Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <linux/rtnetlink.h>
37 #include <linux/netpoll.h>
38
39 #include <net/arp.h>
40 #include <net/route.h>
41 #include <net/sock.h>
42 #include <net/pkt_sched.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45
46 #include "hyperv_net.h"
47
48 #define RING_SIZE_MIN   64
49 #define RETRY_US_LO     5000
50 #define RETRY_US_HI     10000
51 #define RETRY_MAX       2000    /* >10 sec */
52
53 #define LINKCHANGE_INT (2 * HZ)
54 #define VF_TAKEOVER_INT (HZ / 10)
55
56 static unsigned int ring_size __ro_after_init = 128;
57 module_param(ring_size, uint, 0444);
58 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
59 unsigned int netvsc_ring_bytes __ro_after_init;
60
61 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
62                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
63                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
64                                 NETIF_MSG_TX_ERR;
65
66 static int debug = -1;
67 module_param(debug, int, 0444);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 static LIST_HEAD(netvsc_dev_list);
71
72 static void netvsc_change_rx_flags(struct net_device *net, int change)
73 {
74         struct net_device_context *ndev_ctx = netdev_priv(net);
75         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
76         int inc;
77
78         if (!vf_netdev)
79                 return;
80
81         if (change & IFF_PROMISC) {
82                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
83                 dev_set_promiscuity(vf_netdev, inc);
84         }
85
86         if (change & IFF_ALLMULTI) {
87                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
88                 dev_set_allmulti(vf_netdev, inc);
89         }
90 }
91
92 static void netvsc_set_rx_mode(struct net_device *net)
93 {
94         struct net_device_context *ndev_ctx = netdev_priv(net);
95         struct net_device *vf_netdev;
96         struct netvsc_device *nvdev;
97
98         rcu_read_lock();
99         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
100         if (vf_netdev) {
101                 dev_uc_sync(vf_netdev, net);
102                 dev_mc_sync(vf_netdev, net);
103         }
104
105         nvdev = rcu_dereference(ndev_ctx->nvdev);
106         if (nvdev)
107                 rndis_filter_update(nvdev);
108         rcu_read_unlock();
109 }
110
111 static int netvsc_open(struct net_device *net)
112 {
113         struct net_device_context *ndev_ctx = netdev_priv(net);
114         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116         struct rndis_device *rdev;
117         int ret = 0;
118
119         netif_carrier_off(net);
120
121         /* Open up the device */
122         ret = rndis_filter_open(nvdev);
123         if (ret != 0) {
124                 netdev_err(net, "unable to open device (ret %d).\n", ret);
125                 return ret;
126         }
127
128         rdev = nvdev->extension;
129         if (!rdev->link_state) {
130                 netif_carrier_on(net);
131                 netif_tx_wake_all_queues(net);
132         }
133
134         if (vf_netdev) {
135                 /* Setting synthetic device up transparently sets
136                  * slave as up. If open fails, then slave will be
137                  * still be offline (and not used).
138                  */
139                 ret = dev_open(vf_netdev);
140                 if (ret)
141                         netdev_warn(net,
142                                     "unable to open slave: %s: %d\n",
143                                     vf_netdev->name, ret);
144         }
145         return 0;
146 }
147
148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
149 {
150         unsigned int retry = 0;
151         int i;
152
153         /* Ensure pending bytes in ring are read */
154         for (;;) {
155                 u32 aread = 0;
156
157                 for (i = 0; i < nvdev->num_chn; i++) {
158                         struct vmbus_channel *chn
159                                 = nvdev->chan_table[i].channel;
160
161                         if (!chn)
162                                 continue;
163
164                         /* make sure receive not running now */
165                         napi_synchronize(&nvdev->chan_table[i].napi);
166
167                         aread = hv_get_bytes_to_read(&chn->inbound);
168                         if (aread)
169                                 break;
170
171                         aread = hv_get_bytes_to_read(&chn->outbound);
172                         if (aread)
173                                 break;
174                 }
175
176                 if (aread == 0)
177                         return 0;
178
179                 if (++retry > RETRY_MAX)
180                         return -ETIMEDOUT;
181
182                 usleep_range(RETRY_US_LO, RETRY_US_HI);
183         }
184 }
185
186 static int netvsc_close(struct net_device *net)
187 {
188         struct net_device_context *net_device_ctx = netdev_priv(net);
189         struct net_device *vf_netdev
190                 = rtnl_dereference(net_device_ctx->vf_netdev);
191         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
192         int ret;
193
194         netif_tx_disable(net);
195
196         /* No need to close rndis filter if it is removed already */
197         if (!nvdev)
198                 return 0;
199
200         ret = rndis_filter_close(nvdev);
201         if (ret != 0) {
202                 netdev_err(net, "unable to close device (ret %d).\n", ret);
203                 return ret;
204         }
205
206         ret = netvsc_wait_until_empty(nvdev);
207         if (ret)
208                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
209
210         if (vf_netdev)
211                 dev_close(vf_netdev);
212
213         return ret;
214 }
215
216 static inline void *init_ppi_data(struct rndis_message *msg,
217                                   u32 ppi_size, u32 pkt_type)
218 {
219         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
220         struct rndis_per_packet_info *ppi;
221
222         rndis_pkt->data_offset += ppi_size;
223         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
224                 + rndis_pkt->per_pkt_info_len;
225
226         ppi->size = ppi_size;
227         ppi->type = pkt_type;
228         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
229
230         rndis_pkt->per_pkt_info_len += ppi_size;
231
232         return ppi + 1;
233 }
234
235 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
236  * packets. We can use ethtool to change UDP hash level when necessary.
237  */
238 static inline u32 netvsc_get_hash(
239         struct sk_buff *skb,
240         const struct net_device_context *ndc)
241 {
242         struct flow_keys flow;
243         u32 hash, pkt_proto = 0;
244         static u32 hashrnd __read_mostly;
245
246         net_get_random_once(&hashrnd, sizeof(hashrnd));
247
248         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
249                 return 0;
250
251         switch (flow.basic.ip_proto) {
252         case IPPROTO_TCP:
253                 if (flow.basic.n_proto == htons(ETH_P_IP))
254                         pkt_proto = HV_TCP4_L4HASH;
255                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
256                         pkt_proto = HV_TCP6_L4HASH;
257
258                 break;
259
260         case IPPROTO_UDP:
261                 if (flow.basic.n_proto == htons(ETH_P_IP))
262                         pkt_proto = HV_UDP4_L4HASH;
263                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
264                         pkt_proto = HV_UDP6_L4HASH;
265
266                 break;
267         }
268
269         if (pkt_proto & ndc->l4_hash) {
270                 return skb_get_hash(skb);
271         } else {
272                 if (flow.basic.n_proto == htons(ETH_P_IP))
273                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
274                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
276                 else
277                         hash = 0;
278
279                 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
280         }
281
282         return hash;
283 }
284
285 static inline int netvsc_get_tx_queue(struct net_device *ndev,
286                                       struct sk_buff *skb, int old_idx)
287 {
288         const struct net_device_context *ndc = netdev_priv(ndev);
289         struct sock *sk = skb->sk;
290         int q_idx;
291
292         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
293                               (VRSS_SEND_TAB_SIZE - 1)];
294
295         /* If queue index changed record the new value */
296         if (q_idx != old_idx &&
297             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
298                 sk_tx_queue_set(sk, q_idx);
299
300         return q_idx;
301 }
302
303 /*
304  * Select queue for transmit.
305  *
306  * If a valid queue has already been assigned, then use that.
307  * Otherwise compute tx queue based on hash and the send table.
308  *
309  * This is basically similar to default (__netdev_pick_tx) with the added step
310  * of using the host send_table when no other queue has been assigned.
311  *
312  * TODO support XPS - but get_xps_queue not exported
313  */
314 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
315 {
316         int q_idx = sk_tx_queue_get(skb->sk);
317
318         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
319                 /* If forwarding a packet, we use the recorded queue when
320                  * available for better cache locality.
321                  */
322                 if (skb_rx_queue_recorded(skb))
323                         q_idx = skb_get_rx_queue(skb);
324                 else
325                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
326         }
327
328         return q_idx;
329 }
330
331 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
332                                void *accel_priv,
333                                select_queue_fallback_t fallback)
334 {
335         struct net_device_context *ndc = netdev_priv(ndev);
336         struct net_device *vf_netdev;
337         u16 txq;
338
339         rcu_read_lock();
340         vf_netdev = rcu_dereference(ndc->vf_netdev);
341         if (vf_netdev) {
342                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
343
344                 if (vf_ops->ndo_select_queue)
345                         txq = vf_ops->ndo_select_queue(vf_netdev, skb,
346                                                        accel_priv, fallback);
347                 else
348                         txq = fallback(vf_netdev, skb);
349
350                 /* Record the queue selected by VF so that it can be
351                  * used for common case where VF has more queues than
352                  * the synthetic device.
