Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63         "primary APST timeout in ms");
64
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68         "secondary APST timeout in ms");
69
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73         "primary APST latency tolerance in us");
74
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78         "secondary APST latency tolerance in us");
79
80 static bool streams;
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83
84 /*
85  * nvme_wq - hosts nvme related works that are not reset or delete
86  * nvme_reset_wq - hosts nvme reset works
87  * nvme_delete_wq - hosts nvme delete works
88  *
89  * nvme_wq will host works such as scan, aen handling, fw activation,
90  * keep-alive, periodic reconnects etc. nvme_reset_wq
91  * runs reset works which also flush works hosted on nvme_wq for
92  * serialization purposes. nvme_delete_wq host controller deletion
93  * works which flush reset works for serialization.
94  */
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
97
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
100
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
103
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
106
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
111
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
115
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118                                            unsigned nsid);
119
120 /*
121  * Prepare a queue for teardown.
122  *
123  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
124  * the capacity to 0 after that to avoid blocking dispatchers that may be
125  * holding bd_butex.  This will end buffered writers dirtying pages that can't
126  * be synced.
127  */
128 static void nvme_set_queue_dying(struct nvme_ns *ns)
129 {
130         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
131                 return;
132
133         blk_set_queue_dying(ns->queue);
134         blk_mq_unquiesce_queue(ns->queue);
135
136         set_capacity_and_notify(ns->disk, 0);
137 }
138
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141         /*
142          * Only new queue scan work when admin and IO queues are both alive
143          */
144         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
145                 queue_work(nvme_wq, &ctrl->scan_work);
146 }
147
148 /*
149  * Use this function to proceed with scheduling reset_work for a controller
150  * that had previously been set to the resetting state. This is intended for
151  * code paths that can't be interrupted by other reset attempts. A hot removal
152  * may prevent this from succeeding.
153  */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156         if (ctrl->state != NVME_CTRL_RESETTING)
157                 return -EBUSY;
158         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159                 return -EBUSY;
160         return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167                         struct nvme_ctrl, failfast_work);
168
169         if (ctrl->state != NVME_CTRL_CONNECTING)
170                 return;
171
172         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173         dev_info(ctrl->device, "failfast expired\n");
174         nvme_kick_requeue_lists(ctrl);
175 }
176
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180                 return;
181
182         schedule_delayed_work(&ctrl->failfast_work,
183                               ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188         if (!ctrl->opts)
189                 return;
190
191         cancel_delayed_work_sync(&ctrl->failfast_work);
192         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194
195
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199                 return -EBUSY;
200         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201                 return -EBUSY;
202         return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208         int ret;
209
210         ret = nvme_reset_ctrl(ctrl);
211         if (!ret) {
212                 flush_work(&ctrl->reset_work);
213                 if (ctrl->state != NVME_CTRL_LIVE)
214                         ret = -ENETRESET;
215         }
216
217         return ret;
218 }
219
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222         dev_info(ctrl->device,
223                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
224
225         flush_work(&ctrl->reset_work);
226         nvme_stop_ctrl(ctrl);
227         nvme_remove_namespaces(ctrl);
228         ctrl->ops->delete_ctrl(ctrl);
229         nvme_uninit_ctrl(ctrl);
230 }
231
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234         struct nvme_ctrl *ctrl =
235                 container_of(work, struct nvme_ctrl, delete_work);
236
237         nvme_do_delete_ctrl(ctrl);
238 }
239
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243                 return -EBUSY;
244         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245                 return -EBUSY;
246         return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249
250 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252         /*
253          * Keep a reference until nvme_do_delete_ctrl() complete,
254          * since ->delete_ctrl can free the controller.
255          */
256         nvme_get_ctrl(ctrl);
257         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258                 nvme_do_delete_ctrl(ctrl);
259         nvme_put_ctrl(ctrl);
260 }
261
262 static blk_status_t nvme_error_status(u16 status)
263 {
264         switch (status & 0x7ff) {
265         case NVME_SC_SUCCESS:
266                 return BLK_STS_OK;
267         case NVME_SC_CAP_EXCEEDED:
268                 return BLK_STS_NOSPC;
269         case NVME_SC_LBA_RANGE:
270         case NVME_SC_CMD_INTERRUPTED:
271         case NVME_SC_NS_NOT_READY:
272                 return BLK_STS_TARGET;
273         case NVME_SC_BAD_ATTRIBUTES:
274         case NVME_SC_ONCS_NOT_SUPPORTED:
275         case NVME_SC_INVALID_OPCODE:
276         case NVME_SC_INVALID_FIELD:
277         case NVME_SC_INVALID_NS:
278                 return BLK_STS_NOTSUPP;
279         case NVME_SC_WRITE_FAULT:
280         case NVME_SC_READ_ERROR:
281         case NVME_SC_UNWRITTEN_BLOCK:
282         case NVME_SC_ACCESS_DENIED:
283         case NVME_SC_READ_ONLY:
284         case NVME_SC_COMPARE_FAILED:
285                 return BLK_STS_MEDIUM;
286         case NVME_SC_GUARD_CHECK:
287         case NVME_SC_APPTAG_CHECK:
288         case NVME_SC_REFTAG_CHECK:
289         case NVME_SC_INVALID_PI:
290                 return BLK_STS_PROTECTION;
291         case NVME_SC_RESERVATION_CONFLICT:
292                 return BLK_STS_NEXUS;
293         case NVME_SC_HOST_PATH_ERROR:
294                 return BLK_STS_TRANSPORT;
295         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
297         case NVME_SC_ZONE_TOO_MANY_OPEN:
298                 return BLK_STS_ZONE_OPEN_RESOURCE;
299         default:
300                 return BLK_STS_IOERR;
301         }
302 }
303
304 static void nvme_retry_req(struct request *req)
305 {
306         unsigned long delay = 0;
307         u16 crd;
308
309         /* The mask and shift result must be <= 3 */
310         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
311         if (crd)
312                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313
314         nvme_req(req)->retries++;
315         blk_mq_requeue_request(req, false);
316         blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318
319 enum nvme_disposition {
320         COMPLETE,
321         RETRY,
322         FAILOVER,
323 };
324
325 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
326 {
327         if (likely(nvme_req(req)->status == 0))
328                 return COMPLETE;
329
330         if (blk_noretry_request(req) ||
331             (nvme_req(req)->status & NVME_SC_DNR) ||
332             nvme_req(req)->retries >= nvme_max_retries)
333                 return COMPLETE;
334
335         if (req->cmd_flags & REQ_NVME_MPATH) {
336                 if (nvme_is_path_error(nvme_req(req)->status) ||
337                     blk_queue_dying(req->q))
338                         return FAILOVER;
339         } else {
340                 if (blk_queue_dying(req->q))
341                         return COMPLETE;
342         }
343
344         return RETRY;
345 }
346
347 static inline void nvme_end_req(struct request *req)
348 {
349         blk_status_t status = nvme_error_status(nvme_req(req)->status);
350
351         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
352             req_op(req) == REQ_OP_ZONE_APPEND)
353                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
354                         le64_to_cpu(nvme_req(req)->result.u64));
355
356         nvme_trace_bio_complete(req);
357         blk_mq_end_request(req, status);
358 }
359
360 void nvme_complete_rq(struct request *req)
361 {
362         trace_nvme_complete_rq(req);
363         nvme_cleanup_cmd(req);
364
365         if (nvme_req(req)->ctrl->kas)
366                 nvme_req(req)->ctrl->comp_seen = true;
367
368         switch (nvme_decide_disposition(req)) {
369         case COMPLETE:
370                 nvme_end_req(req);
371                 return;
372         case RETRY:
373                 nvme_retry_req(req);
374                 return;
375         case FAILOVER:
376                 nvme_failover_req(req);
377                 return;
378         }
379 }
380 EXPORT_SYMBOL_GPL(nvme_complete_rq);
381
382 /*
383  * Called to unwind from ->queue_rq on a failed command submission so that the
384  * multipathing code gets called to potentially failover to another path.
385  * The caller needs to unwind all transport specific resource allocations and
386  * must return propagate the return value.
387  */
388 blk_status_t nvme_host_path_error(struct request *req)
389 {
390         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
391         blk_mq_set_request_complete(req);
392         nvme_complete_rq(req);
393         return BLK_STS_OK;
394 }
395 EXPORT_SYMBOL_GPL(nvme_host_path_error);
396
397 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
398 {
399         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
400                                 "Cancelling I/O %d", req->tag);
401
402         /* don't abort one completed request */
403         if (blk_mq_request_completed(req))
404                 return true;
405
406         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
407         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
408         blk_mq_complete_request(req);
409         return true;
410 }
411 EXPORT_SYMBOL_GPL(nvme_cancel_request);
412
413 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
414 {
415         if (ctrl->tagset) {
416                 blk_mq_tagset_busy_iter(ctrl->tagset,
417                                 nvme_cancel_request, ctrl);
418                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
419         }
420 }
421 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
422
423 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
424 {
425         if (ctrl->admin_tagset) {
426                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
427                                 nvme_cancel_request, ctrl);
428                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
429         }
430 }
431 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
432
433 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
434                 enum nvme_ctrl_state new_state)
435 {
436         enum nvme_ctrl_state old_state;
437         unsigned long flags;
438         bool changed = false;
439
440         spin_lock_irqsave(&ctrl->lock, flags);
441
442         old_state = ctrl->state;
443         switch (new_state) {
444         case NVME_CTRL_LIVE:
445                 switch (old_state) {
446                 case NVME_CTRL_NEW:
447                 case NVME_CTRL_RESETTING:
448                 case NVME_CTRL_CONNECTING:
449                         changed = true;
450                         fallthrough;
451                 default:
452                         break;
453                 }
454                 break;
455         case NVME_CTRL_RESETTING:
456                 switch (old_state) {
457                 case NVME_CTRL_NEW:
458                 case NVME_CTRL_LIVE:
459                         changed = true;
460                         fallthrough;
461                 default:
462                         break;
463                 }
464                 break;
465         case NVME_CTRL_CONNECTING:
466                 switch (old_state) {
467                 case NVME_CTRL_NEW:
468                 case NVME_CTRL_RESETTING:
469                         changed = true;
470                         fallthrough;
471                 default:
472                         break;
473                 }
474                 break;
475         case NVME_CTRL_DELETING:
476                 switch (old_state) {
477                 case NVME_CTRL_LIVE:
478                 case NVME_CTRL_RESETTING:
479                 case NVME_CTRL_CONNECTING:
480                         changed = true;
481                         fallthrough;
482                 default:
483                         break;
484                 }
485                 break;
486         case NVME_CTRL_DELETING_NOIO:
487                 switch (old_state) {
488                 case NVME_CTRL_DELETING:
489                 case NVME_CTRL_DEAD:
490                         changed = true;
491                         fallthrough;
492                 default:
493                         break;
494                 }
495                 break;
496         case NVME_CTRL_DEAD:
497                 switch (old_state) {
498                 case NVME_CTRL_DELETING:
499                         changed = true;
500                         fallthrough;
501                 default:
502                         break;
503                 }
504                 break;
505         default:
506                 break;
507         }
508
509         if (changed) {
510                 ctrl->state = new_state;
511                 wake_up_all(&ctrl->state_wq);
512         }
513
514         spin_unlock_irqrestore(&ctrl->lock, flags);
515         if (!changed)
516                 return false;
517
518         if (ctrl->state == NVME_CTRL_LIVE) {
519                 if (old_state == NVME_CTRL_CONNECTING)
520                         nvme_stop_failfast_work(ctrl);
521                 nvme_kick_requeue_lists(ctrl);
522         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
523                 old_state == NVME_CTRL_RESETTING) {
524                 nvme_start_failfast_work(ctrl);
525         }
526         return changed;
527 }
528 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
529
530 /*
531  * Returns true for sink states that can't ever transition back to live.
532  */
533 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
534 {
535         switch (ctrl->state) {
536         case NVME_CTRL_NEW:
537         case NVME_CTRL_LIVE:
538         case NVME_CTRL_RESETTING:
539         case NVME_CTRL_CONNECTING:
540                 return false;
541         case NVME_CTRL_DELETING:
542         case NVME_CTRL_DELETING_NOIO:
543         case NVME_CTRL_DEAD:
544                 return true;
545         default:
546                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
547                 return true;
548         }
549 }
550
551 /*
552  * Waits for the controller state to be resetting, or returns false if it is
553  * not possible to ever transition to that state.
554  */
555 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
556 {
557         wait_event(ctrl->state_wq,
558                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
559                    nvme_state_terminal(ctrl));
560         return ctrl->state == NVME_CTRL_RESETTING;
561 }
562 EXPORT_SYMBOL_GPL(nvme_wait_reset);
563
564 static void nvme_free_ns_head(struct kref *ref)
565 {
566         struct nvme_ns_head *head =
567                 container_of(ref, struct nvme_ns_head, ref);
568
569         nvme_mpath_remove_disk(head);
570         ida_simple_remove(&head->subsys->ns_ida, head->instance);
571         cleanup_srcu_struct(&head->srcu);
572         nvme_put_subsystem(head->subsys);
573         kfree(head);
574 }
575
576 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
577 {
578         return kref_get_unless_zero(&head->ref);
579 }
580
581 void nvme_put_ns_head(struct nvme_ns_head *head)
582 {
583         kref_put(&head->ref, nvme_free_ns_head);
584 }
585
586 static void nvme_free_ns(struct kref *kref)
587 {
588         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
589
590         if (ns->ndev)
591                 nvme_nvm_unregister(ns);
592
593         put_disk(ns->disk);
594         nvme_put_ns_head(ns->head);
595         nvme_put_ctrl(ns->ctrl);
596         kfree(ns);
597 }
598
599 static inline bool nvme_get_ns(struct nvme_ns *ns)
600 {
601         return kref_get_unless_zero(&ns->kref);
602 }
603
604 void nvme_put_ns(struct nvme_ns *ns)
605 {
606         kref_put(&ns->kref, nvme_free_ns);
607 }
608 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
609
610 static inline void nvme_clear_nvme_request(struct request *req)
611 {
612         nvme_req(req)->status = 0;
613         nvme_req(req)->retries = 0;
614         nvme_req(req)->flags = 0;
615         req->rq_flags |= RQF_DONTPREP;
616 }
617
618 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
619 {
620         return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
621 }
622
623 static inline void nvme_init_request(struct request *req,
624                 struct nvme_command *cmd)
625 {
626         if (req->q->queuedata)
627                 req->timeout = NVME_IO_TIMEOUT;
628         else /* no queuedata implies admin queue */
629                 req->timeout = NVME_ADMIN_TIMEOUT;
630
631         /* passthru commands should let the driver set the SGL flags */
632         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
633
634         req->cmd_flags |= REQ_FAILFAST_DRIVER;
635         if (req->mq_hctx->type == HCTX_TYPE_POLL)
636                 req->cmd_flags |= REQ_HIPRI;
637         nvme_clear_nvme_request(req);
638         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
639 }
640
641 struct request *nvme_alloc_request(struct request_queue *q,
642                 struct nvme_command *cmd, blk_mq_req_flags_t flags)
643 {
644         struct request *req;
645
646         req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
647         if (!IS_ERR(req))
648                 nvme_init_request(req, cmd);
649         return req;
650 }
651 EXPORT_SYMBOL_GPL(nvme_alloc_request);
652
653 static struct request *nvme_alloc_request_qid(struct request_queue *q,
654                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
655 {
656         struct request *req;
657
658         req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
659                         qid ? qid - 1 : 0);
660         if (!IS_ERR(req))
661                 nvme_init_request(req, cmd);
662         return req;
663 }
664
665 /*
666  * For something we're not in a state to send to the device the default action
667  * is to busy it and retry it after the controller state is recovered.  However,
668  * if the controller is deleting or if anything is marked for failfast or
669  * nvme multipath it is immediately failed.
670  *
671  * Note: commands used to initialize the controller will be marked for failfast.
672  * Note: nvme cli/ioctl commands are marked for failfast.
