arm64: kprobes: Restore local irqflag if kprobes is cancelled
[linux-2.6-microblaze.git] / drivers / net / wireless / ralink / rt2x00 / rt2500usb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6  */
7
8 /*
9         Module: rt2500usb
10         Abstract: rt2500usb device specific routines.
11         Supported chipsets: RT2570.
12  */
13
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/usb.h>
20
21 #include "rt2x00.h"
22 #include "rt2x00usb.h"
23 #include "rt2500usb.h"
24
25 /*
26  * Allow hardware encryption to be disabled.
27  */
28 static bool modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31
32 /*
33  * Register access.
34  * All access to the CSR registers will go through the methods
35  * rt2500usb_register_read and rt2500usb_register_write.
36  * BBP and RF register require indirect register access,
37  * and use the CSR registers BBPCSR and RFCSR to achieve this.
38  * These indirect registers work with busy bits,
39  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
40  * the register while taking a REGISTER_BUSY_DELAY us delay
41  * between each attampt. When the busy bit is still set at that time,
42  * the access attempt is considered to have failed,
43  * and we will print an error.
44  * If the csr_mutex is already held then the _lock variants must
45  * be used instead.
46  */
47 static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
48                                    const unsigned int offset)
49 {
50         __le16 reg;
51         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
52                                       USB_VENDOR_REQUEST_IN, offset,
53                                       &reg, sizeof(reg));
54         return le16_to_cpu(reg);
55 }
56
57 static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
58                                         const unsigned int offset)
59 {
60         __le16 reg;
61         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
62                                        USB_VENDOR_REQUEST_IN, offset,
63                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
64         return le16_to_cpu(reg);
65 }
66
67 static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
68                                             const unsigned int offset,
69                                             u16 value)
70 {
71         __le16 reg = cpu_to_le16(value);
72         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
73                                       USB_VENDOR_REQUEST_OUT, offset,
74                                       &reg, sizeof(reg));
75 }
76
77 static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
78                                                  const unsigned int offset,
79                                                  u16 value)
80 {
81         __le16 reg = cpu_to_le16(value);
82         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
83                                        USB_VENDOR_REQUEST_OUT, offset,
84                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
85 }
86
87 static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
88                                                  const unsigned int offset,
89                                                  void *value, const u16 length)
90 {
91         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
92                                       USB_VENDOR_REQUEST_OUT, offset,
93                                       value, length);
94 }
95
96 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
97                                   const unsigned int offset,
98                                   struct rt2x00_field16 field,
99                                   u16 *reg)
100 {
101         unsigned int i;
102
103         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
104                 *reg = rt2500usb_register_read_lock(rt2x00dev, offset);
105                 if (!rt2x00_get_field16(*reg, field))
106                         return 1;
107                 udelay(REGISTER_BUSY_DELAY);
108         }
109
110         rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
111                    offset, *reg);
112         *reg = ~0;
113
114         return 0;
115 }
116
117 #define WAIT_FOR_BBP(__dev, __reg) \
118         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
119 #define WAIT_FOR_RF(__dev, __reg) \
120         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
121
122 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
123                                 const unsigned int word, const u8 value)
124 {
125         u16 reg;
126
127         mutex_lock(&rt2x00dev->csr_mutex);
128
129         /*
130          * Wait until the BBP becomes available, afterwards we
131          * can safely write the new data into the register.
132          */
133         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
134                 reg = 0;
135                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
136                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
137                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
138
139                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
140         }
141
142         mutex_unlock(&rt2x00dev->csr_mutex);
143 }
144
145 static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
146                              const unsigned int word)
147 {
148         u16 reg;
149         u8 value;
150
151         mutex_lock(&rt2x00dev->csr_mutex);
152
153         /*
154          * Wait until the BBP becomes available, afterwards we
155          * can safely write the read request into the register.
156          * After the data has been written, we wait until hardware
157          * returns the correct value, if at any time the register
158          * doesn't become available in time, reg will be 0xffffffff
159          * which means we return 0xff to the caller.
160          */
161         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
162                 reg = 0;
163                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
165
166                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167
168                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
169                         reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
170         }
171
172         value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
173
174         mutex_unlock(&rt2x00dev->csr_mutex);
175
176         return value;
177 }
178
179 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
180                                const unsigned int word, const u32 value)
181 {
182         u16 reg;
183
184         mutex_lock(&rt2x00dev->csr_mutex);
185
186         /*
187          * Wait until the RF becomes available, afterwards we
188          * can safely write the new data into the register.
