Merge tag 'jfs-4.18' of git://github.com/kleikamp/linux-shaggy
[linux-2.6-microblaze.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <linux/rtnetlink.h>
37 #include <linux/netpoll.h>
38
39 #include <net/arp.h>
40 #include <net/route.h>
41 #include <net/sock.h>
42 #include <net/pkt_sched.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45
46 #include "hyperv_net.h"
47
48 #define RING_SIZE_MIN   64
49 #define RETRY_US_LO     5000
50 #define RETRY_US_HI     10000
51 #define RETRY_MAX       2000    /* >10 sec */
52
53 #define LINKCHANGE_INT (2 * HZ)
54 #define VF_TAKEOVER_INT (HZ / 10)
55
56 static unsigned int ring_size __ro_after_init = 128;
57 module_param(ring_size, uint, 0444);
58 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
59 unsigned int netvsc_ring_bytes __ro_after_init;
60
61 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
62                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
63                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
64                                 NETIF_MSG_TX_ERR;
65
66 static int debug = -1;
67 module_param(debug, int, 0444);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 static LIST_HEAD(netvsc_dev_list);
71
72 static void netvsc_change_rx_flags(struct net_device *net, int change)
73 {
74         struct net_device_context *ndev_ctx = netdev_priv(net);
75         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
76         int inc;
77
78         if (!vf_netdev)
79                 return;
80
81         if (change & IFF_PROMISC) {
82                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
83                 dev_set_promiscuity(vf_netdev, inc);
84         }
85
86         if (change & IFF_ALLMULTI) {
87                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
88                 dev_set_allmulti(vf_netdev, inc);
89         }
90 }
91
92 static void netvsc_set_rx_mode(struct net_device *net)
93 {
94         struct net_device_context *ndev_ctx = netdev_priv(net);
95         struct net_device *vf_netdev;
96         struct netvsc_device *nvdev;
97
98         rcu_read_lock();
99         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
100         if (vf_netdev) {
101                 dev_uc_sync(vf_netdev, net);
102                 dev_mc_sync(vf_netdev, net);
103         }
104
105         nvdev = rcu_dereference(ndev_ctx->nvdev);
106         if (nvdev)
107                 rndis_filter_update(nvdev);
108         rcu_read_unlock();
109 }
110
111 static int netvsc_open(struct net_device *net)
112 {
113         struct net_device_context *ndev_ctx = netdev_priv(net);
114         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116         struct rndis_device *rdev;
117         int ret = 0;
118
119         netif_carrier_off(net);
120
121         /* Open up the device */
122         ret = rndis_filter_open(nvdev);
123         if (ret != 0) {
124                 netdev_err(net, "unable to open device (ret %d).\n", ret);
125                 return ret;
126         }
127
128         rdev = nvdev->extension;
129         if (!rdev->link_state) {
130                 netif_carrier_on(net);
131                 netif_tx_wake_all_queues(net);
132         }
133
134         if (vf_netdev) {
135                 /* Setting synthetic device up transparently sets
136                  * slave as up. If open fails, then slave will be
137                  * still be offline (and not used).
138                  */
139                 ret = dev_open(vf_netdev);
140                 if (ret)
141                         netdev_warn(net,
142                                     "unable to open slave: %s: %d\n",
143                                     vf_netdev->name, ret);
144         }
145         return 0;
146 }
147
148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
149 {
150         unsigned int retry = 0;
151         int i;
152
153         /* Ensure pending bytes in ring are read */
154         for (;;) {
155                 u32 aread = 0;
156
157                 for (i = 0; i < nvdev->num_chn; i++) {
158                         struct vmbus_channel *chn
159                                 = nvdev->chan_table[i].channel;
160
161                         if (!chn)
162                                 continue;
163
164                         /* make sure receive not running now */
165                         napi_synchronize(&nvdev->chan_table[i].napi);
166
167                         aread = hv_get_bytes_to_read(&chn->inbound);
168                         if (aread)
169                                 break;
170
171                         aread = hv_get_bytes_to_read(&chn->outbound);
172                         if (aread)
173                                 break;
174                 }
175
176                 if (aread == 0)
177                         return 0;
178
179                 if (++retry > RETRY_MAX)
180                         return -ETIMEDOUT;
181
182                 usleep_range(RETRY_US_LO, RETRY_US_HI);
183         }
184 }
185
186 static int netvsc_close(struct net_device *net)
187 {
188         struct net_device_context *net_device_ctx = netdev_priv(net);
189         struct net_device *vf_netdev
190                 = rtnl_dereference(net_device_ctx->vf_netdev);
191         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
192         int ret;
193
194         netif_tx_disable(net);
195
196         /* No need to close rndis filter if it is removed already */
197         if (!nvdev)
198                 return 0;
199
200         ret = rndis_filter_close(nvdev);
201         if (ret != 0) {
202                 netdev_err(net, "unable to close device (ret %d).\n", ret);
203                 return ret;
204         }
205
206         ret = netvsc_wait_until_empty(nvdev);
207         if (ret)
208                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
209
210         if (vf_netdev)
211                 dev_close(vf_netdev);
212
213         return ret;
214 }
215
216 static inline void *init_ppi_data(struct rndis_message *msg,
217                                   u32 ppi_size, u32 pkt_type)
218 {
219         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
220         struct rndis_per_packet_info *ppi;
221
222         rndis_pkt->data_offset += ppi_size;
223         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
224                 + rndis_pkt->per_pkt_info_len;
225
226         ppi->size = ppi_size;
227         ppi->type = pkt_type;
228         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
229
230         rndis_pkt->per_pkt_info_len += ppi_size;
231
232         return ppi + 1;
233 }
234
235 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
236  * packets. We can use ethtool to change UDP hash level when necessary.
237  */
238 static inline u32 netvsc_get_hash(
239         struct sk_buff *skb,
240         const struct net_device_context *ndc)
241 {
242         struct flow_keys flow;
243         u32 hash, pkt_proto = 0;
244         static u32 hashrnd __read_mostly;
245
246         net_get_random_once(&hashrnd, sizeof(hashrnd));
247
248         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
249                 return 0;
250
251         switch (flow.basic.ip_proto) {
252         case IPPROTO_TCP:
253                 if (flow.basic.n_proto == htons(ETH_P_IP))
254                         pkt_proto = HV_TCP4_L4HASH;
255                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
256                         pkt_proto = HV_TCP6_L4HASH;
257
258                 break;
259
260         case IPPROTO_UDP:
261                 if (flow.basic.n_proto == htons(ETH_P_IP))
262                         pkt_proto = HV_UDP4_L4HASH;
263                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
264                         pkt_proto = HV_UDP6_L4HASH;
265
266                 break;
267         }
268
269         if (pkt_proto & ndc->l4_hash) {
270                 return skb_get_hash(skb);
271         } else {
272                 if (flow.basic.n_proto == htons(ETH_P_IP))
273                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
274                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
276                 else
277                         hash = 0;
278
279                 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
280         }
281
282         return hash;
283 }
284
285 static inline int netvsc_get_tx_queue(struct net_device *ndev,
286                                       struct sk_buff *skb, int old_idx)
287 {
288         const struct net_device_context *ndc = netdev_priv(ndev);
289         struct sock *sk = skb->sk;
290         int q_idx;
291
292         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
293                               (VRSS_SEND_TAB_SIZE - 1)];
294
295         /* If queue index changed record the new value */
296         if (q_idx != old_idx &&
297             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
298                 sk_tx_queue_set(sk, q_idx);
299
300         return q_idx;
301 }
302
303 /*
304  * Select queue for transmit.
305  *
306  * If a valid queue has already been assigned, then use that.
307  * Otherwise compute tx queue based on hash and the send table.
308  *
309  * This is basically similar to default (__netdev_pick_tx) with the added step
310  * of using the host send_table when no other queue has been assigned.
311  *
312  * TODO support XPS - but get_xps_queue not exported
313  */
314 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
315 {
316         int q_idx = sk_tx_queue_get(skb->sk);
317
318         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
319                 /* If forwarding a packet, we use the recorded queue when
320                  * available for better cache locality.
