Merge tag 'lkdtm-next' of https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux...
[linux-2.6-microblaze.git] / drivers / net / hippi / rrunner.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4  *
5  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6  *
7  * Thanks to Essential Communication for providing us with hardware
8  * and very comprehensive documentation without which I would not have
9  * been able to write this driver. A special thank you to John Gibbon
10  * for sorting out the legal issues, with the NDA, allowing the code to
11  * be released under the GPL.
12  *
13  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
14  * stupid bugs in my code.
15  *
16  * Softnet support and various other patches from Val Henson of
17  * ODS/Essential.
18  *
19  * PCI DMA mapping code partly based on work by Francois Romieu.
20  */
21
22
23 #define DEBUG 1
24 #define RX_DMA_SKBUFF 1
25 #define PKT_COPY_THRESHOLD 512
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/pci.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/hippidevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <linux/slab.h>
39 #include <net/sock.h>
40
41 #include <asm/cache.h>
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/irq.h>
45 #include <linux/uaccess.h>
46
47 #define rr_if_busy(dev)     netif_queue_stopped(dev)
48 #define rr_if_running(dev)  netif_running(dev)
49
50 #include "rrunner.h"
51
52 #define RUN_AT(x) (jiffies + (x))
53
54
55 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
56 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
57 MODULE_LICENSE("GPL");
58
59 static const char version[] =
60 "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
61
62
63 static const struct net_device_ops rr_netdev_ops = {
64         .ndo_open               = rr_open,
65         .ndo_stop               = rr_close,
66         .ndo_siocdevprivate     = rr_siocdevprivate,
67         .ndo_start_xmit         = rr_start_xmit,
68         .ndo_set_mac_address    = hippi_mac_addr,
69 };
70
71 /*
72  * Implementation notes:
73  *
74  * The DMA engine only allows for DMA within physical 64KB chunks of
75  * memory. The current approach of the driver (and stack) is to use
76  * linear blocks of memory for the skbuffs. However, as the data block
77  * is always the first part of the skb and skbs are 2^n aligned so we
78  * are guarantted to get the whole block within one 64KB align 64KB
79  * chunk.
80  *
81  * On the long term, relying on being able to allocate 64KB linear
82  * chunks of memory is not feasible and the skb handling code and the
83  * stack will need to know about I/O vectors or something similar.
84  */
85
86 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
87 {
88         struct net_device *dev;
89         static int version_disp;
90         u8 pci_latency;
91         struct rr_private *rrpriv;
92         void *tmpptr;
93         dma_addr_t ring_dma;
94         int ret = -ENOMEM;
95
96         dev = alloc_hippi_dev(sizeof(struct rr_private));
97         if (!dev)
98                 goto out3;
99
100         ret = pci_enable_device(pdev);
101         if (ret) {
102                 ret = -ENODEV;
103                 goto out2;
104         }
105
106         rrpriv = netdev_priv(dev);
107
108         SET_NETDEV_DEV(dev, &pdev->dev);
109
110         ret = pci_request_regions(pdev, "rrunner");
111         if (ret < 0)
112                 goto out;
113
114         pci_set_drvdata(pdev, dev);
115
116         rrpriv->pci_dev = pdev;
117
118         spin_lock_init(&rrpriv->lock);
119
120         dev->netdev_ops = &rr_netdev_ops;
121
122         /* display version info if adapter is found */
123         if (!version_disp) {
124                 /* set display flag to TRUE so that */
125                 /* we only display this string ONCE */
126                 version_disp = 1;
127                 printk(version);
128         }
129
130         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
131         if (pci_latency <= 0x58){
132                 pci_latency = 0x58;
133                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
134         }
135
136         pci_set_master(pdev);
137
138         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
139                "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
140                (unsigned long long)pci_resource_start(pdev, 0),
141                pdev->irq, pci_latency);
142
143         /*
144          * Remap the MMIO regs into kernel space.
145          */
146         rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
147         if (!rrpriv->regs) {
148                 printk(KERN_ERR "%s:  Unable to map I/O register, "
149                         "RoadRunner will be disabled.\n", dev->name);
150                 ret = -EIO;
151                 goto out;
152         }
153
154         tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
155                                     GFP_KERNEL);
156         rrpriv->tx_ring = tmpptr;
157         rrpriv->tx_ring_dma = ring_dma;
158
159         if (!tmpptr) {
160                 ret = -ENOMEM;
161                 goto out;
162         }
163
164         tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
165                                     GFP_KERNEL);
166         rrpriv->rx_ring = tmpptr;
167         rrpriv->rx_ring_dma = ring_dma;
168
169         if (!tmpptr) {
170                 ret = -ENOMEM;
171                 goto out;
172         }
173
174         tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
175                                     GFP_KERNEL);
176         rrpriv->evt_ring = tmpptr;
177         rrpriv->evt_ring_dma = ring_dma;
178
179         if (!tmpptr) {
180                 ret = -ENOMEM;
181                 goto out;
182         }
183
184         /*
185          * Don't access any register before this point!
186          */
187 #ifdef __BIG_ENDIAN
188         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189                 &rrpriv->regs->HostCtrl);
190 #endif
191         /*
192          * Need to add a case for little-endian 64-bit hosts here.
193          */
194
195         rr_init(dev);
196
197         ret = register_netdev(dev);
198         if (ret)
199                 goto out;
200         return 0;
201
202  out:
203         if (rrpriv->evt_ring)
204                 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
205                                   rrpriv->evt_ring_dma);
206         if (rrpriv->rx_ring)
207                 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208                                   rrpriv->rx_ring_dma);
209         if (rrpriv->tx_ring)
210                 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211                                   rrpriv->tx_ring_dma);
212         if (rrpriv->regs)
213                 pci_iounmap(pdev, rrpriv->regs);
214         if (pdev)
215                 pci_release_regions(pdev);
216  out2:
217         free_netdev(dev);
218  out3:
219         return ret;
220 }
221
222 static void rr_remove_one(struct pci_dev *pdev)
223 {
224         struct net_device *dev = pci_get_drvdata(pdev);
225         struct rr_private *rr = netdev_priv(dev);
226
227         if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
228                 printk(KERN_ERR "%s: trying to unload running NIC\n",
229                        dev->name);
230                 writel(HALT_NIC, &rr->regs->HostCtrl);
231         }
232
233         unregister_netdev(dev);
234         dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
235                           rr->evt_ring_dma);
236         dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
237                           rr->rx_ring_dma);
238         dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
239                           rr->tx_ring_dma);
240         pci_iounmap(pdev, rr->regs);
241         pci_release_regions(pdev);
242         pci_disable_device(pdev);
243         free_netdev(dev);
244 }
245
246
247 /*
248  * Commands are considered to be slow, thus there is no reason to
249  * inline this.