189          */
190         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
191                 reg = 0;
192                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
193                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
194
195                 reg = 0;
196                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
197                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
198                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
199                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
200
201                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
202                 rt2x00_rf_write(rt2x00dev, word, value);
203         }
204
205         mutex_unlock(&rt2x00dev->csr_mutex);
206 }
207
208 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
209 static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
210                                      const unsigned int offset)
211 {
212         return rt2500usb_register_read(rt2x00dev, offset);
213 }
214
215 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
216                                       const unsigned int offset,
217                                       u32 value)
218 {
219         rt2500usb_register_write(rt2x00dev, offset, value);
220 }
221
222 static const struct rt2x00debug rt2500usb_rt2x00debug = {
223         .owner  = THIS_MODULE,
224         .csr    = {
225                 .read           = _rt2500usb_register_read,
226                 .write          = _rt2500usb_register_write,
227                 .flags          = RT2X00DEBUGFS_OFFSET,
228                 .word_base      = CSR_REG_BASE,
229                 .word_size      = sizeof(u16),
230                 .word_count     = CSR_REG_SIZE / sizeof(u16),
231         },
232         .eeprom = {
233                 .read           = rt2x00_eeprom_read,
234                 .write          = rt2x00_eeprom_write,
235                 .word_base      = EEPROM_BASE,
236                 .word_size      = sizeof(u16),
237                 .word_count     = EEPROM_SIZE / sizeof(u16),
238         },
239         .bbp    = {
240                 .read           = rt2500usb_bbp_read,
241                 .write          = rt2500usb_bbp_write,
242                 .word_base      = BBP_BASE,
243                 .word_size      = sizeof(u8),
244                 .word_count     = BBP_SIZE / sizeof(u8),
245         },
246         .rf     = {
247                 .read           = rt2x00_rf_read,
248                 .write          = rt2500usb_rf_write,
249                 .word_base      = RF_BASE,
250                 .word_size      = sizeof(u32),
251                 .word_count     = RF_SIZE / sizeof(u32),
252         },
253 };
254 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
255
256 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
257 {
258         u16 reg;
259
260         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
261         return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
262 }
263
264 #ifdef CONFIG_RT2X00_LIB_LEDS
265 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
266                                      enum led_brightness brightness)
267 {
268         struct rt2x00_led *led =
269             container_of(led_cdev, struct rt2x00_led, led_dev);
270         unsigned int enabled = brightness != LED_OFF;
271         u16 reg;
272
273         reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
274
275         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
276                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
277         else if (led->type == LED_TYPE_ACTIVITY)
278                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
279
280         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
281 }
282
283 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
284                                unsigned long *delay_on,
285                                unsigned long *delay_off)
286 {
287         struct rt2x00_led *led =
288             container_of(led_cdev, struct rt2x00_led, led_dev);
289         u16 reg;
290
291         reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
292         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
293         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
294         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
295
296         return 0;
297 }
298
299 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
300                                struct rt2x00_led *led,
301                                enum led_type type)
302 {
303         led->rt2x00dev = rt2x00dev;
304         led->type = type;
305         led->led_dev.brightness_set = rt2500usb_brightness_set;
306         led->led_dev.blink_set = rt2500usb_blink_set;
307         led->flags = LED_INITIALIZED;
308 }
309 #endif /* CONFIG_RT2X00_LIB_LEDS */
310
311 /*
312  * Configuration handlers.
313  */
314
315 /*
316  * rt2500usb does not differentiate between shared and pairwise
317  * keys, so we should use the same function for both key types.
318  */
319 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
320                                 struct rt2x00lib_crypto *crypto,
321                                 struct ieee80211_key_conf *key)
322 {
323         u32 mask;
324         u16 reg;
325         enum cipher curr_cipher;
326
327         if (crypto->cmd == SET_KEY) {
328                 /*
329                  * Disallow to set WEP key other than with index 0,
330                  * it is known that not work at least on some hardware.
331                  * SW crypto will be used in that case.
332                  */
333                 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
334                      key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
335                     key->keyidx != 0)
336                         return -EOPNOTSUPP;
337
338                 /*
339                  * Pairwise key will always be entry 0, but this
340                  * could collide with a shared key on the same
341                  * position...
342                  */
343                 mask = TXRX_CSR0_KEY_ID.bit_mask;
344
345                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
346                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
347                 reg &= mask;
348
349                 if (reg && reg == mask)
350                         return -ENOSPC;
351
352                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
353
354                 key->hw_key_idx += reg ? ffz(reg) : 0;
355                 /*
356                  * Hardware requires that all keys use the same cipher
357                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
358                  * If this is not the first key, compare the cipher with the
359                  * first one and fall back to SW crypto if not the same.
360                  */
361                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
362                         return -EOPNOTSUPP;
363
364                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
365                                               crypto->key, sizeof(crypto->key));
366
367                 /*
368                  * The driver does not support the IV/EIV generation
369                  * in hardware. However it demands the data to be provided
370                  * both separately as well as inside the frame.
371                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
372                  * to ensure rt2x00lib will not strip the data from the
373                  * frame after the copy, now we must tell mac80211
374                  * to generate the IV/EIV data.
375                  */
376                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
377                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
378         }
379
380         /*
381          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
382          * a particular key is valid.
383          */
384         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
385         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
386         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
387
388         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
389         if (crypto->cmd == SET_KEY)
390                 mask |= 1 << key->hw_key_idx;
391         else if (crypto->cmd == DISABLE_KEY)
392                 mask &= ~(1 << key->hw_key_idx);
393         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
394         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
395
396         return 0;
397 }
398
399 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
400                                     const unsigned int filter_flags)
401 {
402         u16 reg;
403
404         /*
405          * Start configuration steps.
406          * Note that the version error will always be dropped
407          * and broadcast frames will always be accepted since
408          * there is no filter for it at this time.
409          */
410         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
411         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
412                            !(filter_flags & FIF_FCSFAIL));
413         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
414                            !(filter_flags & FIF_PLCPFAIL));
415         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
416                            !(filter_flags & FIF_CONTROL));
417         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
418                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
419         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
420                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
421                            !rt2x00dev->intf_ap_count);
422         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
423         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
424                            !(filter_flags & FIF_ALLMULTI));
425         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
426         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
427 }
428
429 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
430                                   struct rt2x00_intf *intf,
431                                   struct rt2x00intf_conf *conf,
432                                   const unsigned int flags)
433 {
434         unsigned int bcn_preload;
435         u16 reg;
436
437         if (flags & CONFIG_UPDATE_TYPE) {
438                 /*
439                  * Enable beacon config
440                  */
441                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
442                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
443                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
444                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
445                                    2 * (conf->type != NL80211_IFTYPE_STATION));
446                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
447
448                 /*
449                  * Enable synchronisation.