673  */
674 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
675                 struct request *rq)
676 {
677         if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
678             ctrl->state != NVME_CTRL_DEAD &&
679             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
680             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
681                 return BLK_STS_RESOURCE;
682         return nvme_host_path_error(rq);
683 }
684 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
685
686 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
687                 bool queue_live)
688 {
689         struct nvme_request *req = nvme_req(rq);
690
691         /*
692          * currently we have a problem sending passthru commands
693          * on the admin_q if the controller is not LIVE because we can't
694          * make sure that they are going out after the admin connect,
695          * controller enable and/or other commands in the initialization
696          * sequence. until the controller will be LIVE, fail with
697          * BLK_STS_RESOURCE so that they will be rescheduled.
698          */
699         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
700                 return false;
701
702         if (ctrl->ops->flags & NVME_F_FABRICS) {
703                 /*
704                  * Only allow commands on a live queue, except for the connect
705                  * command, which is require to set the queue live in the
706                  * appropinquate states.
707                  */
708                 switch (ctrl->state) {
709                 case NVME_CTRL_CONNECTING:
710                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
711                             req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
712                                 return true;
713                         break;
714                 default:
715                         break;
716                 case NVME_CTRL_DEAD:
717                         return false;
718                 }
719         }
720
721         return queue_live;
722 }
723 EXPORT_SYMBOL_GPL(__nvme_check_ready);
724
725 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
726 {
727         struct nvme_command c = { };
728
729         c.directive.opcode = nvme_admin_directive_send;
730         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
731         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
732         c.directive.dtype = NVME_DIR_IDENTIFY;
733         c.directive.tdtype = NVME_DIR_STREAMS;
734         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
735
736         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
737 }
738
739 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
740 {
741         return nvme_toggle_streams(ctrl, false);
742 }
743
744 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
745 {
746         return nvme_toggle_streams(ctrl, true);
747 }
748
749 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
750                                   struct streams_directive_params *s, u32 nsid)
751 {
752         struct nvme_command c = { };
753
754         memset(s, 0, sizeof(*s));
755
756         c.directive.opcode = nvme_admin_directive_recv;
757         c.directive.nsid = cpu_to_le32(nsid);
758         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
759         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
760         c.directive.dtype = NVME_DIR_STREAMS;
761
762         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
763 }
764
765 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
766 {
767         struct streams_directive_params s;
768         int ret;
769
770         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
771                 return 0;
772         if (!streams)
773                 return 0;
774
775         ret = nvme_enable_streams(ctrl);
776         if (ret)
777                 return ret;
778
779         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
780         if (ret)
781                 goto out_disable_stream;
782
783         ctrl->nssa = le16_to_cpu(s.nssa);
784         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
785                 dev_info(ctrl->device, "too few streams (%u) available\n",
786                                         ctrl->nssa);
787                 goto out_disable_stream;
788         }
789
790         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
791         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
792         return 0;
793
794 out_disable_stream:
795         nvme_disable_streams(ctrl);
796         return ret;
797 }
798
799 /*
800  * Check if 'req' has a write hint associated with it. If it does, assign
801  * a valid namespace stream to the write.
802  */
803 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
804                                      struct request *req, u16 *control,
805                                      u32 *dsmgmt)
806 {
807         enum rw_hint streamid = req->write_hint;
808
809         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
810                 streamid = 0;
811         else {
812                 streamid--;
813                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
814                         return;
815
816                 *control |= NVME_RW_DTYPE_STREAMS;
817                 *dsmgmt |= streamid << 16;
818         }
819
820         if (streamid < ARRAY_SIZE(req->q->write_hints))
821                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
822 }
823
824 static inline void nvme_setup_flush(struct nvme_ns *ns,
825                 struct nvme_command *cmnd)
826 {
827         cmnd->common.opcode = nvme_cmd_flush;
828         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
829 }
830
831 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
832                 struct nvme_command *cmnd)
833 {
834         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
835         struct nvme_dsm_range *range;
836         struct bio *bio;
837
838         /*
839          * Some devices do not consider the DSM 'Number of Ranges' field when
840          * determining how much data to DMA. Always allocate memory for maximum
841          * number of segments to prevent device reading beyond end of buffer.
842          */
843         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
844
845         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
846         if (!range) {
847                 /*
848                  * If we fail allocation our range, fallback to the controller
849                  * discard page. If that's also busy, it's safe to return
850                  * busy, as we know we can make progress once that's freed.
851                  */
852                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
853                         return BLK_STS_RESOURCE;
854
855                 range = page_address(ns->ctrl->discard_page);
856         }
857
858         __rq_for_each_bio(bio, req) {
859                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
860                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
861
862                 if (n < segments) {
863                         range[n].cattr = cpu_to_le32(0);
864                         range[n].nlb = cpu_to_le32(nlb);
865                         range[n].slba = cpu_to_le64(slba);
866                 }
867                 n++;
868         }
869
870         if (WARN_ON_ONCE(n != segments)) {
871                 if (virt_to_page(range) == ns->ctrl->discard_page)
872                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
873                 else
874                         kfree(range);
875                 return BLK_STS_IOERR;
876         }
877
878         cmnd->dsm.opcode = nvme_cmd_dsm;
879         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
880         cmnd->dsm.nr = cpu_to_le32(segments - 1);
881         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
882
883         req->special_vec.bv_page = virt_to_page(range);
884         req->special_vec.bv_offset = offset_in_page(range);
885         req->special_vec.bv_len = alloc_size;
886         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
887
888         return BLK_STS_OK;
889 }
890
891 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
892                 struct request *req, struct nvme_command *cmnd)
893 {
894         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
895                 return nvme_setup_discard(ns, req, cmnd);
896
897         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
898         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
899         cmnd->write_zeroes.slba =
900                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
901         cmnd->write_zeroes.length =
902                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
903         if (nvme_ns_has_pi(ns))
904                 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
905         else
906                 cmnd->write_zeroes.control = 0;
907         return BLK_STS_OK;
908 }
909
910 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
911                 struct request *req, struct nvme_command *cmnd,
912                 enum nvme_opcode op)
913 {
914         struct nvme_ctrl *ctrl = ns->ctrl;
915         u16 control = 0;
916         u32 dsmgmt = 0;
917
918         if (req->cmd_flags & REQ_FUA)
919                 control |= NVME_RW_FUA;
920         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
921                 control |= NVME_RW_LR;
922
923         if (req->cmd_flags & REQ_RAHEAD)
924                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
925
926         cmnd->rw.opcode = op;
927         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
928         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
929         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
930
931         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
932                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
933
934         if (ns->ms) {
935                 /*
936                  * If formated with metadata, the block layer always provides a
937                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
938                  * we enable the PRACT bit for protection information or set the
939                  * namespace capacity to zero to prevent any I/O.
940                  */
941                 if (!blk_integrity_rq(req)) {
942                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
943                                 return BLK_STS_NOTSUPP;
944                         control |= NVME_RW_PRINFO_PRACT;
945                 }
946
947                 switch (ns->pi_type) {
948                 case NVME_NS_DPS_PI_TYPE3:
949                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
950                         break;
951                 case NVME_NS_DPS_PI_TYPE1:
952                 case NVME_NS_DPS_PI_TYPE2:
953                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
954                                         NVME_RW_PRINFO_PRCHK_REF;
955                         if (op == nvme_cmd_zone_append)
956                                 control |= NVME_RW_APPEND_PIREMAP;
957                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
958                         break;
959                 }
960         }
961
962         cmnd->rw.control = cpu_to_le16(control);
963         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
964         return 0;
965 }
966
967 void nvme_cleanup_cmd(struct request *req)
968 {
969         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
970                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
971                 struct page *page = req->special_vec.bv_page;
972
973                 if (page == ctrl->discard_page)
974                         clear_bit_unlock(0, &ctrl->discard_page_busy);
975                 else
976                         kfree(page_address(page) + req->special_vec.bv_offset);
977         }
978 }
979 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
980
981 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
982 {
983         struct nvme_command *cmd = nvme_req(req)->cmd;
984         blk_status_t ret = BLK_STS_OK;
985
986         if (!(req->rq_flags & RQF_DONTPREP)) {
987                 nvme_clear_nvme_request(req);
988                 memset(cmd, 0, sizeof(*cmd));
989         }
990
991         switch (req_op(req)) {
992         case REQ_OP_DRV_IN:
993         case REQ_OP_DRV_OUT:
994                 /* these are setup prior to execution in nvme_init_request() */
995                 break;
996         case REQ_OP_FLUSH:
997                 nvme_setup_flush(ns, cmd);
998                 break;
999         case REQ_OP_ZONE_RESET_ALL:
1000         case REQ_OP_ZONE_RESET:
1001                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1002                 break;
1003         case REQ_OP_ZONE_OPEN:
1004                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1005                 break;
1006         case REQ_OP_ZONE_CLOSE:
1007                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1008                 break;
1009         case REQ_OP_ZONE_FINISH:
1010                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1011                 break;
1012         case REQ_OP_WRITE_ZEROES:
1013                 ret = nvme_setup_write_zeroes(ns, req, cmd);
1014                 break;
1015         case REQ_OP_DISCARD:
1016                 ret = nvme_setup_discard(ns, req, cmd);
1017                 break;
1018         case REQ_OP_READ:
1019                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1020                 break;
1021         case REQ_OP_WRITE:
1022                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1023                 break;
1024         case REQ_OP_ZONE_APPEND:
1025                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1026                 break;
1027         default:
1028                 WARN_ON_ONCE(1);
1029                 return BLK_STS_IOERR;
1030         }
1031
1032         cmd->common.command_id = req->tag;
1033         trace_nvme_setup_cmd(req, cmd);
1034         return ret;
1035 }
1036 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1037
1038 /*
1039  * Return values:
1040  * 0:  success
1041  * >0: nvme controller's cqe status response
1042  * <0: kernel error in lieu of controller response
1043  */
1044 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1045                 bool at_head)
1046 {
1047         blk_status_t status;
1048
1049         status = blk_execute_rq(disk, rq, at_head);
1050         if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1051                 return -EINTR;
1052         if (nvme_req(rq)->status)
1053                 return nvme_req(rq)->status;
1054         return blk_status_to_errno(status);
1055 }
1056
1057 /*
1058  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1059  * if the result is positive, it's an NVM Express status code
1060  */
1061 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1062                 union nvme_result *result, void *buffer, unsigned bufflen,
1063                 unsigned timeout, int qid, int at_head,
1064                 blk_mq_req_flags_t flags)
1065 {
1066         struct request *req;
1067         int ret;
1068
1069         if (qid == NVME_QID_ANY)
1070                 req = nvme_alloc_request(q, cmd, flags);
1071         else
1072                 req = nvme_alloc_request_qid(q, cmd, flags, qid);
1073         if (IS_ERR(req))
1074                 return PTR_ERR(req);
1075
1076         if (timeout)
1077                 req->timeout = timeout;
1078
1079         if (buffer && bufflen) {
1080                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1081                 if (ret)
1082                         goto out;
1083         }
1084
1085         ret = nvme_execute_rq(NULL, req, at_head);
1086         if (result && ret >= 0)
1087                 *result = nvme_req(req)->result;
1088  out:
1089         blk_mq_free_request(req);
1090         return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1093
1094 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1095                 void *buffer, unsigned bufflen)
1096 {
1097         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1098                         NVME_QID_ANY, 0, 0);
1099 }
1100 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1101
1102 static u32 nvme_known_admin_effects(u8 opcode)
1103 {
1104         switch (opcode) {
1105         case nvme_admin_format_nvm:
1106                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1107                         NVME_CMD_EFFECTS_CSE_MASK;
1108         case nvme_admin_sanitize_nvm:
1109                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1110         default:
1111                 break;
1112         }
1113         return 0;
1114 }
1115
1116 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1117 {
1118         u32 effects = 0;
1119
1120         if (ns) {
1121                 if (ns->head->effects)
1122                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1123                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1124                         dev_warn_once(ctrl->device,
1125                                 "IO command:%02x has unhandled effects:%08x\n",
1126                                 opcode, effects);
1127                 return 0;
1128         }
1129
1130         if (ctrl->effects)
1131                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1132         effects |= nvme_known_admin_effects(opcode);
1133
1134         return effects;
1135 }
1136 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1137
1138 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1139                                u8 opcode)
1140 {
1141         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1142
1143         /*
1144          * For simplicity, IO to all namespaces is quiesced even if the command
1145          * effects say only one namespace is affected.
1146          */
1147         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1148                 mutex_lock(&ctrl->scan_lock);
1149                 mutex_lock(&ctrl->subsys->lock);
1150                 nvme_mpath_start_freeze(ctrl->subsys);
1151                 nvme_mpath_wait_freeze(ctrl->subsys);
1152                 nvme_start_freeze(ctrl);
1153                 nvme_wait_freeze(ctrl);
1154         }
1155         return effects;
1156 }
1157
1158 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1159 {
1160         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1161                 nvme_unfreeze(ctrl);
1162                 nvme_mpath_unfreeze(ctrl->subsys);
1163                 mutex_unlock(&ctrl->subsys->lock);
1164                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1165                 mutex_unlock(&ctrl->scan_lock);
1166         }
1167         if (effects & NVME_CMD_EFFECTS_CCC)
1168                 nvme_init_ctrl_finish(ctrl);
1169         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1170                 nvme_queue_scan(ctrl);
1171                 flush_work(&ctrl->scan_work);
1172         }
1173 }
1174
1175 int nvme_execute_passthru_rq(struct request *rq)
1176 {
1177         struct nvme_command *cmd = nvme_req(rq)->cmd;
1178         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1179         struct nvme_ns *ns = rq->q->queuedata;
1180         struct gendisk *disk = ns ? ns->disk : NULL;
1181         u32 effects;
1182         int  ret;
1183
1184         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1185         ret = nvme_execute_rq(disk, rq, false);
1186         if (effects) /* nothing to be done for zero cmd effects */
1187                 nvme_passthru_end(ctrl, effects);
1188
1189         return ret;
1190 }
1191 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1192
1193 /*
1194  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1195  * 
1196  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1197  *   accounting for transport roundtrip times [..].
1198  */
1199 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1200 {
1201         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1202 }
1203
1204 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1205 {
1206         struct nvme_ctrl *ctrl = rq->end_io_data;
1207         unsigned long flags;
1208         bool startka = false;
1209
1210         blk_mq_free_request(rq);
1211
1212         if (status) {
1213                 dev_err(ctrl->device,
1214                         "failed nvme_keep_alive_end_io error=%d\n",
1215                                 status);
1216                 return;
1217         }
1218
1219         ctrl->comp_seen = false;
1220         spin_lock_irqsave(&ctrl->lock, flags);
1221         if (ctrl->state == NVME_CTRL_LIVE ||
1222             ctrl->state == NVME_CTRL_CONNECTING)
1223                 startka = true;
1224         spin_unlock_irqrestore(&ctrl->lock, flags);
1225         if (startka)
1226                 nvme_queue_keep_alive_work(ctrl);
1227 }
1228
1229 static void nvme_keep_alive_work(struct work_struct *work)
1230 {
1231         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1232                         struct nvme_ctrl, ka_work);
1233         bool comp_seen = ctrl->comp_seen;
1234         struct request *rq;
1235
1236         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1237                 dev_dbg(ctrl->device,
1238                         "reschedule traffic based keep-alive timer\n");
1239                 ctrl->comp_seen = false;
1240                 nvme_queue_keep_alive_work(ctrl);
1241                 return;
1242         }
1243
1244         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1245                                 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1246         if (IS_ERR(rq)) {
1247                 /* allocation failure, reset the controller */
1248                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1249                 nvme_reset_ctrl(ctrl);
1250                 return;
1251         }
1252
1253         rq->timeout = ctrl->kato * HZ;
1254         rq->end_io_data = ctrl;
1255         blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1256 }
1257
1258 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1259 {
1260         if (unlikely(ctrl->kato == 0))
1261                 return;
1262
1263         nvme_queue_keep_alive_work(ctrl);
1264 }
1265
1266 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1267 {
1268         if (unlikely(ctrl->kato == 0))
1269                 return;
1270
1271         cancel_delayed_work_sync(&ctrl->ka_work);
1272 }
1273 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1274
1275 /*
1276  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1277  * flag, thus sending any new CNS opcodes has a big chance of not working.