250  */
251 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
252 {
253         struct rr_regs __iomem *regs;
254         u32 idx;
255
256         regs = rrpriv->regs;
257         /*
258          * This is temporary - it will go away in the final version.
259          * We probably also want to make this function inline.
260          */
261         if (readl(&regs->HostCtrl) & NIC_HALTED){
262                 printk("issuing command for halted NIC, code 0x%x, "
263                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
264                 if (readl(&regs->Mode) & FATAL_ERR)
265                         printk("error codes Fail1 %02x, Fail2 %02x\n",
266                                readl(&regs->Fail1), readl(&regs->Fail2));
267         }
268
269         idx = rrpriv->info->cmd_ctrl.pi;
270
271         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
272         wmb();
273
274         idx = (idx - 1) % CMD_RING_ENTRIES;
275         rrpriv->info->cmd_ctrl.pi = idx;
276         wmb();
277
278         if (readl(&regs->Mode) & FATAL_ERR)
279                 printk("error code %02x\n", readl(&regs->Fail1));
280 }
281
282
283 /*
284  * Reset the board in a sensible manner. The NIC is already halted
285  * when we get here and a spin-lock is held.
286  */
287 static int rr_reset(struct net_device *dev)
288 {
289         struct rr_private *rrpriv;
290         struct rr_regs __iomem *regs;
291         u32 start_pc;
292         int i;
293
294         rrpriv = netdev_priv(dev);
295         regs = rrpriv->regs;
296
297         rr_load_firmware(dev);
298
299         writel(0x01000000, &regs->TX_state);
300         writel(0xff800000, &regs->RX_state);
301         writel(0, &regs->AssistState);
302         writel(CLEAR_INTA, &regs->LocalCtrl);
303         writel(0x01, &regs->BrkPt);
304         writel(0, &regs->Timer);
305         writel(0, &regs->TimerRef);
306         writel(RESET_DMA, &regs->DmaReadState);
307         writel(RESET_DMA, &regs->DmaWriteState);
308         writel(0, &regs->DmaWriteHostHi);
309         writel(0, &regs->DmaWriteHostLo);
310         writel(0, &regs->DmaReadHostHi);
311         writel(0, &regs->DmaReadHostLo);
312         writel(0, &regs->DmaReadLen);
313         writel(0, &regs->DmaWriteLen);
314         writel(0, &regs->DmaWriteLcl);
315         writel(0, &regs->DmaWriteIPchecksum);
316         writel(0, &regs->DmaReadLcl);
317         writel(0, &regs->DmaReadIPchecksum);
318         writel(0, &regs->PciState);
319 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
320         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
321 #elif (BITS_PER_LONG == 64)
322         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
323 #else
324         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
325 #endif
326
327 #if 0
328         /*
329          * Don't worry, this is just black magic.
330          */
331         writel(0xdf000, &regs->RxBase);
332         writel(0xdf000, &regs->RxPrd);
333         writel(0xdf000, &regs->RxCon);
334         writel(0xce000, &regs->TxBase);
335         writel(0xce000, &regs->TxPrd);
336         writel(0xce000, &regs->TxCon);
337         writel(0, &regs->RxIndPro);
338         writel(0, &regs->RxIndCon);
339         writel(0, &regs->RxIndRef);
340         writel(0, &regs->TxIndPro);
341         writel(0, &regs->TxIndCon);
342         writel(0, &regs->TxIndRef);
343         writel(0xcc000, &regs->pad10[0]);
344         writel(0, &regs->DrCmndPro);
345         writel(0, &regs->DrCmndCon);
346         writel(0, &regs->DwCmndPro);
347         writel(0, &regs->DwCmndCon);
348         writel(0, &regs->DwCmndRef);
349         writel(0, &regs->DrDataPro);
350         writel(0, &regs->DrDataCon);
351         writel(0, &regs->DrDataRef);
352         writel(0, &regs->DwDataPro);
353         writel(0, &regs->DwDataCon);
354         writel(0, &regs->DwDataRef);
355 #endif
356
357         writel(0xffffffff, &regs->MbEvent);
358         writel(0, &regs->Event);
359
360         writel(0, &regs->TxPi);
361         writel(0, &regs->IpRxPi);
362
363         writel(0, &regs->EvtCon);
364         writel(0, &regs->EvtPrd);
365
366         rrpriv->info->evt_ctrl.pi = 0;
367
368         for (i = 0; i < CMD_RING_ENTRIES; i++)
369                 writel(0, &regs->CmdRing[i]);
370
371 /*
372  * Why 32 ? is this not cache line size dependent?
373  */
374         writel(RBURST_64|WBURST_64, &regs->PciState);
375         wmb();
376
377         start_pc = rr_read_eeprom_word(rrpriv,
378                         offsetof(struct eeprom, rncd_info.FwStart));
379
380 #if (DEBUG > 1)
381         printk("%s: Executing firmware at address 0x%06x\n",
382                dev->name, start_pc);
383 #endif
384
385         writel(start_pc + 0x800, &regs->Pc);
386         wmb();
387         udelay(5);
388
389         writel(start_pc, &regs->Pc);
390         wmb();
391
392         return 0;
393 }
394
395
396 /*
397  * Read a string from the EEPROM.
398  */
399 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
400                                 unsigned long offset,
401                                 unsigned char *buf,
402                                 unsigned long length)
403 {
404         struct rr_regs __iomem *regs = rrpriv->regs;
405         u32 misc, io, host, i;
406
407         io = readl(&regs->ExtIo);
408         writel(0, &regs->ExtIo);
409         misc = readl(&regs->LocalCtrl);
410         writel(0, &regs->LocalCtrl);
411         host = readl(&regs->HostCtrl);
412         writel(host | HALT_NIC, &regs->HostCtrl);
413         mb();
414
415         for (i = 0; i < length; i++){
416                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
417                 mb();
418                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
419                 mb();
420         }
421
422         writel(host, &regs->HostCtrl);
423         writel(misc, &regs->LocalCtrl);
424         writel(io, &regs->ExtIo);
425         mb();
426         return i;
427 }
428
429
430 /*
431  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
432  * it to our CPU byte-order.
433  */
434 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
435                             size_t offset)
436 {
437         __be32 word;
438
439         if ((rr_read_eeprom(rrpriv, offset,
440                             (unsigned char *)&word, 4) == 4))
441                 return be32_to_cpu(word);
442         return 0;
443 }
444
445
446 /*
447  * Write a string to the EEPROM.