321                  */
322                 if (skb_rx_queue_recorded(skb))
323                         q_idx = skb_get_rx_queue(skb);
324                 else
325                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
326         }
327
328         return q_idx;
329 }
330
331 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
332                                void *accel_priv,
333                                select_queue_fallback_t fallback)
334 {
335         struct net_device_context *ndc = netdev_priv(ndev);
336         struct net_device *vf_netdev;
337         u16 txq;
338
339         rcu_read_lock();
340         vf_netdev = rcu_dereference(ndc->vf_netdev);
341         if (vf_netdev) {
342                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
343
344                 if (vf_ops->ndo_select_queue)
345                         txq = vf_ops->ndo_select_queue(vf_netdev, skb,
346                                                        accel_priv, fallback);
347                 else
348                         txq = fallback(vf_netdev, skb);
349
350                 /* Record the queue selected by VF so that it can be
351                  * used for common case where VF has more queues than
352                  * the synthetic device.
353                  */
354                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
355         } else {
356                 txq = netvsc_pick_tx(ndev, skb);
357         }
358         rcu_read_unlock();
359
360         while (unlikely(txq >= ndev->real_num_tx_queues))
361                 txq -= ndev->real_num_tx_queues;
362
363         return txq;
364 }
365
366 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
367                        struct hv_page_buffer *pb)
368 {
369         int j = 0;
370
371         /* Deal with compund pages by ignoring unused part
372          * of the page.
373          */
374         page += (offset >> PAGE_SHIFT);
375         offset &= ~PAGE_MASK;
376
377         while (len > 0) {
378                 unsigned long bytes;
379
380                 bytes = PAGE_SIZE - offset;
381                 if (bytes > len)
382                         bytes = len;
383                 pb[j].pfn = page_to_pfn(page);
384                 pb[j].offset = offset;
385                 pb[j].len = bytes;
386
387                 offset += bytes;
388                 len -= bytes;
389
390                 if (offset == PAGE_SIZE && len) {
391                         page++;
392                         offset = 0;
393                         j++;
394                 }
395         }
396
397         return j + 1;
398 }
399
400 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
401                            struct hv_netvsc_packet *packet,
402                            struct hv_page_buffer *pb)
403 {
404         u32 slots_used = 0;
405         char *data = skb->data;
406         int frags = skb_shinfo(skb)->nr_frags;
407         int i;
408
409         /* The packet is laid out thus:
410          * 1. hdr: RNDIS header and PPI
411          * 2. skb linear data
412          * 3. skb fragment data
413          */
414         slots_used += fill_pg_buf(virt_to_page(hdr),
415                                   offset_in_page(hdr),
416                                   len, &pb[slots_used]);
417
418         packet->rmsg_size = len;
419         packet->rmsg_pgcnt = slots_used;
420
421         slots_used += fill_pg_buf(virt_to_page(data),
422                                 offset_in_page(data),
423                                 skb_headlen(skb), &pb[slots_used]);
424
425         for (i = 0; i < frags; i++) {
426                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
427
428                 slots_used += fill_pg_buf(skb_frag_page(frag),
429                                         frag->page_offset,
430                                         skb_frag_size(frag), &pb[slots_used]);
431         }
432         return slots_used;
433 }
434
435 static int count_skb_frag_slots(struct sk_buff *skb)
436 {
437         int i, frags = skb_shinfo(skb)->nr_frags;
438         int pages = 0;
439
440         for (i = 0; i < frags; i++) {
441                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
442                 unsigned long size = skb_frag_size(frag);
443                 unsigned long offset = frag->page_offset;
444
445                 /* Skip unused frames from start of page */
446                 offset &= ~PAGE_MASK;
447                 pages += PFN_UP(offset + size);
448         }
449         return pages;
450 }
451
452 static int netvsc_get_slots(struct sk_buff *skb)
453 {
454         char *data = skb->data;
455         unsigned int offset = offset_in_page(data);
456         unsigned int len = skb_headlen(skb);
457         int slots;
458         int frag_slots;
459
460         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
461         frag_slots = count_skb_frag_slots(skb);
462         return slots + frag_slots;
463 }
464
465 static u32 net_checksum_info(struct sk_buff *skb)
466 {
467         if (skb->protocol == htons(ETH_P_IP)) {
468                 struct iphdr *ip = ip_hdr(skb);
469
470                 if (ip->protocol == IPPROTO_TCP)
471                         return TRANSPORT_INFO_IPV4_TCP;
472                 else if (ip->protocol == IPPROTO_UDP)
473                         return TRANSPORT_INFO_IPV4_UDP;
474         } else {
475                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
476
477                 if (ip6->nexthdr == IPPROTO_TCP)
478                         return TRANSPORT_INFO_IPV6_TCP;
479                 else if (ip6->nexthdr == IPPROTO_UDP)
480                         return TRANSPORT_INFO_IPV6_UDP;
481         }
482
483         return TRANSPORT_INFO_NOT_IP;
484 }
485
486 /* Send skb on the slave VF device. */
487 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
488                           struct sk_buff *skb)
489 {
490         struct net_device_context *ndev_ctx = netdev_priv(net);
491         unsigned int len = skb->len;
492         int rc;
493
494         skb->dev = vf_netdev;
495         skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
496
497         rc = dev_queue_xmit(skb);
498         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
499                 struct netvsc_vf_pcpu_stats *pcpu_stats
500                         = this_cpu_ptr(ndev_ctx->vf_stats);
501
502                 u64_stats_update_begin(&pcpu_stats->syncp);
503                 pcpu_stats->tx_packets++;
504                 pcpu_stats->tx_bytes += len;
505                 u64_stats_update_end(&pcpu_stats->syncp);
506         } else {
507                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
508         }
509
510         return rc;
511 }
512
513 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
514 {
515         struct net_device_context *net_device_ctx = netdev_priv(net);
516         struct hv_netvsc_packet *packet = NULL;
517         int ret;
518         unsigned int num_data_pgs;
519         struct rndis_message *rndis_msg;
520         struct net_device *vf_netdev;
521         u32 rndis_msg_size;
522         u32 hash;
523         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
524
525         /* if VF is present and up then redirect packets
526          * already called with rcu_read_lock_bh
527          */
528         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
529         if (vf_netdev && netif_running(vf_netdev) &&
530             !netpoll_tx_running(net))
531                 return netvsc_vf_xmit(net, vf_netdev, skb);
532
533         /* We will atmost need two pages to describe the rndis
534          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
535          * of pages in a single packet. If skb is scattered around
536          * more pages we try linearizing it.
537          */
538
539         num_data_pgs = netvsc_get_slots(skb) + 2;
540
541         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
542                 ++net_device_ctx->eth_stats.tx_scattered;
543
544                 if (skb_linearize(skb))
545                         goto no_memory;
546
547                 num_data_pgs = netvsc_get_slots(skb) + 2;
548                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
549                         ++net_device_ctx->eth_stats.tx_too_big;
550                         goto drop;
551                 }
552         }
553
554         /*
555          * Place the rndis header in the skb head room and
556          * the skb->cb will be used for hv_netvsc_packet
557          * structure.
