nvme: consolidate chunk_sectors settings
[linux-2.6-microblaze.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/t10-pi.h>
23 #include <linux/pm_qos.h>
24 #include <asm/unaligned.h>
25
26 #include "nvme.h"
27 #include "fabrics.h"
28
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31
32 #define NVME_MINORS             (1U << MINORBITS)
33
34 unsigned int admin_timeout = 60;
35 module_param(admin_timeout, uint, 0644);
36 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
37 EXPORT_SYMBOL_GPL(admin_timeout);
38
39 unsigned int nvme_io_timeout = 30;
40 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
41 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
42 EXPORT_SYMBOL_GPL(nvme_io_timeout);
43
44 static unsigned char shutdown_timeout = 5;
45 module_param(shutdown_timeout, byte, 0644);
46 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
47
48 static u8 nvme_max_retries = 5;
49 module_param_named(max_retries, nvme_max_retries, byte, 0644);
50 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
51
52 static unsigned long default_ps_max_latency_us = 100000;
53 module_param(default_ps_max_latency_us, ulong, 0644);
54 MODULE_PARM_DESC(default_ps_max_latency_us,
55                  "max power saving latency for new devices; use PM QOS to change per device");
56
57 static bool force_apst;
58 module_param(force_apst, bool, 0644);
59 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
60
61 static bool streams;
62 module_param(streams, bool, 0644);
63 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
64
65 /*
66  * nvme_wq - hosts nvme related works that are not reset or delete
67  * nvme_reset_wq - hosts nvme reset works
68  * nvme_delete_wq - hosts nvme delete works
69  *
70  * nvme_wq will host works such as scan, aen handling, fw activation,
71  * keep-alive, periodic reconnects etc. nvme_reset_wq
72  * runs reset works which also flush works hosted on nvme_wq for
73  * serialization purposes. nvme_delete_wq host controller deletion
74  * works which flush reset works for serialization.
75  */
76 struct workqueue_struct *nvme_wq;
77 EXPORT_SYMBOL_GPL(nvme_wq);
78
79 struct workqueue_struct *nvme_reset_wq;
80 EXPORT_SYMBOL_GPL(nvme_reset_wq);
81
82 struct workqueue_struct *nvme_delete_wq;
83 EXPORT_SYMBOL_GPL(nvme_delete_wq);
84
85 static LIST_HEAD(nvme_subsystems);
86 static DEFINE_MUTEX(nvme_subsystems_lock);
87
88 static DEFINE_IDA(nvme_instance_ida);
89 static dev_t nvme_chr_devt;
90 static struct class *nvme_class;
91 static struct class *nvme_subsys_class;
92
93 static int nvme_revalidate_disk(struct gendisk *disk);
94 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
95 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
96                                            unsigned nsid);
97
98 static void nvme_set_queue_dying(struct nvme_ns *ns)
99 {
100         /*
101          * Revalidating a dead namespace sets capacity to 0. This will end
102          * buffered writers dirtying pages that can't be synced.
103          */
104         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
105                 return;
106         blk_set_queue_dying(ns->queue);
107         /* Forcibly unquiesce queues to avoid blocking dispatch */
108         blk_mq_unquiesce_queue(ns->queue);
109         /*
110          * Revalidate after unblocking dispatchers that may be holding bd_butex
111          */
112         revalidate_disk(ns->disk);
113 }
114
115 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
116 {
117         /*
118          * Only new queue scan work when admin and IO queues are both alive
119          */
120         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
121                 queue_work(nvme_wq, &ctrl->scan_work);
122 }
123
124 /*
125  * Use this function to proceed with scheduling reset_work for a controller
126  * that had previously been set to the resetting state. This is intended for
127  * code paths that can't be interrupted by other reset attempts. A hot removal
128  * may prevent this from succeeding.
129  */
130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 {
132         if (ctrl->state != NVME_CTRL_RESETTING)
133                 return -EBUSY;
134         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135                 return -EBUSY;
136         return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139
140 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
141 {
142         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
143                 return -EBUSY;
144         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
145                 return -EBUSY;
146         return 0;
147 }
148 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
149
150 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
151 {
152         int ret;
153
154         ret = nvme_reset_ctrl(ctrl);
155         if (!ret) {
156                 flush_work(&ctrl->reset_work);
157                 if (ctrl->state != NVME_CTRL_LIVE)
158                         ret = -ENETRESET;
159         }
160
161         return ret;
162 }
163 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
164
165 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
166 {
167         dev_info(ctrl->device,
168                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
169
170         flush_work(&ctrl->reset_work);
171         nvme_stop_ctrl(ctrl);
172         nvme_remove_namespaces(ctrl);
173         ctrl->ops->delete_ctrl(ctrl);
174         nvme_uninit_ctrl(ctrl);
175 }
176
177 static void nvme_delete_ctrl_work(struct work_struct *work)
178 {
179         struct nvme_ctrl *ctrl =
180                 container_of(work, struct nvme_ctrl, delete_work);
181
182         nvme_do_delete_ctrl(ctrl);
183 }
184
185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 {
187         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188                 return -EBUSY;
189         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190                 return -EBUSY;
191         return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194
195 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197         /*
198          * Keep a reference until nvme_do_delete_ctrl() complete,
199          * since ->delete_ctrl can free the controller.
200          */
201         nvme_get_ctrl(ctrl);
202         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
203                 nvme_do_delete_ctrl(ctrl);
204         nvme_put_ctrl(ctrl);
205 }
206
207 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
208 {
209         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
210 }
211
212 static blk_status_t nvme_error_status(u16 status)
213 {
214         switch (status & 0x7ff) {
215         case NVME_SC_SUCCESS:
216                 return BLK_STS_OK;
217         case NVME_SC_CAP_EXCEEDED:
218                 return BLK_STS_NOSPC;
219         case NVME_SC_LBA_RANGE:
220         case NVME_SC_CMD_INTERRUPTED:
221         case NVME_SC_NS_NOT_READY:
222                 return BLK_STS_TARGET;
223         case NVME_SC_BAD_ATTRIBUTES:
224         case NVME_SC_ONCS_NOT_SUPPORTED:
225         case NVME_SC_INVALID_OPCODE:
226         case NVME_SC_INVALID_FIELD:
227         case NVME_SC_INVALID_NS:
228                 return BLK_STS_NOTSUPP;
229         case NVME_SC_WRITE_FAULT:
230         case NVME_SC_READ_ERROR:
231         case NVME_SC_UNWRITTEN_BLOCK:
232         case NVME_SC_ACCESS_DENIED:
233         case NVME_SC_READ_ONLY:
234         case NVME_SC_COMPARE_FAILED:
235                 return BLK_STS_MEDIUM;
236         case NVME_SC_GUARD_CHECK:
237         case NVME_SC_APPTAG_CHECK:
238         case NVME_SC_REFTAG_CHECK:
239         case NVME_SC_INVALID_PI:
240                 return BLK_STS_PROTECTION;
241         case NVME_SC_RESERVATION_CONFLICT:
242                 return BLK_STS_NEXUS;
243         case NVME_SC_HOST_PATH_ERROR:
244                 return BLK_STS_TRANSPORT;
245         default:
246                 return BLK_STS_IOERR;
247         }
248 }
249
250 static inline bool nvme_req_needs_retry(struct request *req)
251 {
252         if (blk_noretry_request(req))
253                 return false;
254         if (nvme_req(req)->status & NVME_SC_DNR)
255                 return false;
256         if (nvme_req(req)->retries >= nvme_max_retries)
257                 return false;
258         return true;
259 }
260
261 static void nvme_retry_req(struct request *req)
262 {
263         struct nvme_ns *ns = req->q->queuedata;
264         unsigned long delay = 0;
265         u16 crd;
266
267         /* The mask and shift result must be <= 3 */
268         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
269         if (ns && crd)
270                 delay = ns->ctrl->crdt[crd - 1] * 100;
271
272         nvme_req(req)->retries++;
273         blk_mq_requeue_request(req, false);
274         blk_mq_delay_kick_requeue_list(req->q, delay);
275 }
276
277 void nvme_complete_rq(struct request *req)
278 {
279         blk_status_t status = nvme_error_status(nvme_req(req)->status);
280
281         trace_nvme_complete_rq(req);
282
283         nvme_cleanup_cmd(req);
284
285         if (nvme_req(req)->ctrl->kas)
286                 nvme_req(req)->ctrl->comp_seen = true;
287
288         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
289                 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
290                         return;
291
292                 if (!blk_queue_dying(req->q)) {
293                         nvme_retry_req(req);
294                         return;
295                 }
296         }
297
298         nvme_trace_bio_complete(req, status);
299         blk_mq_end_request(req, status);
300 }
301 EXPORT_SYMBOL_GPL(nvme_complete_rq);
302
303 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
304 {
305         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
306                                 "Cancelling I/O %d", req->tag);
307
308         /* don't abort one completed request */
309         if (blk_mq_request_completed(req))
310                 return true;
311
312         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
313         blk_mq_complete_request(req);
314         return true;
315 }
316 EXPORT_SYMBOL_GPL(nvme_cancel_request);
317
318 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
319                 enum nvme_ctrl_state new_state)
320 {
321         enum nvme_ctrl_state old_state;
322         unsigned long flags;
323         bool changed = false;
324
325         spin_lock_irqsave(&ctrl->lock, flags);
326
327         old_state = ctrl->state;
328         switch (new_state) {
329         case NVME_CTRL_LIVE:
330                 switch (old_state) {
331                 case NVME_CTRL_NEW:
332                 case NVME_CTRL_RESETTING:
333                 case NVME_CTRL_CONNECTING:
334                         changed = true;
335                         /* FALLTHRU */
336                 default:
337                         break;
338                 }
339                 break;
340         case NVME_CTRL_RESETTING:
341                 switch (old_state) {
342                 case NVME_CTRL_NEW:
343                 case NVME_CTRL_LIVE:
344                         changed = true;
345                         /* FALLTHRU */
346                 default:
347                         break;
348                 }
349                 break;
350         case NVME_CTRL_CONNECTING:
351                 switch (old_state) {
352                 case NVME_CTRL_NEW:
353                 case NVME_CTRL_RESETTING:
354                         changed = true;
355                         /* FALLTHRU */
356                 default:
357                         break;
358                 }
359                 break;
360         case NVME_CTRL_DELETING:
361                 switch (old_state) {
362                 case NVME_CTRL_LIVE:
363                 case NVME_CTRL_RESETTING:
364                 case NVME_CTRL_CONNECTING:
365                         changed = true;
366                         /* FALLTHRU */
367                 default:
368                         break;
369                 }
370                 break;
371         case NVME_CTRL_DEAD:
372                 switch (old_state) {
373                 case NVME_CTRL_DELETING:
374                         changed = true;
375                         /* FALLTHRU */
376                 default:
377                         break;
378                 }
379                 break;
380         default:
381                 break;
382         }
383
384         if (changed) {
385                 ctrl->state = new_state;
386                 wake_up_all(&ctrl->state_wq);
387         }
388
389         spin_unlock_irqrestore(&ctrl->lock, flags);
390         if (changed && ctrl->state == NVME_CTRL_LIVE)
391                 nvme_kick_requeue_lists(ctrl);
392         return changed;
393 }
394 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
395
396 /*
397  * Returns true for sink states that can't ever transition back to live.
398  */
399 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
400 {
401         switch (ctrl->state) {
402         case NVME_CTRL_NEW:
403         case NVME_CTRL_LIVE:
404         case NVME_CTRL_RESETTING:
405         case NVME_CTRL_CONNECTING:
406                 return false;
407         case NVME_CTRL_DELETING:
408         case NVME_CTRL_DEAD:
409                 return true;
410         default:
411                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
412                 return true;
413         }
414 }
415
416 /*
417  * Waits for the controller state to be resetting, or returns false if it is
418  * not possible to ever transition to that state.
419  */
420 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
421 {
422         wait_event(ctrl->state_wq,
423                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
424                    nvme_state_terminal(ctrl));
425         return ctrl->state == NVME_CTRL_RESETTING;
426 }
427 EXPORT_SYMBOL_GPL(nvme_wait_reset);
428
429 static void nvme_free_ns_head(struct kref *ref)
430 {
431         struct nvme_ns_head *head =
432                 container_of(ref, struct nvme_ns_head, ref);
433
434         nvme_mpath_remove_disk(head);
435         ida_simple_remove(&head->subsys->ns_ida, head->instance);
436         cleanup_srcu_struct(&head->srcu);
437         nvme_put_subsystem(head->subsys);
438         kfree(head);
439 }
440
441 static void nvme_put_ns_head(struct nvme_ns_head *head)
442 {
443         kref_put(&head->ref, nvme_free_ns_head);
444 }
445
446 static void nvme_free_ns(struct kref *kref)
447 {
448         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
449
450         if (ns->ndev)
451                 nvme_nvm_unregister(ns);
452
453         put_disk(ns->disk);
454         nvme_put_ns_head(ns->head);
455         nvme_put_ctrl(ns->ctrl);
456         kfree(ns);
457 }
458
459 static void nvme_put_ns(struct nvme_ns *ns)
460 {
461         kref_put(&ns->kref, nvme_free_ns);
462 }
463
464 static inline void nvme_clear_nvme_request(struct request *req)
465 {
466         if (!(req->rq_flags & RQF_DONTPREP)) {
467                 nvme_req(req)->retries = 0;
468                 nvme_req(req)->flags = 0;
469                 req->rq_flags |= RQF_DONTPREP;
470         }
471 }
472
473 struct request *nvme_alloc_request(struct request_queue *q,
474                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
475 {
476         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
477         struct request *req;
478
479         if (qid == NVME_QID_ANY) {
480                 req = blk_mq_alloc_request(q, op, flags);
481         } else {
482                 req = blk_mq_alloc_request_hctx(q, op, flags,
483                                 qid ? qid - 1 : 0);
484         }
485         if (IS_ERR(req))
486                 return req;
487
488         req->cmd_flags |= REQ_FAILFAST_DRIVER;
489         nvme_clear_nvme_request(req);
490         nvme_req(req)->cmd = cmd;
491
492         return req;
493 }
494 EXPORT_SYMBOL_GPL(nvme_alloc_request);
495
496 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
497 {
498         struct nvme_command c;
499
500         memset(&c, 0, sizeof(c));
501
502         c.directive.opcode = nvme_admin_directive_send;
503         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
504         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
505         c.directive.dtype = NVME_DIR_IDENTIFY;
506         c.directive.tdtype = NVME_DIR_STREAMS;
507         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
508
509         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
510 }
511
512 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
513 {
514         return nvme_toggle_streams(ctrl, false);
515 }
516
517 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
518 {
519         return nvme_toggle_streams(ctrl, true);
520 }
521
522 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
523                                   struct streams_directive_params *s, u32 nsid)
524 {
525         struct nvme_command c;
526
527         memset(&c, 0, sizeof(c));
528         memset(s, 0, sizeof(*s));
529
530         c.directive.opcode = nvme_admin_directive_recv;
531         c.directive.nsid = cpu_to_le32(nsid);
532         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
533         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
534         c.directive.dtype = NVME_DIR_STREAMS;
535
536         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
537 }
538
539 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
540 {
541         struct streams_directive_params s;
542         int ret;
543
544         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
545                 return 0;
546         if (!streams)
547                 return 0;
548
549         ret = nvme_enable_streams(ctrl);
550         if (ret)
551                 return ret;
552
553         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
554         if (ret)
555                 return ret;
556
557         ctrl->nssa = le16_to_cpu(s.nssa);
558         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
559                 dev_info(ctrl->device, "too few streams (%u) available\n",
560                                         ctrl->nssa);
561                 nvme_disable_streams(ctrl);
562                 return 0;
563         }
564
565         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
566         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
567         return 0;
568 }
569
570 /*
571  * Check if 'req' has a write hint associated with it. If it does, assign
572  * a valid namespace stream to the write.