450                  */
451                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
452                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
453                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
454
455                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
456                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
457                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
458         }
459
460         if (flags & CONFIG_UPDATE_MAC)
461                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
462                                               (3 * sizeof(__le16)));
463
464         if (flags & CONFIG_UPDATE_BSSID)
465                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
466                                               (3 * sizeof(__le16)));
467 }
468
469 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
470                                  struct rt2x00lib_erp *erp,
471                                  u32 changed)
472 {
473         u16 reg;
474
475         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
476                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
477                 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
478                                    !!erp->short_preamble);
479                 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
480         }
481
482         if (changed & BSS_CHANGED_BASIC_RATES)
483                 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
484                                          erp->basic_rates);
485
486         if (changed & BSS_CHANGED_BEACON_INT) {
487                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
488                 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
489                                    erp->beacon_int * 4);
490                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
491         }
492
493         if (changed & BSS_CHANGED_ERP_SLOT) {
494                 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
495                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
496                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
497         }
498 }
499
500 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
501                                  struct antenna_setup *ant)
502 {
503         u8 r2;
504         u8 r14;
505         u16 csr5;
506         u16 csr6;
507
508         /*
509          * We should never come here because rt2x00lib is supposed
510          * to catch this and send us the correct antenna explicitely.
511          */
512         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
513                ant->tx == ANTENNA_SW_DIVERSITY);
514
515         r2 = rt2500usb_bbp_read(rt2x00dev, 2);
516         r14 = rt2500usb_bbp_read(rt2x00dev, 14);
517         csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
518         csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
519
520         /*
521          * Configure the TX antenna.
522          */
523         switch (ant->tx) {
524         case ANTENNA_HW_DIVERSITY:
525                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
526                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
527                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
528                 break;
529         case ANTENNA_A:
530                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
531                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
532                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
533                 break;
534         case ANTENNA_B:
535         default:
536                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
537                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
538                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
539                 break;
540         }
541
542         /*
543          * Configure the RX antenna.
544          */
545         switch (ant->rx) {
546         case ANTENNA_HW_DIVERSITY:
547                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
548                 break;
549         case ANTENNA_A:
550                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
551                 break;
552         case ANTENNA_B:
553         default:
554                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
555                 break;
556         }
557
558         /*
559          * RT2525E and RT5222 need to flip TX I/Q
560          */
561         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
562                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
563                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
564                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
565
566                 /*
567                  * RT2525E does not need RX I/Q Flip.
568                  */
569                 if (rt2x00_rf(rt2x00dev, RF2525E))
570                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
571         } else {
572                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
573                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
574         }
575
576         rt2500usb_bbp_write(rt2x00dev, 2, r2);
577         rt2500usb_bbp_write(rt2x00dev, 14, r14);
578         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
579         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
580 }
581
582 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
583                                      struct rf_channel *rf, const int txpower)
584 {
585         /*
586          * Set TXpower.
587          */
588         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
589
590         /*
591          * For RT2525E we should first set the channel to half band higher.
592          */
593         if (rt2x00_rf(rt2x00dev, RF2525E)) {
594                 static const u32 vals[] = {
595                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
596                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
597                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
598                         0x00000902, 0x00000906
599                 };
600
601                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
602                 if (rf->rf4)
603                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
604         }
605
606         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
607         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
608         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
609         if (rf->rf4)
610                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
611 }
612
613 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
614                                      const int txpower)
615 {
616         u32 rf3;
617
618         rf3 = rt2x00_rf_read(rt2x00dev, 3);
619         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
620         rt2500usb_rf_write(rt2x00dev, 3, rf3);
621 }
622
623 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
624                                 struct rt2x00lib_conf *libconf)
625 {
626         enum dev_state state =
627             (libconf->conf->flags & IEEE80211_CONF_PS) ?
628                 STATE_SLEEP : STATE_AWAKE;
629         u16 reg;
630
631         if (state == STATE_SLEEP) {
632                 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
633                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
634                                    rt2x00dev->beacon_int - 20);
635                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
636                                    libconf->conf->listen_interval - 1);
637
638                 /* We must first disable autowake before it can be enabled */
639                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
640                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
641
642                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
643                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
644         } else {
645                 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
646                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
647                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
648         }
649
650         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
651 }
652
653 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
654                              struct rt2x00lib_conf *libconf,
655                              const unsigned int flags)
656 {
657         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
658                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
659                                          libconf->conf->power_level);
660         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
661             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
662                 rt2500usb_config_txpower(rt2x00dev,
663                                          libconf->conf->power_level);
664         if (flags & IEEE80211_CONF_CHANGE_PS)
665                 rt2500usb_config_ps(rt2x00dev, libconf);
666 }
667
668 /*
669  * Link tuning
670  */
671 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
672                                  struct link_qual *qual)
673 {
674         u16 reg;
675
676         /*
677          * Update FCS error count from register.
678          */
679         reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
680         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
681
682         /*
683          * Update False CCA count from register.
684          */
685         reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
686         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
687 }
688
689 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
690                                   struct link_qual *qual)
691 {
692         u16 eeprom;
693         u16 value;
694
695         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
696         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
697         rt2500usb_bbp_write(rt2x00dev, 24, value);
698
699         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
700         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
701         rt2500usb_bbp_write(rt2x00dev, 25, value);
702
703         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
704         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
705         rt2500usb_bbp_write(rt2x00dev, 61, value);
706
707         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
708         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
709         rt2500usb_bbp_write(rt2x00dev, 17, value);
710
711         qual->vgc_level = value;
712 }
713
714 /*
715  * Queue handlers.
716  */
717 static void rt2500usb_start_queue(struct data_queue *queue)
718 {
719         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
720         u16 reg;
721
722         switch (queue->qid) {
723         case QID_RX:
724                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
725                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
726                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
727                 break;
728         case QID_BEACON:
729                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
730                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
731                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
732                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
733                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
734                 break;
735         default:
736                 break;
737         }
738 }
739
740 static void rt2500usb_stop_queue(struct data_queue *queue)
741 {
742         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
743         u16 reg;
744
745         switch (queue->qid) {
746         case QID_RX:
747                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
748                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
749                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
750                 break;
751         case QID_BEACON:
752                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
753                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
754                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
755                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
756                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
757                 break;
758         default:
759                 break;
760         }
761 }
762
763 /*
764  * Initialization functions.