353                  */
354                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
355         } else {
356                 txq = netvsc_pick_tx(ndev, skb);
357         }
358         rcu_read_unlock();
359
360         while (unlikely(txq >= ndev->real_num_tx_queues))
361                 txq -= ndev->real_num_tx_queues;
362
363         return txq;
364 }
365
366 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
367                        struct hv_page_buffer *pb)
368 {
369         int j = 0;
370
371         /* Deal with compund pages by ignoring unused part
372          * of the page.
373          */
374         page += (offset >> PAGE_SHIFT);
375         offset &= ~PAGE_MASK;
376
377         while (len > 0) {
378                 unsigned long bytes;
379
380                 bytes = PAGE_SIZE - offset;
381                 if (bytes > len)
382                         bytes = len;
383                 pb[j].pfn = page_to_pfn(page);
384                 pb[j].offset = offset;
385                 pb[j].len = bytes;
386
387                 offset += bytes;
388                 len -= bytes;
389
390                 if (offset == PAGE_SIZE && len) {
391                         page++;
392                         offset = 0;
393                         j++;
394                 }
395         }
396
397         return j + 1;
398 }
399
400 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
401                            struct hv_netvsc_packet *packet,
402                            struct hv_page_buffer *pb)
403 {
404         u32 slots_used = 0;
405         char *data = skb->data;
406         int frags = skb_shinfo(skb)->nr_frags;
407         int i;
408
409         /* The packet is laid out thus:
410          * 1. hdr: RNDIS header and PPI
411          * 2. skb linear data
412          * 3. skb fragment data
413          */
414         slots_used += fill_pg_buf(virt_to_page(hdr),
415                                   offset_in_page(hdr),
416                                   len, &pb[slots_used]);
417
418         packet->rmsg_size = len;
419         packet->rmsg_pgcnt = slots_used;
420
421         slots_used += fill_pg_buf(virt_to_page(data),
422                                 offset_in_page(data),
423                                 skb_headlen(skb), &pb[slots_used]);
424
425         for (i = 0; i < frags; i++) {
426                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
427
428                 slots_used += fill_pg_buf(skb_frag_page(frag),
429                                         frag->page_offset,
430                                         skb_frag_size(frag), &pb[slots_used]);
431         }
432         return slots_used;
433 }
434
435 static int count_skb_frag_slots(struct sk_buff *skb)
436 {
437         int i, frags = skb_shinfo(skb)->nr_frags;
438         int pages = 0;
439
440         for (i = 0; i < frags; i++) {
441                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
442                 unsigned long size = skb_frag_size(frag);
443                 unsigned long offset = frag->page_offset;
444
445                 /* Skip unused frames from start of page */
446                 offset &= ~PAGE_MASK;
447                 pages += PFN_UP(offset + size);
448         }
449         return pages;
450 }
451
452 static int netvsc_get_slots(struct sk_buff *skb)
453 {
454         char *data = skb->data;
455         unsigned int offset = offset_in_page(data);
456         unsigned int len = skb_headlen(skb);
457         int slots;
458         int frag_slots;
459
460         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
461         frag_slots = count_skb_frag_slots(skb);
462         return slots + frag_slots;
463 }
464
465 static u32 net_checksum_info(struct sk_buff *skb)
466 {
467         if (skb->protocol == htons(ETH_P_IP)) {
468                 struct iphdr *ip = ip_hdr(skb);
469
470                 if (ip->protocol == IPPROTO_TCP)
471                         return TRANSPORT_INFO_IPV4_TCP;
472                 else if (ip->protocol == IPPROTO_UDP)
473                         return TRANSPORT_INFO_IPV4_UDP;
474         } else {
475                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
476
477                 if (ip6->nexthdr == IPPROTO_TCP)
478                         return TRANSPORT_INFO_IPV6_TCP;
479                 else if (ip6->nexthdr == IPPROTO_UDP)
480                         return TRANSPORT_INFO_IPV6_UDP;
481         }
482
483         return TRANSPORT_INFO_NOT_IP;
484 }
485
486 /* Send skb on the slave VF device. */
487 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
488                           struct sk_buff *skb)
489 {
490         struct net_device_context *ndev_ctx = netdev_priv(net);
491         unsigned int len = skb->len;
492         int rc;
493
494         skb->dev = vf_netdev;
495         skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
496
497         rc = dev_queue_xmit(skb);
498         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
499                 struct netvsc_vf_pcpu_stats *pcpu_stats
500                         = this_cpu_ptr(ndev_ctx->vf_stats);
501
502                 u64_stats_update_begin(&pcpu_stats->syncp);
503                 pcpu_stats->tx_packets++;
504                 pcpu_stats->tx_bytes += len;
505                 u64_stats_update_end(&pcpu_stats->syncp);
506         } else {
507                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
508         }
509
510         return rc;
511 }
512
513 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
514 {
515         struct net_device_context *net_device_ctx = netdev_priv(net);
516         struct hv_netvsc_packet *packet = NULL;
517         int ret;
518         unsigned int num_data_pgs;
519         struct rndis_message *rndis_msg;
520         struct net_device *vf_netdev;
521         u32 rndis_msg_size;
522         u32 hash;
523         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
524
525         /* if VF is present and up then redirect packets
526          * already called with rcu_read_lock_bh
527          */
528         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
529         if (vf_netdev && netif_running(vf_netdev) &&
530             !netpoll_tx_running(net))
531                 return netvsc_vf_xmit(net, vf_netdev, skb);
532
533         /* We will atmost need two pages to describe the rndis
534          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
535          * of pages in a single packet. If skb is scattered around
536          * more pages we try linearizing it.
537          */
538
539         num_data_pgs = netvsc_get_slots(skb) + 2;
540
541         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
542                 ++net_device_ctx->eth_stats.tx_scattered;
543
544                 if (skb_linearize(skb))
545                         goto no_memory;
546
547                 num_data_pgs = netvsc_get_slots(skb) + 2;
548                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
549                         ++net_device_ctx->eth_stats.tx_too_big;
550                         goto drop;
551                 }
552         }
553
554         /*
555          * Place the rndis header in the skb head room and
556          * the skb->cb will be used for hv_netvsc_packet
557          * structure.