448  *
449  * This is only called when the firmware is not running.
450  */
451 static unsigned int write_eeprom(struct rr_private *rrpriv,
452                                  unsigned long offset,
453                                  unsigned char *buf,
454                                  unsigned long length)
455 {
456         struct rr_regs __iomem *regs = rrpriv->regs;
457         u32 misc, io, data, i, j, ready, error = 0;
458
459         io = readl(&regs->ExtIo);
460         writel(0, &regs->ExtIo);
461         misc = readl(&regs->LocalCtrl);
462         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
463         mb();
464
465         for (i = 0; i < length; i++){
466                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
467                 mb();
468                 data = buf[i] << 24;
469                 /*
470                  * Only try to write the data if it is not the same
471                  * value already.
472                  */
473                 if ((readl(&regs->WinData) & 0xff000000) != data){
474                         writel(data, &regs->WinData);
475                         ready = 0;
476                         j = 0;
477                         mb();
478                         while(!ready){
479                                 udelay(20);
480                                 if ((readl(&regs->WinData) & 0xff000000) ==
481                                     data)
482                                         ready = 1;
483                                 mb();
484                                 if (j++ > 5000){
485                                         printk("data mismatch: %08x, "
486                                                "WinData %08x\n", data,
487                                                readl(&regs->WinData));
488                                         ready = 1;
489                                         error = 1;
490                                 }
491                         }
492                 }
493         }
494
495         writel(misc, &regs->LocalCtrl);
496         writel(io, &regs->ExtIo);
497         mb();
498
499         return error;
500 }
501
502
503 static int rr_init(struct net_device *dev)
504 {
505         u8 addr[HIPPI_ALEN] __aligned(4);
506         struct rr_private *rrpriv;
507         struct rr_regs __iomem *regs;
508         u32 sram_size, rev;
509
510         rrpriv = netdev_priv(dev);
511         regs = rrpriv->regs;
512
513         rev = readl(&regs->FwRev);
514         rrpriv->fw_rev = rev;
515         if (rev > 0x00020024)
516                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
517                        ((rev >> 8) & 0xff), (rev & 0xff));
518         else if (rev >= 0x00020000) {
519                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
520                        "later is recommended)\n", (rev >> 16),
521                        ((rev >> 8) & 0xff), (rev & 0xff));
522         }else{
523                 printk("  Firmware revision too old: %i.%i.%i, please "
524                        "upgrade to 2.0.37 or later.\n",
525                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
526         }
527
528 #if (DEBUG > 2)
529         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
530 #endif
531
532         /*
533          * Read the hardware address from the eeprom.  The HW address
534          * is not really necessary for HIPPI but awfully convenient.
535          * The pointer arithmetic to put it in dev_addr is ugly, but
536          * Donald Becker does it this way for the GigE version of this
537          * card and it's shorter and more portable than any
538          * other method I've seen.  -VAL
539          */
540
541         *(__be16 *)(addr) =
542           htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
543         *(__be32 *)(addr+2) =
544           htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
545         dev_addr_set(dev, addr);
546
547         printk("  MAC: %pM\n", dev->dev_addr);
548
549         sram_size = rr_read_eeprom_word(rrpriv, 8);
550         printk("  SRAM size 0x%06x\n", sram_size);
551
552         return 0;
553 }
554
555
556 static int rr_init1(struct net_device *dev)
557 {
558         struct rr_private *rrpriv;
559         struct rr_regs __iomem *regs;
560         unsigned long myjif, flags;
561         struct cmd cmd;
562         u32 hostctrl;
563         int ecode = 0;
564         short i;
565
566         rrpriv = netdev_priv(dev);
567         regs = rrpriv->regs;
568
569         spin_lock_irqsave(&rrpriv->lock, flags);
570
571         hostctrl = readl(&regs->HostCtrl);
572         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
573         wmb();
574
575         if (hostctrl & PARITY_ERR){
576                 printk("%s: Parity error halting NIC - this is serious!\n",
577                        dev->name);
578                 spin_unlock_irqrestore(&rrpriv->lock, flags);
579                 ecode = -EFAULT;
580                 goto error;
581         }
582
583         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
584         set_infoaddr(regs, rrpriv->info_dma);
585
586         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
587         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
588         rrpriv->info->evt_ctrl.mode = 0;
589         rrpriv->info->evt_ctrl.pi = 0;
590         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
591
592         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
593         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
594         rrpriv->info->cmd_ctrl.mode = 0;
595         rrpriv->info->cmd_ctrl.pi = 15;
596
597         for (i = 0; i < CMD_RING_ENTRIES; i++) {
598                 writel(0, &regs->CmdRing[i]);
599         }
600
601         for (i = 0; i < TX_RING_ENTRIES; i++) {
602                 rrpriv->tx_ring[i].size = 0;
603                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
604                 rrpriv->tx_skbuff[i] = NULL;
605         }
606         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
607         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
608         rrpriv->info->tx_ctrl.mode = 0;
609         rrpriv->info->tx_ctrl.pi = 0;
610         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
611
612         /*
613          * Set dirty_tx before we start receiving interrupts, otherwise
614          * the interrupt handler might think it is supposed to process
615          * tx ints before we are up and running, which may cause a null
616          * pointer access in the int handler.
617          */
618         rrpriv->tx_full = 0;
619         rrpriv->cur_rx = 0;
620         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
621
622         rr_reset(dev);
623
624         /* Tuning values */
625         writel(0x5000, &regs->ConRetry);
626         writel(0x100, &regs->ConRetryTmr);
627         writel(0x500000, &regs->ConTmout);
628         writel(0x60, &regs->IntrTmr);
629         writel(0x500000, &regs->TxDataMvTimeout);
630         writel(0x200000, &regs->RxDataMvTimeout);
631         writel(0x80, &regs->WriteDmaThresh);
632         writel(0x80, &regs->ReadDmaThresh);
633
634         rrpriv->fw_running = 0;
635         wmb();
636
637         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
638         writel(hostctrl, &regs->HostCtrl);
639         wmb();
640
641         spin_unlock_irqrestore(&rrpriv->lock, flags);
642
643         for (i = 0; i < RX_RING_ENTRIES; i++) {
644                 struct sk_buff *skb;
645                 dma_addr_t addr;
646
647                 rrpriv->rx_ring[i].mode = 0;
648                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
649                 if (!skb) {
650                         printk(KERN_WARNING "%s: Unable to allocate memory "
651                                "for receive ring - halting NIC\n", dev->name);
652                         ecode = -ENOMEM;
653                         goto error;
654                 }
655                 rrpriv->rx_skbuff[i] = skb;
656                 addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
657                                       dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
658                 /*
659                  * Sanity test to see if we conflict with the DMA
660                  * limitations of the Roadrunner.