573  */
574 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
575                                      struct request *req, u16 *control,
576                                      u32 *dsmgmt)
577 {
578         enum rw_hint streamid = req->write_hint;
579
580         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
581                 streamid = 0;
582         else {
583                 streamid--;
584                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
585                         return;
586
587                 *control |= NVME_RW_DTYPE_STREAMS;
588                 *dsmgmt |= streamid << 16;
589         }
590
591         if (streamid < ARRAY_SIZE(req->q->write_hints))
592                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
593 }
594
595 static inline void nvme_setup_flush(struct nvme_ns *ns,
596                 struct nvme_command *cmnd)
597 {
598         cmnd->common.opcode = nvme_cmd_flush;
599         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
600 }
601
602 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
603                 struct nvme_command *cmnd)
604 {
605         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
606         struct nvme_dsm_range *range;
607         struct bio *bio;
608
609         /*
610          * Some devices do not consider the DSM 'Number of Ranges' field when
611          * determining how much data to DMA. Always allocate memory for maximum
612          * number of segments to prevent device reading beyond end of buffer.
613          */
614         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
615
616         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
617         if (!range) {
618                 /*
619                  * If we fail allocation our range, fallback to the controller
620                  * discard page. If that's also busy, it's safe to return
621                  * busy, as we know we can make progress once that's freed.
622                  */
623                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
624                         return BLK_STS_RESOURCE;
625
626                 range = page_address(ns->ctrl->discard_page);
627         }
628
629         __rq_for_each_bio(bio, req) {
630                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
631                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
632
633                 if (n < segments) {
634                         range[n].cattr = cpu_to_le32(0);
635                         range[n].nlb = cpu_to_le32(nlb);
636                         range[n].slba = cpu_to_le64(slba);
637                 }
638                 n++;
639         }
640
641         if (WARN_ON_ONCE(n != segments)) {
642                 if (virt_to_page(range) == ns->ctrl->discard_page)
643                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
644                 else
645                         kfree(range);
646                 return BLK_STS_IOERR;
647         }
648
649         cmnd->dsm.opcode = nvme_cmd_dsm;
650         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
651         cmnd->dsm.nr = cpu_to_le32(segments - 1);
652         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
653
654         req->special_vec.bv_page = virt_to_page(range);
655         req->special_vec.bv_offset = offset_in_page(range);
656         req->special_vec.bv_len = alloc_size;
657         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
658
659         return BLK_STS_OK;
660 }
661
662 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
663                 struct request *req, struct nvme_command *cmnd)
664 {
665         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
666                 return nvme_setup_discard(ns, req, cmnd);
667
668         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
669         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
670         cmnd->write_zeroes.slba =
671                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
672         cmnd->write_zeroes.length =
673                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
674         cmnd->write_zeroes.control = 0;
675         return BLK_STS_OK;
676 }
677
678 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
679                 struct request *req, struct nvme_command *cmnd)
680 {
681         struct nvme_ctrl *ctrl = ns->ctrl;
682         u16 control = 0;
683         u32 dsmgmt = 0;
684
685         if (req->cmd_flags & REQ_FUA)
686                 control |= NVME_RW_FUA;
687         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
688                 control |= NVME_RW_LR;
689
690         if (req->cmd_flags & REQ_RAHEAD)
691                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
692
693         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
694         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
695         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
696         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
697
698         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
699                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
700
701         if (ns->ms) {
702                 /*
703                  * If formated with metadata, the block layer always provides a
704                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
705                  * we enable the PRACT bit for protection information or set the
706                  * namespace capacity to zero to prevent any I/O.
707                  */
708                 if (!blk_integrity_rq(req)) {
709                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
710                                 return BLK_STS_NOTSUPP;
711                         control |= NVME_RW_PRINFO_PRACT;
712                 }
713
714                 switch (ns->pi_type) {
715                 case NVME_NS_DPS_PI_TYPE3:
716                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
717                         break;
718                 case NVME_NS_DPS_PI_TYPE1:
719                 case NVME_NS_DPS_PI_TYPE2:
720                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
721                                         NVME_RW_PRINFO_PRCHK_REF;
722                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
723                         break;
724                 }
725         }
726
727         cmnd->rw.control = cpu_to_le16(control);
728         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
729         return 0;
730 }
731
732 void nvme_cleanup_cmd(struct request *req)
733 {
734         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
735                 struct nvme_ns *ns = req->rq_disk->private_data;
736                 struct page *page = req->special_vec.bv_page;
737
738                 if (page == ns->ctrl->discard_page)
739                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
740                 else
741                         kfree(page_address(page) + req->special_vec.bv_offset);
742         }
743 }
744 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
745
746 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
747                 struct nvme_command *cmd)
748 {
749         blk_status_t ret = BLK_STS_OK;
750
751         nvme_clear_nvme_request(req);
752
753         memset(cmd, 0, sizeof(*cmd));
754         switch (req_op(req)) {
755         case REQ_OP_DRV_IN:
756         case REQ_OP_DRV_OUT:
757                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
758                 break;
759         case REQ_OP_FLUSH:
760                 nvme_setup_flush(ns, cmd);
761                 break;
762         case REQ_OP_WRITE_ZEROES:
763                 ret = nvme_setup_write_zeroes(ns, req, cmd);
764                 break;
765         case REQ_OP_DISCARD:
766                 ret = nvme_setup_discard(ns, req, cmd);
767                 break;
768         case REQ_OP_READ:
769         case REQ_OP_WRITE:
770                 ret = nvme_setup_rw(ns, req, cmd);
771                 break;
772         default:
773                 WARN_ON_ONCE(1);
774                 return BLK_STS_IOERR;
775         }
776
777         cmd->common.command_id = req->tag;
778         trace_nvme_setup_cmd(req, cmd);
779         return ret;
780 }
781 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
782
783 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
784 {
785         struct completion *waiting = rq->end_io_data;
786
787         rq->end_io_data = NULL;
788         complete(waiting);
789 }
790
791 static void nvme_execute_rq_polled(struct request_queue *q,
792                 struct gendisk *bd_disk, struct request *rq, int at_head)
793 {
794         DECLARE_COMPLETION_ONSTACK(wait);
795
796         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
797
798         rq->cmd_flags |= REQ_HIPRI;
799         rq->end_io_data = &wait;
800         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
801
802         while (!completion_done(&wait)) {
803                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
804                 cond_resched();
805         }
806 }
807
808 /*
809  * Returns 0 on success.  If the result is negative, it's a Linux error code;
810  * if the result is positive, it's an NVM Express status code
811  */
812 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
813                 union nvme_result *result, void *buffer, unsigned bufflen,
814                 unsigned timeout, int qid, int at_head,
815                 blk_mq_req_flags_t flags, bool poll)
816 {
817         struct request *req;
818         int ret;
819
820         req = nvme_alloc_request(q, cmd, flags, qid);
821         if (IS_ERR(req))
822                 return PTR_ERR(req);
823
824         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
825
826         if (buffer && bufflen) {
827                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
828                 if (ret)
829                         goto out;
830         }
831
832         if (poll)
833                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
834         else
835                 blk_execute_rq(req->q, NULL, req, at_head);
836         if (result)
837                 *result = nvme_req(req)->result;
838         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
839                 ret = -EINTR;
840         else
841                 ret = nvme_req(req)->status;
842  out:
843         blk_mq_free_request(req);
844         return ret;
845 }
846 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
847
848 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
849                 void *buffer, unsigned bufflen)
850 {
851         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
852                         NVME_QID_ANY, 0, 0, false);
853 }
854 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
855
856 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
857                 unsigned len, u32 seed, bool write)
858 {
859         struct bio_integrity_payload *bip;
860         int ret = -ENOMEM;
861         void *buf;
862
863         buf = kmalloc(len, GFP_KERNEL);
864         if (!buf)
865                 goto out;
866
867         ret = -EFAULT;
868         if (write && copy_from_user(buf, ubuf, len))
869                 goto out_free_meta;
870
871         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
872         if (IS_ERR(bip)) {
873                 ret = PTR_ERR(bip);
874                 goto out_free_meta;
875         }
876
877         bip->bip_iter.bi_size = len;
878         bip->bip_iter.bi_sector = seed;
879         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
880                         offset_in_page(buf));
881         if (ret == len)
882                 return buf;
883         ret = -ENOMEM;
884 out_free_meta:
885         kfree(buf);
886 out:
887         return ERR_PTR(ret);
888 }
889
890 static int nvme_submit_user_cmd(struct request_queue *q,
891                 struct nvme_command *cmd, void __user *ubuffer,
892                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
893                 u32 meta_seed, u64 *result, unsigned timeout)
894 {
895         bool write = nvme_is_write(cmd);
896         struct nvme_ns *ns = q->queuedata;
897         struct gendisk *disk = ns ? ns->disk : NULL;
898         struct request *req;
899         struct bio *bio = NULL;
900         void *meta = NULL;
901         int ret;
902
903         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
904         if (IS_ERR(req))
905                 return PTR_ERR(req);
906
907         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
908         nvme_req(req)->flags |= NVME_REQ_USERCMD;
909
910         if (ubuffer && bufflen) {
911                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
912                                 GFP_KERNEL);
913                 if (ret)
914                         goto out;
915                 bio = req->bio;
916                 bio->bi_disk = disk;
917                 if (disk && meta_buffer && meta_len) {
918                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
919                                         meta_seed, write);
920                         if (IS_ERR(meta)) {
921                                 ret = PTR_ERR(meta);
922                                 goto out_unmap;
923                         }
924                         req->cmd_flags |= REQ_INTEGRITY;
925                 }
926         }
927
928         blk_execute_rq(req->q, disk, req, 0);
929         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
930                 ret = -EINTR;
931         else
932                 ret = nvme_req(req)->status;
933         if (result)
934                 *result = le64_to_cpu(nvme_req(req)->result.u64);
935         if (meta && !ret && !write) {
936                 if (copy_to_user(meta_buffer, meta, meta_len))
937                         ret = -EFAULT;
938         }
939         kfree(meta);
940  out_unmap:
941         if (bio)
942                 blk_rq_unmap_user(bio);
943  out:
944         blk_mq_free_request(req);
945         return ret;
946 }
947
948 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
949 {
950         struct nvme_ctrl *ctrl = rq->end_io_data;
951         unsigned long flags;
952         bool startka = false;
953
954         blk_mq_free_request(rq);
955
956         if (status) {
957                 dev_err(ctrl->device,
958                         "failed nvme_keep_alive_end_io error=%d\n",
959                                 status);
960                 return;
961         }
962
963         ctrl->comp_seen = false;
964         spin_lock_irqsave(&ctrl->lock, flags);
965         if (ctrl->state == NVME_CTRL_LIVE ||
966             ctrl->state == NVME_CTRL_CONNECTING)
967                 startka = true;
968         spin_unlock_irqrestore(&ctrl->lock, flags);
969         if (startka)
970                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
971 }
972
973 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
974 {
975         struct request *rq;
976
977         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
978                         NVME_QID_ANY);
979         if (IS_ERR(rq))
980                 return PTR_ERR(rq);
981
982         rq->timeout = ctrl->kato * HZ;
983         rq->end_io_data = ctrl;
984
985         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
986
987         return 0;
988 }
989
990 static void nvme_keep_alive_work(struct work_struct *work)
991 {
992         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
993                         struct nvme_ctrl, ka_work);
994         bool comp_seen = ctrl->comp_seen;
995
996         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
997                 dev_dbg(ctrl->device,
998                         "reschedule traffic based keep-alive timer\n");
999                 ctrl->comp_seen = false;
1000                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1001                 return;
1002         }
1003
1004         if (nvme_keep_alive(ctrl)) {
1005                 /* allocation failure, reset the controller */
1006                 dev_err(ctrl->device, "keep-alive failed\n");
1007                 nvme_reset_ctrl(ctrl);
1008                 return;
1009         }
1010 }
1011
1012 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1013 {
1014         if (unlikely(ctrl->kato == 0))
1015                 return;
1016
1017         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1018 }
1019
1020 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1021 {
1022         if (unlikely(ctrl->kato == 0))
1023                 return;
1024
1025         cancel_delayed_work_sync(&ctrl->ka_work);
1026 }
1027 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1028
1029 /*
1030  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1031  * flag, thus sending any new CNS opcodes has a big chance of not working.
1032  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1033  * (but not for any later version).
1034  */
1035 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1036 {
1037         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1038                 return ctrl->vs < NVME_VS(1, 2, 0);
1039         return ctrl->vs < NVME_VS(1, 1, 0);
1040 }
1041
1042 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1043 {
1044         struct nvme_command c = { };
1045         int error;
1046
1047         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1048         c.identify.opcode = nvme_admin_identify;
1049         c.identify.cns = NVME_ID_CNS_CTRL;
1050
1051         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1052         if (!*id)
1053                 return -ENOMEM;
1054
1055         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1056                         sizeof(struct nvme_id_ctrl));
1057         if (error)
1058                 kfree(*id);
1059         return error;
1060 }
1061
1062 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1063                 struct nvme_ns_id_desc *cur)
1064 {
1065         const char *warn_str = "ctrl returned bogus length:";
1066         void *data = cur;
1067
1068         switch (cur->nidt) {
1069         case NVME_NIDT_EUI64:
1070                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1071                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1072                                  warn_str, cur->nidl);
1073                         return -1;
1074                 }
1075                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1076                 return NVME_NIDT_EUI64_LEN;
1077         case NVME_NIDT_NGUID:
1078                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1079                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1080                                  warn_str, cur->nidl);
1081                         return -1;
1082                 }
1083                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1084                 return NVME_NIDT_NGUID_LEN;
1085         case NVME_NIDT_UUID:
1086                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1087                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1088                                  warn_str, cur->nidl);
1089                         return -1;
1090                 }
1091                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1092                 return NVME_NIDT_UUID_LEN;
1093         default:
1094                 /* Skip unknown types */
1095                 return cur->nidl;
1096         }
1097 }
1098
1099 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1100                 struct nvme_ns_ids *ids)
1101 {
1102         struct nvme_command c = { };
1103         int status;
1104         void *data;
1105         int pos;
1106         int len;
1107
1108         c.identify.opcode = nvme_admin_identify;
1109         c.identify.nsid = cpu_to_le32(nsid);
1110         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1111
1112         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1113         if (!data)
1114                 return -ENOMEM;
1115
1116         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1117                                       NVME_IDENTIFY_DATA_SIZE);
1118         if (status) {
1119                 dev_warn(ctrl->device,
1120                         "Identify Descriptors failed (%d)\n", status);
1121                  /*
1122                   * Don't treat an error as fatal, as we potentially already
1123                   * have a NGUID or EUI-64.