558          */
559         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
560         if (ret)
561                 goto no_memory;
562
563         /* Use the skb control buffer for building up the packet */
564         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
565                         FIELD_SIZEOF(struct sk_buff, cb));
566         packet = (struct hv_netvsc_packet *)skb->cb;
567
568         packet->q_idx = skb_get_queue_mapping(skb);
569
570         packet->total_data_buflen = skb->len;
571         packet->total_bytes = skb->len;
572         packet->total_packets = 1;
573
574         rndis_msg = (struct rndis_message *)skb->head;
575
576         /* Add the rndis header */
577         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
578         rndis_msg->msg_len = packet->total_data_buflen;
579
580         rndis_msg->msg.pkt = (struct rndis_packet) {
581                 .data_offset = sizeof(struct rndis_packet),
582                 .data_len = packet->total_data_buflen,
583                 .per_pkt_info_offset = sizeof(struct rndis_packet),
584         };
585
586         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
587
588         hash = skb_get_hash_raw(skb);
589         if (hash != 0 && net->real_num_tx_queues > 1) {
590                 u32 *hash_info;
591
592                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
593                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
594                                           NBL_HASH_VALUE);
595                 *hash_info = hash;
596         }
597
598         if (skb_vlan_tag_present(skb)) {
599                 struct ndis_pkt_8021q_info *vlan;
600
601                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
602                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
603                                      IEEE_8021Q_INFO);
604
605                 vlan->value = 0;
606                 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
607                 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
608                                 VLAN_PRIO_SHIFT;
609         }
610
611         if (skb_is_gso(skb)) {
612                 struct ndis_tcp_lso_info *lso_info;
613
614                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
615                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
616                                          TCP_LARGESEND_PKTINFO);
617
618                 lso_info->value = 0;
619                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
620                 if (skb->protocol == htons(ETH_P_IP)) {
621                         lso_info->lso_v2_transmit.ip_version =
622                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
623                         ip_hdr(skb)->tot_len = 0;
624                         ip_hdr(skb)->check = 0;
625                         tcp_hdr(skb)->check =
626                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
627                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
628                 } else {
629                         lso_info->lso_v2_transmit.ip_version =
630                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
631                         ipv6_hdr(skb)->payload_len = 0;
632                         tcp_hdr(skb)->check =
633                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
634                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
635                 }
636                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
637                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
638         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
639                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
640                         struct ndis_tcp_ip_checksum_info *csum_info;
641
642                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
643                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
644                                                   TCPIP_CHKSUM_PKTINFO);
645
646                         csum_info->value = 0;
647                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
648
649                         if (skb->protocol == htons(ETH_P_IP)) {
650                                 csum_info->transmit.is_ipv4 = 1;
651
652                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
653                                         csum_info->transmit.tcp_checksum = 1;
654                                 else
655                                         csum_info->transmit.udp_checksum = 1;
656                         } else {
657                                 csum_info->transmit.is_ipv6 = 1;
658
659                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
660                                         csum_info->transmit.tcp_checksum = 1;
661                                 else
662                                         csum_info->transmit.udp_checksum = 1;
663                         }
664                 } else {
665                         /* Can't do offload of this type of checksum */
666                         if (skb_checksum_help(skb))
667                                 goto drop;
668                 }
669         }
670
671         /* Start filling in the page buffers with the rndis hdr */
672         rndis_msg->msg_len += rndis_msg_size;
673         packet->total_data_buflen = rndis_msg->msg_len;
674         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
675                                                skb, packet, pb);
676
677         /* timestamp packet in software */
678         skb_tx_timestamp(skb);
679
680         ret = netvsc_send(net, packet, rndis_msg, pb, skb);
681         if (likely(ret == 0))
682                 return NETDEV_TX_OK;
683
684         if (ret == -EAGAIN) {
685                 ++net_device_ctx->eth_stats.tx_busy;
686                 return NETDEV_TX_BUSY;
687         }
688
689         if (ret == -ENOSPC)
690                 ++net_device_ctx->eth_stats.tx_no_space;
691
692 drop:
693         dev_kfree_skb_any(skb);
694         net->stats.tx_dropped++;
695
696         return NETDEV_TX_OK;
697
698 no_memory:
699         ++net_device_ctx->eth_stats.tx_no_memory;
700         goto drop;
701 }
702
703 /*
704  * netvsc_linkstatus_callback - Link up/down notification
705  */
706 void netvsc_linkstatus_callback(struct net_device *net,
707                                 struct rndis_message *resp)
708 {
709         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
710         struct net_device_context *ndev_ctx = netdev_priv(net);
711         struct netvsc_reconfig *event;
712         unsigned long flags;
713
714         /* Update the physical link speed when changing to another vSwitch */
715         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
716                 u32 speed;
717
718                 speed = *(u32 *)((void *)indicate
719                                  + indicate->status_buf_offset) / 10000;
720                 ndev_ctx->speed = speed;
721                 return;
722         }
723
724         /* Handle these link change statuses below */
725         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
726             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
727             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
728                 return;
729
730         if (net->reg_state != NETREG_REGISTERED)
731                 return;
732
733         event = kzalloc(sizeof(*event), GFP_ATOMIC);
734         if (!event)
735                 return;
736         event->event = indicate->status;
737
738         spin_lock_irqsave(&ndev_ctx->lock, flags);
739         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
740         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
741
742         schedule_delayed_work(&ndev_ctx->dwork, 0);
743 }
744
745 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
746                                              struct napi_struct *napi,
747                                              const struct ndis_tcp_ip_checksum_info *csum_info,
748                                              const struct ndis_pkt_8021q_info *vlan,
749                                              void *data, u32 buflen)
750 {
751         struct sk_buff *skb;
752
753         skb = napi_alloc_skb(napi, buflen);
754         if (!skb)
755                 return skb;
756
757         /*
758          * Copy to skb. This copy is needed here since the memory pointed by
759          * hv_netvsc_packet cannot be deallocated
760          */
761         skb_put_data(skb, data, buflen);
762
763         skb->protocol = eth_type_trans(skb, net);
764
765         /* skb is already created with CHECKSUM_NONE */
766         skb_checksum_none_assert(skb);
767
768         /*
769          * In Linux, the IP checksum is always checked.
770          * Do L4 checksum offload if enabled and present.
771          */
772         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
773                 if (csum_info->receive.tcp_checksum_succeeded ||
774                     csum_info->receive.udp_checksum_succeeded)
775                         skb->ip_summed = CHECKSUM_UNNECESSARY;
776         }
777
778         if (vlan) {
779                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
780
781                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
782                                        vlan_tci);
783         }
784
785         return skb;
786 }
787
788 /*
789  * netvsc_recv_callback -  Callback when we receive a packet from the
790  * "wire" on the specified device.
791  */
792 int netvsc_recv_callback(struct net_device *net,
793                          struct netvsc_device *net_device,
794                          struct vmbus_channel *channel,
795                          void  *data, u32 len,
796                          const struct ndis_tcp_ip_checksum_info *csum_info,
797                          const struct ndis_pkt_8021q_info *vlan)
798 {
799         struct net_device_context *net_device_ctx = netdev_priv(net);
800         u16 q_idx = channel->offermsg.offer.sub_channel_index;
801         struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
802         struct sk_buff *skb;
803         struct netvsc_stats *rx_stats;
804
805         if (net->reg_state != NETREG_REGISTERED)
806                 return NVSP_STAT_FAIL;
807
808         /* Allocate a skb - TODO direct I/O to pages? */
809         skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
810                                     csum_info, vlan, data, len);
811         if (unlikely(!skb)) {
812                 ++net_device_ctx->eth_stats.rx_no_memory;
813                 rcu_read_unlock();
814                 return NVSP_STAT_FAIL;
815         }
816
817         skb_record_rx_queue(skb, q_idx);
818
819         /*
820          * Even if injecting the packet, record the statistics
821          * on the synthetic device because modifying the VF device
822          * statistics will not work correctly.
823          */
824         rx_stats = &nvchan->rx_stats;
825         u64_stats_update_begin(&rx_stats->syncp);
826         rx_stats->packets++;
827         rx_stats->bytes += len;
828
829         if (skb->pkt_type == PACKET_BROADCAST)
830                 ++rx_stats->broadcast;
831         else if (skb->pkt_type == PACKET_MULTICAST)
832                 ++rx_stats->multicast;
833         u64_stats_update_end(&rx_stats->syncp);
834
835         napi_gro_receive(&nvchan->napi, skb);
836         return NVSP_STAT_SUCCESS;
837 }
838
839 static void netvsc_get_drvinfo(struct net_device *net,
840                                struct ethtool_drvinfo *info)
841 {
842         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
843         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
844 }
845
846 static void netvsc_get_channels(struct net_device *net,
847                                 struct ethtool_channels *channel)
848 {
849         struct net_device_context *net_device_ctx = netdev_priv(net);
850         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
851
852         if (nvdev) {
853                 channel->max_combined   = nvdev->max_chn;
854                 channel->combined_count = nvdev->num_chn;
855         }
856 }
857
858 static int netvsc_detach(struct net_device *ndev,