1278  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1279  * (but not for any later version).
1280  */
1281 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1282 {
1283         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1284                 return ctrl->vs < NVME_VS(1, 2, 0);
1285         return ctrl->vs < NVME_VS(1, 1, 0);
1286 }
1287
1288 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1289 {
1290         struct nvme_command c = { };
1291         int error;
1292
1293         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1294         c.identify.opcode = nvme_admin_identify;
1295         c.identify.cns = NVME_ID_CNS_CTRL;
1296
1297         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1298         if (!*id)
1299                 return -ENOMEM;
1300
1301         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1302                         sizeof(struct nvme_id_ctrl));
1303         if (error)
1304                 kfree(*id);
1305         return error;
1306 }
1307
1308 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1309 {
1310         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1311 }
1312
1313 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1314                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1315 {
1316         const char *warn_str = "ctrl returned bogus length:";
1317         void *data = cur;
1318
1319         switch (cur->nidt) {
1320         case NVME_NIDT_EUI64:
1321                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1322                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1323                                  warn_str, cur->nidl);
1324                         return -1;
1325                 }
1326                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1327                 return NVME_NIDT_EUI64_LEN;
1328         case NVME_NIDT_NGUID:
1329                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1330                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1331                                  warn_str, cur->nidl);
1332                         return -1;
1333                 }
1334                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1335                 return NVME_NIDT_NGUID_LEN;
1336         case NVME_NIDT_UUID:
1337                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1338                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1339                                  warn_str, cur->nidl);
1340                         return -1;
1341                 }
1342                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1343                 return NVME_NIDT_UUID_LEN;
1344         case NVME_NIDT_CSI:
1345                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1346                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1347                                  warn_str, cur->nidl);
1348                         return -1;
1349                 }
1350                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1351                 *csi_seen = true;
1352                 return NVME_NIDT_CSI_LEN;
1353         default:
1354                 /* Skip unknown types */
1355                 return cur->nidl;
1356         }
1357 }
1358
1359 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1360                 struct nvme_ns_ids *ids)
1361 {
1362         struct nvme_command c = { };
1363         bool csi_seen = false;
1364         int status, pos, len;
1365         void *data;
1366
1367         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1368                 return 0;
1369         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1370                 return 0;
1371
1372         c.identify.opcode = nvme_admin_identify;
1373         c.identify.nsid = cpu_to_le32(nsid);
1374         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1375
1376         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1377         if (!data)
1378                 return -ENOMEM;
1379
1380         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1381                                       NVME_IDENTIFY_DATA_SIZE);
1382         if (status) {
1383                 dev_warn(ctrl->device,
1384                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1385                         nsid, status);
1386                 goto free_data;
1387         }
1388
1389         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1390                 struct nvme_ns_id_desc *cur = data + pos;
1391
1392                 if (cur->nidl == 0)
1393                         break;
1394
1395                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1396                 if (len < 0)
1397                         break;
1398
1399                 len += sizeof(*cur);
1400         }
1401
1402         if (nvme_multi_css(ctrl) && !csi_seen) {
1403                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1404                          nsid);
1405                 status = -EINVAL;
1406         }
1407
1408 free_data:
1409         kfree(data);
1410         return status;
1411 }
1412
1413 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1414                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1415 {
1416         struct nvme_command c = { };
1417         int error;
1418
1419         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1420         c.identify.opcode = nvme_admin_identify;
1421         c.identify.nsid = cpu_to_le32(nsid);
1422         c.identify.cns = NVME_ID_CNS_NS;
1423
1424         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1425         if (!*id)
1426                 return -ENOMEM;
1427
1428         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1429         if (error) {
1430                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1431                 goto out_free_id;
1432         }
1433
1434         error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1435         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1436                 goto out_free_id;
1437
1438         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1439             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1440                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1441         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1442             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1443                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1444
1445         return 0;
1446
1447 out_free_id:
1448         kfree(*id);
1449         return error;
1450 }
1451
1452 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1453                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1454 {
1455         union nvme_result res = { 0 };
1456         struct nvme_command c = { };
1457         int ret;
1458
1459         c.features.opcode = op;
1460         c.features.fid = cpu_to_le32(fid);
1461         c.features.dword11 = cpu_to_le32(dword11);
1462
1463         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1464                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1465         if (ret >= 0 && result)
1466                 *result = le32_to_cpu(res.u32);
1467         return ret;
1468 }
1469
1470 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1471                       unsigned int dword11, void *buffer, size_t buflen,
1472                       u32 *result)
1473 {
1474         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1475                              buflen, result);
1476 }
1477 EXPORT_SYMBOL_GPL(nvme_set_features);
1478
1479 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1480                       unsigned int dword11, void *buffer, size_t buflen,
1481                       u32 *result)
1482 {
1483         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1484                              buflen, result);
1485 }
1486 EXPORT_SYMBOL_GPL(nvme_get_features);
1487
1488 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1489 {
1490         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1491         u32 result;
1492         int status, nr_io_queues;
1493
1494         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1495                         &result);
1496         if (status < 0)
1497                 return status;
1498
1499         /*
1500          * Degraded controllers might return an error when setting the queue
1501          * count.  We still want to be able to bring them online and offer
1502          * access to the admin queue, as that might be only way to fix them up.
1503          */
1504         if (status > 0) {
1505                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1506                 *count = 0;
1507         } else {
1508                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1509                 *count = min(*count, nr_io_queues);
1510         }
1511
1512         return 0;
1513 }
1514 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1515
1516 #define NVME_AEN_SUPPORTED \
1517         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1518          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1519
1520 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1521 {
1522         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1523         int status;
1524
1525         if (!supported_aens)
1526                 return;
1527
1528         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1529                         NULL, 0, &result);
1530         if (status)
1531                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1532                          supported_aens);
1533
1534         queue_work(nvme_wq, &ctrl->async_event_work);
1535 }
1536
1537 static int nvme_ns_open(struct nvme_ns *ns)
1538 {
1539
1540         /* should never be called due to GENHD_FL_HIDDEN */
1541         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1542                 goto fail;
1543         if (!nvme_get_ns(ns))
1544                 goto fail;
1545         if (!try_module_get(ns->ctrl->ops->module))
1546                 goto fail_put_ns;
1547
1548         return 0;
1549
1550 fail_put_ns:
1551         nvme_put_ns(ns);
1552 fail:
1553         return -ENXIO;
1554 }
1555
1556 static void nvme_ns_release(struct nvme_ns *ns)
1557 {
1558
1559         module_put(ns->ctrl->ops->module);
1560         nvme_put_ns(ns);
1561 }
1562
1563 static int nvme_open(struct block_device *bdev, fmode_t mode)
1564 {
1565         return nvme_ns_open(bdev->bd_disk->private_data);
1566 }
1567
1568 static void nvme_release(struct gendisk *disk, fmode_t mode)
1569 {
1570         nvme_ns_release(disk->private_data);
1571 }
1572
1573 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1574 {
1575         /* some standard values */
1576         geo->heads = 1 << 6;
1577         geo->sectors = 1 << 5;
1578         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1579         return 0;
1580 }
1581
1582 #ifdef CONFIG_BLK_DEV_INTEGRITY
1583 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1584                                 u32 max_integrity_segments)
1585 {
1586         struct blk_integrity integrity = { };
1587
1588         switch (pi_type) {
1589         case NVME_NS_DPS_PI_TYPE3:
1590                 integrity.profile = &t10_pi_type3_crc;
1591                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1592                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1593                 break;
1594         case NVME_NS_DPS_PI_TYPE1:
1595         case NVME_NS_DPS_PI_TYPE2:
1596                 integrity.profile = &t10_pi_type1_crc;
1597                 integrity.tag_size = sizeof(u16);
1598                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1599                 break;
1600         default:
1601                 integrity.profile = NULL;
1602                 break;
1603         }
1604         integrity.tuple_size = ms;
1605         blk_integrity_register(disk, &integrity);
1606         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1607 }
1608 #else
1609 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1610                                 u32 max_integrity_segments)
1611 {
1612 }
1613 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1614
1615 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1616 {
1617         struct nvme_ctrl *ctrl = ns->ctrl;
1618         struct request_queue *queue = disk->queue;
1619         u32 size = queue_logical_block_size(queue);
1620
1621         if (ctrl->max_discard_sectors == 0) {
1622                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1623                 return;
1624         }
1625
1626         if (ctrl->nr_streams && ns->sws && ns->sgs)
1627                 size *= ns->sws * ns->sgs;
1628
1629         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1630                         NVME_DSM_MAX_RANGES);
1631
1632         queue->limits.discard_alignment = 0;
1633         queue->limits.discard_granularity = size;
1634
1635         /* If discard is already enabled, don't reset queue limits */
1636         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1637                 return;
1638
1639         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1640         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1641
1642         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1643                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1644 }
1645
1646 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1647 {
1648         return !uuid_is_null(&ids->uuid) ||
1649                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1650                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1651 }
1652
1653 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1654 {
1655         return uuid_equal(&a->uuid, &b->uuid) &&
1656                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1657                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1658                 a->csi == b->csi;
1659 }
1660
1661 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1662                                  u32 *phys_bs, u32 *io_opt)
1663 {
1664         struct streams_directive_params s;
1665         int ret;
1666
1667         if (!ctrl->nr_streams)
1668                 return 0;
1669
1670         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1671         if (ret)
1672                 return ret;
1673
1674         ns->sws = le32_to_cpu(s.sws);
1675         ns->sgs = le16_to_cpu(s.sgs);
1676
1677         if (ns->sws) {
1678                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1679                 if (ns->sgs)
1680                         *io_opt = *phys_bs * ns->sgs;
1681         }
1682
1683         return 0;
1684 }
1685
1686 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1687 {
1688         struct nvme_ctrl *ctrl = ns->ctrl;
1689
1690         /*
1691          * The PI implementation requires the metadata size to be equal to the
1692          * t10 pi tuple size.
1693          */
1694         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1695         if (ns->ms == sizeof(struct t10_pi_tuple))
1696                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1697         else
1698                 ns->pi_type = 0;
1699
1700         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1701         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1702                 return 0;
1703         if (ctrl->ops->flags & NVME_F_FABRICS) {
1704                 /*
1705                  * The NVMe over Fabrics specification only supports metadata as
1706                  * part of the extended data LBA.  We rely on HCA/HBA support to
1707                  * remap the separate metadata buffer from the block layer.
1708                  */
1709                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1710                         return -EINVAL;
1711                 if (ctrl->max_integrity_segments)
1712                         ns->features |=
1713                                 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1714         } else {
1715                 /*
1716                  * For PCIe controllers, we can't easily remap the separate
1717                  * metadata buffer from the block layer and thus require a
1718                  * separate metadata buffer for block layer metadata/PI support.
1719                  * We allow extended LBAs for the passthrough interface, though.
1720                  */
1721                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1722                         ns->features |= NVME_NS_EXT_LBAS;
1723                 else
1724                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1725         }
1726
1727         return 0;
1728 }
1729
1730 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1731                 struct request_queue *q)
1732 {
1733         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1734
1735         if (ctrl->max_hw_sectors) {
1736                 u32 max_segments =
1737                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1738
1739                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1740                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1741                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1742         }
1743         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1744         blk_queue_dma_alignment(q, 7);
1745         blk_queue_write_cache(q, vwc, vwc);
1746 }
1747
1748 static void nvme_update_disk_info(struct gendisk *disk,
1749                 struct nvme_ns *ns, struct nvme_id_ns *id)
1750 {
1751         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1752         unsigned short bs = 1 << ns->lba_shift;
1753         u32 atomic_bs, phys_bs, io_opt = 0;
1754
1755         /*
1756          * The block layer can't support LBA sizes larger than the page size
1757          * yet, so catch this early and don't allow block I/O.
1758          */
1759         if (ns->lba_shift > PAGE_SHIFT) {
1760                 capacity = 0;
1761                 bs = (1 << 9);
1762         }
1763
1764         blk_integrity_unregister(disk);
1765
1766         atomic_bs = phys_bs = bs;
1767         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1768         if (id->nabo == 0) {
1769                 /*
1770                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1771                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1772                  * 0 then AWUPF must be used instead.
1773                  */
1774                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1775                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1776                 else
1777                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1778         }
1779
1780         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1781                 /* NPWG = Namespace Preferred Write Granularity */
1782                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1783                 /* NOWS = Namespace Optimal Write Size */
1784                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1785         }
1786
1787         blk_queue_logical_block_size(disk->queue, bs);
1788         /*
1789          * Linux filesystems assume writing a single physical block is
1790          * an atomic operation. Hence limit the physical block size to the
1791          * value of the Atomic Write Unit Power Fail parameter.
1792          */
1793         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1794         blk_queue_io_min(disk->queue, phys_bs);
1795         blk_queue_io_opt(disk->queue, io_opt);
1796
1797         /*
1798          * Register a metadata profile for PI, or the plain non-integrity NVMe
1799          * metadata masquerading as Type 0 if supported, otherwise reject block
1800          * I/O to namespaces with metadata except when the namespace supports
1801          * PI, as it can strip/insert in that case.
1802          */
1803         if (ns->ms) {
1804                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1805                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1806                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
1807                                             ns->ctrl->max_integrity_segments);
1808                 else if (!nvme_ns_has_pi(ns))
1809                         capacity = 0;
1810         }
1811
1812         set_capacity_and_notify(disk, capacity);
1813
1814         nvme_config_discard(disk, ns);
1815         blk_queue_max_write_zeroes_sectors(disk->queue,
1816                                            ns->ctrl->max_zeroes_sectors);
1817
1818         set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1819                 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1820 }
1821
1822 static inline bool nvme_first_scan(struct gendisk *disk)
1823 {
1824         /* nvme_alloc_ns() scans the disk prior to adding it */
1825         return !(disk->flags & GENHD_FL_UP);
1826 }
1827
1828 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1829 {
1830         struct nvme_ctrl *ctrl = ns->ctrl;
1831         u32 iob;
1832
1833         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1834             is_power_of_2(ctrl->max_hw_sectors))
1835                 iob = ctrl->max_hw_sectors;
1836         else
1837                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1838
1839         if (!iob)
1840                 return;
1841
1842         if (!is_power_of_2(iob)) {
1843                 if (nvme_first_scan(ns->disk))
1844                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1845                                 ns->disk->disk_name, iob);
1846                 return;
1847         }
1848
1849         if (blk_queue_is_zoned(ns->disk->queue)) {
1850                 if (nvme_first_scan(ns->disk))
1851                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1852                                 ns->disk->disk_name);
1853                 return;
1854         }
1855
1856         blk_queue_chunk_sectors(ns->queue, iob);
1857 }
1858
1859 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1860 {
1861         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1862         int ret;
1863
1864         blk_mq_freeze_queue(ns->disk->queue);
1865         ns->lba_shift = id->lbaf[lbaf].ds;
1866         nvme_set_queue_limits(ns->ctrl, ns->queue);
1867
1868         ret = nvme_configure_metadata(ns, id);
1869         if (ret)
1870                 goto out_unfreeze;
1871         nvme_set_chunk_sectors(ns, id);
1872         nvme_update_disk_info(ns->disk, ns, id);
1873
1874         if (ns->head->ids.csi == NVME_CSI_ZNS) {
1875                 ret = nvme_update_zone_info(ns, lbaf);
1876                 if (ret)
1877                         goto out_unfreeze;
1878         }
1879
1880         blk_mq_unfreeze_queue(ns->disk->queue);
1881
1882         if (blk_queue_is_zoned(ns->queue)) {
1883                 ret = nvme_revalidate_zones(ns);
1884                 if (ret && !nvme_first_scan(ns->disk))
1885                         goto out;
1886         }
1887
1888         if (nvme_ns_head_multipath(ns->head)) {
1889                 blk_mq_freeze_queue(ns->head->disk->queue);
1890                 nvme_update_disk_info(ns->head->disk, ns, id);
1891                 blk_stack_limits(&ns->head->disk->queue->limits,
1892                                  &ns->queue->limits, 0);
1893                 blk_queue_update_readahead(ns->head->disk->queue);
1894                 blk_mq_unfreeze_queue(ns->head->disk->queue);
1895         }
1896         return 0;
1897
1898 out_unfreeze:
1899         blk_mq_unfreeze_queue(ns->disk->queue);
1900 out:
1901         /*
1902          * If probing fails due an unsupported feature, hide the block device,
1903          * but still allow other access.
