b9e6e6de58cfa0ea382039231942413b0ff5d1c1
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/t10-pi.h>
23 #include <linux/pm_qos.h>
24 #include <asm/unaligned.h>
25
26 #include "nvme.h"
27 #include "fabrics.h"
28
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31
32 #define NVME_MINORS             (1U << MINORBITS)
33
34 unsigned int admin_timeout = 60;
35 module_param(admin_timeout, uint, 0644);
36 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
37 EXPORT_SYMBOL_GPL(admin_timeout);
38
39 unsigned int nvme_io_timeout = 30;
40 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
41 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
42 EXPORT_SYMBOL_GPL(nvme_io_timeout);
43
44 static unsigned char shutdown_timeout = 5;
45 module_param(shutdown_timeout, byte, 0644);
46 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
47
48 static u8 nvme_max_retries = 5;
49 module_param_named(max_retries, nvme_max_retries, byte, 0644);
50 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
51
52 static unsigned long default_ps_max_latency_us = 100000;
53 module_param(default_ps_max_latency_us, ulong, 0644);
54 MODULE_PARM_DESC(default_ps_max_latency_us,
55                  "max power saving latency for new devices; use PM QOS to change per device");
56
57 static bool force_apst;
58 module_param(force_apst, bool, 0644);
59 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
60
61 static bool streams;
62 module_param(streams, bool, 0644);
63 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
64
65 /*
66  * nvme_wq - hosts nvme related works that are not reset or delete
67  * nvme_reset_wq - hosts nvme reset works
68  * nvme_delete_wq - hosts nvme delete works
69  *
70  * nvme_wq will host works such as scan, aen handling, fw activation,
71  * keep-alive, periodic reconnects etc. nvme_reset_wq
72  * runs reset works which also flush works hosted on nvme_wq for
73  * serialization purposes. nvme_delete_wq host controller deletion
74  * works which flush reset works for serialization.
75  */
76 struct workqueue_struct *nvme_wq;
77 EXPORT_SYMBOL_GPL(nvme_wq);
78
79 struct workqueue_struct *nvme_reset_wq;
80 EXPORT_SYMBOL_GPL(nvme_reset_wq);
81
82 struct workqueue_struct *nvme_delete_wq;
83 EXPORT_SYMBOL_GPL(nvme_delete_wq);
84
85 static LIST_HEAD(nvme_subsystems);
86 static DEFINE_MUTEX(nvme_subsystems_lock);
87
88 static DEFINE_IDA(nvme_instance_ida);
89 static dev_t nvme_chr_devt;
90 static struct class *nvme_class;
91 static struct class *nvme_subsys_class;
92
93 static int nvme_revalidate_disk(struct gendisk *disk);
94 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
95 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
96                                            unsigned nsid);
97
98 static void nvme_set_queue_dying(struct nvme_ns *ns)
99 {
100         /*
101          * Revalidating a dead namespace sets capacity to 0. This will end
102          * buffered writers dirtying pages that can't be synced.
103          */
104         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
105                 return;
106         blk_set_queue_dying(ns->queue);
107         /* Forcibly unquiesce queues to avoid blocking dispatch */
108         blk_mq_unquiesce_queue(ns->queue);
109         /*
110          * Revalidate after unblocking dispatchers that may be holding bd_butex
111          */
112         revalidate_disk(ns->disk);
113 }
114
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117         /*
118          * Only new queue scan work when admin and IO queues are both alive
119          */
120         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121                 queue_work(nvme_wq, &ctrl->scan_work);
122 }
123
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132         if (ctrl->state != NVME_CTRL_RESETTING)
133                 return -EBUSY;
134         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135                 return -EBUSY;
136         return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139
140 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
141 {
142         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
143                 return -EBUSY;
144         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
145                 return -EBUSY;
146         return 0;
147 }
148 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
149
150 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
151 {
152         int ret;
153
154         ret = nvme_reset_ctrl(ctrl);
155         if (!ret) {
156                 flush_work(&ctrl->reset_work);
157                 if (ctrl->state != NVME_CTRL_LIVE)
158                         ret = -ENETRESET;
159         }
160
161         return ret;
162 }
163 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
164
165 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
166 {
167         dev_info(ctrl->device,
168                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
169
170         flush_work(&ctrl->reset_work);
171         nvme_stop_ctrl(ctrl);
172         nvme_remove_namespaces(ctrl);
173         ctrl->ops->delete_ctrl(ctrl);
174         nvme_uninit_ctrl(ctrl);
175 }
176
177 static void nvme_delete_ctrl_work(struct work_struct *work)
178 {
179         struct nvme_ctrl *ctrl =
180                 container_of(work, struct nvme_ctrl, delete_work);
181
182         nvme_do_delete_ctrl(ctrl);
183 }
184
185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 {
187         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188                 return -EBUSY;
189         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190                 return -EBUSY;
191         return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194
195 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197         /*
198          * Keep a reference until nvme_do_delete_ctrl() complete,
199          * since ->delete_ctrl can free the controller.
200          */
201         nvme_get_ctrl(ctrl);
202         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
203                 nvme_do_delete_ctrl(ctrl);
204         nvme_put_ctrl(ctrl);
205 }
206
207 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
208 {
209         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
210 }
211
212 static blk_status_t nvme_error_status(u16 status)
213 {
214         switch (status & 0x7ff) {
215         case NVME_SC_SUCCESS:
216                 return BLK_STS_OK;
217         case NVME_SC_CAP_EXCEEDED:
218                 return BLK_STS_NOSPC;
219         case NVME_SC_LBA_RANGE:
220         case NVME_SC_CMD_INTERRUPTED:
221         case NVME_SC_NS_NOT_READY:
222                 return BLK_STS_TARGET;
223         case NVME_SC_BAD_ATTRIBUTES:
224         case NVME_SC_ONCS_NOT_SUPPORTED:
225         case NVME_SC_INVALID_OPCODE:
226         case NVME_SC_INVALID_FIELD:
227         case NVME_SC_INVALID_NS:
228                 return BLK_STS_NOTSUPP;
229         case NVME_SC_WRITE_FAULT:
230         case NVME_SC_READ_ERROR:
231         case NVME_SC_UNWRITTEN_BLOCK:
232         case NVME_SC_ACCESS_DENIED:
233         case NVME_SC_READ_ONLY:
234         case NVME_SC_COMPARE_FAILED:
235                 return BLK_STS_MEDIUM;
236         case NVME_SC_GUARD_CHECK:
237         case NVME_SC_APPTAG_CHECK:
238         case NVME_SC_REFTAG_CHECK:
239         case NVME_SC_INVALID_PI:
240                 return BLK_STS_PROTECTION;
241         case NVME_SC_RESERVATION_CONFLICT:
242                 return BLK_STS_NEXUS;
243         case NVME_SC_HOST_PATH_ERROR:
244                 return BLK_STS_TRANSPORT;
245         default:
246                 return BLK_STS_IOERR;
247         }
248 }
249
250 static inline bool nvme_req_needs_retry(struct request *req)
251 {
252         if (blk_noretry_request(req))
253                 return false;
254         if (nvme_req(req)->status & NVME_SC_DNR)
255                 return false;
256         if (nvme_req(req)->retries >= nvme_max_retries)
257                 return false;
258         return true;
259 }
260
261 static void nvme_retry_req(struct request *req)
262 {
263         struct nvme_ns *ns = req->q->queuedata;
264         unsigned long delay = 0;
265         u16 crd;
266
267         /* The mask and shift result must be <= 3 */
268         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
269         if (ns && crd)
270                 delay = ns->ctrl->crdt[crd - 1] * 100;
271
272         nvme_req(req)->retries++;
273         blk_mq_requeue_request(req, false);
274         blk_mq_delay_kick_requeue_list(req->q, delay);
275 }
276
277 void nvme_complete_rq(struct request *req)
278 {
279         blk_status_t status = nvme_error_status(nvme_req(req)->status);
280
281         trace_nvme_complete_rq(req);
282
283         nvme_cleanup_cmd(req);
284
285         if (nvme_req(req)->ctrl->kas)
286                 nvme_req(req)->ctrl->comp_seen = true;
287
288         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
289                 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
290                         return;
291
292                 if (!blk_queue_dying(req->q)) {
293                         nvme_retry_req(req);
294                         return;
295                 }
296         }
297
298         nvme_trace_bio_complete(req, status);
299         blk_mq_end_request(req, status);
300 }
301 EXPORT_SYMBOL_GPL(nvme_complete_rq);
302
303 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
304 {
305         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
306                                 "Cancelling I/O %d", req->tag);
307
308         /* don't abort one completed request */
309         if (blk_mq_request_completed(req))
310                 return true;
311
312         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
313         blk_mq_complete_request(req);
314         return true;
315 }
316 EXPORT_SYMBOL_GPL(nvme_cancel_request);
317
318 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
319                 enum nvme_ctrl_state new_state)
320 {
321         enum nvme_ctrl_state old_state;
322         unsigned long flags;
323         bool changed = false;
324
325         spin_lock_irqsave(&ctrl->lock, flags);
326
327         old_state = ctrl->state;
328         switch (new_state) {
329         case NVME_CTRL_LIVE:
330                 switch (old_state) {
331                 case NVME_CTRL_NEW:
332                 case NVME_CTRL_RESETTING:
333                 case NVME_CTRL_CONNECTING:
334                         changed = true;
335                         /* FALLTHRU */
336                 default:
337                         break;
338                 }
339                 break;
340         case NVME_CTRL_RESETTING:
341                 switch (old_state) {
342                 case NVME_CTRL_NEW:
343                 case NVME_CTRL_LIVE:
344                         changed = true;
345                         /* FALLTHRU */
346                 default:
347                         break;
348                 }
349                 break;
350         case NVME_CTRL_CONNECTING:
351                 switch (old_state) {
352                 case NVME_CTRL_NEW:
353                 case NVME_CTRL_RESETTING:
354                         changed = true;
355                         /* FALLTHRU */
356                 default:
357                         break;
358                 }
359                 break;
360         case NVME_CTRL_DELETING:
361                 switch (old_state) {
362                 case NVME_CTRL_LIVE:
363                 case NVME_CTRL_RESETTING:
364                 case NVME_CTRL_CONNECTING:
365                         changed = true;
366                         /* FALLTHRU */
367                 default:
368                         break;
369                 }
370                 break;
371         case NVME_CTRL_DEAD:
372                 switch (old_state) {
373                 case NVME_CTRL_DELETING:
374                         changed = true;
375                         /* FALLTHRU */
376                 default:
377                         break;
378                 }
379                 break;
380         default:
381                 break;
382         }
383
384         if (changed) {
385                 ctrl->state = new_state;
386                 wake_up_all(&ctrl->state_wq);
387         }
388
389         spin_unlock_irqrestore(&ctrl->lock, flags);
390         if (changed && ctrl->state == NVME_CTRL_LIVE)
391                 nvme_kick_requeue_lists(ctrl);
392         return changed;
393 }
394 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
395
396 /*
397  * Returns true for sink states that can't ever transition back to live.
398  */
399 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
400 {
401         switch (ctrl->state) {
402         case NVME_CTRL_NEW:
403         case NVME_CTRL_LIVE:
404         case NVME_CTRL_RESETTING:
405         case NVME_CTRL_CONNECTING:
406                 return false;
407         case NVME_CTRL_DELETING:
408         case NVME_CTRL_DEAD:
409                 return true;
410         default:
411                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
412                 return true;
413         }
414 }
415
416 /*
417  * Waits for the controller state to be resetting, or returns false if it is
418  * not possible to ever transition to that state.
419  */
420 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
421 {
422         wait_event(ctrl->state_wq,
423                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
424                    nvme_state_terminal(ctrl));
425         return ctrl->state == NVME_CTRL_RESETTING;
426 }
427 EXPORT_SYMBOL_GPL(nvme_wait_reset);
428
429 static void nvme_free_ns_head(struct kref *ref)
430 {
431         struct nvme_ns_head *head =
432                 container_of(ref, struct nvme_ns_head, ref);
433
434         nvme_mpath_remove_disk(head);
435         ida_simple_remove(&head->subsys->ns_ida, head->instance);
436         cleanup_srcu_struct(&head->srcu);
437         nvme_put_subsystem(head->subsys);
438         kfree(head);
439 }
440
441 static void nvme_put_ns_head(struct nvme_ns_head *head)
442 {
443         kref_put(&head->ref, nvme_free_ns_head);
444 }
445
446 static void nvme_free_ns(struct kref *kref)
447 {
448         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
449
450         if (ns->ndev)
451                 nvme_nvm_unregister(ns);
452
453         put_disk(ns->disk);
454         nvme_put_ns_head(ns->head);
455         nvme_put_ctrl(ns->ctrl);
456         kfree(ns);
457 }
458
459 static void nvme_put_ns(struct nvme_ns *ns)
460 {
461         kref_put(&ns->kref, nvme_free_ns);
462 }
463
464 static inline void nvme_clear_nvme_request(struct request *req)
465 {
466         if (!(req->rq_flags & RQF_DONTPREP)) {
467                 nvme_req(req)->retries = 0;
468                 nvme_req(req)->flags = 0;
469                 req->rq_flags |= RQF_DONTPREP;
470         }
471 }
472
473 struct request *nvme_alloc_request(struct request_queue *q,
474                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
475 {
476         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
477         struct request *req;
478
479         if (qid == NVME_QID_ANY) {
480                 req = blk_mq_alloc_request(q, op, flags);
481         } else {
482                 req = blk_mq_alloc_request_hctx(q, op, flags,
483                                 qid ? qid - 1 : 0);
484         }
485         if (IS_ERR(req))
486                 return req;
487
488         req->cmd_flags |= REQ_FAILFAST_DRIVER;
489         nvme_clear_nvme_request(req);
490         nvme_req(req)->cmd = cmd;
491
492         return req;
493 }
494 EXPORT_SYMBOL_GPL(nvme_alloc_request);
495
496 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
497 {
498         struct nvme_command c;
499
500         memset(&c, 0, sizeof(c));
501
502         c.directive.opcode = nvme_admin_directive_send;
503         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
504         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
505         c.directive.dtype = NVME_DIR_IDENTIFY;
506         c.directive.tdtype = NVME_DIR_STREAMS;
507         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
508
509         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
510 }
511
512 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
513 {
514         return nvme_toggle_streams(ctrl, false);
515 }
516
517 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
518 {
519         return nvme_toggle_streams(ctrl, true);
520 }
521
522 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
523                                   struct streams_directive_params *s, u32 nsid)
524 {
525         struct nvme_command c;
526
527         memset(&c, 0, sizeof(c));
528         memset(s, 0, sizeof(*s));
529
530         c.directive.opcode = nvme_admin_directive_recv;
531         c.directive.nsid = cpu_to_le32(nsid);
532         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
533         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
534         c.directive.dtype = NVME_DIR_STREAMS;
535
536         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
537 }
538
539 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
540 {
541         struct streams_directive_params s;
542         int ret;
543
544         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
545                 return 0;
546         if (!streams)
547                 return 0;
548
549         ret = nvme_enable_streams(ctrl);
550         if (ret)
551                 return ret;
552
553         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
554         if (ret)
555                 return ret;
556
557         ctrl->nssa = le16_to_cpu(s.nssa);
558         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
559                 dev_info(ctrl->device, "too few streams (%u) available\n",
560                                         ctrl->nssa);
561                 nvme_disable_streams(ctrl);
562                 return 0;
563         }
564
565         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
566         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
567         return 0;
568 }
569
570 /*
571  * Check if 'req' has a write hint associated with it. If it does, assign
572  * a valid namespace stream to the write.
