Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52
53 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
54 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
55
56 /* Module parameters */
57 #define TX_TIMEO        5000
58 static int watchdog = TX_TIMEO;
59 module_param(watchdog, int, 0644);
60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
61
62 static int debug = -1;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
65
66 static int phyaddr = -1;
67 module_param(phyaddr, int, 0444);
68 MODULE_PARM_DESC(phyaddr, "Physical device address");
69
70 #define STMMAC_TX_THRESH(x)     ((x)->dma_tx_size / 4)
71 #define STMMAC_RX_THRESH(x)     ((x)->dma_rx_size / 4)
72
73 /* Limit to make sure XDP TX and slow path can coexist */
74 #define STMMAC_XSK_TX_BUDGET_MAX        256
75 #define STMMAC_TX_XSK_AVAIL             16
76 #define STMMAC_RX_FILL_BATCH            16
77
78 #define STMMAC_XDP_PASS         0
79 #define STMMAC_XDP_CONSUMED     BIT(0)
80 #define STMMAC_XDP_TX           BIT(1)
81 #define STMMAC_XDP_REDIRECT     BIT(2)
82
83 static int flow_ctrl = FLOW_AUTO;
84 module_param(flow_ctrl, int, 0644);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, 0644);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, 0644);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95
96 #define DEFAULT_BUFSIZE 1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, 0644);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100
101 #define STMMAC_RX_COPYBREAK     256
102
103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
104                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
105                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
106
107 #define STMMAC_DEFAULT_LPI_TIMER        1000
108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
109 module_param(eee_timer, int, 0644);
110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
112
113 /* By default the driver will use the ring mode to manage tx and rx descriptors,
114  * but allow user to force to use the chain instead of the ring
115  */
116 static unsigned int chain_mode;
117 module_param(chain_mode, int, 0444);
118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
119
120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
121 /* For MSI interrupts handling */
122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
128
129 #ifdef CONFIG_DEBUG_FS
130 static const struct net_device_ops stmmac_netdev_ops;
131 static void stmmac_init_fs(struct net_device *dev);
132 static void stmmac_exit_fs(struct net_device *dev);
133 #endif
134
135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
136
137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
138 {
139         int ret = 0;
140
141         if (enabled) {
142                 ret = clk_prepare_enable(priv->plat->stmmac_clk);
143                 if (ret)
144                         return ret;
145                 ret = clk_prepare_enable(priv->plat->pclk);
146                 if (ret) {
147                         clk_disable_unprepare(priv->plat->stmmac_clk);
148                         return ret;
149                 }
150                 if (priv->plat->clks_config) {
151                         ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
152                         if (ret) {
153                                 clk_disable_unprepare(priv->plat->stmmac_clk);
154                                 clk_disable_unprepare(priv->plat->pclk);
155                                 return ret;
156                         }
157                 }
158         } else {
159                 clk_disable_unprepare(priv->plat->stmmac_clk);
160                 clk_disable_unprepare(priv->plat->pclk);
161                 if (priv->plat->clks_config)
162                         priv->plat->clks_config(priv->plat->bsp_priv, enabled);
163         }
164
165         return ret;
166 }
167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
168
169 /**
170  * stmmac_verify_args - verify the driver parameters.
171  * Description: it checks the driver parameters and set a default in case of
172  * errors.
173  */
174 static void stmmac_verify_args(void)
175 {
176         if (unlikely(watchdog < 0))
177                 watchdog = TX_TIMEO;
178         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
179                 buf_sz = DEFAULT_BUFSIZE;
180         if (unlikely(flow_ctrl > 1))
181                 flow_ctrl = FLOW_AUTO;
182         else if (likely(flow_ctrl < 0))
183                 flow_ctrl = FLOW_OFF;
184         if (unlikely((pause < 0) || (pause > 0xffff)))
185                 pause = PAUSE_TIME;
186         if (eee_timer < 0)
187                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
188 }
189
190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
191 {
192         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
193         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
194         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
195         u32 queue;
196
197         for (queue = 0; queue < maxq; queue++) {
198                 struct stmmac_channel *ch = &priv->channel[queue];
199
200                 if (stmmac_xdp_is_enabled(priv) &&
201                     test_bit(queue, priv->af_xdp_zc_qps)) {
202                         napi_disable(&ch->rxtx_napi);
203                         continue;
204                 }
205
206                 if (queue < rx_queues_cnt)
207                         napi_disable(&ch->rx_napi);
208                 if (queue < tx_queues_cnt)
209                         napi_disable(&ch->tx_napi);
210         }
211 }
212
213 /**
214  * stmmac_disable_all_queues - Disable all queues
215  * @priv: driver private structure
216  */
217 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
218 {
219         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
220         struct stmmac_rx_queue *rx_q;
221         u32 queue;
222
223         /* synchronize_rcu() needed for pending XDP buffers to drain */
224         for (queue = 0; queue < rx_queues_cnt; queue++) {
225                 rx_q = &priv->rx_queue[queue];
226                 if (rx_q->xsk_pool) {
227                         synchronize_rcu();
228                         break;
229                 }
230         }
231
232         __stmmac_disable_all_queues(priv);
233 }
234
235 /**
236  * stmmac_enable_all_queues - Enable all queues
237  * @priv: driver private structure
238  */
239 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
240 {
241         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
242         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
243         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
244         u32 queue;
245
246         for (queue = 0; queue < maxq; queue++) {
247                 struct stmmac_channel *ch = &priv->channel[queue];
248
249                 if (stmmac_xdp_is_enabled(priv) &&
250                     test_bit(queue, priv->af_xdp_zc_qps)) {
251                         napi_enable(&ch->rxtx_napi);
252                         continue;
253                 }
254
255                 if (queue < rx_queues_cnt)
256                         napi_enable(&ch->rx_napi);
257                 if (queue < tx_queues_cnt)
258                         napi_enable(&ch->tx_napi);
259         }
260 }
261
262 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
263 {
264         if (!test_bit(STMMAC_DOWN, &priv->state) &&
265             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
266                 queue_work(priv->wq, &priv->service_task);
267 }
268
269 static void stmmac_global_err(struct stmmac_priv *priv)
270 {
271         netif_carrier_off(priv->dev);
272         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
273         stmmac_service_event_schedule(priv);
274 }
275
276 /**
277  * stmmac_clk_csr_set - dynamically set the MDC clock
278  * @priv: driver private structure
279  * Description: this is to dynamically set the MDC clock according to the csr
280  * clock input.
281  * Note:
282  *      If a specific clk_csr value is passed from the platform
283  *      this means that the CSR Clock Range selection cannot be
284  *      changed at run-time and it is fixed (as reported in the driver
285  *      documentation). Viceversa the driver will try to set the MDC
286  *      clock dynamically according to the actual clock input.
287  */
288 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
289 {
290         u32 clk_rate;
291
292         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
293
294         /* Platform provided default clk_csr would be assumed valid
295          * for all other cases except for the below mentioned ones.
296          * For values higher than the IEEE 802.3 specified frequency
297          * we can not estimate the proper divider as it is not known
298          * the frequency of clk_csr_i. So we do not change the default
299          * divider.
300          */
301         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
302                 if (clk_rate < CSR_F_35M)
303                         priv->clk_csr = STMMAC_CSR_20_35M;
304                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
305                         priv->clk_csr = STMMAC_CSR_35_60M;
306                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
307                         priv->clk_csr = STMMAC_CSR_60_100M;
308                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
309                         priv->clk_csr = STMMAC_CSR_100_150M;
310                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
311                         priv->clk_csr = STMMAC_CSR_150_250M;
312                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
313                         priv->clk_csr = STMMAC_CSR_250_300M;
314         }
315
316         if (priv->plat->has_sun8i) {
317                 if (clk_rate > 160000000)
318                         priv->clk_csr = 0x03;
319                 else if (clk_rate > 80000000)
320                         priv->clk_csr = 0x02;
321                 else if (clk_rate > 40000000)
322                         priv->clk_csr = 0x01;
323                 else
324                         priv->clk_csr = 0;
325         }
326
327         if (priv->plat->has_xgmac) {
328                 if (clk_rate > 400000000)
329                         priv->clk_csr = 0x5;
330                 else if (clk_rate > 350000000)
331                         priv->clk_csr = 0x4;
332                 else if (clk_rate > 300000000)
333                         priv->clk_csr = 0x3;
334                 else if (clk_rate > 250000000)
335                         priv->clk_csr = 0x2;
336                 else if (clk_rate > 150000000)
337                         priv->clk_csr = 0x1;
338                 else
339                         priv->clk_csr = 0x0;
340         }
341 }
342
343 static void print_pkt(unsigned char *buf, int len)
344 {
345         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
346         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
347 }
348
349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
350 {
351         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
352         u32 avail;
353
354         if (tx_q->dirty_tx > tx_q->cur_tx)
355                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
356         else
357                 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
358
359         return avail;
360 }
361
362 /**
363  * stmmac_rx_dirty - Get RX queue dirty
364  * @priv: driver private structure
365  * @queue: RX queue index
366  */
367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
368 {
369         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
370         u32 dirty;
371
372         if (rx_q->dirty_rx <= rx_q->cur_rx)
373                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
374         else
375                 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
376
377         return dirty;
378 }
379
380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
381 {
382         int tx_lpi_timer;
383
384         /* Clear/set the SW EEE timer flag based on LPI ET enablement */
385         priv->eee_sw_timer_en = en ? 0 : 1;
386         tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
387         stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
388 }
389
390 /**
391  * stmmac_enable_eee_mode - check and enter in LPI mode
392  * @priv: driver private structure
393  * Description: this function is to verify and enter in LPI mode in case of
394  * EEE.
395  */
396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
397 {
398         u32 tx_cnt = priv->plat->tx_queues_to_use;
399         u32 queue;
400
401         /* check if all TX queues have the work finished */
402         for (queue = 0; queue < tx_cnt; queue++) {
403                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
404
405                 if (tx_q->dirty_tx != tx_q->cur_tx)
406                         return; /* still unfinished work */
407         }
408
409         /* Check and enter in LPI mode */
410         if (!priv->tx_path_in_lpi_mode)
411                 stmmac_set_eee_mode(priv, priv->hw,
412                                 priv->plat->en_tx_lpi_clockgating);
413 }
414
415 /**
416  * stmmac_disable_eee_mode - disable and exit from LPI mode
417  * @priv: driver private structure
418  * Description: this function is to exit and disable EEE in case of
419  * LPI state is true. This is called by the xmit.
420  */
421 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
422 {
423         if (!priv->eee_sw_timer_en) {
424                 stmmac_lpi_entry_timer_config(priv, 0);
425                 return;
426         }
427
428         stmmac_reset_eee_mode(priv, priv->hw);
429         del_timer_sync(&priv->eee_ctrl_timer);
430         priv->tx_path_in_lpi_mode = false;
431 }
432
433 /**
434  * stmmac_eee_ctrl_timer - EEE TX SW timer.
435  * @t:  timer_list struct containing private info
436  * Description:
437  *  if there is no data transfer and if we are not in LPI state,
438  *  then MAC Transmitter can be moved to LPI state.
439  */
440 static void stmmac_eee_ctrl_timer(struct timer_list *t)
441 {
442         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
443
444         stmmac_enable_eee_mode(priv);
445         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
446 }
447
448 /**
449  * stmmac_eee_init - init EEE
450  * @priv: driver private structure
451  * Description:
452  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
453  *  can also manage EEE, this function enable the LPI state and start related
454  *  timer.
455  */
456 bool stmmac_eee_init(struct stmmac_priv *priv)
457 {
458         int eee_tw_timer = priv->eee_tw_timer;
459
460         /* Using PCS we cannot dial with the phy registers at this stage
461          * so we do not support extra feature like EEE.
462          */
463         if (priv->hw->pcs == STMMAC_PCS_TBI ||
464             priv->hw->pcs == STMMAC_PCS_RTBI)
465                 return false;
466
467         /* Check if MAC core supports the EEE feature. */
468         if (!priv->dma_cap.eee)
469                 return false;
470
471         mutex_lock(&priv->lock);
472
473         /* Check if it needs to be deactivated */
474         if (!priv->eee_active) {
475                 if (priv->eee_enabled) {
476                         netdev_dbg(priv->dev, "disable EEE\n");
477                         stmmac_lpi_entry_timer_config(priv, 0);
478                         del_timer_sync(&priv->eee_ctrl_timer);
479                         stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
480                 }
481                 mutex_unlock(&priv->lock);
482                 return false;
483         }
484
485         if (priv->eee_active && !priv->eee_enabled) {
486                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
487                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
488                                      eee_tw_timer);
489         }
490
491         if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
492                 del_timer_sync(&priv->eee_ctrl_timer);
493                 priv->tx_path_in_lpi_mode = false;
494                 stmmac_lpi_entry_timer_config(priv, 1);
495         } else {
496                 stmmac_lpi_entry_timer_config(priv, 0);
497                 mod_timer(&priv->eee_ctrl_timer,
498                           STMMAC_LPI_T(priv->tx_lpi_timer));
499         }
500
501         mutex_unlock(&priv->lock);
502         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
503         return true;
504 }
505
506 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
507  * @priv: driver private structure
508  * @p : descriptor pointer
509  * @skb : the socket buffer
510  * Description :
511  * This function will read timestamp from the descriptor & pass it to stack.
512  * and also perform some sanity checks.
513  */
514 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
515                                    struct dma_desc *p, struct sk_buff *skb)
516 {
517         struct skb_shared_hwtstamps shhwtstamp;
518         bool found = false;
519         s64 adjust = 0;
520         u64 ns = 0;
521
522         if (!priv->hwts_tx_en)
523                 return;
524
525         /* exit if skb doesn't support hw tstamp */
526         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
527                 return;
528
529         /* check tx tstamp status */
530         if (stmmac_get_tx_timestamp_status(priv, p)) {
531                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
532                 found = true;
533         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
534                 found = true;
535         }
536
537         if (found) {
538                 /* Correct the clk domain crossing(CDC) error */
539                 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
540                         adjust += -(2 * (NSEC_PER_SEC /
541                                          priv->plat->clk_ptp_rate));
542                         ns += adjust;
543                 }
544
545                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
546                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
547
548                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
549                 /* pass tstamp to stack */
550                 skb_tstamp_tx(skb, &shhwtstamp);
551         }
552 }
553
554 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
555  * @priv: driver private structure
556  * @p : descriptor pointer
557  * @np : next descriptor pointer
558  * @skb : the socket buffer
559  * Description :
560  * This function will read received packet's timestamp from the descriptor
561  * and pass it to stack. It also perform some sanity checks.
562  */
563 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
564                                    struct dma_desc *np, struct sk_buff *skb)
565 {
566         struct skb_shared_hwtstamps *shhwtstamp = NULL;
567         struct dma_desc *desc = p;
568         u64 adjust = 0;
569         u64 ns = 0;
570
571         if (!priv->hwts_rx_en)
572                 return;
573         /* For GMAC4, the valid timestamp is from CTX next desc. */
574         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
575                 desc = np;
576
577         /* Check if timestamp is available */
578         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
579                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
580
581                 /* Correct the clk domain crossing(CDC) error */
582                 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
583                         adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate);
584                         ns -= adjust;
585                 }
586
587                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
588                 shhwtstamp = skb_hwtstamps(skb);
589                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
590                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
591         } else  {
592                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
593         }
594 }
595
596 /**
597  *  stmmac_hwtstamp_set - control hardware timestamping.
598  *  @dev: device pointer.
599  *  @ifr: An IOCTL specific structure, that can contain a pointer to
600  *  a proprietary structure used to pass information to the driver.
601  *  Description:
602  *  This function configures the MAC to enable/disable both outgoing(TX)
603  *  and incoming(RX) packets time stamping based on user input.
604  *  Return Value:
605  *  0 on success and an appropriate -ve integer on failure.
606  */
607 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
608 {
609         struct stmmac_priv *priv = netdev_priv(dev);
610         struct hwtstamp_config config;
611         struct timespec64 now;
612         u64 temp = 0;
613         u32 ptp_v2 = 0;
614         u32 tstamp_all = 0;
615         u32 ptp_over_ipv4_udp = 0;
616         u32 ptp_over_ipv6_udp = 0;
617         u32 ptp_over_ethernet = 0;
618         u32 snap_type_sel = 0;
619         u32 ts_master_en = 0;
620         u32 ts_event_en = 0;
621         u32 sec_inc = 0;
622         u32 value = 0;
623         bool xmac;
624
625         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
626
627         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628                 netdev_alert(priv->dev, "No support for HW time stamping\n");
629                 priv->hwts_tx_en = 0;
630                 priv->hwts_rx_en = 0;
631
632                 return -EOPNOTSUPP;
633         }
634
635         if (copy_from_user(&config, ifr->ifr_data,
636                            sizeof(config)))
637                 return -EFAULT;
638
639         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640                    __func__, config.flags, config.tx_type, config.rx_filter);
641
642         /* reserved for future extensions */
643         if (config.flags)
644                 return -EINVAL;
645
646         if (config.tx_type != HWTSTAMP_TX_OFF &&
647             config.tx_type != HWTSTAMP_TX_ON)
648                 return -ERANGE;
649
650         if (priv->adv_ts) {
651                 switch (config.rx_filter) {
652                 case HWTSTAMP_FILTER_NONE:
653                         /* time stamp no incoming packet at all */
654                         config.rx_filter = HWTSTAMP_FILTER_NONE;
655                         break;
656
657                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658                         /* PTP v1, UDP, any kind of event packet */
659                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660                         /* 'xmac' hardware can support Sync, Pdelay_Req and
661                          * Pdelay_resp by setting bit14 and bits17/16 to 01
662                          * This leaves Delay_Req timestamps out.
