Merge tag 'x86-urgent-2022-08-13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / nvdimm / region_devs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
12 #include <linux/io.h>
13 #include <linux/nd.h>
14 #include "nd-core.h"
15 #include "nd.h"
16
17 /*
18  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19  * irrelevant.
20  */
21 #include <linux/io-64-nonatomic-hi-lo.h>
22
23 static DEFINE_PER_CPU(int, flush_idx);
24
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26                 struct nd_region_data *ndrd)
27 {
28         int i, j;
29
30         dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31                         nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32         for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33                 struct resource *res = &nvdimm->flush_wpq[i];
34                 unsigned long pfn = PHYS_PFN(res->start);
35                 void __iomem *flush_page;
36
37                 /* check if flush hints share a page */
38                 for (j = 0; j < i; j++) {
39                         struct resource *res_j = &nvdimm->flush_wpq[j];
40                         unsigned long pfn_j = PHYS_PFN(res_j->start);
41
42                         if (pfn == pfn_j)
43                                 break;
44                 }
45
46                 if (j < i)
47                         flush_page = (void __iomem *) ((unsigned long)
48                                         ndrd_get_flush_wpq(ndrd, dimm, j)
49                                         & PAGE_MASK);
50                 else
51                         flush_page = devm_nvdimm_ioremap(dev,
52                                         PFN_PHYS(pfn), PAGE_SIZE);
53                 if (!flush_page)
54                         return -ENXIO;
55                 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56                                 + (res->start & ~PAGE_MASK));
57         }
58
59         return 0;
60 }
61
62 int nd_region_activate(struct nd_region *nd_region)
63 {
64         int i, j, num_flush = 0;
65         struct nd_region_data *ndrd;
66         struct device *dev = &nd_region->dev;
67         size_t flush_data_size = sizeof(void *);
68
69         nvdimm_bus_lock(&nd_region->dev);
70         for (i = 0; i < nd_region->ndr_mappings; i++) {
71                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
73
74                 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75                         nvdimm_bus_unlock(&nd_region->dev);
76                         return -EBUSY;
77                 }
78
79                 /* at least one null hint slot per-dimm for the "no-hint" case */
80                 flush_data_size += sizeof(void *);
81                 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82                 if (!nvdimm->num_flush)
83                         continue;
84                 flush_data_size += nvdimm->num_flush * sizeof(void *);
85         }
86         nvdimm_bus_unlock(&nd_region->dev);
87
88         ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89         if (!ndrd)
90                 return -ENOMEM;
91         dev_set_drvdata(dev, ndrd);
92
93         if (!num_flush)
94                 return 0;
95
96         ndrd->hints_shift = ilog2(num_flush);
97         for (i = 0; i < nd_region->ndr_mappings; i++) {
98                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
100                 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102                 if (rc)
103                         return rc;
104         }
105
106         /*
107          * Clear out entries that are duplicates. This should prevent the
108          * extra flushings.
109          */
110         for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111                 /* ignore if NULL already */
112                 if (!ndrd_get_flush_wpq(ndrd, i, 0))
113                         continue;
114
115                 for (j = i + 1; j < nd_region->ndr_mappings; j++)
116                         if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117                             ndrd_get_flush_wpq(ndrd, j, 0))
118                                 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119         }
120
121         return 0;
122 }
123
124 static void nd_region_release(struct device *dev)
125 {
126         struct nd_region *nd_region = to_nd_region(dev);
127         u16 i;
128
129         for (i = 0; i < nd_region->ndr_mappings; i++) {
130                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
132
133                 put_device(&nvdimm->dev);
134         }
135         free_percpu(nd_region->lane);
136         if (!test_bit(ND_REGION_CXL, &nd_region->flags))
137                 memregion_free(nd_region->id);
138         kfree(nd_region);
139 }
140
141 struct nd_region *to_nd_region(struct device *dev)
142 {
143         struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
144
145         WARN_ON(dev->type->release != nd_region_release);
146         return nd_region;
147 }
148 EXPORT_SYMBOL_GPL(to_nd_region);
149
150 struct device *nd_region_dev(struct nd_region *nd_region)
151 {
152         if (!nd_region)
153                 return NULL;
154         return &nd_region->dev;
155 }
156 EXPORT_SYMBOL_GPL(nd_region_dev);
157
158 void *nd_region_provider_data(struct nd_region *nd_region)
159 {
160         return nd_region->provider_data;
161 }
162 EXPORT_SYMBOL_GPL(nd_region_provider_data);
163
164 /**
165  * nd_region_to_nstype() - region to an integer namespace type
166  * @nd_region: region-device to interrogate
167  *
168  * This is the 'nstype' attribute of a region as well, an input to the
169  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
170  * namespace devices with namespace drivers.