573  */
574 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
575                                      struct request *req, u16 *control,
576                                      u32 *dsmgmt)
577 {
578         enum rw_hint streamid = req->write_hint;
579
580         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
581                 streamid = 0;
582         else {
583                 streamid--;
584                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
585                         return;
586
587                 *control |= NVME_RW_DTYPE_STREAMS;
588                 *dsmgmt |= streamid << 16;
589         }
590
591         if (streamid < ARRAY_SIZE(req->q->write_hints))
592                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
593 }
594
595 static inline void nvme_setup_flush(struct nvme_ns *ns,
596                 struct nvme_command *cmnd)
597 {
598         cmnd->common.opcode = nvme_cmd_flush;
599         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
600 }
601
602 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
603                 struct nvme_command *cmnd)
604 {
605         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
606         struct nvme_dsm_range *range;
607         struct bio *bio;
608
609         /*
610          * Some devices do not consider the DSM 'Number of Ranges' field when
611          * determining how much data to DMA. Always allocate memory for maximum
612          * number of segments to prevent device reading beyond end of buffer.
613          */
614         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
615
616         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
617         if (!range) {
618                 /*
619                  * If we fail allocation our range, fallback to the controller
620                  * discard page. If that's also busy, it's safe to return
621                  * busy, as we know we can make progress once that's freed.
622                  */
623                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
624                         return BLK_STS_RESOURCE;
625
626                 range = page_address(ns->ctrl->discard_page);
627         }
628
629         __rq_for_each_bio(bio, req) {
630                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
631                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
632
633                 if (n < segments) {
634                         range[n].cattr = cpu_to_le32(0);
635                         range[n].nlb = cpu_to_le32(nlb);
636                         range[n].slba = cpu_to_le64(slba);
637                 }
638                 n++;
639         }
640
641         if (WARN_ON_ONCE(n != segments)) {
642                 if (virt_to_page(range) == ns->ctrl->discard_page)
643                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
644                 else
645                         kfree(range);
646                 return BLK_STS_IOERR;
647         }
648
649         cmnd->dsm.opcode = nvme_cmd_dsm;
650         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
651         cmnd->dsm.nr = cpu_to_le32(segments - 1);
652         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
653
654         req->special_vec.bv_page = virt_to_page(range);
655         req->special_vec.bv_offset = offset_in_page(range);
656         req->special_vec.bv_len = alloc_size;
657         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
658
659         return BLK_STS_OK;
660 }
661
662 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
663                 struct request *req, struct nvme_command *cmnd)
664 {
665         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
666                 return nvme_setup_discard(ns, req, cmnd);
667
668         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
669         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
670         cmnd->write_zeroes.slba =
671                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
672         cmnd->write_zeroes.length =
673                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
674         cmnd->write_zeroes.control = 0;
675         return BLK_STS_OK;
676 }
677
678 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
679                 struct request *req, struct nvme_command *cmnd)
680 {
681         struct nvme_ctrl *ctrl = ns->ctrl;
682         u16 control = 0;
683         u32 dsmgmt = 0;
684
685         if (req->cmd_flags & REQ_FUA)
686                 control |= NVME_RW_FUA;
687         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
688                 control |= NVME_RW_LR;
689
690         if (req->cmd_flags & REQ_RAHEAD)
691                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
692
693         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
694         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
695         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
696         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
697
698         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
699                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
700
701         if (ns->ms) {
702                 /*
703                  * If formated with metadata, the block layer always provides a
704                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
705                  * we enable the PRACT bit for protection information or set the
706                  * namespace capacity to zero to prevent any I/O.
707                  */
708                 if (!blk_integrity_rq(req)) {
709                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
710                                 return BLK_STS_NOTSUPP;
711                         control |= NVME_RW_PRINFO_PRACT;
712                 }
713
714                 switch (ns->pi_type) {
715                 case NVME_NS_DPS_PI_TYPE3:
716                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
717                         break;
718                 case NVME_NS_DPS_PI_TYPE1:
719                 case NVME_NS_DPS_PI_TYPE2:
720                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
721                                         NVME_RW_PRINFO_PRCHK_REF;
722                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
723                         break;
724                 }
725         }
726
727         cmnd->rw.control = cpu_to_le16(control);
728         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
729         return 0;
730 }
731
732 void nvme_cleanup_cmd(struct request *req)
733 {
734         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
735                 struct nvme_ns *ns = req->rq_disk->private_data;
736                 struct page *page = req->special_vec.bv_page;
737
738                 if (page == ns->ctrl->discard_page)
739                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
740                 else
741                         kfree(page_address(page) + req->special_vec.bv_offset);
742         }
743 }
744 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
745
746 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
747                 struct nvme_command *cmd)
748 {
749         blk_status_t ret = BLK_STS_OK;
750
751         nvme_clear_nvme_request(req);
752
753         memset(cmd, 0, sizeof(*cmd));
754         switch (req_op(req)) {
755         case REQ_OP_DRV_IN:
756         case REQ_OP_DRV_OUT:
757                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
758                 break;
759         case REQ_OP_FLUSH:
760                 nvme_setup_flush(ns, cmd);
761                 break;
762         case REQ_OP_WRITE_ZEROES:
763                 ret = nvme_setup_write_zeroes(ns, req, cmd);
764                 break;
765         case REQ_OP_DISCARD:
766                 ret = nvme_setup_discard(ns, req, cmd);
767                 break;
768         case REQ_OP_READ:
769         case REQ_OP_WRITE:
770                 ret = nvme_setup_rw(ns, req, cmd);
771                 break;
772         default:
773                 WARN_ON_ONCE(1);
774                 return BLK_STS_IOERR;
775         }
776
777         cmd->common.command_id = req->tag;
778         trace_nvme_setup_cmd(req, cmd);
779         return ret;
780 }
781 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
782
783 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
784 {
785         struct completion *waiting = rq->end_io_data;
786
787         rq->end_io_data = NULL;
788         complete(waiting);
789 }
790
791 static void nvme_execute_rq_polled(struct request_queue *q,
792                 struct gendisk *bd_disk, struct request *rq, int at_head)
793 {
794         DECLARE_COMPLETION_ONSTACK(wait);
795
796         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
797
798         rq->cmd_flags |= REQ_HIPRI;
799         rq->end_io_data = &wait;
800         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
801
802         while (!completion_done(&wait)) {
803                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
804                 cond_resched();
805         }
806 }
807
808 /*
809  * Returns 0 on success.  If the result is negative, it's a Linux error code;
810  * if the result is positive, it's an NVM Express status code
811  */
812 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
813                 union nvme_result *result, void *buffer, unsigned bufflen,
814                 unsigned timeout, int qid, int at_head,
815                 blk_mq_req_flags_t flags, bool poll)
816 {
817         struct request *req;
818         int ret;
819
820         req = nvme_alloc_request(q, cmd, flags, qid);
821         if (IS_ERR(req))
822                 return PTR_ERR(req);
823
824         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
825
826         if (buffer && bufflen) {
827                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
828                 if (ret)
829                         goto out;
830         }
831
832         if (poll)
833                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
834         else
835                 blk_execute_rq(req->q, NULL, req, at_head);
836         if (result)
837                 *result = nvme_req(req)->result;
838         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
839                 ret = -EINTR;
840         else
841                 ret = nvme_req(req)->status;
842  out:
843         blk_mq_free_request(req);
844         return ret;
845 }
846 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
847
848 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
849                 void *buffer, unsigned bufflen)
850 {
851         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
852                         NVME_QID_ANY, 0, 0, false);
853 }
854 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
855
856 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
857                 unsigned len, u32 seed, bool write)
858 {
859         struct bio_integrity_payload *bip;
860         int ret = -ENOMEM;
861         void *buf;
862
863         buf = kmalloc(len, GFP_KERNEL);
864         if (!buf)
865                 goto out;
866
867         ret = -EFAULT;
868         if (write && copy_from_user(buf, ubuf, len))
869                 goto out_free_meta;
870
871         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
872         if (IS_ERR(bip)) {
873                 ret = PTR_ERR(bip);
874                 goto out_free_meta;
875         }
876
877         bip->bip_iter.bi_size = len;
878         bip->bip_iter.bi_sector = seed;
879         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
880                         offset_in_page(buf));
881         if (ret == len)
882                 return buf;
883         ret = -ENOMEM;
884 out_free_meta:
885         kfree(buf);
886 out:
887         return ERR_PTR(ret);
888 }
889
890 static int nvme_submit_user_cmd(struct request_queue *q,
891                 struct nvme_command *cmd, void __user *ubuffer,
892                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
893                 u32 meta_seed, u64 *result, unsigned timeout)
894 {
895         bool write = nvme_is_write(cmd);
896         struct nvme_ns *ns = q->queuedata;
897         struct gendisk *disk = ns ? ns->disk : NULL;
898         struct request *req;
899         struct bio *bio = NULL;
900         void *meta = NULL;
901         int ret;
902
903         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
904         if (IS_ERR(req))
905                 return PTR_ERR(req);
906
907         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
908         nvme_req(req)->flags |= NVME_REQ_USERCMD;
909
910         if (ubuffer && bufflen) {
911                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
912                                 GFP_KERNEL);
913                 if (ret)
914                         goto out;
915                 bio = req->bio;
916                 bio->bi_disk = disk;
917                 if (disk && meta_buffer && meta_len) {
918                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
919                                         meta_seed, write);
920                         if (IS_ERR(meta)) {
921                                 ret = PTR_ERR(meta);
922                                 goto out_unmap;
923                         }
924                         req->cmd_flags |= REQ_INTEGRITY;
925                 }
926         }
927
928         blk_execute_rq(req->q, disk, req, 0);
929         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
930                 ret = -EINTR;
931         else
932                 ret = nvme_req(req)->status;
933         if (result)
934                 *result = le64_to_cpu(nvme_req(req)->result.u64);
935         if (meta && !ret && !write) {
936                 if (copy_to_user(meta_buffer, meta, meta_len))
937                         ret = -EFAULT;
938         }
939         kfree(meta);
940  out_unmap:
941         if (bio)
942                 blk_rq_unmap_user(bio);
943  out:
944         blk_mq_free_request(req);
945         return ret;
946 }
947
948 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
949 {
950         struct nvme_ctrl *ctrl = rq->end_io_data;
951         unsigned long flags;
952         bool startka = false;
953
954         blk_mq_free_request(rq);
955
956         if (status) {
957                 dev_err(ctrl->device,
958                         "failed nvme_keep_alive_end_io error=%d\n",
959                                 status);
960                 return;
961         }
962
963         ctrl->comp_seen = false;
964         spin_lock_irqsave(&ctrl->lock, flags);
965         if (ctrl->state == NVME_CTRL_LIVE ||
966             ctrl->state == NVME_CTRL_CONNECTING)
967                 startka = true;
968         spin_unlock_irqrestore(&ctrl->lock, flags);
969         if (startka)
970                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
971 }
972
973 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
974 {
975         struct request *rq;
976
977         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
978                         NVME_QID_ANY);
979         if (IS_ERR(rq))
980                 return PTR_ERR(rq);
981
982         rq->timeout = ctrl->kato * HZ;
983         rq->end_io_data = ctrl;
984
985         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
986
987         return 0;
988 }
989
990 static void nvme_keep_alive_work(struct work_struct *work)
991 {
992         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
993                         struct nvme_ctrl, ka_work);
994         bool comp_seen = ctrl->comp_seen;
995
996         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
997                 dev_dbg(ctrl->device,
998                         "reschedule traffic based keep-alive timer\n");
999                 ctrl->comp_seen = false;
1000                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1001                 return;
1002         }
1003
1004         if (nvme_keep_alive(ctrl)) {
1005                 /* allocation failure, reset the controller */
1006                 dev_err(ctrl->device, "keep-alive failed\n");
1007                 nvme_reset_ctrl(ctrl);
1008                 return;
1009         }
1010 }
1011
1012 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1013 {
1014         if (unlikely(ctrl->kato == 0))
1015                 return;
1016
1017         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1018 }
1019
1020 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1021 {
1022         if (unlikely(ctrl->kato == 0))
1023                 return;
1024
1025         cancel_delayed_work_sync(&ctrl->ka_work);
1026 }
1027 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1028
1029 /*
1030  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1031  * flag, thus sending any new CNS opcodes has a big chance of not working.
1032  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1033  * (but not for any later version).
1034  */
1035 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1036 {
1037         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1038                 return ctrl->vs < NVME_VS(1, 2, 0);
1039         return ctrl->vs < NVME_VS(1, 1, 0);
1040 }
1041
1042 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1043 {
1044         struct nvme_command c = { };
1045         int error;
1046
1047         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1048         c.identify.opcode = nvme_admin_identify;
1049         c.identify.cns = NVME_ID_CNS_CTRL;
1050
1051         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1052         if (!*id)
1053                 return -ENOMEM;
1054
1055         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1056                         sizeof(struct nvme_id_ctrl));
1057         if (error)
1058                 kfree(*id);
1059         return error;
1060 }
1061
1062 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1063                 struct nvme_ns_id_desc *cur)
1064 {
1065         const char *warn_str = "ctrl returned bogus length:";
1066         void *data = cur;
1067
1068         switch (cur->nidt) {
1069         case NVME_NIDT_EUI64:
1070                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1071                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1072                                  warn_str, cur->nidl);
1073                         return -1;
1074                 }
1075                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1076                 return NVME_NIDT_EUI64_LEN;
1077         case NVME_NIDT_NGUID:
1078                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1079                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1080                                  warn_str, cur->nidl);
1081                         return -1;
1082                 }
1083                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1084                 return NVME_NIDT_NGUID_LEN;
1085         case NVME_NIDT_UUID:
1086                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1087                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1088                                  warn_str, cur->nidl);
1089                         return -1;
1090                 }
1091                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1092                 return NVME_NIDT_UUID_LEN;
1093         default:
1094                 /* Skip unknown types */
1095                 return cur->nidl;
1096         }
1097 }
1098
1099 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1100                 struct nvme_ns_ids *ids)
1101 {
1102         struct nvme_command c = { };
1103         int status;
1104         void *data;
1105         int pos;
1106         int len;
1107
1108         c.identify.opcode = nvme_admin_identify;
1109         c.identify.nsid = cpu_to_le32(nsid);
1110         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1111
1112         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1113         if (!data)
1114                 return -ENOMEM;
1115
1116         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1117                                       NVME_IDENTIFY_DATA_SIZE);
1118         if (status) {
1119                 dev_warn(ctrl->device,
1120                         "Identify Descriptors failed (%d)\n", status);
1121                  /*
1122                   * Don't treat an error as fatal, as we potentially already
1123                   * have a NGUID or EUI-64.