558          */
559         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
560         if (ret)
561                 goto no_memory;
562
563         /* Use the skb control buffer for building up the packet */
564         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
565                         FIELD_SIZEOF(struct sk_buff, cb));
566         packet = (struct hv_netvsc_packet *)skb->cb;
567
568         packet->q_idx = skb_get_queue_mapping(skb);
569
570         packet->total_data_buflen = skb->len;
571         packet->total_bytes = skb->len;
572         packet->total_packets = 1;
573
574         rndis_msg = (struct rndis_message *)skb->head;
575
576         /* Add the rndis header */
577         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
578         rndis_msg->msg_len = packet->total_data_buflen;
579
580         rndis_msg->msg.pkt = (struct rndis_packet) {
581                 .data_offset = sizeof(struct rndis_packet),
582                 .data_len = packet->total_data_buflen,
583                 .per_pkt_info_offset = sizeof(struct rndis_packet),
584         };
585
586         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
587
588         hash = skb_get_hash_raw(skb);
589         if (hash != 0 && net->real_num_tx_queues > 1) {
590                 u32 *hash_info;
591
592                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
593                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
594                                           NBL_HASH_VALUE);
595                 *hash_info = hash;
596         }
597
598         if (skb_vlan_tag_present(skb)) {
599                 struct ndis_pkt_8021q_info *vlan;
600
601                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
602                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
603                                      IEEE_8021Q_INFO);
604
605                 vlan->value = 0;
606                 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
607                 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
608                                 VLAN_PRIO_SHIFT;
609         }
610
611         if (skb_is_gso(skb)) {
612                 struct ndis_tcp_lso_info *lso_info;
613
614                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
615                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
616                                          TCP_LARGESEND_PKTINFO);
617
618                 lso_info->value = 0;
619                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
620                 if (skb->protocol == htons(ETH_P_IP)) {
621                         lso_info->lso_v2_transmit.ip_version =
622                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
623                         ip_hdr(skb)->tot_len = 0;
624                         ip_hdr(skb)->check = 0;
625                         tcp_hdr(skb)->check =
626                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
627                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
628                 } else {
629                         lso_info->lso_v2_transmit.ip_version =
630                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
631                         ipv6_hdr(skb)->payload_len = 0;
632                         tcp_hdr(skb)->check =
633                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
634                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
635                 }
636                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
637                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
638         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
639                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
640                         struct ndis_tcp_ip_checksum_info *csum_info;
641
642                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
643                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
644                                                   TCPIP_CHKSUM_PKTINFO);
645
646                         csum_info->value = 0;
647                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
648
649                         if (skb->protocol == htons(ETH_P_IP)) {
650                                 csum_info->transmit.is_ipv4 = 1;
651
652                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
653                                         csum_info->transmit.tcp_checksum = 1;
654                                 else
655                                         csum_info->transmit.udp_checksum = 1;
656                         } else {
657                                 csum_info->transmit.is_ipv6 = 1;
658
659                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
660                                         csum_info->transmit.tcp_checksum = 1;
661                                 else
662                                         csum_info->transmit.udp_checksum = 1;
663                         }
664                 } else {
665                         /* Can't do offload of this type of checksum */
666                         if (skb_checksum_help(skb))
667                                 goto drop;
668                 }
669         }
670
671         /* Start filling in the page buffers with the rndis hdr */
672         rndis_msg->msg_len += rndis_msg_size;
673         packet->total_data_buflen = rndis_msg->msg_len;
674         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
675                                                skb, packet, pb);
676
677         /* timestamp packet in software */
678         skb_tx_timestamp(skb);
679
680         ret = netvsc_send(net, packet, rndis_msg, pb, skb);
681         if (likely(ret == 0))
682                 return NETDEV_TX_OK;
683
684         if (ret == -EAGAIN) {
685                 ++net_device_ctx->eth_stats.tx_busy;
686                 return NETDEV_TX_BUSY;
687         }
688
689         if (ret == -ENOSPC)
690                 ++net_device_ctx->eth_stats.tx_no_space;
691
692 drop:
693         dev_kfree_skb_any(skb);
694         net->stats.tx_dropped++;
695
696         return NETDEV_TX_OK;
697
698 no_memory:
699         ++net_device_ctx->eth_stats.tx_no_memory;
700         goto drop;
701 }
702
703 /*
704  * netvsc_linkstatus_callback - Link up/down notification
705  */
706 void netvsc_linkstatus_callback(struct net_device *net,
707                                 struct rndis_message *resp)
708 {
709         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
710         struct net_device_context *ndev_ctx = netdev_priv(net);
711         struct netvsc_reconfig *event;
712         unsigned long flags;
713
714         /* Update the physical link speed when changing to another vSwitch */
715         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
716                 u32 speed;
717
718                 speed = *(u32 *)((void *)indicate
719                                  + indicate->status_buf_offset) / 10000;
720                 ndev_ctx->speed = speed;
721                 return;
722         }
723
724         /* Handle these link change statuses below */
725         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
726             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
727             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
728                 return;
729
730         if (net->reg_state != NETREG_REGISTERED)
731                 return;
732
733         event = kzalloc(sizeof(*event), GFP_ATOMIC);
734         if (!event)
735                 return;
736         event->event = indicate->status;
737
738         spin_lock_irqsave(&ndev_ctx->lock, flags);
739         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
740         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
741
742         schedule_delayed_work(&ndev_ctx->dwork, 0);
743 }
744
745 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
746                                              struct napi_struct *napi,
747                                              const struct ndis_tcp_ip_checksum_info *csum_info,
748                                              const struct ndis_pkt_8021q_info *vlan,
749                                              void *data, u32 buflen)
750 {
751         struct sk_buff *skb;
752
753         skb = napi_alloc_skb(napi, buflen);
754         if (!skb)
755                 return skb;
756
757         /*
758          * Copy to skb. This copy is needed here since the memory pointed by
759          * hv_netvsc_packet cannot be deallocated
760          */
761         skb_put_data(skb, data, buflen);
762
763         skb->protocol = eth_type_trans(skb, net);
764
765         /* skb is already created with CHECKSUM_NONE */
766         skb_checksum_none_assert(skb);
767
768         /*
769          * In Linux, the IP checksum is always checked.
770          * Do L4 checksum offload if enabled and present.
771          */
772         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
773                 if (csum_info->receive.tcp_checksum_succeeded ||
774                     csum_info->receive.udp_checksum_succeeded)
775                         skb->ip_summed = CHECKSUM_UNNECESSARY;
776         }
777
778         if (vlan) {
779                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
780
781                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
782                                        vlan_tci);
783         }
784
785         return skb;
786 }
787
788 /*
789  * netvsc_recv_callback -  Callback when we receive a packet from the
790  * "wire" on the specified device.
791  */
792 int netvsc_recv_callback(struct net_device *net,
793                          struct netvsc_device *net_device,
794                          struct vmbus_channel *channel,
795                          void  *data, u32 len,
796                          const struct ndis_tcp_ip_checksum_info *csum_info,
797                          const struct ndis_pkt_8021q_info *vlan)
798 {
799         struct net_device_context *net_device_ctx = netdev_priv(net);
800         u16 q_idx = channel->offermsg.offer.sub_channel_index;
801         struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
802         struct sk_buff *skb;
803         struct netvsc_stats *rx_stats;
804
805         if (net->reg_state != NETREG_REGISTERED)
806                 return NVSP_STAT_FAIL;
807
808         /* Allocate a skb - TODO direct I/O to pages? */
809         skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
810                                     csum_info, vlan, data, len);
811         if (unlikely(!skb)) {
812                 ++net_device_ctx->eth_stats.rx_no_memory;
813                 rcu_read_unlock();
814                 return NVSP_STAT_FAIL;
815         }
816
817         skb_record_rx_queue(skb, q_idx);
818
819         /*
820          * Even if injecting the packet, record the statistics
821          * on the synthetic device because modifying the VF device
822          * statistics will not work correctly.