859                          struct netvsc_device *nvdev)
860 {
861         struct net_device_context *ndev_ctx = netdev_priv(ndev);
862         struct hv_device *hdev = ndev_ctx->device_ctx;
863         int ret;
864
865         /* Don't try continuing to try and setup sub channels */
866         if (cancel_work_sync(&nvdev->subchan_work))
867                 nvdev->num_chn = 1;
868
869         /* If device was up (receiving) then shutdown */
870         if (netif_running(ndev)) {
871                 netif_tx_disable(ndev);
872
873                 ret = rndis_filter_close(nvdev);
874                 if (ret) {
875                         netdev_err(ndev,
876                                    "unable to close device (ret %d).\n", ret);
877                         return ret;
878                 }
879
880                 ret = netvsc_wait_until_empty(nvdev);
881                 if (ret) {
882                         netdev_err(ndev,
883                                    "Ring buffer not empty after closing rndis\n");
884                         return ret;
885                 }
886         }
887
888         netif_device_detach(ndev);
889
890         rndis_filter_device_remove(hdev, nvdev);
891
892         return 0;
893 }
894
895 static int netvsc_attach(struct net_device *ndev,
896                          struct netvsc_device_info *dev_info)
897 {
898         struct net_device_context *ndev_ctx = netdev_priv(ndev);
899         struct hv_device *hdev = ndev_ctx->device_ctx;
900         struct netvsc_device *nvdev;
901         struct rndis_device *rdev;
902         int ret;
903
904         nvdev = rndis_filter_device_add(hdev, dev_info);
905         if (IS_ERR(nvdev))
906                 return PTR_ERR(nvdev);
907
908         if (nvdev->num_chn > 1) {
909                 ret = rndis_set_subchannel(ndev, nvdev);
910
911                 /* if unavailable, just proceed with one queue */
912                 if (ret) {
913                         nvdev->max_chn = 1;
914                         nvdev->num_chn = 1;
915                 }
916         }
917
918         /* In any case device is now ready */
919         netif_device_attach(ndev);
920
921         /* Note: enable and attach happen when sub-channels setup */
922         netif_carrier_off(ndev);
923
924         if (netif_running(ndev)) {
925                 ret = rndis_filter_open(nvdev);
926                 if (ret)
927                         return ret;
928
929                 rdev = nvdev->extension;
930                 if (!rdev->link_state)
931                         netif_carrier_on(ndev);
932         }
933
934         return 0;
935 }
936
937 static int netvsc_set_channels(struct net_device *net,
938                                struct ethtool_channels *channels)
939 {
940         struct net_device_context *net_device_ctx = netdev_priv(net);
941         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
942         unsigned int orig, count = channels->combined_count;
943         struct netvsc_device_info device_info;
944         int ret;
945
946         /* We do not support separate count for rx, tx, or other */
947         if (count == 0 ||
948             channels->rx_count || channels->tx_count || channels->other_count)
949                 return -EINVAL;
950
951         if (!nvdev || nvdev->destroy)
952                 return -ENODEV;
953
954         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
955                 return -EINVAL;
956
957         if (count > nvdev->max_chn)
958                 return -EINVAL;
959
960         orig = nvdev->num_chn;
961
962         memset(&device_info, 0, sizeof(device_info));
963         device_info.num_chn = count;
964         device_info.send_sections = nvdev->send_section_cnt;
965         device_info.send_section_size = nvdev->send_section_size;
966         device_info.recv_sections = nvdev->recv_section_cnt;
967         device_info.recv_section_size = nvdev->recv_section_size;
968
969         ret = netvsc_detach(net, nvdev);
970         if (ret)
971                 return ret;
972
973         ret = netvsc_attach(net, &device_info);
974         if (ret) {
975                 device_info.num_chn = orig;
976                 if (netvsc_attach(net, &device_info))
977                         netdev_err(net, "restoring channel setting failed\n");
978         }
979
980         return ret;
981 }
982
983 static bool
984 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
985 {
986         struct ethtool_link_ksettings diff1 = *cmd;
987         struct ethtool_link_ksettings diff2 = {};
988
989         diff1.base.speed = 0;
990         diff1.base.duplex = 0;
991         /* advertising and cmd are usually set */
992         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
993         diff1.base.cmd = 0;
994         /* We set port to PORT_OTHER */
995         diff2.base.port = PORT_OTHER;
996
997         return !memcmp(&diff1, &diff2, sizeof(diff1));
998 }
999
1000 static void netvsc_init_settings(struct net_device *dev)
1001 {
1002         struct net_device_context *ndc = netdev_priv(dev);
1003
1004         ndc->l4_hash = HV_DEFAULT_L4HASH;
1005
1006         ndc->speed = SPEED_UNKNOWN;
1007         ndc->duplex = DUPLEX_FULL;
1008 }
1009
1010 static int netvsc_get_link_ksettings(struct net_device *dev,
1011                                      struct ethtool_link_ksettings *cmd)
1012 {
1013         struct net_device_context *ndc = netdev_priv(dev);
1014
1015         cmd->base.speed = ndc->speed;
1016         cmd->base.duplex = ndc->duplex;
1017         cmd->base.port = PORT_OTHER;
1018
1019         return 0;
1020 }
1021
1022 static int netvsc_set_link_ksettings(struct net_device *dev,
1023                                      const struct ethtool_link_ksettings *cmd)
1024 {
1025         struct net_device_context *ndc = netdev_priv(dev);
1026         u32 speed;
1027
1028         speed = cmd->base.speed;
1029         if (!ethtool_validate_speed(speed) ||
1030             !ethtool_validate_duplex(cmd->base.duplex) ||
1031             !netvsc_validate_ethtool_ss_cmd(cmd))
1032                 return -EINVAL;
1033
1034         ndc->speed = speed;
1035         ndc->duplex = cmd->base.duplex;
1036
1037         return 0;
1038 }
1039
1040 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1041 {
1042         struct net_device_context *ndevctx = netdev_priv(ndev);
1043         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1044         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1045         int orig_mtu = ndev->mtu;
1046         struct netvsc_device_info device_info;
1047         int ret = 0;
1048
1049         if (!nvdev || nvdev->destroy)
1050                 return -ENODEV;
1051
1052         /* Change MTU of underlying VF netdev first. */
1053         if (vf_netdev) {
1054                 ret = dev_set_mtu(vf_netdev, mtu);
1055                 if (ret)
1056                         return ret;
1057         }
1058
1059         memset(&device_info, 0, sizeof(device_info));
1060         device_info.num_chn = nvdev->num_chn;
1061         device_info.send_sections = nvdev->send_section_cnt;
1062         device_info.send_section_size = nvdev->send_section_size;
1063         device_info.recv_sections = nvdev->recv_section_cnt;
1064         device_info.recv_section_size = nvdev->recv_section_size;
1065
1066         ret = netvsc_detach(ndev, nvdev);
1067         if (ret)
1068                 goto rollback_vf;
1069
1070         ndev->mtu = mtu;
1071
1072         ret = netvsc_attach(ndev, &device_info);
1073         if (ret)
1074                 goto rollback;
1075
1076         return 0;
1077
1078 rollback:
1079         /* Attempt rollback to original MTU */
1080         ndev->mtu = orig_mtu;
1081
1082         if (netvsc_attach(ndev, &device_info))
1083                 netdev_err(ndev, "restoring mtu failed\n");
1084 rollback_vf:
1085         if (vf_netdev)
1086                 dev_set_mtu(vf_netdev, orig_mtu);
1087
1088         return ret;
1089 }
1090
1091 static void netvsc_get_vf_stats(struct net_device *net,
1092                                 struct netvsc_vf_pcpu_stats *tot)
1093 {
1094         struct net_device_context *ndev_ctx = netdev_priv(net);
1095         int i;
1096
1097         memset(tot, 0, sizeof(*tot));
1098
1099         for_each_possible_cpu(i) {
1100                 const struct netvsc_vf_pcpu_stats *stats
1101                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1102                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1103                 unsigned int start;
1104
1105                 do {
1106                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1107                         rx_packets = stats->rx_packets;
1108                         tx_packets = stats->tx_packets;
1109                         rx_bytes = stats->rx_bytes;
1110                         tx_bytes = stats->tx_bytes;
1111                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1112
1113                 tot->rx_packets += rx_packets;
1114                 tot->tx_packets += tx_packets;
1115                 tot->rx_bytes   += rx_bytes;
1116                 tot->tx_bytes   += tx_bytes;
1117                 tot->tx_dropped += stats->tx_dropped;
1118         }
1119 }
1120
1121 static void netvsc_get_stats64(struct net_device *net,
1122                                struct rtnl_link_stats64 *t)
1123 {
1124         struct net_device_context *ndev_ctx = netdev_priv(net);
1125         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1126         struct netvsc_vf_pcpu_stats vf_tot;
1127         int i;
1128
1129         if (!nvdev)
1130                 return;
1131
1132         netdev_stats_to_stats64(t, &net->stats);
1133
1134         netvsc_get_vf_stats(net, &vf_tot);
1135         t->rx_packets += vf_tot.rx_packets;
1136         t->tx_packets += vf_tot.tx_packets;
1137         t->rx_bytes   += vf_tot.rx_bytes;
1138         t->tx_bytes   += vf_tot.tx_bytes;
1139         t->tx_dropped += vf_tot.tx_dropped;
1140
1141         for (i = 0; i < nvdev->num_chn; i++) {
1142                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1143                 const struct netvsc_stats *stats;
1144                 u64 packets, bytes, multicast;
1145                 unsigned int start;
1146
1147                 stats = &nvchan->tx_stats;
1148                 do {
1149                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1150                         packets = stats->packets;
1151                         bytes = stats->bytes;
1152                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1153
1154                 t->tx_bytes     += bytes;
1155                 t->tx_packets   += packets;
1156
1157                 stats = &nvchan->rx_stats;
1158                 do {
1159                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1160                         packets = stats->packets;
1161                         bytes = stats->bytes;
1162                         multicast = stats->multicast + stats->broadcast;
1163                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1164
1165                 t->rx_bytes     += bytes;
1166                 t->rx_packets   += packets;
1167                 t->multicast    += multicast;
1168         }
1169 }
1170
1171 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1172 {
1173         struct net_device_context *ndc = netdev_priv(ndev);
1174         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1175         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1176         struct sockaddr *addr = p;
1177         int err;
1178
1179         err = eth_prepare_mac_addr_change(ndev, p);
1180         if (err)
1181                 return err;
1182
1183         if (!nvdev)
1184                 return -ENODEV;
1185
1186         if (vf_netdev) {
1187                 err = dev_set_mac_address(vf_netdev, addr);
1188                 if (err)
1189                         return err;
1190         }
1191
1192         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1193         if (!err) {
1194                 eth_commit_mac_addr_change(ndev, p);
1195         } else if (vf_netdev) {
1196                 /* rollback change on VF */
1197                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1198                 dev_set_mac_address(vf_netdev, addr);
1199         }
1200