1904          */
1905         if (ret == -ENODEV) {
1906                 ns->disk->flags |= GENHD_FL_HIDDEN;
1907                 ret = 0;
1908         }
1909         return ret;
1910 }
1911
1912 static char nvme_pr_type(enum pr_type type)
1913 {
1914         switch (type) {
1915         case PR_WRITE_EXCLUSIVE:
1916                 return 1;
1917         case PR_EXCLUSIVE_ACCESS:
1918                 return 2;
1919         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1920                 return 3;
1921         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1922                 return 4;
1923         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1924                 return 5;
1925         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1926                 return 6;
1927         default:
1928                 return 0;
1929         }
1930 };
1931
1932 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1933                 struct nvme_command *c, u8 data[16])
1934 {
1935         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1936         int srcu_idx = srcu_read_lock(&head->srcu);
1937         struct nvme_ns *ns = nvme_find_path(head);
1938         int ret = -EWOULDBLOCK;
1939
1940         if (ns) {
1941                 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1942                 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1943         }
1944         srcu_read_unlock(&head->srcu, srcu_idx);
1945         return ret;
1946 }
1947         
1948 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1949                 u8 data[16])
1950 {
1951         c->common.nsid = cpu_to_le32(ns->head->ns_id);
1952         return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1953 }
1954
1955 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1956                                 u64 key, u64 sa_key, u8 op)
1957 {
1958         struct nvme_command c = { };
1959         u8 data[16] = { 0, };
1960
1961         put_unaligned_le64(key, &data[0]);
1962         put_unaligned_le64(sa_key, &data[8]);
1963
1964         c.common.opcode = op;
1965         c.common.cdw10 = cpu_to_le32(cdw10);
1966
1967         if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
1968             bdev->bd_disk->fops == &nvme_ns_head_ops)
1969                 return nvme_send_ns_head_pr_command(bdev, &c, data);
1970         return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
1971 }
1972
1973 static int nvme_pr_register(struct block_device *bdev, u64 old,
1974                 u64 new, unsigned flags)
1975 {
1976         u32 cdw10;
1977
1978         if (flags & ~PR_FL_IGNORE_KEY)
1979                 return -EOPNOTSUPP;
1980
1981         cdw10 = old ? 2 : 0;
1982         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1983         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1984         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1985 }
1986
1987 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1988                 enum pr_type type, unsigned flags)
1989 {
1990         u32 cdw10;
1991
1992         if (flags & ~PR_FL_IGNORE_KEY)
1993                 return -EOPNOTSUPP;
1994
1995         cdw10 = nvme_pr_type(type) << 8;
1996         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1997         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1998 }
1999
2000 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2001                 enum pr_type type, bool abort)
2002 {
2003         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2004
2005         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2006 }
2007
2008 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2009 {
2010         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2011
2012         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2013 }
2014
2015 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2016 {
2017         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2018
2019         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2020 }
2021
2022 const struct pr_ops nvme_pr_ops = {
2023         .pr_register    = nvme_pr_register,
2024         .pr_reserve     = nvme_pr_reserve,
2025         .pr_release     = nvme_pr_release,
2026         .pr_preempt     = nvme_pr_preempt,
2027         .pr_clear       = nvme_pr_clear,
2028 };
2029
2030 #ifdef CONFIG_BLK_SED_OPAL
2031 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2032                 bool send)
2033 {
2034         struct nvme_ctrl *ctrl = data;
2035         struct nvme_command cmd = { };
2036
2037         if (send)
2038                 cmd.common.opcode = nvme_admin_security_send;
2039         else
2040                 cmd.common.opcode = nvme_admin_security_recv;
2041         cmd.common.nsid = 0;
2042         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2043         cmd.common.cdw11 = cpu_to_le32(len);
2044
2045         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2046                         NVME_QID_ANY, 1, 0);
2047 }
2048 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2049 #endif /* CONFIG_BLK_SED_OPAL */
2050
2051 #ifdef CONFIG_BLK_DEV_ZONED
2052 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2053                 unsigned int nr_zones, report_zones_cb cb, void *data)
2054 {
2055         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2056                         data);
2057 }
2058 #else
2059 #define nvme_report_zones       NULL
2060 #endif /* CONFIG_BLK_DEV_ZONED */
2061
2062 static const struct block_device_operations nvme_bdev_ops = {
2063         .owner          = THIS_MODULE,
2064         .ioctl          = nvme_ioctl,
2065         .open           = nvme_open,
2066         .release        = nvme_release,
2067         .getgeo         = nvme_getgeo,
2068         .report_zones   = nvme_report_zones,
2069         .pr_ops         = &nvme_pr_ops,
2070 };
2071
2072 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2073 {
2074         unsigned long timeout =
2075                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2076         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2077         int ret;
2078
2079         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2080                 if (csts == ~0)
2081                         return -ENODEV;
2082                 if ((csts & NVME_CSTS_RDY) == bit)
2083                         break;
2084
2085                 usleep_range(1000, 2000);
2086                 if (fatal_signal_pending(current))
2087                         return -EINTR;
2088                 if (time_after(jiffies, timeout)) {
2089                         dev_err(ctrl->device,
2090                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2091                                 enabled ? "initialisation" : "reset", csts);
2092                         return -ENODEV;
2093                 }
2094         }
2095
2096         return ret;
2097 }
2098
2099 /*
2100  * If the device has been passed off to us in an enabled state, just clear
2101  * the enabled bit.  The spec says we should set the 'shutdown notification
2102  * bits', but doing so may cause the device to complete commands to the
2103  * admin queue ... and we don't know what memory that might be pointing at!
2104  */
2105 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2106 {
2107         int ret;
2108
2109         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2110         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2111
2112         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2113         if (ret)
2114                 return ret;
2115
2116         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2117                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2118
2119         return nvme_wait_ready(ctrl, ctrl->cap, false);
2120 }
2121 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2122
2123 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2124 {
2125         unsigned dev_page_min;
2126         int ret;
2127
2128         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2129         if (ret) {
2130                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2131                 return ret;
2132         }
2133         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2134
2135         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2136                 dev_err(ctrl->device,
2137                         "Minimum device page size %u too large for host (%u)\n",
2138                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2139                 return -ENODEV;
2140         }
2141
2142         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2143                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2144         else
2145                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2146         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2147         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2148         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2149         ctrl->ctrl_config |= NVME_CC_ENABLE;
2150
2151         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2152         if (ret)
2153                 return ret;
2154         return nvme_wait_ready(ctrl, ctrl->cap, true);
2155 }
2156 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2157
2158 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2159 {
2160         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2161         u32 csts;
2162         int ret;
2163
2164         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2165         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2166
2167         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2168         if (ret)
2169                 return ret;
2170
2171         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2172                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2173                         break;
2174
2175                 msleep(100);
2176                 if (fatal_signal_pending(current))
2177                         return -EINTR;
2178                 if (time_after(jiffies, timeout)) {
2179                         dev_err(ctrl->device,
2180                                 "Device shutdown incomplete; abort shutdown\n");
2181                         return -ENODEV;
2182                 }
2183         }
2184
2185         return ret;
2186 }
2187 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2188
2189 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2190 {
2191         __le64 ts;
2192         int ret;
2193
2194         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2195                 return 0;
2196
2197         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2198         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2199                         NULL);
2200         if (ret)
2201                 dev_warn_once(ctrl->device,
2202                         "could not set timestamp (%d)\n", ret);
2203         return ret;
2204 }
2205
2206 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2207 {
2208         struct nvme_feat_host_behavior *host;
2209         int ret;
2210
2211         /* Don't bother enabling the feature if retry delay is not reported */
2212         if (!ctrl->crdt[0])
2213                 return 0;
2214
2215         host = kzalloc(sizeof(*host), GFP_KERNEL);
2216         if (!host)
2217                 return 0;
2218
2219         host->acre = NVME_ENABLE_ACRE;
2220         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2221                                 host, sizeof(*host), NULL);
2222         kfree(host);
2223         return ret;
2224 }
2225
2226 /*
2227  * The function checks whether the given total (exlat + enlat) latency of
2228  * a power state allows the latter to be used as an APST transition target.
2229  * It does so by comparing the latency to the primary and secondary latency
2230  * tolerances defined by module params. If there's a match, the corresponding
2231  * timeout value is returned and the matching tolerance index (1 or 2) is
2232  * reported.
2233  */
2234 static bool nvme_apst_get_transition_time(u64 total_latency,
2235                 u64 *transition_time, unsigned *last_index)
2236 {
2237         if (total_latency <= apst_primary_latency_tol_us) {
2238                 if (*last_index == 1)
2239                         return false;
2240                 *last_index = 1;
2241                 *transition_time = apst_primary_timeout_ms;
2242                 return true;
2243         }
2244         if (apst_secondary_timeout_ms &&
2245                 total_latency <= apst_secondary_latency_tol_us) {
2246                 if (*last_index <= 2)
2247                         return false;
2248                 *last_index = 2;
2249                 *transition_time = apst_secondary_timeout_ms;
2250                 return true;
2251         }
2252         return false;
2253 }
2254
2255 /*
2256  * APST (Autonomous Power State Transition) lets us program a table of power
2257  * state transitions that the controller will perform automatically.
2258  *
2259  * Depending on module params, one of the two supported techniques will be used:
2260  *
2261  * - If the parameters provide explicit timeouts and tolerances, they will be
2262  *   used to build a table with up to 2 non-operational states to transition to.
2263  *   The default parameter values were selected based on the values used by
2264  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2265  *   regeneration of the APST table in the event of switching between external
2266  *   and battery power, the timeouts and tolerances reflect a compromise
2267  *   between values used by Microsoft for AC and battery scenarios.
2268  * - If not, we'll configure the table with a simple heuristic: we are willing
2269  *   to spend at most 2% of the time transitioning between power states.
2270  *   Therefore, when running in any given state, we will enter the next
2271  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2272  *   microseconds, as long as that state's exit latency is under the requested
2273  *   maximum latency.
2274  *
2275  * We will not autonomously enter any non-operational state for which the total
2276  * latency exceeds ps_max_latency_us.
2277  *
2278  * Users can set ps_max_latency_us to zero to turn off APST.
2279  */
2280 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2281 {
2282         struct nvme_feat_auto_pst *table;
2283         unsigned apste = 0;
2284         u64 max_lat_us = 0;
2285         __le64 target = 0;
2286         int max_ps = -1;
2287         int state;
2288         int ret;
2289         unsigned last_lt_index = UINT_MAX;
2290
2291         /*
2292          * If APST isn't supported or if we haven't been initialized yet,
2293          * then don't do anything.
2294          */
2295         if (!ctrl->apsta)
2296                 return 0;
2297
2298         if (ctrl->npss > 31) {
2299                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2300                 return 0;
2301         }
2302
2303         table = kzalloc(sizeof(*table), GFP_KERNEL);
2304         if (!table)
2305                 return 0;
2306
2307         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2308                 /* Turn off APST. */
2309                 dev_dbg(ctrl->device, "APST disabled\n");
2310                 goto done;
2311         }
2312
2313         /*
2314          * Walk through all states from lowest- to highest-power.
2315          * According to the spec, lower-numbered states use more power.  NPSS,
2316          * despite the name, is the index of the lowest-power state, not the
2317          * number of states.
2318          */
2319         for (state = (int)ctrl->npss; state >= 0; state--) {
2320                 u64 total_latency_us, exit_latency_us, transition_ms;
2321
2322                 if (target)
2323                         table->entries[state] = target;
2324
2325                 /*
2326                  * Don't allow transitions to the deepest state if it's quirked
2327                  * off.
2328                  */
2329                 if (state == ctrl->npss &&
2330                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2331                         continue;
2332
2333                 /*
2334                  * Is this state a useful non-operational state for higher-power
2335                  * states to autonomously transition to?
2336                  */
2337                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2338                         continue;
2339
2340                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2341                 if (exit_latency_us > ctrl->ps_max_latency_us)
2342                         continue;
2343
2344                 total_latency_us = exit_latency_us +
2345                         le32_to_cpu(ctrl->psd[state].entry_lat);
2346
2347                 /*
2348                  * This state is good. It can be used as the APST idle target
2349                  * for higher power states.
2350                  */
2351                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2352                         if (!nvme_apst_get_transition_time(total_latency_us,
2353                                         &transition_ms, &last_lt_index))
2354                                 continue;
2355                 } else {
2356                         transition_ms = total_latency_us + 19;
2357                         do_div(transition_ms, 20);
2358                         if (transition_ms > (1 << 24) - 1)
2359                                 transition_ms = (1 << 24) - 1;
2360                 }
2361
2362                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2363                 if (max_ps == -1)
2364                         max_ps = state;
2365                 if (total_latency_us > max_lat_us)
2366                         max_lat_us = total_latency_us;
2367         }
2368
2369         if (max_ps == -1)
2370                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2371         else
2372                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2373                         max_ps, max_lat_us, (int)sizeof(*table), table);
2374         apste = 1;
2375
2376 done:
2377         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2378                                 table, sizeof(*table), NULL);
2379         if (ret)
2380                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2381         kfree(table);
2382         return ret;
2383 }
2384
2385 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2386 {
2387         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2388         u64 latency;
2389
2390         switch (val) {
2391         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2392         case PM_QOS_LATENCY_ANY:
2393                 latency = U64_MAX;
2394                 break;
2395
2396         default:
2397                 latency = val;
2398         }
2399
2400         if (ctrl->ps_max_latency_us != latency) {
2401                 ctrl->ps_max_latency_us = latency;
2402                 if (ctrl->state == NVME_CTRL_LIVE)
2403                         nvme_configure_apst(ctrl);
2404         }
2405 }
2406
2407 struct nvme_core_quirk_entry {
2408         /*
2409          * NVMe model and firmware strings are padded with spaces.  For
2410          * simplicity, strings in the quirk table are padded with NULLs
2411          * instead.