823          */
824         rx_stats = &nvchan->rx_stats;
825         u64_stats_update_begin(&rx_stats->syncp);
826         rx_stats->packets++;
827         rx_stats->bytes += len;
828
829         if (skb->pkt_type == PACKET_BROADCAST)
830                 ++rx_stats->broadcast;
831         else if (skb->pkt_type == PACKET_MULTICAST)
832                 ++rx_stats->multicast;
833         u64_stats_update_end(&rx_stats->syncp);
834
835         napi_gro_receive(&nvchan->napi, skb);
836         return NVSP_STAT_SUCCESS;
837 }
838
839 static void netvsc_get_drvinfo(struct net_device *net,
840                                struct ethtool_drvinfo *info)
841 {
842         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
843         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
844 }
845
846 static void netvsc_get_channels(struct net_device *net,
847                                 struct ethtool_channels *channel)
848 {
849         struct net_device_context *net_device_ctx = netdev_priv(net);
850         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
851
852         if (nvdev) {
853                 channel->max_combined   = nvdev->max_chn;
854                 channel->combined_count = nvdev->num_chn;
855         }
856 }
857
858 static int netvsc_detach(struct net_device *ndev,
859                          struct netvsc_device *nvdev)
860 {
861         struct net_device_context *ndev_ctx = netdev_priv(ndev);
862         struct hv_device *hdev = ndev_ctx->device_ctx;
863         int ret;
864
865         /* Don't try continuing to try and setup sub channels */
866         if (cancel_work_sync(&nvdev->subchan_work))
867                 nvdev->num_chn = 1;
868
869         /* If device was up (receiving) then shutdown */
870         if (netif_running(ndev)) {
871                 netif_tx_disable(ndev);
872
873                 ret = rndis_filter_close(nvdev);
874                 if (ret) {
875                         netdev_err(ndev,
876                                    "unable to close device (ret %d).\n", ret);
877                         return ret;
878                 }
879
880                 ret = netvsc_wait_until_empty(nvdev);
881                 if (ret) {
882                         netdev_err(ndev,
883                                    "Ring buffer not empty after closing rndis\n");
884                         return ret;
885                 }
886         }
887
888         netif_device_detach(ndev);
889
890         rndis_filter_device_remove(hdev, nvdev);
891
892         return 0;
893 }
894
895 static int netvsc_attach(struct net_device *ndev,
896                          struct netvsc_device_info *dev_info)
897 {
898         struct net_device_context *ndev_ctx = netdev_priv(ndev);
899         struct hv_device *hdev = ndev_ctx->device_ctx;
900         struct netvsc_device *nvdev;
901         struct rndis_device *rdev;
902         int ret;
903
904         nvdev = rndis_filter_device_add(hdev, dev_info);
905         if (IS_ERR(nvdev))
906                 return PTR_ERR(nvdev);
907
908         /* Note: enable and attach happen when sub-channels setup */
909
910         netif_carrier_off(ndev);
911
912         if (netif_running(ndev)) {
913                 ret = rndis_filter_open(nvdev);
914                 if (ret)
915                         return ret;
916
917                 rdev = nvdev->extension;
918                 if (!rdev->link_state)
919                         netif_carrier_on(ndev);
920         }
921
922         return 0;
923 }
924
925 static int netvsc_set_channels(struct net_device *net,
926                                struct ethtool_channels *channels)
927 {
928         struct net_device_context *net_device_ctx = netdev_priv(net);
929         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
930         unsigned int orig, count = channels->combined_count;
931         struct netvsc_device_info device_info;
932         int ret;
933
934         /* We do not support separate count for rx, tx, or other */
935         if (count == 0 ||
936             channels->rx_count || channels->tx_count || channels->other_count)
937                 return -EINVAL;
938
939         if (!nvdev || nvdev->destroy)
940                 return -ENODEV;
941
942         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
943                 return -EINVAL;
944
945         if (count > nvdev->max_chn)
946                 return -EINVAL;
947
948         orig = nvdev->num_chn;
949
950         memset(&device_info, 0, sizeof(device_info));
951         device_info.num_chn = count;
952         device_info.send_sections = nvdev->send_section_cnt;
953         device_info.send_section_size = nvdev->send_section_size;
954         device_info.recv_sections = nvdev->recv_section_cnt;
955         device_info.recv_section_size = nvdev->recv_section_size;
956
957         ret = netvsc_detach(net, nvdev);
958         if (ret)
959                 return ret;
960
961         ret = netvsc_attach(net, &device_info);
962         if (ret) {
963                 device_info.num_chn = orig;
964                 if (netvsc_attach(net, &device_info))
965                         netdev_err(net, "restoring channel setting failed\n");
966         }
967
968         return ret;
969 }
970
971 static bool
972 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
973 {
974         struct ethtool_link_ksettings diff1 = *cmd;
975         struct ethtool_link_ksettings diff2 = {};
976
977         diff1.base.speed = 0;
978         diff1.base.duplex = 0;
979         /* advertising and cmd are usually set */
980         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
981         diff1.base.cmd = 0;
982         /* We set port to PORT_OTHER */
983         diff2.base.port = PORT_OTHER;
984
985         return !memcmp(&diff1, &diff2, sizeof(diff1));
986 }
987
988 static void netvsc_init_settings(struct net_device *dev)
989 {
990         struct net_device_context *ndc = netdev_priv(dev);
991
992         ndc->l4_hash = HV_DEFAULT_L4HASH;
993
994         ndc->speed = SPEED_UNKNOWN;
995         ndc->duplex = DUPLEX_FULL;
996 }
997
998 static int netvsc_get_link_ksettings(struct net_device *dev,
999                                      struct ethtool_link_ksettings *cmd)
1000 {
1001         struct net_device_context *ndc = netdev_priv(dev);
1002
1003         cmd->base.speed = ndc->speed;
1004         cmd->base.duplex = ndc->duplex;
1005         cmd->base.port = PORT_OTHER;
1006
1007         return 0;
1008 }
1009
1010 static int netvsc_set_link_ksettings(struct net_device *dev,
1011                                      const struct ethtool_link_ksettings *cmd)
1012 {
1013         struct net_device_context *ndc = netdev_priv(dev);
1014         u32 speed;
1015
1016         speed = cmd->base.speed;
1017         if (!ethtool_validate_speed(speed) ||
1018             !ethtool_validate_duplex(cmd->base.duplex) ||
1019             !netvsc_validate_ethtool_ss_cmd(cmd))
1020                 return -EINVAL;
1021
1022         ndc->speed = speed;
1023         ndc->duplex = cmd->base.duplex;
1024
1025         return 0;
1026 }
1027
1028 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1029 {
1030         struct net_device_context *ndevctx = netdev_priv(ndev);
1031         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1032         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1033         int orig_mtu = ndev->mtu;
1034         struct netvsc_device_info device_info;
1035         int ret = 0;
1036
1037         if (!nvdev || nvdev->destroy)
1038                 return -ENODEV;
1039
1040         /* Change MTU of underlying VF netdev first. */
1041         if (vf_netdev) {
1042                 ret = dev_set_mtu(vf_netdev, mtu);
1043                 if (ret)
1044                         return ret;
1045         }
1046
1047         memset(&device_info, 0, sizeof(device_info));
1048         device_info.num_chn = nvdev->num_chn;
1049         device_info.send_sections = nvdev->send_section_cnt;
1050         device_info.send_section_size = nvdev->send_section_size;
1051         device_info.recv_sections = nvdev->recv_section_cnt;
1052         device_info.recv_section_size = nvdev->recv_section_size;
1053
1054         ret = netvsc_detach(ndev, nvdev);
1055         if (ret)
1056                 goto rollback_vf;
1057
1058         ndev->mtu = mtu;
1059
1060         ret = netvsc_attach(ndev, &device_info);
1061         if (ret)
1062                 goto rollback;
1063
1064         return 0;
1065
1066 rollback:
1067         /* Attempt rollback to original MTU */
1068         ndev->mtu = orig_mtu;
1069
1070         if (netvsc_attach(ndev, &device_info))
1071                 netdev_err(ndev, "restoring mtu failed\n");
1072 rollback_vf:
1073         if (vf_netdev)
1074                 dev_set_mtu(vf_netdev, orig_mtu);
1075
1076         return ret;
1077 }
1078
1079 static void netvsc_get_vf_stats(struct net_device *net,
1080                                 struct netvsc_vf_pcpu_stats *tot)
1081 {
1082         struct net_device_context *ndev_ctx = netdev_priv(net);
1083         int i;
1084
1085         memset(tot, 0, sizeof(*tot));
1086
1087         for_each_possible_cpu(i) {
1088                 const struct netvsc_vf_pcpu_stats *stats
1089                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1090                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1091                 unsigned int start;
1092
1093                 do {
1094                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1095                         rx_packets = stats->rx_packets;
1096                         tx_packets = stats->tx_packets;
1097                         rx_bytes = stats->rx_bytes;
1098                         tx_bytes = stats->tx_bytes;
1099                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1100
1101                 tot->rx_packets += rx_packets;
1102                 tot->tx_packets += tx_packets;
1103                 tot->rx_bytes   += rx_bytes;
1104                 tot->tx_bytes   += tx_bytes;
1105                 tot->tx_dropped += stats->tx_dropped;
1106         }
1107 }
1108
1109 static void netvsc_get_stats64(struct net_device *net,
1110                                struct rtnl_link_stats64 *t)
1111 {
1112         struct net_device_context *ndev_ctx = netdev_priv(net);
1113         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1114         struct netvsc_vf_pcpu_stats vf_tot;
1115         int i;
1116
1117         if (!nvdev)
1118                 return;
1119
1120         netdev_stats_to_stats64(t, &net->stats);
1121
1122         netvsc_get_vf_stats(net, &vf_tot);
1123         t->rx_packets += vf_tot.rx_packets;
1124         t->tx_packets += vf_tot.tx_packets;
1125         t->rx_bytes   += vf_tot.rx_bytes;
1126         t->tx_bytes   += vf_tot.tx_bytes;
1127         t->tx_dropped += vf_tot.tx_dropped;
1128
1129         for (i = 0; i < nvdev->num_chn; i++) {
1130                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1131                 const struct netvsc_stats *stats;
1132                 u64 packets, bytes, multicast;
1133                 unsigned int start;
1134
1135                 stats = &nvchan->tx_stats;
1136                 do {
1137                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1138                         packets = stats->packets;
1139                         bytes = stats->bytes;
1140                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1141
1142                 t->tx_bytes     += bytes;
1143                 t->tx_packets   += packets;
1144
1145                 stats = &nvchan->rx_stats;
1146                 do {
1147                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1148                         packets = stats->packets;
1149                         bytes = stats->bytes;
1150                         multicast = stats->multicast + stats->broadcast;
1151                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1152
1153                 t->rx_bytes     += bytes;
1154                 t->rx_packets   += packets;
1155                 t->multicast    += multicast;
1156         }
1157 }
1158
1159 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1160 {
1161         struct net_device_context *ndc = netdev_priv(ndev);
1162         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1163         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1164         struct sockaddr *addr = p;
1165         int err;
1166
1167         err = eth_prepare_mac_addr_change(ndev, p);
1168         if (err)
1169                 return err;
1170
1171         if (!nvdev)
1172                 return -ENODEV;
1173
1174         if (vf_netdev) {
1175                 err = dev_set_mac_address(vf_netdev, addr);
1176                 if (err)
1177                         return err;