765  */
766 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
767 {
768         u16 reg;
769
770         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
771                                     USB_MODE_TEST, REGISTER_TIMEOUT);
772         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
773                                     0x00f0, REGISTER_TIMEOUT);
774
775         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
776         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
777         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
778
779         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
780         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
781
782         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
783         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
784         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
785         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
786         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
787
788         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
789         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
790         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
791         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
792         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
793
794         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
795         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
796         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
797         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
798         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
799         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
800
801         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
802         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
803         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
804         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
805         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
806         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
807
808         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
809         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
810         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
811         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
812         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
813         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
814
815         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
816         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
817         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
818         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
819         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
820         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
821
822         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
823         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
824         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
825         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
826         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
827         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
828
829         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
830         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
831
832         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
833                 return -EBUSY;
834
835         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
836         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
837         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
838         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
839         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
840
841         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
842                 reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
843                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
844         } else {
845                 reg = 0;
846                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
847                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
848         }
849         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
850
851         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
852         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
853         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
854         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
855
856         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
857         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
858                            rt2x00dev->rx->data_size);
859         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
860
861         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
862         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
863         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
864         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
865         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
866
867         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
868         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
869         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
870
871         reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
872         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
873         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
874
875         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
876         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
877         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
878
879         return 0;
880 }
881
882 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
883 {
884         unsigned int i;
885         u8 value;
886
887         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
888                 value = rt2500usb_bbp_read(rt2x00dev, 0);
889                 if ((value != 0xff) && (value != 0x00))
890                         return 0;
891                 udelay(REGISTER_BUSY_DELAY);
892         }
893
894         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
895         return -EACCES;
896 }
897
898 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
899 {
900         unsigned int i;
901         u16 eeprom;
902         u8 value;
903         u8 reg_id;
904
905         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
906                 return -EACCES;
907
908         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
909         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
910         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
911         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
912         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
913         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
914         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
915         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
916         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
917         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
918         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
919         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
920         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
921         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
922         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
923         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
924         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
925         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
926         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
927         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
928         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
929         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
930         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
931         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
932         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
933         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
934         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
935         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
936         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
937         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
938         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
939
940         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
941                 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
942
943                 if (eeprom != 0xffff && eeprom != 0x0000) {
944                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
945                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
946                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
947                 }
948         }
949
950         return 0;
951 }
952
953 /*
954  * Device state switch handlers.
955  */
956 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
957 {
958         /*
959          * Initialize all registers.
960          */
961         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
962                      rt2500usb_init_bbp(rt2x00dev)))
963                 return -EIO;
964
965         return 0;
966 }
967
968 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
969 {
970         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
971         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
972
973         /*
974          * Disable synchronisation.
975          */
976         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
977
978         rt2x00usb_disable_radio(rt2x00dev);
979 }
980
981 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
982                                enum dev_state state)
983 {
984         u16 reg;
985         u16 reg2;
986         unsigned int i;
987         char put_to_sleep;
988         char bbp_state;
989         char rf_state;
990
991         put_to_sleep = (state != STATE_AWAKE);
992
993         reg = 0;
994         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
995         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
996         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
997         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
998         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
999         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1000
1001         /*
1002          * Device is not guaranteed to be in the requested state yet.
1003          * We must wait until the register indicates that the
1004          * device has entered the correct state.
1005          */
1006         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1007                 reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
1008                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1009                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1010                 if (bbp_state == state && rf_state == state)
1011                         return 0;
1012                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1013                 msleep(30);
1014         }
1015
1016         return -EBUSY;
1017 }
1018
1019 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1020                                       enum dev_state state)
1021 {
1022         int retval = 0;
1023
1024         switch (state) {
1025         case STATE_RADIO_ON:
1026                 retval = rt2500usb_enable_radio(rt2x00dev);
1027                 break;
1028         case STATE_RADIO_OFF:
1029                 rt2500usb_disable_radio(rt2x00dev);
1030                 break;
1031         case STATE_RADIO_IRQ_ON:
1032         case STATE_RADIO_IRQ_OFF:
1033                 /* No support, but no error either */
1034                 break;
1035         case STATE_DEEP_SLEEP:
1036         case STATE_SLEEP:
1037         case STATE_STANDBY:
1038         case STATE_AWAKE:
1039                 retval = rt2500usb_set_state(rt2x00dev, state);
1040                 break;
1041         default:
1042                 retval = -ENOTSUPP;
1043                 break;
1044         }
1045
1046         if (unlikely(retval))
1047                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1048                            state, retval);
1049
1050         return retval;
1051 }
1052
1053 /*
1054  * TX descriptor initialization
1055  */
1056 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1057                                     struct txentry_desc *txdesc)
1058 {
1059         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1060         __le32 *txd = (__le32 *) entry->skb->data;
1061         u32 word;
1062
1063         /*
1064          * Start writing the descriptor words.
1065          */
1066         word = rt2x00_desc_read(txd, 0);
1067         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1068         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1069                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1070         rt2x00_set_field32(&word, TXD_W0_ACK,
1071                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1072         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1073                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1074         rt2x00_set_field32(&word, TXD_W0_OFDM,
1075                            (txdesc->rate_mode == RATE_MODE_OFDM));
1076         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1077                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1078         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1079         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1080         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1081         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1082         rt2x00_desc_write(txd, 0, word);
1083
1084         word = rt2x00_desc_read(txd, 1);
1085         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1086         rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1087         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1088         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1089         rt2x00_desc_write(txd, 1, word);
1090
1091         word = rt2x00_desc_read(txd, 2);
1092         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1093         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1094         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1095                            txdesc->u.plcp.length_low);
1096         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1097                            txdesc->u.plcp.length_high);
1098         rt2x00_desc_write(txd, 2, word);
1099
1100         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1101                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1102                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1103         }
1104
1105         /*
1106          * Register descriptor details in skb frame descriptor.