171  */
172 int nd_region_to_nstype(struct nd_region *nd_region)
173 {
174         if (is_memory(&nd_region->dev)) {
175                 u16 i, label;
176
177                 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
178                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
179                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
180
181                         if (test_bit(NDD_LABELING, &nvdimm->flags))
182                                 label++;
183                 }
184                 if (label)
185                         return ND_DEVICE_NAMESPACE_PMEM;
186                 else
187                         return ND_DEVICE_NAMESPACE_IO;
188         }
189
190         return 0;
191 }
192 EXPORT_SYMBOL(nd_region_to_nstype);
193
194 static unsigned long long region_size(struct nd_region *nd_region)
195 {
196         if (is_memory(&nd_region->dev)) {
197                 return nd_region->ndr_size;
198         } else if (nd_region->ndr_mappings == 1) {
199                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
200
201                 return nd_mapping->size;
202         }
203
204         return 0;
205 }
206
207 static ssize_t size_show(struct device *dev,
208                 struct device_attribute *attr, char *buf)
209 {
210         struct nd_region *nd_region = to_nd_region(dev);
211
212         return sprintf(buf, "%llu\n", region_size(nd_region));
213 }
214 static DEVICE_ATTR_RO(size);
215
216 static ssize_t deep_flush_show(struct device *dev,
217                 struct device_attribute *attr, char *buf)
218 {
219         struct nd_region *nd_region = to_nd_region(dev);
220
221         /*
222          * NOTE: in the nvdimm_has_flush() error case this attribute is
223          * not visible.
224          */
225         return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
226 }
227
228 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
229                 const char *buf, size_t len)
230 {
231         bool flush;
232         int rc = strtobool(buf, &flush);
233         struct nd_region *nd_region = to_nd_region(dev);
234
235         if (rc)
236                 return rc;
237         if (!flush)
238                 return -EINVAL;
239         rc = nvdimm_flush(nd_region, NULL);
240         if (rc)
241                 return rc;
242
243         return len;
244 }
245 static DEVICE_ATTR_RW(deep_flush);
246
247 static ssize_t mappings_show(struct device *dev,
248                 struct device_attribute *attr, char *buf)
249 {
250         struct nd_region *nd_region = to_nd_region(dev);
251
252         return sprintf(buf, "%d\n", nd_region->ndr_mappings);
253 }
254 static DEVICE_ATTR_RO(mappings);
255
256 static ssize_t nstype_show(struct device *dev,
257                 struct device_attribute *attr, char *buf)
258 {
259         struct nd_region *nd_region = to_nd_region(dev);
260
261         return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
262 }
263 static DEVICE_ATTR_RO(nstype);
264
265 static ssize_t set_cookie_show(struct device *dev,
266                 struct device_attribute *attr, char *buf)
267 {
268         struct nd_region *nd_region = to_nd_region(dev);
269         struct nd_interleave_set *nd_set = nd_region->nd_set;
270         ssize_t rc = 0;
271
272         if (is_memory(dev) && nd_set)
273                 /* pass, should be precluded by region_visible */;
274         else
275                 return -ENXIO;
276
277         /*
278          * The cookie to show depends on which specification of the
279          * labels we are using. If there are not labels then default to
280          * the v1.1 namespace label cookie definition. To read all this
281          * data we need to wait for probing to settle.
282          */
283         device_lock(dev);
284         nvdimm_bus_lock(dev);
285         wait_nvdimm_bus_probe_idle(dev);
286         if (nd_region->ndr_mappings) {
287                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
288                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
289
290                 if (ndd) {
291                         struct nd_namespace_index *nsindex;
292
293                         nsindex = to_namespace_index(ndd, ndd->ns_current);
294                         rc = sprintf(buf, "%#llx\n",
295                                         nd_region_interleave_set_cookie(nd_region,
296                                                 nsindex));
297                 }
298         }
299         nvdimm_bus_unlock(dev);
300         device_unlock(dev);
301
302         if (rc)
303                 return rc;
304         return sprintf(buf, "%#llx\n", nd_set->cookie1);
305 }
306 static DEVICE_ATTR_RO(set_cookie);
307
308 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
309 {
310         resource_size_t available;
311         int i;
312
313         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
314
315         available = 0;
316         for (i = 0; i < nd_region->ndr_mappings; i++) {
317                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
318                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
319
320                 /* if a dimm is disabled the available capacity is zero */
321                 if (!ndd)
322                         return 0;
323
324                 available += nd_pmem_available_dpa(nd_region, nd_mapping);
325         }
326
327         return available;
328 }
329
330 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
331 {
332         resource_size_t avail = 0;
333         int i;
334
335         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
336         for (i = 0; i < nd_region->ndr_mappings; i++) {
337                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
338
339                 avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
340                                                     nd_region, nd_mapping));
341         }
342         return avail * nd_region->ndr_mappings;
343 }
344
345 static ssize_t available_size_show(struct device *dev,
346                 struct device_attribute *attr, char *buf)
347 {
348         struct nd_region *nd_region = to_nd_region(dev);
349         unsigned long long available = 0;
350
351         /*
352          * Flush in-flight updates and grab a snapshot of the available
353          * size.  Of course, this value is potentially invalidated the
354          * memory nvdimm_bus_lock() is dropped, but that's userspace's
355          * problem to not race itself.