661                  */
662                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
663                         printk("skb alloc error\n");
664
665                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
666                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
667         }
668
669         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
670         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
671         rrpriv->rx_ctrl[4].mode = 8;
672         rrpriv->rx_ctrl[4].pi = 0;
673         wmb();
674         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
675
676         udelay(1000);
677
678         /*
679          * Now start the FirmWare.
680          */
681         cmd.code = C_START_FW;
682         cmd.ring = 0;
683         cmd.index = 0;
684
685         rr_issue_cmd(rrpriv, &cmd);
686
687         /*
688          * Give the FirmWare time to chew on the `get running' command.
689          */
690         myjif = jiffies + 5 * HZ;
691         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
692                 cpu_relax();
693
694         netif_start_queue(dev);
695
696         return ecode;
697
698  error:
699         /*
700          * We might have gotten here because we are out of memory,
701          * make sure we release everything we allocated before failing
702          */
703         for (i = 0; i < RX_RING_ENTRIES; i++) {
704                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
705
706                 if (skb) {
707                         dma_unmap_single(&rrpriv->pci_dev->dev,
708                                          rrpriv->rx_ring[i].addr.addrlo,
709                                          dev->mtu + HIPPI_HLEN,
710                                          DMA_FROM_DEVICE);
711                         rrpriv->rx_ring[i].size = 0;
712                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
713                         dev_kfree_skb(skb);
714                         rrpriv->rx_skbuff[i] = NULL;
715                 }
716         }
717         return ecode;
718 }
719
720
721 /*
722  * All events are considered to be slow (RX/TX ints do not generate
723  * events) and are handled here, outside the main interrupt handler,
724  * to reduce the size of the handler.
725  */
726 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
727 {
728         struct rr_private *rrpriv;
729         struct rr_regs __iomem *regs;
730         u32 tmp;
731
732         rrpriv = netdev_priv(dev);
733         regs = rrpriv->regs;
734
735         while (prodidx != eidx){
736                 switch (rrpriv->evt_ring[eidx].code){
737                 case E_NIC_UP:
738                         tmp = readl(&regs->FwRev);
739                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
740                                "up and running\n", dev->name,
741                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
742                         rrpriv->fw_running = 1;
743                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
744                         wmb();
745                         break;
746                 case E_LINK_ON:
747                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
748                         break;
749                 case E_LINK_OFF:
750                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
751                         break;
752                 case E_RX_IDLE:
753                         printk(KERN_WARNING "%s: RX data not moving\n",
754                                dev->name);
755                         goto drop;
756                 case E_WATCHDOG:
757                         printk(KERN_INFO "%s: The watchdog is here to see "
758                                "us\n", dev->name);
759                         break;
760                 case E_INTERN_ERR:
761                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
762                                dev->name);
763                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
764                                &regs->HostCtrl);
765                         wmb();
766                         break;
767                 case E_HOST_ERR:
768                         printk(KERN_ERR "%s: Host software error\n",
769                                dev->name);
770                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
771                                &regs->HostCtrl);
772                         wmb();
773                         break;
774                 /*
775                  * TX events.
776                  */
777                 case E_CON_REJ:
778                         printk(KERN_WARNING "%s: Connection rejected\n",
779                                dev->name);
780                         dev->stats.tx_aborted_errors++;
781                         break;
782                 case E_CON_TMOUT:
783                         printk(KERN_WARNING "%s: Connection timeout\n",
784                                dev->name);
785                         break;
786                 case E_DISC_ERR:
787                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
788                                dev->name);
789                         dev->stats.tx_aborted_errors++;
790                         break;
791                 case E_INT_PRTY:
792                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
793                                dev->name);
794                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
795                                &regs->HostCtrl);
796                         wmb();
797                         break;
798                 case E_TX_IDLE:
799                         printk(KERN_WARNING "%s: Transmitter idle\n",
800                                dev->name);
801                         break;
802                 case E_TX_LINK_DROP:
803                         printk(KERN_WARNING "%s: Link lost during transmit\n",
804                                dev->name);
805                         dev->stats.tx_aborted_errors++;
806                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
807                                &regs->HostCtrl);
808                         wmb();
809                         break;
810                 case E_TX_INV_RNG:
811                         printk(KERN_ERR "%s: Invalid send ring block\n",
812                                dev->name);
813                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
814                                &regs->HostCtrl);
815                         wmb();
816                         break;
817                 case E_TX_INV_BUF:
818                         printk(KERN_ERR "%s: Invalid send buffer address\n",
819                                dev->name);
820                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
821                                &regs->HostCtrl);
822                         wmb();
823                         break;
824                 case E_TX_INV_DSC:
825                         printk(KERN_ERR "%s: Invalid descriptor address\n",
826                                dev->name);
827                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
828                                &regs->HostCtrl);
829                         wmb();
830                         break;
831                 /*
832                  * RX events.
833                  */
834                 case E_RX_RNG_OUT:
835                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
836                         break;
837
838                 case E_RX_PAR_ERR:
839                         printk(KERN_WARNING "%s: Receive parity error\n",
840                                dev->name);
841                         goto drop;
842                 case E_RX_LLRC_ERR:
843                         printk(KERN_WARNING "%s: Receive LLRC error\n",
844                                dev->name);
845                         goto drop;
846                 case E_PKT_LN_ERR:
847                         printk(KERN_WARNING "%s: Receive packet length "
848                                "error\n", dev->name);
849                         goto drop;
850                 case E_DTA_CKSM_ERR:
851                         printk(KERN_WARNING "%s: Data checksum error\n",
852                                dev->name);
853                         goto drop;
854                 case E_SHT_BST:
855                         printk(KERN_WARNING "%s: Unexpected short burst "
856                                "error\n", dev->name);
857                         goto drop;
858                 case E_STATE_ERR:
859                         printk(KERN_WARNING "%s: Recv. state transition"
860                                " error\n", dev->name);
861                         goto drop;
862                 case E_UNEXP_DATA:
863                         printk(KERN_WARNING "%s: Unexpected data error\n",
864                                dev->name);
865                         goto drop;
866                 case E_LST_LNK_ERR:
867                         printk(KERN_WARNING "%s: Link lost error\n",
868                                dev->name);
869                         goto drop;
870                 case E_FRM_ERR:
871                         printk(KERN_WARNING "%s: Framing Error\n",
872                                dev->name);
873                         goto drop;
874                 case E_FLG_SYN_ERR:
875                         printk(KERN_WARNING "%s: Flag sync. lost during "
876                                "packet\n", dev->name);
877                         goto drop;
878                 case E_RX_INV_BUF:
879                         printk(KERN_ERR "%s: Invalid receive buffer "
880                                "address\n", dev->name);
881                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
882                                &regs->HostCtrl);
883                         wmb();
884                         break;
885                 case E_RX_INV_DSC:
886                         printk(KERN_ERR "%s: Invalid receive descriptor "
887                                "address\n", dev->name);
888                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
889                                &regs->HostCtrl);
890                         wmb();
891                         break;
892                 case E_RNG_BLK:
893                         printk(KERN_ERR "%s: Invalid ring block\n",
894                                dev->name);
895                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
896                                &regs->HostCtrl);
897                         wmb();
898                         break;
899                 drop:
900                         /* Label packet to be dropped.