663                          * Enable all events *and* general purpose message
664                          * timestamping
665                          */
666                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669                         break;
670
671                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672                         /* PTP v1, UDP, Sync packet */
673                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674                         /* take time stamp for SYNC messages only */
675                         ts_event_en = PTP_TCR_TSEVNTENA;
676
677                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679                         break;
680
681                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682                         /* PTP v1, UDP, Delay_req packet */
683                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684                         /* take time stamp for Delay_Req messages only */
685                         ts_master_en = PTP_TCR_TSMSTRENA;
686                         ts_event_en = PTP_TCR_TSEVNTENA;
687
688                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690                         break;
691
692                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693                         /* PTP v2, UDP, any kind of event packet */
694                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695                         ptp_v2 = PTP_TCR_TSVER2ENA;
696                         /* take time stamp for all event messages */
697                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698
699                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701                         break;
702
703                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704                         /* PTP v2, UDP, Sync packet */
705                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706                         ptp_v2 = PTP_TCR_TSVER2ENA;
707                         /* take time stamp for SYNC messages only */
708                         ts_event_en = PTP_TCR_TSEVNTENA;
709
710                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712                         break;
713
714                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715                         /* PTP v2, UDP, Delay_req packet */
716                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717                         ptp_v2 = PTP_TCR_TSVER2ENA;
718                         /* take time stamp for Delay_Req messages only */
719                         ts_master_en = PTP_TCR_TSMSTRENA;
720                         ts_event_en = PTP_TCR_TSEVNTENA;
721
722                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724                         break;
725
726                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
727                         /* PTP v2/802.AS1 any layer, any kind of event packet */
728                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729                         ptp_v2 = PTP_TCR_TSVER2ENA;
730                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731                         if (priv->synopsys_id != DWMAC_CORE_5_10)
732                                 ts_event_en = PTP_TCR_TSEVNTENA;
733                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735                         ptp_over_ethernet = PTP_TCR_TSIPENA;
736                         break;
737
738                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
739                         /* PTP v2/802.AS1, any layer, Sync packet */
740                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741                         ptp_v2 = PTP_TCR_TSVER2ENA;
742                         /* take time stamp for SYNC messages only */
743                         ts_event_en = PTP_TCR_TSEVNTENA;
744
745                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747                         ptp_over_ethernet = PTP_TCR_TSIPENA;
748                         break;
749
750                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751                         /* PTP v2/802.AS1, any layer, Delay_req packet */
752                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753                         ptp_v2 = PTP_TCR_TSVER2ENA;
754                         /* take time stamp for Delay_Req messages only */
755                         ts_master_en = PTP_TCR_TSMSTRENA;
756                         ts_event_en = PTP_TCR_TSEVNTENA;
757
758                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760                         ptp_over_ethernet = PTP_TCR_TSIPENA;
761                         break;
762
763                 case HWTSTAMP_FILTER_NTP_ALL:
764                 case HWTSTAMP_FILTER_ALL:
765                         /* time stamp any incoming packet */
766                         config.rx_filter = HWTSTAMP_FILTER_ALL;
767                         tstamp_all = PTP_TCR_TSENALL;
768                         break;
769
770                 default:
771                         return -ERANGE;
772                 }
773         } else {
774                 switch (config.rx_filter) {
775                 case HWTSTAMP_FILTER_NONE:
776                         config.rx_filter = HWTSTAMP_FILTER_NONE;
777                         break;
778                 default:
779                         /* PTP v1, UDP, any kind of event packet */
780                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781                         break;
782                 }
783         }
784         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786
787         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
788                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
789         else {
790                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
791                          tstamp_all | ptp_v2 | ptp_over_ethernet |
792                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
793                          ts_master_en | snap_type_sel);
794                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
795
796                 /* program Sub Second Increment reg */
797                 stmmac_config_sub_second_increment(priv,
798                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
799                                 xmac, &sec_inc);
800                 temp = div_u64(1000000000ULL, sec_inc);
801
802                 /* Store sub second increment and flags for later use */
803                 priv->sub_second_inc = sec_inc;
804                 priv->systime_flags = value;
805
806                 /* calculate default added value:
807                  * formula is :
808                  * addend = (2^32)/freq_div_ratio;
809                  * where, freq_div_ratio = 1e9ns/sec_inc
810                  */
811                 temp = (u64)(temp << 32);
812                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
813                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
814
815                 /* initialize system time */
816                 ktime_get_real_ts64(&now);
817
818                 /* lower 32 bits of tv_sec are safe until y2106 */
819                 stmmac_init_systime(priv, priv->ptpaddr,
820                                 (u32)now.tv_sec, now.tv_nsec);
821         }
822
823         memcpy(&priv->tstamp_config, &config, sizeof(config));
824
825         return copy_to_user(ifr->ifr_data, &config,
826                             sizeof(config)) ? -EFAULT : 0;
827 }
828
829 /**
830  *  stmmac_hwtstamp_get - read hardware timestamping.
831  *  @dev: device pointer.
832  *  @ifr: An IOCTL specific structure, that can contain a pointer to
833  *  a proprietary structure used to pass information to the driver.
834  *  Description:
835  *  This function obtain the current hardware timestamping settings
836  *  as requested.
837  */
838 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
839 {
840         struct stmmac_priv *priv = netdev_priv(dev);
841         struct hwtstamp_config *config = &priv->tstamp_config;
842
843         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
844                 return -EOPNOTSUPP;
845
846         return copy_to_user(ifr->ifr_data, config,
847                             sizeof(*config)) ? -EFAULT : 0;
848 }
849
850 /**
851  * stmmac_init_ptp - init PTP
852  * @priv: driver private structure
853  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
854  * This is done by looking at the HW cap. register.
855  * This function also registers the ptp driver.
856  */
857 static int stmmac_init_ptp(struct stmmac_priv *priv)
858 {
859         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
860
861         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
862                 return -EOPNOTSUPP;
863
864         priv->adv_ts = 0;
865         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
866         if (xmac && priv->dma_cap.atime_stamp)
867                 priv->adv_ts = 1;
868         /* Dwmac 3.x core with extend_desc can support adv_ts */
869         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
870                 priv->adv_ts = 1;
871
872         if (priv->dma_cap.time_stamp)
873                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
874
875         if (priv->adv_ts)
876                 netdev_info(priv->dev,
877                             "IEEE 1588-2008 Advanced Timestamp supported\n");
878
879         priv->hwts_tx_en = 0;
880         priv->hwts_rx_en = 0;
881
882         stmmac_ptp_register(priv);
883
884         return 0;
885 }
886
887 static void stmmac_release_ptp(struct stmmac_priv *priv)
888 {
889         clk_disable_unprepare(priv->plat->clk_ptp_ref);
890         stmmac_ptp_unregister(priv);
891 }
892
893 /**
894  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
895  *  @priv: driver private structure
896  *  @duplex: duplex passed to the next function
897  *  Description: It is used for configuring the flow control in all queues
898  */
899 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
900 {
901         u32 tx_cnt = priv->plat->tx_queues_to_use;
902
903         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
904                         priv->pause, tx_cnt);
905 }
906
907 static void stmmac_validate(struct phylink_config *config,
908                             unsigned long *supported,
909                             struct phylink_link_state *state)
910 {
911         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
912         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
913         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
914         int tx_cnt = priv->plat->tx_queues_to_use;
915         int max_speed = priv->plat->max_speed;
916
917         phylink_set(mac_supported, 10baseT_Half);
918         phylink_set(mac_supported, 10baseT_Full);
919         phylink_set(mac_supported, 100baseT_Half);
920         phylink_set(mac_supported, 100baseT_Full);
921         phylink_set(mac_supported, 1000baseT_Half);
922         phylink_set(mac_supported, 1000baseT_Full);
923         phylink_set(mac_supported, 1000baseKX_Full);
924
925         phylink_set(mac_supported, Autoneg);
926         phylink_set(mac_supported, Pause);
927         phylink_set(mac_supported, Asym_Pause);
928         phylink_set_port_modes(mac_supported);
929
930         /* Cut down 1G if asked to */
931         if ((max_speed > 0) && (max_speed < 1000)) {
932                 phylink_set(mask, 1000baseT_Full);
933                 phylink_set(mask, 1000baseX_Full);
934         } else if (priv->plat->has_xgmac) {
935                 if (!max_speed || (max_speed >= 2500)) {
936                         phylink_set(mac_supported, 2500baseT_Full);
937                         phylink_set(mac_supported, 2500baseX_Full);
938                 }
939                 if (!max_speed || (max_speed >= 5000)) {
940                         phylink_set(mac_supported, 5000baseT_Full);
941                 }
942                 if (!max_speed || (max_speed >= 10000)) {
943                         phylink_set(mac_supported, 10000baseSR_Full);
944                         phylink_set(mac_supported, 10000baseLR_Full);
945                         phylink_set(mac_supported, 10000baseER_Full);
946                         phylink_set(mac_supported, 10000baseLRM_Full);
947                         phylink_set(mac_supported, 10000baseT_Full);
948                         phylink_set(mac_supported, 10000baseKX4_Full);
949                         phylink_set(mac_supported, 10000baseKR_Full);
950                 }
951                 if (!max_speed || (max_speed >= 25000)) {
952                         phylink_set(mac_supported, 25000baseCR_Full);
953                         phylink_set(mac_supported, 25000baseKR_Full);
954                         phylink_set(mac_supported, 25000baseSR_Full);
955                 }
956                 if (!max_speed || (max_speed >= 40000)) {
957                         phylink_set(mac_supported, 40000baseKR4_Full);
958                         phylink_set(mac_supported, 40000baseCR4_Full);
959                         phylink_set(mac_supported, 40000baseSR4_Full);
960                         phylink_set(mac_supported, 40000baseLR4_Full);
961                 }
962                 if (!max_speed || (max_speed >= 50000)) {
963                         phylink_set(mac_supported, 50000baseCR2_Full);
964                         phylink_set(mac_supported, 50000baseKR2_Full);
965                         phylink_set(mac_supported, 50000baseSR2_Full);
966                         phylink_set(mac_supported, 50000baseKR_Full);
967                         phylink_set(mac_supported, 50000baseSR_Full);
968                         phylink_set(mac_supported, 50000baseCR_Full);
969                         phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
970                         phylink_set(mac_supported, 50000baseDR_Full);
971                 }
972                 if (!max_speed || (max_speed >= 100000)) {
973                         phylink_set(mac_supported, 100000baseKR4_Full);
974                         phylink_set(mac_supported, 100000baseSR4_Full);
975                         phylink_set(mac_supported, 100000baseCR4_Full);
976                         phylink_set(mac_supported, 100000baseLR4_ER4_Full);
977                         phylink_set(mac_supported, 100000baseKR2_Full);
978                         phylink_set(mac_supported, 100000baseSR2_Full);
979                         phylink_set(mac_supported, 100000baseCR2_Full);
980                         phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
981                         phylink_set(mac_supported, 100000baseDR2_Full);
982                 }
983         }
984
985         /* Half-Duplex can only work with single queue */
986         if (tx_cnt > 1) {
987                 phylink_set(mask, 10baseT_Half);
988                 phylink_set(mask, 100baseT_Half);
989                 phylink_set(mask, 1000baseT_Half);
990         }
991
992         linkmode_and(supported, supported, mac_supported);
993         linkmode_andnot(supported, supported, mask);
994
995         linkmode_and(state->advertising, state->advertising, mac_supported);
996         linkmode_andnot(state->advertising, state->advertising, mask);
997
998         /* If PCS is supported, check which modes it supports. */
999         stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
1000 }
1001
1002 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
1003                                      struct phylink_link_state *state)
1004 {
1005         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1006
1007         state->link = 0;
1008         stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
1009 }
1010
1011 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
1012                               const struct phylink_link_state *state)
1013 {
1014         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1015
1016         stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
1017 }
1018
1019 static void stmmac_mac_an_restart(struct phylink_config *config)
1020 {
1021         /* Not Supported */
1022 }
1023
1024 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
1025 {
1026         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
1027         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
1028         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
1029         bool *hs_enable = &fpe_cfg->hs_enable;
1030
1031         if (is_up && *hs_enable) {
1032                 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
1033         } else {
1034                 *lo_state = FPE_EVENT_UNKNOWN;
1035                 *lp_state = FPE_EVENT_UNKNOWN;
1036         }
1037 }
1038
1039 static void stmmac_mac_link_down(struct phylink_config *config,
1040                                  unsigned int mode, phy_interface_t interface)
1041 {
1042         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1043
1044         stmmac_mac_set(priv, priv->ioaddr, false);
1045         priv->eee_active = false;
1046         priv->tx_lpi_enabled = false;
1047         stmmac_eee_init(priv);
1048         stmmac_set_eee_pls(priv, priv->hw, false);
1049
1050         if (priv->dma_cap.fpesel)
1051                 stmmac_fpe_link_state_handle(priv, false);
1052 }
1053
1054 static void stmmac_mac_link_up(struct phylink_config *config,
1055                                struct phy_device *phy,
1056                                unsigned int mode, phy_interface_t interface,
1057                                int speed, int duplex,
1058                                bool tx_pause, bool rx_pause)
1059 {
1060         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1061         u32 ctrl;
1062
1063         stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
1064
1065         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1066         ctrl &= ~priv->hw->link.speed_mask;
1067
1068         if (interface == PHY_INTERFACE_MODE_USXGMII) {
1069                 switch (speed) {
1070                 case SPEED_10000:
1071                         ctrl |= priv->hw->link.xgmii.speed10000;
1072                         break;
1073                 case SPEED_5000:
1074                         ctrl |= priv->hw->link.xgmii.speed5000;
1075                         break;
1076                 case SPEED_2500:
1077                         ctrl |= priv->hw->link.xgmii.speed2500;
1078                         break;
1079                 default:
1080                         return;
1081                 }
1082         } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1083                 switch (speed) {
1084                 case SPEED_100000:
1085                         ctrl |= priv->hw->link.xlgmii.speed100000;
1086                         break;
1087                 case SPEED_50000:
1088                         ctrl |= priv->hw->link.xlgmii.speed50000;
1089                         break;
1090                 case SPEED_40000:
1091                         ctrl |= priv->hw->link.xlgmii.speed40000;
1092                         break;
1093                 case SPEED_25000:
1094                         ctrl |= priv->hw->link.xlgmii.speed25000;
1095                         break;
1096                 case SPEED_10000:
1097                         ctrl |= priv->hw->link.xgmii.speed10000;
1098                         break;
1099                 case SPEED_2500:
1100                         ctrl |= priv->hw->link.speed2500;
1101                         break;
1102                 case SPEED_1000:
1103                         ctrl |= priv->hw->link.speed1000;
1104                         break;
1105                 default:
1106                         return;
1107                 }
1108         } else {
1109                 switch (speed) {
1110                 case SPEED_2500:
1111                         ctrl |= priv->hw->link.speed2500;
1112                         break;
1113                 case SPEED_1000:
1114                         ctrl |= priv->hw->link.speed1000;
1115                         break;
1116                 case SPEED_100:
1117                         ctrl |= priv->hw->link.speed100;
1118                         break;
1119                 case SPEED_10:
1120                         ctrl |= priv->hw->link.speed10;
1121                         break;
1122                 default:
1123                         return;
1124                 }
1125         }
1126
1127         priv->speed = speed;
1128
1129         if (priv->plat->fix_mac_speed)
1130                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1131
1132         if (!duplex)
1133                 ctrl &= ~priv->hw->link.duplex;
1134         else
1135                 ctrl |= priv->hw->link.duplex;
1136
1137         /* Flow Control operation */
1138         if (tx_pause && rx_pause)
1139                 stmmac_mac_flow_ctrl(priv, duplex);
1140
1141         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1142
1143         stmmac_mac_set(priv, priv->ioaddr, true);
1144         if (phy && priv->dma_cap.eee) {
1145                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1146                 priv->eee_enabled = stmmac_eee_init(priv);
1147                 priv->tx_lpi_enabled = priv->eee_enabled;
1148                 stmmac_set_eee_pls(priv, priv->hw, true);
1149         }
1150
1151         if (priv->dma_cap.fpesel)
1152                 stmmac_fpe_link_state_handle(priv, true);
1153 }
1154
1155 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1156         .validate = stmmac_validate,
1157         .mac_pcs_get_state = stmmac_mac_pcs_get_state,
1158         .mac_config = stmmac_mac_config,
1159         .mac_an_restart = stmmac_mac_an_restart,
1160         .mac_link_down = stmmac_mac_link_down,
1161         .mac_link_up = stmmac_mac_link_up,
1162 };
1163
1164 /**
1165  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1166  * @priv: driver private structure
1167  * Description: this is to verify if the HW supports the PCS.
1168  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1169  * configured for the TBI, RTBI, or SGMII PHY interface.
1170  */
1171 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1172 {
1173         int interface = priv->plat->interface;
1174
1175         if (priv->dma_cap.pcs) {
1176                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1177                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1178                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1179                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1180                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1181                         priv->hw->pcs = STMMAC_PCS_RGMII;
1182                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1183                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1184                         priv->hw->pcs = STMMAC_PCS_SGMII;
1185                 }
1186         }
1187 }
1188
1189 /**
1190  * stmmac_init_phy - PHY initialization
1191  * @dev: net device structure
1192  * Description: it initializes the driver's PHY state, and attaches the PHY
1193  * to the mac driver.
