Merge branch 'nvme-5.2-rc2' of git://git.infradead.org/nvme into for-linus
[linux-2.6-microblaze.git] / drivers / net / wireless / zydas / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/firmware.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/slab.h>
27 #include <linux/skbuff.h>
28 #include <linux/usb.h>
29 #include <linux/workqueue.h>
30 #include <linux/module.h>
31 #include <net/mac80211.h>
32 #include <asm/unaligned.h>
33
34 #include "zd_def.h"
35 #include "zd_mac.h"
36 #include "zd_usb.h"
37
38 static const struct usb_device_id usb_ids[] = {
39         /* ZD1211 */
40         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
58         { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
59         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
60         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
61         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
62         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
63         { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
64         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
65         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
66         /* ZD1211B */
67         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
83         { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
84         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
85         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
86         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
87         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
88         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
89         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
90         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
91         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
92         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
93         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
94         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
95         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
96         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
97         { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
98         /* "Driverless" devices that need ejecting */
99         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
100         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
101         {}
102 };
103
104 MODULE_LICENSE("GPL");
105 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
106 MODULE_AUTHOR("Ulrich Kunitz");
107 MODULE_AUTHOR("Daniel Drake");
108 MODULE_VERSION("1.0");
109 MODULE_DEVICE_TABLE(usb, usb_ids);
110
111 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
112 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
113
114 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
115                             unsigned int count);
116
117 /* USB device initialization */
118 static void int_urb_complete(struct urb *urb);
119
120 static int request_fw_file(
121         const struct firmware **fw, const char *name, struct device *device)
122 {
123         int r;
124
125         dev_dbg_f(device, "fw name %s\n", name);
126
127         r = request_firmware(fw, name, device);
128         if (r)
129                 dev_err(device,
130                        "Could not load firmware file %s. Error number %d\n",
131                        name, r);
132         return r;
133 }
134
135 static inline u16 get_bcdDevice(const struct usb_device *udev)
136 {
137         return le16_to_cpu(udev->descriptor.bcdDevice);
138 }
139
140 enum upload_code_flags {
141         REBOOT = 1,
142 };
143
144 /* Ensures that MAX_TRANSFER_SIZE is even. */
145 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
146
147 static int upload_code(struct usb_device *udev,
148         const u8 *data, size_t size, u16 code_offset, int flags)
149 {
150         u8 *p;
151         int r;
152
153         /* USB request blocks need "kmalloced" buffers.
154          */
155         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
156         if (!p) {
157                 r = -ENOMEM;
158                 goto error;
159         }
160
161         size &= ~1;
162         while (size > 0) {
163                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
164                         size : MAX_TRANSFER_SIZE;
165
166                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
167
168                 memcpy(p, data, transfer_size);
169                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
170                         USB_REQ_FIRMWARE_DOWNLOAD,
171                         USB_DIR_OUT | USB_TYPE_VENDOR,
172                         code_offset, 0, p, transfer_size, 1000 /* ms */);
173                 if (r < 0) {
174                         dev_err(&udev->dev,
175                                "USB control request for firmware upload"
176                                " failed. Error number %d\n", r);
177                         goto error;
178                 }
179                 transfer_size = r & ~1;
180
181                 size -= transfer_size;
182                 data += transfer_size;
183                 code_offset += transfer_size/sizeof(u16);
184         }
185
186         if (flags & REBOOT) {
187                 u8 ret;
188
189                 /* Use "DMA-aware" buffer. */
190                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
191                         USB_REQ_FIRMWARE_CONFIRM,
192                         USB_DIR_IN | USB_TYPE_VENDOR,
193                         0, 0, p, sizeof(ret), 5000 /* ms */);
194                 if (r != sizeof(ret)) {
195                         dev_err(&udev->dev,
196                                 "control request firmware confirmation failed."
197                                 " Return value %d\n", r);
198                         if (r >= 0)
199                                 r = -ENODEV;
200                         goto error;
201                 }
202                 ret = p[0];
203                 if (ret & 0x80) {
204                         dev_err(&udev->dev,
205                                 "Internal error while downloading."
206                                 " Firmware confirm return value %#04x\n",
207                                 (unsigned int)ret);
208                         r = -ENODEV;
209                         goto error;
210                 }
211                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
212                         (unsigned int)ret);
213         }
214
215         r = 0;
216 error:
217         kfree(p);
218         return r;
219 }
220
221 static u16 get_word(const void *data, u16 offset)
222 {
223         const __le16 *p = data;
224         return le16_to_cpu(p[offset]);
225 }
226
227 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
228                        const char* postfix)
229 {
230         scnprintf(buffer, size, "%s%s",
231                 usb->is_zd1211b ?
232                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
233                 postfix);
234         return buffer;
235 }
236
237 static int handle_version_mismatch(struct zd_usb *usb,
238         const struct firmware *ub_fw)
239 {
240         struct usb_device *udev = zd_usb_to_usbdev(usb);
241         const struct firmware *ur_fw = NULL;
242         int offset;
243         int r = 0;
244         char fw_name[128];
245
246         r = request_fw_file(&ur_fw,
247                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
248                 &udev->dev);
249         if (r)
250                 goto error;
251
252         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
253         if (r)
254                 goto error;
255
256         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
257         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
258                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
259
260         /* At this point, the vendor driver downloads the whole firmware
261          * image, hacks around with version IDs, and uploads it again,
262          * completely overwriting the boot code. We do not do this here as
263          * it is not required on any tested devices, and it is suspected to
264          * cause problems. */
265 error:
266         release_firmware(ur_fw);
267         return r;
268 }
269
270 static int upload_firmware(struct zd_usb *usb)
271 {
272         int r;
273         u16 fw_bcdDevice;
274         u16 bcdDevice;
275         struct usb_device *udev = zd_usb_to_usbdev(usb);
276         const struct firmware *ub_fw = NULL;
277         const struct firmware *uph_fw = NULL;
278         char fw_name[128];
279
280         bcdDevice = get_bcdDevice(udev);
281
282         r = request_fw_file(&ub_fw,
283                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
284                 &udev->dev);
285         if (r)
286                 goto error;
287
288         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
289
290         if (fw_bcdDevice != bcdDevice) {
291                 dev_info(&udev->dev,
292                         "firmware version %#06x and device bootcode version "
293                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
294                 if (bcdDevice <= 0x4313)
295                         dev_warn(&udev->dev, "device has old bootcode, please "
296                                 "report success or failure\n");
297
298                 r = handle_version_mismatch(usb, ub_fw);
299                 if (r)
300                         goto error;
301         } else {
302                 dev_dbg_f(&udev->dev,
303                         "firmware device id %#06x is equal to the "
304                         "actual device id\n", fw_bcdDevice);
305         }
306
307
308         r = request_fw_file(&uph_fw,
309                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
310                 &udev->dev);
311         if (r)
312                 goto error;
313
314         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
315         if (r) {
316                 dev_err(&udev->dev,
317                         "Could not upload firmware code uph. Error number %d\n",
318                         r);
319         }
320
321         /* FALL-THROUGH */
322 error:
323         release_firmware(ub_fw);
324         release_firmware(uph_fw);
325         return r;
326 }
327
328 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
329 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
330 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
331 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
332 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
333 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
334