2412          */
2413         u16 vid;
2414         const char *mn;
2415         const char *fr;
2416         unsigned long quirks;
2417 };
2418
2419 static const struct nvme_core_quirk_entry core_quirks[] = {
2420         {
2421                 /*
2422                  * This Toshiba device seems to die using any APST states.  See:
2423                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2424                  */
2425                 .vid = 0x1179,
2426                 .mn = "THNSF5256GPUK TOSHIBA",
2427                 .quirks = NVME_QUIRK_NO_APST,
2428         },
2429         {
2430                 /*
2431                  * This LiteON CL1-3D*-Q11 firmware version has a race
2432                  * condition associated with actions related to suspend to idle
2433                  * LiteON has resolved the problem in future firmware
2434                  */
2435                 .vid = 0x14a4,
2436                 .fr = "22301111",
2437                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2438         }
2439 };
2440
2441 /* match is null-terminated but idstr is space-padded. */
2442 static bool string_matches(const char *idstr, const char *match, size_t len)
2443 {
2444         size_t matchlen;
2445
2446         if (!match)
2447                 return true;
2448
2449         matchlen = strlen(match);
2450         WARN_ON_ONCE(matchlen > len);
2451
2452         if (memcmp(idstr, match, matchlen))
2453                 return false;
2454
2455         for (; matchlen < len; matchlen++)
2456                 if (idstr[matchlen] != ' ')
2457                         return false;
2458
2459         return true;
2460 }
2461
2462 static bool quirk_matches(const struct nvme_id_ctrl *id,
2463                           const struct nvme_core_quirk_entry *q)
2464 {
2465         return q->vid == le16_to_cpu(id->vid) &&
2466                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2467                 string_matches(id->fr, q->fr, sizeof(id->fr));
2468 }
2469
2470 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2471                 struct nvme_id_ctrl *id)
2472 {
2473         size_t nqnlen;
2474         int off;
2475
2476         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2477                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2478                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2479                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2480                         return;
2481                 }
2482
2483                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2484                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2485         }
2486
2487         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2488         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2489                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2490                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2491         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2492         off += sizeof(id->sn);
2493         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2494         off += sizeof(id->mn);
2495         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2496 }
2497
2498 static void nvme_release_subsystem(struct device *dev)
2499 {
2500         struct nvme_subsystem *subsys =
2501                 container_of(dev, struct nvme_subsystem, dev);
2502
2503         if (subsys->instance >= 0)
2504                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2505         kfree(subsys);
2506 }
2507
2508 static void nvme_destroy_subsystem(struct kref *ref)
2509 {
2510         struct nvme_subsystem *subsys =
2511                         container_of(ref, struct nvme_subsystem, ref);
2512
2513         mutex_lock(&nvme_subsystems_lock);
2514         list_del(&subsys->entry);
2515         mutex_unlock(&nvme_subsystems_lock);
2516
2517         ida_destroy(&subsys->ns_ida);
2518         device_del(&subsys->dev);
2519         put_device(&subsys->dev);
2520 }
2521
2522 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2523 {
2524         kref_put(&subsys->ref, nvme_destroy_subsystem);
2525 }
2526
2527 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2528 {
2529         struct nvme_subsystem *subsys;
2530
2531         lockdep_assert_held(&nvme_subsystems_lock);
2532
2533         /*
2534          * Fail matches for discovery subsystems. This results
2535          * in each discovery controller bound to a unique subsystem.
2536          * This avoids issues with validating controller values
2537          * that can only be true when there is a single unique subsystem.
2538          * There may be multiple and completely independent entities
2539          * that provide discovery controllers.
2540          */
2541         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2542                 return NULL;
2543
2544         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2545                 if (strcmp(subsys->subnqn, subsysnqn))
2546                         continue;
2547                 if (!kref_get_unless_zero(&subsys->ref))
2548                         continue;
2549                 return subsys;
2550         }
2551
2552         return NULL;
2553 }
2554
2555 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2556         struct device_attribute subsys_attr_##_name = \
2557                 __ATTR(_name, _mode, _show, NULL)
2558
2559 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2560                                     struct device_attribute *attr,
2561                                     char *buf)
2562 {
2563         struct nvme_subsystem *subsys =
2564                 container_of(dev, struct nvme_subsystem, dev);
2565
2566         return sysfs_emit(buf, "%s\n", subsys->subnqn);
2567 }
2568 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2569
2570 #define nvme_subsys_show_str_function(field)                            \
2571 static ssize_t subsys_##field##_show(struct device *dev,                \
2572                             struct device_attribute *attr, char *buf)   \
2573 {                                                                       \
2574         struct nvme_subsystem *subsys =                                 \
2575                 container_of(dev, struct nvme_subsystem, dev);          \
2576         return sysfs_emit(buf, "%.*s\n",                                \
2577                            (int)sizeof(subsys->field), subsys->field);  \
2578 }                                                                       \
2579 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2580
2581 nvme_subsys_show_str_function(model);
2582 nvme_subsys_show_str_function(serial);
2583 nvme_subsys_show_str_function(firmware_rev);
2584
2585 static struct attribute *nvme_subsys_attrs[] = {
2586         &subsys_attr_model.attr,
2587         &subsys_attr_serial.attr,
2588         &subsys_attr_firmware_rev.attr,
2589         &subsys_attr_subsysnqn.attr,
2590 #ifdef CONFIG_NVME_MULTIPATH
2591         &subsys_attr_iopolicy.attr,
2592 #endif
2593         NULL,
2594 };
2595
2596 static const struct attribute_group nvme_subsys_attrs_group = {
2597         .attrs = nvme_subsys_attrs,
2598 };
2599
2600 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2601         &nvme_subsys_attrs_group,
2602         NULL,
2603 };
2604
2605 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2606 {
2607         return ctrl->opts && ctrl->opts->discovery_nqn;
2608 }
2609
2610 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2611                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2612 {
2613         struct nvme_ctrl *tmp;
2614
2615         lockdep_assert_held(&nvme_subsystems_lock);
2616
2617         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2618                 if (nvme_state_terminal(tmp))
2619                         continue;
2620
2621                 if (tmp->cntlid == ctrl->cntlid) {
2622                         dev_err(ctrl->device,
2623                                 "Duplicate cntlid %u with %s, rejecting\n",
2624                                 ctrl->cntlid, dev_name(tmp->device));
2625                         return false;
2626                 }
2627
2628                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2629                     nvme_discovery_ctrl(ctrl))
2630                         continue;
2631
2632                 dev_err(ctrl->device,
2633                         "Subsystem does not support multiple controllers\n");
2634                 return false;
2635         }
2636
2637         return true;
2638 }
2639
2640 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2641 {
2642         struct nvme_subsystem *subsys, *found;
2643         int ret;
2644
2645         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2646         if (!subsys)
2647                 return -ENOMEM;
2648
2649         subsys->instance = -1;
2650         mutex_init(&subsys->lock);
2651         kref_init(&subsys->ref);
2652         INIT_LIST_HEAD(&subsys->ctrls);
2653         INIT_LIST_HEAD(&subsys->nsheads);
2654         nvme_init_subnqn(subsys, ctrl, id);
2655         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2656         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2657         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2658         subsys->vendor_id = le16_to_cpu(id->vid);
2659         subsys->cmic = id->cmic;
2660         subsys->awupf = le16_to_cpu(id->awupf);
2661 #ifdef CONFIG_NVME_MULTIPATH
2662         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2663 #endif
2664
2665         subsys->dev.class = nvme_subsys_class;
2666         subsys->dev.release = nvme_release_subsystem;
2667         subsys->dev.groups = nvme_subsys_attrs_groups;
2668         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2669         device_initialize(&subsys->dev);
2670
2671         mutex_lock(&nvme_subsystems_lock);
2672         found = __nvme_find_get_subsystem(subsys->subnqn);
2673         if (found) {
2674                 put_device(&subsys->dev);
2675                 subsys = found;
2676
2677                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2678                         ret = -EINVAL;
2679                         goto out_put_subsystem;
2680                 }
2681         } else {
2682                 ret = device_add(&subsys->dev);
2683                 if (ret) {
2684                         dev_err(ctrl->device,
2685                                 "failed to register subsystem device.\n");
2686                         put_device(&subsys->dev);
2687                         goto out_unlock;
2688                 }
2689                 ida_init(&subsys->ns_ida);
2690                 list_add_tail(&subsys->entry, &nvme_subsystems);
2691         }
2692
2693         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2694                                 dev_name(ctrl->device));
2695         if (ret) {
2696                 dev_err(ctrl->device,
2697                         "failed to create sysfs link from subsystem.\n");
2698                 goto out_put_subsystem;
2699         }
2700
2701         if (!found)
2702                 subsys->instance = ctrl->instance;
2703         ctrl->subsys = subsys;
2704         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2705         mutex_unlock(&nvme_subsystems_lock);
2706         return 0;
2707
2708 out_put_subsystem:
2709         nvme_put_subsystem(subsys);
2710 out_unlock:
2711         mutex_unlock(&nvme_subsystems_lock);
2712         return ret;
2713 }
2714
2715 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2716                 void *log, size_t size, u64 offset)
2717 {
2718         struct nvme_command c = { };
2719         u32 dwlen = nvme_bytes_to_numd(size);
2720
2721         c.get_log_page.opcode = nvme_admin_get_log_page;
2722         c.get_log_page.nsid = cpu_to_le32(nsid);
2723         c.get_log_page.lid = log_page;
2724         c.get_log_page.lsp = lsp;
2725         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2726         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2727         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2728         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2729         c.get_log_page.csi = csi;
2730
2731         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2732 }
2733
2734 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2735                                 struct nvme_effects_log **log)
2736 {
2737         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2738         int ret;
2739
2740         if (cel)
2741                 goto out;
2742
2743         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2744         if (!cel)
2745                 return -ENOMEM;
2746
2747         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2748                         cel, sizeof(*cel), 0);
2749         if (ret) {
2750                 kfree(cel);
2751                 return ret;
2752         }
2753
2754         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2755 out:
2756         *log = cel;
2757         return 0;
2758 }
2759
2760 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2761 {
2762         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2763
2764         if (check_shl_overflow(1U, units + page_shift - 9, &val))
2765                 return UINT_MAX;
2766         return val;
2767 }
2768
2769 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2770 {
2771         struct nvme_command c = { };
2772         struct nvme_id_ctrl_nvm *id;
2773         int ret;
2774
2775         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2776                 ctrl->max_discard_sectors = UINT_MAX;
2777                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2778         } else {
2779                 ctrl->max_discard_sectors = 0;
2780                 ctrl->max_discard_segments = 0;
2781         }
2782
2783         /*
2784          * Even though NVMe spec explicitly states that MDTS is not applicable
2785          * to the write-zeroes, we are cautious and limit the size to the
2786          * controllers max_hw_sectors value, which is based on the MDTS field
2787          * and possibly other limiting factors.
2788          */
2789         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2790             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2791                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2792         else
2793                 ctrl->max_zeroes_sectors = 0;
2794
2795         if (nvme_ctrl_limited_cns(ctrl))
2796                 return 0;
2797
2798         id = kzalloc(sizeof(*id), GFP_KERNEL);
2799         if (!id)
2800                 return 0;
2801
2802         c.identify.opcode = nvme_admin_identify;
2803         c.identify.cns = NVME_ID_CNS_CS_CTRL;
2804         c.identify.csi = NVME_CSI_NVM;
2805
2806         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2807         if (ret)
2808                 goto free_data;
2809
2810         if (id->dmrl)
2811                 ctrl->max_discard_segments = id->dmrl;
2812         if (id->dmrsl)
2813                 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2814         if (id->wzsl)
2815                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2816
2817 free_data:
2818         kfree(id);
2819         return ret;
2820 }
2821
2822 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2823 {
2824         struct nvme_id_ctrl *id;
2825         u32 max_hw_sectors;
2826         bool prev_apst_enabled;
2827         int ret;
2828
2829         ret = nvme_identify_ctrl(ctrl, &id);
2830         if (ret) {
2831                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2832                 return -EIO;
2833         }
2834
2835         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2836                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2837                 if (ret < 0)
2838                         goto out_free;
2839         }
2840
2841         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2842                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2843
2844         if (!ctrl->identified) {
2845                 unsigned int i;
2846
2847                 ret = nvme_init_subsystem(ctrl, id);
2848                 if (ret)
2849                         goto out_free;
2850
2851                 /*
2852                  * Check for quirks.  Quirk can depend on firmware version,
2853                  * so, in principle, the set of quirks present can change
2854                  * across a reset.  As a possible future enhancement, we
2855                  * could re-scan for quirks every time we reinitialize
2856                  * the device, but we'd have to make sure that the driver
2857                  * behaves intelligently if the quirks change.
2858                  */
2859                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2860                         if (quirk_matches(id, &core_quirks[i]))
2861                                 ctrl->quirks |= core_quirks[i].quirks;
2862                 }
2863         }
2864
2865         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2866                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2867                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2868         }
2869
2870         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2871         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2872         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2873
2874         ctrl->oacs = le16_to_cpu(id->oacs);
2875         ctrl->oncs = le16_to_cpu(id->oncs);
2876         ctrl->mtfa = le16_to_cpu(id->mtfa);
2877         ctrl->oaes = le32_to_cpu(id->oaes);
2878         ctrl->wctemp = le16_to_cpu(id->wctemp);
2879         ctrl->cctemp = le16_to_cpu(id->cctemp);
2880
2881         atomic_set(&ctrl->abort_limit, id->acl + 1);
2882         ctrl->vwc = id->vwc;
2883         if (id->mdts)
2884                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2885         else
2886                 max_hw_sectors = UINT_MAX;
2887         ctrl->max_hw_sectors =
2888                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2889
2890         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2891         ctrl->sgls = le32_to_cpu(id->sgls);
2892         ctrl->kas = le16_to_cpu(id->kas);
2893         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2894         ctrl->ctratt = le32_to_cpu(id->ctratt);
2895
2896         if (id->rtd3e) {
2897                 /* us -> s */
2898                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2899
2900                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2901                                                  shutdown_timeout, 60);
2902
2903                 if (ctrl->shutdown_timeout != shutdown_timeout)
2904                         dev_info(ctrl->device,
2905                                  "Shutdown timeout set to %u seconds\n",
2906                                  ctrl->shutdown_timeout);
2907         } else
2908                 ctrl->shutdown_timeout = shutdown_timeout;
2909
2910         ctrl->npss = id->npss;
2911         ctrl->apsta = id->apsta;
2912         prev_apst_enabled = ctrl->apst_enabled;
2913         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2914                 if (force_apst && id->apsta) {
2915                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2916                         ctrl->apst_enabled = true;
2917                 } else {
2918                         ctrl->apst_enabled = false;
2919                 }
2920         } else {
2921                 ctrl->apst_enabled = id->apsta;
2922         }
2923         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2924
2925         if (ctrl->ops->flags & NVME_F_FABRICS) {
2926                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2927                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2928                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2929                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2930
2931                 /*
2932                  * In fabrics we need to verify the cntlid matches the
2933                  * admin connect
2934                  */
2935                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2936                         dev_err(ctrl->device,
2937                                 "Mismatching cntlid: Connect %u vs Identify "
2938                                 "%u, rejecting\n",
2939                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
2940                         ret = -EINVAL;
2941                         goto out_free;
2942                 }
2943
2944                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2945                         dev_err(ctrl->device,
2946                                 "keep-alive support is mandatory for fabrics\n");
2947                         ret = -EINVAL;
2948                         goto out_free;
2949                 }
2950         } else {
2951                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2952                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2953                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2954                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2955         }
2956
2957         ret = nvme_mpath_init_identify(ctrl, id);
2958         if (ret < 0)
2959                 goto out_free;
2960
2961         if (ctrl->apst_enabled && !prev_apst_enabled)
2962                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2963         else if (!ctrl->apst_enabled && prev_apst_enabled)
2964                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2965
2966 out_free:
2967         kfree(id);
2968         return ret;
2969 }
2970
2971 /*
2972  * Initialize the cached copies of the Identify data and various controller
2973  * register in our nvme_ctrl structure.  This should be called as soon as
2974  * the admin queue is fully up and running.