1124                   */
1125                 if (status > 0 && !(status & NVME_SC_DNR))
1126                         status = 0;
1127                 goto free_data;
1128         }
1129
1130         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1131                 struct nvme_ns_id_desc *cur = data + pos;
1132
1133                 if (cur->nidl == 0)
1134                         break;
1135
1136                 len = nvme_process_ns_desc(ctrl, ids, cur);
1137                 if (len < 0)
1138                         goto free_data;
1139
1140                 len += sizeof(*cur);
1141         }
1142 free_data:
1143         kfree(data);
1144         return status;
1145 }
1146
1147 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1148 {
1149         struct nvme_command c = { };
1150
1151         c.identify.opcode = nvme_admin_identify;
1152         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1153         c.identify.nsid = cpu_to_le32(nsid);
1154         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1155                                     NVME_IDENTIFY_DATA_SIZE);
1156 }
1157
1158 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1159                 unsigned nsid, struct nvme_id_ns **id)
1160 {
1161         struct nvme_command c = { };
1162         int error;
1163
1164         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1165         c.identify.opcode = nvme_admin_identify;
1166         c.identify.nsid = cpu_to_le32(nsid);
1167         c.identify.cns = NVME_ID_CNS_NS;
1168
1169         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1170         if (!*id)
1171                 return -ENOMEM;
1172
1173         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1174         if (error) {
1175                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1176                 kfree(*id);
1177         }
1178
1179         return error;
1180 }
1181
1182 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1183                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1184 {
1185         union nvme_result res = { 0 };
1186         struct nvme_command c;
1187         int ret;
1188
1189         memset(&c, 0, sizeof(c));
1190         c.features.opcode = op;
1191         c.features.fid = cpu_to_le32(fid);
1192         c.features.dword11 = cpu_to_le32(dword11);
1193
1194         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1195                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1196         if (ret >= 0 && result)
1197                 *result = le32_to_cpu(res.u32);
1198         return ret;
1199 }
1200
1201 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1202                       unsigned int dword11, void *buffer, size_t buflen,
1203                       u32 *result)
1204 {
1205         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1206                              buflen, result);
1207 }
1208 EXPORT_SYMBOL_GPL(nvme_set_features);
1209
1210 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1211                       unsigned int dword11, void *buffer, size_t buflen,
1212                       u32 *result)
1213 {
1214         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1215                              buflen, result);
1216 }
1217 EXPORT_SYMBOL_GPL(nvme_get_features);
1218
1219 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1220 {
1221         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1222         u32 result;
1223         int status, nr_io_queues;
1224
1225         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1226                         &result);
1227         if (status < 0)
1228                 return status;
1229
1230         /*
1231          * Degraded controllers might return an error when setting the queue
1232          * count.  We still want to be able to bring them online and offer
1233          * access to the admin queue, as that might be only way to fix them up.
1234          */
1235         if (status > 0) {
1236                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1237                 *count = 0;
1238         } else {
1239                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1240                 *count = min(*count, nr_io_queues);
1241         }
1242
1243         return 0;
1244 }
1245 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1246
1247 #define NVME_AEN_SUPPORTED \
1248         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1249          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1250
1251 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1252 {
1253         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1254         int status;
1255
1256         if (!supported_aens)
1257                 return;
1258
1259         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1260                         NULL, 0, &result);
1261         if (status)
1262                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1263                          supported_aens);
1264
1265         queue_work(nvme_wq, &ctrl->async_event_work);
1266 }
1267
1268 /*
1269  * Convert integer values from ioctl structures to user pointers, silently
1270  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1271  * kernels.
1272  */
1273 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1274 {
1275         if (in_compat_syscall())
1276                 ptrval = (compat_uptr_t)ptrval;
1277         return (void __user *)ptrval;
1278 }
1279
1280 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1281 {
1282         struct nvme_user_io io;
1283         struct nvme_command c;
1284         unsigned length, meta_len;
1285         void __user *metadata;
1286
1287         if (copy_from_user(&io, uio, sizeof(io)))
1288                 return -EFAULT;
1289         if (io.flags)
1290                 return -EINVAL;
1291
1292         switch (io.opcode) {
1293         case nvme_cmd_write:
1294         case nvme_cmd_read:
1295         case nvme_cmd_compare:
1296                 break;
1297         default:
1298                 return -EINVAL;
1299         }
1300
1301         length = (io.nblocks + 1) << ns->lba_shift;
1302         meta_len = (io.nblocks + 1) * ns->ms;
1303         metadata = nvme_to_user_ptr(io.metadata);
1304
1305         if (ns->ext) {
1306                 length += meta_len;
1307                 meta_len = 0;
1308         } else if (meta_len) {
1309                 if ((io.metadata & 3) || !io.metadata)
1310                         return -EINVAL;
1311         }
1312
1313         memset(&c, 0, sizeof(c));
1314         c.rw.opcode = io.opcode;
1315         c.rw.flags = io.flags;
1316         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1317         c.rw.slba = cpu_to_le64(io.slba);
1318         c.rw.length = cpu_to_le16(io.nblocks);
1319         c.rw.control = cpu_to_le16(io.control);
1320         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1321         c.rw.reftag = cpu_to_le32(io.reftag);
1322         c.rw.apptag = cpu_to_le16(io.apptag);
1323         c.rw.appmask = cpu_to_le16(io.appmask);
1324
1325         return nvme_submit_user_cmd(ns->queue, &c,
1326                         nvme_to_user_ptr(io.addr), length,
1327                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1328 }
1329
1330 static u32 nvme_known_admin_effects(u8 opcode)
1331 {
1332         switch (opcode) {
1333         case nvme_admin_format_nvm:
1334                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1335                                         NVME_CMD_EFFECTS_CSE_MASK;
1336         case nvme_admin_sanitize_nvm:
1337                 return NVME_CMD_EFFECTS_CSE_MASK;
1338         default:
1339                 break;
1340         }
1341         return 0;
1342 }
1343
1344 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1345                                                                 u8 opcode)
1346 {
1347         u32 effects = 0;
1348
1349         if (ns) {
1350                 if (ctrl->effects)
1351                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1352                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1353                         dev_warn(ctrl->device,
1354                                  "IO command:%02x has unhandled effects:%08x\n",
1355                                  opcode, effects);
1356                 return 0;
1357         }
1358
1359         if (ctrl->effects)
1360                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1361         effects |= nvme_known_admin_effects(opcode);
1362
1363         /*
1364          * For simplicity, IO to all namespaces is quiesced even if the command
1365          * effects say only one namespace is affected.
1366          */
1367         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1368                 mutex_lock(&ctrl->scan_lock);
1369                 mutex_lock(&ctrl->subsys->lock);
1370                 nvme_mpath_start_freeze(ctrl->subsys);
1371                 nvme_mpath_wait_freeze(ctrl->subsys);
1372                 nvme_start_freeze(ctrl);
1373                 nvme_wait_freeze(ctrl);
1374         }
1375         return effects;
1376 }
1377
1378 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1379 {
1380         struct nvme_ns *ns;
1381
1382         down_read(&ctrl->namespaces_rwsem);
1383         list_for_each_entry(ns, &ctrl->namespaces, list)
1384                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1385                         nvme_set_queue_dying(ns);
1386         up_read(&ctrl->namespaces_rwsem);
1387 }
1388
1389 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1390 {
1391         /*
1392          * Revalidate LBA changes prior to unfreezing. This is necessary to
1393          * prevent memory corruption if a logical block size was changed by
1394          * this command.
1395          */
1396         if (effects & NVME_CMD_EFFECTS_LBCC)
1397                 nvme_update_formats(ctrl);
1398         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1399                 nvme_unfreeze(ctrl);
1400                 nvme_mpath_unfreeze(ctrl->subsys);
1401                 mutex_unlock(&ctrl->subsys->lock);
1402                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1403                 mutex_unlock(&ctrl->scan_lock);
1404         }
1405         if (effects & NVME_CMD_EFFECTS_CCC)
1406                 nvme_init_identify(ctrl);
1407         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1408                 nvme_queue_scan(ctrl);
1409 }
1410
1411 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1412                         struct nvme_passthru_cmd __user *ucmd)
1413 {
1414         struct nvme_passthru_cmd cmd;
1415         struct nvme_command c;
1416         unsigned timeout = 0;
1417         u32 effects;
1418         u64 result;
1419         int status;
1420
1421         if (!capable(CAP_SYS_ADMIN))
1422                 return -EACCES;
1423         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1424                 return -EFAULT;
1425         if (cmd.flags)
1426                 return -EINVAL;
1427
1428         memset(&c, 0, sizeof(c));
1429         c.common.opcode = cmd.opcode;
1430         c.common.flags = cmd.flags;
1431         c.common.nsid = cpu_to_le32(cmd.nsid);
1432         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1433         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1434         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1435         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1436         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1437         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1438         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1439         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1440
1441         if (cmd.timeout_ms)
1442                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1443
1444         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1445         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1446                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1447                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1448                         0, &result, timeout);
1449         nvme_passthru_end(ctrl, effects);
1450
1451         if (status >= 0) {
1452                 if (put_user(result, &ucmd->result))
1453                         return -EFAULT;
1454         }
1455
1456         return status;
1457 }
1458
1459 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1460                         struct nvme_passthru_cmd64 __user *ucmd)
1461 {
1462         struct nvme_passthru_cmd64 cmd;
1463         struct nvme_command c;
1464         unsigned timeout = 0;
1465         u32 effects;
1466         int status;
1467
1468         if (!capable(CAP_SYS_ADMIN))
1469                 return -EACCES;
1470         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1471                 return -EFAULT;
1472         if (cmd.flags)
1473                 return -EINVAL;
1474
1475         memset(&c, 0, sizeof(c));
1476         c.common.opcode = cmd.opcode;
1477         c.common.flags = cmd.flags;
1478         c.common.nsid = cpu_to_le32(cmd.nsid);
1479         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1480         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1481         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1482         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1483         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1484         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1485         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1486         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1487
1488         if (cmd.timeout_ms)
1489                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1490
1491         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1492         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1493                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1494                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1495                         0, &cmd.result, timeout);
1496         nvme_passthru_end(ctrl, effects);
1497
1498         if (status >= 0) {
1499                 if (put_user(cmd.result, &ucmd->result))
1500                         return -EFAULT;
1501         }
1502
1503         return status;
1504 }
1505
1506 /*
1507  * Issue ioctl requests on the first available path.  Note that unlike normal
1508  * block layer requests we will not retry failed request on another controller.
1509  */
1510 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1511                 struct nvme_ns_head **head, int *srcu_idx)
1512 {
1513 #ifdef CONFIG_NVME_MULTIPATH
1514         if (disk->fops == &nvme_ns_head_ops) {
1515                 struct nvme_ns *ns;
1516
1517                 *head = disk->private_data;
1518                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1519                 ns = nvme_find_path(*head);
1520                 if (!ns)
1521                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1522                 return ns;
1523         }
1524 #endif
1525         *head = NULL;
1526         *srcu_idx = -1;
1527         return disk->private_data;
1528 }
1529
1530 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1531 {
1532         if (head)
1533                 srcu_read_unlock(&head->srcu, idx);
1534 }
1535
1536 static bool is_ctrl_ioctl(unsigned int cmd)
1537 {
1538         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1539                 return true;
1540         if (is_sed_ioctl(cmd))
1541                 return true;
1542         return false;
1543 }
1544
1545 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1546                                   void __user *argp,
1547                                   struct nvme_ns_head *head,
1548                                   int srcu_idx)
1549 {
1550         struct nvme_ctrl *ctrl = ns->ctrl;
1551         int ret;
1552
1553         nvme_get_ctrl(ns->ctrl);
1554         nvme_put_ns_from_disk(head, srcu_idx);
1555
1556         switch (cmd) {
1557         case NVME_IOCTL_ADMIN_CMD:
1558                 ret = nvme_user_cmd(ctrl, NULL, argp);
1559                 break;
1560         case NVME_IOCTL_ADMIN64_CMD:
1561                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1562                 break;
1563         default:
1564                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1565                 break;
1566         }
1567         nvme_put_ctrl(ctrl);
1568         return ret;
1569 }
1570
1571 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1572                 unsigned int cmd, unsigned long arg)
1573 {
1574         struct nvme_ns_head *head = NULL;
1575         void __user *argp = (void __user *)arg;
1576         struct nvme_ns *ns;
1577         int srcu_idx, ret;
1578
1579         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1580         if (unlikely(!ns))
1581                 return -EWOULDBLOCK;
1582
1583         /*
1584          * Handle ioctls that apply to the controller instead of the namespace
1585          * seperately and drop the ns SRCU reference early.  This avoids a
1586          * deadlock when deleting namespaces using the passthrough interface.
1587          */
1588         if (is_ctrl_ioctl(cmd))
1589                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1590
1591         switch (cmd) {
1592         case NVME_IOCTL_ID:
1593                 force_successful_syscall_return();
1594                 ret = ns->head->ns_id;
1595                 break;
1596         case NVME_IOCTL_IO_CMD:
1597                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1598                 break;
1599         case NVME_IOCTL_SUBMIT_IO:
1600                 ret = nvme_submit_io(ns, argp);
1601                 break;
1602         case NVME_IOCTL_IO64_CMD:
1603                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1604                 break;
1605         default:
1606                 if (ns->ndev)
1607                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1608                 else
1609                         ret = -ENOTTY;
1610         }
1611
1612         nvme_put_ns_from_disk(head, srcu_idx);
1613         return ret;
1614 }
1615
1616 #ifdef CONFIG_COMPAT
1617 struct nvme_user_io32 {
1618         __u8    opcode;
1619         __u8    flags;
1620         __u16   control;
1621         __u16   nblocks;
1622         __u16   rsvd;
1623         __u64   metadata;
1624         __u64   addr;
1625         __u64   slba;
1626         __u32   dsmgmt;
1627         __u32   reftag;
1628         __u16   apptag;
1629         __u16   appmask;
1630 } __attribute__((__packed__));
1631
1632 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1633
1634 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1635                 unsigned int cmd, unsigned long arg)
1636 {
1637         /*
1638          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1639          * between 32 bit programs and 64 bit kernel.
1640          * The cause is that the results of sizeof(struct nvme_user_io),
1641          * which is used to define NVME_IOCTL_SUBMIT_IO,
1642          * are not same between 32 bit compiler and 64 bit compiler.
1643          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1644          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1645          * Other IOCTL numbers are same between 32 bit and 64 bit.
1646          * So there is nothing to do regarding to other IOCTL numbers.