1194  *  Return value:
1195  *  0 on success
1196  */
1197 static int stmmac_init_phy(struct net_device *dev)
1198 {
1199         struct stmmac_priv *priv = netdev_priv(dev);
1200         struct device_node *node;
1201         int ret;
1202
1203         node = priv->plat->phylink_node;
1204
1205         if (node)
1206                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1207
1208         /* Some DT bindings do not set-up the PHY handle. Let's try to
1209          * manually parse it
1210          */
1211         if (!node || ret) {
1212                 int addr = priv->plat->phy_addr;
1213                 struct phy_device *phydev;
1214
1215                 phydev = mdiobus_get_phy(priv->mii, addr);
1216                 if (!phydev) {
1217                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1218                         return -ENODEV;
1219                 }
1220
1221                 ret = phylink_connect_phy(priv->phylink, phydev);
1222         }
1223
1224         if (!priv->plat->pmt) {
1225                 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1226
1227                 phylink_ethtool_get_wol(priv->phylink, &wol);
1228                 device_set_wakeup_capable(priv->device, !!wol.supported);
1229         }
1230
1231         return ret;
1232 }
1233
1234 static int stmmac_phy_setup(struct stmmac_priv *priv)
1235 {
1236         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1237         int mode = priv->plat->phy_interface;
1238         struct phylink *phylink;
1239
1240         priv->phylink_config.dev = &priv->dev->dev;
1241         priv->phylink_config.type = PHYLINK_NETDEV;
1242         priv->phylink_config.pcs_poll = true;
1243         priv->phylink_config.ovr_an_inband =
1244                 priv->plat->mdio_bus_data->xpcs_an_inband;
1245
1246         if (!fwnode)
1247                 fwnode = dev_fwnode(priv->device);
1248
1249         phylink = phylink_create(&priv->phylink_config, fwnode,
1250                                  mode, &stmmac_phylink_mac_ops);
1251         if (IS_ERR(phylink))
1252                 return PTR_ERR(phylink);
1253
1254         priv->phylink = phylink;
1255         return 0;
1256 }
1257
1258 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1259 {
1260         u32 rx_cnt = priv->plat->rx_queues_to_use;
1261         unsigned int desc_size;
1262         void *head_rx;
1263         u32 queue;
1264
1265         /* Display RX rings */
1266         for (queue = 0; queue < rx_cnt; queue++) {
1267                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1268
1269                 pr_info("\tRX Queue %u rings\n", queue);
1270
1271                 if (priv->extend_desc) {
1272                         head_rx = (void *)rx_q->dma_erx;
1273                         desc_size = sizeof(struct dma_extended_desc);
1274                 } else {
1275                         head_rx = (void *)rx_q->dma_rx;
1276                         desc_size = sizeof(struct dma_desc);
1277                 }
1278
1279                 /* Display RX ring */
1280                 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1281                                     rx_q->dma_rx_phy, desc_size);
1282         }
1283 }
1284
1285 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1286 {
1287         u32 tx_cnt = priv->plat->tx_queues_to_use;
1288         unsigned int desc_size;
1289         void *head_tx;
1290         u32 queue;
1291
1292         /* Display TX rings */
1293         for (queue = 0; queue < tx_cnt; queue++) {
1294                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1295
1296                 pr_info("\tTX Queue %d rings\n", queue);
1297
1298                 if (priv->extend_desc) {
1299                         head_tx = (void *)tx_q->dma_etx;
1300                         desc_size = sizeof(struct dma_extended_desc);
1301                 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1302                         head_tx = (void *)tx_q->dma_entx;
1303                         desc_size = sizeof(struct dma_edesc);
1304                 } else {
1305                         head_tx = (void *)tx_q->dma_tx;
1306                         desc_size = sizeof(struct dma_desc);
1307                 }
1308
1309                 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1310                                     tx_q->dma_tx_phy, desc_size);
1311         }
1312 }
1313
1314 static void stmmac_display_rings(struct stmmac_priv *priv)
1315 {
1316         /* Display RX ring */
1317         stmmac_display_rx_rings(priv);
1318
1319         /* Display TX ring */
1320         stmmac_display_tx_rings(priv);
1321 }
1322
1323 static int stmmac_set_bfsize(int mtu, int bufsize)
1324 {
1325         int ret = bufsize;
1326
1327         if (mtu >= BUF_SIZE_8KiB)
1328                 ret = BUF_SIZE_16KiB;
1329         else if (mtu >= BUF_SIZE_4KiB)
1330                 ret = BUF_SIZE_8KiB;
1331         else if (mtu >= BUF_SIZE_2KiB)
1332                 ret = BUF_SIZE_4KiB;
1333         else if (mtu > DEFAULT_BUFSIZE)
1334                 ret = BUF_SIZE_2KiB;
1335         else
1336                 ret = DEFAULT_BUFSIZE;
1337
1338         return ret;
1339 }
1340
1341 /**
1342  * stmmac_clear_rx_descriptors - clear RX descriptors
1343  * @priv: driver private structure
1344  * @queue: RX queue index
1345  * Description: this function is called to clear the RX descriptors
1346  * in case of both basic and extended descriptors are used.
1347  */
1348 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1349 {
1350         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1351         int i;
1352
1353         /* Clear the RX descriptors */
1354         for (i = 0; i < priv->dma_rx_size; i++)
1355                 if (priv->extend_desc)
1356                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1357                                         priv->use_riwt, priv->mode,
1358                                         (i == priv->dma_rx_size - 1),
1359                                         priv->dma_buf_sz);
1360                 else
1361                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1362                                         priv->use_riwt, priv->mode,
1363                                         (i == priv->dma_rx_size - 1),
1364                                         priv->dma_buf_sz);
1365 }
1366
1367 /**
1368  * stmmac_clear_tx_descriptors - clear tx descriptors
1369  * @priv: driver private structure
1370  * @queue: TX queue index.
1371  * Description: this function is called to clear the TX descriptors
1372  * in case of both basic and extended descriptors are used.
1373  */
1374 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1375 {
1376         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1377         int i;
1378
1379         /* Clear the TX descriptors */
1380         for (i = 0; i < priv->dma_tx_size; i++) {
1381                 int last = (i == (priv->dma_tx_size - 1));
1382                 struct dma_desc *p;
1383
1384                 if (priv->extend_desc)
1385                         p = &tx_q->dma_etx[i].basic;
1386                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1387                         p = &tx_q->dma_entx[i].basic;
1388                 else
1389                         p = &tx_q->dma_tx[i];
1390
1391                 stmmac_init_tx_desc(priv, p, priv->mode, last);
1392         }
1393 }
1394
1395 /**
1396  * stmmac_clear_descriptors - clear descriptors
1397  * @priv: driver private structure
1398  * Description: this function is called to clear the TX and RX descriptors
1399  * in case of both basic and extended descriptors are used.
1400  */
1401 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1402 {
1403         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1404         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1405         u32 queue;
1406
1407         /* Clear the RX descriptors */
1408         for (queue = 0; queue < rx_queue_cnt; queue++)
1409                 stmmac_clear_rx_descriptors(priv, queue);
1410
1411         /* Clear the TX descriptors */
1412         for (queue = 0; queue < tx_queue_cnt; queue++)
1413                 stmmac_clear_tx_descriptors(priv, queue);
1414 }
1415
1416 /**
1417  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1418  * @priv: driver private structure
1419  * @p: descriptor pointer
1420  * @i: descriptor index
1421  * @flags: gfp flag
1422  * @queue: RX queue index
1423  * Description: this function is called to allocate a receive buffer, perform
1424  * the DMA mapping and init the descriptor.
1425  */
1426 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1427                                   int i, gfp_t flags, u32 queue)
1428 {
1429         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1430         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1431
1432         if (!buf->page) {
1433                 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1434                 if (!buf->page)
1435                         return -ENOMEM;
1436                 buf->page_offset = stmmac_rx_offset(priv);
1437         }
1438
1439         if (priv->sph && !buf->sec_page) {
1440                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1441                 if (!buf->sec_page)
1442                         return -ENOMEM;
1443
1444                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1445                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1446         } else {
1447                 buf->sec_page = NULL;
1448                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1449         }
1450
1451         buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1452
1453         stmmac_set_desc_addr(priv, p, buf->addr);
1454         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1455                 stmmac_init_desc3(priv, p);
1456
1457         return 0;
1458 }
1459
1460 /**
1461  * stmmac_free_rx_buffer - free RX dma buffers
1462  * @priv: private structure
1463  * @queue: RX queue index
1464  * @i: buffer index.
1465  */
1466 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1467 {
1468         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1469         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1470
1471         if (buf->page)
1472                 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1473         buf->page = NULL;
1474
1475         if (buf->sec_page)
1476                 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1477         buf->sec_page = NULL;
1478 }
1479
1480 /**
1481  * stmmac_free_tx_buffer - free RX dma buffers
1482  * @priv: private structure
1483  * @queue: RX queue index
1484  * @i: buffer index.
1485  */
1486 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1487 {
1488         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1489
1490         if (tx_q->tx_skbuff_dma[i].buf &&
1491             tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1492                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1493                         dma_unmap_page(priv->device,
1494                                        tx_q->tx_skbuff_dma[i].buf,
1495                                        tx_q->tx_skbuff_dma[i].len,
1496                                        DMA_TO_DEVICE);
1497                 else
1498                         dma_unmap_single(priv->device,
1499                                          tx_q->tx_skbuff_dma[i].buf,
1500                                          tx_q->tx_skbuff_dma[i].len,
1501                                          DMA_TO_DEVICE);
1502         }
1503
1504         if (tx_q->xdpf[i] &&
1505             (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1506              tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1507                 xdp_return_frame(tx_q->xdpf[i]);
1508                 tx_q->xdpf[i] = NULL;
1509         }
1510
1511         if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1512                 tx_q->xsk_frames_done++;
1513
1514         if (tx_q->tx_skbuff[i] &&
1515             tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1516                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1517                 tx_q->tx_skbuff[i] = NULL;
1518         }
1519
1520         tx_q->tx_skbuff_dma[i].buf = 0;
1521         tx_q->tx_skbuff_dma[i].map_as_page = false;
1522 }
1523
1524 /**
1525  * dma_free_rx_skbufs - free RX dma buffers
1526  * @priv: private structure
1527  * @queue: RX queue index
1528  */
1529 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1530 {
1531         int i;
1532
1533         for (i = 0; i < priv->dma_rx_size; i++)
1534                 stmmac_free_rx_buffer(priv, queue, i);
1535 }
1536
1537 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1538                                    gfp_t flags)
1539 {
1540         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1541         int i;
1542
1543         for (i = 0; i < priv->dma_rx_size; i++) {
1544                 struct dma_desc *p;
1545                 int ret;
1546
1547                 if (priv->extend_desc)
1548                         p = &((rx_q->dma_erx + i)->basic);
1549                 else
1550                         p = rx_q->dma_rx + i;
1551
1552                 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1553                                              queue);
1554                 if (ret)
1555                         return ret;
1556
1557                 rx_q->buf_alloc_num++;
1558         }
1559
1560         return 0;
1561 }
1562
1563 /**
1564  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1565  * @priv: private structure
1566  * @queue: RX queue index
1567  */
1568 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1569 {
1570         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1571         int i;
1572
1573         for (i = 0; i < priv->dma_rx_size; i++) {
1574                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1575
1576                 if (!buf->xdp)
1577                         continue;
1578
1579                 xsk_buff_free(buf->xdp);
1580                 buf->xdp = NULL;
1581         }
1582 }
1583
1584 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1585 {
1586         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1587         int i;
1588
1589         for (i = 0; i < priv->dma_rx_size; i++) {
1590                 struct stmmac_rx_buffer *buf;
1591                 dma_addr_t dma_addr;
1592                 struct dma_desc *p;
1593
1594                 if (priv->extend_desc)
1595                         p = (struct dma_desc *)(rx_q->dma_erx + i);
1596                 else
1597                         p = rx_q->dma_rx + i;
1598
1599                 buf = &rx_q->buf_pool[i];
1600
1601                 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1602                 if (!buf->xdp)
1603                         return -ENOMEM;
1604
1605                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1606                 stmmac_set_desc_addr(priv, p, dma_addr);
1607                 rx_q->buf_alloc_num++;
1608         }
1609
1610         return 0;
1611 }
1612
1613 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1614 {
1615         if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1616                 return NULL;
1617
1618         return xsk_get_pool_from_qid(priv->dev, queue);
1619 }
1620
1621 /**
1622  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1623  * @priv: driver private structure
1624  * @queue: RX queue index
1625  * @flags: gfp flag.
1626  * Description: this function initializes the DMA RX descriptors
1627  * and allocates the socket buffers. It supports the chained and ring
1628  * modes.
1629  */
1630 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1631 {
1632         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1633         int ret;
1634
1635         netif_dbg(priv, probe, priv->dev,
1636                   "(%s) dma_rx_phy=0x%08x\n", __func__,
1637                   (u32)rx_q->dma_rx_phy);
1638
1639         stmmac_clear_rx_descriptors(priv, queue);
1640
1641         xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1642
1643         rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1644
1645         if (rx_q->xsk_pool) {
1646                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1647                                                    MEM_TYPE_XSK_BUFF_POOL,
1648                                                    NULL));
1649                 netdev_info(priv->dev,
1650                             "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1651                             rx_q->queue_index);
1652                 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1653         } else {
1654                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1655                                                    MEM_TYPE_PAGE_POOL,
1656                                                    rx_q->page_pool));
1657                 netdev_info(priv->dev,
1658                             "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1659                             rx_q->queue_index);
1660         }
1661
1662         if (rx_q->xsk_pool) {
1663                 /* RX XDP ZC buffer pool may not be populated, e.g.
1664                  * xdpsock TX-only.
1665                  */
1666                 stmmac_alloc_rx_buffers_zc(priv, queue);
1667         } else {
1668                 ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1669                 if (ret < 0)
1670                         return -ENOMEM;
1671         }
1672
1673         rx_q->cur_rx = 0;
1674         rx_q->dirty_rx = 0;
1675
1676         /* Setup the chained descriptor addresses */
1677         if (priv->mode == STMMAC_CHAIN_MODE) {
1678                 if (priv->extend_desc)
1679                         stmmac_mode_init(priv, rx_q->dma_erx,
1680                                          rx_q->dma_rx_phy,
1681                                          priv->dma_rx_size, 1);
1682                 else
1683                         stmmac_mode_init(priv, rx_q->dma_rx,
1684                                          rx_q->dma_rx_phy,
1685                                          priv->dma_rx_size, 0);
1686         }
1687
1688         return 0;
1689 }
1690
1691 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1692 {
1693         struct stmmac_priv *priv = netdev_priv(dev);
1694         u32 rx_count = priv->plat->rx_queues_to_use;
1695         u32 queue;
1696         int ret;
1697
1698         /* RX INITIALIZATION */
1699         netif_dbg(priv, probe, priv->dev,
1700                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1701
1702         for (queue = 0; queue < rx_count; queue++) {
1703                 ret = __init_dma_rx_desc_rings(priv, queue, flags);
1704                 if (ret)
1705                         goto err_init_rx_buffers;
1706         }
1707
1708         return 0;
1709
1710 err_init_rx_buffers:
1711         while (queue >= 0) {
1712                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1713
1714                 if (rx_q->xsk_pool)
1715                         dma_free_rx_xskbufs(priv, queue);
1716                 else
1717                         dma_free_rx_skbufs(priv, queue);
1718
1719                 rx_q->buf_alloc_num = 0;
1720                 rx_q->xsk_pool = NULL;
1721
1722                 if (queue == 0)
1723                         break;
1724
1725                 queue--;
1726         }
1727
1728         return ret;
1729 }
1730
1731 /**
1732  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1733  * @priv: driver private structure
1734  * @queue : TX queue index
1735  * Description: this function initializes the DMA TX descriptors
1736  * and allocates the socket buffers. It supports the chained and ring
1737  * modes.
1738  */
1739 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1740 {
1741         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1742         int i;
1743
1744         netif_dbg(priv, probe, priv->dev,
1745                   "(%s) dma_tx_phy=0x%08x\n", __func__,
1746                   (u32)tx_q->dma_tx_phy);
1747
1748         /* Setup the chained descriptor addresses */
1749         if (priv->mode == STMMAC_CHAIN_MODE) {
1750                 if (priv->extend_desc)
1751                         stmmac_mode_init(priv, tx_q->dma_etx,
1752                                          tx_q->dma_tx_phy,
1753                                          priv->dma_tx_size, 1);
1754                 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1755                         stmmac_mode_init(priv, tx_q->dma_tx,
1756                                          tx_q->dma_tx_phy,
1757                                          priv->dma_tx_size, 0);
1758         }
1759
1760         tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1761
1762         for (i = 0; i < priv->dma_tx_size; i++) {
1763                 struct dma_desc *p;
1764
1765                 if (priv->extend_desc)
1766                         p = &((tx_q->dma_etx + i)->basic);
1767                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1768                         p = &((tx_q->dma_entx + i)->basic);
1769                 else
1770                         p = tx_q->dma_tx + i;
1771
1772                 stmmac_clear_desc(priv, p);
1773
1774                 tx_q->tx_skbuff_dma[i].buf = 0;
1775                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1776                 tx_q->tx_skbuff_dma[i].len = 0;
1777                 tx_q->tx_skbuff_dma[i].last_segment = false;
1778                 tx_q->tx_skbuff[i] = NULL;
1779         }
1780
1781         tx_q->dirty_tx = 0;
1782         tx_q->cur_tx = 0;
1783         tx_q->mss = 0;
1784
1785         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1786
1787         return 0;
1788 }
1789
1790 static int init_dma_tx_desc_rings(struct net_device *dev)
1791 {
1792         struct stmmac_priv *priv = netdev_priv(dev);
1793         u32 tx_queue_cnt;
1794         u32 queue;
1795
1796         tx_queue_cnt = priv->plat->tx_queues_to_use;
1797
1798         for (queue = 0; queue < tx_queue_cnt; queue++)
1799                 __init_dma_tx_desc_rings(priv, queue);
1800
1801         return 0;
1802 }
1803
1804 /**
1805  * init_dma_desc_rings - init the RX/TX descriptor rings
1806  * @dev: net device structure
1807  * @flags: gfp flag.
1808  * Description: this function initializes the DMA RX/TX descriptors
1809  * and allocates the socket buffers. It supports the chained and ring
1810  * modes.