1178         }
1179
1180         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1181         if (!err) {
1182                 eth_commit_mac_addr_change(ndev, p);
1183         } else if (vf_netdev) {
1184                 /* rollback change on VF */
1185                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1186                 dev_set_mac_address(vf_netdev, addr);
1187         }
1188
1189         return err;
1190 }
1191
1192 static const struct {
1193         char name[ETH_GSTRING_LEN];
1194         u16 offset;
1195 } netvsc_stats[] = {
1196         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1197         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1198         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1199         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1200         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1201         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1202         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1203         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1204         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1205         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1206 }, vf_stats[] = {
1207         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1208         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1209         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1210         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1211         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1212 };
1213
1214 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1215 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1216
1217 /* 4 statistics per queue (rx/tx packets/bytes) */
1218 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1219
1220 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1221 {
1222         struct net_device_context *ndc = netdev_priv(dev);
1223         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1224
1225         if (!nvdev)
1226                 return -ENODEV;
1227
1228         switch (string_set) {
1229         case ETH_SS_STATS:
1230                 return NETVSC_GLOBAL_STATS_LEN
1231                         + NETVSC_VF_STATS_LEN
1232                         + NETVSC_QUEUE_STATS_LEN(nvdev);
1233         default:
1234                 return -EINVAL;
1235         }
1236 }
1237
1238 static void netvsc_get_ethtool_stats(struct net_device *dev,
1239                                      struct ethtool_stats *stats, u64 *data)
1240 {
1241         struct net_device_context *ndc = netdev_priv(dev);
1242         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1243         const void *nds = &ndc->eth_stats;
1244         const struct netvsc_stats *qstats;
1245         struct netvsc_vf_pcpu_stats sum;
1246         unsigned int start;
1247         u64 packets, bytes;
1248         int i, j;
1249
1250         if (!nvdev)
1251                 return;
1252
1253         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1254                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1255
1256         netvsc_get_vf_stats(dev, &sum);
1257         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1258                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1259
1260         for (j = 0; j < nvdev->num_chn; j++) {
1261                 qstats = &nvdev->chan_table[j].tx_stats;
1262
1263                 do {
1264                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1265                         packets = qstats->packets;
1266                         bytes = qstats->bytes;
1267                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1268                 data[i++] = packets;
1269                 data[i++] = bytes;
1270
1271                 qstats = &nvdev->chan_table[j].rx_stats;
1272                 do {
1273                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1274                         packets = qstats->packets;
1275                         bytes = qstats->bytes;
1276                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1277                 data[i++] = packets;
1278                 data[i++] = bytes;
1279         }
1280 }
1281
1282 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1283 {
1284         struct net_device_context *ndc = netdev_priv(dev);
1285         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1286         u8 *p = data;
1287         int i;
1288
1289         if (!nvdev)
1290                 return;
1291
1292         switch (stringset) {
1293         case ETH_SS_STATS:
1294                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1295                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1296                         p += ETH_GSTRING_LEN;
1297                 }
1298
1299                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1300                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1301                         p += ETH_GSTRING_LEN;
1302                 }
1303
1304                 for (i = 0; i < nvdev->num_chn; i++) {
1305                         sprintf(p, "tx_queue_%u_packets", i);
1306                         p += ETH_GSTRING_LEN;
1307                         sprintf(p, "tx_queue_%u_bytes", i);
1308                         p += ETH_GSTRING_LEN;
1309                         sprintf(p, "rx_queue_%u_packets", i);
1310                         p += ETH_GSTRING_LEN;
1311                         sprintf(p, "rx_queue_%u_bytes", i);
1312                         p += ETH_GSTRING_LEN;
1313                 }
1314
1315                 break;
1316         }
1317 }
1318
1319 static int
1320 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1321                          struct ethtool_rxnfc *info)
1322 {
1323         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1324
1325         info->data = RXH_IP_SRC | RXH_IP_DST;
1326
1327         switch (info->flow_type) {
1328         case TCP_V4_FLOW:
1329                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1330                         info->data |= l4_flag;
1331
1332                 break;
1333
1334         case TCP_V6_FLOW:
1335                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1336                         info->data |= l4_flag;
1337
1338                 break;
1339
1340         case UDP_V4_FLOW:
1341                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1342                         info->data |= l4_flag;
1343
1344                 break;
1345
1346         case UDP_V6_FLOW:
1347                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1348                         info->data |= l4_flag;
1349
1350                 break;
1351
1352         case IPV4_FLOW:
1353         case IPV6_FLOW:
1354                 break;
1355         default:
1356                 info->data = 0;
1357                 break;
1358         }
1359
1360         return 0;
1361 }
1362
1363 static int
1364 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1365                  u32 *rules)
1366 {
1367         struct net_device_context *ndc = netdev_priv(dev);
1368         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1369
1370         if (!nvdev)
1371                 return -ENODEV;
1372
1373         switch (info->cmd) {
1374         case ETHTOOL_GRXRINGS:
1375                 info->data = nvdev->num_chn;
1376                 return 0;
1377
1378         case ETHTOOL_GRXFH:
1379                 return netvsc_get_rss_hash_opts(ndc, info);
1380         }
1381         return -EOPNOTSUPP;
1382 }
1383
1384 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1385                                     struct ethtool_rxnfc *info)
1386 {
1387         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1388                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1389                 switch (info->flow_type) {
1390                 case TCP_V4_FLOW:
1391                         ndc->l4_hash |= HV_TCP4_L4HASH;
1392                         break;
1393
1394                 case TCP_V6_FLOW:
1395                         ndc->l4_hash |= HV_TCP6_L4HASH;
1396                         break;
1397
1398                 case UDP_V4_FLOW:
1399                         ndc->l4_hash |= HV_UDP4_L4HASH;
1400                         break;
1401
1402                 case UDP_V6_FLOW:
1403                         ndc->l4_hash |= HV_UDP6_L4HASH;
1404                         break;
1405
1406                 default:
1407                         return -EOPNOTSUPP;
1408                 }
1409
1410                 return 0;
1411         }
1412
1413         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1414                 switch (info->flow_type) {
1415                 case TCP_V4_FLOW:
1416                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1417                         break;
1418
1419                 case TCP_V6_FLOW:
1420                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1421                         break;
1422
1423                 case UDP_V4_FLOW:
1424                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1425                         break;
1426
1427                 case UDP_V6_FLOW:
1428                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1429                         break;
1430
1431                 default:
1432                         return -EOPNOTSUPP;
1433                 }
1434
1435                 return 0;
1436         }
1437
1438         return -EOPNOTSUPP;
1439 }
1440
1441 static int
1442 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1443 {
1444         struct net_device_context *ndc = netdev_priv(ndev);
1445
1446         if (info->cmd == ETHTOOL_SRXFH)
1447                 return netvsc_set_rss_hash_opts(ndc, info);
1448
1449         return -EOPNOTSUPP;
1450 }
1451
1452 #ifdef CONFIG_NET_POLL_CONTROLLER
1453 static void netvsc_poll_controller(struct net_device *dev)
1454 {
1455         struct net_device_context *ndc = netdev_priv(dev);
1456         struct netvsc_device *ndev;
1457         int i;
1458
1459         rcu_read_lock();
1460         ndev = rcu_dereference(ndc->nvdev);
1461         if (ndev) {
1462                 for (i = 0; i < ndev->num_chn; i++) {
1463                         struct netvsc_channel *nvchan = &ndev->chan_table[i];
1464
1465                         napi_schedule(&nvchan->napi);
1466                 }
1467         }
1468         rcu_read_unlock();
1469 }
1470 #endif
1471
1472 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1473 {
1474         return NETVSC_HASH_KEYLEN;
1475 }
1476
1477 static u32 netvsc_rss_indir_size(struct net_device *dev)
1478 {
1479         return ITAB_NUM;
1480 }
1481
1482 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1483                            u8 *hfunc)
1484 {
1485         struct net_device_context *ndc = netdev_priv(dev);
1486         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1487         struct rndis_device *rndis_dev;
1488         int i;
1489
1490         if (!ndev)
1491                 return -ENODEV;
1492
1493         if (hfunc)
1494                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1495
1496         rndis_dev = ndev->extension;
1497         if (indir) {
1498                 for (i = 0; i < ITAB_NUM; i++)
1499                         indir[i] = rndis_dev->rx_table[i];
1500         }
1501
1502         if (key)
1503                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1504
1505         return 0;
1506 }
1507
1508 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1509                            const u8 *key, const u8 hfunc)
1510 {
1511         struct net_device_context *ndc = netdev_priv(dev);
1512         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1513         struct rndis_device *rndis_dev;
1514         int i;
1515
1516         if (!ndev)
1517                 return -ENODEV;
1518
1519         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1520                 return -EOPNOTSUPP;
1521
1522         rndis_dev = ndev->extension;
1523         if (indir) {
1524                 for (i = 0; i < ITAB_NUM; i++)
1525                         if (indir[i] >= ndev->num_chn)
1526                                 return -EINVAL;
1527
1528                 for (i = 0; i < ITAB_NUM; i++)
1529                         rndis_dev->rx_table[i] = indir[i];
1530         }
1531
1532         if (!key) {
1533                 if (!indir)
1534                         return 0;
1535
1536                 key = rndis_dev->rss_key;
1537         }
1538
1539         return rndis_filter_set_rss_param(rndis_dev, key);
1540 }
1541
1542 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1543  * It does have pre-allocated receive area which is divided into sections.