335 /* Read data from device address space using "firmware interface" which does
336  * not require firmware to be loaded. */
337 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
338 {
339         int r;
340         struct usb_device *udev = zd_usb_to_usbdev(usb);
341         u8 *buf;
342
343         /* Use "DMA-aware" buffer. */
344         buf = kmalloc(len, GFP_KERNEL);
345         if (!buf)
346                 return -ENOMEM;
347         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
348                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
349                 buf, len, 5000);
350         if (r < 0) {
351                 dev_err(&udev->dev,
352                         "read over firmware interface failed: %d\n", r);
353                 goto exit;
354         } else if (r != len) {
355                 dev_err(&udev->dev,
356                         "incomplete read over firmware interface: %d/%d\n",
357                         r, len);
358                 r = -EIO;
359                 goto exit;
360         }
361         r = 0;
362         memcpy(data, buf, len);
363 exit:
364         kfree(buf);
365         return r;
366 }
367
368 #define urb_dev(urb) (&(urb)->dev->dev)
369
370 static inline void handle_regs_int_override(struct urb *urb)
371 {
372         struct zd_usb *usb = urb->context;
373         struct zd_usb_interrupt *intr = &usb->intr;
374         unsigned long flags;
375
376         spin_lock_irqsave(&intr->lock, flags);
377         if (atomic_read(&intr->read_regs_enabled)) {
378                 atomic_set(&intr->read_regs_enabled, 0);
379                 intr->read_regs_int_overridden = 1;
380                 complete(&intr->read_regs.completion);
381         }
382         spin_unlock_irqrestore(&intr->lock, flags);
383 }
384
385 static inline void handle_regs_int(struct urb *urb)
386 {
387         struct zd_usb *usb = urb->context;
388         struct zd_usb_interrupt *intr = &usb->intr;
389         unsigned long flags;
390         int len;
391         u16 int_num;
392
393         ZD_ASSERT(in_interrupt());
394         spin_lock_irqsave(&intr->lock, flags);
395
396         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
397         if (int_num == CR_INTERRUPT) {
398                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
399                 spin_lock(&mac->lock);
400                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
401                                 USB_MAX_EP_INT_BUFFER);
402                 spin_unlock(&mac->lock);
403                 schedule_work(&mac->process_intr);
404         } else if (atomic_read(&intr->read_regs_enabled)) {
405                 len = urb->actual_length;
406                 intr->read_regs.length = urb->actual_length;
407                 if (len > sizeof(intr->read_regs.buffer))
408                         len = sizeof(intr->read_regs.buffer);
409
410                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
411
412                 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
413                  * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
414                  * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
415                  * retry unhandled. Next read-reg command then might catch
416                  * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
417                  */
418                 if (!check_read_regs(usb, intr->read_regs.req,
419                                                 intr->read_regs.req_count))
420                         goto out;
421
422                 atomic_set(&intr->read_regs_enabled, 0);
423                 intr->read_regs_int_overridden = 0;
424                 complete(&intr->read_regs.completion);
425
426                 goto out;
427         }
428
429 out:
430         spin_unlock_irqrestore(&intr->lock, flags);
431
432         /* CR_INTERRUPT might override read_reg too. */
433         if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
434                 handle_regs_int_override(urb);
435 }
436
437 static void int_urb_complete(struct urb *urb)
438 {
439         int r;
440         struct usb_int_header *hdr;
441         struct zd_usb *usb;
442         struct zd_usb_interrupt *intr;
443
444         switch (urb->status) {
445         case 0:
446                 break;
447         case -ESHUTDOWN:
448         case -EINVAL:
449         case -ENODEV:
450         case -ENOENT:
451         case -ECONNRESET:
452         case -EPIPE:
453                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
454                 return;
455         default:
456                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
457                 goto resubmit;
458         }
459
460         if (urb->actual_length < sizeof(hdr)) {
461                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
462                 goto resubmit;
463         }
464
465         hdr = urb->transfer_buffer;
466         if (hdr->type != USB_INT_TYPE) {
467                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
468                 goto resubmit;
469         }
470
471         /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
472          * pending USB_INT_ID_REGS causing read command timeout.
473          */
474         usb = urb->context;
475         intr = &usb->intr;
476         if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
477                 handle_regs_int_override(urb);
478
479         switch (hdr->id) {
480         case USB_INT_ID_REGS:
481                 handle_regs_int(urb);
482                 break;
483         case USB_INT_ID_RETRY_FAILED:
484                 zd_mac_tx_failed(urb);
485                 break;
486         default:
487                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
488                         (unsigned int)hdr->id);
489                 goto resubmit;
490         }
491
492 resubmit:
493         r = usb_submit_urb(urb, GFP_ATOMIC);
494         if (r) {
495                 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
496                           urb, r);
497                 /* TODO: add worker to reset intr->urb */
498         }
499         return;
500 }
501
502 static inline int int_urb_interval(struct usb_device *udev)
503 {
504         switch (udev->speed) {
505         case USB_SPEED_HIGH:
506                 return 4;
507         case USB_SPEED_LOW:
508                 return 10;
509         case USB_SPEED_FULL:
510         default:
511                 return 1;
512         }
513 }
514
515 static inline int usb_int_enabled(struct zd_usb *usb)
516 {
517         unsigned long flags;
518         struct zd_usb_interrupt *intr = &usb->intr;
519         struct urb *urb;
520
521         spin_lock_irqsave(&intr->lock, flags);
522         urb = intr->urb;
523         spin_unlock_irqrestore(&intr->lock, flags);
524         return urb != NULL;
525 }
526
527 int zd_usb_enable_int(struct zd_usb *usb)
528 {
529         int r;
530         struct usb_device *udev = zd_usb_to_usbdev(usb);
531         struct zd_usb_interrupt *intr = &usb->intr;
532         struct urb *urb;
533
534         dev_dbg_f(zd_usb_dev(usb), "\n");
535
536         urb = usb_alloc_urb(0, GFP_KERNEL);
537         if (!urb) {
538                 r = -ENOMEM;
539                 goto out;
540         }
541
542         ZD_ASSERT(!irqs_disabled());
543         spin_lock_irq(&intr->lock);
544         if (intr->urb) {
545                 spin_unlock_irq(&intr->lock);
546                 r = 0;
547                 goto error_free_urb;
548         }
549         intr->urb = urb;
550         spin_unlock_irq(&intr->lock);
551
552         r = -ENOMEM;
553         intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
554                                           GFP_KERNEL, &intr->buffer_dma);
555         if (!intr->buffer) {
556                 dev_dbg_f(zd_usb_dev(usb),
557                         "couldn't allocate transfer_buffer\n");
558                 goto error_set_urb_null;
559         }
560
561         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
562                          intr->buffer, USB_MAX_EP_INT_BUFFER,
563                          int_urb_complete, usb,
564                          intr->interval);
565         urb->transfer_dma = intr->buffer_dma;
566         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
567
568         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
569         r = usb_submit_urb(urb, GFP_KERNEL);
570         if (r) {
571                 dev_dbg_f(zd_usb_dev(usb),
572                          "Couldn't submit urb. Error number %d\n", r);
573                 goto error;
574         }
575
576         return 0;
577 error:
578         usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
579                           intr->buffer, intr->buffer_dma);
580 error_set_urb_null:
581         spin_lock_irq(&intr->lock);
582         intr->urb = NULL;
583         spin_unlock_irq(&intr->lock);
584 error_free_urb:
585         usb_free_urb(urb);
586 out:
587         return r;
588 }
589
590 void zd_usb_disable_int(struct zd_usb *usb)
591 {
592         unsigned long flags;
593         struct usb_device *udev = zd_usb_to_usbdev(usb);
594         struct zd_usb_interrupt *intr = &usb->intr;
595         struct urb *urb;
596         void *buffer;
597         dma_addr_t buffer_dma;
598
599         spin_lock_irqsave(&intr->lock, flags);
600         urb = intr->urb;
601         if (!urb) {
602                 spin_unlock_irqrestore(&intr->lock, flags);
603                 return;
604         }
605         intr->urb = NULL;
606         buffer = intr->buffer;
607         buffer_dma = intr->buffer_dma;
608         intr->buffer = NULL;
609         spin_unlock_irqrestore(&intr->lock, flags);
610
611         usb_kill_urb(urb);
612         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
613         usb_free_urb(urb);
614
615         if (buffer)
616                 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
617                                   buffer, buffer_dma);
618 }
619
620 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
621                              unsigned int length)
622 {
623         int i;
624         const struct rx_length_info *length_info;
625
626         if (length < sizeof(struct rx_length_info)) {
627                 /* It's not a complete packet anyhow. */
628                 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
629                                            length);
630                 return;
631         }
632         length_info = (struct rx_length_info *)
633                 (buffer + length - sizeof(struct rx_length_info));
634
635         /* It might be that three frames are merged into a single URB
636          * transaction. We have to check for the length info tag.