356          */
357         device_lock(dev);
358         nvdimm_bus_lock(dev);
359         wait_nvdimm_bus_probe_idle(dev);
360         available = nd_region_available_dpa(nd_region);
361         nvdimm_bus_unlock(dev);
362         device_unlock(dev);
363
364         return sprintf(buf, "%llu\n", available);
365 }
366 static DEVICE_ATTR_RO(available_size);
367
368 static ssize_t max_available_extent_show(struct device *dev,
369                 struct device_attribute *attr, char *buf)
370 {
371         struct nd_region *nd_region = to_nd_region(dev);
372         unsigned long long available = 0;
373
374         device_lock(dev);
375         nvdimm_bus_lock(dev);
376         wait_nvdimm_bus_probe_idle(dev);
377         available = nd_region_allocatable_dpa(nd_region);
378         nvdimm_bus_unlock(dev);
379         device_unlock(dev);
380
381         return sprintf(buf, "%llu\n", available);
382 }
383 static DEVICE_ATTR_RO(max_available_extent);
384
385 static ssize_t init_namespaces_show(struct device *dev,
386                 struct device_attribute *attr, char *buf)
387 {
388         struct nd_region_data *ndrd = dev_get_drvdata(dev);
389         ssize_t rc;
390
391         nvdimm_bus_lock(dev);
392         if (ndrd)
393                 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
394         else
395                 rc = -ENXIO;
396         nvdimm_bus_unlock(dev);
397
398         return rc;
399 }
400 static DEVICE_ATTR_RO(init_namespaces);
401
402 static ssize_t namespace_seed_show(struct device *dev,
403                 struct device_attribute *attr, char *buf)
404 {
405         struct nd_region *nd_region = to_nd_region(dev);
406         ssize_t rc;
407
408         nvdimm_bus_lock(dev);
409         if (nd_region->ns_seed)
410                 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
411         else
412                 rc = sprintf(buf, "\n");
413         nvdimm_bus_unlock(dev);
414         return rc;
415 }
416 static DEVICE_ATTR_RO(namespace_seed);
417
418 static ssize_t btt_seed_show(struct device *dev,
419                 struct device_attribute *attr, char *buf)
420 {
421         struct nd_region *nd_region = to_nd_region(dev);
422         ssize_t rc;
423
424         nvdimm_bus_lock(dev);
425         if (nd_region->btt_seed)
426                 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
427         else
428                 rc = sprintf(buf, "\n");
429         nvdimm_bus_unlock(dev);
430
431         return rc;
432 }
433 static DEVICE_ATTR_RO(btt_seed);
434
435 static ssize_t pfn_seed_show(struct device *dev,
436                 struct device_attribute *attr, char *buf)
437 {
438         struct nd_region *nd_region = to_nd_region(dev);
439         ssize_t rc;
440
441         nvdimm_bus_lock(dev);
442         if (nd_region->pfn_seed)
443                 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
444         else
445                 rc = sprintf(buf, "\n");
446         nvdimm_bus_unlock(dev);
447
448         return rc;
449 }
450 static DEVICE_ATTR_RO(pfn_seed);
451
452 static ssize_t dax_seed_show(struct device *dev,
453                 struct device_attribute *attr, char *buf)
454 {
455         struct nd_region *nd_region = to_nd_region(dev);
456         ssize_t rc;
457
458         nvdimm_bus_lock(dev);
459         if (nd_region->dax_seed)
460                 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
461         else
462                 rc = sprintf(buf, "\n");
463         nvdimm_bus_unlock(dev);
464
465         return rc;
466 }
467 static DEVICE_ATTR_RO(dax_seed);
468
469 static ssize_t read_only_show(struct device *dev,
470                 struct device_attribute *attr, char *buf)
471 {
472         struct nd_region *nd_region = to_nd_region(dev);
473
474         return sprintf(buf, "%d\n", nd_region->ro);
475 }
476
477 static int revalidate_read_only(struct device *dev, void *data)
478 {
479         nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
480         return 0;
481 }
482
483 static ssize_t read_only_store(struct device *dev,
484                 struct device_attribute *attr, const char *buf, size_t len)
485 {
486         bool ro;
487         int rc = strtobool(buf, &ro);
488         struct nd_region *nd_region = to_nd_region(dev);
489
490         if (rc)
491                 return rc;
492
493         nd_region->ro = ro;
494         device_for_each_child(dev, NULL, revalidate_read_only);
495         return len;
496 }
497 static DEVICE_ATTR_RW(read_only);
498
499 static ssize_t align_show(struct device *dev,
500                 struct device_attribute *attr, char *buf)
501 {
502         struct nd_region *nd_region = to_nd_region(dev);
503
504         return sprintf(buf, "%#lx\n", nd_region->align);
505 }
506
507 static ssize_t align_store(struct device *dev,
508                 struct device_attribute *attr, const char *buf, size_t len)
509 {
510         struct nd_region *nd_region = to_nd_region(dev);
511         unsigned long val, dpa;
512         u32 remainder;
513         int rc;
514
515         rc = kstrtoul(buf, 0, &val);
516         if (rc)
517                 return rc;
518
519         if (!nd_region->ndr_mappings)
520                 return -ENXIO;
521
522         /*
523          * Ensure space-align is evenly divisible by the region
524          * interleave-width because the kernel typically has no facility
525          * to determine which DIMM(s), dimm-physical-addresses, would
526          * contribute to the tail capacity in system-physical-address
527          * space for the namespace.