1201         return err;
1202 }
1203
1204 static const struct {
1205         char name[ETH_GSTRING_LEN];
1206         u16 offset;
1207 } netvsc_stats[] = {
1208         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1209         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1210         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1211         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1212         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1213         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1214         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1215         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1216         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1217         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1218 }, vf_stats[] = {
1219         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1220         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1221         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1222         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1223         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1224 };
1225
1226 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1227 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1228
1229 /* 4 statistics per queue (rx/tx packets/bytes) */
1230 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1231
1232 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1233 {
1234         struct net_device_context *ndc = netdev_priv(dev);
1235         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1236
1237         if (!nvdev)
1238                 return -ENODEV;
1239
1240         switch (string_set) {
1241         case ETH_SS_STATS:
1242                 return NETVSC_GLOBAL_STATS_LEN
1243                         + NETVSC_VF_STATS_LEN
1244                         + NETVSC_QUEUE_STATS_LEN(nvdev);
1245         default:
1246                 return -EINVAL;
1247         }
1248 }
1249
1250 static void netvsc_get_ethtool_stats(struct net_device *dev,
1251                                      struct ethtool_stats *stats, u64 *data)
1252 {
1253         struct net_device_context *ndc = netdev_priv(dev);
1254         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1255         const void *nds = &ndc->eth_stats;
1256         const struct netvsc_stats *qstats;
1257         struct netvsc_vf_pcpu_stats sum;
1258         unsigned int start;
1259         u64 packets, bytes;
1260         int i, j;
1261
1262         if (!nvdev)
1263                 return;
1264
1265         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1266                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1267
1268         netvsc_get_vf_stats(dev, &sum);
1269         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1270                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1271
1272         for (j = 0; j < nvdev->num_chn; j++) {
1273                 qstats = &nvdev->chan_table[j].tx_stats;
1274
1275                 do {
1276                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1277                         packets = qstats->packets;
1278                         bytes = qstats->bytes;
1279                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1280                 data[i++] = packets;
1281                 data[i++] = bytes;
1282
1283                 qstats = &nvdev->chan_table[j].rx_stats;
1284                 do {
1285                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1286                         packets = qstats->packets;
1287                         bytes = qstats->bytes;
1288                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1289                 data[i++] = packets;
1290                 data[i++] = bytes;
1291         }
1292 }
1293
1294 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1295 {
1296         struct net_device_context *ndc = netdev_priv(dev);
1297         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1298         u8 *p = data;
1299         int i;
1300
1301         if (!nvdev)
1302                 return;
1303
1304         switch (stringset) {
1305         case ETH_SS_STATS:
1306                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1307                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1308                         p += ETH_GSTRING_LEN;
1309                 }
1310
1311                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1312                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1313                         p += ETH_GSTRING_LEN;
1314                 }
1315
1316                 for (i = 0; i < nvdev->num_chn; i++) {
1317                         sprintf(p, "tx_queue_%u_packets", i);
1318                         p += ETH_GSTRING_LEN;
1319                         sprintf(p, "tx_queue_%u_bytes", i);
1320                         p += ETH_GSTRING_LEN;
1321                         sprintf(p, "rx_queue_%u_packets", i);
1322                         p += ETH_GSTRING_LEN;
1323                         sprintf(p, "rx_queue_%u_bytes", i);
1324                         p += ETH_GSTRING_LEN;
1325                 }
1326
1327                 break;
1328         }
1329 }
1330
1331 static int
1332 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1333                          struct ethtool_rxnfc *info)
1334 {
1335         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1336
1337         info->data = RXH_IP_SRC | RXH_IP_DST;
1338
1339         switch (info->flow_type) {
1340         case TCP_V4_FLOW:
1341                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1342                         info->data |= l4_flag;
1343
1344                 break;
1345
1346         case TCP_V6_FLOW:
1347                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1348                         info->data |= l4_flag;
1349
1350                 break;
1351
1352         case UDP_V4_FLOW:
1353                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1354                         info->data |= l4_flag;
1355
1356                 break;
1357
1358         case UDP_V6_FLOW:
1359                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1360                         info->data |= l4_flag;
1361
1362                 break;
1363
1364         case IPV4_FLOW:
1365         case IPV6_FLOW:
1366                 break;
1367         default:
1368                 info->data = 0;
1369                 break;
1370         }
1371
1372         return 0;
1373 }
1374
1375 static int
1376 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1377                  u32 *rules)
1378 {
1379         struct net_device_context *ndc = netdev_priv(dev);
1380         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1381
1382         if (!nvdev)
1383                 return -ENODEV;
1384
1385         switch (info->cmd) {
1386         case ETHTOOL_GRXRINGS:
1387                 info->data = nvdev->num_chn;
1388                 return 0;
1389
1390         case ETHTOOL_GRXFH:
1391                 return netvsc_get_rss_hash_opts(ndc, info);
1392         }
1393         return -EOPNOTSUPP;
1394 }
1395
1396 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1397                                     struct ethtool_rxnfc *info)
1398 {
1399         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1400                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1401                 switch (info->flow_type) {
1402                 case TCP_V4_FLOW:
1403                         ndc->l4_hash |= HV_TCP4_L4HASH;
1404                         break;
1405
1406                 case TCP_V6_FLOW:
1407                         ndc->l4_hash |= HV_TCP6_L4HASH;
1408                         break;
1409
1410                 case UDP_V4_FLOW:
1411                         ndc->l4_hash |= HV_UDP4_L4HASH;
1412                         break;
1413
1414                 case UDP_V6_FLOW:
1415                         ndc->l4_hash |= HV_UDP6_L4HASH;
1416                         break;
1417
1418                 default:
1419                         return -EOPNOTSUPP;
1420                 }
1421
1422                 return 0;
1423         }
1424
1425         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1426                 switch (info->flow_type) {
1427                 case TCP_V4_FLOW:
1428                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1429                         break;
1430
1431                 case TCP_V6_FLOW:
1432                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1433                         break;
1434
1435                 case UDP_V4_FLOW:
1436                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1437                         break;
1438
1439                 case UDP_V6_FLOW:
1440                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1441                         break;
1442
1443                 default:
1444                         return -EOPNOTSUPP;
1445                 }
1446
1447                 return 0;
1448         }
1449
1450         return -EOPNOTSUPP;
1451 }
1452
1453 static int
1454 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1455 {
1456         struct net_device_context *ndc = netdev_priv(ndev);
1457
1458         if (info->cmd == ETHTOOL_SRXFH)
1459                 return netvsc_set_rss_hash_opts(ndc, info);
1460
1461         return -EOPNOTSUPP;
1462 }
1463
1464 #ifdef CONFIG_NET_POLL_CONTROLLER
1465 static void netvsc_poll_controller(struct net_device *dev)
1466 {
1467         struct net_device_context *ndc = netdev_priv(dev);
1468         struct netvsc_device *ndev;
1469         int i;
1470
1471         rcu_read_lock();
1472         ndev = rcu_dereference(ndc->nvdev);
1473         if (ndev) {
1474                 for (i = 0; i < ndev->num_chn; i++) {
1475                         struct netvsc_channel *nvchan = &ndev->chan_table[i];
1476
1477                         napi_schedule(&nvchan->napi);
1478                 }
1479         }
1480         rcu_read_unlock();
1481 }
1482 #endif
1483
1484 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1485 {
1486         return NETVSC_HASH_KEYLEN;
1487 }
1488
1489 static u32 netvsc_rss_indir_size(struct net_device *dev)
1490 {
1491         return ITAB_NUM;
1492 }
1493
1494 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1495                            u8 *hfunc)
1496 {
1497         struct net_device_context *ndc = netdev_priv(dev);
1498         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1499         struct rndis_device *rndis_dev;
1500         int i;
1501
1502         if (!ndev)
1503                 return -ENODEV;
1504
1505         if (hfunc)
1506                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1507
1508         rndis_dev = ndev->extension;
1509         if (indir) {
1510                 for (i = 0; i < ITAB_NUM; i++)
1511                         indir[i] = rndis_dev->rx_table[i];
1512         }
1513
1514         if (key)
1515                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1516
1517         return 0;
1518 }
1519
1520 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1521                            const u8 *key, const u8 hfunc)
1522 {
1523         struct net_device_context *ndc = netdev_priv(dev);
1524         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1525         struct rndis_device *rndis_dev;
1526         int i;
1527
1528         if (!ndev)
1529                 return -ENODEV;
1530
1531         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1532                 return -EOPNOTSUPP;
1533
1534         rndis_dev = ndev->extension;
1535         if (indir) {
1536                 for (i = 0; i < ITAB_NUM; i++)
1537                         if (indir[i] >= ndev->num_chn)
1538                                 return -EINVAL;
1539
1540                 for (i = 0; i < ITAB_NUM; i++)
1541                         rndis_dev->rx_table[i] = indir[i];
1542         }
1543
1544         if (!key) {
1545                 if (!indir)
1546                         return 0;
1547
1548                 key = rndis_dev->rss_key;
1549         }
1550
1551         return rndis_filter_set_rss_param(rndis_dev, key);
1552 }
1553
1554 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1555  * It does have pre-allocated receive area which is divided into sections.
