4657         return timeout;
4658 }
4659 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4660
4661 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4662 {
4663         struct nvme_ns *ns;
4664
4665         down_read(&ctrl->namespaces_rwsem);
4666         list_for_each_entry(ns, &ctrl->namespaces, list)
4667                 blk_mq_freeze_queue_wait(ns->queue);
4668         up_read(&ctrl->namespaces_rwsem);
4669 }
4670 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4671
4672 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4673 {
4674         struct nvme_ns *ns;
4675
4676         down_read(&ctrl->namespaces_rwsem);
4677         list_for_each_entry(ns, &ctrl->namespaces, list)
4678                 blk_freeze_queue_start(ns->queue);
4679         up_read(&ctrl->namespaces_rwsem);
4680 }
4681 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4682
4683 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4684 {
4685         struct nvme_ns *ns;
4686
4687         down_read(&ctrl->namespaces_rwsem);
4688         list_for_each_entry(ns, &ctrl->namespaces, list)
4689                 blk_mq_quiesce_queue(ns->queue);
4690         up_read(&ctrl->namespaces_rwsem);
4691 }
4692 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4693
4694 void nvme_start_queues(struct nvme_ctrl *ctrl)
4695 {
4696         struct nvme_ns *ns;
4697
4698         down_read(&ctrl->namespaces_rwsem);
4699         list_for_each_entry(ns, &ctrl->namespaces, list)
4700                 blk_mq_unquiesce_queue(ns->queue);
4701         up_read(&ctrl->namespaces_rwsem);
4702 }
4703 EXPORT_SYMBOL_GPL(nvme_start_queues);
4704
4705 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4706 {
4707         struct nvme_ns *ns;
4708
4709         down_read(&ctrl->namespaces_rwsem);
4710         list_for_each_entry(ns, &ctrl->namespaces, list)
4711                 blk_sync_queue(ns->queue);
4712         up_read(&ctrl->namespaces_rwsem);
4713 }
4714 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4715
4716 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4717 {
4718         nvme_sync_io_queues(ctrl);
4719         if (ctrl->admin_q)
4720                 blk_sync_queue(ctrl->admin_q);
4721 }
4722 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4723
4724 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4725 {
4726         if (file->f_op != &nvme_dev_fops)
4727                 return NULL;
4728         return file->private_data;
4729 }
4730 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4731
4732 /*
4733  * Check we didn't inadvertently grow the command structure sizes:
4734  */
4735 static inline void _nvme_check_size(void)
4736 {
4737         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4738         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4739         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4740         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4741         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4742         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4743         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4744         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4745         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4746         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4747         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4748         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4749         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4750         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4751         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4752         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4753         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4754         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4755         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4756 }
4757
4758
4759 static int __init nvme_core_init(void)
4760 {
4761         int result = -ENOMEM;
4762
4763         _nvme_check_size();
4764
4765         nvme_wq = alloc_workqueue("nvme-wq",
4766                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4767         if (!nvme_wq)
4768                 goto out;
4769
4770         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4771                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4772         if (!nvme_reset_wq)
4773                 goto destroy_wq;
4774
4775         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4776                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4777         if (!nvme_delete_wq)
4778                 goto destroy_reset_wq;
4779
4780         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4781                         NVME_MINORS, "nvme");
4782         if (result < 0)
4783                 goto destroy_delete_wq;
4784
4785         nvme_class = class_create(THIS_MODULE, "nvme");
4786         if (IS_ERR(nvme_class)) {
4787                 result = PTR_ERR(nvme_class);
4788                 goto unregister_chrdev;
4789         }
4790         nvme_class->dev_uevent = nvme_class_uevent;
4791
4792         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4793         if (IS_ERR(nvme_subsys_class)) {
4794                 result = PTR_ERR(nvme_subsys_class);
4795                 goto destroy_class;
4796         }
4797         return 0;
4798
4799 destroy_class:
4800         class_destroy(nvme_class);
4801 unregister_chrdev:
4802         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4803 destroy_delete_wq:
4804         destroy_workqueue(nvme_delete_wq);
4805 destroy_reset_wq:
4806         destroy_workqueue(nvme_reset_wq);
4807 destroy_wq:
4808         destroy_workqueue(nvme_wq);
4809 out:
4810         return result;
4811 }
4812
4813 static void __exit nvme_core_exit(void)
4814 {
4815         class_destroy(nvme_subsys_class);
4816         class_destroy(nvme_class);
4817         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4818         destroy_workqueue(nvme_delete_wq);
4819         destroy_workqueue(nvme_reset_wq);
4820         destroy_workqueue(nvme_wq);
4821         ida_destroy(&nvme_instance_ida);
4822 }
4823
4824 MODULE_LICENSE("GPL");
4825 MODULE_VERSION("1.0");
4826 module_init(nvme_core_init);
4827 module_exit(nvme_core_exit);