528          */
529         dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
530         if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
531                         || val > region_size(nd_region) || remainder)
532                 return -EINVAL;
533
534         /*
535          * Given that space allocation consults this value multiple
536          * times ensure it does not change for the duration of the
537          * allocation.
538          */
539         nvdimm_bus_lock(dev);
540         nd_region->align = val;
541         nvdimm_bus_unlock(dev);
542
543         return len;
544 }
545 static DEVICE_ATTR_RW(align);
546
547 static ssize_t region_badblocks_show(struct device *dev,
548                 struct device_attribute *attr, char *buf)
549 {
550         struct nd_region *nd_region = to_nd_region(dev);
551         ssize_t rc;
552
553         device_lock(dev);
554         if (dev->driver)
555                 rc = badblocks_show(&nd_region->bb, buf, 0);
556         else
557                 rc = -ENXIO;
558         device_unlock(dev);
559
560         return rc;
561 }
562 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
563
564 static ssize_t resource_show(struct device *dev,
565                 struct device_attribute *attr, char *buf)
566 {
567         struct nd_region *nd_region = to_nd_region(dev);
568
569         return sprintf(buf, "%#llx\n", nd_region->ndr_start);
570 }
571 static DEVICE_ATTR_ADMIN_RO(resource);
572
573 static ssize_t persistence_domain_show(struct device *dev,
574                 struct device_attribute *attr, char *buf)
575 {
576         struct nd_region *nd_region = to_nd_region(dev);
577
578         if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
579                 return sprintf(buf, "cpu_cache\n");
580         else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
581                 return sprintf(buf, "memory_controller\n");
582         else
583                 return sprintf(buf, "\n");
584 }
585 static DEVICE_ATTR_RO(persistence_domain);
586
587 static struct attribute *nd_region_attributes[] = {
588         &dev_attr_size.attr,
589         &dev_attr_align.attr,
590         &dev_attr_nstype.attr,
591         &dev_attr_mappings.attr,
592         &dev_attr_btt_seed.attr,
593         &dev_attr_pfn_seed.attr,
594         &dev_attr_dax_seed.attr,
595         &dev_attr_deep_flush.attr,
596         &dev_attr_read_only.attr,
597         &dev_attr_set_cookie.attr,
598         &dev_attr_available_size.attr,
599         &dev_attr_max_available_extent.attr,
600         &dev_attr_namespace_seed.attr,
601         &dev_attr_init_namespaces.attr,
602         &dev_attr_badblocks.attr,
603         &dev_attr_resource.attr,
604         &dev_attr_persistence_domain.attr,
605         NULL,
606 };
607
608 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
609 {
610         struct device *dev = container_of(kobj, typeof(*dev), kobj);
611         struct nd_region *nd_region = to_nd_region(dev);
612         struct nd_interleave_set *nd_set = nd_region->nd_set;
613         int type = nd_region_to_nstype(nd_region);
614
615         if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
616                 return 0;
617
618         if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
619                 return 0;
620
621         if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
622                 return 0;
623
624         if (a == &dev_attr_resource.attr && !is_memory(dev))
625                 return 0;
626
627         if (a == &dev_attr_deep_flush.attr) {
628                 int has_flush = nvdimm_has_flush(nd_region);
629
630                 if (has_flush == 1)
631                         return a->mode;
632                 else if (has_flush == 0)
633                         return 0444;
634                 else
635                         return 0;
636         }
637
638         if (a == &dev_attr_persistence_domain.attr) {
639                 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
640                                         | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
641                         return 0;
642                 return a->mode;
643         }
644
645         if (a == &dev_attr_align.attr)
646                 return a->mode;