901                          * Actual dropping occurs in rx
902                          * handling.
903                          *
904                          * The index of packet we get to drop is
905                          * the index of the packet following
906                          * the bad packet. -kbf
907                          */
908                         {
909                                 u16 index = rrpriv->evt_ring[eidx].index;
910                                 index = (index + (RX_RING_ENTRIES - 1)) %
911                                         RX_RING_ENTRIES;
912                                 rrpriv->rx_ring[index].mode |=
913                                         (PACKET_BAD | PACKET_END);
914                         }
915                         break;
916                 default:
917                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
918                                dev->name, rrpriv->evt_ring[eidx].code);
919                 }
920                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
921         }
922
923         rrpriv->info->evt_ctrl.pi = eidx;
924         wmb();
925         return eidx;
926 }
927
928
929 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
930 {
931         struct rr_private *rrpriv = netdev_priv(dev);
932         struct rr_regs __iomem *regs = rrpriv->regs;
933
934         do {
935                 struct rx_desc *desc;
936                 u32 pkt_len;
937
938                 desc = &(rrpriv->rx_ring[index]);
939                 pkt_len = desc->size;
940 #if (DEBUG > 2)
941                 printk("index %i, rxlimit %i\n", index, rxlimit);
942                 printk("len %x, mode %x\n", pkt_len, desc->mode);
943 #endif
944                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
945                         dev->stats.rx_dropped++;
946                         goto defer;
947                 }
948
949                 if (pkt_len > 0){
950                         struct sk_buff *skb, *rx_skb;
951
952                         rx_skb = rrpriv->rx_skbuff[index];
953
954                         if (pkt_len < PKT_COPY_THRESHOLD) {
955                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
956                                 if (skb == NULL){
957                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
958                                         dev->stats.rx_dropped++;
959                                         goto defer;
960                                 } else {
961                                         dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
962                                                                 desc->addr.addrlo,
963                                                                 pkt_len,
964                                                                 DMA_FROM_DEVICE);
965
966                                         skb_put_data(skb, rx_skb->data,
967                                                      pkt_len);
968
969                                         dma_sync_single_for_device(&rrpriv->pci_dev->dev,
970                                                                    desc->addr.addrlo,
971                                                                    pkt_len,
972                                                                    DMA_FROM_DEVICE);
973                                 }
974                         }else{
975                                 struct sk_buff *newskb;
976
977                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
978                                         GFP_ATOMIC);
979                                 if (newskb){
980                                         dma_addr_t addr;
981
982                                         dma_unmap_single(&rrpriv->pci_dev->dev,
983                                                          desc->addr.addrlo,
984                                                          dev->mtu + HIPPI_HLEN,
985                                                          DMA_FROM_DEVICE);
986                                         skb = rx_skb;
987                                         skb_put(skb, pkt_len);
988                                         rrpriv->rx_skbuff[index] = newskb;
989                                         addr = dma_map_single(&rrpriv->pci_dev->dev,
990                                                               newskb->data,
991                                                               dev->mtu + HIPPI_HLEN,
992                                                               DMA_FROM_DEVICE);
993                                         set_rraddr(&desc->addr, addr);
994                                 } else {
995                                         printk("%s: Out of memory, deferring "
996                                                "packet\n", dev->name);
997                                         dev->stats.rx_dropped++;
998                                         goto defer;
999                                 }
1000                         }
1001                         skb->protocol = hippi_type_trans(skb, dev);
1002
1003                         netif_rx(skb);          /* send it up */
1004
1005                         dev->stats.rx_packets++;
1006                         dev->stats.rx_bytes += pkt_len;
1007                 }
1008         defer:
1009                 desc->mode = 0;
1010                 desc->size = dev->mtu + HIPPI_HLEN;
1011
1012                 if ((index & 7) == 7)
1013                         writel(index, &regs->IpRxPi);
1014
1015                 index = (index + 1) % RX_RING_ENTRIES;
1016         } while(index != rxlimit);
1017
1018         rrpriv->cur_rx = index;
1019         wmb();
1020 }
1021
1022
1023 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1024 {
1025         struct rr_private *rrpriv;
1026         struct rr_regs __iomem *regs;
1027         struct net_device *dev = (struct net_device *)dev_id;
1028         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1029
1030         rrpriv = netdev_priv(dev);
1031         regs = rrpriv->regs;
1032
1033         if (!(readl(&regs->HostCtrl) & RR_INT))
1034                 return IRQ_NONE;
1035
1036         spin_lock(&rrpriv->lock);
1037
1038         prodidx = readl(&regs->EvtPrd);
1039         txcsmr = (prodidx >> 8) & 0xff;
1040         rxlimit = (prodidx >> 16) & 0xff;
1041         prodidx &= 0xff;
1042
1043 #if (DEBUG > 2)
1044         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1045                prodidx, rrpriv->info->evt_ctrl.pi);
1046 #endif
1047         /*
1048          * Order here is important.  We must handle events
1049          * before doing anything else in order to catch
1050          * such things as LLRC errors, etc -kbf
1051          */
1052
1053         eidx = rrpriv->info->evt_ctrl.pi;
1054         if (prodidx != eidx)
1055                 eidx = rr_handle_event(dev, prodidx, eidx);
1056
1057         rxindex = rrpriv->cur_rx;
1058         if (rxindex != rxlimit)
1059                 rx_int(dev, rxlimit, rxindex);
1060
1061         txcon = rrpriv->dirty_tx;
1062         if (txcsmr != txcon) {
1063                 do {
1064                         /* Due to occational firmware TX producer/consumer out
1065                          * of sync. error need to check entry in ring -kbf
1066                          */
1067                         if(rrpriv->tx_skbuff[txcon]){
1068                                 struct tx_desc *desc;
1069                                 struct sk_buff *skb;