1544  */
1545 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1546                                    struct ethtool_ringparam *ring)
1547 {
1548         u32 max_buf_size;
1549
1550         ring->rx_pending = nvdev->recv_section_cnt;
1551         ring->tx_pending = nvdev->send_section_cnt;
1552
1553         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1554                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1555         else
1556                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1557
1558         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1559         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1560                 / nvdev->send_section_size;
1561 }
1562
1563 static void netvsc_get_ringparam(struct net_device *ndev,
1564                                  struct ethtool_ringparam *ring)
1565 {
1566         struct net_device_context *ndevctx = netdev_priv(ndev);
1567         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1568
1569         if (!nvdev)
1570                 return;
1571
1572         __netvsc_get_ringparam(nvdev, ring);
1573 }
1574
1575 static int netvsc_set_ringparam(struct net_device *ndev,
1576                                 struct ethtool_ringparam *ring)
1577 {
1578         struct net_device_context *ndevctx = netdev_priv(ndev);
1579         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1580         struct netvsc_device_info device_info;
1581         struct ethtool_ringparam orig;
1582         u32 new_tx, new_rx;
1583         int ret = 0;
1584
1585         if (!nvdev || nvdev->destroy)
1586                 return -ENODEV;
1587
1588         memset(&orig, 0, sizeof(orig));
1589         __netvsc_get_ringparam(nvdev, &orig);
1590
1591         new_tx = clamp_t(u32, ring->tx_pending,
1592                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1593         new_rx = clamp_t(u32, ring->rx_pending,
1594                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1595
1596         if (new_tx == orig.tx_pending &&
1597             new_rx == orig.rx_pending)
1598                 return 0;        /* no change */
1599
1600         memset(&device_info, 0, sizeof(device_info));
1601         device_info.num_chn = nvdev->num_chn;
1602         device_info.send_sections = new_tx;
1603         device_info.send_section_size = nvdev->send_section_size;
1604         device_info.recv_sections = new_rx;
1605         device_info.recv_section_size = nvdev->recv_section_size;
1606
1607         ret = netvsc_detach(ndev, nvdev);
1608         if (ret)
1609                 return ret;
1610
1611         ret = netvsc_attach(ndev, &device_info);
1612         if (ret) {
1613                 device_info.send_sections = orig.tx_pending;
1614                 device_info.recv_sections = orig.rx_pending;
1615
1616                 if (netvsc_attach(ndev, &device_info))
1617                         netdev_err(ndev, "restoring ringparam failed");
1618         }
1619
1620         return ret;
1621 }
1622
1623 static u32 netvsc_get_msglevel(struct net_device *ndev)
1624 {
1625         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1626
1627         return ndev_ctx->msg_enable;
1628 }
1629
1630 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1631 {
1632         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1633
1634         ndev_ctx->msg_enable = val;
1635 }
1636
1637 static const struct ethtool_ops ethtool_ops = {
1638         .get_drvinfo    = netvsc_get_drvinfo,
1639         .get_msglevel   = netvsc_get_msglevel,
1640         .set_msglevel   = netvsc_set_msglevel,
1641         .get_link       = ethtool_op_get_link,
1642         .get_ethtool_stats = netvsc_get_ethtool_stats,
1643         .get_sset_count = netvsc_get_sset_count,
1644         .get_strings    = netvsc_get_strings,
1645         .get_channels   = netvsc_get_channels,
1646         .set_channels   = netvsc_set_channels,
1647         .get_ts_info    = ethtool_op_get_ts_info,
1648         .get_rxnfc      = netvsc_get_rxnfc,
1649         .set_rxnfc      = netvsc_set_rxnfc,
1650         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1651         .get_rxfh_indir_size = netvsc_rss_indir_size,
1652         .get_rxfh       = netvsc_get_rxfh,
1653         .set_rxfh       = netvsc_set_rxfh,
1654         .get_link_ksettings = netvsc_get_link_ksettings,
1655         .set_link_ksettings = netvsc_set_link_ksettings,
1656         .get_ringparam  = netvsc_get_ringparam,
1657         .set_ringparam  = netvsc_set_ringparam,
1658 };
1659
1660 static const struct net_device_ops device_ops = {
1661         .ndo_open =                     netvsc_open,
1662         .ndo_stop =                     netvsc_close,
1663         .ndo_start_xmit =               netvsc_start_xmit,
1664         .ndo_change_rx_flags =          netvsc_change_rx_flags,
1665         .ndo_set_rx_mode =              netvsc_set_rx_mode,
1666         .ndo_change_mtu =               netvsc_change_mtu,
1667         .ndo_validate_addr =            eth_validate_addr,
1668         .ndo_set_mac_address =          netvsc_set_mac_addr,
1669         .ndo_select_queue =             netvsc_select_queue,
1670         .ndo_get_stats64 =              netvsc_get_stats64,
1671 #ifdef CONFIG_NET_POLL_CONTROLLER
1672         .ndo_poll_controller =          netvsc_poll_controller,
1673 #endif
1674 };
1675
1676 /*
1677  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1678  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1679  * present send GARP packet to network peers with netif_notify_peers().
1680  */
1681 static void netvsc_link_change(struct work_struct *w)
1682 {
1683         struct net_device_context *ndev_ctx =
1684                 container_of(w, struct net_device_context, dwork.work);
1685         struct hv_device *device_obj = ndev_ctx->device_ctx;
1686         struct net_device *net = hv_get_drvdata(device_obj);
1687         struct netvsc_device *net_device;
1688         struct rndis_device *rdev;
1689         struct netvsc_reconfig *event = NULL;
1690         bool notify = false, reschedule = false;
1691         unsigned long flags, next_reconfig, delay;
1692
1693         /* if changes are happening, comeback later */
1694         if (!rtnl_trylock()) {
1695                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1696                 return;
1697         }
1698
1699         net_device = rtnl_dereference(ndev_ctx->nvdev);
1700         if (!net_device)
1701                 goto out_unlock;
1702
1703         rdev = net_device->extension;
1704
1705         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1706         if (time_is_after_jiffies(next_reconfig)) {
1707                 /* link_watch only sends one notification with current state
1708                  * per second, avoid doing reconfig more frequently. Handle
1709                  * wrap around.