647
648         if (a != &dev_attr_set_cookie.attr
649                         && a != &dev_attr_available_size.attr)
650                 return a->mode;
651
652         if (type == ND_DEVICE_NAMESPACE_PMEM &&
653             a == &dev_attr_available_size.attr)
654                 return a->mode;
655         else if (is_memory(dev) && nd_set)
656                 return a->mode;
657
658         return 0;
659 }
660
661 static ssize_t mappingN(struct device *dev, char *buf, int n)
662 {
663         struct nd_region *nd_region = to_nd_region(dev);
664         struct nd_mapping *nd_mapping;
665         struct nvdimm *nvdimm;
666
667         if (n >= nd_region->ndr_mappings)
668                 return -ENXIO;
669         nd_mapping = &nd_region->mapping[n];
670         nvdimm = nd_mapping->nvdimm;
671
672         return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
673                         nd_mapping->start, nd_mapping->size,
674                         nd_mapping->position);
675 }
676
677 #define REGION_MAPPING(idx) \
678 static ssize_t mapping##idx##_show(struct device *dev,          \
679                 struct device_attribute *attr, char *buf)       \
680 {                                                               \
681         return mappingN(dev, buf, idx);                         \
682 }                                                               \
683 static DEVICE_ATTR_RO(mapping##idx)
684
685 /*
686  * 32 should be enough for a while, even in the presence of socket
687  * interleave a 32-way interleave set is a degenerate case.
688  */
689 REGION_MAPPING(0);
690 REGION_MAPPING(1);
691 REGION_MAPPING(2);
692 REGION_MAPPING(3);
693 REGION_MAPPING(4);
694 REGION_MAPPING(5);
695 REGION_MAPPING(6);
696 REGION_MAPPING(7);
697 REGION_MAPPING(8);
698 REGION_MAPPING(9);
699 REGION_MAPPING(10);
700 REGION_MAPPING(11);
701 REGION_MAPPING(12);
702 REGION_MAPPING(13);
703 REGION_MAPPING(14);
704 REGION_MAPPING(15);
705 REGION_MAPPING(16);
706 REGION_MAPPING(17);
707 REGION_MAPPING(18);
708 REGION_MAPPING(19);
709 REGION_MAPPING(20);
710 REGION_MAPPING(21);
711 REGION_MAPPING(22);
712 REGION_MAPPING(23);
713 REGION_MAPPING(24);
714 REGION_MAPPING(25);
715 REGION_MAPPING(26);
716 REGION_MAPPING(27);
717 REGION_MAPPING(28);
718 REGION_MAPPING(29);
719 REGION_MAPPING(30);
720 REGION_MAPPING(31);
721
722 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
723 {
724         struct device *dev = container_of(kobj, struct device, kobj);
725         struct nd_region *nd_region = to_nd_region(dev);
726
727         if (n < nd_region->ndr_mappings)
728                 return a->mode;
729         return 0;
730 }
731
732 static struct attribute *mapping_attributes[] = {
733         &dev_attr_mapping0.attr,
734         &dev_attr_mapping1.attr,
735         &dev_attr_mapping2.attr,
736         &dev_attr_mapping3.attr,
737         &dev_attr_mapping4.attr,
738         &dev_attr_mapping5.attr,
739         &dev_attr_mapping6.attr,
740         &dev_attr_mapping7.attr,
741         &dev_attr_mapping8.attr,
742         &dev_attr_mapping9.attr,
743         &dev_attr_mapping10.attr,
744         &dev_attr_mapping11.attr,
745         &dev_attr_mapping12.attr,
746         &dev_attr_mapping13.attr,
747         &dev_attr_mapping14.attr,
748         &dev_attr_mapping15.attr,
749         &dev_attr_mapping16.attr,
750         &dev_attr_mapping17.attr,
751         &dev_attr_mapping18.attr,
752         &dev_attr_mapping19.attr,
753         &dev_attr_mapping20.attr,
754         &dev_attr_mapping21.attr,
755         &dev_attr_mapping22.attr,
756         &dev_attr_mapping23.attr,
757         &dev_attr_mapping24.attr,
758         &dev_attr_mapping25.attr,
759         &dev_attr_mapping26.attr,
760         &dev_attr_mapping27.attr,
761         &dev_attr_mapping28.attr,
762         &dev_attr_mapping29.attr,
763         &dev_attr_mapping30.attr,
764         &dev_attr_mapping31.attr,
765         NULL,
766 };
767
768 static const struct attribute_group nd_mapping_attribute_group = {
769         .is_visible = mapping_visible,
770         .attrs = mapping_attributes,
771 };
772
773 static const struct attribute_group nd_region_attribute_group = {
774         .attrs = nd_region_attributes,
775         .is_visible = region_visible,