1124                   */
1125                 if (status > 0 && !(status & NVME_SC_DNR))
1126                         status = 0;
1127                 goto free_data;
1128         }
1129
1130         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1131                 struct nvme_ns_id_desc *cur = data + pos;
1132
1133                 if (cur->nidl == 0)
1134                         break;
1135
1136                 len = nvme_process_ns_desc(ctrl, ids, cur);
1137                 if (len < 0)
1138                         goto free_data;
1139
1140                 len += sizeof(*cur);
1141         }
1142 free_data:
1143         kfree(data);
1144         return status;
1145 }
1146
1147 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1148 {
1149         struct nvme_command c = { };
1150
1151         c.identify.opcode = nvme_admin_identify;
1152         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1153         c.identify.nsid = cpu_to_le32(nsid);
1154         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1155                                     NVME_IDENTIFY_DATA_SIZE);
1156 }
1157
1158 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1159                 unsigned nsid, struct nvme_id_ns **id)
1160 {
1161         struct nvme_command c = { };
1162         int error;
1163
1164         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1165         c.identify.opcode = nvme_admin_identify;
1166         c.identify.nsid = cpu_to_le32(nsid);
1167         c.identify.cns = NVME_ID_CNS_NS;
1168
1169         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1170         if (!*id)
1171                 return -ENOMEM;
1172
1173         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1174         if (error) {
1175                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1176                 kfree(*id);
1177         }
1178
1179         return error;
1180 }
1181
1182 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1183                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1184 {
1185         union nvme_result res = { 0 };
1186         struct nvme_command c;
1187         int ret;
1188
1189         memset(&c, 0, sizeof(c));
1190         c.features.opcode = op;
1191         c.features.fid = cpu_to_le32(fid);
1192         c.features.dword11 = cpu_to_le32(dword11);
1193
1194         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1195                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1196         if (ret >= 0 && result)
1197                 *result = le32_to_cpu(res.u32);
1198         return ret;
1199 }
1200
1201 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1202                       unsigned int dword11, void *buffer, size_t buflen,
1203                       u32 *result)
1204 {
1205         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1206                              buflen, result);
1207 }
1208 EXPORT_SYMBOL_GPL(nvme_set_features);
1209
1210 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1211                       unsigned int dword11, void *buffer, size_t buflen,
1212                       u32 *result)
1213 {
1214         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1215                              buflen, result);
1216 }
1217 EXPORT_SYMBOL_GPL(nvme_get_features);
1218
1219 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1220 {
1221         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1222         u32 result;
1223         int status, nr_io_queues;
1224
1225         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1226                         &result);
1227         if (status < 0)
1228                 return status;
1229
1230         /*
1231          * Degraded controllers might return an error when setting the queue
1232          * count.  We still want to be able to bring them online and offer
1233          * access to the admin queue, as that might be only way to fix them up.
1234          */
1235         if (status > 0) {
1236                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1237                 *count = 0;
1238         } else {
1239                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1240                 *count = min(*count, nr_io_queues);
1241         }
1242
1243         return 0;
1244 }
1245 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1246
1247 #define NVME_AEN_SUPPORTED \
1248         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1249          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1250
1251 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1252 {
1253         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1254         int status;
1255
1256         if (!supported_aens)
1257                 return;
1258
1259         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1260                         NULL, 0, &result);
1261         if (status)
1262                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1263                          supported_aens);
1264
1265         queue_work(nvme_wq, &ctrl->async_event_work);
1266 }
1267
1268 /*
1269  * Convert integer values from ioctl structures to user pointers, silently
1270  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1271  * kernels.
1272  */
1273 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1274 {
1275         if (in_compat_syscall())
1276                 ptrval = (compat_uptr_t)ptrval;
1277         return (void __user *)ptrval;
1278 }
1279
1280 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1281 {
1282         struct nvme_user_io io;
1283         struct nvme_command c;
1284         unsigned length, meta_len;
1285         void __user *metadata;
1286
1287         if (copy_from_user(&io, uio, sizeof(io)))
1288                 return -EFAULT;
1289         if (io.flags)
1290                 return -EINVAL;
1291
1292         switch (io.opcode) {
1293         case nvme_cmd_write:
1294         case nvme_cmd_read:
1295         case nvme_cmd_compare:
1296                 break;
1297         default:
1298                 return -EINVAL;
1299         }
1300
1301         length = (io.nblocks + 1) << ns->lba_shift;
1302         meta_len = (io.nblocks + 1) * ns->ms;
1303         metadata = nvme_to_user_ptr(io.metadata);
1304
1305         if (ns->ext) {
1306                 length += meta_len;
1307                 meta_len = 0;
1308         } else if (meta_len) {
1309                 if ((io.metadata & 3) || !io.metadata)
1310                         return -EINVAL;
1311         }
1312
1313         memset(&c, 0, sizeof(c));
1314         c.rw.opcode = io.opcode;
1315         c.rw.flags = io.flags;
1316         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1317         c.rw.slba = cpu_to_le64(io.slba);
1318         c.rw.length = cpu_to_le16(io.nblocks);
1319         c.rw.control = cpu_to_le16(io.control);
1320         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1321         c.rw.reftag = cpu_to_le32(io.reftag);
1322         c.rw.apptag = cpu_to_le16(io.apptag);
1323         c.rw.appmask = cpu_to_le16(io.appmask);
1324
1325         return nvme_submit_user_cmd(ns->queue, &c,
1326                         nvme_to_user_ptr(io.addr), length,
1327                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1328 }
1329
1330 static u32 nvme_known_admin_effects(u8 opcode)
1331 {
1332         switch (opcode) {
1333         case nvme_admin_format_nvm:
1334                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1335                                         NVME_CMD_EFFECTS_CSE_MASK;
1336         case nvme_admin_sanitize_nvm:
1337                 return NVME_CMD_EFFECTS_CSE_MASK;
1338         default:
1339                 break;
1340         }
1341         return 0;
1342 }
1343
1344 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1345                                                                 u8 opcode)
1346 {
1347         u32 effects = 0;
1348
1349         if (ns) {
1350                 if (ctrl->effects)
1351                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1352                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1353                         dev_warn(ctrl->device,
1354                                  "IO command:%02x has unhandled effects:%08x\n",
1355                                  opcode, effects);
1356                 return 0;
1357         }
1358
1359         if (ctrl->effects)
1360                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1361         effects |= nvme_known_admin_effects(opcode);
1362
1363         /*
1364          * For simplicity, IO to all namespaces is quiesced even if the command
1365          * effects say only one namespace is affected.
1366          */
1367         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1368                 mutex_lock(&ctrl->scan_lock);
1369                 mutex_lock(&ctrl->subsys->lock);
1370                 nvme_mpath_start_freeze(ctrl->subsys);
1371                 nvme_mpath_wait_freeze(ctrl->subsys);
1372                 nvme_start_freeze(ctrl);
1373                 nvme_wait_freeze(ctrl);
1374         }
1375         return effects;
1376 }
1377
1378 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1379 {
1380         struct nvme_ns *ns;
1381
1382         down_read(&ctrl->namespaces_rwsem);
1383         list_for_each_entry(ns, &ctrl->namespaces, list)
1384                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1385                         nvme_set_queue_dying(ns);
1386         up_read(&ctrl->namespaces_rwsem);
1387 }
1388
1389 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1390 {
1391         /*
1392          * Revalidate LBA changes prior to unfreezing. This is necessary to
1393          * prevent memory corruption if a logical block size was changed by
1394          * this command.
1395          */
1396         if (effects & NVME_CMD_EFFECTS_LBCC)
1397                 nvme_update_formats(ctrl);
1398         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1399                 nvme_unfreeze(ctrl);
1400                 nvme_mpath_unfreeze(ctrl->subsys);
1401                 mutex_unlock(&ctrl->subsys->lock);
1402                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1403                 mutex_unlock(&ctrl->scan_lock);
1404         }
1405         if (effects & NVME_CMD_EFFECTS_CCC)
1406                 nvme_init_identify(ctrl);
1407         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1408                 nvme_queue_scan(ctrl);
1409 }
1410
1411 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1412                         struct nvme_passthru_cmd __user *ucmd)
1413 {
1414         struct nvme_passthru_cmd cmd;
1415         struct nvme_command c;
1416         unsigned timeout = 0;
1417         u32 effects;
1418         u64 result;
1419         int status;
1420
1421         if (!capable(CAP_SYS_ADMIN))
1422                 return -EACCES;
1423         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1424                 return -EFAULT;
1425         if (cmd.flags)
1426                 return -EINVAL;
1427
1428         memset(&c, 0, sizeof(c));
1429         c.common.opcode = cmd.opcode;
1430         c.common.flags = cmd.flags;
1431         c.common.nsid = cpu_to_le32(cmd.nsid);
1432         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1433         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1434         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1435         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1436         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1437         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1438         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1439         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1440
1441         if (cmd.timeout_ms)
1442                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1443
1444         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1445         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1446                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1447                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1448                         0, &result, timeout);
1449         nvme_passthru_end(ctrl, effects);
1450
1451         if (status >= 0) {
1452                 if (put_user(result, &ucmd->result))
1453                         return -EFAULT;
1454         }
1455
1456         return status;
1457 }
1458
1459 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1460                         struct nvme_passthru_cmd64 __user *ucmd)
1461 {
1462         struct nvme_passthru_cmd64 cmd;
1463         struct nvme_command c;
1464         unsigned timeout = 0;
1465         u32 effects;
1466         int status;
1467
1468         if (!capable(CAP_SYS_ADMIN))
1469                 return -EACCES;
1470         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1471                 return -EFAULT;
1472         if (cmd.flags)
1473                 return -EINVAL;
1474
1475         memset(&c, 0, sizeof(c));
1476         c.common.opcode = cmd.opcode;
1477         c.common.flags = cmd.flags;
1478         c.common.nsid = cpu_to_le32(cmd.nsid);
1479         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1480         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1481         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1482         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1483         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1484         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1485         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1486         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1487
1488         if (cmd.timeout_ms)
1489                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1490
1491         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1492         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1493                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1494                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1495                         0, &cmd.result, timeout);
1496         nvme_passthru_end(ctrl, effects);
1497
1498         if (status >= 0) {
1499                 if (put_user(cmd.result, &ucmd->result))
1500                         return -EFAULT;
1501         }
1502
1503         return status;
1504 }
1505
1506 /*
1507  * Issue ioctl requests on the first available path.  Note that unlike normal
1508  * block layer requests we will not retry failed request on another controller.
1509  */
1510 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1511                 struct nvme_ns_head **head, int *srcu_idx)
1512 {
1513 #ifdef CONFIG_NVME_MULTIPATH
1514         if (disk->fops == &nvme_ns_head_ops) {
1515                 struct nvme_ns *ns;
1516
1517                 *head = disk->private_data;
1518                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1519                 ns = nvme_find_path(*head);
1520                 if (!ns)
1521                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1522                 return ns;
1523         }
1524 #endif
1525         *head = NULL;
1526         *srcu_idx = -1;
1527         return disk->private_data;
1528 }
1529
1530 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1531 {
1532         if (head)
1533                 srcu_read_unlock(&head->srcu, idx);
1534 }
1535
1536 static bool is_ctrl_ioctl(unsigned int cmd)
1537 {
1538         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1539                 return true;
1540         if (is_sed_ioctl(cmd))
1541                 return true;
1542         return false;
1543 }
1544
1545 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1546                                   void __user *argp,
1547                                   struct nvme_ns_head *head,
1548                                   int srcu_idx)
1549 {
1550         struct nvme_ctrl *ctrl = ns->ctrl;
1551         int ret;
1552
1553         nvme_get_ctrl(ns->ctrl);
1554         nvme_put_ns_from_disk(head, srcu_idx);
1555
1556         switch (cmd) {
1557         case NVME_IOCTL_ADMIN_CMD:
1558                 ret = nvme_user_cmd(ctrl, NULL, argp);
1559                 break;
1560         case NVME_IOCTL_ADMIN64_CMD:
1561                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1562                 break;
1563         default:
1564                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1565                 break;
1566         }
1567         nvme_put_ctrl(ctrl);
1568         return ret;
1569 }
1570
1571 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1572                 unsigned int cmd, unsigned long arg)
1573 {
1574         struct nvme_ns_head *head = NULL;
1575         void __user *argp = (void __user *)arg;
1576         struct nvme_ns *ns;
1577         int srcu_idx, ret;
1578
1579         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1580         if (unlikely(!ns))
1581                 return -EWOULDBLOCK;
1582
1583         /*
1584          * Handle ioctls that apply to the controller instead of the namespace
1585          * seperately and drop the ns SRCU reference early.  This avoids a
1586          * deadlock when deleting namespaces using the passthrough interface.
1587          */
1588         if (is_ctrl_ioctl(cmd))
1589                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1590
1591         switch (cmd) {
1592         case NVME_IOCTL_ID:
1593                 force_successful_syscall_return();
1594                 ret = ns->head->ns_id;
1595                 break;
1596         case NVME_IOCTL_IO_CMD:
1597                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1598                 break;
1599         case NVME_IOCTL_SUBMIT_IO:
1600                 ret = nvme_submit_io(ns, argp);
1601                 break;
1602         case NVME_IOCTL_IO64_CMD:
1603                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1604                 break;
1605         default:
1606                 if (ns->ndev)
1607                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1608                 else
1609                         ret = -ENOTTY;
1610         }
1611
1612         nvme_put_ns_from_disk(head, srcu_idx);
1613         return ret;
1614 }
1615
1616 #ifdef CONFIG_COMPAT
1617 struct nvme_user_io32 {
1618         __u8    opcode;
1619         __u8    flags;
1620         __u16   control;
1621         __u16   nblocks;
1622         __u16   rsvd;
1623         __u64   metadata;
1624         __u64   addr;
1625         __u64   slba;
1626         __u32   dsmgmt;
1627         __u32   reftag;
1628         __u16   apptag;
1629         __u16   appmask;
1630 } __attribute__((__packed__));
1631
1632 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1633
1634 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1635                 unsigned int cmd, unsigned long arg)
1636 {
1637         /*
1638          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1639          * between 32 bit programs and 64 bit kernel.
1640          * The cause is that the results of sizeof(struct nvme_user_io),
1641          * which is used to define NVME_IOCTL_SUBMIT_IO,
1642          * are not same between 32 bit compiler and 64 bit compiler.
1643          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1644          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1645          * Other IOCTL numbers are same between 32 bit and 64 bit.
1646          * So there is nothing to do regarding to other IOCTL numbers.