637          *
638          * While testing we discovered that length_info might be unaligned,
639          * because if USB transactions are merged, the last packet will not
640          * be padded. Unaligned access might also happen if the length_info
641          * structure is not present.
642          */
643         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
644         {
645                 unsigned int l, k, n;
646                 for (i = 0, l = 0;; i++) {
647                         k = get_unaligned_le16(&length_info->length[i]);
648                         if (k == 0)
649                                 return;
650                         n = l+k;
651                         if (n > length)
652                                 return;
653                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
654                         if (i >= 2)
655                                 return;
656                         l = (n+3) & ~3;
657                 }
658         } else {
659                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
660         }
661 }
662
663 static void rx_urb_complete(struct urb *urb)
664 {
665         int r;
666         struct zd_usb *usb;
667         struct zd_usb_rx *rx;
668         const u8 *buffer;
669         unsigned int length;
670         unsigned long flags;
671
672         switch (urb->status) {
673         case 0:
674                 break;
675         case -ESHUTDOWN:
676         case -EINVAL:
677         case -ENODEV:
678         case -ENOENT:
679         case -ECONNRESET:
680         case -EPIPE:
681                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
682                 return;
683         default:
684                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
685                 goto resubmit;
686         }
687
688         buffer = urb->transfer_buffer;
689         length = urb->actual_length;
690         usb = urb->context;
691         rx = &usb->rx;
692
693         tasklet_schedule(&rx->reset_timer_tasklet);
694
695         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
696                 /* If there is an old first fragment, we don't care. */
697                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
698                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
699                 spin_lock_irqsave(&rx->lock, flags);
700                 memcpy(rx->fragment, buffer, length);
701                 rx->fragment_length = length;
702                 spin_unlock_irqrestore(&rx->lock, flags);
703                 goto resubmit;
704         }
705
706         spin_lock_irqsave(&rx->lock, flags);
707         if (rx->fragment_length > 0) {
708                 /* We are on a second fragment, we believe */
709                 ZD_ASSERT(length + rx->fragment_length <=
710                           ARRAY_SIZE(rx->fragment));
711                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
712                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
713                 handle_rx_packet(usb, rx->fragment,
714                                  rx->fragment_length + length);
715                 rx->fragment_length = 0;
716                 spin_unlock_irqrestore(&rx->lock, flags);
717         } else {
718                 spin_unlock_irqrestore(&rx->lock, flags);
719                 handle_rx_packet(usb, buffer, length);
720         }
721
722 resubmit:
723         r = usb_submit_urb(urb, GFP_ATOMIC);
724         if (r)
725                 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
726 }
727
728 static struct urb *alloc_rx_urb(struct zd_usb *usb)
729 {
730         struct usb_device *udev = zd_usb_to_usbdev(usb);
731         struct urb *urb;
732         void *buffer;
733
734         urb = usb_alloc_urb(0, GFP_KERNEL);
735         if (!urb)
736                 return NULL;
737         buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
738                                     &urb->transfer_dma);
739         if (!buffer) {
740                 usb_free_urb(urb);
741                 return NULL;
742         }
743
744         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
745                           buffer, USB_MAX_RX_SIZE,
746                           rx_urb_complete, usb);
747         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
748
749         return urb;
750 }
751
752 static void free_rx_urb(struct urb *urb)
753 {
754         if (!urb)
755                 return;
756         usb_free_coherent(urb->dev, urb->transfer_buffer_length,
757                           urb->transfer_buffer, urb->transfer_dma);
758         usb_free_urb(urb);
759 }
760
761 static int __zd_usb_enable_rx(struct zd_usb *usb)
762 {
763         int i, r;
764         struct zd_usb_rx *rx = &usb->rx;
765         struct urb **urbs;
766
767         dev_dbg_f(zd_usb_dev(usb), "\n");
768
769         r = -ENOMEM;
770         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
771         if (!urbs)
772                 goto error;
773         for (i = 0; i < RX_URBS_COUNT; i++) {
774                 urbs[i] = alloc_rx_urb(usb);
775                 if (!urbs[i])
776                         goto error;
777         }
778
779         ZD_ASSERT(!irqs_disabled());
780         spin_lock_irq(&rx->lock);
781         if (rx->urbs) {
782                 spin_unlock_irq(&rx->lock);
783                 r = 0;
784                 goto error;
785         }
786         rx->urbs = urbs;
787         rx->urbs_count = RX_URBS_COUNT;
788         spin_unlock_irq(&rx->lock);
789
790         for (i = 0; i < RX_URBS_COUNT; i++) {
791                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
792                 if (r)
793                         goto error_submit;
794         }
795
796         return 0;
797 error_submit:
798         for (i = 0; i < RX_URBS_COUNT; i++) {
799                 usb_kill_urb(urbs[i]);
800         }
801         spin_lock_irq(&rx->lock);
802         rx->urbs = NULL;
803         rx->urbs_count = 0;
804         spin_unlock_irq(&rx->lock);
805 error:
806         if (urbs) {
807                 for (i = 0; i < RX_URBS_COUNT; i++)
808                         free_rx_urb(urbs[i]);
809         }
810         return r;
811 }
812
813 int zd_usb_enable_rx(struct zd_usb *usb)
814 {
815         int r;
816         struct zd_usb_rx *rx = &usb->rx;
817
818         mutex_lock(&rx->setup_mutex);
819         r = __zd_usb_enable_rx(usb);
820         mutex_unlock(&rx->setup_mutex);
821
822         zd_usb_reset_rx_idle_timer(usb);
823
824         return r;
825 }
826
827 static void __zd_usb_disable_rx(struct zd_usb *usb)
828 {
829         int i;
830         unsigned long flags;
831         struct urb **urbs;
832         unsigned int count;
833         struct zd_usb_rx *rx = &usb->rx;
834
835         spin_lock_irqsave(&rx->lock, flags);
836         urbs = rx->urbs;
837         count = rx->urbs_count;
838         spin_unlock_irqrestore(&rx->lock, flags);
839         if (!urbs)
840                 return;
841
842         for (i = 0; i < count; i++) {
843                 usb_kill_urb(urbs[i]);
844                 free_rx_urb(urbs[i]);
845         }
846         kfree(urbs);
847
848         spin_lock_irqsave(&rx->lock, flags);
849         rx->urbs = NULL;
850         rx->urbs_count = 0;
851         spin_unlock_irqrestore(&rx->lock, flags);
852 }
853
854 void zd_usb_disable_rx(struct zd_usb *usb)
855 {
856         struct zd_usb_rx *rx = &usb->rx;
857
858         mutex_lock(&rx->setup_mutex);
859         __zd_usb_disable_rx(usb);
860         mutex_unlock(&rx->setup_mutex);
861
862         tasklet_kill(&rx->reset_timer_tasklet);
863         cancel_delayed_work_sync(&rx->idle_work);
864 }
865
866 static void zd_usb_reset_rx(struct zd_usb *usb)
867 {
868         bool do_reset;
869         struct zd_usb_rx *rx = &usb->rx;
870         unsigned long flags;
871
872         mutex_lock(&rx->setup_mutex);
873
874         spin_lock_irqsave(&rx->lock, flags);
875         do_reset = rx->urbs != NULL;
876         spin_unlock_irqrestore(&rx->lock, flags);
877
878         if (do_reset) {
879                 __zd_usb_disable_rx(usb);
880                 __zd_usb_enable_rx(usb);
881         }
882
883         mutex_unlock(&rx->setup_mutex);
884
885         if (do_reset)
886                 zd_usb_reset_rx_idle_timer(usb);
887 }
888
889 /**
890  * zd_usb_disable_tx - disable transmission
891  * @usb: the zd1211rw-private USB structure
892  *
893  * Frees all URBs in the free list and marks the transmission as disabled.