1556  */
1557 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1558                                    struct ethtool_ringparam *ring)
1559 {
1560         u32 max_buf_size;
1561
1562         ring->rx_pending = nvdev->recv_section_cnt;
1563         ring->tx_pending = nvdev->send_section_cnt;
1564
1565         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1566                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1567         else
1568                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1569
1570         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1571         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1572                 / nvdev->send_section_size;
1573 }
1574
1575 static void netvsc_get_ringparam(struct net_device *ndev,
1576                                  struct ethtool_ringparam *ring)
1577 {
1578         struct net_device_context *ndevctx = netdev_priv(ndev);
1579         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1580
1581         if (!nvdev)
1582                 return;
1583
1584         __netvsc_get_ringparam(nvdev, ring);
1585 }
1586
1587 static int netvsc_set_ringparam(struct net_device *ndev,
1588                                 struct ethtool_ringparam *ring)
1589 {
1590         struct net_device_context *ndevctx = netdev_priv(ndev);
1591         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1592         struct netvsc_device_info device_info;
1593         struct ethtool_ringparam orig;
1594         u32 new_tx, new_rx;
1595         int ret = 0;
1596
1597         if (!nvdev || nvdev->destroy)
1598                 return -ENODEV;
1599
1600         memset(&orig, 0, sizeof(orig));
1601         __netvsc_get_ringparam(nvdev, &orig);
1602
1603         new_tx = clamp_t(u32, ring->tx_pending,
1604                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1605         new_rx = clamp_t(u32, ring->rx_pending,
1606                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1607
1608         if (new_tx == orig.tx_pending &&
1609             new_rx == orig.rx_pending)
1610                 return 0;        /* no change */
1611
1612         memset(&device_info, 0, sizeof(device_info));
1613         device_info.num_chn = nvdev->num_chn;
1614         device_info.send_sections = new_tx;
1615         device_info.send_section_size = nvdev->send_section_size;
1616         device_info.recv_sections = new_rx;
1617         device_info.recv_section_size = nvdev->recv_section_size;
1618
1619         ret = netvsc_detach(ndev, nvdev);
1620         if (ret)
1621                 return ret;
1622
1623         ret = netvsc_attach(ndev, &device_info);
1624         if (ret) {
1625                 device_info.send_sections = orig.tx_pending;
1626                 device_info.recv_sections = orig.rx_pending;
1627
1628                 if (netvsc_attach(ndev, &device_info))
1629                         netdev_err(ndev, "restoring ringparam failed");
1630         }
1631
1632         return ret;
1633 }
1634
1635 static u32 netvsc_get_msglevel(struct net_device *ndev)
1636 {
1637         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1638
1639         return ndev_ctx->msg_enable;
1640 }
1641
1642 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1643 {
1644         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1645
1646         ndev_ctx->msg_enable = val;
1647 }
1648
1649 static const struct ethtool_ops ethtool_ops = {
1650         .get_drvinfo    = netvsc_get_drvinfo,
1651         .get_msglevel   = netvsc_get_msglevel,
1652         .set_msglevel   = netvsc_set_msglevel,
1653         .get_link       = ethtool_op_get_link,
1654         .get_ethtool_stats = netvsc_get_ethtool_stats,
1655         .get_sset_count = netvsc_get_sset_count,
1656         .get_strings    = netvsc_get_strings,
1657         .get_channels   = netvsc_get_channels,
1658         .set_channels   = netvsc_set_channels,
1659         .get_ts_info    = ethtool_op_get_ts_info,
1660         .get_rxnfc      = netvsc_get_rxnfc,
1661         .set_rxnfc      = netvsc_set_rxnfc,
1662         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1663         .get_rxfh_indir_size = netvsc_rss_indir_size,
1664         .get_rxfh       = netvsc_get_rxfh,
1665         .set_rxfh       = netvsc_set_rxfh,
1666         .get_link_ksettings = netvsc_get_link_ksettings,
1667         .set_link_ksettings = netvsc_set_link_ksettings,
1668         .get_ringparam  = netvsc_get_ringparam,
1669         .set_ringparam  = netvsc_set_ringparam,
1670 };
1671
1672 static const struct net_device_ops device_ops = {
1673         .ndo_open =                     netvsc_open,
1674         .ndo_stop =                     netvsc_close,
1675         .ndo_start_xmit =               netvsc_start_xmit,
1676         .ndo_change_rx_flags =          netvsc_change_rx_flags,
1677         .ndo_set_rx_mode =              netvsc_set_rx_mode,
1678         .ndo_change_mtu =               netvsc_change_mtu,
1679         .ndo_validate_addr =            eth_validate_addr,
1680         .ndo_set_mac_address =          netvsc_set_mac_addr,
1681         .ndo_select_queue =             netvsc_select_queue,
1682         .ndo_get_stats64 =              netvsc_get_stats64,
1683 #ifdef CONFIG_NET_POLL_CONTROLLER
1684         .ndo_poll_controller =          netvsc_poll_controller,
1685 #endif
1686 };
1687
1688 /*
1689  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1690  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1691  * present send GARP packet to network peers with netif_notify_peers().
1692  */
1693 static void netvsc_link_change(struct work_struct *w)
1694 {
1695         struct net_device_context *ndev_ctx =
1696                 container_of(w, struct net_device_context, dwork.work);
1697         struct hv_device *device_obj = ndev_ctx->device_ctx;
1698         struct net_device *net = hv_get_drvdata(device_obj);
1699         struct netvsc_device *net_device;
1700         struct rndis_device *rdev;
1701         struct netvsc_reconfig *event = NULL;
1702         bool notify = false, reschedule = false;
1703         unsigned long flags, next_reconfig, delay;
1704
1705         /* if changes are happening, comeback later */
1706         if (!rtnl_trylock()) {
1707                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1708                 return;
1709         }
1710
1711         net_device = rtnl_dereference(ndev_ctx->nvdev);
1712         if (!net_device)
1713                 goto out_unlock;
1714
1715         rdev = net_device->extension;
1716
1717         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1718         if (time_is_after_jiffies(next_reconfig)) {
1719                 /* link_watch only sends one notification with current state
1720                  * per second, avoid doing reconfig more frequently. Handle
1721                  * wrap around.