1647          */
1648         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1649                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1650
1651         return nvme_ioctl(bdev, mode, cmd, arg);
1652 }
1653 #else
1654 #define nvme_compat_ioctl       NULL
1655 #endif /* CONFIG_COMPAT */
1656
1657 static int nvme_open(struct block_device *bdev, fmode_t mode)
1658 {
1659         struct nvme_ns *ns = bdev->bd_disk->private_data;
1660
1661 #ifdef CONFIG_NVME_MULTIPATH
1662         /* should never be called due to GENHD_FL_HIDDEN */
1663         if (WARN_ON_ONCE(ns->head->disk))
1664                 goto fail;
1665 #endif
1666         if (!kref_get_unless_zero(&ns->kref))
1667                 goto fail;
1668         if (!try_module_get(ns->ctrl->ops->module))
1669                 goto fail_put_ns;
1670
1671         return 0;
1672
1673 fail_put_ns:
1674         nvme_put_ns(ns);
1675 fail:
1676         return -ENXIO;
1677 }
1678
1679 static void nvme_release(struct gendisk *disk, fmode_t mode)
1680 {
1681         struct nvme_ns *ns = disk->private_data;
1682
1683         module_put(ns->ctrl->ops->module);
1684         nvme_put_ns(ns);
1685 }
1686
1687 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1688 {
1689         /* some standard values */
1690         geo->heads = 1 << 6;
1691         geo->sectors = 1 << 5;
1692         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1693         return 0;
1694 }
1695
1696 #ifdef CONFIG_BLK_DEV_INTEGRITY
1697 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1698 {
1699         struct blk_integrity integrity;
1700
1701         memset(&integrity, 0, sizeof(integrity));
1702         switch (pi_type) {
1703         case NVME_NS_DPS_PI_TYPE3:
1704                 integrity.profile = &t10_pi_type3_crc;
1705                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1706                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1707                 break;
1708         case NVME_NS_DPS_PI_TYPE1:
1709         case NVME_NS_DPS_PI_TYPE2:
1710                 integrity.profile = &t10_pi_type1_crc;
1711                 integrity.tag_size = sizeof(u16);
1712                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1713                 break;
1714         default:
1715                 integrity.profile = NULL;
1716                 break;
1717         }
1718         integrity.tuple_size = ms;
1719         blk_integrity_register(disk, &integrity);
1720         blk_queue_max_integrity_segments(disk->queue, 1);
1721 }
1722 #else
1723 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1724 {
1725 }
1726 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1727
1728 static void nvme_set_chunk_size(struct nvme_ns *ns)
1729 {
1730         u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1731         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1732 }
1733
1734 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1735 {
1736         struct nvme_ctrl *ctrl = ns->ctrl;
1737         struct request_queue *queue = disk->queue;
1738         u32 size = queue_logical_block_size(queue);
1739
1740         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1741                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1742                 return;
1743         }
1744
1745         if (ctrl->nr_streams && ns->sws && ns->sgs)
1746                 size *= ns->sws * ns->sgs;
1747
1748         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1749                         NVME_DSM_MAX_RANGES);
1750
1751         queue->limits.discard_alignment = 0;
1752         queue->limits.discard_granularity = size;
1753
1754         /* If discard is already enabled, don't reset queue limits */
1755         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1756                 return;
1757
1758         blk_queue_max_discard_sectors(queue, UINT_MAX);
1759         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1760
1761         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1762                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1763 }
1764
1765 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1766 {
1767         u64 max_blocks;
1768
1769         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1770             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1771                 return;
1772         /*
1773          * Even though NVMe spec explicitly states that MDTS is not
1774          * applicable to the write-zeroes:- "The restriction does not apply to
1775          * commands that do not transfer data between the host and the
1776          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1777          * In order to be more cautious use controller's max_hw_sectors value
1778          * to configure the maximum sectors for the write-zeroes which is
1779          * configured based on the controller's MDTS field in the
1780          * nvme_init_identify() if available.
1781          */
1782         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1783                 max_blocks = (u64)USHRT_MAX + 1;
1784         else
1785                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1786
1787         blk_queue_max_write_zeroes_sectors(disk->queue,
1788                                            nvme_lba_to_sect(ns, max_blocks));
1789 }
1790
1791 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1792                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1793 {
1794         memset(ids, 0, sizeof(*ids));
1795
1796         if (ctrl->vs >= NVME_VS(1, 1, 0))
1797                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1798         if (ctrl->vs >= NVME_VS(1, 2, 0))
1799                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1800         if (ctrl->vs >= NVME_VS(1, 3, 0))
1801                 return nvme_identify_ns_descs(ctrl, nsid, ids);
1802         return 0;
1803 }
1804
1805 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1806 {
1807         return !uuid_is_null(&ids->uuid) ||
1808                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1809                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1810 }
1811
1812 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1813 {
1814         return uuid_equal(&a->uuid, &b->uuid) &&
1815                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1816                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1817 }
1818
1819 static void nvme_update_disk_info(struct gendisk *disk,
1820                 struct nvme_ns *ns, struct nvme_id_ns *id)
1821 {
1822         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1823         unsigned short bs = 1 << ns->lba_shift;
1824         u32 atomic_bs, phys_bs, io_opt;
1825
1826         if (ns->lba_shift > PAGE_SHIFT) {
1827                 /* unsupported block size, set capacity to 0 later */
1828                 bs = (1 << 9);
1829         }
1830         blk_mq_freeze_queue(disk->queue);
1831         blk_integrity_unregister(disk);
1832
1833         if (id->nabo == 0) {
1834                 /*
1835                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1836                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1837                  * 0 then AWUPF must be used instead.
1838                  */
1839                 if (id->nsfeat & (1 << 1) && id->nawupf)
1840                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1841                 else
1842                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1843         } else {
1844                 atomic_bs = bs;
1845         }
1846         phys_bs = bs;
1847         io_opt = bs;
1848         if (id->nsfeat & (1 << 4)) {
1849                 /* NPWG = Namespace Preferred Write Granularity */
1850                 phys_bs *= 1 + le16_to_cpu(id->npwg);
1851                 /* NOWS = Namespace Optimal Write Size */
1852                 io_opt *= 1 + le16_to_cpu(id->nows);
1853         }
1854
1855         blk_queue_logical_block_size(disk->queue, bs);
1856         /*
1857          * Linux filesystems assume writing a single physical block is
1858          * an atomic operation. Hence limit the physical block size to the
1859          * value of the Atomic Write Unit Power Fail parameter.
1860          */
1861         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1862         blk_queue_io_min(disk->queue, phys_bs);
1863         blk_queue_io_opt(disk->queue, io_opt);
1864
1865         if (ns->ms && !ns->ext &&
1866             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1867                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1868         if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1869             ns->lba_shift > PAGE_SHIFT)
1870                 capacity = 0;
1871
1872         set_capacity_revalidate_and_notify(disk, capacity, false);
1873
1874         nvme_config_discard(disk, ns);
1875         nvme_config_write_zeroes(disk, ns);
1876
1877         if (id->nsattr & (1 << 0))
1878                 set_disk_ro(disk, true);
1879         else
1880                 set_disk_ro(disk, false);
1881
1882         blk_mq_unfreeze_queue(disk->queue);
1883 }
1884
1885 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1886 {
1887         struct nvme_ns *ns = disk->private_data;
1888
1889         /*
1890          * If identify namespace failed, use default 512 byte block size so
1891          * block layer can use before failing read/write for 0 capacity.
1892          */
1893         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1894         if (ns->lba_shift == 0)
1895                 ns->lba_shift = 9;
1896         ns->noiob = le16_to_cpu(id->noiob);
1897         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1898         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1899         /* the PI implementation requires metadata equal t10 pi tuple size */
1900         if (ns->ms == sizeof(struct t10_pi_tuple))
1901                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1902         else
1903                 ns->pi_type = 0;
1904
1905         if (ns->noiob)
1906                 nvme_set_chunk_size(ns);
1907         nvme_update_disk_info(disk, ns, id);
1908 #ifdef CONFIG_NVME_MULTIPATH
1909         if (ns->head->disk) {
1910                 nvme_update_disk_info(ns->head->disk, ns, id);
1911                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1912                 revalidate_disk(ns->head->disk);
1913         }
1914 #endif
1915 }
1916
1917 static int nvme_revalidate_disk(struct gendisk *disk)
1918 {
1919         struct nvme_ns *ns = disk->private_data;
1920         struct nvme_ctrl *ctrl = ns->ctrl;
1921         struct nvme_id_ns *id;
1922         struct nvme_ns_ids ids;
1923         int ret = 0;
1924
1925         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1926                 set_capacity(disk, 0);
1927                 return -ENODEV;
1928         }
1929
1930         ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1931         if (ret)
1932                 goto out;
1933
1934         if (id->ncap == 0) {
1935                 ret = -ENODEV;
1936                 goto free_id;
1937         }
1938
1939         ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1940         if (ret)
1941                 goto free_id;
1942
1943         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1944                 dev_err(ctrl->device,
1945                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1946                 ret = -ENODEV;
1947                 goto free_id;
1948         }
1949
1950         __nvme_revalidate_disk(disk, id);
1951 free_id:
1952         kfree(id);
1953 out:
1954         /*
1955          * Only fail the function if we got a fatal error back from the
1956          * device, otherwise ignore the error and just move on.
1957          */
1958         if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1959                 ret = 0;
1960         else if (ret > 0)
1961                 ret = blk_status_to_errno(nvme_error_status(ret));
1962         return ret;
1963 }
1964
1965 static char nvme_pr_type(enum pr_type type)
1966 {
1967         switch (type) {
1968         case PR_WRITE_EXCLUSIVE:
1969                 return 1;
1970         case PR_EXCLUSIVE_ACCESS:
1971                 return 2;
1972         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1973                 return 3;
1974         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1975                 return 4;
1976         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1977                 return 5;
1978         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1979                 return 6;
1980         default:
1981                 return 0;
1982         }
1983 };
1984
1985 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1986                                 u64 key, u64 sa_key, u8 op)
1987 {
1988         struct nvme_ns_head *head = NULL;
1989         struct nvme_ns *ns;
1990         struct nvme_command c;
1991         int srcu_idx, ret;
1992         u8 data[16] = { 0, };
1993
1994         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1995         if (unlikely(!ns))
1996                 return -EWOULDBLOCK;
1997
1998         put_unaligned_le64(key, &data[0]);
1999         put_unaligned_le64(sa_key, &data[8]);
2000
2001         memset(&c, 0, sizeof(c));
2002         c.common.opcode = op;
2003         c.common.nsid = cpu_to_le32(ns->head->ns_id);
2004         c.common.cdw10 = cpu_to_le32(cdw10);
2005
2006         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2007         nvme_put_ns_from_disk(head, srcu_idx);
2008         return ret;
2009 }
2010
2011 static int nvme_pr_register(struct block_device *bdev, u64 old,
2012                 u64 new, unsigned flags)
2013 {
2014         u32 cdw10;
2015
2016         if (flags & ~PR_FL_IGNORE_KEY)
2017                 return -EOPNOTSUPP;
2018
2019         cdw10 = old ? 2 : 0;
2020         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2021         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2022         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2023 }
2024
2025 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2026                 enum pr_type type, unsigned flags)
2027 {
2028         u32 cdw10;
2029
2030         if (flags & ~PR_FL_IGNORE_KEY)
2031                 return -EOPNOTSUPP;
2032
2033         cdw10 = nvme_pr_type(type) << 8;
2034         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2035         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2036 }
2037
2038 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2039                 enum pr_type type, bool abort)
2040 {
2041         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2042         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2043 }
2044
2045 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2046 {
2047         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2048         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2049 }
2050
2051 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2052 {
2053         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2054         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2055 }
2056
2057 static const struct pr_ops nvme_pr_ops = {
2058         .pr_register    = nvme_pr_register,
2059         .pr_reserve     = nvme_pr_reserve,
2060         .pr_release     = nvme_pr_release,
2061         .pr_preempt     = nvme_pr_preempt,
2062         .pr_clear       = nvme_pr_clear,
2063 };
2064
2065 #ifdef CONFIG_BLK_SED_OPAL
2066 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2067                 bool send)
2068 {
2069         struct nvme_ctrl *ctrl = data;
2070         struct nvme_command cmd;
2071
2072         memset(&cmd, 0, sizeof(cmd));
2073         if (send)
2074                 cmd.common.opcode = nvme_admin_security_send;
2075         else
2076                 cmd.common.opcode = nvme_admin_security_recv;
2077         cmd.common.nsid = 0;
2078         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2079         cmd.common.cdw11 = cpu_to_le32(len);
2080
2081         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2082                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2083 }
2084 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2085 #endif /* CONFIG_BLK_SED_OPAL */
2086
2087 static const struct block_device_operations nvme_fops = {
2088         .owner          = THIS_MODULE,
2089         .ioctl          = nvme_ioctl,
2090         .compat_ioctl   = nvme_compat_ioctl,
2091         .open           = nvme_open,
2092         .release        = nvme_release,
2093         .getgeo         = nvme_getgeo,
2094         .revalidate_disk= nvme_revalidate_disk,
2095         .pr_ops         = &nvme_pr_ops,
2096 };
2097
2098 #ifdef CONFIG_NVME_MULTIPATH
2099 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2100 {
2101         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2102
2103         if (!kref_get_unless_zero(&head->ref))
2104                 return -ENXIO;
2105         return 0;
2106 }
2107
2108 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2109 {
2110         nvme_put_ns_head(disk->private_data);
2111 }
2112
2113 const struct block_device_operations nvme_ns_head_ops = {
2114         .owner          = THIS_MODULE,
2115         .open           = nvme_ns_head_open,
2116         .release        = nvme_ns_head_release,
2117         .ioctl          = nvme_ioctl,
2118         .compat_ioctl   = nvme_compat_ioctl,
2119         .getgeo         = nvme_getgeo,
2120         .pr_ops         = &nvme_pr_ops,
2121 };
2122 #endif /* CONFIG_NVME_MULTIPATH */
2123
2124 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2125 {
2126         unsigned long timeout =
2127                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2128         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2129         int ret;
2130
2131         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2132                 if (csts == ~0)
2133                         return -ENODEV;
2134                 if ((csts & NVME_CSTS_RDY) == bit)
2135                         break;
2136
2137                 usleep_range(1000, 2000);
2138                 if (fatal_signal_pending(current))
2139                         return -EINTR;
2140                 if (time_after(jiffies, timeout)) {
2141                         dev_err(ctrl->device,
2142                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2143                                 enabled ? "initialisation" : "reset", csts);
2144                         return -ENODEV;
2145                 }
2146         }
2147
2148         return ret;
2149 }
2150
2151 /*
2152  * If the device has been passed off to us in an enabled state, just clear
2153  * the enabled bit.  The spec says we should set the 'shutdown notification
2154  * bits', but doing so may cause the device to complete commands to the
2155  * admin queue ... and we don't know what memory that might be pointing at!
2156  */
2157 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2158 {
2159         int ret;
2160
2161         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2162         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2163
2164         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2165         if (ret)
2166                 return ret;
2167
2168         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2169                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2170
2171         return nvme_wait_ready(ctrl, ctrl->cap, false);
2172 }
2173 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2174
2175 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2176 {
2177         /*
2178          * Default to a 4K page size, with the intention to update this
2179          * path in the future to accomodate architectures with differing
2180          * kernel and IO page sizes.
2181          */
2182         unsigned dev_page_min, page_shift = 12;
2183         int ret;
2184
2185         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2186         if (ret) {
2187                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2188                 return ret;
2189         }
2190         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2191
2192         if (page_shift < dev_page_min) {
2193                 dev_err(ctrl->device,
2194                         "Minimum device page size %u too large for host (%u)\n",
2195                         1 << dev_page_min, 1 << page_shift);
2196                 return -ENODEV;
2197         }
2198
2199         ctrl->page_size = 1 << page_shift;
2200
2201         ctrl->ctrl_config = NVME_CC_CSS_NVM;
2202         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2203         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2204         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2205         ctrl->ctrl_config |= NVME_CC_ENABLE;
2206
2207         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2208         if (ret)
2209                 return ret;
2210         return nvme_wait_ready(ctrl, ctrl->cap, true);
2211 }
2212 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2213
2214 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2215 {
2216         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2217         u32 csts;
2218         int ret;
2219
2220         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2221         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2222
2223         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2224         if (ret)
2225                 return ret;
2226
2227         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2228                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2229                         break;
2230
2231                 msleep(100);
2232                 if (fatal_signal_pending(current))
2233                         return -EINTR;
2234                 if (time_after(jiffies, timeout)) {
2235                         dev_err(ctrl->device,
2236                                 "Device shutdown incomplete; abort shutdown\n");
2237                         return -ENODEV;
2238                 }
2239         }
2240
2241         return ret;
2242 }
2243 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2244
2245 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2246                 struct request_queue *q)
2247 {
2248         bool vwc = false;
2249
2250         if (ctrl->max_hw_sectors) {
2251                 u32 max_segments =
2252                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2253
2254                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2255                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2256                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2257         }
2258         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2259             is_power_of_2(ctrl->max_hw_sectors))
2260                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2261         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2262         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2263                 vwc = true;
2264         blk_queue_write_cache(q, vwc, vwc);
2265 }
2266
2267 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2268 {
2269         __le64 ts;
2270         int ret;
2271
2272         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2273                 return 0;
2274
2275         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2276         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2277                         NULL);
2278         if (ret)
2279                 dev_warn_once(ctrl->device,
2280                         "could not set timestamp (%d)\n", ret);
2281         return ret;
2282 }
2283
2284 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2285 {
2286         struct nvme_feat_host_behavior *host;
2287         int ret;
2288
2289         /* Don't bother enabling the feature if retry delay is not reported */
2290         if (!ctrl->crdt[0])
2291                 return 0;
2292
2293         host = kzalloc(sizeof(*host), GFP_KERNEL);
2294         if (!host)
2295                 return 0;
2296
2297         host->acre = NVME_ENABLE_ACRE;
2298         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2299                                 host, sizeof(*host), NULL);
2300         kfree(host);
2301         return ret;
2302 }
2303
2304 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2305 {
2306         /*
2307          * APST (Autonomous Power State Transition) lets us program a
2308          * table of power state transitions that the controller will
2309          * perform automatically.  We configure it with a simple
2310          * heuristic: we are willing to spend at most 2% of the time
2311          * transitioning between power states.  Therefore, when running
2312          * in any given state, we will enter the next lower-power
2313          * non-operational state after waiting 50 * (enlat + exlat)
2314          * microseconds, as long as that state's exit latency is under
2315          * the requested maximum latency.