1811  */
1812 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1813 {
1814         struct stmmac_priv *priv = netdev_priv(dev);
1815         int ret;
1816
1817         ret = init_dma_rx_desc_rings(dev, flags);
1818         if (ret)
1819                 return ret;
1820
1821         ret = init_dma_tx_desc_rings(dev);
1822
1823         stmmac_clear_descriptors(priv);
1824
1825         if (netif_msg_hw(priv))
1826                 stmmac_display_rings(priv);
1827
1828         return ret;
1829 }
1830
1831 /**
1832  * dma_free_tx_skbufs - free TX dma buffers
1833  * @priv: private structure
1834  * @queue: TX queue index
1835  */
1836 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1837 {
1838         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1839         int i;
1840
1841         tx_q->xsk_frames_done = 0;
1842
1843         for (i = 0; i < priv->dma_tx_size; i++)
1844                 stmmac_free_tx_buffer(priv, queue, i);
1845
1846         if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1847                 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1848                 tx_q->xsk_frames_done = 0;
1849                 tx_q->xsk_pool = NULL;
1850         }
1851 }
1852
1853 /**
1854  * stmmac_free_tx_skbufs - free TX skb buffers
1855  * @priv: private structure
1856  */
1857 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1858 {
1859         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1860         u32 queue;
1861
1862         for (queue = 0; queue < tx_queue_cnt; queue++)
1863                 dma_free_tx_skbufs(priv, queue);
1864 }
1865
1866 /**
1867  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1868  * @priv: private structure
1869  * @queue: RX queue index
1870  */
1871 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1872 {
1873         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1874
1875         /* Release the DMA RX socket buffers */
1876         if (rx_q->xsk_pool)
1877                 dma_free_rx_xskbufs(priv, queue);
1878         else
1879                 dma_free_rx_skbufs(priv, queue);
1880
1881         rx_q->buf_alloc_num = 0;
1882         rx_q->xsk_pool = NULL;
1883
1884         /* Free DMA regions of consistent memory previously allocated */
1885         if (!priv->extend_desc)
1886                 dma_free_coherent(priv->device, priv->dma_rx_size *
1887                                   sizeof(struct dma_desc),
1888                                   rx_q->dma_rx, rx_q->dma_rx_phy);
1889         else
1890                 dma_free_coherent(priv->device, priv->dma_rx_size *
1891                                   sizeof(struct dma_extended_desc),
1892                                   rx_q->dma_erx, rx_q->dma_rx_phy);
1893
1894         if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1895                 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1896
1897         kfree(rx_q->buf_pool);
1898         if (rx_q->page_pool)
1899                 page_pool_destroy(rx_q->page_pool);
1900 }
1901
1902 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1903 {
1904         u32 rx_count = priv->plat->rx_queues_to_use;
1905         u32 queue;
1906
1907         /* Free RX queue resources */
1908         for (queue = 0; queue < rx_count; queue++)
1909                 __free_dma_rx_desc_resources(priv, queue);
1910 }
1911
1912 /**
1913  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1914  * @priv: private structure
1915  * @queue: TX queue index
1916  */
1917 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1918 {
1919         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1920         size_t size;
1921         void *addr;
1922
1923         /* Release the DMA TX socket buffers */
1924         dma_free_tx_skbufs(priv, queue);
1925
1926         if (priv->extend_desc) {
1927                 size = sizeof(struct dma_extended_desc);
1928                 addr = tx_q->dma_etx;
1929         } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1930                 size = sizeof(struct dma_edesc);
1931                 addr = tx_q->dma_entx;
1932         } else {
1933                 size = sizeof(struct dma_desc);
1934                 addr = tx_q->dma_tx;
1935         }
1936
1937         size *= priv->dma_tx_size;
1938
1939         dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1940
1941         kfree(tx_q->tx_skbuff_dma);
1942         kfree(tx_q->tx_skbuff);
1943 }
1944
1945 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1946 {
1947         u32 tx_count = priv->plat->tx_queues_to_use;
1948         u32 queue;
1949
1950         /* Free TX queue resources */
1951         for (queue = 0; queue < tx_count; queue++)
1952                 __free_dma_tx_desc_resources(priv, queue);
1953 }
1954
1955 /**
1956  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1957  * @priv: private structure
1958  * @queue: RX queue index
1959  * Description: according to which descriptor can be used (extend or basic)
1960  * this function allocates the resources for TX and RX paths. In case of
1961  * reception, for example, it pre-allocated the RX socket buffer in order to
1962  * allow zero-copy mechanism.
1963  */
1964 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1965 {
1966         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1967         struct stmmac_channel *ch = &priv->channel[queue];
1968         bool xdp_prog = stmmac_xdp_is_enabled(priv);
1969         struct page_pool_params pp_params = { 0 };
1970         unsigned int num_pages;
1971         unsigned int napi_id;
1972         int ret;
1973
1974         rx_q->queue_index = queue;
1975         rx_q->priv_data = priv;
1976
1977         pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1978         pp_params.pool_size = priv->dma_rx_size;
1979         num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1980         pp_params.order = ilog2(num_pages);
1981         pp_params.nid = dev_to_node(priv->device);
1982         pp_params.dev = priv->device;
1983         pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1984         pp_params.offset = stmmac_rx_offset(priv);
1985         pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1986
1987         rx_q->page_pool = page_pool_create(&pp_params);
1988         if (IS_ERR(rx_q->page_pool)) {
1989                 ret = PTR_ERR(rx_q->page_pool);
1990                 rx_q->page_pool = NULL;
1991                 return ret;
1992         }
1993
1994         rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1995                                  sizeof(*rx_q->buf_pool),
1996                                  GFP_KERNEL);
1997         if (!rx_q->buf_pool)
1998                 return -ENOMEM;
1999
2000         if (priv->extend_desc) {
2001                 rx_q->dma_erx = dma_alloc_coherent(priv->device,
2002                                                    priv->dma_rx_size *
2003                                                    sizeof(struct dma_extended_desc),
2004                                                    &rx_q->dma_rx_phy,
2005                                                    GFP_KERNEL);
2006                 if (!rx_q->dma_erx)
2007                         return -ENOMEM;
2008
2009         } else {
2010                 rx_q->dma_rx = dma_alloc_coherent(priv->device,
2011                                                   priv->dma_rx_size *
2012                                                   sizeof(struct dma_desc),
2013                                                   &rx_q->dma_rx_phy,
2014                                                   GFP_KERNEL);
2015                 if (!rx_q->dma_rx)
2016                         return -ENOMEM;
2017         }
2018
2019         if (stmmac_xdp_is_enabled(priv) &&
2020             test_bit(queue, priv->af_xdp_zc_qps))
2021                 napi_id = ch->rxtx_napi.napi_id;
2022         else
2023                 napi_id = ch->rx_napi.napi_id;
2024
2025         ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2026                                rx_q->queue_index,
2027                                napi_id);
2028         if (ret) {
2029                 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2030                 return -EINVAL;
2031         }
2032
2033         return 0;
2034 }
2035
2036 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2037 {
2038         u32 rx_count = priv->plat->rx_queues_to_use;
2039         u32 queue;
2040         int ret;
2041
2042         /* RX queues buffers and DMA */
2043         for (queue = 0; queue < rx_count; queue++) {
2044                 ret = __alloc_dma_rx_desc_resources(priv, queue);
2045                 if (ret)
2046                         goto err_dma;
2047         }
2048
2049         return 0;
2050
2051 err_dma:
2052         free_dma_rx_desc_resources(priv);
2053
2054         return ret;
2055 }
2056
2057 /**
2058  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2059  * @priv: private structure
2060  * @queue: TX queue index
2061  * Description: according to which descriptor can be used (extend or basic)
2062  * this function allocates the resources for TX and RX paths. In case of
2063  * reception, for example, it pre-allocated the RX socket buffer in order to
2064  * allow zero-copy mechanism.
2065  */
2066 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2067 {
2068         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2069         size_t size;
2070         void *addr;
2071
2072         tx_q->queue_index = queue;
2073         tx_q->priv_data = priv;
2074
2075         tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2076                                       sizeof(*tx_q->tx_skbuff_dma),
2077                                       GFP_KERNEL);
2078         if (!tx_q->tx_skbuff_dma)
2079                 return -ENOMEM;
2080
2081         tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2082                                   sizeof(struct sk_buff *),
2083                                   GFP_KERNEL);
2084         if (!tx_q->tx_skbuff)
2085                 return -ENOMEM;
2086
2087         if (priv->extend_desc)
2088                 size = sizeof(struct dma_extended_desc);
2089         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2090                 size = sizeof(struct dma_edesc);
2091         else
2092                 size = sizeof(struct dma_desc);
2093
2094         size *= priv->dma_tx_size;
2095
2096         addr = dma_alloc_coherent(priv->device, size,
2097                                   &tx_q->dma_tx_phy, GFP_KERNEL);
2098         if (!addr)
2099                 return -ENOMEM;
2100
2101         if (priv->extend_desc)
2102                 tx_q->dma_etx = addr;
2103         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2104                 tx_q->dma_entx = addr;
2105         else
2106                 tx_q->dma_tx = addr;
2107
2108         return 0;
2109 }
2110
2111 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2112 {
2113         u32 tx_count = priv->plat->tx_queues_to_use;
2114         u32 queue;
2115         int ret;
2116
2117         /* TX queues buffers and DMA */
2118         for (queue = 0; queue < tx_count; queue++) {
2119                 ret = __alloc_dma_tx_desc_resources(priv, queue);
2120                 if (ret)
2121                         goto err_dma;
2122         }
2123
2124         return 0;
2125
2126 err_dma:
2127         free_dma_tx_desc_resources(priv);
2128         return ret;
2129 }
2130
2131 /**
2132  * alloc_dma_desc_resources - alloc TX/RX resources.
2133  * @priv: private structure
2134  * Description: according to which descriptor can be used (extend or basic)
2135  * this function allocates the resources for TX and RX paths. In case of
2136  * reception, for example, it pre-allocated the RX socket buffer in order to
2137  * allow zero-copy mechanism.
2138  */
2139 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2140 {
2141         /* RX Allocation */
2142         int ret = alloc_dma_rx_desc_resources(priv);
2143
2144         if (ret)
2145                 return ret;
2146
2147         ret = alloc_dma_tx_desc_resources(priv);
2148
2149         return ret;
2150 }
2151
2152 /**
2153  * free_dma_desc_resources - free dma desc resources
2154  * @priv: private structure
2155  */
2156 static void free_dma_desc_resources(struct stmmac_priv *priv)
2157 {
2158         /* Release the DMA TX socket buffers */
2159         free_dma_tx_desc_resources(priv);
2160
2161         /* Release the DMA RX socket buffers later
2162          * to ensure all pending XDP_TX buffers are returned.
2163          */
2164         free_dma_rx_desc_resources(priv);
2165 }
2166
2167 /**
2168  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2169  *  @priv: driver private structure
2170  *  Description: It is used for enabling the rx queues in the MAC
2171  */
2172 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2173 {
2174         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2175         int queue;
2176         u8 mode;
2177
2178         for (queue = 0; queue < rx_queues_count; queue++) {
2179                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2180                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2181         }
2182 }
2183
2184 /**
2185  * stmmac_start_rx_dma - start RX DMA channel
2186  * @priv: driver private structure
2187  * @chan: RX channel index
2188  * Description:
2189  * This starts a RX DMA channel
2190  */
2191 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2192 {
2193         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2194         stmmac_start_rx(priv, priv->ioaddr, chan);
2195 }
2196
2197 /**
2198  * stmmac_start_tx_dma - start TX DMA channel
2199  * @priv: driver private structure
2200  * @chan: TX channel index
2201  * Description:
2202  * This starts a TX DMA channel
2203  */
2204 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2205 {
2206         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2207         stmmac_start_tx(priv, priv->ioaddr, chan);
2208 }
2209
2210 /**
2211  * stmmac_stop_rx_dma - stop RX DMA channel
2212  * @priv: driver private structure
2213  * @chan: RX channel index
2214  * Description:
2215  * This stops a RX DMA channel
2216  */
2217 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2218 {
2219         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2220         stmmac_stop_rx(priv, priv->ioaddr, chan);
2221 }
2222
2223 /**
2224  * stmmac_stop_tx_dma - stop TX DMA channel
2225  * @priv: driver private structure
2226  * @chan: TX channel index
2227  * Description:
2228  * This stops a TX DMA channel
2229  */
2230 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2231 {
2232         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2233         stmmac_stop_tx(priv, priv->ioaddr, chan);
2234 }
2235
2236 /**
2237  * stmmac_start_all_dma - start all RX and TX DMA channels
2238  * @priv: driver private structure
2239  * Description:
2240  * This starts all the RX and TX DMA channels
2241  */
2242 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2243 {
2244         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2245         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2246         u32 chan = 0;
2247
2248         for (chan = 0; chan < rx_channels_count; chan++)
2249                 stmmac_start_rx_dma(priv, chan);
2250
2251         for (chan = 0; chan < tx_channels_count; chan++)
2252                 stmmac_start_tx_dma(priv, chan);
2253 }
2254
2255 /**
2256  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2257  * @priv: driver private structure
2258  * Description:
2259  * This stops the RX and TX DMA channels
2260  */
2261 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2262 {
2263         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2264         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2265         u32 chan = 0;
2266
2267         for (chan = 0; chan < rx_channels_count; chan++)
2268                 stmmac_stop_rx_dma(priv, chan);
2269
2270         for (chan = 0; chan < tx_channels_count; chan++)
2271                 stmmac_stop_tx_dma(priv, chan);
2272 }
2273
2274 /**
2275  *  stmmac_dma_operation_mode - HW DMA operation mode
2276  *  @priv: driver private structure
2277  *  Description: it is used for configuring the DMA operation mode register in
2278  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2279  */
2280 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2281 {
2282         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2283         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2284         int rxfifosz = priv->plat->rx_fifo_size;
2285         int txfifosz = priv->plat->tx_fifo_size;
2286         u32 txmode = 0;
2287         u32 rxmode = 0;
2288         u32 chan = 0;
2289         u8 qmode = 0;
2290
2291         if (rxfifosz == 0)
2292                 rxfifosz = priv->dma_cap.rx_fifo_size;
2293         if (txfifosz == 0)
2294                 txfifosz = priv->dma_cap.tx_fifo_size;
2295
2296         /* Adjust for real per queue fifo size */
2297         rxfifosz /= rx_channels_count;
2298         txfifosz /= tx_channels_count;
2299
2300         if (priv->plat->force_thresh_dma_mode) {
2301                 txmode = tc;
2302                 rxmode = tc;
2303         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2304                 /*
2305                  * In case of GMAC, SF mode can be enabled
2306                  * to perform the TX COE in HW. This depends on:
2307                  * 1) TX COE if actually supported
2308                  * 2) There is no bugged Jumbo frame support
2309                  *    that needs to not insert csum in the TDES.
2310                  */
2311                 txmode = SF_DMA_MODE;
2312                 rxmode = SF_DMA_MODE;
2313                 priv->xstats.threshold = SF_DMA_MODE;
2314         } else {
2315                 txmode = tc;
2316                 rxmode = SF_DMA_MODE;
2317         }
2318
2319         /* configure all channels */
2320         for (chan = 0; chan < rx_channels_count; chan++) {
2321                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2322                 u32 buf_size;
2323
2324                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2325
2326                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2327                                 rxfifosz, qmode);
2328
2329                 if (rx_q->xsk_pool) {
2330                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2331                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2332                                               buf_size,
2333                                               chan);
2334                 } else {
2335                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2336                                               priv->dma_buf_sz,
2337                                               chan);
2338                 }
2339         }
2340
2341         for (chan = 0; chan < tx_channels_count; chan++) {
2342                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2343
2344                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2345                                 txfifosz, qmode);
2346         }
2347 }
2348
2349 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2350 {
2351         struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2352         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2353         struct xsk_buff_pool *pool = tx_q->xsk_pool;
2354         unsigned int entry = tx_q->cur_tx;
2355         struct dma_desc *tx_desc = NULL;
2356         struct xdp_desc xdp_desc;
2357         bool work_done = true;
2358
2359         /* Avoids TX time-out as we are sharing with slow path */
2360         nq->trans_start = jiffies;
2361
2362         budget = min(budget, stmmac_tx_avail(priv, queue));
2363
2364         while (budget-- > 0) {
2365                 dma_addr_t dma_addr;
2366                 bool set_ic;
2367
2368                 /* We are sharing with slow path and stop XSK TX desc submission when
2369                  * available TX ring is less than threshold.
2370                  */
2371                 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2372                     !netif_carrier_ok(priv->dev)) {
2373                         work_done = false;
2374                         break;
2375                 }
2376
2377                 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2378                         break;
2379
2380                 if (likely(priv->extend_desc))
2381                         tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2382                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2383                         tx_desc = &tx_q->dma_entx[entry].basic;
2384                 else
2385                         tx_desc = tx_q->dma_tx + entry;
2386
2387                 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2388                 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2389
2390                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2391
2392                 /* To return XDP buffer to XSK pool, we simple call
2393                  * xsk_tx_completed(), so we don't need to fill up
2394                  * 'buf' and 'xdpf'.
2395                  */
2396                 tx_q->tx_skbuff_dma[entry].buf = 0;
2397                 tx_q->xdpf[entry] = NULL;
2398
2399                 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2400                 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2401                 tx_q->tx_skbuff_dma[entry].last_segment = true;
2402                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2403
2404                 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2405
2406                 tx_q->tx_count_frames++;
2407
2408                 if (!priv->tx_coal_frames[queue])
2409                         set_ic = false;
2410                 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2411                         set_ic = true;
2412                 else
2413                         set_ic = false;
2414
2415                 if (set_ic) {
2416                         tx_q->tx_count_frames = 0;
2417                         stmmac_set_tx_ic(priv, tx_desc);
2418                         priv->xstats.tx_set_ic_bit++;
2419                 }
2420
2421                 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2422                                        true, priv->mode, true, true,
2423                                        xdp_desc.len);
2424
2425                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2426
2427                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2428                 entry = tx_q->cur_tx;
2429         }
2430
2431         if (tx_desc) {
2432                 stmmac_flush_tx_descriptors(priv, queue);
2433                 xsk_tx_release(pool);
2434         }
2435
2436         /* Return true if all of the 3 conditions are met
2437          *  a) TX Budget is still available
2438          *  b) work_done = true when XSK TX desc peek is empty (no more
2439          *     pending XSK TX for transmission)
2440          */
2441         return !!budget && work_done;
2442 }
2443
2444 /**
2445  * stmmac_tx_clean - to manage the transmission completion
2446  * @priv: driver private structure
2447  * @budget: napi budget limiting this functions packet handling
2448  * @queue: TX queue index
2449  * Description: it reclaims the transmit resources after transmission completes.