1722                  */
1723                 delay = next_reconfig - jiffies;
1724                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1725                 schedule_delayed_work(&ndev_ctx->dwork, delay);
1726                 goto out_unlock;
1727         }
1728         ndev_ctx->last_reconfig = jiffies;
1729
1730         spin_lock_irqsave(&ndev_ctx->lock, flags);
1731         if (!list_empty(&ndev_ctx->reconfig_events)) {
1732                 event = list_first_entry(&ndev_ctx->reconfig_events,
1733                                          struct netvsc_reconfig, list);
1734                 list_del(&event->list);
1735                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1736         }
1737         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1738
1739         if (!event)
1740                 goto out_unlock;
1741
1742         switch (event->event) {
1743                 /* Only the following events are possible due to the check in
1744                  * netvsc_linkstatus_callback()
1745                  */
1746         case RNDIS_STATUS_MEDIA_CONNECT:
1747                 if (rdev->link_state) {
1748                         rdev->link_state = false;
1749                         netif_carrier_on(net);
1750                         netif_tx_wake_all_queues(net);
1751                 } else {
1752                         notify = true;
1753                 }
1754                 kfree(event);
1755                 break;
1756         case RNDIS_STATUS_MEDIA_DISCONNECT:
1757                 if (!rdev->link_state) {
1758                         rdev->link_state = true;
1759                         netif_carrier_off(net);
1760                         netif_tx_stop_all_queues(net);
1761                 }
1762                 kfree(event);
1763                 break;
1764         case RNDIS_STATUS_NETWORK_CHANGE:
1765                 /* Only makes sense if carrier is present */
1766                 if (!rdev->link_state) {
1767                         rdev->link_state = true;
1768                         netif_carrier_off(net);
1769                         netif_tx_stop_all_queues(net);
1770                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
1771                         spin_lock_irqsave(&ndev_ctx->lock, flags);
1772                         list_add(&event->list, &ndev_ctx->reconfig_events);
1773                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1774                         reschedule = true;
1775                 }
1776                 break;
1777         }
1778
1779         rtnl_unlock();
1780
1781         if (notify)
1782                 netdev_notify_peers(net);
1783
1784         /* link_watch only sends one notification with current state per
1785          * second, handle next reconfig event in 2 seconds.
1786          */
1787         if (reschedule)
1788                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1789
1790         return;
1791
1792 out_unlock:
1793         rtnl_unlock();
1794 }
1795
1796 static struct net_device *get_netvsc_bymac(const u8 *mac)
1797 {
1798         struct net_device_context *ndev_ctx;
1799
1800         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
1801                 struct net_device *dev = hv_get_drvdata(ndev_ctx->device_ctx);
1802
1803                 if (ether_addr_equal(mac, dev->perm_addr))
1804                         return dev;
1805         }
1806
1807         return NULL;
1808 }
1809
1810 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1811 {
1812         struct net_device_context *net_device_ctx;
1813         struct net_device *dev;
1814
1815         dev = netdev_master_upper_dev_get(vf_netdev);
1816         if (!dev || dev->netdev_ops != &device_ops)
1817                 return NULL;    /* not a netvsc device */
1818
1819         net_device_ctx = netdev_priv(dev);
1820         if (!rtnl_dereference(net_device_ctx->nvdev))
1821                 return NULL;    /* device is removed */
1822
1823         return dev;
1824 }
1825
1826 /* Called when VF is injecting data into network stack.
1827  * Change the associated network device from VF to netvsc.
1828  * note: already called with rcu_read_lock
1829  */
1830 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1831 {
1832         struct sk_buff *skb = *pskb;
1833         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1834         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1835         struct netvsc_vf_pcpu_stats *pcpu_stats
1836                  = this_cpu_ptr(ndev_ctx->vf_stats);
1837
1838         skb->dev = ndev;
1839
1840         u64_stats_update_begin(&pcpu_stats->syncp);
1841         pcpu_stats->rx_packets++;
1842         pcpu_stats->rx_bytes += skb->len;
1843         u64_stats_update_end(&pcpu_stats->syncp);
1844
1845         return RX_HANDLER_ANOTHER;
1846 }
1847
1848 static int netvsc_vf_join(struct net_device *vf_netdev,
1849                           struct net_device *ndev)
1850 {
1851         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1852         int ret;
1853
1854         ret = netdev_rx_handler_register(vf_netdev,
1855                                          netvsc_vf_handle_frame, ndev);
1856         if (ret != 0) {
1857                 netdev_err(vf_netdev,
1858                            "can not register netvsc VF receive handler (err = %d)\n",
1859                            ret);
1860                 goto rx_handler_failed;
1861         }
1862
1863         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1864                                            NULL, NULL, NULL);
1865         if (ret != 0) {
1866                 netdev_err(vf_netdev,
1867                            "can not set master device %s (err = %d)\n",
1868                            ndev->name, ret);
1869                 goto upper_link_failed;
1870         }
1871
1872         /* set slave flag before open to prevent IPv6 addrconf */
1873         vf_netdev->flags |= IFF_SLAVE;
1874
1875         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1876
1877         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1878
1879         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1880         return 0;
1881
1882 upper_link_failed:
1883         netdev_rx_handler_unregister(vf_netdev);
1884 rx_handler_failed:
1885         return ret;
1886 }
1887
1888 static void __netvsc_vf_setup(struct net_device *ndev,
1889                               struct net_device *vf_netdev)
1890 {
1891         int ret;
1892
1893         /* Align MTU of VF with master */
1894         ret = dev_set_mtu(vf_netdev, ndev->mtu);
1895         if (ret)
1896                 netdev_warn(vf_netdev,
1897                             "unable to change mtu to %u\n", ndev->mtu);
1898
1899         /* set multicast etc flags on VF */
1900         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1901
1902         /* sync address list from ndev to VF */
1903         netif_addr_lock_bh(ndev);
1904         dev_uc_sync(vf_netdev, ndev);
1905         dev_mc_sync(vf_netdev, ndev);
1906         netif_addr_unlock_bh(ndev);
1907
1908         if (netif_running(ndev)) {
1909                 ret = dev_open(vf_netdev);
1910                 if (ret)
1911                         netdev_warn(vf_netdev,
1912                                     "unable to open: %d\n", ret);
1913         }
1914 }
1915
1916 /* Setup VF as slave of the synthetic device.
1917  * Runs in workqueue to avoid recursion in netlink callbacks.
1918  */
1919 static void netvsc_vf_setup(struct work_struct *w)
1920 {
1921         struct net_device_context *ndev_ctx
1922                 = container_of(w, struct net_device_context, vf_takeover.work);
1923         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1924         struct net_device *vf_netdev;
1925
1926         if (!rtnl_trylock()) {
1927                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1928                 return;
1929         }
1930
1931         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1932         if (vf_netdev)
1933                 __netvsc_vf_setup(ndev, vf_netdev);
1934
1935         rtnl_unlock();
1936 }
1937
1938 static int netvsc_register_vf(struct net_device *vf_netdev)
1939 {
1940         struct net_device *ndev;
1941         struct net_device_context *net_device_ctx;
1942         struct netvsc_device *netvsc_dev;
1943         int ret;
1944
1945         if (vf_netdev->addr_len != ETH_ALEN)
1946                 return NOTIFY_DONE;
1947
1948         /*
1949          * We will use the MAC address to locate the synthetic interface to
1950          * associate with the VF interface. If we don't find a matching
1951          * synthetic interface, move on.
1952          */
1953         ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1954         if (!ndev)
1955                 return NOTIFY_DONE;
1956
1957         net_device_ctx = netdev_priv(ndev);
1958         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1959         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1960                 return NOTIFY_DONE;
1961
1962         /* if syntihetic interface is a different namespace,
1963          * then move the VF to that namespace; join will be
1964          * done again in that context.