894  */
895 void zd_usb_disable_tx(struct zd_usb *usb)
896 {
897         struct zd_usb_tx *tx = &usb->tx;
898         unsigned long flags;
899
900         atomic_set(&tx->enabled, 0);
901
902         /* kill all submitted tx-urbs */
903         usb_kill_anchored_urbs(&tx->submitted);
904
905         spin_lock_irqsave(&tx->lock, flags);
906         WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
907         WARN_ON(tx->submitted_urbs != 0);
908         tx->submitted_urbs = 0;
909         spin_unlock_irqrestore(&tx->lock, flags);
910
911         /* The stopped state is ignored, relying on ieee80211_wake_queues()
912          * in a potentionally following zd_usb_enable_tx().
913          */
914 }
915
916 /**
917  * zd_usb_enable_tx - enables transmission
918  * @usb: a &struct zd_usb pointer
919  *
920  * This function enables transmission and prepares the &zd_usb_tx data
921  * structure.
922  */
923 void zd_usb_enable_tx(struct zd_usb *usb)
924 {
925         unsigned long flags;
926         struct zd_usb_tx *tx = &usb->tx;
927
928         spin_lock_irqsave(&tx->lock, flags);
929         atomic_set(&tx->enabled, 1);
930         tx->submitted_urbs = 0;
931         ieee80211_wake_queues(zd_usb_to_hw(usb));
932         tx->stopped = 0;
933         spin_unlock_irqrestore(&tx->lock, flags);
934 }
935
936 static void tx_dec_submitted_urbs(struct zd_usb *usb)
937 {
938         struct zd_usb_tx *tx = &usb->tx;
939         unsigned long flags;
940
941         spin_lock_irqsave(&tx->lock, flags);
942         --tx->submitted_urbs;
943         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
944                 ieee80211_wake_queues(zd_usb_to_hw(usb));
945                 tx->stopped = 0;
946         }
947         spin_unlock_irqrestore(&tx->lock, flags);
948 }
949
950 static void tx_inc_submitted_urbs(struct zd_usb *usb)
951 {
952         struct zd_usb_tx *tx = &usb->tx;
953         unsigned long flags;
954
955         spin_lock_irqsave(&tx->lock, flags);
956         ++tx->submitted_urbs;
957         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
958                 ieee80211_stop_queues(zd_usb_to_hw(usb));
959                 tx->stopped = 1;
960         }
961         spin_unlock_irqrestore(&tx->lock, flags);
962 }
963
964 /**
965  * tx_urb_complete - completes the execution of an URB
966  * @urb: a URB
967  *
968  * This function is called if the URB has been transferred to a device or an
969  * error has happened.
970  */
971 static void tx_urb_complete(struct urb *urb)
972 {
973         int r;
974         struct sk_buff *skb;
975         struct ieee80211_tx_info *info;
976         struct zd_usb *usb;
977         struct zd_usb_tx *tx;
978
979         skb = (struct sk_buff *)urb->context;
980         info = IEEE80211_SKB_CB(skb);
981         /*
982          * grab 'usb' pointer before handing off the skb (since
983          * it might be freed by zd_mac_tx_to_dev or mac80211)
984          */
985         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
986         tx = &usb->tx;
987
988         switch (urb->status) {
989         case 0:
990                 break;
991         case -ESHUTDOWN:
992         case -EINVAL:
993         case -ENODEV:
994         case -ENOENT:
995         case -ECONNRESET:
996         case -EPIPE:
997                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
998                 break;
999         default:
1000                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
1001                 goto resubmit;
1002         }
1003 free_urb:
1004         skb_unlink(skb, &usb->tx.submitted_skbs);
1005         zd_mac_tx_to_dev(skb, urb->status);
1006         usb_free_urb(urb);
1007         tx_dec_submitted_urbs(usb);
1008         return;
1009 resubmit:
1010         usb_anchor_urb(urb, &tx->submitted);
1011         r = usb_submit_urb(urb, GFP_ATOMIC);
1012         if (r) {
1013                 usb_unanchor_urb(urb);
1014                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
1015                 goto free_urb;
1016         }
1017 }
1018
1019 /**
1020  * zd_usb_tx: initiates transfer of a frame of the device
1021  *
1022  * @usb: the zd1211rw-private USB structure
1023  * @skb: a &struct sk_buff pointer
1024  *
1025  * This function tranmits a frame to the device. It doesn't wait for
1026  * completion. The frame must contain the control set and have all the
1027  * control set information available.
1028  *
1029  * The function returns 0 if the transfer has been successfully initiated.