1710                  */
1711                 delay = next_reconfig - jiffies;
1712                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1713                 schedule_delayed_work(&ndev_ctx->dwork, delay);
1714                 goto out_unlock;
1715         }
1716         ndev_ctx->last_reconfig = jiffies;
1717
1718         spin_lock_irqsave(&ndev_ctx->lock, flags);
1719         if (!list_empty(&ndev_ctx->reconfig_events)) {
1720                 event = list_first_entry(&ndev_ctx->reconfig_events,
1721                                          struct netvsc_reconfig, list);
1722                 list_del(&event->list);
1723                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1724         }
1725         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1726
1727         if (!event)
1728                 goto out_unlock;
1729
1730         switch (event->event) {
1731                 /* Only the following events are possible due to the check in
1732                  * netvsc_linkstatus_callback()
1733                  */
1734         case RNDIS_STATUS_MEDIA_CONNECT:
1735                 if (rdev->link_state) {
1736                         rdev->link_state = false;
1737                         netif_carrier_on(net);
1738                         netif_tx_wake_all_queues(net);
1739                 } else {
1740                         notify = true;
1741                 }
1742                 kfree(event);
1743                 break;
1744         case RNDIS_STATUS_MEDIA_DISCONNECT:
1745                 if (!rdev->link_state) {
1746                         rdev->link_state = true;
1747                         netif_carrier_off(net);
1748                         netif_tx_stop_all_queues(net);
1749                 }
1750                 kfree(event);
1751                 break;
1752         case RNDIS_STATUS_NETWORK_CHANGE:
1753                 /* Only makes sense if carrier is present */
1754                 if (!rdev->link_state) {
1755                         rdev->link_state = true;
1756                         netif_carrier_off(net);
1757                         netif_tx_stop_all_queues(net);
1758                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
1759                         spin_lock_irqsave(&ndev_ctx->lock, flags);
1760                         list_add(&event->list, &ndev_ctx->reconfig_events);
1761                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1762                         reschedule = true;
1763                 }
1764                 break;
1765         }
1766
1767         rtnl_unlock();
1768
1769         if (notify)
1770                 netdev_notify_peers(net);
1771
1772         /* link_watch only sends one notification with current state per
1773          * second, handle next reconfig event in 2 seconds.
1774          */
1775         if (reschedule)
1776                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1777
1778         return;
1779
1780 out_unlock:
1781         rtnl_unlock();
1782 }
1783
1784 static struct net_device *get_netvsc_bymac(const u8 *mac)
1785 {
1786         struct net_device_context *ndev_ctx;
1787
1788         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
1789                 struct net_device *dev = hv_get_drvdata(ndev_ctx->device_ctx);
1790
1791                 if (ether_addr_equal(mac, dev->perm_addr))
1792                         return dev;
1793         }
1794
1795         return NULL;
1796 }
1797
1798 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1799 {
1800         struct net_device_context *net_device_ctx;
1801         struct net_device *dev;
1802
1803         dev = netdev_master_upper_dev_get(vf_netdev);
1804         if (!dev || dev->netdev_ops != &device_ops)
1805                 return NULL;    /* not a netvsc device */
1806
1807         net_device_ctx = netdev_priv(dev);
1808         if (!rtnl_dereference(net_device_ctx->nvdev))
1809                 return NULL;    /* device is removed */
1810
1811         return dev;
1812 }
1813
1814 /* Called when VF is injecting data into network stack.
1815  * Change the associated network device from VF to netvsc.
1816  * note: already called with rcu_read_lock
1817  */
1818 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1819 {
1820         struct sk_buff *skb = *pskb;
1821         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1822         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1823         struct netvsc_vf_pcpu_stats *pcpu_stats
1824                  = this_cpu_ptr(ndev_ctx->vf_stats);
1825
1826         skb->dev = ndev;
1827
1828         u64_stats_update_begin(&pcpu_stats->syncp);
1829         pcpu_stats->rx_packets++;
1830         pcpu_stats->rx_bytes += skb->len;
1831         u64_stats_update_end(&pcpu_stats->syncp);
1832
1833         return RX_HANDLER_ANOTHER;
1834 }
1835
1836 static int netvsc_vf_join(struct net_device *vf_netdev,
1837                           struct net_device *ndev)
1838 {
1839         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1840         int ret;
1841
1842         ret = netdev_rx_handler_register(vf_netdev,
1843                                          netvsc_vf_handle_frame, ndev);
1844         if (ret != 0) {
1845                 netdev_err(vf_netdev,
1846                            "can not register netvsc VF receive handler (err = %d)\n",
1847                            ret);
1848                 goto rx_handler_failed;
1849         }
1850
1851         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1852                                            NULL, NULL, NULL);
1853         if (ret != 0) {
1854                 netdev_err(vf_netdev,
1855                            "can not set master device %s (err = %d)\n",
1856                            ndev->name, ret);
1857                 goto upper_link_failed;
1858         }
1859
1860         /* set slave flag before open to prevent IPv6 addrconf */
1861         vf_netdev->flags |= IFF_SLAVE;
1862
1863         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1864
1865         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1866
1867         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1868         return 0;
1869
1870 upper_link_failed:
1871         netdev_rx_handler_unregister(vf_netdev);
1872 rx_handler_failed:
1873         return ret;
1874 }
1875
1876 static void __netvsc_vf_setup(struct net_device *ndev,
1877                               struct net_device *vf_netdev)
1878 {
1879         int ret;
1880
1881         /* Align MTU of VF with master */
1882         ret = dev_set_mtu(vf_netdev, ndev->mtu);
1883         if (ret)
1884                 netdev_warn(vf_netdev,
1885                             "unable to change mtu to %u\n", ndev->mtu);
1886
1887         /* set multicast etc flags on VF */
1888         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1889
1890         /* sync address list from ndev to VF */
1891         netif_addr_lock_bh(ndev);
1892         dev_uc_sync(vf_netdev, ndev);
1893         dev_mc_sync(vf_netdev, ndev);
1894         netif_addr_unlock_bh(ndev);
1895
1896         if (netif_running(ndev)) {
1897                 ret = dev_open(vf_netdev);
1898                 if (ret)
1899                         netdev_warn(vf_netdev,
1900                                     "unable to open: %d\n", ret);
1901         }
1902 }
1903
1904 /* Setup VF as slave of the synthetic device.
1905  * Runs in workqueue to avoid recursion in netlink callbacks.
1906  */
1907 static void netvsc_vf_setup(struct work_struct *w)
1908 {
1909         struct net_device_context *ndev_ctx
1910                 = container_of(w, struct net_device_context, vf_takeover.work);
1911         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1912         struct net_device *vf_netdev;
1913
1914         if (!rtnl_trylock()) {
1915                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1916                 return;
1917         }
1918
1919         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1920         if (vf_netdev)
1921                 __netvsc_vf_setup(ndev, vf_netdev);
1922
1923         rtnl_unlock();
1924 }
1925
1926 static int netvsc_register_vf(struct net_device *vf_netdev)
1927 {
1928         struct net_device *ndev;
1929         struct net_device_context *net_device_ctx;
1930         struct netvsc_device *netvsc_dev;
1931         int ret;
1932
1933         if (vf_netdev->addr_len != ETH_ALEN)
1934                 return NOTIFY_DONE;
1935
1936         /*
1937          * We will use the MAC address to locate the synthetic interface to
1938          * associate with the VF interface. If we don't find a matching
1939          * synthetic interface, move on.
1940          */
1941         ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1942         if (!ndev)
1943                 return NOTIFY_DONE;
1944
1945         net_device_ctx = netdev_priv(ndev);
1946         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1947         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1948                 return NOTIFY_DONE;
1949
1950         /* if syntihetic interface is a different namespace,
1951          * then move the VF to that namespace; join will be
1952          * done again in that context.