776 };
777
778 static const struct attribute_group *nd_region_attribute_groups[] = {
779         &nd_device_attribute_group,
780         &nd_region_attribute_group,
781         &nd_numa_attribute_group,
782         &nd_mapping_attribute_group,
783         NULL,
784 };
785
786 static const struct device_type nd_pmem_device_type = {
787         .name = "nd_pmem",
788         .release = nd_region_release,
789         .groups = nd_region_attribute_groups,
790 };
791
792 static const struct device_type nd_volatile_device_type = {
793         .name = "nd_volatile",
794         .release = nd_region_release,
795         .groups = nd_region_attribute_groups,
796 };
797
798 bool is_nd_pmem(struct device *dev)
799 {
800         return dev ? dev->type == &nd_pmem_device_type : false;
801 }
802
803 bool is_nd_volatile(struct device *dev)
804 {
805         return dev ? dev->type == &nd_volatile_device_type : false;
806 }
807
808 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
809                 struct nd_namespace_index *nsindex)
810 {
811         struct nd_interleave_set *nd_set = nd_region->nd_set;
812
813         if (!nd_set)
814                 return 0;
815
816         if (nsindex && __le16_to_cpu(nsindex->major) == 1
817                         && __le16_to_cpu(nsindex->minor) == 1)
818                 return nd_set->cookie1;
819         return nd_set->cookie2;
820 }
821
822 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
823 {
824         struct nd_interleave_set *nd_set = nd_region->nd_set;
825
826         if (nd_set)
827                 return nd_set->altcookie;
828         return 0;
829 }
830
831 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
832 {
833         struct nd_label_ent *label_ent, *e;
834
835         lockdep_assert_held(&nd_mapping->lock);
836         list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
837                 list_del(&label_ent->list);
838                 kfree(label_ent);
839         }
840 }
841
842 /*
843  * When a namespace is activated create new seeds for the next
844  * namespace, or namespace-personality to be configured.
845  */
846 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
847 {
848         nvdimm_bus_lock(dev);
849         if (nd_region->ns_seed == dev) {
850                 nd_region_create_ns_seed(nd_region);
851         } else if (is_nd_btt(dev)) {
852                 struct nd_btt *nd_btt = to_nd_btt(dev);
853
854                 if (nd_region->btt_seed == dev)
855                         nd_region_create_btt_seed(nd_region);
856                 if (nd_region->ns_seed == &nd_btt->ndns->dev)
857                         nd_region_create_ns_seed(nd_region);
858         } else if (is_nd_pfn(dev)) {
859                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
860
861                 if (nd_region->pfn_seed == dev)
862                         nd_region_create_pfn_seed(nd_region);
863                 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
864                         nd_region_create_ns_seed(nd_region);
865         } else if (is_nd_dax(dev)) {
866                 struct nd_dax *nd_dax = to_nd_dax(dev);
867
868                 if (nd_region->dax_seed == dev)
869                         nd_region_create_dax_seed(nd_region);
870                 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
871                         nd_region_create_ns_seed(nd_region);
872         }
873         nvdimm_bus_unlock(dev);
874 }
875
876 /**
877  * nd_region_acquire_lane - allocate and lock a lane
878  * @nd_region: region id and number of lanes possible
879  *
880  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
881  * We optimize for the common case where there are 256 lanes, one
882  * per-cpu.  For larger systems we need to lock to share lanes.  For now
883  * this implementation assumes the cost of maintaining an allocator for
884  * free lanes is on the order of the lock hold time, so it implements a
885  * static lane = cpu % num_lanes mapping.
886  *
887  * In the case of a BTT instance on top of a BLK namespace a lane may be
888  * acquired recursively.  We lock on the first instance.
889  *
890  * In the case of a BTT instance on top of PMEM, we only acquire a lane
891  * for the BTT metadata updates.