1030  */
1031 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1032 {
1033         int r;
1034         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1035         struct usb_device *udev = zd_usb_to_usbdev(usb);
1036         struct urb *urb;
1037         struct zd_usb_tx *tx = &usb->tx;
1038
1039         if (!atomic_read(&tx->enabled)) {
1040                 r = -ENOENT;
1041                 goto out;
1042         }
1043
1044         urb = usb_alloc_urb(0, GFP_ATOMIC);
1045         if (!urb) {
1046                 r = -ENOMEM;
1047                 goto out;
1048         }
1049
1050         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1051                           skb->data, skb->len, tx_urb_complete, skb);
1052
1053         info->rate_driver_data[1] = (void *)jiffies;
1054         skb_queue_tail(&tx->submitted_skbs, skb);
1055         usb_anchor_urb(urb, &tx->submitted);
1056
1057         r = usb_submit_urb(urb, GFP_ATOMIC);
1058         if (r) {
1059                 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1060                 usb_unanchor_urb(urb);
1061                 skb_unlink(skb, &tx->submitted_skbs);
1062                 goto error;
1063         }
1064         tx_inc_submitted_urbs(usb);
1065         return 0;
1066 error:
1067         usb_free_urb(urb);
1068 out:
1069         return r;
1070 }
1071
1072 static bool zd_tx_timeout(struct zd_usb *usb)
1073 {
1074         struct zd_usb_tx *tx = &usb->tx;
1075         struct sk_buff_head *q = &tx->submitted_skbs;
1076         struct sk_buff *skb, *skbnext;
1077         struct ieee80211_tx_info *info;
1078         unsigned long flags, trans_start;
1079         bool have_timedout = false;
1080
1081         spin_lock_irqsave(&q->lock, flags);
1082         skb_queue_walk_safe(q, skb, skbnext) {
1083                 info = IEEE80211_SKB_CB(skb);
1084                 trans_start = (unsigned long)info->rate_driver_data[1];
1085
1086                 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1087                         have_timedout = true;
1088                         break;
1089                 }
1090         }
1091         spin_unlock_irqrestore(&q->lock, flags);
1092
1093         return have_timedout;
1094 }
1095
1096 static void zd_tx_watchdog_handler(struct work_struct *work)
1097 {
1098         struct zd_usb *usb =
1099                 container_of(work, struct zd_usb, tx.watchdog_work.work);
1100         struct zd_usb_tx *tx = &usb->tx;
1101
1102         if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1103                 goto out;
1104         if (!zd_tx_timeout(usb))
1105                 goto out;
1106
1107         /* TX halted, try reset */
1108         dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1109
1110         usb_queue_reset_device(usb->intf);
1111
1112         /* reset will stop this worker, don't rearm */
1113         return;
1114 out:
1115         queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1116                            ZD_TX_WATCHDOG_INTERVAL);
1117 }
1118
1119 void zd_tx_watchdog_enable(struct zd_usb *usb)
1120 {
1121         struct zd_usb_tx *tx = &usb->tx;
1122
1123         if (!tx->watchdog_enabled) {
1124                 dev_dbg_f(zd_usb_dev(usb), "\n");
1125                 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1126                                    ZD_TX_WATCHDOG_INTERVAL);
1127                 tx->watchdog_enabled = 1;
1128         }
1129 }
1130
1131 void zd_tx_watchdog_disable(struct zd_usb *usb)
1132 {
1133         struct zd_usb_tx *tx = &usb->tx;
1134
1135         if (tx->watchdog_enabled) {
1136                 dev_dbg_f(zd_usb_dev(usb), "\n");
1137                 tx->watchdog_enabled = 0;
1138                 cancel_delayed_work_sync(&tx->watchdog_work);
1139         }
1140 }
1141
1142 static void zd_rx_idle_timer_handler(struct work_struct *work)
1143 {
1144         struct zd_usb *usb =
1145                 container_of(work, struct zd_usb, rx.idle_work.work);
1146         struct zd_mac *mac = zd_usb_to_mac(usb);
1147
1148         if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1149                 return;
1150
1151         dev_dbg_f(zd_usb_dev(usb), "\n");
1152
1153         /* 30 seconds since last rx, reset rx */
1154         zd_usb_reset_rx(usb);
1155 }
1156
1157 static void zd_usb_reset_rx_idle_timer_tasklet(unsigned long param)
1158 {
1159         struct zd_usb *usb = (struct zd_usb *)param;
1160
1161         zd_usb_reset_rx_idle_timer(usb);
1162 }
1163
1164 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1165 {
1166         struct zd_usb_rx *rx = &usb->rx;
1167
1168         mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1169 }
1170
1171 static inline void init_usb_interrupt(struct zd_usb *usb)
1172 {
1173         struct zd_usb_interrupt *intr = &usb->intr;
1174
1175         spin_lock_init(&intr->lock);
1176         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1177         init_completion(&intr->read_regs.completion);
1178         atomic_set(&intr->read_regs_enabled, 0);
1179         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1180 }
1181
1182 static inline void init_usb_rx(struct zd_usb *usb)
1183 {
1184         struct zd_usb_rx *rx = &usb->rx;
1185
1186         spin_lock_init(&rx->lock);
1187         mutex_init(&rx->setup_mutex);
1188         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1189                 rx->usb_packet_size = 512;
1190         } else {
1191                 rx->usb_packet_size = 64;
1192         }
1193         ZD_ASSERT(rx->fragment_length == 0);
1194         INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1195         rx->reset_timer_tasklet.func = zd_usb_reset_rx_idle_timer_tasklet;
1196         rx->reset_timer_tasklet.data = (unsigned long)usb;
1197 }
1198
1199 static inline void init_usb_tx(struct zd_usb *usb)
1200 {
1201         struct zd_usb_tx *tx = &usb->tx;
1202
1203         spin_lock_init(&tx->lock);
1204         atomic_set(&tx->enabled, 0);
1205         tx->stopped = 0;
1206         skb_queue_head_init(&tx->submitted_skbs);
1207         init_usb_anchor(&tx->submitted);
1208         tx->submitted_urbs = 0;
1209         tx->watchdog_enabled = 0;
1210         INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1211 }
1212
1213 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1214                  struct usb_interface *intf)
1215 {
1216         memset(usb, 0, sizeof(*usb));
1217         usb->intf = usb_get_intf(intf);
1218         usb_set_intfdata(usb->intf, hw);
1219         init_usb_anchor(&usb->submitted_cmds);
1220         init_usb_interrupt(usb);
1221         init_usb_tx(usb);
1222         init_usb_rx(usb);
1223 }
1224
1225 void zd_usb_clear(struct zd_usb *usb)
1226 {
1227         usb_set_intfdata(usb->intf, NULL);
1228         usb_put_intf(usb->intf);
1229         ZD_MEMCLEAR(usb, sizeof(*usb));
1230         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1231 }
1232
1233 static const char *speed(enum usb_device_speed speed)
1234 {
1235         switch (speed) {
1236         case USB_SPEED_LOW:
1237                 return "low";
1238         case USB_SPEED_FULL:
1239                 return "full";
1240         case USB_SPEED_HIGH:
1241                 return "high";
1242         default:
1243                 return "unknown speed";
1244         }
1245 }
1246
1247 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1248 {
1249         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1250                 le16_to_cpu(udev->descriptor.idVendor),
1251                 le16_to_cpu(udev->descriptor.idProduct),
1252                 get_bcdDevice(udev),
1253                 speed(udev->speed));
1254 }
1255
1256 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1257 {
1258         struct usb_device *udev = interface_to_usbdev(usb->intf);
1259         return scnprint_id(udev, buffer, size);
1260 }
1261
1262 #ifdef DEBUG
1263 static void print_id(struct usb_device *udev)
1264 {
1265         char buffer[40];
1266
1267         scnprint_id(udev, buffer, sizeof(buffer));
1268         buffer[sizeof(buffer)-1] = 0;
1269         dev_dbg_f(&udev->dev, "%s\n", buffer);
1270 }
1271 #else
1272 #define print_id(udev) do { } while (0)
1273 #endif
1274
1275 static int eject_installer(struct usb_interface *intf)
1276 {
1277         struct usb_device *udev = interface_to_usbdev(intf);
1278         struct usb_host_interface *iface_desc = &intf->altsetting[0];
1279         struct usb_endpoint_descriptor *endpoint;
1280         unsigned char *cmd;
1281         u8 bulk_out_ep;
1282         int r;
1283
1284         if (iface_desc->desc.bNumEndpoints < 2)
1285                 return -ENODEV;
1286
1287         /* Find bulk out endpoint */
1288         for (r = 1; r >= 0; r--) {
1289                 endpoint = &iface_desc->endpoint[r].desc;
1290                 if (usb_endpoint_dir_out(endpoint) &&
1291                     usb_endpoint_xfer_bulk(endpoint)) {
1292                         bulk_out_ep = endpoint->bEndpointAddress;
1293                         break;
1294                 }
1295         }
1296         if (r == -1) {
1297                 dev_err(&udev->dev,
1298                         "zd1211rw: Could not find bulk out endpoint\n");
1299                 return -ENODEV;
1300         }
1301
1302         cmd = kzalloc(31, GFP_KERNEL);
1303         if (cmd == NULL)