1647          */
1648         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1649                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1650
1651         return nvme_ioctl(bdev, mode, cmd, arg);
1652 }
1653 #else
1654 #define nvme_compat_ioctl       NULL
1655 #endif /* CONFIG_COMPAT */
1656
1657 static int nvme_open(struct block_device *bdev, fmode_t mode)
1658 {
1659         struct nvme_ns *ns = bdev->bd_disk->private_data;
1660
1661 #ifdef CONFIG_NVME_MULTIPATH
1662         /* should never be called due to GENHD_FL_HIDDEN */
1663         if (WARN_ON_ONCE(ns->head->disk))
1664                 goto fail;
1665 #endif
1666         if (!kref_get_unless_zero(&ns->kref))
1667                 goto fail;
1668         if (!try_module_get(ns->ctrl->ops->module))
1669                 goto fail_put_ns;
1670
1671         return 0;
1672
1673 fail_put_ns:
1674         nvme_put_ns(ns);
1675 fail:
1676         return -ENXIO;
1677 }
1678
1679 static void nvme_release(struct gendisk *disk, fmode_t mode)
1680 {
1681         struct nvme_ns *ns = disk->private_data;
1682
1683         module_put(ns->ctrl->ops->module);
1684         nvme_put_ns(ns);
1685 }
1686
1687 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1688 {
1689         /* some standard values */
1690         geo->heads = 1 << 6;
1691         geo->sectors = 1 << 5;
1692         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1693         return 0;
1694 }
1695
1696 #ifdef CONFIG_BLK_DEV_INTEGRITY
1697 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1698 {
1699         struct blk_integrity integrity;
1700
1701         memset(&integrity, 0, sizeof(integrity));
1702         switch (pi_type) {
1703         case NVME_NS_DPS_PI_TYPE3:
1704                 integrity.profile = &t10_pi_type3_crc;
1705                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1706                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1707                 break;
1708         case NVME_NS_DPS_PI_TYPE1:
1709         case NVME_NS_DPS_PI_TYPE2:
1710                 integrity.profile = &t10_pi_type1_crc;
1711                 integrity.tag_size = sizeof(u16);
1712                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1713                 break;
1714         default:
1715                 integrity.profile = NULL;
1716                 break;
1717         }
1718         integrity.tuple_size = ms;
1719         blk_integrity_register(disk, &integrity);
1720         blk_queue_max_integrity_segments(disk->queue, 1);
1721 }
1722 #else
1723 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1724 {
1725 }
1726 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1727
1728 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1729 {
1730         struct nvme_ctrl *ctrl = ns->ctrl;
1731         struct request_queue *queue = disk->queue;
1732         u32 size = queue_logical_block_size(queue);
1733
1734         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1735                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1736                 return;
1737         }
1738
1739         if (ctrl->nr_streams && ns->sws && ns->sgs)
1740                 size *= ns->sws * ns->sgs;
1741
1742         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1743                         NVME_DSM_MAX_RANGES);
1744
1745         queue->limits.discard_alignment = 0;
1746         queue->limits.discard_granularity = size;
1747
1748         /* If discard is already enabled, don't reset queue limits */
1749         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1750                 return;
1751
1752         blk_queue_max_discard_sectors(queue, UINT_MAX);
1753         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1754
1755         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1756                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1757 }
1758
1759 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1760 {
1761         u64 max_blocks;
1762
1763         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1764             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1765                 return;
1766         /*
1767          * Even though NVMe spec explicitly states that MDTS is not
1768          * applicable to the write-zeroes:- "The restriction does not apply to
1769          * commands that do not transfer data between the host and the
1770          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1771          * In order to be more cautious use controller's max_hw_sectors value
1772          * to configure the maximum sectors for the write-zeroes which is
1773          * configured based on the controller's MDTS field in the
1774          * nvme_init_identify() if available.
1775          */
1776         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1777                 max_blocks = (u64)USHRT_MAX + 1;
1778         else
1779                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1780
1781         blk_queue_max_write_zeroes_sectors(disk->queue,
1782                                            nvme_lba_to_sect(ns, max_blocks));
1783 }
1784
1785 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1786                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1787 {
1788         memset(ids, 0, sizeof(*ids));
1789
1790         if (ctrl->vs >= NVME_VS(1, 1, 0))
1791                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1792         if (ctrl->vs >= NVME_VS(1, 2, 0))
1793                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1794         if (ctrl->vs >= NVME_VS(1, 3, 0))
1795                 return nvme_identify_ns_descs(ctrl, nsid, ids);
1796         return 0;
1797 }
1798
1799 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1800 {
1801         return !uuid_is_null(&ids->uuid) ||
1802                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1803                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1804 }
1805
1806 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1807 {
1808         return uuid_equal(&a->uuid, &b->uuid) &&
1809                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1810                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1811 }
1812
1813 static void nvme_update_disk_info(struct gendisk *disk,
1814                 struct nvme_ns *ns, struct nvme_id_ns *id)
1815 {
1816         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1817         unsigned short bs = 1 << ns->lba_shift;
1818         u32 atomic_bs, phys_bs, io_opt;
1819
1820         if (ns->lba_shift > PAGE_SHIFT) {
1821                 /* unsupported block size, set capacity to 0 later */
1822                 bs = (1 << 9);
1823         }
1824         blk_mq_freeze_queue(disk->queue);
1825         blk_integrity_unregister(disk);
1826
1827         if (id->nabo == 0) {
1828                 /*
1829                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1830                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1831                  * 0 then AWUPF must be used instead.
1832                  */
1833                 if (id->nsfeat & (1 << 1) && id->nawupf)
1834                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1835                 else
1836                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1837         } else {
1838                 atomic_bs = bs;
1839         }
1840         phys_bs = bs;
1841         io_opt = bs;
1842         if (id->nsfeat & (1 << 4)) {
1843                 /* NPWG = Namespace Preferred Write Granularity */
1844                 phys_bs *= 1 + le16_to_cpu(id->npwg);
1845                 /* NOWS = Namespace Optimal Write Size */
1846                 io_opt *= 1 + le16_to_cpu(id->nows);
1847         }
1848
1849         blk_queue_logical_block_size(disk->queue, bs);
1850         /*
1851          * Linux filesystems assume writing a single physical block is
1852          * an atomic operation. Hence limit the physical block size to the
1853          * value of the Atomic Write Unit Power Fail parameter.
1854          */
1855         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1856         blk_queue_io_min(disk->queue, phys_bs);
1857         blk_queue_io_opt(disk->queue, io_opt);
1858
1859         if (ns->ms && !ns->ext &&
1860             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1861                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1862         if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1863             ns->lba_shift > PAGE_SHIFT)
1864                 capacity = 0;
1865
1866         set_capacity_revalidate_and_notify(disk, capacity, false);
1867
1868         nvme_config_discard(disk, ns);
1869         nvme_config_write_zeroes(disk, ns);
1870
1871         if (id->nsattr & (1 << 0))
1872                 set_disk_ro(disk, true);
1873         else
1874                 set_disk_ro(disk, false);
1875
1876         blk_mq_unfreeze_queue(disk->queue);
1877 }
1878
1879 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1880 {
1881         struct nvme_ns *ns = disk->private_data;
1882         u32 iob;
1883
1884         /*
1885          * If identify namespace failed, use default 512 byte block size so
1886          * block layer can use before failing read/write for 0 capacity.
1887          */
1888         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1889         if (ns->lba_shift == 0)
1890                 ns->lba_shift = 9;
1891
1892         if ((ns->ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1893             is_power_of_2(ns->ctrl->max_hw_sectors))
1894                 iob = ns->ctrl->max_hw_sectors;
1895         else
1896                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1897
1898         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1899         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1900         /* the PI implementation requires metadata equal t10 pi tuple size */
1901         if (ns->ms == sizeof(struct t10_pi_tuple))
1902                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1903         else
1904                 ns->pi_type = 0;
1905
1906         if (iob)
1907                 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(iob));
1908         nvme_update_disk_info(disk, ns, id);
1909 #ifdef CONFIG_NVME_MULTIPATH
1910         if (ns->head->disk) {
1911                 nvme_update_disk_info(ns->head->disk, ns, id);
1912                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1913                 revalidate_disk(ns->head->disk);
1914         }
1915 #endif
1916 }
1917
1918 static int nvme_revalidate_disk(struct gendisk *disk)
1919 {
1920         struct nvme_ns *ns = disk->private_data;
1921         struct nvme_ctrl *ctrl = ns->ctrl;
1922         struct nvme_id_ns *id;
1923         struct nvme_ns_ids ids;
1924         int ret = 0;
1925
1926         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1927                 set_capacity(disk, 0);
1928                 return -ENODEV;
1929         }
1930
1931         ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1932         if (ret)
1933                 goto out;
1934
1935         if (id->ncap == 0) {
1936                 ret = -ENODEV;
1937                 goto free_id;
1938         }
1939
1940         ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1941         if (ret)
1942                 goto free_id;
1943
1944         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1945                 dev_err(ctrl->device,
1946                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1947                 ret = -ENODEV;
1948                 goto free_id;
1949         }
1950
1951         __nvme_revalidate_disk(disk, id);
1952 free_id:
1953         kfree(id);
1954 out:
1955         /*
1956          * Only fail the function if we got a fatal error back from the
1957          * device, otherwise ignore the error and just move on.
1958          */
1959         if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1960                 ret = 0;
1961         else if (ret > 0)
1962                 ret = blk_status_to_errno(nvme_error_status(ret));
1963         return ret;
1964 }
1965
1966 static char nvme_pr_type(enum pr_type type)
1967 {
1968         switch (type) {
1969         case PR_WRITE_EXCLUSIVE:
1970                 return 1;
1971         case PR_EXCLUSIVE_ACCESS:
1972                 return 2;
1973         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1974                 return 3;
1975         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1976                 return 4;
1977         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1978                 return 5;
1979         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1980                 return 6;
1981         default:
1982                 return 0;
1983         }
1984 };
1985
1986 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1987                                 u64 key, u64 sa_key, u8 op)
1988 {
1989         struct nvme_ns_head *head = NULL;
1990         struct nvme_ns *ns;
1991         struct nvme_command c;
1992         int srcu_idx, ret;
1993         u8 data[16] = { 0, };
1994
1995         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1996         if (unlikely(!ns))
1997                 return -EWOULDBLOCK;
1998
1999         put_unaligned_le64(key, &data[0]);
2000         put_unaligned_le64(sa_key, &data[8]);
2001
2002         memset(&c, 0, sizeof(c));
2003         c.common.opcode = op;
2004         c.common.nsid = cpu_to_le32(ns->head->ns_id);
2005         c.common.cdw10 = cpu_to_le32(cdw10);
2006
2007         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2008         nvme_put_ns_from_disk(head, srcu_idx);
2009         return ret;
2010 }
2011
2012 static int nvme_pr_register(struct block_device *bdev, u64 old,
2013                 u64 new, unsigned flags)
2014 {
2015         u32 cdw10;
2016
2017         if (flags & ~PR_FL_IGNORE_KEY)
2018                 return -EOPNOTSUPP;
2019
2020         cdw10 = old ? 2 : 0;
2021         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2022         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2023         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2024 }
2025
2026 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2027                 enum pr_type type, unsigned flags)
2028 {
2029         u32 cdw10;
2030
2031         if (flags & ~PR_FL_IGNORE_KEY)
2032                 return -EOPNOTSUPP;
2033
2034         cdw10 = nvme_pr_type(type) << 8;
2035         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2036         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2037 }
2038
2039 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2040                 enum pr_type type, bool abort)
2041 {
2042         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2043         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2044 }
2045
2046 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2047 {
2048         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2049         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2050 }
2051
2052 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2053 {
2054         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2055         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2056 }
2057
2058 static const struct pr_ops nvme_pr_ops = {
2059         .pr_register    = nvme_pr_register,
2060         .pr_reserve     = nvme_pr_reserve,
2061         .pr_release     = nvme_pr_release,
2062         .pr_preempt     = nvme_pr_preempt,
2063         .pr_clear       = nvme_pr_clear,
2064 };
2065
2066 #ifdef CONFIG_BLK_SED_OPAL
2067 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2068                 bool send)
2069 {
2070         struct nvme_ctrl *ctrl = data;
2071         struct nvme_command cmd;
2072
2073         memset(&cmd, 0, sizeof(cmd));
2074         if (send)
2075                 cmd.common.opcode = nvme_admin_security_send;
2076         else
2077                 cmd.common.opcode = nvme_admin_security_recv;
2078         cmd.common.nsid = 0;
2079         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2080         cmd.common.cdw11 = cpu_to_le32(len);
2081
2082         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2083                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2084 }
2085 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2086 #endif /* CONFIG_BLK_SED_OPAL */
2087
2088 static const struct block_device_operations nvme_fops = {
2089         .owner          = THIS_MODULE,
2090         .ioctl          = nvme_ioctl,
2091         .compat_ioctl   = nvme_compat_ioctl,
2092         .open           = nvme_open,
2093         .release        = nvme_release,
2094         .getgeo         = nvme_getgeo,
2095         .revalidate_disk= nvme_revalidate_disk,
2096         .pr_ops         = &nvme_pr_ops,
2097 };
2098
2099 #ifdef CONFIG_NVME_MULTIPATH
2100 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2101 {
2102         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2103
2104         if (!kref_get_unless_zero(&head->ref))
2105                 return -ENXIO;
2106         return 0;
2107 }
2108
2109 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2110 {
2111         nvme_put_ns_head(disk->private_data);
2112 }
2113
2114 const struct block_device_operations nvme_ns_head_ops = {
2115         .owner          = THIS_MODULE,
2116         .open           = nvme_ns_head_open,
2117         .release        = nvme_ns_head_release,
2118         .ioctl          = nvme_ioctl,
2119         .compat_ioctl   = nvme_compat_ioctl,
2120         .getgeo         = nvme_getgeo,
2121         .pr_ops         = &nvme_pr_ops,
2122 };
2123 #endif /* CONFIG_NVME_MULTIPATH */
2124
2125 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2126 {
2127         unsigned long timeout =
2128                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2129         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2130         int ret;
2131
2132         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2133                 if (csts == ~0)
2134                         return -ENODEV;
2135                 if ((csts & NVME_CSTS_RDY) == bit)
2136                         break;
2137
2138                 usleep_range(1000, 2000);
2139                 if (fatal_signal_pending(current))
2140                         return -EINTR;
2141                 if (time_after(jiffies, timeout)) {
2142                         dev_err(ctrl->device,
2143                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2144                                 enabled ? "initialisation" : "reset", csts);
2145                         return -ENODEV;
2146                 }
2147         }
2148
2149         return ret;
2150 }
2151
2152 /*
2153  * If the device has been passed off to us in an enabled state, just clear
2154  * the enabled bit.  The spec says we should set the 'shutdown notification
2155  * bits', but doing so may cause the device to complete commands to the
2156  * admin queue ... and we don't know what memory that might be pointing at!
2157  */
2158 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2159 {
2160         int ret;
2161
2162         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2163         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2164
2165         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2166         if (ret)
2167                 return ret;
2168
2169         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2170                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2171
2172         return nvme_wait_ready(ctrl, ctrl->cap, false);
2173 }
2174 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2175
2176 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2177 {
2178         /*
2179          * Default to a 4K page size, with the intention to update this
2180          * path in the future to accomodate architectures with differing
2181          * kernel and IO page sizes.
2182          */
2183         unsigned dev_page_min, page_shift = 12;
2184         int ret;
2185
2186         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2187         if (ret) {
2188                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2189                 return ret;
2190         }
2191         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2192
2193         if (page_shift < dev_page_min) {
2194                 dev_err(ctrl->device,
2195                         "Minimum device page size %u too large for host (%u)\n",
2196                         1 << dev_page_min, 1 << page_shift);
2197                 return -ENODEV;
2198         }
2199
2200         ctrl->page_size = 1 << page_shift;
2201
2202         ctrl->ctrl_config = NVME_CC_CSS_NVM;
2203         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2204         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2205         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2206         ctrl->ctrl_config |= NVME_CC_ENABLE;
2207
2208         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2209         if (ret)
2210                 return ret;
2211         return nvme_wait_ready(ctrl, ctrl->cap, true);
2212 }
2213 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2214
2215 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2216 {
2217         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2218         u32 csts;
2219         int ret;
2220
2221         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2222         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2223
2224         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2225         if (ret)
2226                 return ret;
2227
2228         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2229                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2230                         break;
2231
2232                 msleep(100);
2233                 if (fatal_signal_pending(current))
2234                         return -EINTR;
2235                 if (time_after(jiffies, timeout)) {
2236                         dev_err(ctrl->device,
2237                                 "Device shutdown incomplete; abort shutdown\n");
2238                         return -ENODEV;
2239                 }
2240         }
2241
2242         return ret;
2243 }
2244 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2245
2246 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2247                 struct request_queue *q)
2248 {
2249         bool vwc = false;
2250
2251         if (ctrl->max_hw_sectors) {
2252                 u32 max_segments =
2253                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2254
2255                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2256                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2257                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2258         }
2259         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2260         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2261                 vwc = true;
2262         blk_queue_write_cache(q, vwc, vwc);
2263 }
2264
2265 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2266 {
2267         __le64 ts;
2268         int ret;
2269
2270         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2271                 return 0;
2272
2273         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2274         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2275                         NULL);
2276         if (ret)
2277                 dev_warn_once(ctrl->device,
2278                         "could not set timestamp (%d)\n", ret);
2279         return ret;
2280 }
2281
2282 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2283 {
2284         struct nvme_feat_host_behavior *host;
2285         int ret;
2286
2287         /* Don't bother enabling the feature if retry delay is not reported */
2288         if (!ctrl->crdt[0])
2289                 return 0;
2290
2291         host = kzalloc(sizeof(*host), GFP_KERNEL);
2292         if (!host)
2293                 return 0;
2294
2295         host->acre = NVME_ENABLE_ACRE;
2296         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2297                                 host, sizeof(*host), NULL);
2298         kfree(host);
2299         return ret;
2300 }
2301
2302 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2303 {
2304         /*
2305          * APST (Autonomous Power State Transition) lets us program a
2306          * table of power state transitions that the controller will
2307          * perform automatically.  We configure it with a simple
2308          * heuristic: we are willing to spend at most 2% of the time
2309          * transitioning between power states.  Therefore, when running
2310          * in any given state, we will enter the next lower-power
2311          * non-operational state after waiting 50 * (enlat + exlat)
2312          * microseconds, as long as that state's exit latency is under
2313          * the requested maximum latency.