2316          *
2317          * We will not autonomously enter any non-operational state for
2318          * which the total latency exceeds ps_max_latency_us.  Users
2319          * can set ps_max_latency_us to zero to turn off APST.
2320          */
2321
2322         unsigned apste;
2323         struct nvme_feat_auto_pst *table;
2324         u64 max_lat_us = 0;
2325         int max_ps = -1;
2326         int ret;
2327
2328         /*
2329          * If APST isn't supported or if we haven't been initialized yet,
2330          * then don't do anything.
2331          */
2332         if (!ctrl->apsta)
2333                 return 0;
2334
2335         if (ctrl->npss > 31) {
2336                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2337                 return 0;
2338         }
2339
2340         table = kzalloc(sizeof(*table), GFP_KERNEL);
2341         if (!table)
2342                 return 0;
2343
2344         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2345                 /* Turn off APST. */
2346                 apste = 0;
2347                 dev_dbg(ctrl->device, "APST disabled\n");
2348         } else {
2349                 __le64 target = cpu_to_le64(0);
2350                 int state;
2351
2352                 /*
2353                  * Walk through all states from lowest- to highest-power.
2354                  * According to the spec, lower-numbered states use more
2355                  * power.  NPSS, despite the name, is the index of the
2356                  * lowest-power state, not the number of states.
2357                  */
2358                 for (state = (int)ctrl->npss; state >= 0; state--) {
2359                         u64 total_latency_us, exit_latency_us, transition_ms;
2360
2361                         if (target)
2362                                 table->entries[state] = target;
2363
2364                         /*
2365                          * Don't allow transitions to the deepest state
2366                          * if it's quirked off.
2367                          */
2368                         if (state == ctrl->npss &&
2369                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2370                                 continue;
2371
2372                         /*
2373                          * Is this state a useful non-operational state for
2374                          * higher-power states to autonomously transition to?
2375                          */
2376                         if (!(ctrl->psd[state].flags &
2377                               NVME_PS_FLAGS_NON_OP_STATE))
2378                                 continue;
2379
2380                         exit_latency_us =
2381                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2382                         if (exit_latency_us > ctrl->ps_max_latency_us)
2383                                 continue;
2384
2385                         total_latency_us =
2386                                 exit_latency_us +
2387                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2388
2389                         /*
2390                          * This state is good.  Use it as the APST idle
2391                          * target for higher power states.
2392                          */
2393                         transition_ms = total_latency_us + 19;
2394                         do_div(transition_ms, 20);
2395                         if (transition_ms > (1 << 24) - 1)
2396                                 transition_ms = (1 << 24) - 1;
2397
2398                         target = cpu_to_le64((state << 3) |
2399                                              (transition_ms << 8));
2400
2401                         if (max_ps == -1)
2402                                 max_ps = state;
2403
2404                         if (total_latency_us > max_lat_us)
2405                                 max_lat_us = total_latency_us;
2406                 }
2407
2408                 apste = 1;
2409
2410                 if (max_ps == -1) {
2411                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2412                 } else {
2413                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2414                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2415                 }
2416         }
2417
2418         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2419                                 table, sizeof(*table), NULL);
2420         if (ret)
2421                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2422
2423         kfree(table);
2424         return ret;
2425 }
2426
2427 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2428 {
2429         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2430         u64 latency;
2431
2432         switch (val) {
2433         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2434         case PM_QOS_LATENCY_ANY:
2435                 latency = U64_MAX;
2436                 break;
2437
2438         default:
2439                 latency = val;
2440         }
2441
2442         if (ctrl->ps_max_latency_us != latency) {
2443                 ctrl->ps_max_latency_us = latency;
2444                 nvme_configure_apst(ctrl);
2445         }
2446 }
2447
2448 struct nvme_core_quirk_entry {
2449         /*
2450          * NVMe model and firmware strings are padded with spaces.  For
2451          * simplicity, strings in the quirk table are padded with NULLs
2452          * instead.
2453          */
2454         u16 vid;
2455         const char *mn;
2456         const char *fr;
2457         unsigned long quirks;
2458 };
2459
2460 static const struct nvme_core_quirk_entry core_quirks[] = {
2461         {
2462                 /*
2463                  * This Toshiba device seems to die using any APST states.  See:
2464                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2465                  */
2466                 .vid = 0x1179,
2467                 .mn = "THNSF5256GPUK TOSHIBA",
2468                 .quirks = NVME_QUIRK_NO_APST,
2469         },
2470         {
2471                 /*
2472                  * This LiteON CL1-3D*-Q11 firmware version has a race
2473                  * condition associated with actions related to suspend to idle
2474                  * LiteON has resolved the problem in future firmware
2475                  */
2476                 .vid = 0x14a4,
2477                 .fr = "22301111",
2478                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2479         }
2480 };
2481
2482 /* match is null-terminated but idstr is space-padded. */
2483 static bool string_matches(const char *idstr, const char *match, size_t len)
2484 {
2485         size_t matchlen;
2486
2487         if (!match)
2488                 return true;
2489
2490         matchlen = strlen(match);
2491         WARN_ON_ONCE(matchlen > len);
2492
2493         if (memcmp(idstr, match, matchlen))
2494                 return false;
2495
2496         for (; matchlen < len; matchlen++)
2497                 if (idstr[matchlen] != ' ')
2498                         return false;
2499
2500         return true;
2501 }
2502
2503 static bool quirk_matches(const struct nvme_id_ctrl *id,
2504                           const struct nvme_core_quirk_entry *q)
2505 {
2506         return q->vid == le16_to_cpu(id->vid) &&
2507                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2508                 string_matches(id->fr, q->fr, sizeof(id->fr));
2509 }
2510
2511 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2512                 struct nvme_id_ctrl *id)
2513 {
2514         size_t nqnlen;
2515         int off;
2516
2517         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2518                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2519                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2520                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2521                         return;
2522                 }
2523
2524                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2525                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2526         }
2527
2528         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2529         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2530                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2531                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2532         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2533         off += sizeof(id->sn);
2534         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2535         off += sizeof(id->mn);
2536         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2537 }
2538
2539 static void nvme_release_subsystem(struct device *dev)
2540 {
2541         struct nvme_subsystem *subsys =
2542                 container_of(dev, struct nvme_subsystem, dev);
2543
2544         if (subsys->instance >= 0)
2545                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2546         kfree(subsys);
2547 }
2548
2549 static void nvme_destroy_subsystem(struct kref *ref)
2550 {
2551         struct nvme_subsystem *subsys =
2552                         container_of(ref, struct nvme_subsystem, ref);
2553
2554         mutex_lock(&nvme_subsystems_lock);
2555         list_del(&subsys->entry);
2556         mutex_unlock(&nvme_subsystems_lock);
2557
2558         ida_destroy(&subsys->ns_ida);
2559         device_del(&subsys->dev);
2560         put_device(&subsys->dev);
2561 }
2562
2563 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2564 {
2565         kref_put(&subsys->ref, nvme_destroy_subsystem);
2566 }
2567
2568 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2569 {
2570         struct nvme_subsystem *subsys;
2571
2572         lockdep_assert_held(&nvme_subsystems_lock);
2573
2574         /*
2575          * Fail matches for discovery subsystems. This results
2576          * in each discovery controller bound to a unique subsystem.
2577          * This avoids issues with validating controller values
2578          * that can only be true when there is a single unique subsystem.
2579          * There may be multiple and completely independent entities
2580          * that provide discovery controllers.
2581          */
2582         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2583                 return NULL;
2584
2585         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2586                 if (strcmp(subsys->subnqn, subsysnqn))
2587                         continue;
2588                 if (!kref_get_unless_zero(&subsys->ref))
2589                         continue;
2590                 return subsys;
2591         }
2592
2593         return NULL;
2594 }
2595
2596 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2597         struct device_attribute subsys_attr_##_name = \
2598                 __ATTR(_name, _mode, _show, NULL)
2599
2600 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2601                                     struct device_attribute *attr,
2602                                     char *buf)
2603 {
2604         struct nvme_subsystem *subsys =
2605                 container_of(dev, struct nvme_subsystem, dev);
2606
2607         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2608 }
2609 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2610
2611 #define nvme_subsys_show_str_function(field)                            \
2612 static ssize_t subsys_##field##_show(struct device *dev,                \
2613                             struct device_attribute *attr, char *buf)   \
2614 {                                                                       \
2615         struct nvme_subsystem *subsys =                                 \
2616                 container_of(dev, struct nvme_subsystem, dev);          \
2617         return sprintf(buf, "%.*s\n",                                   \
2618                        (int)sizeof(subsys->field), subsys->field);      \
2619 }                                                                       \
2620 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2621
2622 nvme_subsys_show_str_function(model);
2623 nvme_subsys_show_str_function(serial);
2624 nvme_subsys_show_str_function(firmware_rev);
2625
2626 static struct attribute *nvme_subsys_attrs[] = {
2627         &subsys_attr_model.attr,
2628         &subsys_attr_serial.attr,
2629         &subsys_attr_firmware_rev.attr,
2630         &subsys_attr_subsysnqn.attr,
2631 #ifdef CONFIG_NVME_MULTIPATH
2632         &subsys_attr_iopolicy.attr,
2633 #endif
2634         NULL,
2635 };
2636
2637 static struct attribute_group nvme_subsys_attrs_group = {
2638         .attrs = nvme_subsys_attrs,
2639 };
2640
2641 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2642         &nvme_subsys_attrs_group,
2643         NULL,
2644 };
2645
2646 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2647                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2648 {
2649         struct nvme_ctrl *tmp;
2650
2651         lockdep_assert_held(&nvme_subsystems_lock);
2652
2653         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2654                 if (nvme_state_terminal(tmp))
2655                         continue;
2656
2657                 if (tmp->cntlid == ctrl->cntlid) {
2658                         dev_err(ctrl->device,
2659                                 "Duplicate cntlid %u with %s, rejecting\n",
2660                                 ctrl->cntlid, dev_name(tmp->device));
2661                         return false;
2662                 }
2663
2664                 if ((id->cmic & (1 << 1)) ||
2665                     (ctrl->opts && ctrl->opts->discovery_nqn))
2666                         continue;
2667
2668                 dev_err(ctrl->device,
2669                         "Subsystem does not support multiple controllers\n");
2670                 return false;
2671         }
2672
2673         return true;
2674 }
2675
2676 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2677 {
2678         struct nvme_subsystem *subsys, *found;
2679         int ret;
2680
2681         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2682         if (!subsys)
2683                 return -ENOMEM;
2684
2685         subsys->instance = -1;
2686         mutex_init(&subsys->lock);
2687         kref_init(&subsys->ref);
2688         INIT_LIST_HEAD(&subsys->ctrls);
2689         INIT_LIST_HEAD(&subsys->nsheads);
2690         nvme_init_subnqn(subsys, ctrl, id);
2691         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2692         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2693         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2694         subsys->vendor_id = le16_to_cpu(id->vid);
2695         subsys->cmic = id->cmic;
2696         subsys->awupf = le16_to_cpu(id->awupf);
2697 #ifdef CONFIG_NVME_MULTIPATH
2698         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2699 #endif
2700
2701         subsys->dev.class = nvme_subsys_class;
2702         subsys->dev.release = nvme_release_subsystem;
2703         subsys->dev.groups = nvme_subsys_attrs_groups;
2704         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2705         device_initialize(&subsys->dev);
2706
2707         mutex_lock(&nvme_subsystems_lock);
2708         found = __nvme_find_get_subsystem(subsys->subnqn);
2709         if (found) {
2710                 put_device(&subsys->dev);
2711                 subsys = found;
2712
2713                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2714                         ret = -EINVAL;
2715                         goto out_put_subsystem;
2716                 }
2717         } else {
2718                 ret = device_add(&subsys->dev);
2719                 if (ret) {
2720                         dev_err(ctrl->device,
2721                                 "failed to register subsystem device.\n");
2722                         put_device(&subsys->dev);
2723                         goto out_unlock;
2724                 }
2725                 ida_init(&subsys->ns_ida);
2726                 list_add_tail(&subsys->entry, &nvme_subsystems);
2727         }
2728
2729         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2730                                 dev_name(ctrl->device));
2731         if (ret) {
2732                 dev_err(ctrl->device,
2733                         "failed to create sysfs link from subsystem.\n");
2734                 goto out_put_subsystem;
2735         }
2736
2737         if (!found)
2738                 subsys->instance = ctrl->instance;
2739         ctrl->subsys = subsys;
2740         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2741         mutex_unlock(&nvme_subsystems_lock);
2742         return 0;
2743
2744 out_put_subsystem:
2745         nvme_put_subsystem(subsys);
2746 out_unlock:
2747         mutex_unlock(&nvme_subsystems_lock);
2748         return ret;
2749 }
2750
2751 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2752                 void *log, size_t size, u64 offset)
2753 {
2754         struct nvme_command c = { };
2755         u32 dwlen = nvme_bytes_to_numd(size);
2756
2757         c.get_log_page.opcode = nvme_admin_get_log_page;
2758         c.get_log_page.nsid = cpu_to_le32(nsid);
2759         c.get_log_page.lid = log_page;
2760         c.get_log_page.lsp = lsp;
2761         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2762         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2763         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2764         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2765
2766         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2767 }
2768
2769 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2770 {
2771         int ret;
2772
2773         if (!ctrl->effects)
2774                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2775
2776         if (!ctrl->effects)
2777                 return 0;
2778
2779         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2780                         ctrl->effects, sizeof(*ctrl->effects), 0);
2781         if (ret) {
2782                 kfree(ctrl->effects);
2783                 ctrl->effects = NULL;
2784         }
2785         return ret;
2786 }
2787
2788 /*
2789  * Initialize the cached copies of the Identify data and various controller
2790  * register in our nvme_ctrl structure.  This should be called as soon as
2791  * the admin queue is fully up and running.