2975  */
2976 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
2977 {
2978         int ret;
2979
2980         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2981         if (ret) {
2982                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2983                 return ret;
2984         }
2985
2986         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2987
2988         if (ctrl->vs >= NVME_VS(1, 1, 0))
2989                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2990
2991         ret = nvme_init_identify(ctrl);
2992         if (ret)
2993                 return ret;
2994
2995         ret = nvme_init_non_mdts_limits(ctrl);
2996         if (ret < 0)
2997                 return ret;
2998
2999         ret = nvme_configure_apst(ctrl);
3000         if (ret < 0)
3001                 return ret;
3002
3003         ret = nvme_configure_timestamp(ctrl);
3004         if (ret < 0)
3005                 return ret;
3006
3007         ret = nvme_configure_directives(ctrl);
3008         if (ret < 0)
3009                 return ret;
3010
3011         ret = nvme_configure_acre(ctrl);
3012         if (ret < 0)
3013                 return ret;
3014
3015         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3016                 ret = nvme_hwmon_init(ctrl);
3017                 if (ret < 0)
3018                         return ret;
3019         }
3020
3021         ctrl->identified = true;
3022
3023         return 0;
3024 }
3025 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3026
3027 static int nvme_dev_open(struct inode *inode, struct file *file)
3028 {
3029         struct nvme_ctrl *ctrl =
3030                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3031
3032         switch (ctrl->state) {
3033         case NVME_CTRL_LIVE:
3034                 break;
3035         default:
3036                 return -EWOULDBLOCK;
3037         }
3038
3039         nvme_get_ctrl(ctrl);
3040         if (!try_module_get(ctrl->ops->module)) {
3041                 nvme_put_ctrl(ctrl);
3042                 return -EINVAL;
3043         }
3044
3045         file->private_data = ctrl;
3046         return 0;
3047 }
3048
3049 static int nvme_dev_release(struct inode *inode, struct file *file)
3050 {
3051         struct nvme_ctrl *ctrl =
3052                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3053
3054         module_put(ctrl->ops->module);
3055         nvme_put_ctrl(ctrl);
3056         return 0;
3057 }
3058
3059 static const struct file_operations nvme_dev_fops = {
3060         .owner          = THIS_MODULE,
3061         .open           = nvme_dev_open,
3062         .release        = nvme_dev_release,
3063         .unlocked_ioctl = nvme_dev_ioctl,
3064         .compat_ioctl   = compat_ptr_ioctl,
3065 };
3066
3067 static ssize_t nvme_sysfs_reset(struct device *dev,
3068                                 struct device_attribute *attr, const char *buf,
3069                                 size_t count)
3070 {
3071         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3072         int ret;
3073
3074         ret = nvme_reset_ctrl_sync(ctrl);
3075         if (ret < 0)
3076                 return ret;
3077         return count;
3078 }
3079 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3080
3081 static ssize_t nvme_sysfs_rescan(struct device *dev,
3082                                 struct device_attribute *attr, const char *buf,
3083                                 size_t count)
3084 {
3085         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3086
3087         nvme_queue_scan(ctrl);
3088         return count;
3089 }
3090 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3091
3092 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3093 {
3094         struct gendisk *disk = dev_to_disk(dev);
3095
3096         if (disk->fops == &nvme_bdev_ops)
3097                 return nvme_get_ns_from_dev(dev)->head;
3098         else
3099                 return disk->private_data;
3100 }
3101
3102 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3103                 char *buf)
3104 {
3105         struct nvme_ns_head *head = dev_to_ns_head(dev);
3106         struct nvme_ns_ids *ids = &head->ids;
3107         struct nvme_subsystem *subsys = head->subsys;
3108         int serial_len = sizeof(subsys->serial);
3109         int model_len = sizeof(subsys->model);
3110
3111         if (!uuid_is_null(&ids->uuid))
3112                 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3113
3114         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3115                 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3116
3117         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3118                 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3119
3120         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3121                                   subsys->serial[serial_len - 1] == '\0'))
3122                 serial_len--;
3123         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3124                                  subsys->model[model_len - 1] == '\0'))
3125                 model_len--;
3126
3127         return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3128                 serial_len, subsys->serial, model_len, subsys->model,
3129                 head->ns_id);
3130 }
3131 static DEVICE_ATTR_RO(wwid);
3132
3133 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3134                 char *buf)
3135 {
3136         return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3137 }
3138 static DEVICE_ATTR_RO(nguid);
3139
3140 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3141                 char *buf)
3142 {
3143         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3144
3145         /* For backward compatibility expose the NGUID to userspace if
3146          * we have no UUID set
3147          */
3148         if (uuid_is_null(&ids->uuid)) {
3149                 printk_ratelimited(KERN_WARNING
3150                                    "No UUID available providing old NGUID\n");
3151                 return sysfs_emit(buf, "%pU\n", ids->nguid);
3152         }
3153         return sysfs_emit(buf, "%pU\n", &ids->uuid);
3154 }
3155 static DEVICE_ATTR_RO(uuid);
3156
3157 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3158                 char *buf)
3159 {
3160         return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3161 }
3162 static DEVICE_ATTR_RO(eui);
3163
3164 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3165                 char *buf)
3166 {
3167         return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3168 }
3169 static DEVICE_ATTR_RO(nsid);
3170
3171 static struct attribute *nvme_ns_id_attrs[] = {
3172         &dev_attr_wwid.attr,
3173         &dev_attr_uuid.attr,
3174         &dev_attr_nguid.attr,
3175         &dev_attr_eui.attr,
3176         &dev_attr_nsid.attr,
3177 #ifdef CONFIG_NVME_MULTIPATH
3178         &dev_attr_ana_grpid.attr,
3179         &dev_attr_ana_state.attr,
3180 #endif
3181         NULL,
3182 };
3183
3184 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3185                 struct attribute *a, int n)
3186 {
3187         struct device *dev = container_of(kobj, struct device, kobj);
3188         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3189
3190         if (a == &dev_attr_uuid.attr) {
3191                 if (uuid_is_null(&ids->uuid) &&
3192                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3193                         return 0;
3194         }
3195         if (a == &dev_attr_nguid.attr) {
3196                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3197                         return 0;
3198         }
3199         if (a == &dev_attr_eui.attr) {
3200                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3201                         return 0;
3202         }
3203 #ifdef CONFIG_NVME_MULTIPATH
3204         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3205                 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3206                         return 0;
3207                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3208                         return 0;
3209         }
3210 #endif
3211         return a->mode;
3212 }
3213
3214 static const struct attribute_group nvme_ns_id_attr_group = {
3215         .attrs          = nvme_ns_id_attrs,
3216         .is_visible     = nvme_ns_id_attrs_are_visible,
3217 };
3218
3219 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3220         &nvme_ns_id_attr_group,
3221 #ifdef CONFIG_NVM
3222         &nvme_nvm_attr_group,
3223 #endif
3224         NULL,
3225 };
3226
3227 #define nvme_show_str_function(field)                                           \
3228 static ssize_t  field##_show(struct device *dev,                                \
3229                             struct device_attribute *attr, char *buf)           \
3230 {                                                                               \
3231         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3232         return sysfs_emit(buf, "%.*s\n",                                        \
3233                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3234 }                                                                               \
3235 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3236
3237 nvme_show_str_function(model);
3238 nvme_show_str_function(serial);
3239 nvme_show_str_function(firmware_rev);
3240
3241 #define nvme_show_int_function(field)                                           \
3242 static ssize_t  field##_show(struct device *dev,                                \
3243                             struct device_attribute *attr, char *buf)           \
3244 {                                                                               \
3245         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3246         return sysfs_emit(buf, "%d\n", ctrl->field);                            \
3247 }                                                                               \
3248 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3249
3250 nvme_show_int_function(cntlid);
3251 nvme_show_int_function(numa_node);
3252 nvme_show_int_function(queue_count);
3253 nvme_show_int_function(sqsize);
3254 nvme_show_int_function(kato);
3255
3256 static ssize_t nvme_sysfs_delete(struct device *dev,
3257                                 struct device_attribute *attr, const char *buf,
3258                                 size_t count)
3259 {
3260         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3261
3262         if (device_remove_file_self(dev, attr))
3263                 nvme_delete_ctrl_sync(ctrl);
3264         return count;
3265 }
3266 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3267
3268 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3269                                          struct device_attribute *attr,
3270                                          char *buf)
3271 {
3272         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3273
3274         return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3275 }
3276 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3277
3278 static ssize_t nvme_sysfs_show_state(struct device *dev,
3279                                      struct device_attribute *attr,
3280                                      char *buf)
3281 {
3282         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3283         static const char *const state_name[] = {
3284                 [NVME_CTRL_NEW]         = "new",
3285                 [NVME_CTRL_LIVE]        = "live",
3286                 [NVME_CTRL_RESETTING]   = "resetting",
3287                 [NVME_CTRL_CONNECTING]  = "connecting",
3288                 [NVME_CTRL_DELETING]    = "deleting",
3289                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3290                 [NVME_CTRL_DEAD]        = "dead",
3291         };
3292
3293         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3294             state_name[ctrl->state])
3295                 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3296
3297         return sysfs_emit(buf, "unknown state\n");
3298 }
3299
3300 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3301
3302 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3303                                          struct device_attribute *attr,
3304                                          char *buf)
3305 {
3306         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3307
3308         return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3309 }
3310 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3311
3312 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3313                                         struct device_attribute *attr,
3314                                         char *buf)
3315 {
3316         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3317
3318         return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3319 }
3320 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3321
3322 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3323                                         struct device_attribute *attr,
3324                                         char *buf)
3325 {
3326         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3327
3328         return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3329 }
3330 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3331
3332 static ssize_t nvme_sysfs_show_address(struct device *dev,
3333                                          struct device_attribute *attr,
3334                                          char *buf)
3335 {
3336         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3337
3338         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3339 }
3340 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3341
3342 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3343                 struct device_attribute *attr, char *buf)
3344 {
3345         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3346         struct nvmf_ctrl_options *opts = ctrl->opts;
3347
3348         if (ctrl->opts->max_reconnects == -1)
3349                 return sysfs_emit(buf, "off\n");
3350         return sysfs_emit(buf, "%d\n",
3351                           opts->max_reconnects * opts->reconnect_delay);
3352 }
3353
3354 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3355                 struct device_attribute *attr, const char *buf, size_t count)
3356 {
3357         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3358         struct nvmf_ctrl_options *opts = ctrl->opts;
3359         int ctrl_loss_tmo, err;
3360
3361         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3362         if (err)
3363                 return -EINVAL;
3364
3365         if (ctrl_loss_tmo < 0)
3366                 opts->max_reconnects = -1;
3367         else
3368                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3369                                                 opts->reconnect_delay);
3370         return count;
3371 }
3372 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3373         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3374
3375 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3376                 struct device_attribute *attr, char *buf)
3377 {
3378         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3379
3380         if (ctrl->opts->reconnect_delay == -1)
3381                 return sysfs_emit(buf, "off\n");
3382         return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3383 }
3384
3385 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3386                 struct device_attribute *attr, const char *buf, size_t count)
3387 {
3388         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3389         unsigned int v;
3390         int err;
3391
3392         err = kstrtou32(buf, 10, &v);
3393         if (err)
3394                 return err;
3395
3396         ctrl->opts->reconnect_delay = v;
3397         return count;
3398 }
3399 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3400         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3401
3402 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3403                 struct device_attribute *attr, char *buf)
3404 {
3405         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3406
3407         if (ctrl->opts->fast_io_fail_tmo == -1)
3408                 return sysfs_emit(buf, "off\n");
3409         return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3410 }
3411
3412 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3413                 struct device_attribute *attr, const char *buf, size_t count)
3414 {
3415         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3416         struct nvmf_ctrl_options *opts = ctrl->opts;
3417         int fast_io_fail_tmo, err;
3418
3419         err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3420         if (err)
3421                 return -EINVAL;
3422
3423         if (fast_io_fail_tmo < 0)
3424                 opts->fast_io_fail_tmo = -1;
3425         else
3426                 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3427         return count;
3428 }
3429 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3430         nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3431
3432 static struct attribute *nvme_dev_attrs[] = {
3433         &dev_attr_reset_controller.attr,
3434         &dev_attr_rescan_controller.attr,
3435         &dev_attr_model.attr,
3436         &dev_attr_serial.attr,
3437         &dev_attr_firmware_rev.attr,
3438         &dev_attr_cntlid.attr,
3439         &dev_attr_delete_controller.attr,
3440         &dev_attr_transport.attr,
3441         &dev_attr_subsysnqn.attr,
3442         &dev_attr_address.attr,
3443         &dev_attr_state.attr,
3444         &dev_attr_numa_node.attr,
3445         &dev_attr_queue_count.attr,
3446         &dev_attr_sqsize.attr,
3447         &dev_attr_hostnqn.attr,
3448         &dev_attr_hostid.attr,
3449         &dev_attr_ctrl_loss_tmo.attr,
3450         &dev_attr_reconnect_delay.attr,
3451         &dev_attr_fast_io_fail_tmo.attr,
3452         &dev_attr_kato.attr,
3453         NULL
3454 };
3455
3456 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3457                 struct attribute *a, int n)
3458 {
3459         struct device *dev = container_of(kobj, struct device, kobj);
3460         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3461
3462         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3463                 return 0;
3464         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3465                 return 0;
3466         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3467                 return 0;
3468         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3469                 return 0;
3470         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3471                 return 0;
3472         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3473                 return 0;
3474         if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3475                 return 0;
3476
3477         return a->mode;
3478 }
3479
3480 static const struct attribute_group nvme_dev_attrs_group = {
3481         .attrs          = nvme_dev_attrs,
3482         .is_visible     = nvme_dev_attrs_are_visible,
3483 };
3484
3485 static const struct attribute_group *nvme_dev_attr_groups[] = {
3486         &nvme_dev_attrs_group,
3487         NULL,
3488 };
3489
3490 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3491                 unsigned nsid)
3492 {
3493         struct nvme_ns_head *h;
3494
3495         lockdep_assert_held(&subsys->lock);
3496
3497         list_for_each_entry(h, &subsys->nsheads, entry) {
3498                 if (h->ns_id == nsid && nvme_tryget_ns_head(h))
3499                         return h;
3500         }
3501
3502         return NULL;
3503 }
3504
3505 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3506                 struct nvme_ns_head *new)
3507 {
3508         struct nvme_ns_head *h;
3509
3510         lockdep_assert_held(&subsys->lock);
3511
3512         list_for_each_entry(h, &subsys->nsheads, entry) {
3513                 if (nvme_ns_ids_valid(&new->ids) &&
3514                     nvme_ns_ids_equal(&new->ids, &h->ids))
3515                         return -EINVAL;
3516         }
3517
3518         return 0;
3519 }
3520
3521 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3522 {
3523         cdev_device_del(cdev, cdev_device);
3524         ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt));
3525 }
3526
3527 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3528                 const struct file_operations *fops, struct module *owner)
3529 {
3530         int minor, ret;
3531
3532         minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3533         if (minor < 0)
3534                 return minor;
3535         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3536         cdev_device->class = nvme_ns_chr_class;
3537         device_initialize(cdev_device);
3538         cdev_init(cdev, fops);
3539         cdev->owner = owner;
3540         ret = cdev_device_add(cdev, cdev_device);
3541         if (ret) {
3542                 put_device(cdev_device);
3543                 ida_simple_remove(&nvme_ns_chr_minor_ida, minor);
3544         }
3545         return ret;
3546 }
3547
3548 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3549 {
3550         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3551 }
3552
3553 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3554 {
3555         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3556         return 0;
3557 }
3558
3559 static const struct file_operations nvme_ns_chr_fops = {
3560         .owner          = THIS_MODULE,
3561         .open           = nvme_ns_chr_open,
3562         .release        = nvme_ns_chr_release,
3563         .unlocked_ioctl = nvme_ns_chr_ioctl,
3564         .compat_ioctl   = compat_ptr_ioctl,
3565 };
3566
3567 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3568 {
3569         int ret;
3570
3571         ns->cdev_device.parent = ns->ctrl->device;
3572         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3573                            ns->ctrl->instance, ns->head->instance);
3574         if (ret)
3575                 return ret;
3576         ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3577                             ns->ctrl->ops->module);
3578         if (ret)
3579                 kfree_const(ns->cdev_device.kobj.name);
3580         return ret;
3581 }
3582
3583 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3584                 unsigned nsid, struct nvme_ns_ids *ids)
3585 {
3586         struct nvme_ns_head *head;
3587         size_t size = sizeof(*head);
3588         int ret = -ENOMEM;
3589
3590 #ifdef CONFIG_NVME_MULTIPATH
3591         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3592 #endif
3593
3594         head = kzalloc(size, GFP_KERNEL);
3595         if (!head)
3596                 goto out;
3597         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3598         if (ret < 0)
3599                 goto out_free_head;
3600         head->instance = ret;
3601         INIT_LIST_HEAD(&head->list);
3602         ret = init_srcu_struct(&head->srcu);
3603         if (ret)
3604                 goto out_ida_remove;
3605         head->subsys = ctrl->subsys;
3606         head->ns_id = nsid;
3607         head->ids = *ids;
3608         kref_init(&head->ref);
3609
3610         ret = __nvme_check_ids(ctrl->subsys, head);
3611         if (ret) {
3612                 dev_err(ctrl->device,
3613                         "duplicate IDs for nsid %d\n", nsid);
3614                 goto out_cleanup_srcu;
3615         }
3616
3617         if (head->ids.csi) {
3618                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3619                 if (ret)
3620                         goto out_cleanup_srcu;
3621         } else
3622                 head->effects = ctrl->effects;
3623
3624         ret = nvme_mpath_alloc_disk(ctrl, head);
3625         if (ret)
3626                 goto out_cleanup_srcu;
3627
3628         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3629
3630         kref_get(&ctrl->subsys->ref);
3631
3632         return head;
3633 out_cleanup_srcu:
3634         cleanup_srcu_struct(&head->srcu);
3635 out_ida_remove:
3636         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3637 out_free_head:
3638         kfree(head);
3639 out:
3640         if (ret > 0)
3641                 ret = blk_status_to_errno(nvme_error_status(ret));
3642         return ERR_PTR(ret);
3643 }
3644
3645 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3646                 struct nvme_ns_ids *ids, bool is_shared)
3647 {
3648         struct nvme_ctrl *ctrl = ns->ctrl;
3649         struct nvme_ns_head *head = NULL;
3650         int ret = 0;
3651
3652         mutex_lock(&ctrl->subsys->lock);
3653         head = nvme_find_ns_head(ctrl->subsys, nsid);
3654         if (!head) {
3655                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3656                 if (IS_ERR(head)) {
3657                         ret = PTR_ERR(head);
3658                         goto out_unlock;
3659                 }
3660                 head->shared = is_shared;
3661         } else {
3662                 ret = -EINVAL;
3663                 if (!is_shared || !head->shared) {
3664                         dev_err(ctrl->device,
3665                                 "Duplicate unshared namespace %d\n", nsid);
3666                         goto out_put_ns_head;
3667                 }
3668                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3669                         dev_err(ctrl->device,
3670                                 "IDs don't match for shared namespace %d\n",
3671                                         nsid);
3672                         goto out_put_ns_head;
3673                 }
3674         }
3675
3676         list_add_tail_rcu(&ns->siblings, &head->list);
3677         ns->head = head;
3678         mutex_unlock(&ctrl->subsys->lock);
3679         return 0;
3680
3681 out_put_ns_head:
3682         nvme_put_ns_head(head);
3683 out_unlock:
3684         mutex_unlock(&ctrl->subsys->lock);
3685         return ret;
3686 }
3687
3688 static int ns_cmp(void *priv, const struct list_head *a,
3689                 const struct list_head *b)
3690 {
3691         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3692         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3693
3694         return nsa->head->ns_id - nsb->head->ns_id;
3695 }
3696
3697 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3698 {
3699         struct nvme_ns *ns, *ret = NULL;
3700
3701         down_read(&ctrl->namespaces_rwsem);
3702         list_for_each_entry(ns, &ctrl->namespaces, list) {
3703                 if (ns->head->ns_id == nsid) {
3704                         if (!nvme_get_ns(ns))
3705                                 continue;
3706                         ret = ns;
3707                         break;
3708                 }
3709                 if (ns->head->ns_id > nsid)
3710                         break;
3711         }
3712         up_read(&ctrl->namespaces_rwsem);
3713         return ret;
3714 }
3715 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3716
3717 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3718                 struct nvme_ns_ids *ids)
3719 {
3720         struct nvme_ns *ns;
3721         struct gendisk *disk;
3722         struct nvme_id_ns *id;
3723         int node = ctrl->numa_node;
3724
3725         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3726                 return;
3727
3728         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3729         if (!ns)
3730                 goto out_free_id;
3731
3732         ns->queue = blk_mq_init_queue(ctrl->tagset);
3733         if (IS_ERR(ns->queue))
3734                 goto out_free_ns;
3735
3736         if (ctrl->opts && ctrl->opts->data_digest)
3737                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3738
3739         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3740         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3741                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3742
3743         ns->queue->queuedata = ns;
3744         ns->ctrl = ctrl;
3745         kref_init(&ns->kref);
3746
3747         if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3748                 goto out_free_queue;
3749
3750         disk = alloc_disk_node(0, node);
3751         if (!disk)
3752                 goto out_unlink_ns;
3753
3754         disk->fops = &nvme_bdev_ops;
3755         disk->private_data = ns;
3756         disk->queue = ns->queue;
3757         /*
3758          * Without the multipath code enabled, multiple controller per
3759          * subsystems are visible as devices and thus we cannot use the
3760          * subsystem instance.