892  */
893 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
894 {
895         unsigned int cpu, lane;
896
897         cpu = get_cpu();
898         if (nd_region->num_lanes < nr_cpu_ids) {
899                 struct nd_percpu_lane *ndl_lock, *ndl_count;
900
901                 lane = cpu % nd_region->num_lanes;
902                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
903                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
904                 if (ndl_count->count++ == 0)
905                         spin_lock(&ndl_lock->lock);
906         } else
907                 lane = cpu;
908
909         return lane;
910 }
911 EXPORT_SYMBOL(nd_region_acquire_lane);
912
913 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
914 {
915         if (nd_region->num_lanes < nr_cpu_ids) {
916                 unsigned int cpu = get_cpu();
917                 struct nd_percpu_lane *ndl_lock, *ndl_count;
918
919                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
920                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
921                 if (--ndl_count->count == 0)
922                         spin_unlock(&ndl_lock->lock);
923                 put_cpu();
924         }
925         put_cpu();
926 }
927 EXPORT_SYMBOL(nd_region_release_lane);
928
929 /*
930  * PowerPC requires this alignment for memremap_pages(). All other archs
931  * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
932  */
933 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
934
935 static unsigned long default_align(struct nd_region *nd_region)
936 {
937         unsigned long align;
938         u32 remainder;
939         int mappings;
940
941         align = MEMREMAP_COMPAT_ALIGN_MAX;
942         if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
943                 align = PAGE_SIZE;
944
945         mappings = max_t(u16, 1, nd_region->ndr_mappings);
946         div_u64_rem(align, mappings, &remainder);
947         if (remainder)
948                 align *= mappings;
949
950         return align;
951 }
952
953 static struct lock_class_key nvdimm_region_key;
954
955 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
956                 struct nd_region_desc *ndr_desc,
957                 const struct device_type *dev_type, const char *caller)
958 {
959         struct nd_region *nd_region;
960         struct device *dev;
961         unsigned int i;
962         int ro = 0;
963
964         for (i = 0; i < ndr_desc->num_mappings; i++) {
965                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
966                 struct nvdimm *nvdimm = mapping->nvdimm;
967
968                 if ((mapping->start | mapping->size) % PAGE_SIZE) {
969                         dev_err(&nvdimm_bus->dev,
970                                 "%s: %s mapping%d is not %ld aligned\n",
971                                 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
972                         return NULL;
973                 }
974
975                 if (test_bit(NDD_UNARMED, &nvdimm->flags))
976                         ro = 1;
977
978         }
979
980         nd_region =
981                 kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
982                         GFP_KERNEL);
983
984         if (!nd_region)
985                 return NULL;
986         /* CXL pre-assigns memregion ids before creating nvdimm regions */
987         if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) {
988                 nd_region->id = ndr_desc->memregion;
989         } else {
990                 nd_region->id = memregion_alloc(GFP_KERNEL);
991                 if (nd_region->id < 0)
992                         goto err_id;
993         }
994
995         nd_region->lane = alloc_percpu(struct nd_percpu_lane);
996         if (!nd_region->lane)
997                 goto err_percpu;
998
999         for (i = 0; i < nr_cpu_ids; i++) {
1000                 struct nd_percpu_lane *ndl;
1001
1002                 ndl = per_cpu_ptr(nd_region->lane, i);
1003                 spin_lock_init(&ndl->lock);
1004                 ndl->count = 0;
1005         }
1006
1007         for (i = 0; i < ndr_desc->num_mappings; i++) {
1008                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1009                 struct nvdimm *nvdimm = mapping->nvdimm;
1010
1011                 nd_region->mapping[i].nvdimm = nvdimm;
1012                 nd_region->mapping[i].start = mapping->start;
1013                 nd_region->mapping[i].size = mapping->size;
1014                 nd_region->mapping[i].position = mapping->position;
1015                 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1016                 mutex_init(&nd_region->mapping[i].lock);
1017
1018                 get_device(&nvdimm->dev);
1019         }
1020         nd_region->ndr_mappings = ndr_desc->num_mappings;
1021         nd_region->provider_data = ndr_desc->provider_data;
1022         nd_region->nd_set = ndr_desc->nd_set;
1023         nd_region->num_lanes = ndr_desc->num_lanes;
1024         nd_region->flags = ndr_desc->flags;
1025         nd_region->ro = ro;
1026         nd_region->numa_node = ndr_desc->numa_node;
1027         nd_region->target_node = ndr_desc->target_node;
1028         ida_init(&nd_region->ns_ida);
1029         ida_init(&nd_region->btt_ida);
1030         ida_init(&nd_region->pfn_ida);
1031         ida_init(&nd_region->dax_ida);
1032         dev = &nd_region->dev;
1033         dev_set_name(dev, "region%d", nd_region->id);
1034         dev->parent = &nvdimm_bus->dev;
1035         dev->type = dev_type;
1036         dev->groups = ndr_desc->attr_groups;
1037         dev->of_node = ndr_desc->of_node;
1038         nd_region->ndr_size = resource_size(ndr_desc->res);
1039         nd_region->ndr_start = ndr_desc->res->start;
1040         nd_region->align = default_align(nd_region);
1041         if (ndr_desc->flush)
1042                 nd_region->flush = ndr_desc->flush;
1043         else
1044                 nd_region->flush = NULL;
1045
1046         device_initialize(dev);
1047         lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1048         nd_device_register(dev);
1049
1050         return nd_region;
1051
1052 err_percpu:
1053         if (!test_bit(ND_REGION_CXL, &ndr_desc->flags))
1054                 memregion_free(nd_region->id);
1055 err_id:
1056         kfree(nd_region);
1057         return NULL;
1058 }
1059
1060 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1061                 struct nd_region_desc *ndr_desc)
1062 {
1063         ndr_desc->num_lanes = ND_MAX_LANES;
1064         return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1065                         __func__);
1066 }
1067 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1068
1069 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1070                 struct nd_region_desc *ndr_desc)
1071 {
1072         ndr_desc->num_lanes = ND_MAX_LANES;
1073         return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1074                         __func__);
1075 }
1076 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1077
1078 void nvdimm_region_delete(struct nd_region *nd_region)
1079 {
1080         if (nd_region)
1081                 nd_device_unregister(&nd_region->dev, ND_SYNC);
1082 }
1083 EXPORT_SYMBOL_GPL(nvdimm_region_delete);
1084
1085 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1086 {
1087         int rc = 0;
1088
1089         if (!nd_region->flush)
1090                 rc = generic_nvdimm_flush(nd_region);
1091         else {
1092                 if (nd_region->flush(nd_region, bio))
1093                         rc = -EIO;
1094         }
1095
1096         return rc;
1097 }
1098 /**
1099  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1100  * @nd_region: interleaved pmem region
1101  */
1102 int generic_nvdimm_flush(struct nd_region *nd_region)
1103 {
1104         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1105         int i, idx;
1106
1107         /*
1108          * Try to encourage some diversity in flush hint addresses
1109          * across cpus assuming a limited number of flush hints.