2450  */
2451 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2452 {
2453         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2454         unsigned int bytes_compl = 0, pkts_compl = 0;
2455         unsigned int entry, xmits = 0, count = 0;
2456
2457         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2458
2459         priv->xstats.tx_clean++;
2460
2461         tx_q->xsk_frames_done = 0;
2462
2463         entry = tx_q->dirty_tx;
2464
2465         /* Try to clean all TX complete frame in 1 shot */
2466         while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2467                 struct xdp_frame *xdpf;
2468                 struct sk_buff *skb;
2469                 struct dma_desc *p;
2470                 int status;
2471
2472                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2473                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2474                         xdpf = tx_q->xdpf[entry];
2475                         skb = NULL;
2476                 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2477                         xdpf = NULL;
2478                         skb = tx_q->tx_skbuff[entry];
2479                 } else {
2480                         xdpf = NULL;
2481                         skb = NULL;
2482                 }
2483
2484                 if (priv->extend_desc)
2485                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
2486                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2487                         p = &tx_q->dma_entx[entry].basic;
2488                 else
2489                         p = tx_q->dma_tx + entry;
2490
2491                 status = stmmac_tx_status(priv, &priv->dev->stats,
2492                                 &priv->xstats, p, priv->ioaddr);
2493                 /* Check if the descriptor is owned by the DMA */
2494                 if (unlikely(status & tx_dma_own))
2495                         break;
2496
2497                 count++;
2498
2499                 /* Make sure descriptor fields are read after reading
2500                  * the own bit.
2501                  */
2502                 dma_rmb();
2503
2504                 /* Just consider the last segment and ...*/
2505                 if (likely(!(status & tx_not_ls))) {
2506                         /* ... verify the status error condition */
2507                         if (unlikely(status & tx_err)) {
2508                                 priv->dev->stats.tx_errors++;
2509                         } else {
2510                                 priv->dev->stats.tx_packets++;
2511                                 priv->xstats.tx_pkt_n++;
2512                         }
2513                         if (skb)
2514                                 stmmac_get_tx_hwtstamp(priv, p, skb);
2515                 }
2516
2517                 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2518                            tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2519                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
2520                                 dma_unmap_page(priv->device,
2521                                                tx_q->tx_skbuff_dma[entry].buf,
2522                                                tx_q->tx_skbuff_dma[entry].len,
2523                                                DMA_TO_DEVICE);
2524                         else
2525                                 dma_unmap_single(priv->device,
2526                                                  tx_q->tx_skbuff_dma[entry].buf,
2527                                                  tx_q->tx_skbuff_dma[entry].len,
2528                                                  DMA_TO_DEVICE);
2529                         tx_q->tx_skbuff_dma[entry].buf = 0;
2530                         tx_q->tx_skbuff_dma[entry].len = 0;
2531                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
2532                 }
2533
2534                 stmmac_clean_desc3(priv, tx_q, p);
2535
2536                 tx_q->tx_skbuff_dma[entry].last_segment = false;
2537                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2538
2539                 if (xdpf &&
2540                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2541                         xdp_return_frame_rx_napi(xdpf);
2542                         tx_q->xdpf[entry] = NULL;
2543                 }
2544
2545                 if (xdpf &&
2546                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2547                         xdp_return_frame(xdpf);
2548                         tx_q->xdpf[entry] = NULL;
2549                 }
2550
2551                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2552                         tx_q->xsk_frames_done++;
2553
2554                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2555                         if (likely(skb)) {
2556                                 pkts_compl++;
2557                                 bytes_compl += skb->len;
2558                                 dev_consume_skb_any(skb);
2559                                 tx_q->tx_skbuff[entry] = NULL;
2560                         }
2561                 }
2562
2563                 stmmac_release_tx_desc(priv, p, priv->mode);
2564
2565                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2566         }
2567         tx_q->dirty_tx = entry;
2568
2569         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2570                                   pkts_compl, bytes_compl);
2571
2572         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2573                                                                 queue))) &&
2574             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2575
2576                 netif_dbg(priv, tx_done, priv->dev,
2577                           "%s: restart transmit\n", __func__);
2578                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2579         }
2580
2581         if (tx_q->xsk_pool) {
2582                 bool work_done;
2583
2584                 if (tx_q->xsk_frames_done)
2585                         xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2586
2587                 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2588                         xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2589
2590                 /* For XSK TX, we try to send as many as possible.
2591                  * If XSK work done (XSK TX desc empty and budget still
2592                  * available), return "budget - 1" to reenable TX IRQ.
2593                  * Else, return "budget" to make NAPI continue polling.
2594                  */
2595                 work_done = stmmac_xdp_xmit_zc(priv, queue,
2596                                                STMMAC_XSK_TX_BUDGET_MAX);
2597                 if (work_done)
2598                         xmits = budget - 1;
2599                 else
2600                         xmits = budget;
2601         }
2602
2603         if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2604             priv->eee_sw_timer_en) {
2605                 stmmac_enable_eee_mode(priv);
2606                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2607         }
2608
2609         /* We still have pending packets, let's call for a new scheduling */
2610         if (tx_q->dirty_tx != tx_q->cur_tx)
2611                 hrtimer_start(&tx_q->txtimer,
2612                               STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2613                               HRTIMER_MODE_REL);
2614
2615         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2616
2617         /* Combine decisions from TX clean and XSK TX */
2618         return max(count, xmits);
2619 }
2620
2621 /**
2622  * stmmac_tx_err - to manage the tx error
2623  * @priv: driver private structure
2624  * @chan: channel index
2625  * Description: it cleans the descriptors and restarts the transmission
2626  * in case of transmission errors.
2627  */
2628 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2629 {
2630         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2631
2632         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2633
2634         stmmac_stop_tx_dma(priv, chan);
2635         dma_free_tx_skbufs(priv, chan);
2636         stmmac_clear_tx_descriptors(priv, chan);
2637         tx_q->dirty_tx = 0;
2638         tx_q->cur_tx = 0;
2639         tx_q->mss = 0;
2640         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2641         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2642                             tx_q->dma_tx_phy, chan);
2643         stmmac_start_tx_dma(priv, chan);
2644
2645         priv->dev->stats.tx_errors++;
2646         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2647 }
2648
2649 /**
2650  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2651  *  @priv: driver private structure
2652  *  @txmode: TX operating mode
2653  *  @rxmode: RX operating mode
2654  *  @chan: channel index
2655  *  Description: it is used for configuring of the DMA operation mode in
2656  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2657  *  mode.
2658  */
2659 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2660                                           u32 rxmode, u32 chan)
2661 {
2662         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2663         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2664         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2665         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2666         int rxfifosz = priv->plat->rx_fifo_size;
2667         int txfifosz = priv->plat->tx_fifo_size;
2668
2669         if (rxfifosz == 0)
2670                 rxfifosz = priv->dma_cap.rx_fifo_size;
2671         if (txfifosz == 0)
2672                 txfifosz = priv->dma_cap.tx_fifo_size;
2673
2674         /* Adjust for real per queue fifo size */
2675         rxfifosz /= rx_channels_count;
2676         txfifosz /= tx_channels_count;
2677
2678         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2679         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2680 }
2681
2682 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2683 {
2684         int ret;
2685
2686         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2687                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2688         if (ret && (ret != -EINVAL)) {
2689                 stmmac_global_err(priv);
2690                 return true;
2691         }
2692
2693         return false;
2694 }
2695
2696 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2697 {
2698         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2699                                                  &priv->xstats, chan, dir);
2700         struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2701         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2702         struct stmmac_channel *ch = &priv->channel[chan];
2703         struct napi_struct *rx_napi;
2704         struct napi_struct *tx_napi;
2705         unsigned long flags;
2706
2707         rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2708         tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2709
2710         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2711                 if (napi_schedule_prep(rx_napi)) {
2712                         spin_lock_irqsave(&ch->lock, flags);
2713                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2714                         spin_unlock_irqrestore(&ch->lock, flags);
2715                         __napi_schedule(rx_napi);
2716                 }
2717         }
2718
2719         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2720                 if (napi_schedule_prep(tx_napi)) {
2721                         spin_lock_irqsave(&ch->lock, flags);
2722                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2723                         spin_unlock_irqrestore(&ch->lock, flags);
2724                         __napi_schedule(tx_napi);
2725                 }
2726         }
2727
2728         return status;
2729 }
2730
2731 /**
2732  * stmmac_dma_interrupt - DMA ISR
2733  * @priv: driver private structure
2734  * Description: this is the DMA ISR. It is called by the main ISR.
2735  * It calls the dwmac dma routine and schedule poll method in case of some
2736  * work can be done.
2737  */
2738 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2739 {
2740         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2741         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2742         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2743                                 tx_channel_count : rx_channel_count;
2744         u32 chan;
2745         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2746
2747         /* Make sure we never check beyond our status buffer. */
2748         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2749                 channels_to_check = ARRAY_SIZE(status);
2750
2751         for (chan = 0; chan < channels_to_check; chan++)
2752                 status[chan] = stmmac_napi_check(priv, chan,
2753                                                  DMA_DIR_RXTX);
2754
2755         for (chan = 0; chan < tx_channel_count; chan++) {
2756                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2757                         /* Try to bump up the dma threshold on this failure */
2758                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2759                             (tc <= 256)) {
2760                                 tc += 64;
2761                                 if (priv->plat->force_thresh_dma_mode)
2762                                         stmmac_set_dma_operation_mode(priv,
2763                                                                       tc,
2764                                                                       tc,
2765                                                                       chan);
2766                                 else
2767                                         stmmac_set_dma_operation_mode(priv,
2768                                                                     tc,
2769                                                                     SF_DMA_MODE,
2770                                                                     chan);
2771                                 priv->xstats.threshold = tc;
2772                         }
2773                 } else if (unlikely(status[chan] == tx_hard_error)) {
2774                         stmmac_tx_err(priv, chan);
2775                 }
2776         }
2777 }
2778
2779 /**
2780  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2781  * @priv: driver private structure
2782  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2783  */
2784 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2785 {
2786         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2787                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2788
2789         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2790
2791         if (priv->dma_cap.rmon) {
2792                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2793                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2794         } else
2795                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2796 }
2797
2798 /**
2799  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2800  * @priv: driver private structure
2801  * Description:
2802  *  new GMAC chip generations have a new register to indicate the
2803  *  presence of the optional feature/functions.
2804  *  This can be also used to override the value passed through the
2805  *  platform and necessary for old MAC10/100 and GMAC chips.
2806  */
2807 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2808 {
2809         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2810 }
2811
2812 /**
2813  * stmmac_check_ether_addr - check if the MAC addr is valid
2814  * @priv: driver private structure
2815  * Description:
2816  * it is to verify if the MAC address is valid, in case of failures it
2817  * generates a random MAC address
2818  */
2819 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2820 {
2821         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2822                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2823                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2824                         eth_hw_addr_random(priv->dev);
2825                 dev_info(priv->device, "device MAC address %pM\n",
2826                          priv->dev->dev_addr);
2827         }
2828 }
2829
2830 /**
2831  * stmmac_init_dma_engine - DMA init.
2832  * @priv: driver private structure
2833  * Description:
2834  * It inits the DMA invoking the specific MAC/GMAC callback.
2835  * Some DMA parameters can be passed from the platform;
2836  * in case of these are not passed a default is kept for the MAC or GMAC.
2837  */
2838 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2839 {
2840         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2841         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2842         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2843         struct stmmac_rx_queue *rx_q;
2844         struct stmmac_tx_queue *tx_q;
2845         u32 chan = 0;
2846         int atds = 0;
2847         int ret = 0;
2848
2849         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2850                 dev_err(priv->device, "Invalid DMA configuration\n");
2851                 return -EINVAL;
2852         }
2853
2854         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2855                 atds = 1;
2856
2857         ret = stmmac_reset(priv, priv->ioaddr);
2858         if (ret) {
2859                 dev_err(priv->device, "Failed to reset the dma\n");
2860                 return ret;
2861         }
2862
2863         /* DMA Configuration */
2864         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2865
2866         if (priv->plat->axi)
2867                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2868
2869         /* DMA CSR Channel configuration */
2870         for (chan = 0; chan < dma_csr_ch; chan++)
2871                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2872
2873         /* DMA RX Channel Configuration */
2874         for (chan = 0; chan < rx_channels_count; chan++) {
2875                 rx_q = &priv->rx_queue[chan];
2876
2877                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2878                                     rx_q->dma_rx_phy, chan);
2879
2880                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2881                                      (rx_q->buf_alloc_num *
2882                                       sizeof(struct dma_desc));
2883                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2884                                        rx_q->rx_tail_addr, chan);
2885         }
2886
2887         /* DMA TX Channel Configuration */
2888         for (chan = 0; chan < tx_channels_count; chan++) {
2889                 tx_q = &priv->tx_queue[chan];
2890
2891                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2892                                     tx_q->dma_tx_phy, chan);
2893
2894                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2895                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2896                                        tx_q->tx_tail_addr, chan);
2897         }
2898
2899         return ret;
2900 }
2901
2902 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2903 {
2904         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2905
2906         hrtimer_start(&tx_q->txtimer,
2907                       STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2908                       HRTIMER_MODE_REL);
2909 }
2910
2911 /**
2912  * stmmac_tx_timer - mitigation sw timer for tx.
2913  * @t: data pointer
2914  * Description:
2915  * This is the timer handler to directly invoke the stmmac_tx_clean.
2916  */
2917 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2918 {
2919         struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2920         struct stmmac_priv *priv = tx_q->priv_data;
2921         struct stmmac_channel *ch;
2922         struct napi_struct *napi;
2923
2924         ch = &priv->channel[tx_q->queue_index];
2925         napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2926
2927         if (likely(napi_schedule_prep(napi))) {
2928                 unsigned long flags;
2929
2930                 spin_lock_irqsave(&ch->lock, flags);
2931                 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2932                 spin_unlock_irqrestore(&ch->lock, flags);
2933                 __napi_schedule(napi);
2934         }
2935
2936         return HRTIMER_NORESTART;
2937 }
2938
2939 /**
2940  * stmmac_init_coalesce - init mitigation options.
2941  * @priv: driver private structure
2942  * Description:
2943  * This inits the coalesce parameters: i.e. timer rate,
2944  * timer handler and default threshold used for enabling the
2945  * interrupt on completion bit.
2946  */
2947 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2948 {
2949         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2950         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2951         u32 chan;
2952
2953         for (chan = 0; chan < tx_channel_count; chan++) {
2954                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2955
2956                 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2957                 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2958
2959                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2960                 tx_q->txtimer.function = stmmac_tx_timer;
2961         }
2962
2963         for (chan = 0; chan < rx_channel_count; chan++)
2964                 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2965 }
2966
2967 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2968 {
2969         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2970         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2971         u32 chan;
2972
2973         /* set TX ring length */
2974         for (chan = 0; chan < tx_channels_count; chan++)
2975                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2976                                        (priv->dma_tx_size - 1), chan);
2977
2978         /* set RX ring length */
2979         for (chan = 0; chan < rx_channels_count; chan++)
2980                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2981                                        (priv->dma_rx_size - 1), chan);
2982 }
2983
2984 /**
2985  *  stmmac_set_tx_queue_weight - Set TX queue weight
2986  *  @priv: driver private structure
2987  *  Description: It is used for setting TX queues weight
2988  */
2989 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2990 {
2991         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2992         u32 weight;
2993         u32 queue;
2994
2995         for (queue = 0; queue < tx_queues_count; queue++) {
2996                 weight = priv->plat->tx_queues_cfg[queue].weight;
2997                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2998         }
2999 }
3000
3001 /**
3002  *  stmmac_configure_cbs - Configure CBS in TX queue
3003  *  @priv: driver private structure
3004  *  Description: It is used for configuring CBS in AVB TX queues
3005  */
3006 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3007 {
3008         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3009         u32 mode_to_use;
3010         u32 queue;
3011
3012         /* queue 0 is reserved for legacy traffic */
3013         for (queue = 1; queue < tx_queues_count; queue++) {
3014                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3015                 if (mode_to_use == MTL_QUEUE_DCB)
3016                         continue;
3017
3018                 stmmac_config_cbs(priv, priv->hw,
3019                                 priv->plat->tx_queues_cfg[queue].send_slope,
3020                                 priv->plat->tx_queues_cfg[queue].idle_slope,
3021                                 priv->plat->tx_queues_cfg[queue].high_credit,
3022                                 priv->plat->tx_queues_cfg[queue].low_credit,
3023                                 queue);
3024         }
3025 }
3026
3027 /**
3028  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3029  *  @priv: driver private structure
3030  *  Description: It is used for mapping RX queues to RX dma channels
3031  */
3032 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3033 {
3034         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3035         u32 queue;
3036         u32 chan;
3037
3038         for (queue = 0; queue < rx_queues_count; queue++) {
3039                 chan = priv->plat->rx_queues_cfg[queue].chan;
3040                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3041         }
3042 }
3043
3044 /**
3045  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3046  *  @priv: driver private structure
3047  *  Description: It is used for configuring the RX Queue Priority
3048  */
3049 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3050 {
3051         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3052         u32 queue;
3053         u32 prio;
3054
3055         for (queue = 0; queue < rx_queues_count; queue++) {
3056                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3057                         continue;
3058
3059                 prio = priv->plat->rx_queues_cfg[queue].prio;
3060                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3061         }
3062 }
3063
3064 /**
3065  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3066  *  @priv: driver private structure
3067  *  Description: It is used for configuring the TX Queue Priority
3068  */
3069 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3070 {
3071         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3072         u32 queue;
3073         u32 prio;
3074
3075         for (queue = 0; queue < tx_queues_count; queue++) {
3076                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3077                         continue;
3078
3079                 prio = priv->plat->tx_queues_cfg[queue].prio;
3080                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3081         }
3082 }
3083
3084 /**
3085  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3086  *  @priv: driver private structure
3087  *  Description: It is used for configuring the RX queue routing
3088  */
3089 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3090 {
3091         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3092         u32 queue;
3093         u8 packet;
3094
3095         for (queue = 0; queue < rx_queues_count; queue++) {
3096                 /* no specific packet type routing specified for the queue */
3097                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3098                         continue;
3099
3100                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3101                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3102         }
3103 }
3104
3105 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3106 {
3107         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3108                 priv->rss.enable = false;
3109                 return;
3110         }
3111
3112         if (priv->dev->features & NETIF_F_RXHASH)
3113                 priv->rss.enable = true;
3114         else
3115                 priv->rss.enable = false;
3116
3117         stmmac_rss_configure(priv, priv->hw, &priv->rss,
3118                              priv->plat->rx_queues_to_use);
3119 }
3120
3121 /**
3122  *  stmmac_mtl_configuration - Configure MTL
3123  *  @priv: driver private structure
3124  *  Description: It is used for configurring MTL
3125  */
3126 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3127 {
3128         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3129         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3130
3131         if (tx_queues_count > 1)
3132                 stmmac_set_tx_queue_weight(priv);
3133
3134         /* Configure MTL RX algorithms */
3135         if (rx_queues_count > 1)
3136                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3137                                 priv->plat->rx_sched_algorithm);
3138
3139         /* Configure MTL TX algorithms */
3140         if (tx_queues_count > 1)
3141                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3142                                 priv->plat->tx_sched_algorithm);
3143
3144         /* Configure CBS in AVB TX queues */
3145         if (tx_queues_count > 1)
3146                 stmmac_configure_cbs(priv);
3147
3148         /* Map RX MTL to DMA channels */
3149         stmmac_rx_queue_dma_chan_map(priv);
3150
3151         /* Enable MAC RX Queues */
3152         stmmac_mac_enable_rx_queues(priv);
3153
3154         /* Set RX priorities */
3155         if (rx_queues_count > 1)
3156                 stmmac_mac_config_rx_queues_prio(priv);
3157
3158         /* Set TX priorities */
3159         if (tx_queues_count > 1)
3160                 stmmac_mac_config_tx_queues_prio(priv);
3161
3162         /* Set RX routing */
3163         if (rx_queues_count > 1)
3164                 stmmac_mac_config_rx_queues_routing(priv);
3165
3166         /* Receive Side Scaling */
3167         if (rx_queues_count > 1)
3168                 stmmac_mac_config_rss(priv);
3169 }
3170
3171 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3172 {
3173         if (priv->dma_cap.asp) {
3174                 netdev_info(priv->dev, "Enabling Safety Features\n");
3175                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
3176         } else {
3177                 netdev_info(priv->dev, "No Safety Features support found\n");
3178         }
3179 }
3180
3181 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3182 {
3183         char *name;
3184
3185         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3186         clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3187
3188         name = priv->wq_name;
3189         sprintf(name, "%s-fpe", priv->dev->name);
3190
3191         priv->fpe_wq = create_singlethread_workqueue(name);
3192         if (!priv->fpe_wq) {
3193                 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3194
3195                 return -ENOMEM;
3196         }
3197         netdev_info(priv->dev, "FPE workqueue start");
3198
3199         return 0;
3200 }
3201
3202 /**
3203  * stmmac_hw_setup - setup mac in a usable state.