1107          */
1108         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1109         skbdesc->desc = txd;
1110         skbdesc->desc_len = TXD_DESC_SIZE;
1111 }
1112
1113 /*
1114  * TX data initialization
1115  */
1116 static void rt2500usb_beacondone(struct urb *urb);
1117
1118 static void rt2500usb_write_beacon(struct queue_entry *entry,
1119                                    struct txentry_desc *txdesc)
1120 {
1121         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1122         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1123         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1124         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1125         int length;
1126         u16 reg, reg0;
1127
1128         /*
1129          * Disable beaconing while we are reloading the beacon data,
1130          * otherwise we might be sending out invalid data.
1131          */
1132         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
1133         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1134         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1135
1136         /*
1137          * Add space for the descriptor in front of the skb.
1138          */
1139         skb_push(entry->skb, TXD_DESC_SIZE);
1140         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1141
1142         /*
1143          * Write the TX descriptor for the beacon.
1144          */
1145         rt2500usb_write_tx_desc(entry, txdesc);
1146
1147         /*
1148          * Dump beacon to userspace through debugfs.
1149          */
1150         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1151
1152         /*
1153          * USB devices cannot blindly pass the skb->len as the
1154          * length of the data to usb_fill_bulk_urb. Pass the skb
1155          * to the driver to determine what the length should be.
1156          */
1157         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1158
1159         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1160                           entry->skb->data, length, rt2500usb_beacondone,
1161                           entry);
1162
1163         /*
1164          * Second we need to create the guardian byte.
1165          * We only need a single byte, so lets recycle
1166          * the 'flags' field we are not using for beacons.
1167          */
1168         bcn_priv->guardian_data = 0;
1169         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1170                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1171                           entry);
1172
1173         /*
1174          * Send out the guardian byte.
1175          */
1176         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1177
1178         /*
1179          * Enable beaconing again.
1180          */
1181         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1182         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1183         reg0 = reg;
1184         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1185         /*
1186          * Beacon generation will fail initially.
1187          * To prevent this we need to change the TXRX_CSR19
1188          * register several times (reg0 is the same as reg
1189          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1190          * and 1 in reg).
1191          */
1192         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1193         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1194         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1195         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1196         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1197 }
1198
1199 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1200 {
1201         int length;
1202
1203         /*
1204          * The length _must_ be a multiple of 2,
1205          * but it must _not_ be a multiple of the USB packet size.
1206          */
1207         length = roundup(entry->skb->len, 2);
1208         length += (2 * !(length % entry->queue->usb_maxpacket));
1209
1210         return length;
1211 }
1212
1213 /*
1214  * RX control handlers
1215  */
1216 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1217                                   struct rxdone_entry_desc *rxdesc)
1218 {
1219         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1220         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1221         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1222         __le32 *rxd =
1223             (__le32 *)(entry->skb->data +
1224                        (entry_priv->urb->actual_length -
1225                         entry->queue->desc_size));
1226         u32 word0;
1227         u32 word1;
1228
1229         /*
1230          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1231          * frame data in rt2x00usb.
1232          */
1233         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1234         rxd = (__le32 *)skbdesc->desc;
1235
1236         /*
1237          * It is now safe to read the descriptor on all architectures.
1238          */
1239         word0 = rt2x00_desc_read(rxd, 0);
1240         word1 = rt2x00_desc_read(rxd, 1);
1241
1242         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1243                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1244         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1245                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1246
1247         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1248         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1249                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1250
1251         if (rxdesc->cipher != CIPHER_NONE) {
1252                 rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1253                 rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1254                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1255
1256                 /* ICV is located at the end of frame */
1257
1258                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1259                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1260                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1261                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1262                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1263         }
1264
1265         /*
1266          * Obtain the status about this packet.
1267          * When frame was received with an OFDM bitrate,
1268          * the signal is the PLCP value. If it was received with
1269          * a CCK bitrate the signal is the rate in 100kbit/s.
1270          */
1271         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1272         rxdesc->rssi =
1273             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1274         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1275
1276         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1277                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1278         else
1279                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1280         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1281                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1282
1283         /*
1284          * Adjust the skb memory window to the frame boundaries.
1285          */
1286         skb_trim(entry->skb, rxdesc->size);
1287 }
1288
1289 /*
1290  * Interrupt functions.
1291  */
1292 static void rt2500usb_beacondone(struct urb *urb)
1293 {
1294         struct queue_entry *entry = (struct queue_entry *)urb->context;
1295         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1296
1297         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1298                 return;
1299
1300         /*
1301          * Check if this was the guardian beacon,
1302          * if that was the case we need to send the real beacon now.
1303          * Otherwise we should free the sk_buffer, the device
1304          * should be doing the rest of the work now.
1305          */
1306         if (bcn_priv->guardian_urb == urb) {
1307                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1308         } else if (bcn_priv->urb == urb) {
1309                 dev_kfree_skb(entry->skb);
1310                 entry->skb = NULL;
1311         }
1312 }
1313
1314 /*
1315  * Device probe functions.
1316  */
1317 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1318 {
1319         u16 word;
1320         u8 *mac;
1321         u8 bbp;
1322
1323         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1324
1325         /*
1326          * Start validation of the data that has been read.