1304                 return -ENODEV;
1305
1306         /* USB bulk command block */
1307         cmd[0] = 0x55;  /* bulk command signature */
1308         cmd[1] = 0x53;  /* bulk command signature */
1309         cmd[2] = 0x42;  /* bulk command signature */
1310         cmd[3] = 0x43;  /* bulk command signature */
1311         cmd[14] = 6;    /* command length */
1312
1313         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1314         cmd[19] = 0x2;  /* eject disc */
1315
1316         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1317         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1318                 cmd, 31, NULL, 2000);
1319         kfree(cmd);
1320         if (r)
1321                 return r;
1322
1323         /* At this point, the device disconnects and reconnects with the real
1324          * ID numbers. */
1325
1326         usb_set_intfdata(intf, NULL);
1327         return 0;
1328 }
1329
1330 int zd_usb_init_hw(struct zd_usb *usb)
1331 {
1332         int r;
1333         struct zd_mac *mac = zd_usb_to_mac(usb);
1334
1335         dev_dbg_f(zd_usb_dev(usb), "\n");
1336
1337         r = upload_firmware(usb);
1338         if (r) {
1339                 dev_err(zd_usb_dev(usb),
1340                        "couldn't load firmware. Error number %d\n", r);
1341                 return r;
1342         }
1343
1344         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1345         if (r) {
1346                 dev_dbg_f(zd_usb_dev(usb),
1347                         "couldn't reset configuration. Error number %d\n", r);
1348                 return r;
1349         }
1350
1351         r = zd_mac_init_hw(mac->hw);
1352         if (r) {
1353                 dev_dbg_f(zd_usb_dev(usb),
1354                          "couldn't initialize mac. Error number %d\n", r);
1355                 return r;
1356         }
1357
1358         usb->initialized = 1;
1359         return 0;
1360 }
1361
1362 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1363 {
1364         int r;
1365         struct usb_device *udev = interface_to_usbdev(intf);
1366         struct zd_usb *usb;
1367         struct ieee80211_hw *hw = NULL;
1368
1369         print_id(udev);
1370
1371         if (id->driver_info & DEVICE_INSTALLER)
1372                 return eject_installer(intf);
1373
1374         switch (udev->speed) {
1375         case USB_SPEED_LOW:
1376         case USB_SPEED_FULL:
1377         case USB_SPEED_HIGH:
1378                 break;
1379         default:
1380                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1381                 r = -ENODEV;
1382                 goto error;
1383         }
1384
1385         r = usb_reset_device(udev);
1386         if (r) {
1387                 dev_err(&intf->dev,
1388                         "couldn't reset usb device. Error number %d\n", r);
1389                 goto error;
1390         }
1391
1392         hw = zd_mac_alloc_hw(intf);
1393         if (hw == NULL) {
1394                 r = -ENOMEM;
1395                 goto error;
1396         }
1397
1398         usb = &zd_hw_mac(hw)->chip.usb;
1399         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1400
1401         r = zd_mac_preinit_hw(hw);
1402         if (r) {
1403                 dev_dbg_f(&intf->dev,
1404                          "couldn't initialize mac. Error number %d\n", r);
1405                 goto error;
1406         }
1407
1408         r = ieee80211_register_hw(hw);
1409         if (r) {
1410                 dev_dbg_f(&intf->dev,
1411                          "couldn't register device. Error number %d\n", r);
1412                 goto error;
1413         }
1414
1415         dev_dbg_f(&intf->dev, "successful\n");
1416         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1417         return 0;
1418 error:
1419         usb_reset_device(interface_to_usbdev(intf));
1420         if (hw) {
1421                 zd_mac_clear(zd_hw_mac(hw));
1422                 ieee80211_free_hw(hw);
1423         }
1424         return r;
1425 }
1426
1427 static void disconnect(struct usb_interface *intf)
1428 {
1429         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1430         struct zd_mac *mac;
1431         struct zd_usb *usb;
1432
1433         /* Either something really bad happened, or we're just dealing with
1434          * a DEVICE_INSTALLER. */
1435         if (hw == NULL)
1436                 return;
1437
1438         mac = zd_hw_mac(hw);
1439         usb = &mac->chip.usb;
1440
1441         dev_dbg_f(zd_usb_dev(usb), "\n");
1442
1443         ieee80211_unregister_hw(hw);
1444
1445         /* Just in case something has gone wrong! */
1446         zd_usb_disable_tx(usb);
1447         zd_usb_disable_rx(usb);
1448         zd_usb_disable_int(usb);
1449
1450         /* If the disconnect has been caused by a removal of the
1451          * driver module, the reset allows reloading of the driver. If the
1452          * reset will not be executed here, the upload of the firmware in the
1453          * probe function caused by the reloading of the driver will fail.
1454          */
1455         usb_reset_device(interface_to_usbdev(intf));
1456
1457         zd_mac_clear(mac);
1458         ieee80211_free_hw(hw);
1459         dev_dbg(&intf->dev, "disconnected\n");
1460 }
1461
1462 static void zd_usb_resume(struct zd_usb *usb)
1463 {
1464         struct zd_mac *mac = zd_usb_to_mac(usb);
1465         int r;
1466
1467         dev_dbg_f(zd_usb_dev(usb), "\n");
1468
1469         r = zd_op_start(zd_usb_to_hw(usb));
1470         if (r < 0) {
1471                 dev_warn(zd_usb_dev(usb), "Device resume failed "
1472                          "with error code %d. Retrying...\n", r);
1473                 if (usb->was_running)
1474                         set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1475                 usb_queue_reset_device(usb->intf);
1476                 return;
1477         }
1478
1479         if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1480                 r = zd_restore_settings(mac);
1481                 if (r < 0) {
1482                         dev_dbg(zd_usb_dev(usb),
1483                                 "failed to restore settings, %d\n", r);
1484                         return;
1485                 }
1486         }
1487 }
1488
1489 static void zd_usb_stop(struct zd_usb *usb)
1490 {
1491         dev_dbg_f(zd_usb_dev(usb), "\n");
1492
1493         zd_op_stop(zd_usb_to_hw(usb));
1494
1495         zd_usb_disable_tx(usb);
1496         zd_usb_disable_rx(usb);
1497         zd_usb_disable_int(usb);
1498
1499         usb->initialized = 0;
1500 }
1501
1502 static int pre_reset(struct usb_interface *intf)
1503 {
1504         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1505         struct zd_mac *mac;
1506         struct zd_usb *usb;
1507
1508         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1509                 return 0;
1510
1511         mac = zd_hw_mac(hw);
1512         usb = &mac->chip.usb;
1513
1514         usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1515
1516         zd_usb_stop(usb);
1517
1518         mutex_lock(&mac->chip.mutex);
1519         return 0;
1520 }
1521
1522 static int post_reset(struct usb_interface *intf)
1523 {
1524         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1525         struct zd_mac *mac;
1526         struct zd_usb *usb;
1527
1528         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1529                 return 0;
1530
1531         mac = zd_hw_mac(hw);
1532         usb = &mac->chip.usb;
1533
1534         mutex_unlock(&mac->chip.mutex);
1535
1536         if (usb->was_running)
1537                 zd_usb_resume(usb);
1538         return 0;
1539 }
1540
1541 static struct usb_driver driver = {
1542         .name           = KBUILD_MODNAME,
1543         .id_table       = usb_ids,
1544         .probe          = probe,
1545         .disconnect     = disconnect,
1546         .pre_reset      = pre_reset,
1547         .post_reset     = post_reset,
1548         .disable_hub_initiated_lpm = 1,
1549 };
1550
1551 struct workqueue_struct *zd_workqueue;
1552
1553 static int __init usb_init(void)
1554 {
1555         int r;
1556
1557         pr_debug("%s usb_init()\n", driver.name);
1558
1559         zd_workqueue = create_singlethread_workqueue(driver.name);
1560         if (zd_workqueue == NULL) {
1561                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1562                 return -ENOMEM;
1563         }
1564
1565         r = usb_register(&driver);
1566         if (r) {
1567                 destroy_workqueue(zd_workqueue);
1568                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1569                        driver.name, r);
1570                 return r;
1571         }
1572
1573         pr_debug("%s initialized\n", driver.name);
1574         return 0;
1575 }
1576
1577 static void __exit usb_exit(void)
1578 {
1579         pr_debug("%s usb_exit()\n", driver.name);
1580         usb_deregister(&driver);
1581         destroy_workqueue(zd_workqueue);
1582 }
1583
1584 module_init(usb_init);
1585 module_exit(usb_exit);
1586
1587 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1588                               int *actual_length, int timeout)
1589 {
1590         /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1591          * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1592          * descriptor.