3204  *  @dev : pointer to the device structure.
3205  *  @init_ptp: initialize PTP if set
3206  *  Description:
3207  *  this is the main function to setup the HW in a usable state because the
3208  *  dma engine is reset, the core registers are configured (e.g. AXI,
3209  *  Checksum features, timers). The DMA is ready to start receiving and
3210  *  transmitting.
3211  *  Return value:
3212  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3213  *  file on failure.
3214  */
3215 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
3216 {
3217         struct stmmac_priv *priv = netdev_priv(dev);
3218         u32 rx_cnt = priv->plat->rx_queues_to_use;
3219         u32 tx_cnt = priv->plat->tx_queues_to_use;
3220         bool sph_en;
3221         u32 chan;
3222         int ret;
3223
3224         /* DMA initialization and SW reset */
3225         ret = stmmac_init_dma_engine(priv);
3226         if (ret < 0) {
3227                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3228                            __func__);
3229                 return ret;
3230         }
3231
3232         /* Copy the MAC addr into the HW  */
3233         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3234
3235         /* PS and related bits will be programmed according to the speed */
3236         if (priv->hw->pcs) {
3237                 int speed = priv->plat->mac_port_sel_speed;
3238
3239                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3240                     (speed == SPEED_1000)) {
3241                         priv->hw->ps = speed;
3242                 } else {
3243                         dev_warn(priv->device, "invalid port speed\n");
3244                         priv->hw->ps = 0;
3245                 }
3246         }
3247
3248         /* Initialize the MAC Core */
3249         stmmac_core_init(priv, priv->hw, dev);
3250
3251         /* Initialize MTL*/
3252         stmmac_mtl_configuration(priv);
3253
3254         /* Initialize Safety Features */
3255         stmmac_safety_feat_configuration(priv);
3256
3257         ret = stmmac_rx_ipc(priv, priv->hw);
3258         if (!ret) {
3259                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3260                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3261                 priv->hw->rx_csum = 0;
3262         }
3263
3264         /* Enable the MAC Rx/Tx */
3265         stmmac_mac_set(priv, priv->ioaddr, true);
3266
3267         /* Set the HW DMA mode and the COE */
3268         stmmac_dma_operation_mode(priv);
3269
3270         stmmac_mmc_setup(priv);
3271
3272         if (init_ptp) {
3273                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3274                 if (ret < 0)
3275                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
3276
3277                 ret = stmmac_init_ptp(priv);
3278                 if (ret == -EOPNOTSUPP)
3279                         netdev_warn(priv->dev, "PTP not supported by HW\n");
3280                 else if (ret)
3281                         netdev_warn(priv->dev, "PTP init failed\n");
3282         }
3283
3284         priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3285
3286         /* Convert the timer from msec to usec */
3287         if (!priv->tx_lpi_timer)
3288                 priv->tx_lpi_timer = eee_timer * 1000;
3289
3290         if (priv->use_riwt) {
3291                 u32 queue;
3292
3293                 for (queue = 0; queue < rx_cnt; queue++) {
3294                         if (!priv->rx_riwt[queue])
3295                                 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3296
3297                         stmmac_rx_watchdog(priv, priv->ioaddr,
3298                                            priv->rx_riwt[queue], queue);
3299                 }
3300         }
3301
3302         if (priv->hw->pcs)
3303                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3304
3305         /* set TX and RX rings length */
3306         stmmac_set_rings_length(priv);
3307
3308         /* Enable TSO */
3309         if (priv->tso) {
3310                 for (chan = 0; chan < tx_cnt; chan++) {
3311                         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3312
3313                         /* TSO and TBS cannot co-exist */
3314                         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3315                                 continue;
3316
3317                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3318                 }
3319         }
3320
3321         /* Enable Split Header */
3322         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3323         for (chan = 0; chan < rx_cnt; chan++)
3324                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3325
3326
3327         /* VLAN Tag Insertion */
3328         if (priv->dma_cap.vlins)
3329                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3330
3331         /* TBS */
3332         for (chan = 0; chan < tx_cnt; chan++) {
3333                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3334                 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3335
3336                 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3337         }
3338
3339         /* Configure real RX and TX queues */
3340         netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3341         netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3342
3343         /* Start the ball rolling... */
3344         stmmac_start_all_dma(priv);
3345
3346         if (priv->dma_cap.fpesel) {
3347                 stmmac_fpe_start_wq(priv);
3348
3349                 if (priv->plat->fpe_cfg->enable)
3350                         stmmac_fpe_handshake(priv, true);
3351         }
3352
3353         return 0;
3354 }
3355
3356 static void stmmac_hw_teardown(struct net_device *dev)
3357 {
3358         struct stmmac_priv *priv = netdev_priv(dev);
3359
3360         clk_disable_unprepare(priv->plat->clk_ptp_ref);
3361 }
3362
3363 static void stmmac_free_irq(struct net_device *dev,
3364                             enum request_irq_err irq_err, int irq_idx)
3365 {
3366         struct stmmac_priv *priv = netdev_priv(dev);
3367         int j;
3368
3369         switch (irq_err) {
3370         case REQ_IRQ_ERR_ALL:
3371                 irq_idx = priv->plat->tx_queues_to_use;
3372                 fallthrough;
3373         case REQ_IRQ_ERR_TX:
3374                 for (j = irq_idx - 1; j >= 0; j--) {
3375                         if (priv->tx_irq[j] > 0) {
3376                                 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3377                                 free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3378                         }
3379                 }
3380                 irq_idx = priv->plat->rx_queues_to_use;
3381                 fallthrough;
3382         case REQ_IRQ_ERR_RX:
3383                 for (j = irq_idx - 1; j >= 0; j--) {
3384                         if (priv->rx_irq[j] > 0) {
3385                                 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3386                                 free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3387                         }
3388                 }
3389
3390                 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3391                         free_irq(priv->sfty_ue_irq, dev);
3392                 fallthrough;
3393         case REQ_IRQ_ERR_SFTY_UE:
3394                 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3395                         free_irq(priv->sfty_ce_irq, dev);
3396                 fallthrough;
3397         case REQ_IRQ_ERR_SFTY_CE:
3398                 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3399                         free_irq(priv->lpi_irq, dev);
3400                 fallthrough;
3401         case REQ_IRQ_ERR_LPI:
3402                 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3403                         free_irq(priv->wol_irq, dev);
3404                 fallthrough;
3405         case REQ_IRQ_ERR_WOL:
3406                 free_irq(dev->irq, dev);
3407                 fallthrough;
3408         case REQ_IRQ_ERR_MAC:
3409         case REQ_IRQ_ERR_NO:
3410                 /* If MAC IRQ request error, no more IRQ to free */
3411                 break;
3412         }
3413 }
3414
3415 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3416 {
3417         enum request_irq_err irq_err = REQ_IRQ_ERR_NO;
3418         struct stmmac_priv *priv = netdev_priv(dev);
3419         cpumask_t cpu_mask;
3420         int irq_idx = 0;
3421         char *int_name;
3422         int ret;
3423         int i;
3424
3425         /* For common interrupt */
3426         int_name = priv->int_name_mac;
3427         sprintf(int_name, "%s:%s", dev->name, "mac");
3428         ret = request_irq(dev->irq, stmmac_mac_interrupt,
3429                           0, int_name, dev);
3430         if (unlikely(ret < 0)) {
3431                 netdev_err(priv->dev,
3432                            "%s: alloc mac MSI %d (error: %d)\n",
3433                            __func__, dev->irq, ret);
3434                 irq_err = REQ_IRQ_ERR_MAC;
3435                 goto irq_error;
3436         }
3437
3438         /* Request the Wake IRQ in case of another line
3439          * is used for WoL
3440          */
3441         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3442                 int_name = priv->int_name_wol;
3443                 sprintf(int_name, "%s:%s", dev->name, "wol");
3444                 ret = request_irq(priv->wol_irq,
3445                                   stmmac_mac_interrupt,
3446                                   0, int_name, dev);
3447                 if (unlikely(ret < 0)) {
3448                         netdev_err(priv->dev,
3449                                    "%s: alloc wol MSI %d (error: %d)\n",
3450                                    __func__, priv->wol_irq, ret);
3451                         irq_err = REQ_IRQ_ERR_WOL;
3452                         goto irq_error;
3453                 }
3454         }
3455
3456         /* Request the LPI IRQ in case of another line
3457          * is used for LPI
3458          */
3459         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3460                 int_name = priv->int_name_lpi;
3461                 sprintf(int_name, "%s:%s", dev->name, "lpi");
3462                 ret = request_irq(priv->lpi_irq,
3463                                   stmmac_mac_interrupt,
3464                                   0, int_name, dev);
3465                 if (unlikely(ret < 0)) {
3466                         netdev_err(priv->dev,
3467                                    "%s: alloc lpi MSI %d (error: %d)\n",
3468                                    __func__, priv->lpi_irq, ret);
3469                         irq_err = REQ_IRQ_ERR_LPI;
3470                         goto irq_error;
3471                 }
3472         }
3473
3474         /* Request the Safety Feature Correctible Error line in
3475          * case of another line is used
3476          */
3477         if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3478                 int_name = priv->int_name_sfty_ce;
3479                 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3480                 ret = request_irq(priv->sfty_ce_irq,
3481                                   stmmac_safety_interrupt,
3482                                   0, int_name, dev);
3483                 if (unlikely(ret < 0)) {
3484                         netdev_err(priv->dev,
3485                                    "%s: alloc sfty ce MSI %d (error: %d)\n",
3486                                    __func__, priv->sfty_ce_irq, ret);
3487                         irq_err = REQ_IRQ_ERR_SFTY_CE;
3488                         goto irq_error;
3489                 }
3490         }
3491
3492         /* Request the Safety Feature Uncorrectible Error line in
3493          * case of another line is used
3494          */
3495         if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3496                 int_name = priv->int_name_sfty_ue;
3497                 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3498                 ret = request_irq(priv->sfty_ue_irq,
3499                                   stmmac_safety_interrupt,
3500                                   0, int_name, dev);
3501                 if (unlikely(ret < 0)) {
3502                         netdev_err(priv->dev,
3503                                    "%s: alloc sfty ue MSI %d (error: %d)\n",
3504                                    __func__, priv->sfty_ue_irq, ret);
3505                         irq_err = REQ_IRQ_ERR_SFTY_UE;
3506                         goto irq_error;
3507                 }
3508         }
3509
3510         /* Request Rx MSI irq */
3511         for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3512                 if (priv->rx_irq[i] == 0)
3513                         continue;
3514
3515                 int_name = priv->int_name_rx_irq[i];
3516                 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3517                 ret = request_irq(priv->rx_irq[i],
3518                                   stmmac_msi_intr_rx,
3519                                   0, int_name, &priv->rx_queue[i]);
3520                 if (unlikely(ret < 0)) {
3521                         netdev_err(priv->dev,
3522                                    "%s: alloc rx-%d  MSI %d (error: %d)\n",
3523                                    __func__, i, priv->rx_irq[i], ret);
3524                         irq_err = REQ_IRQ_ERR_RX;
3525                         irq_idx = i;
3526                         goto irq_error;
3527                 }
3528                 cpumask_clear(&cpu_mask);
3529                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3530                 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3531         }
3532
3533         /* Request Tx MSI irq */
3534         for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3535                 if (priv->tx_irq[i] == 0)
3536                         continue;
3537
3538                 int_name = priv->int_name_tx_irq[i];
3539                 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3540                 ret = request_irq(priv->tx_irq[i],
3541                                   stmmac_msi_intr_tx,
3542                                   0, int_name, &priv->tx_queue[i]);
3543                 if (unlikely(ret < 0)) {
3544                         netdev_err(priv->dev,
3545                                    "%s: alloc tx-%d  MSI %d (error: %d)\n",
3546                                    __func__, i, priv->tx_irq[i], ret);
3547                         irq_err = REQ_IRQ_ERR_TX;
3548                         irq_idx = i;
3549                         goto irq_error;
3550                 }
3551                 cpumask_clear(&cpu_mask);
3552                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3553                 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3554         }
3555
3556         return 0;
3557
3558 irq_error:
3559         stmmac_free_irq(dev, irq_err, irq_idx);
3560         return ret;
3561 }
3562
3563 static int stmmac_request_irq_single(struct net_device *dev)
3564 {
3565         enum request_irq_err irq_err = REQ_IRQ_ERR_NO;
3566         struct stmmac_priv *priv = netdev_priv(dev);
3567         int ret;
3568
3569         ret = request_irq(dev->irq, stmmac_interrupt,
3570                           IRQF_SHARED, dev->name, dev);
3571         if (unlikely(ret < 0)) {
3572                 netdev_err(priv->dev,
3573                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3574                            __func__, dev->irq, ret);
3575                 irq_err = REQ_IRQ_ERR_MAC;
3576                 return ret;
3577         }
3578
3579         /* Request the Wake IRQ in case of another line
3580          * is used for WoL
3581          */
3582         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3583                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3584                                   IRQF_SHARED, dev->name, dev);
3585                 if (unlikely(ret < 0)) {
3586                         netdev_err(priv->dev,
3587                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3588                                    __func__, priv->wol_irq, ret);
3589                         irq_err = REQ_IRQ_ERR_WOL;
3590                         return ret;
3591                 }
3592         }
3593
3594         /* Request the IRQ lines */
3595         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3596                 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3597                                   IRQF_SHARED, dev->name, dev);
3598                 if (unlikely(ret < 0)) {
3599                         netdev_err(priv->dev,
3600                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3601                                    __func__, priv->lpi_irq, ret);
3602                         irq_err = REQ_IRQ_ERR_LPI;
3603                         goto irq_error;
3604                 }
3605         }
3606
3607         return 0;
3608
3609 irq_error:
3610         stmmac_free_irq(dev, irq_err, 0);
3611         return ret;
3612 }
3613
3614 static int stmmac_request_irq(struct net_device *dev)
3615 {
3616         struct stmmac_priv *priv = netdev_priv(dev);
3617         int ret;
3618
3619         /* Request the IRQ lines */
3620         if (priv->plat->multi_msi_en)
3621                 ret = stmmac_request_irq_multi_msi(dev);
3622         else
3623                 ret = stmmac_request_irq_single(dev);
3624
3625         return ret;
3626 }
3627
3628 /**
3629  *  stmmac_open - open entry point of the driver
3630  *  @dev : pointer to the device structure.
3631  *  Description:
3632  *  This function is the open entry point of the driver.
3633  *  Return value:
3634  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3635  *  file on failure.