1327          */
1328         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1329         rt2x00lib_set_mac_address(rt2x00dev, mac);
1330
1331         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1332         if (word == 0xffff) {
1333                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1334                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1335                                    ANTENNA_SW_DIVERSITY);
1336                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1337                                    ANTENNA_SW_DIVERSITY);
1338                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1339                                    LED_MODE_DEFAULT);
1340                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1341                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1342                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1343                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1344                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1345         }
1346
1347         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1348         if (word == 0xffff) {
1349                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1350                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1351                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1352                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1353                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1354         }
1355
1356         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1357         if (word == 0xffff) {
1358                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1359                                    DEFAULT_RSSI_OFFSET);
1360                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1361                 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1362                                   word);
1363         }
1364
1365         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE);
1366         if (word == 0xffff) {
1367                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1368                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1369                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1370         }
1371
1372         /*
1373          * Switch lower vgc bound to current BBP R17 value,
1374          * lower the value a bit for better quality.
1375          */
1376         bbp = rt2500usb_bbp_read(rt2x00dev, 17);
1377         bbp -= 6;
1378
1379         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
1380         if (word == 0xffff) {
1381                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1382                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1383                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1384                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1385         } else {
1386                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1387                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1388         }
1389
1390         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17);
1391         if (word == 0xffff) {
1392                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1393                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1394                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1395                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1396         }
1397
1398         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
1399         if (word == 0xffff) {
1400                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1401                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1402                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1403                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1404         }
1405
1406         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
1407         if (word == 0xffff) {
1408                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1409                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1410                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1411                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1412         }
1413
1414         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
1415         if (word == 0xffff) {
1416                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1417                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1418                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1419                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1420         }
1421
1422         return 0;
1423 }
1424
1425 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1426 {
1427         u16 reg;
1428         u16 value;
1429         u16 eeprom;
1430
1431         /*
1432          * Read EEPROM word for configuration.
1433          */
1434         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1435
1436         /*
1437          * Identify RF chipset.
1438          */
1439         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1440         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
1441         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1442
1443         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1444                 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1445                 return -ENODEV;
1446         }
1447
1448         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1449             !rt2x00_rf(rt2x00dev, RF2523) &&
1450             !rt2x00_rf(rt2x00dev, RF2524) &&
1451             !rt2x00_rf(rt2x00dev, RF2525) &&
1452             !rt2x00_rf(rt2x00dev, RF2525E) &&
1453             !rt2x00_rf(rt2x00dev, RF5222)) {
1454                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1455                 return -ENODEV;
1456         }
1457
1458         /*
1459          * Identify default antenna configuration.
1460          */
1461         rt2x00dev->default_ant.tx =
1462             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1463         rt2x00dev->default_ant.rx =
1464             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1465
1466         /*
1467          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1468          * I am not 100% sure about this, but the legacy drivers do not
1469          * indicate antenna swapping in software is required when
1470          * diversity is enabled.
1471          */
1472         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1473                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1474         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1475                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1476
1477         /*
1478          * Store led mode, for correct led behaviour.
1479          */
1480 #ifdef CONFIG_RT2X00_LIB_LEDS
1481         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1482
1483         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1484         if (value == LED_MODE_TXRX_ACTIVITY ||
1485             value == LED_MODE_DEFAULT ||
1486             value == LED_MODE_ASUS)
1487                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1488                                    LED_TYPE_ACTIVITY);
1489 #endif /* CONFIG_RT2X00_LIB_LEDS */
1490
1491         /*
1492          * Detect if this device has an hardware controlled radio.
1493          */
1494         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1495                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1496
1497         /*
1498          * Read the RSSI <-> dBm offset information.
1499          */
1500         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1501         rt2x00dev->rssi_offset =
1502             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1503
1504         return 0;
1505 }
1506
1507 /*
1508  * RF value list for RF2522
1509  * Supports: 2.4 GHz
1510  */
1511 static const struct rf_channel rf_vals_bg_2522[] = {
1512         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1513         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1514         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1515         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1516         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1517         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1518         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1519         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1520         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1521         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1522         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1523         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1524         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1525         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1526 };
1527
1528 /*
1529  * RF value list for RF2523
1530  * Supports: 2.4 GHz
1531  */
1532 static const struct rf_channel rf_vals_bg_2523[] = {
1533         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1534         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1535         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1536         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1537         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1538         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1539         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1540         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1541         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1542         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1543         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1544         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1545         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1546         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1547 };
1548
1549 /*
1550  * RF value list for RF2524
1551  * Supports: 2.4 GHz
1552  */
1553 static const struct rf_channel rf_vals_bg_2524[] = {
1554         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1555         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1556         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1557         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1558         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1559         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1560         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1561         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1562         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1563         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1564         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1565         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1566         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1567         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1568 };
1569
1570 /*
1571  * RF value list for RF2525
1572  * Supports: 2.4 GHz
1573  */
1574 static const struct rf_channel rf_vals_bg_2525[] = {
1575         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1576         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1577         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1578         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1579         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1580         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1581         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1582         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1583         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1584         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1585         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1586         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1587         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1588         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1589 };
1590
1591 /*
1592  * RF value list for RF2525e
1593  * Supports: 2.4 GHz
1594  */
1595 static const struct rf_channel rf_vals_bg_2525e[] = {
1596         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1597         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1598         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1599         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1600         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1601         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1602         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1603         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1604         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1605         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1606         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1607         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1608         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1609         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1610 };
1611
1612 /*
1613  * RF value list for RF5222
1614  * Supports: 2.4 GHz & 5.2 GHz
1615  */
1616 static const struct rf_channel rf_vals_5222[] = {
1617         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1618         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1619         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1620         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1621         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1622         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1623         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1624         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1625         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1626         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1627         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1628         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1629         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1630         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1631
1632         /* 802.11 UNI / HyperLan 2 */
1633         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1634         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1635         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1636         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1637         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1638         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1639         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1640         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1641
1642         /* 802.11 HyperLan 2 */
1643         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1644         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1645         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1646         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1647         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1648         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1649         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1650         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1651         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1652         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1653
1654         /* 802.11 UNII */
1655         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1656         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1657         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1658         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1659         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1660 };
1661
1662 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1663 {
1664         struct hw_mode_spec *spec = &rt2x00dev->spec;
1665         struct channel_info *info;
1666         char *tx_power;
1667         unsigned int i;
1668
1669         /*
1670          * Initialize all hw fields.