1070
1071                                 desc = &(rrpriv->tx_ring[txcon]);
1072                                 skb = rrpriv->tx_skbuff[txcon];
1073
1074                                 dev->stats.tx_packets++;
1075                                 dev->stats.tx_bytes += skb->len;
1076
1077                                 dma_unmap_single(&rrpriv->pci_dev->dev,
1078                                                  desc->addr.addrlo, skb->len,
1079                                                  DMA_TO_DEVICE);
1080                                 dev_kfree_skb_irq(skb);
1081
1082                                 rrpriv->tx_skbuff[txcon] = NULL;
1083                                 desc->size = 0;
1084                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1085                                 desc->mode = 0;
1086                         }
1087                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1088                 } while (txcsmr != txcon);
1089                 wmb();
1090
1091                 rrpriv->dirty_tx = txcon;
1092                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1093                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1094                      != rrpriv->dirty_tx)){
1095                         rrpriv->tx_full = 0;
1096                         netif_wake_queue(dev);
1097                 }
1098         }
1099
1100         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1101         writel(eidx, &regs->EvtCon);
1102         wmb();
1103
1104         spin_unlock(&rrpriv->lock);
1105         return IRQ_HANDLED;
1106 }
1107
1108 static inline void rr_raz_tx(struct rr_private *rrpriv,
1109                              struct net_device *dev)
1110 {
1111         int i;
1112
1113         for (i = 0; i < TX_RING_ENTRIES; i++) {
1114                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1115
1116                 if (skb) {
1117                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1118
1119                         dma_unmap_single(&rrpriv->pci_dev->dev,
1120                                          desc->addr.addrlo, skb->len,
1121                                          DMA_TO_DEVICE);
1122                         desc->size = 0;
1123                         set_rraddr(&desc->addr, 0);
1124                         dev_kfree_skb(skb);
1125                         rrpriv->tx_skbuff[i] = NULL;
1126                 }
1127         }
1128 }
1129
1130
1131 static inline void rr_raz_rx(struct rr_private *rrpriv,
1132                              struct net_device *dev)
1133 {
1134         int i;
1135
1136         for (i = 0; i < RX_RING_ENTRIES; i++) {
1137                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1138
1139                 if (skb) {
1140                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1141
1142                         dma_unmap_single(&rrpriv->pci_dev->dev,
1143                                          desc->addr.addrlo,
1144                                          dev->mtu + HIPPI_HLEN,
1145                                          DMA_FROM_DEVICE);
1146                         desc->size = 0;
1147                         set_rraddr(&desc->addr, 0);
1148                         dev_kfree_skb(skb);
1149                         rrpriv->rx_skbuff[i] = NULL;
1150                 }
1151         }
1152 }
1153
1154 static void rr_timer(struct timer_list *t)
1155 {
1156         struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1157         struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1158         struct rr_regs __iomem *regs = rrpriv->regs;
1159         unsigned long flags;
1160
1161         if (readl(&regs->HostCtrl) & NIC_HALTED){
1162                 printk("%s: Restarting nic\n", dev->name);
1163                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1164                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1165                 wmb();
1166
1167                 rr_raz_tx(rrpriv, dev);
1168                 rr_raz_rx(rrpriv, dev);
1169
1170                 if (rr_init1(dev)) {
1171                         spin_lock_irqsave(&rrpriv->lock, flags);
1172                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1173                                &regs->HostCtrl);
1174                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1175                 }
1176         }
1177         rrpriv->timer.expires = RUN_AT(5*HZ);
1178         add_timer(&rrpriv->timer);
1179 }
1180
1181
1182 static int rr_open(struct net_device *dev)
1183 {
1184         struct rr_private *rrpriv = netdev_priv(dev);
1185         struct pci_dev *pdev = rrpriv->pci_dev;
1186         struct rr_regs __iomem *regs;
1187         int ecode = 0;
1188         unsigned long flags;
1189         dma_addr_t dma_addr;
1190
1191         regs = rrpriv->regs;
1192
1193         if (rrpriv->fw_rev < 0x00020000) {
1194                 printk(KERN_WARNING "%s: trying to configure device with "
1195                        "obsolete firmware\n", dev->name);
1196                 ecode = -EBUSY;
1197                 goto error;
1198         }
1199
1200         rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1201                                              256 * sizeof(struct ring_ctrl),
1202                                              &dma_addr, GFP_KERNEL);
1203         if (!rrpriv->rx_ctrl) {
1204                 ecode = -ENOMEM;
1205                 goto error;
1206         }
1207         rrpriv->rx_ctrl_dma = dma_addr;
1208
1209         rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1210                                           &dma_addr, GFP_KERNEL);
1211         if (!rrpriv->info) {
1212                 ecode = -ENOMEM;
1213                 goto error;
1214         }
1215         rrpriv->info_dma = dma_addr;
1216         wmb();
1217
1218         spin_lock_irqsave(&rrpriv->lock, flags);
1219         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1220         readl(&regs->HostCtrl);
1221         spin_unlock_irqrestore(&rrpriv->lock, flags);
1222
1223         if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1224                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1225                        dev->name, pdev->irq);
1226                 ecode = -EAGAIN;
1227                 goto error;
1228         }
1229
1230         if ((ecode = rr_init1(dev)))
1231                 goto error;
1232
1233         /* Set the timer to switch to check for link beat and perhaps switch
1234            to an alternate media type. */
1235         timer_setup(&rrpriv->timer, rr_timer, 0);
1236         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1237         add_timer(&rrpriv->timer);
1238
1239         netif_start_queue(dev);
1240
1241         return ecode;
1242
1243  error:
1244         spin_lock_irqsave(&rrpriv->lock, flags);
1245         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1246         spin_unlock_irqrestore(&rrpriv->lock, flags);
1247
1248         if (rrpriv->info) {
1249                 dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1250                                   rrpriv->info, rrpriv->info_dma);
1251                 rrpriv->info = NULL;
1252         }
1253         if (rrpriv->rx_ctrl) {
1254                 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1255                                   rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1256                 rrpriv->rx_ctrl = NULL;
1257         }
1258
1259         netif_stop_queue(dev);
1260
1261         return ecode;