2792  */
2793 int nvme_init_identify(struct nvme_ctrl *ctrl)
2794 {
2795         struct nvme_id_ctrl *id;
2796         int ret, page_shift;
2797         u32 max_hw_sectors;
2798         bool prev_apst_enabled;
2799
2800         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2801         if (ret) {
2802                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2803                 return ret;
2804         }
2805         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2806         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2807
2808         if (ctrl->vs >= NVME_VS(1, 1, 0))
2809                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2810
2811         ret = nvme_identify_ctrl(ctrl, &id);
2812         if (ret) {
2813                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2814                 return -EIO;
2815         }
2816
2817         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2818                 ret = nvme_get_effects_log(ctrl);
2819                 if (ret < 0)
2820                         goto out_free;
2821         }
2822
2823         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2824                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2825
2826         if (!ctrl->identified) {
2827                 int i;
2828
2829                 ret = nvme_init_subsystem(ctrl, id);
2830                 if (ret)
2831                         goto out_free;
2832
2833                 /*
2834                  * Check for quirks.  Quirk can depend on firmware version,
2835                  * so, in principle, the set of quirks present can change
2836                  * across a reset.  As a possible future enhancement, we
2837                  * could re-scan for quirks every time we reinitialize
2838                  * the device, but we'd have to make sure that the driver
2839                  * behaves intelligently if the quirks change.
2840                  */
2841                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2842                         if (quirk_matches(id, &core_quirks[i]))
2843                                 ctrl->quirks |= core_quirks[i].quirks;
2844                 }
2845         }
2846
2847         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2848                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2849                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2850         }
2851
2852         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2853         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2854         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2855
2856         ctrl->oacs = le16_to_cpu(id->oacs);
2857         ctrl->oncs = le16_to_cpu(id->oncs);
2858         ctrl->mtfa = le16_to_cpu(id->mtfa);
2859         ctrl->oaes = le32_to_cpu(id->oaes);
2860         ctrl->wctemp = le16_to_cpu(id->wctemp);
2861         ctrl->cctemp = le16_to_cpu(id->cctemp);
2862
2863         atomic_set(&ctrl->abort_limit, id->acl + 1);
2864         ctrl->vwc = id->vwc;
2865         if (id->mdts)
2866                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2867         else
2868                 max_hw_sectors = UINT_MAX;
2869         ctrl->max_hw_sectors =
2870                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2871
2872         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2873         ctrl->sgls = le32_to_cpu(id->sgls);
2874         ctrl->kas = le16_to_cpu(id->kas);
2875         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2876         ctrl->ctratt = le32_to_cpu(id->ctratt);
2877
2878         if (id->rtd3e) {
2879                 /* us -> s */
2880                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2881
2882                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2883                                                  shutdown_timeout, 60);
2884
2885                 if (ctrl->shutdown_timeout != shutdown_timeout)
2886                         dev_info(ctrl->device,
2887                                  "Shutdown timeout set to %u seconds\n",
2888                                  ctrl->shutdown_timeout);
2889         } else
2890                 ctrl->shutdown_timeout = shutdown_timeout;
2891
2892         ctrl->npss = id->npss;
2893         ctrl->apsta = id->apsta;
2894         prev_apst_enabled = ctrl->apst_enabled;
2895         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2896                 if (force_apst && id->apsta) {
2897                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2898                         ctrl->apst_enabled = true;
2899                 } else {
2900                         ctrl->apst_enabled = false;
2901                 }
2902         } else {
2903                 ctrl->apst_enabled = id->apsta;
2904         }
2905         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2906
2907         if (ctrl->ops->flags & NVME_F_FABRICS) {
2908                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2909                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2910                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2911                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2912
2913                 /*
2914                  * In fabrics we need to verify the cntlid matches the
2915                  * admin connect
2916                  */
2917                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2918                         dev_err(ctrl->device,
2919                                 "Mismatching cntlid: Connect %u vs Identify "
2920                                 "%u, rejecting\n",
2921                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
2922                         ret = -EINVAL;
2923                         goto out_free;
2924                 }
2925
2926                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2927                         dev_err(ctrl->device,
2928                                 "keep-alive support is mandatory for fabrics\n");
2929                         ret = -EINVAL;
2930                         goto out_free;
2931                 }
2932         } else {
2933                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2934                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2935                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2936                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2937         }
2938
2939         ret = nvme_mpath_init(ctrl, id);
2940         kfree(id);
2941
2942         if (ret < 0)
2943                 return ret;
2944
2945         if (ctrl->apst_enabled && !prev_apst_enabled)
2946                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2947         else if (!ctrl->apst_enabled && prev_apst_enabled)
2948                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2949
2950         ret = nvme_configure_apst(ctrl);
2951         if (ret < 0)
2952                 return ret;
2953         
2954         ret = nvme_configure_timestamp(ctrl);
2955         if (ret < 0)
2956                 return ret;
2957
2958         ret = nvme_configure_directives(ctrl);
2959         if (ret < 0)
2960                 return ret;
2961
2962         ret = nvme_configure_acre(ctrl);
2963         if (ret < 0)
2964                 return ret;
2965
2966         if (!ctrl->identified)
2967                 nvme_hwmon_init(ctrl);
2968
2969         ctrl->identified = true;
2970
2971         return 0;
2972
2973 out_free:
2974         kfree(id);
2975         return ret;
2976 }
2977 EXPORT_SYMBOL_GPL(nvme_init_identify);
2978
2979 static int nvme_dev_open(struct inode *inode, struct file *file)
2980 {
2981         struct nvme_ctrl *ctrl =
2982                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2983
2984         switch (ctrl->state) {
2985         case NVME_CTRL_LIVE:
2986                 break;
2987         default:
2988                 return -EWOULDBLOCK;
2989         }
2990
2991         file->private_data = ctrl;
2992         return 0;
2993 }
2994
2995 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2996 {
2997         struct nvme_ns *ns;
2998         int ret;
2999
3000         down_read(&ctrl->namespaces_rwsem);
3001         if (list_empty(&ctrl->namespaces)) {
3002                 ret = -ENOTTY;
3003                 goto out_unlock;
3004         }
3005
3006         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3007         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3008                 dev_warn(ctrl->device,
3009                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3010                 ret = -EINVAL;
3011                 goto out_unlock;
3012         }
3013
3014         dev_warn(ctrl->device,
3015                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3016         kref_get(&ns->kref);
3017         up_read(&ctrl->namespaces_rwsem);
3018
3019         ret = nvme_user_cmd(ctrl, ns, argp);
3020         nvme_put_ns(ns);
3021         return ret;
3022
3023 out_unlock:
3024         up_read(&ctrl->namespaces_rwsem);
3025         return ret;
3026 }
3027
3028 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3029                 unsigned long arg)
3030 {
3031         struct nvme_ctrl *ctrl = file->private_data;
3032         void __user *argp = (void __user *)arg;
3033
3034         switch (cmd) {
3035         case NVME_IOCTL_ADMIN_CMD:
3036                 return nvme_user_cmd(ctrl, NULL, argp);
3037         case NVME_IOCTL_ADMIN64_CMD:
3038                 return nvme_user_cmd64(ctrl, NULL, argp);
3039         case NVME_IOCTL_IO_CMD:
3040                 return nvme_dev_user_cmd(ctrl, argp);
3041         case NVME_IOCTL_RESET:
3042                 dev_warn(ctrl->device, "resetting controller\n");
3043                 return nvme_reset_ctrl_sync(ctrl);
3044         case NVME_IOCTL_SUBSYS_RESET:
3045                 return nvme_reset_subsystem(ctrl);
3046         case NVME_IOCTL_RESCAN:
3047                 nvme_queue_scan(ctrl);
3048                 return 0;
3049         default:
3050                 return -ENOTTY;
3051         }
3052 }
3053
3054 static const struct file_operations nvme_dev_fops = {
3055         .owner          = THIS_MODULE,
3056         .open           = nvme_dev_open,
3057         .unlocked_ioctl = nvme_dev_ioctl,
3058         .compat_ioctl   = compat_ptr_ioctl,
3059 };
3060
3061 static ssize_t nvme_sysfs_reset(struct device *dev,
3062                                 struct device_attribute *attr, const char *buf,
3063                                 size_t count)
3064 {
3065         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3066         int ret;
3067
3068         ret = nvme_reset_ctrl_sync(ctrl);
3069         if (ret < 0)
3070                 return ret;
3071         return count;
3072 }
3073 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3074
3075 static ssize_t nvme_sysfs_rescan(struct device *dev,
3076                                 struct device_attribute *attr, const char *buf,
3077                                 size_t count)
3078 {
3079         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3080
3081         nvme_queue_scan(ctrl);
3082         return count;
3083 }
3084 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3085
3086 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3087 {
3088         struct gendisk *disk = dev_to_disk(dev);
3089
3090         if (disk->fops == &nvme_fops)
3091                 return nvme_get_ns_from_dev(dev)->head;
3092         else
3093                 return disk->private_data;
3094 }
3095
3096 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3097                 char *buf)
3098 {
3099         struct nvme_ns_head *head = dev_to_ns_head(dev);
3100         struct nvme_ns_ids *ids = &head->ids;
3101         struct nvme_subsystem *subsys = head->subsys;
3102         int serial_len = sizeof(subsys->serial);
3103         int model_len = sizeof(subsys->model);
3104
3105         if (!uuid_is_null(&ids->uuid))
3106                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3107
3108         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3109                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3110
3111         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3112                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3113
3114         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3115                                   subsys->serial[serial_len - 1] == '\0'))
3116                 serial_len--;
3117         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3118                                  subsys->model[model_len - 1] == '\0'))
3119                 model_len--;
3120
3121         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3122                 serial_len, subsys->serial, model_len, subsys->model,
3123                 head->ns_id);
3124 }
3125 static DEVICE_ATTR_RO(wwid);
3126
3127 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3128                 char *buf)
3129 {
3130         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3131 }
3132 static DEVICE_ATTR_RO(nguid);
3133
3134 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3135                 char *buf)
3136 {
3137         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3138
3139         /* For backward compatibility expose the NGUID to userspace if
3140          * we have no UUID set
3141          */
3142         if (uuid_is_null(&ids->uuid)) {
3143                 printk_ratelimited(KERN_WARNING
3144                                    "No UUID available providing old NGUID\n");
3145                 return sprintf(buf, "%pU\n", ids->nguid);
3146         }
3147         return sprintf(buf, "%pU\n", &ids->uuid);
3148 }
3149 static DEVICE_ATTR_RO(uuid);
3150
3151 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3152                 char *buf)
3153 {
3154         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3155 }
3156 static DEVICE_ATTR_RO(eui);
3157
3158 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3159                 char *buf)
3160 {
3161         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3162 }
3163 static DEVICE_ATTR_RO(nsid);
3164
3165 static struct attribute *nvme_ns_id_attrs[] = {
3166         &dev_attr_wwid.attr,
3167         &dev_attr_uuid.attr,
3168         &dev_attr_nguid.attr,
3169         &dev_attr_eui.attr,
3170         &dev_attr_nsid.attr,
3171 #ifdef CONFIG_NVME_MULTIPATH
3172         &dev_attr_ana_grpid.attr,
3173         &dev_attr_ana_state.attr,
3174 #endif
3175         NULL,
3176 };
3177
3178 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3179                 struct attribute *a, int n)
3180 {
3181         struct device *dev = container_of(kobj, struct device, kobj);
3182         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3183
3184         if (a == &dev_attr_uuid.attr) {
3185                 if (uuid_is_null(&ids->uuid) &&
3186                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3187                         return 0;
3188         }
3189         if (a == &dev_attr_nguid.attr) {
3190                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3191                         return 0;
3192         }
3193         if (a == &dev_attr_eui.attr) {
3194                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3195                         return 0;
3196         }
3197 #ifdef CONFIG_NVME_MULTIPATH
3198         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3199                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3200                         return 0;
3201                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3202                         return 0;
3203         }
3204 #endif
3205         return a->mode;
3206 }
3207
3208 static const struct attribute_group nvme_ns_id_attr_group = {
3209         .attrs          = nvme_ns_id_attrs,
3210         .is_visible     = nvme_ns_id_attrs_are_visible,
3211 };
3212
3213 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3214         &nvme_ns_id_attr_group,
3215 #ifdef CONFIG_NVM
3216         &nvme_nvm_attr_group,
3217 #endif
3218         NULL,
3219 };
3220
3221 #define nvme_show_str_function(field)                                           \
3222 static ssize_t  field##_show(struct device *dev,                                \
3223                             struct device_attribute *attr, char *buf)           \
3224 {                                                                               \
3225         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3226         return sprintf(buf, "%.*s\n",                                           \
3227                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3228 }                                                                               \
3229 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3230
3231 nvme_show_str_function(model);
3232 nvme_show_str_function(serial);
3233 nvme_show_str_function(firmware_rev);
3234
3235 #define nvme_show_int_function(field)                                           \
3236 static ssize_t  field##_show(struct device *dev,                                \
3237                             struct device_attribute *attr, char *buf)           \
3238 {                                                                               \
3239         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3240         return sprintf(buf, "%d\n", ctrl->field);       \
3241 }                                                                               \
3242 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3243
3244 nvme_show_int_function(cntlid);
3245 nvme_show_int_function(numa_node);
3246 nvme_show_int_function(queue_count);
3247 nvme_show_int_function(sqsize);
3248
3249 static ssize_t nvme_sysfs_delete(struct device *dev,
3250                                 struct device_attribute *attr, const char *buf,
3251                                 size_t count)
3252 {
3253         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3254
3255         /* Can't delete non-created controllers */
3256         if (!ctrl->created)
3257                 return -EBUSY;
3258
3259         if (device_remove_file_self(dev, attr))
3260                 nvme_delete_ctrl_sync(ctrl);
3261         return count;
3262 }
3263 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3264
3265 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3266                                          struct device_attribute *attr,
3267                                          char *buf)
3268 {
3269         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3270
3271         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3272 }
3273 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3274
3275 static ssize_t nvme_sysfs_show_state(struct device *dev,
3276                                      struct device_attribute *attr,
3277                                      char *buf)
3278 {
3279         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3280         static const char *const state_name[] = {
3281                 [NVME_CTRL_NEW]         = "new",
3282                 [NVME_CTRL_LIVE]        = "live",
3283                 [NVME_CTRL_RESETTING]   = "resetting",
3284                 [NVME_CTRL_CONNECTING]  = "connecting",
3285                 [NVME_CTRL_DELETING]    = "deleting",
3286                 [NVME_CTRL_DEAD]        = "dead",
3287         };
3288
3289         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3290             state_name[ctrl->state])
3291                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3292
3293         return sprintf(buf, "unknown state\n");
3294 }
3295
3296 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3297
3298 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3299                                          struct device_attribute *attr,
3300                                          char *buf)
3301 {