3761          */
3762         if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3763                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3764                         ns->head->instance);
3765         ns->disk = disk;
3766
3767         if (nvme_update_ns_info(ns, id))
3768                 goto out_put_disk;
3769
3770         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3771                 if (nvme_nvm_register(ns, disk->disk_name, node)) {
3772                         dev_warn(ctrl->device, "LightNVM init failure\n");
3773                         goto out_put_disk;
3774                 }
3775         }
3776
3777         down_write(&ctrl->namespaces_rwsem);
3778         list_add_tail(&ns->list, &ctrl->namespaces);
3779         up_write(&ctrl->namespaces_rwsem);
3780
3781         nvme_get_ctrl(ctrl);
3782
3783         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3784         if (!nvme_ns_head_multipath(ns->head))
3785                 nvme_add_ns_cdev(ns);
3786
3787         nvme_mpath_add_disk(ns, id);
3788         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3789         kfree(id);
3790
3791         return;
3792  out_put_disk:
3793         /* prevent double queue cleanup */
3794         ns->disk->queue = NULL;
3795         put_disk(ns->disk);
3796  out_unlink_ns:
3797         mutex_lock(&ctrl->subsys->lock);
3798         list_del_rcu(&ns->siblings);
3799         if (list_empty(&ns->head->list))
3800                 list_del_init(&ns->head->entry);
3801         mutex_unlock(&ctrl->subsys->lock);
3802         nvme_put_ns_head(ns->head);
3803  out_free_queue:
3804         blk_cleanup_queue(ns->queue);
3805  out_free_ns:
3806         kfree(ns);
3807  out_free_id:
3808         kfree(id);
3809 }
3810
3811 static void nvme_ns_remove(struct nvme_ns *ns)
3812 {
3813         bool last_path = false;
3814
3815         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3816                 return;
3817
3818         set_capacity(ns->disk, 0);
3819         nvme_fault_inject_fini(&ns->fault_inject);
3820
3821         mutex_lock(&ns->ctrl->subsys->lock);
3822         list_del_rcu(&ns->siblings);
3823         mutex_unlock(&ns->ctrl->subsys->lock);
3824
3825         synchronize_rcu(); /* guarantee not available in head->list */
3826         nvme_mpath_clear_current_path(ns);
3827         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3828
3829         if (ns->disk->flags & GENHD_FL_UP) {
3830                 if (!nvme_ns_head_multipath(ns->head))
3831                         nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3832                 del_gendisk(ns->disk);
3833                 blk_cleanup_queue(ns->queue);
3834                 if (blk_get_integrity(ns->disk))
3835                         blk_integrity_unregister(ns->disk);
3836         }
3837
3838         down_write(&ns->ctrl->namespaces_rwsem);
3839         list_del_init(&ns->list);
3840         up_write(&ns->ctrl->namespaces_rwsem);
3841
3842         /* Synchronize with nvme_init_ns_head() */
3843         mutex_lock(&ns->head->subsys->lock);
3844         if (list_empty(&ns->head->list)) {
3845                 list_del_init(&ns->head->entry);
3846                 last_path = true;
3847         }
3848         mutex_unlock(&ns->head->subsys->lock);
3849         if (last_path)
3850                 nvme_mpath_shutdown_disk(ns->head);
3851         nvme_put_ns(ns);
3852 }
3853
3854 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3855 {
3856         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3857
3858         if (ns) {
3859                 nvme_ns_remove(ns);
3860                 nvme_put_ns(ns);
3861         }
3862 }
3863
3864 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3865 {
3866         struct nvme_id_ns *id;
3867         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3868
3869         if (test_bit(NVME_NS_DEAD, &ns->flags))
3870                 goto out;
3871
3872         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3873         if (ret)
3874                 goto out;
3875
3876         ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3877         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3878                 dev_err(ns->ctrl->device,
3879                         "identifiers changed for nsid %d\n", ns->head->ns_id);
3880                 goto out_free_id;
3881         }
3882
3883         ret = nvme_update_ns_info(ns, id);
3884
3885 out_free_id:
3886         kfree(id);
3887 out:
3888         /*
3889          * Only remove the namespace if we got a fatal error back from the
3890          * device, otherwise ignore the error and just move on.
3891          *
3892          * TODO: we should probably schedule a delayed retry here.
3893          */
3894         if (ret > 0 && (ret & NVME_SC_DNR))
3895                 nvme_ns_remove(ns);
3896 }
3897
3898 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3899 {
3900         struct nvme_ns_ids ids = { };
3901         struct nvme_ns *ns;
3902
3903         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3904                 return;
3905
3906         ns = nvme_find_get_ns(ctrl, nsid);
3907         if (ns) {
3908                 nvme_validate_ns(ns, &ids);
3909                 nvme_put_ns(ns);
3910                 return;
3911         }
3912
3913         switch (ids.csi) {
3914         case NVME_CSI_NVM:
3915                 nvme_alloc_ns(ctrl, nsid, &ids);
3916                 break;
3917         case NVME_CSI_ZNS:
3918                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3919                         dev_warn(ctrl->device,
3920                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3921                                 nsid);
3922                         break;
3923                 }
3924                 if (!nvme_multi_css(ctrl)) {
3925                         dev_warn(ctrl->device,
3926                                 "command set not reported for nsid: %d\n",
3927                                 nsid);
3928                         break;
3929                 }
3930                 nvme_alloc_ns(ctrl, nsid, &ids);
3931                 break;
3932         default:
3933                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3934                         ids.csi, nsid);
3935                 break;
3936         }
3937 }
3938
3939 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3940                                         unsigned nsid)
3941 {
3942         struct nvme_ns *ns, *next;
3943         LIST_HEAD(rm_list);
3944
3945         down_write(&ctrl->namespaces_rwsem);
3946         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3947                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3948                         list_move_tail(&ns->list, &rm_list);
3949         }
3950         up_write(&ctrl->namespaces_rwsem);
3951
3952         list_for_each_entry_safe(ns, next, &rm_list, list)
3953                 nvme_ns_remove(ns);
3954
3955 }
3956
3957 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3958 {
3959         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3960         __le32 *ns_list;
3961         u32 prev = 0;
3962         int ret = 0, i;
3963
3964         if (nvme_ctrl_limited_cns(ctrl))
3965                 return -EOPNOTSUPP;
3966
3967         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3968         if (!ns_list)
3969                 return -ENOMEM;
3970
3971         for (;;) {
3972                 struct nvme_command cmd = {
3973                         .identify.opcode        = nvme_admin_identify,
3974                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
3975                         .identify.nsid          = cpu_to_le32(prev),
3976                 };
3977
3978                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3979                                             NVME_IDENTIFY_DATA_SIZE);
3980                 if (ret) {
3981                         dev_warn(ctrl->device,
3982                                 "Identify NS List failed (status=0x%x)\n", ret);
3983                         goto free;
3984                 }
3985
3986                 for (i = 0; i < nr_entries; i++) {
3987                         u32 nsid = le32_to_cpu(ns_list[i]);
3988
3989                         if (!nsid)      /* end of the list? */
3990                                 goto out;
3991                         nvme_validate_or_alloc_ns(ctrl, nsid);
3992                         while (++prev < nsid)
3993                                 nvme_ns_remove_by_nsid(ctrl, prev);
3994                 }
3995         }
3996  out:
3997         nvme_remove_invalid_namespaces(ctrl, prev);
3998  free:
3999         kfree(ns_list);
4000         return ret;
4001 }
4002
4003 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4004 {
4005         struct nvme_id_ctrl *id;
4006         u32 nn, i;
4007
4008         if (nvme_identify_ctrl(ctrl, &id))
4009                 return;
4010         nn = le32_to_cpu(id->nn);
4011         kfree(id);
4012
4013         for (i = 1; i <= nn; i++)
4014                 nvme_validate_or_alloc_ns(ctrl, i);
4015
4016         nvme_remove_invalid_namespaces(ctrl, nn);
4017 }
4018
4019 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4020 {
4021         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4022         __le32 *log;
4023         int error;
4024
4025         log = kzalloc(log_size, GFP_KERNEL);
4026         if (!log)
4027                 return;
4028
4029         /*
4030          * We need to read the log to clear the AEN, but we don't want to rely
4031          * on it for the changed namespace information as userspace could have
4032          * raced with us in reading the log page, which could cause us to miss
4033          * updates.
4034          */
4035         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4036                         NVME_CSI_NVM, log, log_size, 0);
4037         if (error)
4038                 dev_warn(ctrl->device,
4039                         "reading changed ns log failed: %d\n", error);
4040
4041         kfree(log);
4042 }
4043
4044 static void nvme_scan_work(struct work_struct *work)
4045 {
4046         struct nvme_ctrl *ctrl =
4047                 container_of(work, struct nvme_ctrl, scan_work);
4048
4049         /* No tagset on a live ctrl means IO queues could not created */
4050         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4051                 return;
4052
4053         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4054                 dev_info(ctrl->device, "rescanning namespaces.\n");
4055                 nvme_clear_changed_ns_log(ctrl);
4056         }
4057
4058         mutex_lock(&ctrl->scan_lock);
4059         if (nvme_scan_ns_list(ctrl) != 0)
4060                 nvme_scan_ns_sequential(ctrl);
4061         mutex_unlock(&ctrl->scan_lock);
4062
4063         down_write(&ctrl->namespaces_rwsem);
4064         list_sort(NULL, &ctrl->namespaces, ns_cmp);
4065         up_write(&ctrl->namespaces_rwsem);
4066 }
4067
4068 /*
4069  * This function iterates the namespace list unlocked to allow recovery from
4070  * controller failure. It is up to the caller to ensure the namespace list is
4071  * not modified by scan work while this function is executing.
4072  */
4073 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4074 {
4075         struct nvme_ns *ns, *next;
4076         LIST_HEAD(ns_list);
4077
4078         /*
4079          * make sure to requeue I/O to all namespaces as these
4080          * might result from the scan itself and must complete
4081          * for the scan_work to make progress
4082          */
4083         nvme_mpath_clear_ctrl_paths(ctrl);
4084
4085         /* prevent racing with ns scanning */
4086         flush_work(&ctrl->scan_work);
4087
4088         /*
4089          * The dead states indicates the controller was not gracefully
4090          * disconnected. In that case, we won't be able to flush any data while
4091          * removing the namespaces' disks; fail all the queues now to avoid
4092          * potentially having to clean up the failed sync later.