2314          *
2315          * We will not autonomously enter any non-operational state for
2316          * which the total latency exceeds ps_max_latency_us.  Users
2317          * can set ps_max_latency_us to zero to turn off APST.
2318          */
2319
2320         unsigned apste;
2321         struct nvme_feat_auto_pst *table;
2322         u64 max_lat_us = 0;
2323         int max_ps = -1;
2324         int ret;
2325
2326         /*
2327          * If APST isn't supported or if we haven't been initialized yet,
2328          * then don't do anything.
2329          */
2330         if (!ctrl->apsta)
2331                 return 0;
2332
2333         if (ctrl->npss > 31) {
2334                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2335                 return 0;
2336         }
2337
2338         table = kzalloc(sizeof(*table), GFP_KERNEL);
2339         if (!table)
2340                 return 0;
2341
2342         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2343                 /* Turn off APST. */
2344                 apste = 0;
2345                 dev_dbg(ctrl->device, "APST disabled\n");
2346         } else {
2347                 __le64 target = cpu_to_le64(0);
2348                 int state;
2349
2350                 /*
2351                  * Walk through all states from lowest- to highest-power.
2352                  * According to the spec, lower-numbered states use more
2353                  * power.  NPSS, despite the name, is the index of the
2354                  * lowest-power state, not the number of states.
2355                  */
2356                 for (state = (int)ctrl->npss; state >= 0; state--) {
2357                         u64 total_latency_us, exit_latency_us, transition_ms;
2358
2359                         if (target)
2360                                 table->entries[state] = target;
2361
2362                         /*
2363                          * Don't allow transitions to the deepest state
2364                          * if it's quirked off.
2365                          */
2366                         if (state == ctrl->npss &&
2367                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2368                                 continue;
2369
2370                         /*
2371                          * Is this state a useful non-operational state for
2372                          * higher-power states to autonomously transition to?
2373                          */
2374                         if (!(ctrl->psd[state].flags &
2375                               NVME_PS_FLAGS_NON_OP_STATE))
2376                                 continue;
2377
2378                         exit_latency_us =
2379                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2380                         if (exit_latency_us > ctrl->ps_max_latency_us)
2381                                 continue;
2382
2383                         total_latency_us =
2384                                 exit_latency_us +
2385                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2386
2387                         /*
2388                          * This state is good.  Use it as the APST idle
2389                          * target for higher power states.
2390                          */
2391                         transition_ms = total_latency_us + 19;
2392                         do_div(transition_ms, 20);
2393                         if (transition_ms > (1 << 24) - 1)
2394                                 transition_ms = (1 << 24) - 1;
2395
2396                         target = cpu_to_le64((state << 3) |
2397                                              (transition_ms << 8));
2398
2399                         if (max_ps == -1)
2400                                 max_ps = state;
2401
2402                         if (total_latency_us > max_lat_us)
2403                                 max_lat_us = total_latency_us;
2404                 }
2405
2406                 apste = 1;
2407
2408                 if (max_ps == -1) {
2409                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2410                 } else {
2411                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2412                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2413                 }
2414         }
2415
2416         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2417                                 table, sizeof(*table), NULL);
2418         if (ret)
2419                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2420
2421         kfree(table);
2422         return ret;
2423 }
2424
2425 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2426 {
2427         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2428         u64 latency;
2429
2430         switch (val) {
2431         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2432         case PM_QOS_LATENCY_ANY:
2433                 latency = U64_MAX;
2434                 break;
2435
2436         default:
2437                 latency = val;
2438         }
2439
2440         if (ctrl->ps_max_latency_us != latency) {
2441                 ctrl->ps_max_latency_us = latency;
2442                 nvme_configure_apst(ctrl);
2443         }
2444 }
2445
2446 struct nvme_core_quirk_entry {
2447         /*
2448          * NVMe model and firmware strings are padded with spaces.  For
2449          * simplicity, strings in the quirk table are padded with NULLs
2450          * instead.
2451          */
2452         u16 vid;
2453         const char *mn;
2454         const char *fr;
2455         unsigned long quirks;
2456 };
2457
2458 static const struct nvme_core_quirk_entry core_quirks[] = {
2459         {
2460                 /*
2461                  * This Toshiba device seems to die using any APST states.  See:
2462                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2463                  */
2464                 .vid = 0x1179,
2465                 .mn = "THNSF5256GPUK TOSHIBA",
2466                 .quirks = NVME_QUIRK_NO_APST,
2467         },
2468         {
2469                 /*
2470                  * This LiteON CL1-3D*-Q11 firmware version has a race
2471                  * condition associated with actions related to suspend to idle
2472                  * LiteON has resolved the problem in future firmware
2473                  */
2474                 .vid = 0x14a4,
2475                 .fr = "22301111",
2476                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2477         }
2478 };
2479
2480 /* match is null-terminated but idstr is space-padded. */
2481 static bool string_matches(const char *idstr, const char *match, size_t len)
2482 {
2483         size_t matchlen;
2484
2485         if (!match)
2486                 return true;
2487
2488         matchlen = strlen(match);
2489         WARN_ON_ONCE(matchlen > len);
2490
2491         if (memcmp(idstr, match, matchlen))
2492                 return false;
2493
2494         for (; matchlen < len; matchlen++)
2495                 if (idstr[matchlen] != ' ')
2496                         return false;
2497
2498         return true;
2499 }
2500
2501 static bool quirk_matches(const struct nvme_id_ctrl *id,
2502                           const struct nvme_core_quirk_entry *q)
2503 {
2504         return q->vid == le16_to_cpu(id->vid) &&
2505                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2506                 string_matches(id->fr, q->fr, sizeof(id->fr));
2507 }
2508
2509 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2510                 struct nvme_id_ctrl *id)
2511 {
2512         size_t nqnlen;
2513         int off;
2514
2515         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2516                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2517                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2518                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2519                         return;
2520                 }
2521
2522                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2523                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2524         }
2525
2526         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2527         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2528                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2529                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2530         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2531         off += sizeof(id->sn);
2532         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2533         off += sizeof(id->mn);
2534         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2535 }
2536
2537 static void nvme_release_subsystem(struct device *dev)
2538 {
2539         struct nvme_subsystem *subsys =
2540                 container_of(dev, struct nvme_subsystem, dev);
2541
2542         if (subsys->instance >= 0)
2543                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2544         kfree(subsys);
2545 }
2546
2547 static void nvme_destroy_subsystem(struct kref *ref)
2548 {
2549         struct nvme_subsystem *subsys =
2550                         container_of(ref, struct nvme_subsystem, ref);
2551
2552         mutex_lock(&nvme_subsystems_lock);
2553         list_del(&subsys->entry);
2554         mutex_unlock(&nvme_subsystems_lock);
2555
2556         ida_destroy(&subsys->ns_ida);
2557         device_del(&subsys->dev);
2558         put_device(&subsys->dev);
2559 }
2560
2561 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2562 {
2563         kref_put(&subsys->ref, nvme_destroy_subsystem);
2564 }
2565
2566 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2567 {
2568         struct nvme_subsystem *subsys;
2569
2570         lockdep_assert_held(&nvme_subsystems_lock);
2571
2572         /*
2573          * Fail matches for discovery subsystems. This results
2574          * in each discovery controller bound to a unique subsystem.
2575          * This avoids issues with validating controller values
2576          * that can only be true when there is a single unique subsystem.
2577          * There may be multiple and completely independent entities
2578          * that provide discovery controllers.
2579          */
2580         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2581                 return NULL;
2582
2583         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2584                 if (strcmp(subsys->subnqn, subsysnqn))
2585                         continue;
2586                 if (!kref_get_unless_zero(&subsys->ref))
2587                         continue;
2588                 return subsys;
2589         }
2590
2591         return NULL;
2592 }
2593
2594 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2595         struct device_attribute subsys_attr_##_name = \
2596                 __ATTR(_name, _mode, _show, NULL)
2597
2598 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2599                                     struct device_attribute *attr,
2600                                     char *buf)
2601 {
2602         struct nvme_subsystem *subsys =
2603                 container_of(dev, struct nvme_subsystem, dev);
2604
2605         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2606 }
2607 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2608
2609 #define nvme_subsys_show_str_function(field)                            \
2610 static ssize_t subsys_##field##_show(struct device *dev,                \
2611                             struct device_attribute *attr, char *buf)   \
2612 {                                                                       \
2613         struct nvme_subsystem *subsys =                                 \
2614                 container_of(dev, struct nvme_subsystem, dev);          \
2615         return sprintf(buf, "%.*s\n",                                   \
2616                        (int)sizeof(subsys->field), subsys->field);      \
2617 }                                                                       \
2618 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2619
2620 nvme_subsys_show_str_function(model);
2621 nvme_subsys_show_str_function(serial);
2622 nvme_subsys_show_str_function(firmware_rev);
2623
2624 static struct attribute *nvme_subsys_attrs[] = {
2625         &subsys_attr_model.attr,
2626         &subsys_attr_serial.attr,
2627         &subsys_attr_firmware_rev.attr,
2628         &subsys_attr_subsysnqn.attr,
2629 #ifdef CONFIG_NVME_MULTIPATH
2630         &subsys_attr_iopolicy.attr,
2631 #endif
2632         NULL,
2633 };
2634
2635 static struct attribute_group nvme_subsys_attrs_group = {
2636         .attrs = nvme_subsys_attrs,
2637 };
2638
2639 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2640         &nvme_subsys_attrs_group,
2641         NULL,
2642 };
2643
2644 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2645                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2646 {
2647         struct nvme_ctrl *tmp;
2648
2649         lockdep_assert_held(&nvme_subsystems_lock);
2650
2651         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2652                 if (nvme_state_terminal(tmp))
2653                         continue;
2654
2655                 if (tmp->cntlid == ctrl->cntlid) {
2656                         dev_err(ctrl->device,
2657                                 "Duplicate cntlid %u with %s, rejecting\n",
2658                                 ctrl->cntlid, dev_name(tmp->device));
2659                         return false;
2660                 }
2661
2662                 if ((id->cmic & (1 << 1)) ||
2663                     (ctrl->opts && ctrl->opts->discovery_nqn))
2664                         continue;
2665
2666                 dev_err(ctrl->device,
2667                         "Subsystem does not support multiple controllers\n");
2668                 return false;
2669         }
2670
2671         return true;
2672 }
2673
2674 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2675 {
2676         struct nvme_subsystem *subsys, *found;
2677         int ret;
2678
2679         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2680         if (!subsys)
2681                 return -ENOMEM;
2682
2683         subsys->instance = -1;
2684         mutex_init(&subsys->lock);
2685         kref_init(&subsys->ref);
2686         INIT_LIST_HEAD(&subsys->ctrls);
2687         INIT_LIST_HEAD(&subsys->nsheads);
2688         nvme_init_subnqn(subsys, ctrl, id);
2689         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2690         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2691         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2692         subsys->vendor_id = le16_to_cpu(id->vid);
2693         subsys->cmic = id->cmic;
2694         subsys->awupf = le16_to_cpu(id->awupf);
2695 #ifdef CONFIG_NVME_MULTIPATH
2696         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2697 #endif
2698
2699         subsys->dev.class = nvme_subsys_class;
2700         subsys->dev.release = nvme_release_subsystem;
2701         subsys->dev.groups = nvme_subsys_attrs_groups;
2702         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2703         device_initialize(&subsys->dev);
2704
2705         mutex_lock(&nvme_subsystems_lock);
2706         found = __nvme_find_get_subsystem(subsys->subnqn);
2707         if (found) {
2708                 put_device(&subsys->dev);
2709                 subsys = found;
2710
2711                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2712                         ret = -EINVAL;
2713                         goto out_put_subsystem;
2714                 }
2715         } else {
2716                 ret = device_add(&subsys->dev);
2717                 if (ret) {
2718                         dev_err(ctrl->device,
2719                                 "failed to register subsystem device.\n");
2720                         put_device(&subsys->dev);
2721                         goto out_unlock;
2722                 }
2723                 ida_init(&subsys->ns_ida);
2724                 list_add_tail(&subsys->entry, &nvme_subsystems);
2725         }
2726
2727         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2728                                 dev_name(ctrl->device));
2729         if (ret) {
2730                 dev_err(ctrl->device,
2731                         "failed to create sysfs link from subsystem.\n");
2732                 goto out_put_subsystem;
2733         }
2734
2735         if (!found)
2736                 subsys->instance = ctrl->instance;
2737         ctrl->subsys = subsys;
2738         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2739         mutex_unlock(&nvme_subsystems_lock);
2740         return 0;
2741
2742 out_put_subsystem:
2743         nvme_put_subsystem(subsys);
2744 out_unlock:
2745         mutex_unlock(&nvme_subsystems_lock);
2746         return ret;
2747 }
2748
2749 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2750                 void *log, size_t size, u64 offset)
2751 {
2752         struct nvme_command c = { };
2753         u32 dwlen = nvme_bytes_to_numd(size);
2754
2755         c.get_log_page.opcode = nvme_admin_get_log_page;
2756         c.get_log_page.nsid = cpu_to_le32(nsid);
2757         c.get_log_page.lid = log_page;
2758         c.get_log_page.lsp = lsp;
2759         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2760         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2761         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2762         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2763
2764         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2765 }
2766
2767 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2768 {
2769         int ret;
2770
2771         if (!ctrl->effects)
2772                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2773
2774         if (!ctrl->effects)
2775                 return 0;
2776
2777         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2778                         ctrl->effects, sizeof(*ctrl->effects), 0);
2779         if (ret) {
2780                 kfree(ctrl->effects);
2781                 ctrl->effects = NULL;
2782         }
2783         return ret;
2784 }
2785
2786 /*
2787  * Initialize the cached copies of the Identify data and various controller
2788  * register in our nvme_ctrl structure.  This should be called as soon as
2789  * the admin queue is fully up and running.