1965          */
1966         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
1967                 ret = dev_change_net_namespace(vf_netdev,
1968                                                dev_net(ndev), "eth%d");
1969                 if (ret)
1970                         netdev_err(vf_netdev,
1971                                    "could not move to same namespace as %s: %d\n",
1972                                    ndev->name, ret);
1973                 else
1974                         netdev_info(vf_netdev,
1975                                     "VF moved to namespace with: %s\n",
1976                                     ndev->name);
1977                 return NOTIFY_DONE;
1978         }
1979
1980         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1981
1982         if (netvsc_vf_join(vf_netdev, ndev) != 0)
1983                 return NOTIFY_DONE;
1984
1985         dev_hold(vf_netdev);
1986         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1987         return NOTIFY_OK;
1988 }
1989
1990 /* VF up/down change detected, schedule to change data path */
1991 static int netvsc_vf_changed(struct net_device *vf_netdev)
1992 {
1993         struct net_device_context *net_device_ctx;
1994         struct netvsc_device *netvsc_dev;
1995         struct net_device *ndev;
1996         bool vf_is_up = netif_running(vf_netdev);
1997
1998         ndev = get_netvsc_byref(vf_netdev);
1999         if (!ndev)
2000                 return NOTIFY_DONE;
2001
2002         net_device_ctx = netdev_priv(ndev);
2003         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2004         if (!netvsc_dev)
2005                 return NOTIFY_DONE;
2006
2007         netvsc_switch_datapath(ndev, vf_is_up);
2008         netdev_info(ndev, "Data path switched %s VF: %s\n",
2009                     vf_is_up ? "to" : "from", vf_netdev->name);
2010
2011         return NOTIFY_OK;
2012 }
2013
2014 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2015 {
2016         struct net_device *ndev;
2017         struct net_device_context *net_device_ctx;
2018
2019         ndev = get_netvsc_byref(vf_netdev);
2020         if (!ndev)
2021                 return NOTIFY_DONE;
2022
2023         net_device_ctx = netdev_priv(ndev);
2024         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2025
2026         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2027
2028         netdev_rx_handler_unregister(vf_netdev);
2029         netdev_upper_dev_unlink(vf_netdev, ndev);
2030         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2031         dev_put(vf_netdev);
2032
2033         return NOTIFY_OK;
2034 }
2035
2036 static int netvsc_probe(struct hv_device *dev,
2037                         const struct hv_vmbus_device_id *dev_id)
2038 {
2039         struct net_device *net = NULL;
2040         struct net_device_context *net_device_ctx;
2041         struct netvsc_device_info device_info;
2042         struct netvsc_device *nvdev;
2043         int ret = -ENOMEM;
2044
2045         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2046                                 VRSS_CHANNEL_MAX);
2047         if (!net)
2048                 goto no_net;
2049
2050         netif_carrier_off(net);
2051
2052         netvsc_init_settings(net);
2053
2054         net_device_ctx = netdev_priv(net);
2055         net_device_ctx->device_ctx = dev;
2056         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2057         if (netif_msg_probe(net_device_ctx))
2058                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2059                            net_device_ctx->msg_enable);
2060
2061         hv_set_drvdata(dev, net);
2062
2063         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2064
2065         spin_lock_init(&net_device_ctx->lock);
2066         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2067         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2068
2069         net_device_ctx->vf_stats
2070                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2071         if (!net_device_ctx->vf_stats)
2072                 goto no_stats;
2073
2074         net->netdev_ops = &device_ops;
2075         net->ethtool_ops = &ethtool_ops;
2076         SET_NETDEV_DEV(net, &dev->device);
2077
2078         /* We always need headroom for rndis header */
2079         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2080
2081         /* Initialize the number of queues to be 1, we may change it if more
2082          * channels are offered later.
2083          */
2084         netif_set_real_num_tx_queues(net, 1);
2085         netif_set_real_num_rx_queues(net, 1);
2086
2087         /* Notify the netvsc driver of the new device */
2088         memset(&device_info, 0, sizeof(device_info));
2089         device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2090         device_info.send_sections = NETVSC_DEFAULT_TX;
2091         device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2092         device_info.recv_sections = NETVSC_DEFAULT_RX;
2093         device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2094
2095         nvdev = rndis_filter_device_add(dev, &device_info);
2096         if (IS_ERR(nvdev)) {
2097                 ret = PTR_ERR(nvdev);
2098                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2099                 goto rndis_failed;
2100         }
2101
2102         memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2103
2104         if (nvdev->num_chn > 1)
2105                 schedule_work(&nvdev->subchan_work);
2106
2107         /* hw_features computed in rndis_netdev_set_hwcaps() */
2108         net->features = net->hw_features |
2109                 NETIF_F_HIGHDMA | NETIF_F_SG |
2110                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2111         net->vlan_features = net->features;
2112
2113         netdev_lockdep_set_classes(net);
2114
2115         /* MTU range: 68 - 1500 or 65521 */
2116         net->min_mtu = NETVSC_MTU_MIN;
2117         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2118                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2119         else
2120                 net->max_mtu = ETH_DATA_LEN;
2121
2122         rtnl_lock();
2123         ret = register_netdevice(net);
2124         if (ret != 0) {
2125                 pr_err("Unable to register netdev.\n");
2126                 goto register_failed;
2127         }
2128
2129         list_add(&net_device_ctx->list, &netvsc_dev_list);
2130         rtnl_unlock();
2131         return 0;
2132
2133 register_failed:
2134         rtnl_unlock();
2135         rndis_filter_device_remove(dev, nvdev);
2136 rndis_failed:
2137         free_percpu(net_device_ctx->vf_stats);
2138 no_stats:
2139         hv_set_drvdata(dev, NULL);
2140         free_netdev(net);
2141 no_net:
2142         return ret;
2143 }
2144
2145 static int netvsc_remove(struct hv_device *dev)
2146 {
2147         struct net_device_context *ndev_ctx;
2148         struct net_device *vf_netdev, *net;
2149         struct netvsc_device *nvdev;
2150
2151         net = hv_get_drvdata(dev);
2152         if (net == NULL) {
2153                 dev_err(&dev->device, "No net device to remove\n");
2154                 return 0;
2155         }
2156
2157         ndev_ctx = netdev_priv(net);
2158
2159         cancel_delayed_work_sync(&ndev_ctx->dwork);
2160
2161         rcu_read_lock();
2162         nvdev = rcu_dereference(ndev_ctx->nvdev);
2163
2164         if  (nvdev)
2165                 cancel_work_sync(&nvdev->subchan_work);
2166
2167         /*
2168          * Call to the vsc driver to let it know that the device is being
2169          * removed. Also blocks mtu and channel changes.
2170          */
2171         rtnl_lock();
2172         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2173         if (vf_netdev)
2174                 netvsc_unregister_vf(vf_netdev);
2175
2176         if (nvdev)
2177                 rndis_filter_device_remove(dev, nvdev);
2178
2179         unregister_netdevice(net);
2180         list_del(&ndev_ctx->list);
2181
2182         rtnl_unlock();
2183         rcu_read_unlock();
2184
2185         hv_set_drvdata(dev, NULL);
2186
2187         free_percpu(ndev_ctx->vf_stats);
2188         free_netdev(net);
2189         return 0;
2190 }
2191
2192 static const struct hv_vmbus_device_id id_table[] = {
2193         /* Network guid */
2194         { HV_NIC_GUID, },
2195         { },
2196 };
2197
2198 MODULE_DEVICE_TABLE(vmbus, id_table);
2199
2200 /* The one and only one */
2201 static struct  hv_driver netvsc_drv = {
2202         .name = KBUILD_MODNAME,
2203         .id_table = id_table,
2204         .probe = netvsc_probe,
2205         .remove = netvsc_remove,
2206 };
2207
2208 /*
2209  * On Hyper-V, every VF interface is matched with a corresponding
2210  * synthetic interface. The synthetic interface is presented first
2211  * to the guest. When the corresponding VF instance is registered,
2212  * we will take care of switching the data path.
2213  */
2214 static int netvsc_netdev_event(struct notifier_block *this,
2215                                unsigned long event, void *ptr)
2216 {
2217         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2218
2219         /* Skip our own events */
2220         if (event_dev->netdev_ops == &device_ops)
2221                 return NOTIFY_DONE;
2222
2223         /* Avoid non-Ethernet type devices */
2224         if (event_dev->type != ARPHRD_ETHER)
2225                 return NOTIFY_DONE;
2226
2227         /* Avoid Vlan dev with same MAC registering as VF */
2228         if (is_vlan_dev(event_dev))
2229                 return NOTIFY_DONE;
2230
2231         /* Avoid Bonding master dev with same MAC registering as VF */
2232         if ((event_dev->priv_flags & IFF_BONDING) &&
2233             (event_dev->flags & IFF_MASTER))
2234                 return NOTIFY_DONE;
2235
2236         switch (event) {
2237         case NETDEV_REGISTER:
2238                 return netvsc_register_vf(event_dev);
2239         case NETDEV_UNREGISTER:
2240                 return netvsc_unregister_vf(event_dev);
2241         case NETDEV_UP:
2242         case NETDEV_DOWN:
2243                 return netvsc_vf_changed(event_dev);
2244         default:
2245                 return NOTIFY_DONE;
2246         }
2247 }
2248
2249 static struct notifier_block netvsc_netdev_notifier = {
2250         .notifier_call = netvsc_netdev_event,
2251 };
2252
2253 static void __exit netvsc_drv_exit(void)
2254 {
2255         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2256         vmbus_driver_unregister(&netvsc_drv);
2257 }
2258
2259 static int __init netvsc_drv_init(void)
2260 {
2261         int ret;
2262
2263         if (ring_size < RING_SIZE_MIN) {
2264                 ring_size = RING_SIZE_MIN;
2265                 pr_info("Increased ring_size to %u (min allowed)\n",
2266                         ring_size);
2267         }
2268         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2269
2270         ret = vmbus_driver_register(&netvsc_drv);
2271         if (ret)
2272                 return ret;
2273
2274         register_netdevice_notifier(&netvsc_netdev_notifier);
2275         return 0;
2276 }
2277
2278 MODULE_LICENSE("GPL");
2279 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2280
2281 module_init(netvsc_drv_init);
2282 module_exit(netvsc_drv_exit);