4093          */
4094         if (ctrl->state == NVME_CTRL_DEAD)
4095                 nvme_kill_queues(ctrl);
4096
4097         /* this is a no-op when called from the controller reset handler */
4098         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4099
4100         down_write(&ctrl->namespaces_rwsem);
4101         list_splice_init(&ctrl->namespaces, &ns_list);
4102         up_write(&ctrl->namespaces_rwsem);
4103
4104         list_for_each_entry_safe(ns, next, &ns_list, list)
4105                 nvme_ns_remove(ns);
4106 }
4107 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4108
4109 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4110 {
4111         struct nvme_ctrl *ctrl =
4112                 container_of(dev, struct nvme_ctrl, ctrl_device);
4113         struct nvmf_ctrl_options *opts = ctrl->opts;
4114         int ret;
4115
4116         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4117         if (ret)
4118                 return ret;
4119
4120         if (opts) {
4121                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4122                 if (ret)
4123                         return ret;
4124
4125                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4126                                 opts->trsvcid ?: "none");
4127                 if (ret)
4128                         return ret;
4129
4130                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4131                                 opts->host_traddr ?: "none");
4132                 if (ret)
4133                         return ret;
4134
4135                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4136                                 opts->host_iface ?: "none");
4137         }
4138         return ret;
4139 }
4140
4141 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4142 {
4143         char *envp[2] = { NULL, NULL };
4144         u32 aen_result = ctrl->aen_result;
4145
4146         ctrl->aen_result = 0;
4147         if (!aen_result)
4148                 return;
4149
4150         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4151         if (!envp[0])
4152                 return;
4153         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4154         kfree(envp[0]);
4155 }
4156
4157 static void nvme_async_event_work(struct work_struct *work)
4158 {
4159         struct nvme_ctrl *ctrl =
4160                 container_of(work, struct nvme_ctrl, async_event_work);
4161
4162         nvme_aen_uevent(ctrl);
4163         ctrl->ops->submit_async_event(ctrl);
4164 }
4165
4166 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4167 {
4168
4169         u32 csts;
4170
4171         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4172                 return false;
4173
4174         if (csts == ~0)
4175                 return false;
4176
4177         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4178 }
4179
4180 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4181 {
4182         struct nvme_fw_slot_info_log *log;
4183
4184         log = kmalloc(sizeof(*log), GFP_KERNEL);
4185         if (!log)
4186                 return;
4187
4188         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4189                         log, sizeof(*log), 0))
4190                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4191         kfree(log);
4192 }
4193
4194 static void nvme_fw_act_work(struct work_struct *work)
4195 {
4196         struct nvme_ctrl *ctrl = container_of(work,
4197                                 struct nvme_ctrl, fw_act_work);
4198         unsigned long fw_act_timeout;
4199
4200         if (ctrl->mtfa)
4201                 fw_act_timeout = jiffies +
4202                                 msecs_to_jiffies(ctrl->mtfa * 100);
4203         else
4204                 fw_act_timeout = jiffies +
4205                                 msecs_to_jiffies(admin_timeout * 1000);
4206
4207         nvme_stop_queues(ctrl);
4208         while (nvme_ctrl_pp_status(ctrl)) {
4209                 if (time_after(jiffies, fw_act_timeout)) {
4210                         dev_warn(ctrl->device,
4211                                 "Fw activation timeout, reset controller\n");
4212                         nvme_try_sched_reset(ctrl);
4213                         return;
4214                 }
4215                 msleep(100);
4216         }
4217
4218         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4219                 return;
4220
4221         nvme_start_queues(ctrl);
4222         /* read FW slot information to clear the AER */
4223         nvme_get_fw_slot_info(ctrl);
4224 }
4225
4226 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4227 {
4228         u32 aer_notice_type = (result & 0xff00) >> 8;
4229
4230         trace_nvme_async_event(ctrl, aer_notice_type);
4231
4232         switch (aer_notice_type) {
4233         case NVME_AER_NOTICE_NS_CHANGED:
4234                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4235                 nvme_queue_scan(ctrl);
4236                 break;
4237         case NVME_AER_NOTICE_FW_ACT_STARTING:
4238                 /*
4239                  * We are (ab)using the RESETTING state to prevent subsequent
4240                  * recovery actions from interfering with the controller's
4241                  * firmware activation.
4242                  */
4243                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4244                         queue_work(nvme_wq, &ctrl->fw_act_work);
4245                 break;
4246 #ifdef CONFIG_NVME_MULTIPATH
4247         case NVME_AER_NOTICE_ANA:
4248                 if (!ctrl->ana_log_buf)
4249                         break;
4250                 queue_work(nvme_wq, &ctrl->ana_work);
4251                 break;
4252 #endif
4253         case NVME_AER_NOTICE_DISC_CHANGED:
4254                 ctrl->aen_result = result;
4255                 break;
4256         default:
4257                 dev_warn(ctrl->device, "async event result %08x\n", result);
4258         }
4259 }
4260
4261 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4262                 volatile union nvme_result *res)
4263 {
4264         u32 result = le32_to_cpu(res->u32);
4265         u32 aer_type = result & 0x07;
4266
4267         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4268                 return;
4269
4270         switch (aer_type) {
4271         case NVME_AER_NOTICE:
4272                 nvme_handle_aen_notice(ctrl, result);
4273                 break;
4274         case NVME_AER_ERROR:
4275         case NVME_AER_SMART:
4276         case NVME_AER_CSS:
4277         case NVME_AER_VS:
4278                 trace_nvme_async_event(ctrl, aer_type);
4279                 ctrl->aen_result = result;
4280                 break;
4281         default:
4282                 break;
4283         }
4284         queue_work(nvme_wq, &ctrl->async_event_work);
4285 }
4286 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4287
4288 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4289 {
4290         nvme_mpath_stop(ctrl);
4291         nvme_stop_keep_alive(ctrl);
4292         nvme_stop_failfast_work(ctrl);
4293         flush_work(&ctrl->async_event_work);
4294         cancel_work_sync(&ctrl->fw_act_work);
4295 }
4296 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4297
4298 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4299 {
4300         nvme_start_keep_alive(ctrl);
4301
4302         nvme_enable_aen(ctrl);
4303
4304         if (ctrl->queue_count > 1) {
4305                 nvme_queue_scan(ctrl);
4306                 nvme_start_queues(ctrl);
4307         }
4308 }
4309 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4310
4311 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4312 {
4313         nvme_hwmon_exit(ctrl);
4314         nvme_fault_inject_fini(&ctrl->fault_inject);
4315         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4316         cdev_device_del(&ctrl->cdev, ctrl->device);
4317         nvme_put_ctrl(ctrl);
4318 }
4319 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4320
4321 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4322 {
4323         struct nvme_effects_log *cel;
4324         unsigned long i;
4325
4326         xa_for_each(&ctrl->cels, i, cel) {
4327                 xa_erase(&ctrl->cels, i);
4328                 kfree(cel);
4329         }
4330
4331         xa_destroy(&ctrl->cels);
4332 }
4333
4334 static void nvme_free_ctrl(struct device *dev)
4335 {
4336         struct nvme_ctrl *ctrl =
4337                 container_of(dev, struct nvme_ctrl, ctrl_device);
4338         struct nvme_subsystem *subsys = ctrl->subsys;
4339
4340         if (!subsys || ctrl->instance != subsys->instance)
4341                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4342
4343         nvme_free_cels(ctrl);
4344         nvme_mpath_uninit(ctrl);
4345         __free_page(ctrl->discard_page);
4346
4347         if (subsys) {
4348                 mutex_lock(&nvme_subsystems_lock);
4349                 list_del(&ctrl->subsys_entry);
4350                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4351                 mutex_unlock(&nvme_subsystems_lock);
4352         }
4353
4354         ctrl->ops->free_ctrl(ctrl);
4355
4356         if (subsys)
4357                 nvme_put_subsystem(subsys);
4358 }
4359
4360 /*
4361  * Initialize a NVMe controller structures.  This needs to be called during
4362  * earliest initialization so that we have the initialized structured around
4363  * during probing.
4364  */
4365 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4366                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4367 {
4368         int ret;
4369
4370         ctrl->state = NVME_CTRL_NEW;
4371         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4372         spin_lock_init(&ctrl->lock);
4373         mutex_init(&ctrl->scan_lock);
4374         INIT_LIST_HEAD(&ctrl->namespaces);
4375         xa_init(&ctrl->cels);
4376         init_rwsem(&ctrl->namespaces_rwsem);
4377         ctrl->dev = dev;
4378         ctrl->ops = ops;
4379         ctrl->quirks = quirks;
4380         ctrl->numa_node = NUMA_NO_NODE;
4381         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4382         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4383         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4384         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4385         init_waitqueue_head(&ctrl->state_wq);
4386
4387         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4388         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4389         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4390         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4391
4392         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4393                         PAGE_SIZE);
4394         ctrl->discard_page = alloc_page(GFP_KERNEL);
4395         if (!ctrl->discard_page) {
4396                 ret = -ENOMEM;
4397                 goto out;
4398         }
4399
4400         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4401         if (ret < 0)
4402                 goto out;
4403         ctrl->instance = ret;
4404
4405         device_initialize(&ctrl->ctrl_device);
4406         ctrl->device = &ctrl->ctrl_device;
4407         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4408                         ctrl->instance);
4409         ctrl->device->class = nvme_class;
4410         ctrl->device->parent = ctrl->dev;
4411         ctrl->device->groups = nvme_dev_attr_groups;
4412         ctrl->device->release = nvme_free_ctrl;
4413         dev_set_drvdata(ctrl->device, ctrl);
4414         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4415         if (ret)
4416                 goto out_release_instance;
4417
4418         nvme_get_ctrl(ctrl);
4419         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4420         ctrl->cdev.owner = ops->module;
4421         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4422         if (ret)
4423                 goto out_free_name;
4424
4425         /*
4426          * Initialize latency tolerance controls.  The sysfs files won't
4427          * be visible to userspace unless the device actually supports APST.
4428          */
4429         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4430         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4431                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4432
4433         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4434         nvme_mpath_init_ctrl(ctrl);
4435
4436         return 0;
4437 out_free_name:
4438         nvme_put_ctrl(ctrl);
4439         kfree_const(ctrl->device->kobj.name);
4440 out_release_instance:
4441         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4442 out:
4443         if (ctrl->discard_page)
4444                 __free_page(ctrl->discard_page);
4445         return ret;
4446 }
4447 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4448
4449 /**
4450  * nvme_kill_queues(): Ends all namespace queues
4451  * @ctrl: the dead controller that needs to end
4452  *
4453  * Call this function when the driver determines it is unable to get the
4454  * controller in a state capable of servicing IO.
4455  */
4456 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4457 {
4458         struct nvme_ns *ns;
4459
4460         down_read(&ctrl->namespaces_rwsem);
4461
4462         /* Forcibly unquiesce queues to avoid blocking dispatch */
4463         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4464                 blk_mq_unquiesce_queue(ctrl->admin_q);
4465
4466         list_for_each_entry(ns, &ctrl->namespaces, list)
4467                 nvme_set_queue_dying(ns);
4468
4469         up_read(&ctrl->namespaces_rwsem);
4470 }
4471 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4472
4473 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4474 {
4475         struct nvme_ns *ns;
4476
4477         down_read(&ctrl->namespaces_rwsem);
4478         list_for_each_entry(ns, &ctrl->namespaces, list)
4479                 blk_mq_unfreeze_queue(ns->queue);
4480         up_read(&ctrl->namespaces_rwsem);
4481 }
4482 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4483
4484 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4485 {
4486         struct nvme_ns *ns;
4487
4488         down_read(&ctrl->namespaces_rwsem);
4489         list_for_each_entry(ns, &ctrl->namespaces, list) {
4490                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4491                 if (timeout <= 0)
4492                         break;
4493         }
4494         up_read(&ctrl->namespaces_rwsem);
4495         return timeout;
4496 }
4497 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4498
4499 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4500 {
4501         struct nvme_ns *ns;
4502
4503         down_read(&ctrl->namespaces_rwsem);
4504         list_for_each_entry(ns, &ctrl->namespaces, list)
4505                 blk_mq_freeze_queue_wait(ns->queue);
4506         up_read(&ctrl->namespaces_rwsem);
4507 }
4508 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4509
4510 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4511 {
4512         struct nvme_ns *ns;
4513
4514         down_read(&ctrl->namespaces_rwsem);
4515         list_for_each_entry(ns, &ctrl->namespaces, list)
4516                 blk_freeze_queue_start(ns->queue);
4517         up_read(&ctrl->namespaces_rwsem);
4518 }
4519 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4520
4521 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4522 {
4523         struct nvme_ns *ns;
4524
4525         down_read(&ctrl->namespaces_rwsem);
4526         list_for_each_entry(ns, &ctrl->namespaces, list)
4527                 blk_mq_quiesce_queue(ns->queue);
4528         up_read(&ctrl->namespaces_rwsem);
4529 }
4530 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4531
4532 void nvme_start_queues(struct nvme_ctrl *ctrl)
4533 {
4534         struct nvme_ns *ns;
4535
4536         down_read(&ctrl->namespaces_rwsem);
4537         list_for_each_entry(ns, &ctrl->namespaces, list)
4538                 blk_mq_unquiesce_queue(ns->queue);
4539         up_read(&ctrl->namespaces_rwsem);
4540 }
4541 EXPORT_SYMBOL_GPL(nvme_start_queues);
4542
4543 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4544 {
4545         struct nvme_ns *ns;
4546
4547         down_read(&ctrl->namespaces_rwsem);
4548         list_for_each_entry(ns, &ctrl->namespaces, list)
4549                 blk_sync_queue(ns->queue);
4550         up_read(&ctrl->namespaces_rwsem);
4551 }
4552 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4553
4554 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4555 {
4556         nvme_sync_io_queues(ctrl);
4557         if (ctrl->admin_q)
4558                 blk_sync_queue(ctrl->admin_q);
4559 }
4560 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4561
4562 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4563 {
4564         if (file->f_op != &nvme_dev_fops)
4565                 return NULL;
4566         return file->private_data;
4567 }
4568 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4569
4570 /*
4571  * Check we didn't inadvertently grow the command structure sizes:
4572  */
4573 static inline void _nvme_check_size(void)
4574 {
4575         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4576         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4577         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4578         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4579         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4580         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4581         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4582         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4583         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4584         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4585         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4586         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4587         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4588         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4589         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4590         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4591         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4592         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4593         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4594         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4595 }
4596
4597
4598 static int __init nvme_core_init(void)
4599 {
4600         int result = -ENOMEM;
4601
4602         _nvme_check_size();
4603
4604         nvme_wq = alloc_workqueue("nvme-wq",
4605                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4606         if (!nvme_wq)
4607                 goto out;
4608
4609         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4610                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4611         if (!nvme_reset_wq)
4612                 goto destroy_wq;
4613
4614         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4615                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4616         if (!nvme_delete_wq)
4617                 goto destroy_reset_wq;
4618
4619         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4620                         NVME_MINORS, "nvme");
4621         if (result < 0)
4622                 goto destroy_delete_wq;
4623
4624         nvme_class = class_create(THIS_MODULE, "nvme");
4625         if (IS_ERR(nvme_class)) {
4626                 result = PTR_ERR(nvme_class);
4627                 goto unregister_chrdev;
4628         }
4629         nvme_class->dev_uevent = nvme_class_uevent;
4630
4631         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4632         if (IS_ERR(nvme_subsys_class)) {
4633                 result = PTR_ERR(nvme_subsys_class);
4634                 goto destroy_class;
4635         }
4636
4637         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4638                                      "nvme-generic");
4639         if (result < 0)
4640                 goto destroy_subsys_class;
4641
4642         nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4643         if (IS_ERR(nvme_ns_chr_class)) {
4644                 result = PTR_ERR(nvme_ns_chr_class);
4645                 goto unregister_generic_ns;
4646         }
4647
4648         return 0;
4649
4650 unregister_generic_ns:
4651         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4652 destroy_subsys_class:
4653         class_destroy(nvme_subsys_class);
4654 destroy_class:
4655         class_destroy(nvme_class);
4656 unregister_chrdev:
4657         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4658 destroy_delete_wq:
4659         destroy_workqueue(nvme_delete_wq);
4660 destroy_reset_wq:
4661         destroy_workqueue(nvme_reset_wq);
4662 destroy_wq:
4663         destroy_workqueue(nvme_wq);
4664 out:
4665         return result;
4666 }
4667
4668 static void __exit nvme_core_exit(void)
4669 {
4670         class_destroy(nvme_ns_chr_class);
4671         class_destroy(nvme_subsys_class);
4672         class_destroy(nvme_class);
4673         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4674         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4675         destroy_workqueue(nvme_delete_wq);
4676         destroy_workqueue(nvme_reset_wq);
4677         destroy_workqueue(nvme_wq);
4678         ida_destroy(&nvme_ns_chr_minor_ida);
4679         ida_destroy(&nvme_instance_ida);
4680 }
4681
4682 MODULE_LICENSE("GPL");
4683 MODULE_VERSION("1.0");
4684 module_init(nvme_core_init);
4685 module_exit(nvme_core_exit);