2790  */
2791 int nvme_init_identify(struct nvme_ctrl *ctrl)
2792 {
2793         struct nvme_id_ctrl *id;
2794         int ret, page_shift;
2795         u32 max_hw_sectors;
2796         bool prev_apst_enabled;
2797
2798         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2799         if (ret) {
2800                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2801                 return ret;
2802         }
2803         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2804         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2805
2806         if (ctrl->vs >= NVME_VS(1, 1, 0))
2807                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2808
2809         ret = nvme_identify_ctrl(ctrl, &id);
2810         if (ret) {
2811                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2812                 return -EIO;
2813         }
2814
2815         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2816                 ret = nvme_get_effects_log(ctrl);
2817                 if (ret < 0)
2818                         goto out_free;
2819         }
2820
2821         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2822                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2823
2824         if (!ctrl->identified) {
2825                 int i;
2826
2827                 ret = nvme_init_subsystem(ctrl, id);
2828                 if (ret)
2829                         goto out_free;
2830
2831                 /*
2832                  * Check for quirks.  Quirk can depend on firmware version,
2833                  * so, in principle, the set of quirks present can change
2834                  * across a reset.  As a possible future enhancement, we
2835                  * could re-scan for quirks every time we reinitialize
2836                  * the device, but we'd have to make sure that the driver
2837                  * behaves intelligently if the quirks change.
2838                  */
2839                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2840                         if (quirk_matches(id, &core_quirks[i]))
2841                                 ctrl->quirks |= core_quirks[i].quirks;
2842                 }
2843         }
2844
2845         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2846                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2847                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2848         }
2849
2850         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2851         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2852         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2853
2854         ctrl->oacs = le16_to_cpu(id->oacs);
2855         ctrl->oncs = le16_to_cpu(id->oncs);
2856         ctrl->mtfa = le16_to_cpu(id->mtfa);
2857         ctrl->oaes = le32_to_cpu(id->oaes);
2858         ctrl->wctemp = le16_to_cpu(id->wctemp);
2859         ctrl->cctemp = le16_to_cpu(id->cctemp);
2860
2861         atomic_set(&ctrl->abort_limit, id->acl + 1);
2862         ctrl->vwc = id->vwc;
2863         if (id->mdts)
2864                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2865         else
2866                 max_hw_sectors = UINT_MAX;
2867         ctrl->max_hw_sectors =
2868                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2869
2870         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2871         ctrl->sgls = le32_to_cpu(id->sgls);
2872         ctrl->kas = le16_to_cpu(id->kas);
2873         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2874         ctrl->ctratt = le32_to_cpu(id->ctratt);
2875
2876         if (id->rtd3e) {
2877                 /* us -> s */
2878                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2879
2880                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2881                                                  shutdown_timeout, 60);
2882
2883                 if (ctrl->shutdown_timeout != shutdown_timeout)
2884                         dev_info(ctrl->device,
2885                                  "Shutdown timeout set to %u seconds\n",
2886                                  ctrl->shutdown_timeout);
2887         } else
2888                 ctrl->shutdown_timeout = shutdown_timeout;
2889
2890         ctrl->npss = id->npss;
2891         ctrl->apsta = id->apsta;
2892         prev_apst_enabled = ctrl->apst_enabled;
2893         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2894                 if (force_apst && id->apsta) {
2895                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2896                         ctrl->apst_enabled = true;
2897                 } else {
2898                         ctrl->apst_enabled = false;
2899                 }
2900         } else {
2901                 ctrl->apst_enabled = id->apsta;
2902         }
2903         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2904
2905         if (ctrl->ops->flags & NVME_F_FABRICS) {
2906                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2907                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2908                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2909                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2910
2911                 /*
2912                  * In fabrics we need to verify the cntlid matches the
2913                  * admin connect
2914                  */
2915                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2916                         dev_err(ctrl->device,
2917                                 "Mismatching cntlid: Connect %u vs Identify "
2918                                 "%u, rejecting\n",
2919                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
2920                         ret = -EINVAL;
2921                         goto out_free;
2922                 }
2923
2924                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2925                         dev_err(ctrl->device,
2926                                 "keep-alive support is mandatory for fabrics\n");
2927                         ret = -EINVAL;
2928                         goto out_free;
2929                 }
2930         } else {
2931                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2932                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2933                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2934                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2935         }
2936
2937         ret = nvme_mpath_init(ctrl, id);
2938         kfree(id);
2939
2940         if (ret < 0)
2941                 return ret;
2942
2943         if (ctrl->apst_enabled && !prev_apst_enabled)
2944                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2945         else if (!ctrl->apst_enabled && prev_apst_enabled)
2946                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2947
2948         ret = nvme_configure_apst(ctrl);
2949         if (ret < 0)
2950                 return ret;
2951         
2952         ret = nvme_configure_timestamp(ctrl);
2953         if (ret < 0)
2954                 return ret;
2955
2956         ret = nvme_configure_directives(ctrl);
2957         if (ret < 0)
2958                 return ret;
2959
2960         ret = nvme_configure_acre(ctrl);
2961         if (ret < 0)
2962                 return ret;
2963
2964         if (!ctrl->identified)
2965                 nvme_hwmon_init(ctrl);
2966
2967         ctrl->identified = true;
2968
2969         return 0;
2970
2971 out_free:
2972         kfree(id);
2973         return ret;
2974 }
2975 EXPORT_SYMBOL_GPL(nvme_init_identify);
2976
2977 static int nvme_dev_open(struct inode *inode, struct file *file)
2978 {
2979         struct nvme_ctrl *ctrl =
2980                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2981
2982         switch (ctrl->state) {
2983         case NVME_CTRL_LIVE:
2984                 break;
2985         default:
2986                 return -EWOULDBLOCK;
2987         }
2988
2989         file->private_data = ctrl;
2990         return 0;
2991 }
2992
2993 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2994 {
2995         struct nvme_ns *ns;
2996         int ret;
2997
2998         down_read(&ctrl->namespaces_rwsem);
2999         if (list_empty(&ctrl->namespaces)) {
3000                 ret = -ENOTTY;
3001                 goto out_unlock;
3002         }
3003
3004         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3005         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3006                 dev_warn(ctrl->device,
3007                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3008                 ret = -EINVAL;
3009                 goto out_unlock;
3010         }
3011
3012         dev_warn(ctrl->device,
3013                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3014         kref_get(&ns->kref);
3015         up_read(&ctrl->namespaces_rwsem);
3016
3017         ret = nvme_user_cmd(ctrl, ns, argp);
3018         nvme_put_ns(ns);
3019         return ret;
3020
3021 out_unlock:
3022         up_read(&ctrl->namespaces_rwsem);
3023         return ret;
3024 }
3025
3026 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3027                 unsigned long arg)
3028 {
3029         struct nvme_ctrl *ctrl = file->private_data;
3030         void __user *argp = (void __user *)arg;
3031
3032         switch (cmd) {
3033         case NVME_IOCTL_ADMIN_CMD:
3034                 return nvme_user_cmd(ctrl, NULL, argp);
3035         case NVME_IOCTL_ADMIN64_CMD:
3036                 return nvme_user_cmd64(ctrl, NULL, argp);
3037         case NVME_IOCTL_IO_CMD:
3038                 return nvme_dev_user_cmd(ctrl, argp);
3039         case NVME_IOCTL_RESET:
3040                 dev_warn(ctrl->device, "resetting controller\n");
3041                 return nvme_reset_ctrl_sync(ctrl);
3042         case NVME_IOCTL_SUBSYS_RESET:
3043                 return nvme_reset_subsystem(ctrl);
3044         case NVME_IOCTL_RESCAN:
3045                 nvme_queue_scan(ctrl);
3046                 return 0;
3047         default:
3048                 return -ENOTTY;
3049         }
3050 }
3051
3052 static const struct file_operations nvme_dev_fops = {
3053         .owner          = THIS_MODULE,
3054         .open           = nvme_dev_open,
3055         .unlocked_ioctl = nvme_dev_ioctl,
3056         .compat_ioctl   = compat_ptr_ioctl,
3057 };
3058
3059 static ssize_t nvme_sysfs_reset(struct device *dev,
3060                                 struct device_attribute *attr, const char *buf,
3061                                 size_t count)
3062 {
3063         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3064         int ret;
3065
3066         ret = nvme_reset_ctrl_sync(ctrl);
3067         if (ret < 0)
3068                 return ret;
3069         return count;
3070 }
3071 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3072
3073 static ssize_t nvme_sysfs_rescan(struct device *dev,
3074                                 struct device_attribute *attr, const char *buf,
3075                                 size_t count)
3076 {
3077         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3078
3079         nvme_queue_scan(ctrl);
3080         return count;
3081 }
3082 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3083
3084 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3085 {
3086         struct gendisk *disk = dev_to_disk(dev);
3087
3088         if (disk->fops == &nvme_fops)
3089                 return nvme_get_ns_from_dev(dev)->head;
3090         else
3091                 return disk->private_data;
3092 }
3093
3094 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3095                 char *buf)
3096 {
3097         struct nvme_ns_head *head = dev_to_ns_head(dev);
3098         struct nvme_ns_ids *ids = &head->ids;
3099         struct nvme_subsystem *subsys = head->subsys;
3100         int serial_len = sizeof(subsys->serial);
3101         int model_len = sizeof(subsys->model);
3102
3103         if (!uuid_is_null(&ids->uuid))
3104                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3105
3106         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3107                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3108
3109         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3110                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3111
3112         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3113                                   subsys->serial[serial_len - 1] == '\0'))
3114                 serial_len--;
3115         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3116                                  subsys->model[model_len - 1] == '\0'))
3117                 model_len--;
3118
3119         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3120                 serial_len, subsys->serial, model_len, subsys->model,
3121                 head->ns_id);
3122 }
3123 static DEVICE_ATTR_RO(wwid);
3124
3125 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3126                 char *buf)
3127 {
3128         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3129 }
3130 static DEVICE_ATTR_RO(nguid);
3131
3132 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3133                 char *buf)
3134 {
3135         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3136
3137         /* For backward compatibility expose the NGUID to userspace if
3138          * we have no UUID set
3139          */
3140         if (uuid_is_null(&ids->uuid)) {
3141                 printk_ratelimited(KERN_WARNING
3142                                    "No UUID available providing old NGUID\n");
3143                 return sprintf(buf, "%pU\n", ids->nguid);
3144         }
3145         return sprintf(buf, "%pU\n", &ids->uuid);
3146 }
3147 static DEVICE_ATTR_RO(uuid);
3148
3149 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3150                 char *buf)
3151 {
3152         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3153 }
3154 static DEVICE_ATTR_RO(eui);
3155
3156 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3157                 char *buf)
3158 {
3159         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3160 }
3161 static DEVICE_ATTR_RO(nsid);
3162
3163 static struct attribute *nvme_ns_id_attrs[] = {
3164         &dev_attr_wwid.attr,
3165         &dev_attr_uuid.attr,
3166         &dev_attr_nguid.attr,
3167         &dev_attr_eui.attr,
3168         &dev_attr_nsid.attr,
3169 #ifdef CONFIG_NVME_MULTIPATH
3170         &dev_attr_ana_grpid.attr,
3171         &dev_attr_ana_state.attr,
3172 #endif
3173         NULL,
3174 };
3175
3176 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3177                 struct attribute *a, int n)
3178 {
3179         struct device *dev = container_of(kobj, struct device, kobj);
3180         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3181
3182         if (a == &dev_attr_uuid.attr) {
3183                 if (uuid_is_null(&ids->uuid) &&
3184                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3185                         return 0;
3186         }
3187         if (a == &dev_attr_nguid.attr) {
3188                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3189                         return 0;
3190         }
3191         if (a == &dev_attr_eui.attr) {
3192                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3193                         return 0;
3194         }
3195 #ifdef CONFIG_NVME_MULTIPATH
3196         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3197                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3198                         return 0;
3199                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3200                         return 0;
3201         }
3202 #endif
3203         return a->mode;
3204 }
3205
3206 static const struct attribute_group nvme_ns_id_attr_group = {
3207         .attrs          = nvme_ns_id_attrs,
3208         .is_visible     = nvme_ns_id_attrs_are_visible,
3209 };
3210
3211 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3212         &nvme_ns_id_attr_group,
3213 #ifdef CONFIG_NVM
3214         &nvme_nvm_attr_group,
3215 #endif
3216         NULL,
3217 };
3218
3219 #define nvme_show_str_function(field)                                           \
3220 static ssize_t  field##_show(struct device *dev,                                \
3221                             struct device_attribute *attr, char *buf)           \
3222 {                                                                               \
3223         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3224         return sprintf(buf, "%.*s\n",                                           \
3225                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3226 }                                                                               \
3227 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3228
3229 nvme_show_str_function(model);
3230 nvme_show_str_function(serial);
3231 nvme_show_str_function(firmware_rev);
3232
3233 #define nvme_show_int_function(field)                                           \
3234 static ssize_t  field##_show(struct device *dev,                                \
3235                             struct device_attribute *attr, char *buf)           \
3236 {                                                                               \
3237         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3238         return sprintf(buf, "%d\n", ctrl->field);       \
3239 }                                                                               \
3240 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3241
3242 nvme_show_int_function(cntlid);
3243 nvme_show_int_function(numa_node);
3244 nvme_show_int_function(queue_count);
3245 nvme_show_int_function(sqsize);
3246
3247 static ssize_t nvme_sysfs_delete(struct device *dev,
3248                                 struct device_attribute *attr, const char *buf,
3249                                 size_t count)
3250 {
3251         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3252
3253         /* Can't delete non-created controllers */
3254         if (!ctrl->created)
3255                 return -EBUSY;
3256
3257         if (device_remove_file_self(dev, attr))
3258                 nvme_delete_ctrl_sync(ctrl);
3259         return count;
3260 }
3261 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3262
3263 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3264                                          struct device_attribute *attr,
3265                                          char *buf)
3266 {
3267         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3268
3269         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3270 }
3271 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3272
3273 static ssize_t nvme_sysfs_show_state(struct device *dev,
3274                                      struct device_attribute *attr,
3275                                      char *buf)
3276 {
3277         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3278         static const char *const state_name[] = {
3279                 [NVME_CTRL_NEW]         = "new",
3280                 [NVME_CTRL_LIVE]        = "live",
3281                 [NVME_CTRL_RESETTING]   = "resetting",
3282                 [NVME_CTRL_CONNECTING]  = "connecting",
3283                 [NVME_CTRL_DELETING]    = "deleting",
3284                 [NVME_CTRL_DEAD]        = "dead",
3285         };
3286
3287         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3288             state_name[ctrl->state])
3289                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3290
3291         return sprintf(buf, "unknown state\n");
3292 }
3293
3294 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3295
3296 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3297                                          struct device_attribute *attr,
3298                                          char *buf)
3299 {