3302         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3303
3304         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3305 }
3306 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3307
3308 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3309                                         struct device_attribute *attr,
3310                                         char *buf)
3311 {
3312         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3313
3314         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3315 }
3316 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3317
3318 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3319                                         struct device_attribute *attr,
3320                                         char *buf)
3321 {
3322         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3323
3324         return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3325 }
3326 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3327
3328 static ssize_t nvme_sysfs_show_address(struct device *dev,
3329                                          struct device_attribute *attr,
3330                                          char *buf)
3331 {
3332         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3333
3334         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3335 }
3336 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3337
3338 static struct attribute *nvme_dev_attrs[] = {
3339         &dev_attr_reset_controller.attr,
3340         &dev_attr_rescan_controller.attr,
3341         &dev_attr_model.attr,
3342         &dev_attr_serial.attr,
3343         &dev_attr_firmware_rev.attr,
3344         &dev_attr_cntlid.attr,
3345         &dev_attr_delete_controller.attr,
3346         &dev_attr_transport.attr,
3347         &dev_attr_subsysnqn.attr,
3348         &dev_attr_address.attr,
3349         &dev_attr_state.attr,
3350         &dev_attr_numa_node.attr,
3351         &dev_attr_queue_count.attr,
3352         &dev_attr_sqsize.attr,
3353         &dev_attr_hostnqn.attr,
3354         &dev_attr_hostid.attr,
3355         NULL
3356 };
3357
3358 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3359                 struct attribute *a, int n)
3360 {
3361         struct device *dev = container_of(kobj, struct device, kobj);
3362         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3363
3364         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3365                 return 0;
3366         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3367                 return 0;
3368         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3369                 return 0;
3370         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3371                 return 0;
3372
3373         return a->mode;
3374 }
3375
3376 static struct attribute_group nvme_dev_attrs_group = {
3377         .attrs          = nvme_dev_attrs,
3378         .is_visible     = nvme_dev_attrs_are_visible,
3379 };
3380
3381 static const struct attribute_group *nvme_dev_attr_groups[] = {
3382         &nvme_dev_attrs_group,
3383         NULL,
3384 };
3385
3386 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3387                 unsigned nsid)
3388 {
3389         struct nvme_ns_head *h;
3390
3391         lockdep_assert_held(&subsys->lock);
3392
3393         list_for_each_entry(h, &subsys->nsheads, entry) {
3394                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3395                         return h;
3396         }
3397
3398         return NULL;
3399 }
3400
3401 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3402                 struct nvme_ns_head *new)
3403 {
3404         struct nvme_ns_head *h;
3405
3406         lockdep_assert_held(&subsys->lock);
3407
3408         list_for_each_entry(h, &subsys->nsheads, entry) {
3409                 if (nvme_ns_ids_valid(&new->ids) &&
3410                     nvme_ns_ids_equal(&new->ids, &h->ids))
3411                         return -EINVAL;
3412         }
3413
3414         return 0;
3415 }
3416
3417 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3418                 unsigned nsid, struct nvme_ns_ids *ids)
3419 {
3420         struct nvme_ns_head *head;
3421         size_t size = sizeof(*head);
3422         int ret = -ENOMEM;
3423
3424 #ifdef CONFIG_NVME_MULTIPATH
3425         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3426 #endif
3427
3428         head = kzalloc(size, GFP_KERNEL);
3429         if (!head)
3430                 goto out;
3431         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3432         if (ret < 0)
3433                 goto out_free_head;
3434         head->instance = ret;
3435         INIT_LIST_HEAD(&head->list);
3436         ret = init_srcu_struct(&head->srcu);
3437         if (ret)
3438                 goto out_ida_remove;
3439         head->subsys = ctrl->subsys;
3440         head->ns_id = nsid;
3441         head->ids = *ids;
3442         kref_init(&head->ref);
3443
3444         ret = __nvme_check_ids(ctrl->subsys, head);
3445         if (ret) {
3446                 dev_err(ctrl->device,
3447                         "duplicate IDs for nsid %d\n", nsid);
3448                 goto out_cleanup_srcu;
3449         }
3450
3451         ret = nvme_mpath_alloc_disk(ctrl, head);
3452         if (ret)
3453                 goto out_cleanup_srcu;
3454
3455         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3456
3457         kref_get(&ctrl->subsys->ref);
3458
3459         return head;
3460 out_cleanup_srcu:
3461         cleanup_srcu_struct(&head->srcu);
3462 out_ida_remove:
3463         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3464 out_free_head:
3465         kfree(head);
3466 out:
3467         if (ret > 0)
3468                 ret = blk_status_to_errno(nvme_error_status(ret));
3469         return ERR_PTR(ret);
3470 }
3471
3472 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3473                 struct nvme_id_ns *id)
3474 {
3475         struct nvme_ctrl *ctrl = ns->ctrl;
3476         bool is_shared = id->nmic & (1 << 0);
3477         struct nvme_ns_head *head = NULL;
3478         struct nvme_ns_ids ids;
3479         int ret = 0;
3480
3481         ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3482         if (ret)
3483                 goto out;
3484
3485         mutex_lock(&ctrl->subsys->lock);
3486         head = nvme_find_ns_head(ctrl->subsys, nsid);
3487         if (!head) {
3488                 head = nvme_alloc_ns_head(ctrl, nsid, &ids);
3489                 if (IS_ERR(head)) {
3490                         ret = PTR_ERR(head);
3491                         goto out_unlock;
3492                 }
3493                 head->shared = is_shared;
3494         } else {
3495                 if (!is_shared || !head->shared) {
3496                         dev_err(ctrl->device,
3497                                 "Duplicate unshared namespace %d\n",
3498                                         nsid);
3499                         ret = -EINVAL;
3500                         nvme_put_ns_head(head);
3501                         goto out_unlock;
3502                 }
3503                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3504                         dev_err(ctrl->device,
3505                                 "IDs don't match for shared namespace %d\n",
3506                                         nsid);
3507                         ret = -EINVAL;
3508                         nvme_put_ns_head(head);
3509                         goto out_unlock;
3510                 }
3511         }
3512
3513         list_add_tail(&ns->siblings, &head->list);
3514         ns->head = head;
3515
3516 out_unlock:
3517         mutex_unlock(&ctrl->subsys->lock);
3518 out:
3519         if (ret > 0)
3520                 ret = blk_status_to_errno(nvme_error_status(ret));
3521         return ret;
3522 }
3523
3524 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3525 {
3526         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3527         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3528
3529         return nsa->head->ns_id - nsb->head->ns_id;
3530 }
3531
3532 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3533 {
3534         struct nvme_ns *ns, *ret = NULL;
3535
3536         down_read(&ctrl->namespaces_rwsem);
3537         list_for_each_entry(ns, &ctrl->namespaces, list) {
3538                 if (ns->head->ns_id == nsid) {
3539                         if (!kref_get_unless_zero(&ns->kref))
3540                                 continue;
3541                         ret = ns;
3542                         break;
3543                 }
3544                 if (ns->head->ns_id > nsid)
3545                         break;
3546         }
3547         up_read(&ctrl->namespaces_rwsem);
3548         return ret;
3549 }
3550
3551 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3552 {
3553         struct streams_directive_params s;
3554         int ret;
3555
3556         if (!ctrl->nr_streams)
3557                 return 0;
3558
3559         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3560         if (ret)
3561                 return ret;
3562
3563         ns->sws = le32_to_cpu(s.sws);
3564         ns->sgs = le16_to_cpu(s.sgs);
3565
3566         if (ns->sws) {
3567                 unsigned int bs = 1 << ns->lba_shift;
3568
3569                 blk_queue_io_min(ns->queue, bs * ns->sws);
3570                 if (ns->sgs)
3571                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3572         }
3573
3574         return 0;
3575 }
3576
3577 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3578 {
3579         struct nvme_ns *ns;
3580         struct gendisk *disk;
3581         struct nvme_id_ns *id;
3582         char disk_name[DISK_NAME_LEN];
3583         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3584
3585         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3586         if (!ns)
3587                 return;
3588
3589         ns->queue = blk_mq_init_queue(ctrl->tagset);
3590         if (IS_ERR(ns->queue))
3591                 goto out_free_ns;
3592
3593         if (ctrl->opts && ctrl->opts->data_digest)
3594                 ns->queue->backing_dev_info->capabilities
3595                         |= BDI_CAP_STABLE_WRITES;
3596
3597         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3598         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3599                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3600
3601         ns->queue->queuedata = ns;
3602         ns->ctrl = ctrl;
3603
3604         kref_init(&ns->kref);
3605         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3606
3607         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3608         nvme_set_queue_limits(ctrl, ns->queue);
3609
3610         ret = nvme_identify_ns(ctrl, nsid, &id);
3611         if (ret)
3612                 goto out_free_queue;
3613
3614         if (id->ncap == 0)      /* no namespace (legacy quirk) */
3615                 goto out_free_id;
3616
3617         ret = nvme_init_ns_head(ns, nsid, id);
3618         if (ret)
3619                 goto out_free_id;
3620         nvme_setup_streams_ns(ctrl, ns);
3621         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3622
3623         disk = alloc_disk_node(0, node);
3624         if (!disk)
3625                 goto out_unlink_ns;
3626
3627         disk->fops = &nvme_fops;
3628         disk->private_data = ns;
3629         disk->queue = ns->queue;
3630         disk->flags = flags;
3631         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3632         ns->disk = disk;
3633
3634         __nvme_revalidate_disk(disk, id);
3635
3636         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3637                 ret = nvme_nvm_register(ns, disk_name, node);
3638                 if (ret) {
3639                         dev_warn(ctrl->device, "LightNVM init failure\n");
3640                         goto out_put_disk;
3641                 }
3642         }
3643
3644         down_write(&ctrl->namespaces_rwsem);
3645         list_add_tail(&ns->list, &ctrl->namespaces);
3646         up_write(&ctrl->namespaces_rwsem);
3647
3648         nvme_get_ctrl(ctrl);
3649
3650         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3651
3652         nvme_mpath_add_disk(ns, id);
3653         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3654         kfree(id);
3655
3656         return;
3657  out_put_disk:
3658         /* prevent double queue cleanup */
3659         ns->disk->queue = NULL;
3660         put_disk(ns->disk);
3661  out_unlink_ns:
3662         mutex_lock(&ctrl->subsys->lock);
3663         list_del_rcu(&ns->siblings);
3664         if (list_empty(&ns->head->list))
3665                 list_del_init(&ns->head->entry);
3666         mutex_unlock(&ctrl->subsys->lock);
3667         nvme_put_ns_head(ns->head);
3668  out_free_id:
3669         kfree(id);
3670  out_free_queue:
3671         blk_cleanup_queue(ns->queue);
3672  out_free_ns:
3673         kfree(ns);
3674 }
3675
3676 static void nvme_ns_remove(struct nvme_ns *ns)
3677 {
3678         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3679                 return;
3680
3681         nvme_fault_inject_fini(&ns->fault_inject);
3682
3683         mutex_lock(&ns->ctrl->subsys->lock);
3684         list_del_rcu(&ns->siblings);
3685         if (list_empty(&ns->head->list))
3686                 list_del_init(&ns->head->entry);
3687         mutex_unlock(&ns->ctrl->subsys->lock);
3688
3689         synchronize_rcu(); /* guarantee not available in head->list */
3690         nvme_mpath_clear_current_path(ns);
3691         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3692
3693         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3694                 del_gendisk(ns->disk);
3695                 blk_cleanup_queue(ns->queue);
3696                 if (blk_get_integrity(ns->disk))
3697                         blk_integrity_unregister(ns->disk);
3698         }
3699
3700         down_write(&ns->ctrl->namespaces_rwsem);
3701         list_del_init(&ns->list);
3702         up_write(&ns->ctrl->namespaces_rwsem);
3703
3704         nvme_mpath_check_last_path(ns);
3705         nvme_put_ns(ns);
3706 }
3707
3708 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3709 {
3710         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3711
3712         if (ns) {
3713                 nvme_ns_remove(ns);
3714                 nvme_put_ns(ns);
3715         }
3716 }
3717
3718 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3719 {
3720         struct nvme_ns *ns;
3721
3722         ns = nvme_find_get_ns(ctrl, nsid);
3723         if (ns) {
3724                 if (ns->disk && revalidate_disk(ns->disk))
3725                         nvme_ns_remove(ns);
3726                 nvme_put_ns(ns);
3727         } else
3728                 nvme_alloc_ns(ctrl, nsid);
3729 }
3730
3731 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3732                                         unsigned nsid)
3733 {
3734         struct nvme_ns *ns, *next;
3735         LIST_HEAD(rm_list);
3736
3737         down_write(&ctrl->namespaces_rwsem);
3738         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3739                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3740                         list_move_tail(&ns->list, &rm_list);
3741         }
3742         up_write(&ctrl->namespaces_rwsem);
3743
3744         list_for_each_entry_safe(ns, next, &rm_list, list)
3745                 nvme_ns_remove(ns);
3746
3747 }
3748
3749 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3750 {
3751         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3752         __le32 *ns_list;
3753         u32 prev = 0;
3754         int ret = 0, i;
3755
3756         if (nvme_ctrl_limited_cns(ctrl))
3757                 return -EOPNOTSUPP;
3758
3759         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3760         if (!ns_list)
3761                 return -ENOMEM;
3762
3763         for (;;) {
3764                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3765                 if (ret)
3766                         goto free;
3767
3768                 for (i = 0; i < nr_entries; i++) {
3769                         u32 nsid = le32_to_cpu(ns_list[i]);
3770
3771                         if (!nsid)      /* end of the list? */
3772                                 goto out;
3773                         nvme_validate_ns(ctrl, nsid);
3774                         while (++prev < nsid)
3775                                 nvme_ns_remove_by_nsid(ctrl, prev);
3776                 }
3777         }
3778  out:
3779         nvme_remove_invalid_namespaces(ctrl, prev);
3780  free:
3781         kfree(ns_list);
3782         return ret;
3783 }
3784
3785 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3786 {
3787         struct nvme_id_ctrl *id;
3788         u32 nn, i;
3789
3790         if (nvme_identify_ctrl(ctrl, &id))
3791                 return;
3792         nn = le32_to_cpu(id->nn);
3793         kfree(id);
3794
3795         for (i = 1; i <= nn; i++)
3796                 nvme_validate_ns(ctrl, i);
3797
3798         nvme_remove_invalid_namespaces(ctrl, nn);
3799 }
3800
3801 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3802 {
3803         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3804         __le32 *log;
3805         int error;
3806
3807         log = kzalloc(log_size, GFP_KERNEL);
3808         if (!log)
3809                 return;
3810
3811         /*
3812          * We need to read the log to clear the AEN, but we don't want to rely
3813          * on it for the changed namespace information as userspace could have
3814          * raced with us in reading the log page, which could cause us to miss
3815          * updates.
3816          */
3817         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3818                         log_size, 0);
3819         if (error)
3820                 dev_warn(ctrl->device,
3821                         "reading changed ns log failed: %d\n", error);
3822
3823         kfree(log);
3824 }
3825
3826 static void nvme_scan_work(struct work_struct *work)
3827 {
3828         struct nvme_ctrl *ctrl =
3829                 container_of(work, struct nvme_ctrl, scan_work);
3830
3831         /* No tagset on a live ctrl means IO queues could not created */
3832         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3833                 return;
3834
3835         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3836                 dev_info(ctrl->device, "rescanning namespaces.\n");
3837                 nvme_clear_changed_ns_log(ctrl);
3838         }
3839
3840         mutex_lock(&ctrl->scan_lock);
3841         if (nvme_scan_ns_list(ctrl) != 0)
3842                 nvme_scan_ns_sequential(ctrl);
3843         mutex_unlock(&ctrl->scan_lock);
3844
3845         down_write(&ctrl->namespaces_rwsem);
3846         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3847         up_write(&ctrl->namespaces_rwsem);
3848 }
3849
3850 /*
3851  * This function iterates the namespace list unlocked to allow recovery from
3852  * controller failure. It is up to the caller to ensure the namespace list is
3853  * not modified by scan work while this function is executing.
3854  */
3855 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3856 {
3857         struct nvme_ns *ns, *next;
3858         LIST_HEAD(ns_list);
3859
3860         /*
3861          * make sure to requeue I/O to all namespaces as these
3862          * might result from the scan itself and must complete
3863          * for the scan_work to make progress
3864          */
3865         nvme_mpath_clear_ctrl_paths(ctrl);
3866
3867         /* prevent racing with ns scanning */
3868         flush_work(&ctrl->scan_work);
3869
3870         /*
3871          * The dead states indicates the controller was not gracefully
3872          * disconnected. In that case, we won't be able to flush any data while
3873          * removing the namespaces' disks; fail all the queues now to avoid
3874          * potentially having to clean up the failed sync later.