1110          */
1111         idx = this_cpu_read(flush_idx);
1112         idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1113
1114         /*
1115          * The pmem_wmb() is needed to 'sfence' all
1116          * previous writes such that they are architecturally visible for
1117          * the platform buffer flush. Note that we've already arranged for pmem
1118          * writes to avoid the cache via memcpy_flushcache().  The final
1119          * wmb() ensures ordering for the NVDIMM flush write.
1120          */
1121         pmem_wmb();
1122         for (i = 0; i < nd_region->ndr_mappings; i++)
1123                 if (ndrd_get_flush_wpq(ndrd, i, 0))
1124                         writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1125         wmb();
1126
1127         return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(nvdimm_flush);
1130
1131 /**
1132  * nvdimm_has_flush - determine write flushing requirements
1133  * @nd_region: interleaved pmem region
1134  *
1135  * Returns 1 if writes require flushing
1136  * Returns 0 if writes do not require flushing
1137  * Returns -ENXIO if flushing capability can not be determined
1138  */
1139 int nvdimm_has_flush(struct nd_region *nd_region)
1140 {
1141         int i;
1142
1143         /* no nvdimm or pmem api == flushing capability unknown */
1144         if (nd_region->ndr_mappings == 0
1145                         || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1146                 return -ENXIO;
1147
1148         /* Test if an explicit flush function is defined */
1149         if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1150                 return 1;
1151
1152         /* Test if any flush hints for the region are available */
1153         for (i = 0; i < nd_region->ndr_mappings; i++) {
1154                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1155                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1156
1157                 /* flush hints present / available */
1158                 if (nvdimm->num_flush)
1159                         return 1;
1160         }
1161
1162         /*
1163          * The platform defines dimm devices without hints nor explicit flush,
1164          * assume platform persistence mechanism like ADR
1165          */
1166         return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1169
1170 int nvdimm_has_cache(struct nd_region *nd_region)
1171 {
1172         return is_nd_pmem(&nd_region->dev) &&
1173                 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1174 }
1175 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1176
1177 bool is_nvdimm_sync(struct nd_region *nd_region)
1178 {
1179         if (is_nd_volatile(&nd_region->dev))
1180                 return true;
1181
1182         return is_nd_pmem(&nd_region->dev) &&
1183                 !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1184 }
1185 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1186
1187 struct conflict_context {
1188         struct nd_region *nd_region;
1189         resource_size_t start, size;
1190 };
1191
1192 static int region_conflict(struct device *dev, void *data)
1193 {
1194         struct nd_region *nd_region;
1195         struct conflict_context *ctx = data;
1196         resource_size_t res_end, region_end, region_start;
1197
1198         if (!is_memory(dev))
1199                 return 0;
1200
1201         nd_region = to_nd_region(dev);
1202         if (nd_region == ctx->nd_region)
1203                 return 0;
1204
1205         res_end = ctx->start + ctx->size;
1206         region_start = nd_region->ndr_start;
1207         region_end = region_start + nd_region->ndr_size;
1208         if (ctx->start >= region_start && ctx->start < region_end)
1209                 return -EBUSY;
1210         if (res_end > region_start && res_end <= region_end)
1211                 return -EBUSY;
1212         return 0;
1213 }
1214
1215 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1216                 resource_size_t size)
1217 {
1218         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1219         struct conflict_context ctx = {
1220                 .nd_region = nd_region,
1221                 .start = start,
1222                 .size = size,
1223         };
1224
1225         return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1226 }