3300         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3301
3302         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3303 }
3304 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3305
3306 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3307                                         struct device_attribute *attr,
3308                                         char *buf)
3309 {
3310         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3311
3312         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3313 }
3314 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3315
3316 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3317                                         struct device_attribute *attr,
3318                                         char *buf)
3319 {
3320         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3321
3322         return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3323 }
3324 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3325
3326 static ssize_t nvme_sysfs_show_address(struct device *dev,
3327                                          struct device_attribute *attr,
3328                                          char *buf)
3329 {
3330         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3331
3332         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3333 }
3334 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3335
3336 static struct attribute *nvme_dev_attrs[] = {
3337         &dev_attr_reset_controller.attr,
3338         &dev_attr_rescan_controller.attr,
3339         &dev_attr_model.attr,
3340         &dev_attr_serial.attr,
3341         &dev_attr_firmware_rev.attr,
3342         &dev_attr_cntlid.attr,
3343         &dev_attr_delete_controller.attr,
3344         &dev_attr_transport.attr,
3345         &dev_attr_subsysnqn.attr,
3346         &dev_attr_address.attr,
3347         &dev_attr_state.attr,
3348         &dev_attr_numa_node.attr,
3349         &dev_attr_queue_count.attr,
3350         &dev_attr_sqsize.attr,
3351         &dev_attr_hostnqn.attr,
3352         &dev_attr_hostid.attr,
3353         NULL
3354 };
3355
3356 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3357                 struct attribute *a, int n)
3358 {
3359         struct device *dev = container_of(kobj, struct device, kobj);
3360         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3361
3362         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3363                 return 0;
3364         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3365                 return 0;
3366         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3367                 return 0;
3368         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3369                 return 0;
3370
3371         return a->mode;
3372 }
3373
3374 static struct attribute_group nvme_dev_attrs_group = {
3375         .attrs          = nvme_dev_attrs,
3376         .is_visible     = nvme_dev_attrs_are_visible,
3377 };
3378
3379 static const struct attribute_group *nvme_dev_attr_groups[] = {
3380         &nvme_dev_attrs_group,
3381         NULL,
3382 };
3383
3384 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3385                 unsigned nsid)
3386 {
3387         struct nvme_ns_head *h;
3388
3389         lockdep_assert_held(&subsys->lock);
3390
3391         list_for_each_entry(h, &subsys->nsheads, entry) {
3392                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3393                         return h;
3394         }
3395
3396         return NULL;
3397 }
3398
3399 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3400                 struct nvme_ns_head *new)
3401 {
3402         struct nvme_ns_head *h;
3403
3404         lockdep_assert_held(&subsys->lock);
3405
3406         list_for_each_entry(h, &subsys->nsheads, entry) {
3407                 if (nvme_ns_ids_valid(&new->ids) &&
3408                     nvme_ns_ids_equal(&new->ids, &h->ids))
3409                         return -EINVAL;
3410         }
3411
3412         return 0;
3413 }
3414
3415 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3416                 unsigned nsid, struct nvme_ns_ids *ids)
3417 {
3418         struct nvme_ns_head *head;
3419         size_t size = sizeof(*head);
3420         int ret = -ENOMEM;
3421
3422 #ifdef CONFIG_NVME_MULTIPATH
3423         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3424 #endif
3425
3426         head = kzalloc(size, GFP_KERNEL);
3427         if (!head)
3428                 goto out;
3429         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3430         if (ret < 0)
3431                 goto out_free_head;
3432         head->instance = ret;
3433         INIT_LIST_HEAD(&head->list);
3434         ret = init_srcu_struct(&head->srcu);
3435         if (ret)
3436                 goto out_ida_remove;
3437         head->subsys = ctrl->subsys;
3438         head->ns_id = nsid;
3439         head->ids = *ids;
3440         kref_init(&head->ref);
3441
3442         ret = __nvme_check_ids(ctrl->subsys, head);
3443         if (ret) {
3444                 dev_err(ctrl->device,
3445                         "duplicate IDs for nsid %d\n", nsid);
3446                 goto out_cleanup_srcu;
3447         }
3448
3449         ret = nvme_mpath_alloc_disk(ctrl, head);
3450         if (ret)
3451                 goto out_cleanup_srcu;
3452
3453         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3454
3455         kref_get(&ctrl->subsys->ref);
3456
3457         return head;
3458 out_cleanup_srcu:
3459         cleanup_srcu_struct(&head->srcu);
3460 out_ida_remove:
3461         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3462 out_free_head:
3463         kfree(head);
3464 out:
3465         if (ret > 0)
3466                 ret = blk_status_to_errno(nvme_error_status(ret));
3467         return ERR_PTR(ret);
3468 }
3469
3470 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3471                 struct nvme_id_ns *id)
3472 {
3473         struct nvme_ctrl *ctrl = ns->ctrl;
3474         bool is_shared = id->nmic & (1 << 0);
3475         struct nvme_ns_head *head = NULL;
3476         struct nvme_ns_ids ids;
3477         int ret = 0;
3478
3479         ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3480         if (ret)
3481                 goto out;
3482
3483         mutex_lock(&ctrl->subsys->lock);
3484         head = nvme_find_ns_head(ctrl->subsys, nsid);
3485         if (!head) {
3486                 head = nvme_alloc_ns_head(ctrl, nsid, &ids);
3487                 if (IS_ERR(head)) {
3488                         ret = PTR_ERR(head);
3489                         goto out_unlock;
3490                 }
3491                 head->shared = is_shared;
3492         } else {
3493                 if (!is_shared || !head->shared) {
3494                         dev_err(ctrl->device,
3495                                 "Duplicate unshared namespace %d\n",
3496                                         nsid);
3497                         ret = -EINVAL;
3498                         nvme_put_ns_head(head);
3499                         goto out_unlock;
3500                 }
3501                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3502                         dev_err(ctrl->device,
3503                                 "IDs don't match for shared namespace %d\n",
3504                                         nsid);
3505                         ret = -EINVAL;
3506                         nvme_put_ns_head(head);
3507                         goto out_unlock;
3508                 }
3509         }
3510
3511         list_add_tail(&ns->siblings, &head->list);
3512         ns->head = head;
3513
3514 out_unlock:
3515         mutex_unlock(&ctrl->subsys->lock);
3516 out:
3517         if (ret > 0)
3518                 ret = blk_status_to_errno(nvme_error_status(ret));
3519         return ret;
3520 }
3521
3522 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3523 {
3524         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3525         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3526
3527         return nsa->head->ns_id - nsb->head->ns_id;
3528 }
3529
3530 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3531 {
3532         struct nvme_ns *ns, *ret = NULL;
3533
3534         down_read(&ctrl->namespaces_rwsem);
3535         list_for_each_entry(ns, &ctrl->namespaces, list) {
3536                 if (ns->head->ns_id == nsid) {
3537                         if (!kref_get_unless_zero(&ns->kref))
3538                                 continue;
3539                         ret = ns;
3540                         break;
3541                 }
3542                 if (ns->head->ns_id > nsid)
3543                         break;
3544         }
3545         up_read(&ctrl->namespaces_rwsem);
3546         return ret;
3547 }
3548
3549 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3550 {
3551         struct streams_directive_params s;
3552         int ret;
3553
3554         if (!ctrl->nr_streams)
3555                 return 0;
3556
3557         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3558         if (ret)
3559                 return ret;
3560
3561         ns->sws = le32_to_cpu(s.sws);
3562         ns->sgs = le16_to_cpu(s.sgs);
3563
3564         if (ns->sws) {
3565                 unsigned int bs = 1 << ns->lba_shift;
3566
3567                 blk_queue_io_min(ns->queue, bs * ns->sws);
3568                 if (ns->sgs)
3569                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3570         }
3571
3572         return 0;
3573 }
3574
3575 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3576 {
3577         struct nvme_ns *ns;
3578         struct gendisk *disk;
3579         struct nvme_id_ns *id;
3580         char disk_name[DISK_NAME_LEN];
3581         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3582
3583         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3584         if (!ns)
3585                 return;
3586
3587         ns->queue = blk_mq_init_queue(ctrl->tagset);
3588         if (IS_ERR(ns->queue))
3589                 goto out_free_ns;
3590
3591         if (ctrl->opts && ctrl->opts->data_digest)
3592                 ns->queue->backing_dev_info->capabilities
3593                         |= BDI_CAP_STABLE_WRITES;
3594
3595         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3596         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3597                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3598
3599         ns->queue->queuedata = ns;
3600         ns->ctrl = ctrl;
3601
3602         kref_init(&ns->kref);
3603         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3604
3605         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3606         nvme_set_queue_limits(ctrl, ns->queue);
3607
3608         ret = nvme_identify_ns(ctrl, nsid, &id);
3609         if (ret)
3610                 goto out_free_queue;
3611
3612         if (id->ncap == 0)      /* no namespace (legacy quirk) */
3613                 goto out_free_id;
3614
3615         ret = nvme_init_ns_head(ns, nsid, id);
3616         if (ret)
3617                 goto out_free_id;
3618         nvme_setup_streams_ns(ctrl, ns);
3619         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3620
3621         disk = alloc_disk_node(0, node);
3622         if (!disk)
3623                 goto out_unlink_ns;
3624
3625         disk->fops = &nvme_fops;
3626         disk->private_data = ns;
3627         disk->queue = ns->queue;
3628         disk->flags = flags;
3629         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3630         ns->disk = disk;
3631
3632         __nvme_revalidate_disk(disk, id);
3633
3634         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3635                 ret = nvme_nvm_register(ns, disk_name, node);
3636                 if (ret) {
3637                         dev_warn(ctrl->device, "LightNVM init failure\n");
3638                         goto out_put_disk;
3639                 }
3640         }
3641
3642         down_write(&ctrl->namespaces_rwsem);
3643         list_add_tail(&ns->list, &ctrl->namespaces);
3644         up_write(&ctrl->namespaces_rwsem);
3645
3646         nvme_get_ctrl(ctrl);
3647
3648         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3649
3650         nvme_mpath_add_disk(ns, id);
3651         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3652         kfree(id);
3653
3654         return;
3655  out_put_disk:
3656         /* prevent double queue cleanup */
3657         ns->disk->queue = NULL;
3658         put_disk(ns->disk);
3659  out_unlink_ns:
3660         mutex_lock(&ctrl->subsys->lock);
3661         list_del_rcu(&ns->siblings);
3662         if (list_empty(&ns->head->list))
3663                 list_del_init(&ns->head->entry);
3664         mutex_unlock(&ctrl->subsys->lock);
3665         nvme_put_ns_head(ns->head);
3666  out_free_id:
3667         kfree(id);
3668  out_free_queue:
3669         blk_cleanup_queue(ns->queue);
3670  out_free_ns:
3671         kfree(ns);
3672 }
3673
3674 static void nvme_ns_remove(struct nvme_ns *ns)
3675 {
3676         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3677                 return;
3678
3679         nvme_fault_inject_fini(&ns->fault_inject);
3680
3681         mutex_lock(&ns->ctrl->subsys->lock);
3682         list_del_rcu(&ns->siblings);
3683         if (list_empty(&ns->head->list))
3684                 list_del_init(&ns->head->entry);
3685         mutex_unlock(&ns->ctrl->subsys->lock);
3686
3687         synchronize_rcu(); /* guarantee not available in head->list */
3688         nvme_mpath_clear_current_path(ns);
3689         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3690
3691         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3692                 del_gendisk(ns->disk);
3693                 blk_cleanup_queue(ns->queue);
3694                 if (blk_get_integrity(ns->disk))
3695                         blk_integrity_unregister(ns->disk);
3696         }
3697
3698         down_write(&ns->ctrl->namespaces_rwsem);
3699         list_del_init(&ns->list);
3700         up_write(&ns->ctrl->namespaces_rwsem);
3701
3702         nvme_mpath_check_last_path(ns);
3703         nvme_put_ns(ns);
3704 }
3705
3706 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3707 {
3708         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3709
3710         if (ns) {
3711                 nvme_ns_remove(ns);
3712                 nvme_put_ns(ns);
3713         }
3714 }
3715
3716 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3717 {
3718         struct nvme_ns *ns;
3719
3720         ns = nvme_find_get_ns(ctrl, nsid);
3721         if (ns) {
3722                 if (ns->disk && revalidate_disk(ns->disk))
3723                         nvme_ns_remove(ns);
3724                 nvme_put_ns(ns);
3725         } else
3726                 nvme_alloc_ns(ctrl, nsid);
3727 }
3728
3729 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3730                                         unsigned nsid)
3731 {
3732         struct nvme_ns *ns, *next;
3733         LIST_HEAD(rm_list);
3734
3735         down_write(&ctrl->namespaces_rwsem);
3736         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3737                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3738                         list_move_tail(&ns->list, &rm_list);
3739         }
3740         up_write(&ctrl->namespaces_rwsem);
3741
3742         list_for_each_entry_safe(ns, next, &rm_list, list)
3743                 nvme_ns_remove(ns);
3744
3745 }
3746
3747 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3748 {
3749         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3750         __le32 *ns_list;
3751         u32 prev = 0;
3752         int ret = 0, i;
3753
3754         if (nvme_ctrl_limited_cns(ctrl))
3755                 return -EOPNOTSUPP;
3756
3757         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3758         if (!ns_list)
3759                 return -ENOMEM;
3760
3761         for (;;) {
3762                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3763                 if (ret)
3764                         goto free;
3765
3766                 for (i = 0; i < nr_entries; i++) {
3767                         u32 nsid = le32_to_cpu(ns_list[i]);
3768
3769                         if (!nsid)      /* end of the list? */
3770                                 goto out;
3771                         nvme_validate_ns(ctrl, nsid);
3772                         while (++prev < nsid)
3773                                 nvme_ns_remove_by_nsid(ctrl, prev);
3774                 }
3775         }
3776  out:
3777         nvme_remove_invalid_namespaces(ctrl, prev);
3778  free:
3779         kfree(ns_list);
3780         return ret;
3781 }
3782
3783 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3784 {
3785         struct nvme_id_ctrl *id;
3786         u32 nn, i;
3787
3788         if (nvme_identify_ctrl(ctrl, &id))
3789                 return;
3790         nn = le32_to_cpu(id->nn);
3791         kfree(id);
3792
3793         for (i = 1; i <= nn; i++)
3794                 nvme_validate_ns(ctrl, i);
3795
3796         nvme_remove_invalid_namespaces(ctrl, nn);
3797 }
3798
3799 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3800 {
3801         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3802         __le32 *log;
3803         int error;
3804
3805         log = kzalloc(log_size, GFP_KERNEL);
3806         if (!log)
3807                 return;
3808
3809         /*
3810          * We need to read the log to clear the AEN, but we don't want to rely
3811          * on it for the changed namespace information as userspace could have
3812          * raced with us in reading the log page, which could cause us to miss
3813          * updates.
3814          */
3815         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3816                         log_size, 0);
3817         if (error)
3818                 dev_warn(ctrl->device,
3819                         "reading changed ns log failed: %d\n", error);
3820
3821         kfree(log);
3822 }
3823
3824 static void nvme_scan_work(struct work_struct *work)
3825 {
3826         struct nvme_ctrl *ctrl =
3827                 container_of(work, struct nvme_ctrl, scan_work);
3828
3829         /* No tagset on a live ctrl means IO queues could not created */
3830         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3831                 return;
3832
3833         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3834                 dev_info(ctrl->device, "rescanning namespaces.\n");
3835                 nvme_clear_changed_ns_log(ctrl);
3836         }
3837
3838         mutex_lock(&ctrl->scan_lock);
3839         if (nvme_scan_ns_list(ctrl) != 0)
3840                 nvme_scan_ns_sequential(ctrl);
3841         mutex_unlock(&ctrl->scan_lock);
3842
3843         down_write(&ctrl->namespaces_rwsem);
3844         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3845         up_write(&ctrl->namespaces_rwsem);
3846 }
3847
3848 /*
3849  * This function iterates the namespace list unlocked to allow recovery from
3850  * controller failure. It is up to the caller to ensure the namespace list is
3851  * not modified by scan work while this function is executing.
3852  */
3853 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3854 {
3855         struct nvme_ns *ns, *next;
3856         LIST_HEAD(ns_list);
3857
3858         /*
3859          * make sure to requeue I/O to all namespaces as these
3860          * might result from the scan itself and must complete
3861          * for the scan_work to make progress
3862          */
3863         nvme_mpath_clear_ctrl_paths(ctrl);
3864
3865         /* prevent racing with ns scanning */
3866         flush_work(&ctrl->scan_work);
3867
3868         /*
3869          * The dead states indicates the controller was not gracefully
3870          * disconnected. In that case, we won't be able to flush any data while
3871          * removing the namespaces' disks; fail all the queues now to avoid
3872          * potentially having to clean up the failed sync later.