1262 }
1263
1264
1265 static void rr_dump(struct net_device *dev)
1266 {
1267         struct rr_private *rrpriv;
1268         struct rr_regs __iomem *regs;
1269         u32 index, cons;
1270         short i;
1271         int len;
1272
1273         rrpriv = netdev_priv(dev);
1274         regs = rrpriv->regs;
1275
1276         printk("%s: dumping NIC TX rings\n", dev->name);
1277
1278         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1279                readl(&regs->RxPrd), readl(&regs->TxPrd),
1280                readl(&regs->EvtPrd), readl(&regs->TxPi),
1281                rrpriv->info->tx_ctrl.pi);
1282
1283         printk("Error code 0x%x\n", readl(&regs->Fail1));
1284
1285         index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1286         cons = rrpriv->dirty_tx;
1287         printk("TX ring index %i, TX consumer %i\n",
1288                index, cons);
1289
1290         if (rrpriv->tx_skbuff[index]){
1291                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1292                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1293                 for (i = 0; i < len; i++){
1294                         if (!(i & 7))
1295                                 printk("\n");
1296                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1297                 }
1298                 printk("\n");
1299         }
1300
1301         if (rrpriv->tx_skbuff[cons]){
1302                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1303                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1304                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1305                        rrpriv->tx_ring[cons].mode,
1306                        rrpriv->tx_ring[cons].size,
1307                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1308                        rrpriv->tx_skbuff[cons]->data,
1309                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1310                 for (i = 0; i < len; i++){
1311                         if (!(i & 7))
1312                                 printk("\n");
1313                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1314                 }
1315                 printk("\n");
1316         }
1317
1318         printk("dumping TX ring info:\n");
1319         for (i = 0; i < TX_RING_ENTRIES; i++)
1320                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1321                        rrpriv->tx_ring[i].mode,
1322                        rrpriv->tx_ring[i].size,
1323                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1324
1325 }
1326
1327
1328 static int rr_close(struct net_device *dev)
1329 {
1330         struct rr_private *rrpriv = netdev_priv(dev);
1331         struct rr_regs __iomem *regs = rrpriv->regs;
1332         struct pci_dev *pdev = rrpriv->pci_dev;
1333         unsigned long flags;
1334         u32 tmp;
1335         short i;
1336
1337         netif_stop_queue(dev);
1338
1339
1340         /*
1341          * Lock to make sure we are not cleaning up while another CPU
1342          * is handling interrupts.
1343          */
1344         spin_lock_irqsave(&rrpriv->lock, flags);
1345
1346         tmp = readl(&regs->HostCtrl);
1347         if (tmp & NIC_HALTED){
1348                 printk("%s: NIC already halted\n", dev->name);
1349                 rr_dump(dev);
1350         }else{
1351                 tmp |= HALT_NIC | RR_CLEAR_INT;
1352                 writel(tmp, &regs->HostCtrl);
1353                 readl(&regs->HostCtrl);
1354         }
1355
1356         rrpriv->fw_running = 0;
1357
1358         spin_unlock_irqrestore(&rrpriv->lock, flags);
1359         del_timer_sync(&rrpriv->timer);
1360         spin_lock_irqsave(&rrpriv->lock, flags);
1361
1362         writel(0, &regs->TxPi);
1363         writel(0, &regs->IpRxPi);
1364
1365         writel(0, &regs->EvtCon);
1366         writel(0, &regs->EvtPrd);
1367
1368         for (i = 0; i < CMD_RING_ENTRIES; i++)
1369                 writel(0, &regs->CmdRing[i]);
1370
1371         rrpriv->info->tx_ctrl.entries = 0;
1372         rrpriv->info->cmd_ctrl.pi = 0;
1373         rrpriv->info->evt_ctrl.pi = 0;
1374         rrpriv->rx_ctrl[4].entries = 0;
1375
1376         rr_raz_tx(rrpriv, dev);
1377         rr_raz_rx(rrpriv, dev);
1378
1379         dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1380                           rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1381         rrpriv->rx_ctrl = NULL;
1382
1383         dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1384                           rrpriv->info_dma);
1385         rrpriv->info = NULL;
1386
1387         spin_unlock_irqrestore(&rrpriv->lock, flags);
1388         free_irq(pdev->irq, dev);
1389
1390         return 0;
1391 }
1392
1393
1394 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1395                                  struct net_device *dev)
1396 {
1397         struct rr_private *rrpriv = netdev_priv(dev);
1398         struct rr_regs __iomem *regs = rrpriv->regs;
1399         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1400         struct ring_ctrl *txctrl;
1401         unsigned long flags;
1402         u32 index, len = skb->len;
1403         u32 *ifield;
1404         struct sk_buff *new_skb;
1405
1406         if (readl(&regs->Mode) & FATAL_ERR)
1407                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1408                        readl(&regs->Fail1), readl(&regs->Fail2));
1409
1410         /*
1411          * We probably need to deal with tbusy here to prevent overruns.
1412          */
1413
1414         if (skb_headroom(skb) < 8){
1415                 printk("incoming skb too small - reallocating\n");
1416                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1417                         dev_kfree_skb(skb);
1418                         netif_wake_queue(dev);
1419                         return NETDEV_TX_OK;
1420                 }
1421                 skb_reserve(new_skb, 8);
1422                 skb_put(new_skb, len);
1423                 skb_copy_from_linear_data(skb, new_skb->data, len);
1424                 dev_kfree_skb(skb);
1425                 skb = new_skb;
1426         }
1427
1428         ifield = skb_push(skb, 8);
1429
1430         ifield[0] = 0;
1431         ifield[1] = hcb->ifield;
1432
1433         /*
1434          * We don't need the lock before we are actually going to start
1435          * fiddling with the control blocks.
1436          */
1437         spin_lock_irqsave(&rrpriv->lock, flags);
1438
1439         txctrl = &rrpriv->info->tx_ctrl;
1440
1441         index = txctrl->pi;
1442
1443         rrpriv->tx_skbuff[index] = skb;
1444         set_rraddr(&rrpriv->tx_ring[index].addr,
1445                    dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1446         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1447         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1448         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1449         wmb();
1450         writel(txctrl->pi, &regs->TxPi);
1451
1452         if (txctrl->pi == rrpriv->dirty_tx){
1453                 rrpriv->tx_full = 1;
1454                 netif_stop_queue(dev);
1455         }
1456
1457         spin_unlock_irqrestore(&rrpriv->lock, flags);
1458
1459         return NETDEV_TX_OK;
1460 }
1461
1462
1463 /*
1464  * Read the firmware out of the EEPROM and put it into the SRAM
1465  * (or from user space - later)
1466  *
1467  * This operation requires the NIC to be halted and is performed with
1468  * interrupts disabled and with the spinlock hold.