3636  */
3637 int stmmac_open(struct net_device *dev)
3638 {
3639         struct stmmac_priv *priv = netdev_priv(dev);
3640         int bfsize = 0;
3641         u32 chan;
3642         int ret;
3643
3644         ret = pm_runtime_get_sync(priv->device);
3645         if (ret < 0) {
3646                 pm_runtime_put_noidle(priv->device);
3647                 return ret;
3648         }
3649
3650         if (priv->hw->pcs != STMMAC_PCS_TBI &&
3651             priv->hw->pcs != STMMAC_PCS_RTBI &&
3652             priv->hw->xpcs_args.an_mode != DW_AN_C73) {
3653                 ret = stmmac_init_phy(dev);
3654                 if (ret) {
3655                         netdev_err(priv->dev,
3656                                    "%s: Cannot attach to PHY (error: %d)\n",
3657                                    __func__, ret);
3658                         goto init_phy_error;
3659                 }
3660         }
3661
3662         /* Extra statistics */
3663         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3664         priv->xstats.threshold = tc;
3665
3666         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3667         if (bfsize < 0)
3668                 bfsize = 0;
3669
3670         if (bfsize < BUF_SIZE_16KiB)
3671                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3672
3673         priv->dma_buf_sz = bfsize;
3674         buf_sz = bfsize;
3675
3676         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3677
3678         if (!priv->dma_tx_size)
3679                 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3680         if (!priv->dma_rx_size)
3681                 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3682
3683         /* Earlier check for TBS */
3684         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3685                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3686                 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3687
3688                 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3689                 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3690         }
3691
3692         ret = alloc_dma_desc_resources(priv);
3693         if (ret < 0) {
3694                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3695                            __func__);
3696                 goto dma_desc_error;
3697         }
3698
3699         ret = init_dma_desc_rings(dev, GFP_KERNEL);
3700         if (ret < 0) {
3701                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3702                            __func__);
3703                 goto init_error;
3704         }
3705
3706         ret = stmmac_hw_setup(dev, true);
3707         if (ret < 0) {
3708                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3709                 goto init_error;
3710         }
3711
3712         stmmac_init_coalesce(priv);
3713
3714         phylink_start(priv->phylink);
3715         /* We may have called phylink_speed_down before */
3716         phylink_speed_up(priv->phylink);
3717
3718         ret = stmmac_request_irq(dev);
3719         if (ret)
3720                 goto irq_error;
3721
3722         stmmac_enable_all_queues(priv);
3723         netif_tx_start_all_queues(priv->dev);
3724
3725         return 0;
3726
3727 irq_error:
3728         phylink_stop(priv->phylink);
3729
3730         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3731                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3732
3733         stmmac_hw_teardown(dev);
3734 init_error:
3735         free_dma_desc_resources(priv);
3736 dma_desc_error:
3737         phylink_disconnect_phy(priv->phylink);
3738 init_phy_error:
3739         pm_runtime_put(priv->device);
3740         return ret;
3741 }
3742
3743 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3744 {
3745         set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3746
3747         if (priv->fpe_wq)
3748                 destroy_workqueue(priv->fpe_wq);
3749
3750         netdev_info(priv->dev, "FPE workqueue stop");
3751 }
3752
3753 /**
3754  *  stmmac_release - close entry point of the driver
3755  *  @dev : device pointer.
3756  *  Description:
3757  *  This is the stop entry point of the driver.
3758  */
3759 int stmmac_release(struct net_device *dev)
3760 {
3761         struct stmmac_priv *priv = netdev_priv(dev);
3762         u32 chan;
3763
3764         if (device_may_wakeup(priv->device))
3765                 phylink_speed_down(priv->phylink, false);
3766         /* Stop and disconnect the PHY */
3767         phylink_stop(priv->phylink);
3768         phylink_disconnect_phy(priv->phylink);
3769
3770         stmmac_disable_all_queues(priv);
3771
3772         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3773                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3774
3775         /* Free the IRQ lines */
3776         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3777
3778         if (priv->eee_enabled) {
3779                 priv->tx_path_in_lpi_mode = false;
3780                 del_timer_sync(&priv->eee_ctrl_timer);
3781         }
3782
3783         /* Stop TX/RX DMA and clear the descriptors */
3784         stmmac_stop_all_dma(priv);
3785
3786         /* Release and free the Rx/Tx resources */
3787         free_dma_desc_resources(priv);
3788
3789         /* Disable the MAC Rx/Tx */
3790         stmmac_mac_set(priv, priv->ioaddr, false);
3791
3792         netif_carrier_off(dev);
3793
3794         stmmac_release_ptp(priv);
3795
3796         pm_runtime_put(priv->device);
3797
3798         if (priv->dma_cap.fpesel)
3799                 stmmac_fpe_stop_wq(priv);
3800
3801         return 0;
3802 }
3803
3804 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3805                                struct stmmac_tx_queue *tx_q)
3806 {
3807         u16 tag = 0x0, inner_tag = 0x0;
3808         u32 inner_type = 0x0;
3809         struct dma_desc *p;
3810
3811         if (!priv->dma_cap.vlins)
3812                 return false;
3813         if (!skb_vlan_tag_present(skb))
3814                 return false;
3815         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3816                 inner_tag = skb_vlan_tag_get(skb);
3817                 inner_type = STMMAC_VLAN_INSERT;
3818         }
3819
3820         tag = skb_vlan_tag_get(skb);
3821
3822         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3823                 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3824         else
3825                 p = &tx_q->dma_tx[tx_q->cur_tx];
3826
3827         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3828                 return false;
3829
3830         stmmac_set_tx_owner(priv, p);
3831         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3832         return true;
3833 }
3834
3835 /**
3836  *  stmmac_tso_allocator - close entry point of the driver
3837  *  @priv: driver private structure
3838  *  @des: buffer start address
3839  *  @total_len: total length to fill in descriptors
3840  *  @last_segment: condition for the last descriptor
3841  *  @queue: TX queue index
3842  *  Description:
3843  *  This function fills descriptor and request new descriptors according to
3844  *  buffer length to fill
3845  */
3846 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3847                                  int total_len, bool last_segment, u32 queue)
3848 {
3849         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3850         struct dma_desc *desc;
3851         u32 buff_size;
3852         int tmp_len;
3853
3854         tmp_len = total_len;
3855
3856         while (tmp_len > 0) {
3857                 dma_addr_t curr_addr;
3858
3859                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3860                                                 priv->dma_tx_size);
3861                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3862
3863                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3864                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3865                 else
3866                         desc = &tx_q->dma_tx[tx_q->cur_tx];
3867
3868                 curr_addr = des + (total_len - tmp_len);
3869                 if (priv->dma_cap.addr64 <= 32)
3870                         desc->des0 = cpu_to_le32(curr_addr);
3871                 else
3872                         stmmac_set_desc_addr(priv, desc, curr_addr);
3873
3874                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3875                             TSO_MAX_BUFF_SIZE : tmp_len;
3876
3877                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3878                                 0, 1,
3879                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3880                                 0, 0);
3881
3882                 tmp_len -= TSO_MAX_BUFF_SIZE;
3883         }
3884 }
3885
3886 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3887 {
3888         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3889         int desc_size;
3890
3891         if (likely(priv->extend_desc))
3892                 desc_size = sizeof(struct dma_extended_desc);
3893         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3894                 desc_size = sizeof(struct dma_edesc);
3895         else
3896                 desc_size = sizeof(struct dma_desc);
3897
3898         /* The own bit must be the latest setting done when prepare the
3899          * descriptor and then barrier is needed to make sure that
3900          * all is coherent before granting the DMA engine.
3901          */
3902         wmb();
3903
3904         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3905         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3906 }
3907
3908 /**
3909  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3910  *  @skb : the socket buffer
3911  *  @dev : device pointer
3912  *  Description: this is the transmit function that is called on TSO frames
3913  *  (support available on GMAC4 and newer chips).
3914  *  Diagram below show the ring programming in case of TSO frames:
3915  *
3916  *  First Descriptor
3917  *   --------
3918  *   | DES0 |---> buffer1 = L2/L3/L4 header
3919  *   | DES1 |---> TCP Payload (can continue on next descr...)
3920  *   | DES2 |---> buffer 1 and 2 len
3921  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3922  *   --------
3923  *      |
3924  *     ...
3925  *      |
3926  *   --------
3927  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3928  *   | DES1 | --|
3929  *   | DES2 | --> buffer 1 and 2 len
3930  *   | DES3 |
3931  *   --------
3932  *
3933  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3934  */
3935 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3936 {
3937         struct dma_desc *desc, *first, *mss_desc = NULL;
3938         struct stmmac_priv *priv = netdev_priv(dev);
3939         int nfrags = skb_shinfo(skb)->nr_frags;
3940         u32 queue = skb_get_queue_mapping(skb);
3941         unsigned int first_entry, tx_packets;
3942         int tmp_pay_len = 0, first_tx;
3943         struct stmmac_tx_queue *tx_q;
3944         bool has_vlan, set_ic;
3945         u8 proto_hdr_len, hdr;
3946         u32 pay_len, mss;
3947         dma_addr_t des;
3948         int i;
3949
3950         tx_q = &priv->tx_queue[queue];
3951         first_tx = tx_q->cur_tx;
3952
3953         /* Compute header lengths */
3954         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3955                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3956                 hdr = sizeof(struct udphdr);
3957         } else {
3958                 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3959                 hdr = tcp_hdrlen(skb);
3960         }
3961
3962         /* Desc availability based on threshold should be enough safe */
3963         if (unlikely(stmmac_tx_avail(priv, queue) <
3964                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3965                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3966                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3967                                                                 queue));
3968                         /* This is a hard error, log it. */
3969                         netdev_err(priv->dev,
3970                                    "%s: Tx Ring full when queue awake\n",
3971                                    __func__);
3972                 }
3973                 return NETDEV_TX_BUSY;
3974         }
3975
3976         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3977
3978         mss = skb_shinfo(skb)->gso_size;
3979
3980         /* set new MSS value if needed */
3981         if (mss != tx_q->mss) {
3982                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3983                         mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3984                 else
3985                         mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3986
3987                 stmmac_set_mss(priv, mss_desc, mss);
3988                 tx_q->mss = mss;
3989                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3990                                                 priv->dma_tx_size);
3991                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3992         }
3993
3994         if (netif_msg_tx_queued(priv)) {
3995                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3996                         __func__, hdr, proto_hdr_len, pay_len, mss);
3997                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3998                         skb->data_len);
3999         }
4000
4001         /* Check if VLAN can be inserted by HW */
4002         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4003
4004         first_entry = tx_q->cur_tx;
4005         WARN_ON(tx_q->tx_skbuff[first_entry]);
4006
4007         if (tx_q->tbs & STMMAC_TBS_AVAIL)
4008                 desc = &tx_q->dma_entx[first_entry].basic;
4009         else
4010                 desc = &tx_q->dma_tx[first_entry];
4011         first = desc;
4012
4013         if (has_vlan)
4014                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4015
4016         /* first descriptor: fill Headers on Buf1 */
4017         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4018                              DMA_TO_DEVICE);
4019         if (dma_mapping_error(priv->device, des))
4020                 goto dma_map_err;
4021
4022         tx_q->tx_skbuff_dma[first_entry].buf = des;
4023         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4024         tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4025         tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4026
4027         if (priv->dma_cap.addr64 <= 32) {
4028                 first->des0 = cpu_to_le32(des);
4029
4030                 /* Fill start of payload in buff2 of first descriptor */
4031                 if (pay_len)
4032                         first->des1 = cpu_to_le32(des + proto_hdr_len);
4033
4034                 /* If needed take extra descriptors to fill the remaining payload */
4035                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4036         } else {
4037                 stmmac_set_desc_addr(priv, first, des);
4038                 tmp_pay_len = pay_len;
4039                 des += proto_hdr_len;
4040                 pay_len = 0;
4041         }
4042
4043         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4044
4045         /* Prepare fragments */
4046         for (i = 0; i < nfrags; i++) {
4047                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4048
4049                 des = skb_frag_dma_map(priv->device, frag, 0,
4050                                        skb_frag_size(frag),
4051                                        DMA_TO_DEVICE);
4052                 if (dma_mapping_error(priv->device, des))
4053                         goto dma_map_err;
4054
4055                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4056                                      (i == nfrags - 1), queue);
4057
4058                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4059                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4060                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4061                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4062         }
4063
4064         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4065
4066         /* Only the last descriptor gets to point to the skb. */
4067         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4068         tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4069
4070         /* Manage tx mitigation */
4071         tx_packets = (tx_q->cur_tx + 1) - first_tx;
4072         tx_q->tx_count_frames += tx_packets;
4073
4074         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4075                 set_ic = true;
4076         else if (!priv->tx_coal_frames[queue])
4077                 set_ic = false;
4078         else if (tx_packets > priv->tx_coal_frames[queue])
4079                 set_ic = true;
4080         else if ((tx_q->tx_count_frames %
4081                   priv->tx_coal_frames[queue]) < tx_packets)
4082                 set_ic = true;
4083         else
4084                 set_ic = false;
4085
4086         if (set_ic) {
4087                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4088                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4089                 else
4090                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4091
4092                 tx_q->tx_count_frames = 0;
4093                 stmmac_set_tx_ic(priv, desc);
4094                 priv->xstats.tx_set_ic_bit++;
4095         }
4096
4097         /* We've used all descriptors we need for this skb, however,
4098          * advance cur_tx so that it references a fresh descriptor.
4099          * ndo_start_xmit will fill this descriptor the next time it's
4100          * called and stmmac_tx_clean may clean up to this descriptor.
4101          */
4102         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4103
4104         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4105                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4106                           __func__);
4107                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4108         }
4109
4110         dev->stats.tx_bytes += skb->len;
4111         priv->xstats.tx_tso_frames++;
4112         priv->xstats.tx_tso_nfrags += nfrags;
4113
4114         if (priv->sarc_type)
4115                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4116
4117         skb_tx_timestamp(skb);
4118
4119         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4120                      priv->hwts_tx_en)) {
4121                 /* declare that device is doing timestamping */
4122                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4123                 stmmac_enable_tx_timestamp(priv, first);
4124         }
4125
4126         /* Complete the first descriptor before granting the DMA */
4127         stmmac_prepare_tso_tx_desc(priv, first, 1,
4128                         proto_hdr_len,
4129                         pay_len,
4130                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4131                         hdr / 4, (skb->len - proto_hdr_len));
4132
4133         /* If context desc is used to change MSS */
4134         if (mss_desc) {
4135                 /* Make sure that first descriptor has been completely
4136                  * written, including its own bit. This is because MSS is
4137                  * actually before first descriptor, so we need to make
4138                  * sure that MSS's own bit is the last thing written.
4139                  */
4140                 dma_wmb();
4141                 stmmac_set_tx_owner(priv, mss_desc);
4142         }
4143
4144         if (netif_msg_pktdata(priv)) {
4145                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4146                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4147                         tx_q->cur_tx, first, nfrags);
4148                 pr_info(">>> frame to be transmitted: ");
4149                 print_pkt(skb->data, skb_headlen(skb));
4150         }
4151
4152         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4153
4154         stmmac_flush_tx_descriptors(priv, queue);
4155         stmmac_tx_timer_arm(priv, queue);
4156
4157         return NETDEV_TX_OK;
4158
4159 dma_map_err:
4160         dev_err(priv->device, "Tx dma map failed\n");
4161         dev_kfree_skb(skb);
4162         priv->dev->stats.tx_dropped++;
4163         return NETDEV_TX_OK;
4164 }
4165
4166 /**
4167  *  stmmac_xmit - Tx entry point of the driver
4168  *  @skb : the socket buffer
4169  *  @dev : device pointer
4170  *  Description : this is the tx entry point of the driver.
4171  *  It programs the chain or the ring and supports oversized frames
4172  *  and SG feature.
4173  */
4174 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4175 {
4176         unsigned int first_entry, tx_packets, enh_desc;
4177         struct stmmac_priv *priv = netdev_priv(dev);
4178         unsigned int nopaged_len = skb_headlen(skb);
4179         int i, csum_insertion = 0, is_jumbo = 0;
4180         u32 queue = skb_get_queue_mapping(skb);
4181         int nfrags = skb_shinfo(skb)->nr_frags;
4182         int gso = skb_shinfo(skb)->gso_type;
4183         struct dma_edesc *tbs_desc = NULL;
4184         struct dma_desc *desc, *first;
4185         struct stmmac_tx_queue *tx_q;
4186         bool has_vlan, set_ic;
4187         int entry, first_tx;
4188         dma_addr_t des;
4189
4190         tx_q = &priv->tx_queue[queue];
4191         first_tx = tx_q->cur_tx;
4192
4193         if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4194                 stmmac_disable_eee_mode(priv);
4195
4196         /* Manage oversized TCP frames for GMAC4 device */
4197         if (skb_is_gso(skb) && priv->tso) {
4198                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4199                         return stmmac_tso_xmit(skb, dev);
4200                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4201                         return stmmac_tso_xmit(skb, dev);
4202         }
4203
4204         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4205                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4206                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4207                                                                 queue));
4208                         /* This is a hard error, log it. */
4209                         netdev_err(priv->dev,
4210                                    "%s: Tx Ring full when queue awake\n",
4211                                    __func__);
4212                 }
4213                 return NETDEV_TX_BUSY;
4214         }
4215
4216         /* Check if VLAN can be inserted by HW */
4217         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4218
4219         entry = tx_q->cur_tx;
4220         first_entry = entry;
4221         WARN_ON(tx_q->tx_skbuff[first_entry]);
4222
4223         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4224
4225         if (likely(priv->extend_desc))
4226                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4227         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4228                 desc = &tx_q->dma_entx[entry].basic;
4229         else
4230                 desc = tx_q->dma_tx + entry;
4231
4232         first = desc;
4233
4234         if (has_vlan)
4235                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4236
4237         enh_desc = priv->plat->enh_desc;
4238         /* To program the descriptors according to the size of the frame */
4239         if (enh_desc)
4240                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4241
4242         if (unlikely(is_jumbo)) {
4243                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4244                 if (unlikely(entry < 0) && (entry != -EINVAL))
4245                         goto dma_map_err;
4246         }
4247
4248         for (i = 0; i < nfrags; i++) {
4249                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4250                 int len = skb_frag_size(frag);
4251                 bool last_segment = (i == (nfrags - 1));
4252
4253                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4254                 WARN_ON(tx_q->tx_skbuff[entry]);
4255
4256                 if (likely(priv->extend_desc))
4257                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4258                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4259                         desc = &tx_q->dma_entx[entry].basic;
4260                 else
4261                         desc = tx_q->dma_tx + entry;
4262
4263                 des = skb_frag_dma_map(priv->device, frag, 0, len,
4264                                        DMA_TO_DEVICE);
4265                 if (dma_mapping_error(priv->device, des))
4266                         goto dma_map_err; /* should reuse desc w/o issues */
4267
4268                 tx_q->tx_skbuff_dma[entry].buf = des;
4269
4270                 stmmac_set_desc_addr(priv, desc, des);
4271
4272                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4273                 tx_q->tx_skbuff_dma[entry].len = len;
4274                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4275                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4276
4277                 /* Prepare the descriptor and set the own bit too */
4278                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4279                                 priv->mode, 1, last_segment, skb->len);
4280         }
4281
4282         /* Only the last descriptor gets to point to the skb. */
4283         tx_q->tx_skbuff[entry] = skb;
4284         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4285
4286         /* According to the coalesce parameter the IC bit for the latest
4287          * segment is reset and the timer re-started to clean the tx status.