3873          */
3874         if (ctrl->state == NVME_CTRL_DEAD)
3875                 nvme_kill_queues(ctrl);
3876
3877         down_write(&ctrl->namespaces_rwsem);
3878         list_splice_init(&ctrl->namespaces, &ns_list);
3879         up_write(&ctrl->namespaces_rwsem);
3880
3881         list_for_each_entry_safe(ns, next, &ns_list, list)
3882                 nvme_ns_remove(ns);
3883 }
3884 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3885
3886 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3887 {
3888         struct nvme_ctrl *ctrl =
3889                 container_of(dev, struct nvme_ctrl, ctrl_device);
3890         struct nvmf_ctrl_options *opts = ctrl->opts;
3891         int ret;
3892
3893         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3894         if (ret)
3895                 return ret;
3896
3897         if (opts) {
3898                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3899                 if (ret)
3900                         return ret;
3901
3902                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3903                                 opts->trsvcid ?: "none");
3904                 if (ret)
3905                         return ret;
3906
3907                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3908                                 opts->host_traddr ?: "none");
3909         }
3910         return ret;
3911 }
3912
3913 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3914 {
3915         char *envp[2] = { NULL, NULL };
3916         u32 aen_result = ctrl->aen_result;
3917
3918         ctrl->aen_result = 0;
3919         if (!aen_result)
3920                 return;
3921
3922         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3923         if (!envp[0])
3924                 return;
3925         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3926         kfree(envp[0]);
3927 }
3928
3929 static void nvme_async_event_work(struct work_struct *work)
3930 {
3931         struct nvme_ctrl *ctrl =
3932                 container_of(work, struct nvme_ctrl, async_event_work);
3933
3934         nvme_aen_uevent(ctrl);
3935         ctrl->ops->submit_async_event(ctrl);
3936 }
3937
3938 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3939 {
3940
3941         u32 csts;
3942
3943         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3944                 return false;
3945
3946         if (csts == ~0)
3947                 return false;
3948
3949         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3950 }
3951
3952 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3953 {
3954         struct nvme_fw_slot_info_log *log;
3955
3956         log = kmalloc(sizeof(*log), GFP_KERNEL);
3957         if (!log)
3958                 return;
3959
3960         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log,
3961                         sizeof(*log), 0))
3962                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3963         kfree(log);
3964 }
3965
3966 static void nvme_fw_act_work(struct work_struct *work)
3967 {
3968         struct nvme_ctrl *ctrl = container_of(work,
3969                                 struct nvme_ctrl, fw_act_work);
3970         unsigned long fw_act_timeout;
3971
3972         if (ctrl->mtfa)
3973                 fw_act_timeout = jiffies +
3974                                 msecs_to_jiffies(ctrl->mtfa * 100);
3975         else
3976                 fw_act_timeout = jiffies +
3977                                 msecs_to_jiffies(admin_timeout * 1000);
3978
3979         nvme_stop_queues(ctrl);
3980         while (nvme_ctrl_pp_status(ctrl)) {
3981                 if (time_after(jiffies, fw_act_timeout)) {
3982                         dev_warn(ctrl->device,
3983                                 "Fw activation timeout, reset controller\n");
3984                         nvme_try_sched_reset(ctrl);
3985                         return;
3986                 }
3987                 msleep(100);
3988         }
3989
3990         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3991                 return;
3992
3993         nvme_start_queues(ctrl);
3994         /* read FW slot information to clear the AER */
3995         nvme_get_fw_slot_info(ctrl);
3996 }
3997
3998 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3999 {
4000         u32 aer_notice_type = (result & 0xff00) >> 8;
4001
4002         trace_nvme_async_event(ctrl, aer_notice_type);
4003
4004         switch (aer_notice_type) {
4005         case NVME_AER_NOTICE_NS_CHANGED:
4006                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4007                 nvme_queue_scan(ctrl);
4008                 break;
4009         case NVME_AER_NOTICE_FW_ACT_STARTING:
4010                 /*
4011                  * We are (ab)using the RESETTING state to prevent subsequent
4012                  * recovery actions from interfering with the controller's
4013                  * firmware activation.
4014                  */
4015                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4016                         queue_work(nvme_wq, &ctrl->fw_act_work);
4017                 break;
4018 #ifdef CONFIG_NVME_MULTIPATH
4019         case NVME_AER_NOTICE_ANA:
4020                 if (!ctrl->ana_log_buf)
4021                         break;
4022                 queue_work(nvme_wq, &ctrl->ana_work);
4023                 break;
4024 #endif
4025         case NVME_AER_NOTICE_DISC_CHANGED:
4026                 ctrl->aen_result = result;
4027                 break;
4028         default:
4029                 dev_warn(ctrl->device, "async event result %08x\n", result);
4030         }
4031 }
4032
4033 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4034                 volatile union nvme_result *res)
4035 {
4036         u32 result = le32_to_cpu(res->u32);
4037         u32 aer_type = result & 0x07;
4038
4039         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4040                 return;
4041
4042         switch (aer_type) {
4043         case NVME_AER_NOTICE:
4044                 nvme_handle_aen_notice(ctrl, result);
4045                 break;
4046         case NVME_AER_ERROR:
4047         case NVME_AER_SMART:
4048         case NVME_AER_CSS:
4049         case NVME_AER_VS:
4050                 trace_nvme_async_event(ctrl, aer_type);
4051                 ctrl->aen_result = result;
4052                 break;
4053         default:
4054                 break;
4055         }
4056         queue_work(nvme_wq, &ctrl->async_event_work);
4057 }
4058 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4059
4060 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4061 {
4062         nvme_mpath_stop(ctrl);
4063         nvme_stop_keep_alive(ctrl);
4064         flush_work(&ctrl->async_event_work);
4065         cancel_work_sync(&ctrl->fw_act_work);
4066 }
4067 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4068
4069 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4070 {
4071         if (ctrl->kato)
4072                 nvme_start_keep_alive(ctrl);
4073
4074         nvme_enable_aen(ctrl);
4075
4076         if (ctrl->queue_count > 1) {
4077                 nvme_queue_scan(ctrl);
4078                 nvme_start_queues(ctrl);
4079         }
4080         ctrl->created = true;
4081 }
4082 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4083
4084 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4085 {
4086         nvme_fault_inject_fini(&ctrl->fault_inject);
4087         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4088         cdev_device_del(&ctrl->cdev, ctrl->device);
4089         nvme_put_ctrl(ctrl);
4090 }
4091 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4092
4093 static void nvme_free_ctrl(struct device *dev)
4094 {
4095         struct nvme_ctrl *ctrl =
4096                 container_of(dev, struct nvme_ctrl, ctrl_device);
4097         struct nvme_subsystem *subsys = ctrl->subsys;
4098
4099         if (subsys && ctrl->instance != subsys->instance)
4100                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4101
4102         kfree(ctrl->effects);
4103         nvme_mpath_uninit(ctrl);
4104         __free_page(ctrl->discard_page);
4105
4106         if (subsys) {
4107                 mutex_lock(&nvme_subsystems_lock);
4108                 list_del(&ctrl->subsys_entry);
4109                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4110                 mutex_unlock(&nvme_subsystems_lock);
4111         }
4112
4113         ctrl->ops->free_ctrl(ctrl);
4114
4115         if (subsys)
4116                 nvme_put_subsystem(subsys);
4117 }
4118
4119 /*
4120  * Initialize a NVMe controller structures.  This needs to be called during
4121  * earliest initialization so that we have the initialized structured around
4122  * during probing.
4123  */
4124 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4125                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4126 {
4127         int ret;
4128
4129         ctrl->state = NVME_CTRL_NEW;
4130         spin_lock_init(&ctrl->lock);
4131         mutex_init(&ctrl->scan_lock);
4132         INIT_LIST_HEAD(&ctrl->namespaces);
4133         init_rwsem(&ctrl->namespaces_rwsem);
4134         ctrl->dev = dev;
4135         ctrl->ops = ops;
4136         ctrl->quirks = quirks;
4137         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4138         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4139         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4140         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4141         init_waitqueue_head(&ctrl->state_wq);
4142
4143         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4144         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4145         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4146
4147         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4148                         PAGE_SIZE);
4149         ctrl->discard_page = alloc_page(GFP_KERNEL);
4150         if (!ctrl->discard_page) {
4151                 ret = -ENOMEM;
4152                 goto out;
4153         }
4154
4155         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4156         if (ret < 0)
4157                 goto out;
4158         ctrl->instance = ret;
4159
4160         device_initialize(&ctrl->ctrl_device);
4161         ctrl->device = &ctrl->ctrl_device;
4162         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4163         ctrl->device->class = nvme_class;
4164         ctrl->device->parent = ctrl->dev;
4165         ctrl->device->groups = nvme_dev_attr_groups;
4166         ctrl->device->release = nvme_free_ctrl;
4167         dev_set_drvdata(ctrl->device, ctrl);
4168         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4169         if (ret)
4170                 goto out_release_instance;
4171
4172         nvme_get_ctrl(ctrl);
4173         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4174         ctrl->cdev.owner = ops->module;
4175         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4176         if (ret)
4177                 goto out_free_name;
4178
4179         /*
4180          * Initialize latency tolerance controls.  The sysfs files won't
4181          * be visible to userspace unless the device actually supports APST.
4182          */
4183         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4184         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4185                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4186
4187         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4188
4189         return 0;
4190 out_free_name:
4191         nvme_put_ctrl(ctrl);
4192         kfree_const(ctrl->device->kobj.name);
4193 out_release_instance:
4194         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4195 out:
4196         if (ctrl->discard_page)
4197                 __free_page(ctrl->discard_page);
4198         return ret;
4199 }
4200 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4201
4202 /**
4203  * nvme_kill_queues(): Ends all namespace queues
4204  * @ctrl: the dead controller that needs to end
4205  *
4206  * Call this function when the driver determines it is unable to get the
4207  * controller in a state capable of servicing IO.
4208  */
4209 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4210 {
4211         struct nvme_ns *ns;
4212
4213         down_read(&ctrl->namespaces_rwsem);
4214
4215         /* Forcibly unquiesce queues to avoid blocking dispatch */
4216         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4217                 blk_mq_unquiesce_queue(ctrl->admin_q);
4218
4219         list_for_each_entry(ns, &ctrl->namespaces, list)
4220                 nvme_set_queue_dying(ns);
4221
4222         up_read(&ctrl->namespaces_rwsem);
4223 }
4224 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4225
4226 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4227 {
4228         struct nvme_ns *ns;
4229
4230         down_read(&ctrl->namespaces_rwsem);
4231         list_for_each_entry(ns, &ctrl->namespaces, list)
4232                 blk_mq_unfreeze_queue(ns->queue);
4233         up_read(&ctrl->namespaces_rwsem);
4234 }
4235 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4236
4237 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4238 {
4239         struct nvme_ns *ns;
4240
4241         down_read(&ctrl->namespaces_rwsem);
4242         list_for_each_entry(ns, &ctrl->namespaces, list) {
4243                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4244                 if (timeout <= 0)
4245                         break;
4246         }
4247         up_read(&ctrl->namespaces_rwsem);
4248 }
4249 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4250
4251 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4252 {
4253         struct nvme_ns *ns;
4254
4255         down_read(&ctrl->namespaces_rwsem);
4256         list_for_each_entry(ns, &ctrl->namespaces, list)
4257                 blk_mq_freeze_queue_wait(ns->queue);
4258         up_read(&ctrl->namespaces_rwsem);
4259 }
4260 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4261
4262 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4263 {
4264         struct nvme_ns *ns;
4265
4266         down_read(&ctrl->namespaces_rwsem);
4267         list_for_each_entry(ns, &ctrl->namespaces, list)
4268                 blk_freeze_queue_start(ns->queue);
4269         up_read(&ctrl->namespaces_rwsem);
4270 }
4271 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4272
4273 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4274 {
4275         struct nvme_ns *ns;
4276
4277         down_read(&ctrl->namespaces_rwsem);
4278         list_for_each_entry(ns, &ctrl->namespaces, list)
4279                 blk_mq_quiesce_queue(ns->queue);
4280         up_read(&ctrl->namespaces_rwsem);
4281 }
4282 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4283
4284 void nvme_start_queues(struct nvme_ctrl *ctrl)
4285 {
4286         struct nvme_ns *ns;
4287
4288         down_read(&ctrl->namespaces_rwsem);
4289         list_for_each_entry(ns, &ctrl->namespaces, list)
4290                 blk_mq_unquiesce_queue(ns->queue);
4291         up_read(&ctrl->namespaces_rwsem);
4292 }
4293 EXPORT_SYMBOL_GPL(nvme_start_queues);
4294
4295
4296 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4297 {
4298         struct nvme_ns *ns;
4299
4300         down_read(&ctrl->namespaces_rwsem);
4301         list_for_each_entry(ns, &ctrl->namespaces, list)
4302                 blk_sync_queue(ns->queue);
4303         up_read(&ctrl->namespaces_rwsem);
4304
4305         if (ctrl->admin_q)
4306                 blk_sync_queue(ctrl->admin_q);
4307 }
4308 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4309
4310 /*
4311  * Check we didn't inadvertently grow the command structure sizes:
4312  */
4313 static inline void _nvme_check_size(void)
4314 {
4315         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4316         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4317         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4318         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4319         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4320         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4321         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4322         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4323         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4324         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4325         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4326         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4327         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4328         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4329         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4330         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4331         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4332 }
4333
4334
4335 static int __init nvme_core_init(void)
4336 {
4337         int result = -ENOMEM;
4338
4339         _nvme_check_size();
4340
4341         nvme_wq = alloc_workqueue("nvme-wq",
4342                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4343         if (!nvme_wq)
4344                 goto out;
4345
4346         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4347                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4348         if (!nvme_reset_wq)
4349                 goto destroy_wq;
4350
4351         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4352                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4353         if (!nvme_delete_wq)
4354                 goto destroy_reset_wq;
4355
4356         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4357         if (result < 0)
4358                 goto destroy_delete_wq;
4359
4360         nvme_class = class_create(THIS_MODULE, "nvme");
4361         if (IS_ERR(nvme_class)) {
4362                 result = PTR_ERR(nvme_class);
4363                 goto unregister_chrdev;
4364         }
4365         nvme_class->dev_uevent = nvme_class_uevent;
4366
4367         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4368         if (IS_ERR(nvme_subsys_class)) {
4369                 result = PTR_ERR(nvme_subsys_class);
4370                 goto destroy_class;
4371         }
4372         return 0;
4373
4374 destroy_class:
4375         class_destroy(nvme_class);
4376 unregister_chrdev:
4377         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4378 destroy_delete_wq:
4379         destroy_workqueue(nvme_delete_wq);
4380 destroy_reset_wq:
4381         destroy_workqueue(nvme_reset_wq);
4382 destroy_wq:
4383         destroy_workqueue(nvme_wq);
4384 out:
4385         return result;
4386 }
4387
4388 static void __exit nvme_core_exit(void)
4389 {
4390         class_destroy(nvme_subsys_class);
4391         class_destroy(nvme_class);
4392         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4393         destroy_workqueue(nvme_delete_wq);
4394         destroy_workqueue(nvme_reset_wq);
4395         destroy_workqueue(nvme_wq);
4396         ida_destroy(&nvme_instance_ida);
4397 }
4398
4399 MODULE_LICENSE("GPL");
4400 MODULE_VERSION("1.0");
4401 module_init(nvme_core_init);
4402 module_exit(nvme_core_exit);