1469  */
1470 static int rr_load_firmware(struct net_device *dev)
1471 {
1472         struct rr_private *rrpriv;
1473         struct rr_regs __iomem *regs;
1474         size_t eptr, segptr;
1475         int i, j;
1476         u32 localctrl, sptr, len, tmp;
1477         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1478
1479         rrpriv = netdev_priv(dev);
1480         regs = rrpriv->regs;
1481
1482         if (dev->flags & IFF_UP)
1483                 return -EBUSY;
1484
1485         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1486                 printk("%s: Trying to load firmware to a running NIC.\n",
1487                        dev->name);
1488                 return -EBUSY;
1489         }
1490
1491         localctrl = readl(&regs->LocalCtrl);
1492         writel(0, &regs->LocalCtrl);
1493
1494         writel(0, &regs->EvtPrd);
1495         writel(0, &regs->RxPrd);
1496         writel(0, &regs->TxPrd);
1497
1498         /*
1499          * First wipe the entire SRAM, otherwise we might run into all
1500          * kinds of trouble ... sigh, this took almost all afternoon
1501          * to track down ;-(
1502          */
1503         io = readl(&regs->ExtIo);
1504         writel(0, &regs->ExtIo);
1505         sram_size = rr_read_eeprom_word(rrpriv, 8);
1506
1507         for (i = 200; i < sram_size / 4; i++){
1508                 writel(i * 4, &regs->WinBase);
1509                 mb();
1510                 writel(0, &regs->WinData);
1511                 mb();
1512         }
1513         writel(io, &regs->ExtIo);
1514         mb();
1515
1516         eptr = rr_read_eeprom_word(rrpriv,
1517                        offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1518         eptr = ((eptr & 0x1fffff) >> 3);
1519
1520         p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1521         p2len = (p2len << 2);
1522         p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1523         p2size = ((p2size & 0x1fffff) >> 3);
1524
1525         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1526                 printk("%s: eptr is invalid\n", dev->name);
1527                 goto out;
1528         }
1529
1530         revision = rr_read_eeprom_word(rrpriv,
1531                         offsetof(struct eeprom, manf.HeaderFmt));
1532
1533         if (revision != 1){
1534                 printk("%s: invalid firmware format (%i)\n",
1535                        dev->name, revision);
1536                 goto out;
1537         }
1538
1539         nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1540         eptr +=4;
1541 #if (DEBUG > 1)
1542         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1543 #endif
1544
1545         for (i = 0; i < nr_seg; i++){
1546                 sptr = rr_read_eeprom_word(rrpriv, eptr);
1547                 eptr += 4;
1548                 len = rr_read_eeprom_word(rrpriv, eptr);
1549                 eptr += 4;
1550                 segptr = rr_read_eeprom_word(rrpriv, eptr);
1551                 segptr = ((segptr & 0x1fffff) >> 3);
1552                 eptr += 4;
1553 #if (DEBUG > 1)
1554                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1555                        dev->name, i, sptr, len, segptr);
1556 #endif
1557                 for (j = 0; j < len; j++){
1558                         tmp = rr_read_eeprom_word(rrpriv, segptr);
1559                         writel(sptr, &regs->WinBase);
1560                         mb();
1561                         writel(tmp, &regs->WinData);
1562                         mb();
1563                         segptr += 4;
1564                         sptr += 4;
1565                 }
1566         }
1567
1568 out:
1569         writel(localctrl, &regs->LocalCtrl);
1570         mb();
1571         return 0;
1572 }
1573
1574
1575 static int rr_siocdevprivate(struct net_device *dev, struct ifreq *rq,
1576                              void __user *data, int cmd)
1577 {
1578         struct rr_private *rrpriv;
1579         unsigned char *image, *oldimage;
1580         unsigned long flags;
1581         unsigned int i;
1582         int error = -EOPNOTSUPP;
1583
1584         rrpriv = netdev_priv(dev);
1585
1586         switch(cmd){
1587         case SIOCRRGFW:
1588                 if (!capable(CAP_SYS_RAWIO)){
1589                         return -EPERM;
1590                 }
1591
1592                 image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1593                 if (!image)
1594                         return -ENOMEM;
1595
1596                 if (rrpriv->fw_running){
1597                         printk("%s: Firmware already running\n", dev->name);
1598                         error = -EPERM;
1599                         goto gf_out;
1600                 }
1601
1602                 spin_lock_irqsave(&rrpriv->lock, flags);
1603                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1604                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1605                 if (i != EEPROM_BYTES){
1606                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1607                                dev->name);
1608                         error = -EFAULT;
1609                         goto gf_out;
1610                 }
1611                 error = copy_to_user(data, image, EEPROM_BYTES);
1612                 if (error)
1613                         error = -EFAULT;
1614         gf_out:
1615                 kfree(image);
1616                 return error;
1617
1618         case SIOCRRPFW:
1619                 if (!capable(CAP_SYS_RAWIO)){
1620                         return -EPERM;
1621                 }
1622
1623                 image = memdup_user(data, EEPROM_BYTES);
1624                 if (IS_ERR(image))
1625                         return PTR_ERR(image);
1626
1627                 oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1628                 if (!oldimage) {
1629                         kfree(image);
1630                         return -ENOMEM;
1631                 }
1632
1633                 if (rrpriv->fw_running){
1634                         printk("%s: Firmware already running\n", dev->name);
1635                         error = -EPERM;
1636                         goto wf_out;
1637                 }
1638
1639                 printk("%s: Updating EEPROM firmware\n", dev->name);
1640
1641                 spin_lock_irqsave(&rrpriv->lock, flags);
1642                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1643                 if (error)
1644                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1645                                dev->name);
1646
1647                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1648                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1649
1650                 if (i != EEPROM_BYTES)
1651                         printk(KERN_ERR "%s: Error reading back EEPROM "
1652                                "image\n", dev->name);
1653
1654                 error = memcmp(image, oldimage, EEPROM_BYTES);
1655                 if (error){
1656                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1657                                dev->name);
1658                         error = -EFAULT;
1659                 }
1660         wf_out:
1661                 kfree(oldimage);
1662                 kfree(image);
1663                 return error;
1664
1665         case SIOCRRID:
1666                 return put_user(0x52523032, (int __user *)data);
1667         default:
1668                 return error;
1669         }
1670 }
1671
1672 static const struct pci_device_id rr_pci_tbl[] = {
1673         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1674                 PCI_ANY_ID, PCI_ANY_ID, },
1675         { 0,}
1676 };
1677 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1678
1679 static struct pci_driver rr_driver = {
1680         .name           = "rrunner",
1681         .id_table       = rr_pci_tbl,
1682         .probe          = rr_init_one,
1683         .remove         = rr_remove_one,
1684 };
1685
1686 module_pci_driver(rr_driver);