1671          *
1672          * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1673          * capable of sending the buffered frames out after the DTIM
1674          * transmission using rt2x00lib_beacondone. This will send out
1675          * multicast and broadcast traffic immediately instead of buffering it
1676          * infinitly and thus dropping it after some time.
1677          */
1678         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1679         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1680         ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1681         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1682
1683         /*
1684          * Disable powersaving as default.
1685          */
1686         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1687
1688         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1689         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1690                                 rt2x00_eeprom_addr(rt2x00dev,
1691                                                    EEPROM_MAC_ADDR_0));
1692
1693         /*
1694          * Initialize hw_mode information.
1695          */
1696         spec->supported_bands = SUPPORT_BAND_2GHZ;
1697         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1698
1699         if (rt2x00_rf(rt2x00dev, RF2522)) {
1700                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1701                 spec->channels = rf_vals_bg_2522;
1702         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1703                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1704                 spec->channels = rf_vals_bg_2523;
1705         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1706                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1707                 spec->channels = rf_vals_bg_2524;
1708         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1709                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1710                 spec->channels = rf_vals_bg_2525;
1711         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1712                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1713                 spec->channels = rf_vals_bg_2525e;
1714         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1715                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1716                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1717                 spec->channels = rf_vals_5222;
1718         }
1719
1720         /*
1721          * Create channel information array
1722          */
1723         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1724         if (!info)
1725                 return -ENOMEM;
1726
1727         spec->channels_info = info;
1728
1729         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1730         for (i = 0; i < 14; i++) {
1731                 info[i].max_power = MAX_TXPOWER;
1732                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1733         }
1734
1735         if (spec->num_channels > 14) {
1736                 for (i = 14; i < spec->num_channels; i++) {
1737                         info[i].max_power = MAX_TXPOWER;
1738                         info[i].default_power1 = DEFAULT_TXPOWER;
1739                 }
1740         }
1741
1742         return 0;
1743 }
1744
1745 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1746 {
1747         int retval;
1748         u16 reg;
1749
1750         /*
1751          * Allocate eeprom data.
1752          */
1753         retval = rt2500usb_validate_eeprom(rt2x00dev);
1754         if (retval)
1755                 return retval;
1756
1757         retval = rt2500usb_init_eeprom(rt2x00dev);
1758         if (retval)
1759                 return retval;
1760
1761         /*
1762          * Enable rfkill polling by setting GPIO direction of the
1763          * rfkill switch GPIO pin correctly.
1764          */
1765         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
1766         rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1767         rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1768
1769         /*
1770          * Initialize hw specifications.
1771          */
1772         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1773         if (retval)
1774                 return retval;
1775
1776         /*
1777          * This device requires the atim queue
1778          */
1779         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1780         __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1781         if (!modparam_nohwcrypt) {
1782                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1783                 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1784         }
1785         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1786         __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1787
1788         /*
1789          * Set the rssi offset.
1790          */
1791         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1792
1793         return 0;
1794 }
1795
1796 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1797         .tx                     = rt2x00mac_tx,
1798         .start                  = rt2x00mac_start,
1799         .stop                   = rt2x00mac_stop,
1800         .add_interface          = rt2x00mac_add_interface,
1801         .remove_interface       = rt2x00mac_remove_interface,
1802         .config                 = rt2x00mac_config,
1803         .configure_filter       = rt2x00mac_configure_filter,
1804         .set_tim                = rt2x00mac_set_tim,
1805         .set_key                = rt2x00mac_set_key,
1806         .sw_scan_start          = rt2x00mac_sw_scan_start,
1807         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1808         .get_stats              = rt2x00mac_get_stats,
1809         .bss_info_changed       = rt2x00mac_bss_info_changed,
1810         .conf_tx                = rt2x00mac_conf_tx,
1811         .rfkill_poll            = rt2x00mac_rfkill_poll,
1812         .flush                  = rt2x00mac_flush,
1813         .set_antenna            = rt2x00mac_set_antenna,
1814         .get_antenna            = rt2x00mac_get_antenna,
1815         .get_ringparam          = rt2x00mac_get_ringparam,
1816         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1817 };
1818
1819 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1820         .probe_hw               = rt2500usb_probe_hw,
1821         .initialize             = rt2x00usb_initialize,