1593          */
1594         struct usb_host_endpoint *ep;
1595         unsigned int pipe;
1596
1597         pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1598         ep = usb_pipe_endpoint(udev, pipe);
1599         if (!ep)
1600                 return -EINVAL;
1601
1602         if (usb_endpoint_xfer_int(&ep->desc)) {
1603                 return usb_interrupt_msg(udev, pipe, data, len,
1604                                          actual_length, timeout);
1605         } else {
1606                 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1607                 return usb_bulk_msg(udev, pipe, data, len, actual_length,
1608                                     timeout);
1609         }
1610 }
1611
1612 static int usb_int_regs_length(unsigned int count)
1613 {
1614         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1615 }
1616
1617 static void prepare_read_regs_int(struct zd_usb *usb,
1618                                   struct usb_req_read_regs *req,
1619                                   unsigned int count)
1620 {
1621         struct zd_usb_interrupt *intr = &usb->intr;
1622
1623         spin_lock_irq(&intr->lock);
1624         atomic_set(&intr->read_regs_enabled, 1);
1625         intr->read_regs.req = req;
1626         intr->read_regs.req_count = count;
1627         reinit_completion(&intr->read_regs.completion);
1628         spin_unlock_irq(&intr->lock);
1629 }
1630
1631 static void disable_read_regs_int(struct zd_usb *usb)
1632 {
1633         struct zd_usb_interrupt *intr = &usb->intr;
1634
1635         spin_lock_irq(&intr->lock);
1636         atomic_set(&intr->read_regs_enabled, 0);
1637         spin_unlock_irq(&intr->lock);
1638 }
1639
1640 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1641                             unsigned int count)
1642 {
1643         int i;
1644         struct zd_usb_interrupt *intr = &usb->intr;
1645         struct read_regs_int *rr = &intr->read_regs;
1646         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1647
1648         /* The created block size seems to be larger than expected.
1649          * However results appear to be correct.
1650          */
1651         if (rr->length < usb_int_regs_length(count)) {
1652                 dev_dbg_f(zd_usb_dev(usb),
1653                          "error: actual length %d less than expected %d\n",
1654                          rr->length, usb_int_regs_length(count));
1655                 return false;
1656         }
1657
1658         if (rr->length > sizeof(rr->buffer)) {
1659                 dev_dbg_f(zd_usb_dev(usb),
1660                          "error: actual length %d exceeds buffer size %zu\n",
1661                          rr->length, sizeof(rr->buffer));
1662                 return false;
1663         }
1664
1665         for (i = 0; i < count; i++) {
1666                 struct reg_data *rd = &regs->regs[i];
1667                 if (rd->addr != req->addr[i]) {
1668                         dev_dbg_f(zd_usb_dev(usb),
1669                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1670                                  le16_to_cpu(rd->addr),
1671                                  le16_to_cpu(req->addr[i]));
1672                         return false;
1673                 }
1674         }
1675
1676         return true;
1677 }
1678
1679 static int get_results(struct zd_usb *usb, u16 *values,
1680                        struct usb_req_read_regs *req, unsigned int count,
1681                        bool *retry)
1682 {
1683         int r;
1684         int i;
1685         struct zd_usb_interrupt *intr = &usb->intr;
1686         struct read_regs_int *rr = &intr->read_regs;
1687         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1688
1689         spin_lock_irq(&intr->lock);
1690
1691         r = -EIO;
1692
1693         /* Read failed because firmware bug? */
1694         *retry = !!intr->read_regs_int_overridden;
1695         if (*retry)
1696                 goto error_unlock;
1697
1698         if (!check_read_regs(usb, req, count)) {
1699                 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1700                 goto error_unlock;
1701         }
1702
1703         for (i = 0; i < count; i++) {
1704                 struct reg_data *rd = &regs->regs[i];
1705                 values[i] = le16_to_cpu(rd->value);
1706         }
1707
1708         r = 0;
1709 error_unlock:
1710         spin_unlock_irq(&intr->lock);
1711         return r;
1712 }
1713
1714 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1715                      const zd_addr_t *addresses, unsigned int count)
1716 {
1717         int r, i, req_len, actual_req_len, try_count = 0;
1718         struct usb_device *udev;
1719         struct usb_req_read_regs *req = NULL;
1720         unsigned long timeout;
1721         bool retry = false;
1722
1723         if (count < 1) {
1724                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1725                 return -EINVAL;
1726         }
1727         if (count > USB_MAX_IOREAD16_COUNT) {
1728                 dev_dbg_f(zd_usb_dev(usb),
1729                          "error: count %u exceeds possible max %u\n",
1730                          count, USB_MAX_IOREAD16_COUNT);
1731                 return -EINVAL;
1732         }
1733         if (in_atomic()) {
1734                 dev_dbg_f(zd_usb_dev(usb),
1735                          "error: io in atomic context not supported\n");
1736                 return -EWOULDBLOCK;
1737         }
1738         if (!usb_int_enabled(usb)) {
1739                 dev_dbg_f(zd_usb_dev(usb),
1740                           "error: usb interrupt not enabled\n");
1741                 return -EWOULDBLOCK;
1742         }
1743
1744         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1745         BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1746                      sizeof(__le16) > sizeof(usb->req_buf));
1747         BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1748                sizeof(usb->req_buf));
1749
1750         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1751         req = (void *)usb->req_buf;
1752
1753         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1754         for (i = 0; i < count; i++)
1755                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1756
1757 retry_read:
1758         try_count++;
1759         udev = zd_usb_to_usbdev(usb);
1760         prepare_read_regs_int(usb, req, count);
1761         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1762         if (r) {
1763                 dev_dbg_f(zd_usb_dev(usb),
1764                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1765                 goto error;
1766         }
1767         if (req_len != actual_req_len) {
1768                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1769                         " req_len %d != actual_req_len %d\n",
1770                         req_len, actual_req_len);
1771                 r = -EIO;
1772                 goto error;
1773         }
1774
1775         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1776                                               msecs_to_jiffies(50));
1777         if (!timeout) {
1778                 disable_read_regs_int(usb);
1779                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1780                 r = -ETIMEDOUT;
1781                 goto error;
1782         }
1783
1784         r = get_results(usb, values, req, count, &retry);
1785         if (retry && try_count < 20) {
1786                 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1787                                 try_count);
1788                 goto retry_read;
1789         }
1790 error:
1791         return r;
1792 }
1793
1794 static void iowrite16v_urb_complete(struct urb *urb)
1795 {
1796         struct zd_usb *usb = urb->context;
1797
1798         if (urb->status && !usb->cmd_error)
1799                 usb->cmd_error = urb->status;
1800
1801         if (!usb->cmd_error &&
1802                         urb->actual_length != urb->transfer_buffer_length)
1803                 usb->cmd_error = -EIO;
1804 }
1805
1806 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1807 {
1808         int r = 0;
1809         struct urb *urb = usb->urb_async_waiting;
1810
1811         if (!urb)
1812                 return 0;
1813
1814         usb->urb_async_waiting = NULL;
1815
1816         if (!last)
1817                 urb->transfer_flags |= URB_NO_INTERRUPT;
1818
1819         usb_anchor_urb(urb, &usb->submitted_cmds);
1820         r = usb_submit_urb(urb, GFP_KERNEL);
1821         if (r) {
1822                 usb_unanchor_urb(urb);
1823                 dev_dbg_f(zd_usb_dev(usb),
1824                         "error in usb_submit_urb(). Error number %d\n", r);
1825                 goto error;
1826         }
1827
1828         /* fall-through with r == 0 */