3875          */
3876         if (ctrl->state == NVME_CTRL_DEAD)
3877                 nvme_kill_queues(ctrl);
3878
3879         down_write(&ctrl->namespaces_rwsem);
3880         list_splice_init(&ctrl->namespaces, &ns_list);
3881         up_write(&ctrl->namespaces_rwsem);
3882
3883         list_for_each_entry_safe(ns, next, &ns_list, list)
3884                 nvme_ns_remove(ns);
3885 }
3886 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3887
3888 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3889 {
3890         struct nvme_ctrl *ctrl =
3891                 container_of(dev, struct nvme_ctrl, ctrl_device);
3892         struct nvmf_ctrl_options *opts = ctrl->opts;
3893         int ret;
3894
3895         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3896         if (ret)
3897                 return ret;
3898
3899         if (opts) {
3900                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3901                 if (ret)
3902                         return ret;
3903
3904                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3905                                 opts->trsvcid ?: "none");
3906                 if (ret)
3907                         return ret;
3908
3909                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3910                                 opts->host_traddr ?: "none");
3911         }
3912         return ret;
3913 }
3914
3915 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3916 {
3917         char *envp[2] = { NULL, NULL };
3918         u32 aen_result = ctrl->aen_result;
3919
3920         ctrl->aen_result = 0;
3921         if (!aen_result)
3922                 return;
3923
3924         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3925         if (!envp[0])
3926                 return;
3927         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3928         kfree(envp[0]);
3929 }
3930
3931 static void nvme_async_event_work(struct work_struct *work)
3932 {
3933         struct nvme_ctrl *ctrl =
3934                 container_of(work, struct nvme_ctrl, async_event_work);
3935
3936         nvme_aen_uevent(ctrl);
3937         ctrl->ops->submit_async_event(ctrl);
3938 }
3939
3940 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3941 {
3942
3943         u32 csts;
3944
3945         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3946                 return false;
3947
3948         if (csts == ~0)
3949                 return false;
3950
3951         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3952 }
3953
3954 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3955 {
3956         struct nvme_fw_slot_info_log *log;
3957
3958         log = kmalloc(sizeof(*log), GFP_KERNEL);
3959         if (!log)
3960                 return;
3961
3962         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log,
3963                         sizeof(*log), 0))
3964                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3965         kfree(log);
3966 }
3967
3968 static void nvme_fw_act_work(struct work_struct *work)
3969 {
3970         struct nvme_ctrl *ctrl = container_of(work,
3971                                 struct nvme_ctrl, fw_act_work);
3972         unsigned long fw_act_timeout;
3973
3974         if (ctrl->mtfa)
3975                 fw_act_timeout = jiffies +
3976                                 msecs_to_jiffies(ctrl->mtfa * 100);
3977         else
3978                 fw_act_timeout = jiffies +
3979                                 msecs_to_jiffies(admin_timeout * 1000);
3980
3981         nvme_stop_queues(ctrl);
3982         while (nvme_ctrl_pp_status(ctrl)) {
3983                 if (time_after(jiffies, fw_act_timeout)) {
3984                         dev_warn(ctrl->device,
3985                                 "Fw activation timeout, reset controller\n");
3986                         nvme_try_sched_reset(ctrl);
3987                         return;
3988                 }
3989                 msleep(100);
3990         }
3991
3992         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3993                 return;
3994
3995         nvme_start_queues(ctrl);
3996         /* read FW slot information to clear the AER */
3997         nvme_get_fw_slot_info(ctrl);
3998 }
3999
4000 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4001 {
4002         u32 aer_notice_type = (result & 0xff00) >> 8;
4003
4004         trace_nvme_async_event(ctrl, aer_notice_type);
4005
4006         switch (aer_notice_type) {
4007         case NVME_AER_NOTICE_NS_CHANGED:
4008                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4009                 nvme_queue_scan(ctrl);
4010                 break;
4011         case NVME_AER_NOTICE_FW_ACT_STARTING:
4012                 /*
4013                  * We are (ab)using the RESETTING state to prevent subsequent
4014                  * recovery actions from interfering with the controller's
4015                  * firmware activation.
4016                  */
4017                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4018                         queue_work(nvme_wq, &ctrl->fw_act_work);
4019                 break;
4020 #ifdef CONFIG_NVME_MULTIPATH
4021         case NVME_AER_NOTICE_ANA:
4022                 if (!ctrl->ana_log_buf)
4023                         break;
4024                 queue_work(nvme_wq, &ctrl->ana_work);
4025                 break;
4026 #endif
4027         case NVME_AER_NOTICE_DISC_CHANGED:
4028                 ctrl->aen_result = result;
4029                 break;
4030         default:
4031                 dev_warn(ctrl->device, "async event result %08x\n", result);
4032         }
4033 }
4034
4035 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4036                 volatile union nvme_result *res)
4037 {
4038         u32 result = le32_to_cpu(res->u32);
4039         u32 aer_type = result & 0x07;
4040
4041         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4042                 return;
4043
4044         switch (aer_type) {
4045         case NVME_AER_NOTICE:
4046                 nvme_handle_aen_notice(ctrl, result);
4047                 break;
4048         case NVME_AER_ERROR:
4049         case NVME_AER_SMART:
4050         case NVME_AER_CSS:
4051         case NVME_AER_VS:
4052                 trace_nvme_async_event(ctrl, aer_type);
4053                 ctrl->aen_result = result;
4054                 break;
4055         default:
4056                 break;
4057         }
4058         queue_work(nvme_wq, &ctrl->async_event_work);
4059 }
4060 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4061
4062 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4063 {
4064         nvme_mpath_stop(ctrl);
4065         nvme_stop_keep_alive(ctrl);
4066         flush_work(&ctrl->async_event_work);
4067         cancel_work_sync(&ctrl->fw_act_work);
4068 }
4069 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4070
4071 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4072 {
4073         if (ctrl->kato)
4074                 nvme_start_keep_alive(ctrl);
4075
4076         nvme_enable_aen(ctrl);
4077
4078         if (ctrl->queue_count > 1) {
4079                 nvme_queue_scan(ctrl);
4080                 nvme_start_queues(ctrl);
4081         }
4082         ctrl->created = true;
4083 }
4084 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4085
4086 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4087 {
4088         nvme_fault_inject_fini(&ctrl->fault_inject);
4089         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4090         cdev_device_del(&ctrl->cdev, ctrl->device);
4091         nvme_put_ctrl(ctrl);
4092 }
4093 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4094
4095 static void nvme_free_ctrl(struct device *dev)
4096 {
4097         struct nvme_ctrl *ctrl =
4098                 container_of(dev, struct nvme_ctrl, ctrl_device);
4099         struct nvme_subsystem *subsys = ctrl->subsys;
4100
4101         if (subsys && ctrl->instance != subsys->instance)
4102                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4103
4104         kfree(ctrl->effects);
4105         nvme_mpath_uninit(ctrl);
4106         __free_page(ctrl->discard_page);
4107
4108         if (subsys) {
4109                 mutex_lock(&nvme_subsystems_lock);
4110                 list_del(&ctrl->subsys_entry);
4111                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4112                 mutex_unlock(&nvme_subsystems_lock);
4113         }
4114
4115         ctrl->ops->free_ctrl(ctrl);
4116
4117         if (subsys)
4118                 nvme_put_subsystem(subsys);
4119 }
4120
4121 /*
4122  * Initialize a NVMe controller structures.  This needs to be called during
4123  * earliest initialization so that we have the initialized structured around
4124  * during probing.
4125  */
4126 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4127                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4128 {
4129         int ret;
4130
4131         ctrl->state = NVME_CTRL_NEW;
4132         spin_lock_init(&ctrl->lock);
4133         mutex_init(&ctrl->scan_lock);
4134         INIT_LIST_HEAD(&ctrl->namespaces);
4135         init_rwsem(&ctrl->namespaces_rwsem);
4136         ctrl->dev = dev;
4137         ctrl->ops = ops;
4138         ctrl->quirks = quirks;
4139         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4140         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4141         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4142         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4143         init_waitqueue_head(&ctrl->state_wq);
4144
4145         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4146         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4147         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4148
4149         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4150                         PAGE_SIZE);
4151         ctrl->discard_page = alloc_page(GFP_KERNEL);
4152         if (!ctrl->discard_page) {
4153                 ret = -ENOMEM;
4154                 goto out;
4155         }
4156
4157         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4158         if (ret < 0)
4159                 goto out;
4160         ctrl->instance = ret;
4161
4162         device_initialize(&ctrl->ctrl_device);
4163         ctrl->device = &ctrl->ctrl_device;
4164         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4165         ctrl->device->class = nvme_class;
4166         ctrl->device->parent = ctrl->dev;
4167         ctrl->device->groups = nvme_dev_attr_groups;
4168         ctrl->device->release = nvme_free_ctrl;
4169         dev_set_drvdata(ctrl->device, ctrl);
4170         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4171         if (ret)
4172                 goto out_release_instance;
4173
4174         nvme_get_ctrl(ctrl);
4175         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4176         ctrl->cdev.owner = ops->module;
4177         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4178         if (ret)
4179                 goto out_free_name;
4180
4181         /*
4182          * Initialize latency tolerance controls.  The sysfs files won't
4183          * be visible to userspace unless the device actually supports APST.
4184          */
4185         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4186         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4187                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4188
4189         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4190
4191         return 0;
4192 out_free_name:
4193         nvme_put_ctrl(ctrl);
4194         kfree_const(ctrl->device->kobj.name);
4195 out_release_instance:
4196         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4197 out:
4198         if (ctrl->discard_page)
4199                 __free_page(ctrl->discard_page);
4200         return ret;
4201 }
4202 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4203
4204 /**
4205  * nvme_kill_queues(): Ends all namespace queues
4206  * @ctrl: the dead controller that needs to end
4207  *
4208  * Call this function when the driver determines it is unable to get the
4209  * controller in a state capable of servicing IO.
4210  */
4211 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4212 {
4213         struct nvme_ns *ns;
4214
4215         down_read(&ctrl->namespaces_rwsem);
4216
4217         /* Forcibly unquiesce queues to avoid blocking dispatch */
4218         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4219                 blk_mq_unquiesce_queue(ctrl->admin_q);
4220
4221         list_for_each_entry(ns, &ctrl->namespaces, list)
4222                 nvme_set_queue_dying(ns);
4223
4224         up_read(&ctrl->namespaces_rwsem);
4225 }
4226 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4227
4228 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4229 {
4230         struct nvme_ns *ns;
4231
4232         down_read(&ctrl->namespaces_rwsem);
4233         list_for_each_entry(ns, &ctrl->namespaces, list)
4234                 blk_mq_unfreeze_queue(ns->queue);
4235         up_read(&ctrl->namespaces_rwsem);
4236 }
4237 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4238
4239 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4240 {
4241         struct nvme_ns *ns;
4242
4243         down_read(&ctrl->namespaces_rwsem);
4244         list_for_each_entry(ns, &ctrl->namespaces, list) {
4245                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4246                 if (timeout <= 0)
4247                         break;
4248         }
4249         up_read(&ctrl->namespaces_rwsem);
4250 }
4251 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4252
4253 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4254 {
4255         struct nvme_ns *ns;
4256
4257         down_read(&ctrl->namespaces_rwsem);
4258         list_for_each_entry(ns, &ctrl->namespaces, list)
4259                 blk_mq_freeze_queue_wait(ns->queue);
4260         up_read(&ctrl->namespaces_rwsem);
4261 }
4262 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4263
4264 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4265 {
4266         struct nvme_ns *ns;
4267
4268         down_read(&ctrl->namespaces_rwsem);
4269         list_for_each_entry(ns, &ctrl->namespaces, list)
4270                 blk_freeze_queue_start(ns->queue);
4271         up_read(&ctrl->namespaces_rwsem);
4272 }
4273 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4274
4275 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4276 {
4277         struct nvme_ns *ns;
4278
4279         down_read(&ctrl->namespaces_rwsem);
4280         list_for_each_entry(ns, &ctrl->namespaces, list)
4281                 blk_mq_quiesce_queue(ns->queue);
4282         up_read(&ctrl->namespaces_rwsem);
4283 }
4284 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4285
4286 void nvme_start_queues(struct nvme_ctrl *ctrl)
4287 {
4288         struct nvme_ns *ns;
4289
4290         down_read(&ctrl->namespaces_rwsem);
4291         list_for_each_entry(ns, &ctrl->namespaces, list)
4292                 blk_mq_unquiesce_queue(ns->queue);
4293         up_read(&ctrl->namespaces_rwsem);
4294 }
4295 EXPORT_SYMBOL_GPL(nvme_start_queues);
4296
4297
4298 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4299 {
4300         struct nvme_ns *ns;
4301
4302         down_read(&ctrl->namespaces_rwsem);
4303         list_for_each_entry(ns, &ctrl->namespaces, list)
4304                 blk_sync_queue(ns->queue);
4305         up_read(&ctrl->namespaces_rwsem);
4306
4307         if (ctrl->admin_q)
4308                 blk_sync_queue(ctrl->admin_q);
4309 }
4310 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4311
4312 /*
4313  * Check we didn't inadvertently grow the command structure sizes:
4314  */
4315 static inline void _nvme_check_size(void)
4316 {
4317         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4318         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4319         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4320         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4321         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4322         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4323         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4324         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4325         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4326         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4327         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4328         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4329         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4330         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4331         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4332         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4333         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4334 }
4335
4336
4337 static int __init nvme_core_init(void)
4338 {
4339         int result = -ENOMEM;
4340
4341         _nvme_check_size();
4342
4343         nvme_wq = alloc_workqueue("nvme-wq",
4344                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4345         if (!nvme_wq)
4346                 goto out;
4347
4348         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4349                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4350         if (!nvme_reset_wq)
4351                 goto destroy_wq;
4352
4353         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4354                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4355         if (!nvme_delete_wq)
4356                 goto destroy_reset_wq;
4357
4358         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4359         if (result < 0)
4360                 goto destroy_delete_wq;
4361
4362         nvme_class = class_create(THIS_MODULE, "nvme");
4363         if (IS_ERR(nvme_class)) {
4364                 result = PTR_ERR(nvme_class);
4365                 goto unregister_chrdev;
4366         }
4367         nvme_class->dev_uevent = nvme_class_uevent;
4368
4369         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4370         if (IS_ERR(nvme_subsys_class)) {
4371                 result = PTR_ERR(nvme_subsys_class);
4372                 goto destroy_class;
4373         }
4374         return 0;
4375
4376 destroy_class:
4377         class_destroy(nvme_class);
4378 unregister_chrdev:
4379         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4380 destroy_delete_wq:
4381         destroy_workqueue(nvme_delete_wq);
4382 destroy_reset_wq:
4383         destroy_workqueue(nvme_reset_wq);
4384 destroy_wq:
4385         destroy_workqueue(nvme_wq);
4386 out:
4387         return result;
4388 }
4389
4390 static void __exit nvme_core_exit(void)
4391 {
4392         class_destroy(nvme_subsys_class);
4393         class_destroy(nvme_class);
4394         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4395         destroy_workqueue(nvme_delete_wq);
4396         destroy_workqueue(nvme_reset_wq);
4397         destroy_workqueue(nvme_wq);
4398         ida_destroy(&nvme_instance_ida);
4399 }
4400
4401 MODULE_LICENSE("GPL");
4402 MODULE_VERSION("1.0");
4403 module_init(nvme_core_init);
4404 module_exit(nvme_core_exit);