1953          */
1954         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
1955                 ret = dev_change_net_namespace(vf_netdev,
1956                                                dev_net(ndev), "eth%d");
1957                 if (ret)
1958                         netdev_err(vf_netdev,
1959                                    "could not move to same namespace as %s: %d\n",
1960                                    ndev->name, ret);
1961                 else
1962                         netdev_info(vf_netdev,
1963                                     "VF moved to namespace with: %s\n",
1964                                     ndev->name);
1965                 return NOTIFY_DONE;
1966         }
1967
1968         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1969
1970         if (netvsc_vf_join(vf_netdev, ndev) != 0)
1971                 return NOTIFY_DONE;
1972
1973         dev_hold(vf_netdev);
1974         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1975         return NOTIFY_OK;
1976 }
1977
1978 /* VF up/down change detected, schedule to change data path */
1979 static int netvsc_vf_changed(struct net_device *vf_netdev)
1980 {
1981         struct net_device_context *net_device_ctx;
1982         struct netvsc_device *netvsc_dev;
1983         struct net_device *ndev;
1984         bool vf_is_up = netif_running(vf_netdev);
1985
1986         ndev = get_netvsc_byref(vf_netdev);
1987         if (!ndev)
1988                 return NOTIFY_DONE;
1989
1990         net_device_ctx = netdev_priv(ndev);
1991         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1992         if (!netvsc_dev)
1993                 return NOTIFY_DONE;
1994
1995         netvsc_switch_datapath(ndev, vf_is_up);
1996         netdev_info(ndev, "Data path switched %s VF: %s\n",
1997                     vf_is_up ? "to" : "from", vf_netdev->name);
1998
1999         return NOTIFY_OK;
2000 }
2001
2002 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2003 {
2004         struct net_device *ndev;
2005         struct net_device_context *net_device_ctx;
2006
2007         ndev = get_netvsc_byref(vf_netdev);
2008         if (!ndev)
2009                 return NOTIFY_DONE;
2010
2011         net_device_ctx = netdev_priv(ndev);
2012         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2013
2014         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2015
2016         netdev_rx_handler_unregister(vf_netdev);
2017         netdev_upper_dev_unlink(vf_netdev, ndev);
2018         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2019         dev_put(vf_netdev);
2020
2021         return NOTIFY_OK;
2022 }
2023
2024 static int netvsc_probe(struct hv_device *dev,
2025                         const struct hv_vmbus_device_id *dev_id)
2026 {
2027         struct net_device *net = NULL;
2028         struct net_device_context *net_device_ctx;
2029         struct netvsc_device_info device_info;
2030         struct netvsc_device *nvdev;
2031         int ret = -ENOMEM;
2032
2033         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2034                                 VRSS_CHANNEL_MAX);
2035         if (!net)
2036                 goto no_net;
2037
2038         netif_carrier_off(net);
2039
2040         netvsc_init_settings(net);
2041
2042         net_device_ctx = netdev_priv(net);
2043         net_device_ctx->device_ctx = dev;
2044         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2045         if (netif_msg_probe(net_device_ctx))
2046                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2047                            net_device_ctx->msg_enable);
2048
2049         hv_set_drvdata(dev, net);
2050
2051         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2052
2053         spin_lock_init(&net_device_ctx->lock);
2054         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2055         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2056
2057         net_device_ctx->vf_stats
2058                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2059         if (!net_device_ctx->vf_stats)
2060                 goto no_stats;
2061
2062         net->netdev_ops = &device_ops;
2063         net->ethtool_ops = &ethtool_ops;
2064         SET_NETDEV_DEV(net, &dev->device);
2065
2066         /* We always need headroom for rndis header */
2067         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2068
2069         /* Initialize the number of queues to be 1, we may change it if more
2070          * channels are offered later.
2071          */
2072         netif_set_real_num_tx_queues(net, 1);
2073         netif_set_real_num_rx_queues(net, 1);
2074
2075         /* Notify the netvsc driver of the new device */
2076         memset(&device_info, 0, sizeof(device_info));
2077         device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2078         device_info.send_sections = NETVSC_DEFAULT_TX;
2079         device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2080         device_info.recv_sections = NETVSC_DEFAULT_RX;
2081         device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2082
2083         nvdev = rndis_filter_device_add(dev, &device_info);
2084         if (IS_ERR(nvdev)) {
2085                 ret = PTR_ERR(nvdev);
2086                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2087                 goto rndis_failed;
2088         }
2089
2090         memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2091
2092         /* hw_features computed in rndis_netdev_set_hwcaps() */
2093         net->features = net->hw_features |
2094                 NETIF_F_HIGHDMA | NETIF_F_SG |
2095                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2096         net->vlan_features = net->features;
2097
2098         netdev_lockdep_set_classes(net);
2099
2100         /* MTU range: 68 - 1500 or 65521 */
2101         net->min_mtu = NETVSC_MTU_MIN;
2102         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2103                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2104         else
2105                 net->max_mtu = ETH_DATA_LEN;
2106
2107         rtnl_lock();
2108         ret = register_netdevice(net);
2109         if (ret != 0) {
2110                 pr_err("Unable to register netdev.\n");
2111                 goto register_failed;
2112         }
2113
2114         list_add(&net_device_ctx->list, &netvsc_dev_list);
2115         rtnl_unlock();
2116         return 0;
2117
2118 register_failed:
2119         rtnl_unlock();
2120         rndis_filter_device_remove(dev, nvdev);
2121 rndis_failed:
2122         free_percpu(net_device_ctx->vf_stats);
2123 no_stats:
2124         hv_set_drvdata(dev, NULL);
2125         free_netdev(net);
2126 no_net:
2127         return ret;
2128 }
2129
2130 static int netvsc_remove(struct hv_device *dev)
2131 {
2132         struct net_device_context *ndev_ctx;
2133         struct net_device *vf_netdev, *net;
2134         struct netvsc_device *nvdev;
2135
2136         net = hv_get_drvdata(dev);
2137         if (net == NULL) {
2138                 dev_err(&dev->device, "No net device to remove\n");
2139                 return 0;
2140         }
2141
2142         ndev_ctx = netdev_priv(net);
2143
2144         cancel_delayed_work_sync(&ndev_ctx->dwork);
2145
2146         rcu_read_lock();
2147         nvdev = rcu_dereference(ndev_ctx->nvdev);
2148
2149         if  (nvdev)
2150                 cancel_work_sync(&nvdev->subchan_work);
2151
2152         /*
2153          * Call to the vsc driver to let it know that the device is being
2154          * removed. Also blocks mtu and channel changes.
2155          */
2156         rtnl_lock();
2157         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2158         if (vf_netdev)
2159                 netvsc_unregister_vf(vf_netdev);
2160
2161         if (nvdev)
2162                 rndis_filter_device_remove(dev, nvdev);
2163
2164         unregister_netdevice(net);
2165         list_del(&ndev_ctx->list);
2166
2167         rtnl_unlock();
2168         rcu_read_unlock();
2169
2170         hv_set_drvdata(dev, NULL);
2171
2172         free_percpu(ndev_ctx->vf_stats);
2173         free_netdev(net);
2174         return 0;
2175 }
2176
2177 static const struct hv_vmbus_device_id id_table[] = {
2178         /* Network guid */
2179         { HV_NIC_GUID, },
2180         { },
2181 };
2182
2183 MODULE_DEVICE_TABLE(vmbus, id_table);
2184
2185 /* The one and only one */
2186 static struct  hv_driver netvsc_drv = {
2187         .name = KBUILD_MODNAME,
2188         .id_table = id_table,
2189         .probe = netvsc_probe,
2190         .remove = netvsc_remove,
2191 };
2192
2193 /*
2194  * On Hyper-V, every VF interface is matched with a corresponding
2195  * synthetic interface. The synthetic interface is presented first
2196  * to the guest. When the corresponding VF instance is registered,
2197  * we will take care of switching the data path.
2198  */
2199 static int netvsc_netdev_event(struct notifier_block *this,
2200                                unsigned long event, void *ptr)
2201 {
2202         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2203
2204         /* Skip our own events */
2205         if (event_dev->netdev_ops == &device_ops)
2206                 return NOTIFY_DONE;
2207
2208         /* Avoid non-Ethernet type devices */
2209         if (event_dev->type != ARPHRD_ETHER)
2210                 return NOTIFY_DONE;
2211
2212         /* Avoid Vlan dev with same MAC registering as VF */
2213         if (is_vlan_dev(event_dev))
2214                 return NOTIFY_DONE;
2215
2216         /* Avoid Bonding master dev with same MAC registering as VF */
2217         if ((event_dev->priv_flags & IFF_BONDING) &&
2218             (event_dev->flags & IFF_MASTER))
2219                 return NOTIFY_DONE;
2220
2221         switch (event) {
2222         case NETDEV_REGISTER:
2223                 return netvsc_register_vf(event_dev);
2224         case NETDEV_UNREGISTER:
2225                 return netvsc_unregister_vf(event_dev);
2226         case NETDEV_UP:
2227         case NETDEV_DOWN:
2228                 return netvsc_vf_changed(event_dev);
2229         default:
2230                 return NOTIFY_DONE;
2231         }
2232 }
2233
2234 static struct notifier_block netvsc_netdev_notifier = {
2235         .notifier_call = netvsc_netdev_event,
2236 };
2237
2238 static void __exit netvsc_drv_exit(void)
2239 {
2240         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2241         vmbus_driver_unregister(&netvsc_drv);
2242 }
2243
2244 static int __init netvsc_drv_init(void)
2245 {
2246         int ret;
2247
2248         if (ring_size < RING_SIZE_MIN) {
2249                 ring_size = RING_SIZE_MIN;
2250                 pr_info("Increased ring_size to %u (min allowed)\n",
2251                         ring_size);
2252         }
2253         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2254
2255         ret = vmbus_driver_register(&netvsc_drv);
2256         if (ret)
2257                 return ret;
2258
2259         register_netdevice_notifier(&netvsc_netdev_notifier);
2260         return 0;
2261 }
2262
2263 MODULE_LICENSE("GPL");
2264 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2265
2266 module_init(netvsc_drv_init);
2267 module_exit(netvsc_drv_exit);