1829 error:
1830         usb_free_urb(urb);
1831         return r;
1832 }
1833
1834 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1835 {
1836         ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1837         ZD_ASSERT(usb->urb_async_waiting == NULL);
1838         ZD_ASSERT(!usb->in_async);
1839
1840         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1841
1842         usb->in_async = 1;
1843         usb->cmd_error = 0;
1844         usb->urb_async_waiting = NULL;
1845 }
1846
1847 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1848 {
1849         int r;
1850
1851         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1852         ZD_ASSERT(usb->in_async);
1853
1854         /* Submit last iowrite16v URB */
1855         r = zd_submit_waiting_urb(usb, true);
1856         if (r) {
1857                 dev_dbg_f(zd_usb_dev(usb),
1858                         "error in zd_submit_waiting_usb(). "
1859                         "Error number %d\n", r);
1860
1861                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1862                 goto error;
1863         }
1864
1865         if (timeout)
1866                 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1867                                                         timeout);
1868         if (!timeout) {
1869                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1870                 if (usb->cmd_error == -ENOENT) {
1871                         dev_dbg_f(zd_usb_dev(usb), "timed out");
1872                         r = -ETIMEDOUT;
1873                         goto error;
1874                 }
1875         }
1876
1877         r = usb->cmd_error;
1878 error:
1879         usb->in_async = 0;
1880         return r;
1881 }
1882
1883 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1884                             unsigned int count)
1885 {
1886         int r;
1887         struct usb_device *udev;
1888         struct usb_req_write_regs *req = NULL;
1889         int i, req_len;
1890         struct urb *urb;
1891         struct usb_host_endpoint *ep;
1892
1893         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1894         ZD_ASSERT(usb->in_async);
1895
1896         if (count == 0)
1897                 return 0;
1898         if (count > USB_MAX_IOWRITE16_COUNT) {
1899                 dev_dbg_f(zd_usb_dev(usb),
1900                         "error: count %u exceeds possible max %u\n",
1901                         count, USB_MAX_IOWRITE16_COUNT);
1902                 return -EINVAL;
1903         }
1904         if (in_atomic()) {
1905                 dev_dbg_f(zd_usb_dev(usb),
1906                         "error: io in atomic context not supported\n");
1907                 return -EWOULDBLOCK;
1908         }
1909
1910         udev = zd_usb_to_usbdev(usb);
1911
1912         ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1913         if (!ep)
1914                 return -ENOENT;
1915
1916         urb = usb_alloc_urb(0, GFP_KERNEL);
1917         if (!urb)
1918                 return -ENOMEM;
1919
1920         req_len = struct_size(req, reg_writes, count);
1921         req = kmalloc(req_len, GFP_KERNEL);
1922         if (!req) {
1923                 r = -ENOMEM;
1924                 goto error;
1925         }
1926
1927         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1928         for (i = 0; i < count; i++) {
1929                 struct reg_data *rw  = &req->reg_writes[i];
1930                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1931                 rw->value = cpu_to_le16(ioreqs[i].value);
1932         }
1933
1934         /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1935          * endpoint is bulk. Select correct type URB by endpoint descriptor.
1936          */
1937         if (usb_endpoint_xfer_int(&ep->desc))
1938                 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1939                                  req, req_len, iowrite16v_urb_complete, usb,
1940                                  ep->desc.bInterval);
1941         else
1942                 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1943                                   req, req_len, iowrite16v_urb_complete, usb);
1944
1945         urb->transfer_flags |= URB_FREE_BUFFER;
1946
1947         /* Submit previous URB */
1948         r = zd_submit_waiting_urb(usb, false);
1949         if (r) {
1950                 dev_dbg_f(zd_usb_dev(usb),
1951                         "error in zd_submit_waiting_usb(). "
1952                         "Error number %d\n", r);
1953                 goto error;
1954         }
1955
1956         /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1957          * of currect batch except for very last.
1958          */
1959         usb->urb_async_waiting = urb;
1960         return 0;
1961 error:
1962         usb_free_urb(urb);
1963         return r;
1964 }
1965
1966 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1967                         unsigned int count)
1968 {
1969         int r;
1970
1971         zd_usb_iowrite16v_async_start(usb);
1972         r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1973         if (r) {
1974                 zd_usb_iowrite16v_async_end(usb, 0);
1975                 return r;
1976         }
1977         return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1978 }
1979
1980 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1981 {
1982         int r;
1983         struct usb_device *udev;
1984         struct usb_req_rfwrite *req = NULL;
1985         int i, req_len, actual_req_len;
1986         u16 bit_value_template;
1987
1988         if (in_atomic()) {
1989                 dev_dbg_f(zd_usb_dev(usb),
1990                         "error: io in atomic context not supported\n");
1991                 return -EWOULDBLOCK;
1992         }
1993         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1994                 dev_dbg_f(zd_usb_dev(usb),
1995                         "error: bits %d are smaller than"
1996                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1997                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1998                 return -EINVAL;
1999         }
2000         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
2001                 dev_dbg_f(zd_usb_dev(usb),
2002                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
2003                         bits, USB_MAX_RFWRITE_BIT_COUNT);
2004                 return -EINVAL;
2005         }
2006 #ifdef DEBUG
2007         if (value & (~0UL << bits)) {
2008                 dev_dbg_f(zd_usb_dev(usb),
2009                         "error: value %#09x has bits >= %d set\n",
2010                         value, bits);
2011                 return -EINVAL;
2012         }
2013 #endif /* DEBUG */
2014
2015         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
2016
2017         r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
2018         if (r) {
2019                 dev_dbg_f(zd_usb_dev(usb),
2020                         "error %d: Couldn't read ZD_CR203\n", r);
2021                 return r;
2022         }
2023         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
2024
2025         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
2026         BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
2027                      USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
2028                      sizeof(usb->req_buf));
2029         BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
2030                sizeof(usb->req_buf));
2031
2032         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
2033         req = (void *)usb->req_buf;
2034
2035         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2036         /* 1: 3683a, but not used in ZYDAS driver */
2037         req->value = cpu_to_le16(2);
2038         req->bits = cpu_to_le16(bits);
2039
2040         for (i = 0; i < bits; i++) {
2041                 u16 bv = bit_value_template;
2042                 if (value & (1 << (bits-1-i)))
2043                         bv |= RF_DATA;
2044                 req->bit_values[i] = cpu_to_le16(bv);
2045         }
2046
2047         udev = zd_usb_to_usbdev(usb);
2048         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2049         if (r) {
2050                 dev_dbg_f(zd_usb_dev(usb),
2051                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2052                 goto out;
2053         }
2054         if (req_len != actual_req_len) {
2055                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2056                         " req_len %d != actual_req_len %d\n",
2057                         req_len, actual_req_len);
2058                 r = -EIO;
2059                 goto out;
2060         }
2061
2062         /* FALL-THROUGH with r == 0 */
2063 out:
2064         return r;
2065 }