1822         .uninitialize           = rt2x00usb_uninitialize,
1823         .clear_entry            = rt2x00usb_clear_entry,
1824         .set_device_state       = rt2500usb_set_device_state,
1825         .rfkill_poll            = rt2500usb_rfkill_poll,
1826         .link_stats             = rt2500usb_link_stats,
1827         .reset_tuner            = rt2500usb_reset_tuner,
1828         .watchdog               = rt2x00usb_watchdog,
1829         .start_queue            = rt2500usb_start_queue,
1830         .kick_queue             = rt2x00usb_kick_queue,
1831         .stop_queue             = rt2500usb_stop_queue,
1832         .flush_queue            = rt2x00usb_flush_queue,
1833         .write_tx_desc          = rt2500usb_write_tx_desc,
1834         .write_beacon           = rt2500usb_write_beacon,
1835         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1836         .fill_rxdone            = rt2500usb_fill_rxdone,
1837         .config_shared_key      = rt2500usb_config_key,
1838         .config_pairwise_key    = rt2500usb_config_key,
1839         .config_filter          = rt2500usb_config_filter,
1840         .config_intf            = rt2500usb_config_intf,
1841         .config_erp             = rt2500usb_config_erp,
1842         .config_ant             = rt2500usb_config_ant,
1843         .config                 = rt2500usb_config,
1844 };
1845
1846 static void rt2500usb_queue_init(struct data_queue *queue)
1847 {
1848         switch (queue->qid) {
1849         case QID_RX:
1850                 queue->limit = 32;
1851                 queue->data_size = DATA_FRAME_SIZE;
1852                 queue->desc_size = RXD_DESC_SIZE;
1853                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1854                 break;
1855
1856         case QID_AC_VO:
1857         case QID_AC_VI:
1858         case QID_AC_BE:
1859         case QID_AC_BK:
1860                 queue->limit = 32;
1861                 queue->data_size = DATA_FRAME_SIZE;
1862                 queue->desc_size = TXD_DESC_SIZE;
1863                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1864                 break;
1865
1866         case QID_BEACON:
1867                 queue->limit = 1;
1868                 queue->data_size = MGMT_FRAME_SIZE;
1869                 queue->desc_size = TXD_DESC_SIZE;
1870                 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1871                 break;
1872
1873         case QID_ATIM:
1874                 queue->limit = 8;
1875                 queue->data_size = DATA_FRAME_SIZE;
1876                 queue->desc_size = TXD_DESC_SIZE;
1877                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1878                 break;
1879
1880         default:
1881                 BUG();
1882                 break;
1883         }
1884 }
1885
1886 static const struct rt2x00_ops rt2500usb_ops = {
1887         .name                   = KBUILD_MODNAME,
1888         .max_ap_intf            = 1,
1889         .eeprom_size            = EEPROM_SIZE,
1890         .rf_size                = RF_SIZE,
1891         .tx_queues              = NUM_TX_QUEUES,
1892         .queue_init             = rt2500usb_queue_init,
1893         .lib                    = &rt2500usb_rt2x00_ops,
1894         .hw                     = &rt2500usb_mac80211_ops,
1895 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1896         .debugfs                = &rt2500usb_rt2x00debug,
1897 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1898 };
1899
1900 /*
1901  * rt2500usb module information.
1902  */
1903 static const struct usb_device_id rt2500usb_device_table[] = {
1904         /* ASUS */
1905         { USB_DEVICE(0x0b05, 0x1706) },
1906         { USB_DEVICE(0x0b05, 0x1707) },
1907         /* Belkin */
1908         { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1909         { USB_DEVICE(0x050d, 0x7051) },
1910         /* Cisco Systems */
1911         { USB_DEVICE(0x13b1, 0x000d) },
1912         { USB_DEVICE(0x13b1, 0x0011) },
1913         { USB_DEVICE(0x13b1, 0x001a) },
1914         /* Conceptronic */
1915         { USB_DEVICE(0x14b2, 0x3c02) },
1916         /* D-LINK */
1917         { USB_DEVICE(0x2001, 0x3c00) },
1918         /* Gigabyte */
1919         { USB_DEVICE(0x1044, 0x8001) },
1920         { USB_DEVICE(0x1044, 0x8007) },
1921         /* Hercules */
1922         { USB_DEVICE(0x06f8, 0xe000) },
1923         /* Melco */
1924         { USB_DEVICE(0x0411, 0x005e) },
1925         { USB_DEVICE(0x0411, 0x0066) },
1926         { USB_DEVICE(0x0411, 0x0067) },
1927         { USB_DEVICE(0x0411, 0x008b) },
1928         { USB_DEVICE(0x0411, 0x0097) },
1929         /* MSI */
1930         { USB_DEVICE(0x0db0, 0x6861) },
1931         { USB_DEVICE(0x0db0, 0x6865) },
1932         { USB_DEVICE(0x0db0, 0x6869) },
1933         /* Ralink */
1934         { USB_DEVICE(0x148f, 0x1706) },
1935         { USB_DEVICE(0x148f, 0x2570) },
1936         { USB_DEVICE(0x148f, 0x9020) },
1937         /* Sagem */
1938         { USB_DEVICE(0x079b, 0x004b) },
1939         /* Siemens */
1940         { USB_DEVICE(0x0681, 0x3c06) },
1941         /* SMC */
1942         { USB_DEVICE(0x0707, 0xee13) },
1943         /* Spairon */
1944         { USB_DEVICE(0x114b, 0x0110) },
1945         /* SURECOM */
1946         { USB_DEVICE(0x0769, 0x11f3) },
1947         /* Trust */
1948         { USB_DEVICE(0x0eb0, 0x9020) },
1949         /* VTech */
1950         { USB_DEVICE(0x0f88, 0x3012) },
1951         /* Zinwell */
1952         { USB_DEVICE(0x5a57, 0x0260) },
1953         { 0, }
1954 };
1955
1956 MODULE_AUTHOR(DRV_PROJECT);
1957 MODULE_VERSION(DRV_VERSION);
1958 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1959 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1960 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1961 MODULE_LICENSE("GPL");
1962
1963 static int rt2500usb_probe(struct usb_interface *usb_intf,
1964                            const struct usb_device_id *id)
1965 {
1966         return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1967 }
1968
1969 static struct usb_driver rt2500usb_driver = {
1970         .name           = KBUILD_MODNAME,
1971         .id_table       = rt2500usb_device_table,
1972         .probe          = rt2500usb_probe,
1973         .disconnect     = rt2x00usb_disconnect,
1974         .suspend        = rt2x00usb_suspend,
1975         .resume         = rt2x00usb_resume,
1976         .reset_resume   = rt2x00usb_resume,
1977         .disable_hub_initiated_lpm = 1,
1978 };
1979
1980 module_usb_driver(rt2500usb_driver);