4288          * This approach takes care about the fragments: desc is the first
4289          * element in case of no SG.
4290          */
4291         tx_packets = (entry + 1) - first_tx;
4292         tx_q->tx_count_frames += tx_packets;
4293
4294         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4295                 set_ic = true;
4296         else if (!priv->tx_coal_frames[queue])
4297                 set_ic = false;
4298         else if (tx_packets > priv->tx_coal_frames[queue])
4299                 set_ic = true;
4300         else if ((tx_q->tx_count_frames %
4301                   priv->tx_coal_frames[queue]) < tx_packets)
4302                 set_ic = true;
4303         else
4304                 set_ic = false;
4305
4306         if (set_ic) {
4307                 if (likely(priv->extend_desc))
4308                         desc = &tx_q->dma_etx[entry].basic;
4309                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4310                         desc = &tx_q->dma_entx[entry].basic;
4311                 else
4312                         desc = &tx_q->dma_tx[entry];
4313
4314                 tx_q->tx_count_frames = 0;
4315                 stmmac_set_tx_ic(priv, desc);
4316                 priv->xstats.tx_set_ic_bit++;
4317         }
4318
4319         /* We've used all descriptors we need for this skb, however,
4320          * advance cur_tx so that it references a fresh descriptor.
4321          * ndo_start_xmit will fill this descriptor the next time it's
4322          * called and stmmac_tx_clean may clean up to this descriptor.
4323          */
4324         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4325         tx_q->cur_tx = entry;
4326
4327         if (netif_msg_pktdata(priv)) {
4328                 netdev_dbg(priv->dev,
4329                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4330                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4331                            entry, first, nfrags);
4332
4333                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4334                 print_pkt(skb->data, skb->len);
4335         }
4336
4337         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4338                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4339                           __func__);
4340                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4341         }
4342
4343         dev->stats.tx_bytes += skb->len;
4344
4345         if (priv->sarc_type)
4346                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4347
4348         skb_tx_timestamp(skb);
4349
4350         /* Ready to fill the first descriptor and set the OWN bit w/o any
4351          * problems because all the descriptors are actually ready to be
4352          * passed to the DMA engine.
4353          */
4354         if (likely(!is_jumbo)) {
4355                 bool last_segment = (nfrags == 0);
4356
4357                 des = dma_map_single(priv->device, skb->data,
4358                                      nopaged_len, DMA_TO_DEVICE);
4359                 if (dma_mapping_error(priv->device, des))
4360                         goto dma_map_err;
4361
4362                 tx_q->tx_skbuff_dma[first_entry].buf = des;
4363                 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4364                 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4365
4366                 stmmac_set_desc_addr(priv, first, des);
4367
4368                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4369                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4370
4371                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4372                              priv->hwts_tx_en)) {
4373                         /* declare that device is doing timestamping */
4374                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4375                         stmmac_enable_tx_timestamp(priv, first);
4376                 }
4377
4378                 /* Prepare the first descriptor setting the OWN bit too */
4379                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4380                                 csum_insertion, priv->mode, 0, last_segment,
4381                                 skb->len);
4382         }
4383
4384         if (tx_q->tbs & STMMAC_TBS_EN) {
4385                 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4386
4387                 tbs_desc = &tx_q->dma_entx[first_entry];
4388                 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4389         }
4390
4391         stmmac_set_tx_owner(priv, first);
4392
4393         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4394
4395         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4396
4397         stmmac_flush_tx_descriptors(priv, queue);
4398         stmmac_tx_timer_arm(priv, queue);
4399
4400         return NETDEV_TX_OK;
4401
4402 dma_map_err:
4403         netdev_err(priv->dev, "Tx DMA map failed\n");
4404         dev_kfree_skb(skb);
4405         priv->dev->stats.tx_dropped++;
4406         return NETDEV_TX_OK;
4407 }
4408
4409 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4410 {
4411         struct vlan_ethhdr *veth;
4412         __be16 vlan_proto;
4413         u16 vlanid;
4414
4415         veth = (struct vlan_ethhdr *)skb->data;
4416         vlan_proto = veth->h_vlan_proto;
4417
4418         if ((vlan_proto == htons(ETH_P_8021Q) &&
4419              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4420             (vlan_proto == htons(ETH_P_8021AD) &&
4421              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4422                 /* pop the vlan tag */
4423                 vlanid = ntohs(veth->h_vlan_TCI);
4424                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4425                 skb_pull(skb, VLAN_HLEN);
4426                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4427         }
4428 }
4429
4430 /**
4431  * stmmac_rx_refill - refill used skb preallocated buffers
4432  * @priv: driver private structure
4433  * @queue: RX queue index
4434  * Description : this is to reallocate the skb for the reception process
4435  * that is based on zero-copy.
4436  */
4437 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4438 {
4439         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4440         int dirty = stmmac_rx_dirty(priv, queue);
4441         unsigned int entry = rx_q->dirty_rx;
4442
4443         while (dirty-- > 0) {
4444                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4445                 struct dma_desc *p;
4446                 bool use_rx_wd;
4447
4448                 if (priv->extend_desc)
4449                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4450                 else
4451                         p = rx_q->dma_rx + entry;
4452
4453                 if (!buf->page) {
4454                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
4455                         if (!buf->page)
4456                                 break;
4457                 }
4458
4459                 if (priv->sph && !buf->sec_page) {
4460                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
4461                         if (!buf->sec_page)
4462                                 break;
4463
4464                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4465                 }
4466
4467                 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4468
4469                 stmmac_set_desc_addr(priv, p, buf->addr);
4470                 if (priv->sph)
4471                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4472                 else
4473                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4474                 stmmac_refill_desc3(priv, rx_q, p);
4475
4476                 rx_q->rx_count_frames++;
4477                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4478                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4479                         rx_q->rx_count_frames = 0;
4480
4481                 use_rx_wd = !priv->rx_coal_frames[queue];
4482                 use_rx_wd |= rx_q->rx_count_frames > 0;
4483                 if (!priv->use_riwt)
4484                         use_rx_wd = false;
4485
4486                 dma_wmb();
4487                 stmmac_set_rx_owner(priv, p, use_rx_wd);
4488
4489                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4490         }
4491         rx_q->dirty_rx = entry;
4492         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4493                             (rx_q->dirty_rx * sizeof(struct dma_desc));
4494         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4495 }
4496
4497 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4498                                        struct dma_desc *p,
4499                                        int status, unsigned int len)
4500 {
4501         unsigned int plen = 0, hlen = 0;
4502         int coe = priv->hw->rx_csum;
4503
4504         /* Not first descriptor, buffer is always zero */
4505         if (priv->sph && len)
4506                 return 0;
4507
4508         /* First descriptor, get split header length */
4509         stmmac_get_rx_header_len(priv, p, &hlen);
4510         if (priv->sph && hlen) {
4511                 priv->xstats.rx_split_hdr_pkt_n++;
4512                 return hlen;
4513         }
4514
4515         /* First descriptor, not last descriptor and not split header */
4516         if (status & rx_not_ls)
4517                 return priv->dma_buf_sz;
4518
4519         plen = stmmac_get_rx_frame_len(priv, p, coe);
4520
4521         /* First descriptor and last descriptor and not split header */
4522         return min_t(unsigned int, priv->dma_buf_sz, plen);
4523 }
4524
4525 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4526                                        struct dma_desc *p,
4527                                        int status, unsigned int len)
4528 {
4529         int coe = priv->hw->rx_csum;
4530         unsigned int plen = 0;
4531
4532         /* Not split header, buffer is not available */
4533         if (!priv->sph)
4534                 return 0;
4535
4536         /* Not last descriptor */
4537         if (status & rx_not_ls)
4538                 return priv->dma_buf_sz;
4539
4540         plen = stmmac_get_rx_frame_len(priv, p, coe);
4541
4542         /* Last descriptor */
4543         return plen - len;
4544 }
4545
4546 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4547                                 struct xdp_frame *xdpf, bool dma_map)
4548 {
4549         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4550         unsigned int entry = tx_q->cur_tx;
4551         struct dma_desc *tx_desc;
4552         dma_addr_t dma_addr;
4553         bool set_ic;
4554
4555         if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4556                 return STMMAC_XDP_CONSUMED;
4557
4558         if (likely(priv->extend_desc))
4559                 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4560         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4561                 tx_desc = &tx_q->dma_entx[entry].basic;
4562         else
4563                 tx_desc = tx_q->dma_tx + entry;
4564
4565         if (dma_map) {
4566                 dma_addr = dma_map_single(priv->device, xdpf->data,
4567                                           xdpf->len, DMA_TO_DEVICE);
4568                 if (dma_mapping_error(priv->device, dma_addr))
4569                         return STMMAC_XDP_CONSUMED;
4570
4571                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4572         } else {
4573                 struct page *page = virt_to_page(xdpf->data);
4574
4575                 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4576                            xdpf->headroom;
4577                 dma_sync_single_for_device(priv->device, dma_addr,
4578                                            xdpf->len, DMA_BIDIRECTIONAL);
4579
4580                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4581         }
4582
4583         tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4584         tx_q->tx_skbuff_dma[entry].map_as_page = false;
4585         tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4586         tx_q->tx_skbuff_dma[entry].last_segment = true;
4587         tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4588
4589         tx_q->xdpf[entry] = xdpf;
4590
4591         stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4592
4593         stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4594                                true, priv->mode, true, true,
4595                                xdpf->len);
4596
4597         tx_q->tx_count_frames++;
4598
4599         if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4600                 set_ic = true;
4601         else
4602                 set_ic = false;
4603
4604         if (set_ic) {
4605                 tx_q->tx_count_frames = 0;
4606                 stmmac_set_tx_ic(priv, tx_desc);
4607                 priv->xstats.tx_set_ic_bit++;
4608         }
4609
4610         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4611
4612         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4613         tx_q->cur_tx = entry;
4614
4615         return STMMAC_XDP_TX;
4616 }
4617
4618 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4619                                    int cpu)
4620 {
4621         int index = cpu;
4622
4623         if (unlikely(index < 0))
4624                 index = 0;
4625
4626         while (index >= priv->plat->tx_queues_to_use)
4627                 index -= priv->plat->tx_queues_to_use;
4628
4629         return index;
4630 }
4631
4632 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4633                                 struct xdp_buff *xdp)
4634 {
4635         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4636         int cpu = smp_processor_id();
4637         struct netdev_queue *nq;
4638         int queue;
4639         int res;
4640
4641         if (unlikely(!xdpf))
4642                 return STMMAC_XDP_CONSUMED;
4643
4644         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4645         nq = netdev_get_tx_queue(priv->dev, queue);
4646
4647         __netif_tx_lock(nq, cpu);
4648         /* Avoids TX time-out as we are sharing with slow path */
4649         nq->trans_start = jiffies;
4650
4651         res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4652         if (res == STMMAC_XDP_TX)
4653                 stmmac_flush_tx_descriptors(priv, queue);
4654
4655         __netif_tx_unlock(nq);
4656
4657         return res;
4658 }
4659
4660 /* This function assumes rcu_read_lock() is held by the caller. */
4661 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4662                                  struct bpf_prog *prog,
4663                                  struct xdp_buff *xdp)
4664 {
4665         u32 act;
4666         int res;
4667
4668         act = bpf_prog_run_xdp(prog, xdp);
4669         switch (act) {
4670         case XDP_PASS:
4671                 res = STMMAC_XDP_PASS;
4672                 break;
4673         case XDP_TX:
4674                 res = stmmac_xdp_xmit_back(priv, xdp);
4675                 break;
4676         case XDP_REDIRECT:
4677                 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4678                         res = STMMAC_XDP_CONSUMED;
4679                 else
4680                         res = STMMAC_XDP_REDIRECT;
4681                 break;
4682         default:
4683                 bpf_warn_invalid_xdp_action(act);
4684                 fallthrough;
4685         case XDP_ABORTED:
4686                 trace_xdp_exception(priv->dev, prog, act);
4687                 fallthrough;
4688         case XDP_DROP:
4689                 res = STMMAC_XDP_CONSUMED;
4690                 break;
4691         }
4692
4693         return res;
4694 }
4695
4696 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4697                                            struct xdp_buff *xdp)
4698 {
4699         struct bpf_prog *prog;
4700         int res;
4701
4702         rcu_read_lock();
4703
4704         prog = READ_ONCE(priv->xdp_prog);
4705         if (!prog) {
4706                 res = STMMAC_XDP_PASS;
4707                 goto unlock;
4708         }
4709
4710         res = __stmmac_xdp_run_prog(priv, prog, xdp);
4711 unlock:
4712         rcu_read_unlock();
4713         return ERR_PTR(-res);
4714 }
4715
4716 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4717                                    int xdp_status)
4718 {
4719         int cpu = smp_processor_id();
4720         int queue;
4721
4722         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4723
4724         if (xdp_status & STMMAC_XDP_TX)
4725                 stmmac_tx_timer_arm(priv, queue);
4726
4727         if (xdp_status & STMMAC_XDP_REDIRECT)
4728                 xdp_do_flush();
4729 }
4730
4731 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4732                                                struct xdp_buff *xdp)
4733 {
4734         unsigned int metasize = xdp->data - xdp->data_meta;
4735         unsigned int datasize = xdp->data_end - xdp->data;
4736         struct sk_buff *skb;
4737
4738         skb = __napi_alloc_skb(&ch->rxtx_napi,
4739                                xdp->data_end - xdp->data_hard_start,
4740                                GFP_ATOMIC | __GFP_NOWARN);
4741         if (unlikely(!skb))
4742                 return NULL;
4743
4744         skb_reserve(skb, xdp->data - xdp->data_hard_start);
4745         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4746         if (metasize)
4747                 skb_metadata_set(skb, metasize);
4748
4749         return skb;
4750 }
4751
4752 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4753                                    struct dma_desc *p, struct dma_desc *np,
4754                                    struct xdp_buff *xdp)
4755 {
4756         struct stmmac_channel *ch = &priv->channel[queue];
4757         unsigned int len = xdp->data_end - xdp->data;
4758         enum pkt_hash_types hash_type;
4759         int coe = priv->hw->rx_csum;
4760         struct sk_buff *skb;
4761         u32 hash;
4762
4763         skb = stmmac_construct_skb_zc(ch, xdp);
4764         if (!skb) {
4765                 priv->dev->stats.rx_dropped++;
4766                 return;
4767         }
4768
4769         stmmac_get_rx_hwtstamp(priv, p, np, skb);
4770         stmmac_rx_vlan(priv->dev, skb);
4771         skb->protocol = eth_type_trans(skb, priv->dev);
4772
4773         if (unlikely(!coe))
4774                 skb_checksum_none_assert(skb);
4775         else
4776                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4777
4778         if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4779                 skb_set_hash(skb, hash, hash_type);
4780
4781         skb_record_rx_queue(skb, queue);
4782         napi_gro_receive(&ch->rxtx_napi, skb);
4783
4784         priv->dev->stats.rx_packets++;
4785         priv->dev->stats.rx_bytes += len;
4786 }
4787
4788 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4789 {
4790         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4791         unsigned int entry = rx_q->dirty_rx;
4792         struct dma_desc *rx_desc = NULL;
4793         bool ret = true;
4794
4795         budget = min(budget, stmmac_rx_dirty(priv, queue));
4796
4797         while (budget-- > 0 && entry != rx_q->cur_rx) {
4798                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4799                 dma_addr_t dma_addr;
4800                 bool use_rx_wd;
4801
4802                 if (!buf->xdp) {
4803                         buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4804                         if (!buf->xdp) {
4805                                 ret = false;
4806                                 break;
4807                         }
4808                 }
4809
4810                 if (priv->extend_desc)
4811                         rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4812                 else
4813                         rx_desc = rx_q->dma_rx + entry;
4814
4815                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4816                 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4817                 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4818                 stmmac_refill_desc3(priv, rx_q, rx_desc);
4819
4820                 rx_q->rx_count_frames++;
4821                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4822                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4823                         rx_q->rx_count_frames = 0;
4824
4825                 use_rx_wd = !priv->rx_coal_frames[queue];
4826                 use_rx_wd |= rx_q->rx_count_frames > 0;
4827                 if (!priv->use_riwt)
4828                         use_rx_wd = false;
4829
4830                 dma_wmb();
4831                 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4832
4833                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4834         }
4835
4836         if (rx_desc) {
4837                 rx_q->dirty_rx = entry;
4838                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4839                                      (rx_q->dirty_rx * sizeof(struct dma_desc));
4840                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4841         }
4842
4843         return ret;
4844 }
4845
4846 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4847 {
4848         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4849         unsigned int count = 0, error = 0, len = 0;
4850         int dirty = stmmac_rx_dirty(priv, queue);
4851         unsigned int next_entry = rx_q->cur_rx;
4852         unsigned int desc_size;
4853         struct bpf_prog *prog;
4854         bool failure = false;
4855         int xdp_status = 0;
4856         int status = 0;
4857
4858         if (netif_msg_rx_status(priv)) {
4859                 void *rx_head;
4860
4861                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4862                 if (priv->extend_desc) {
4863                         rx_head = (void *)rx_q->dma_erx;
4864                         desc_size = sizeof(struct dma_extended_desc);
4865                 } else {
4866                         rx_head = (void *)rx_q->dma_rx;
4867                         desc_size = sizeof(struct dma_desc);
4868                 }
4869
4870                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4871                                     rx_q->dma_rx_phy, desc_size);
4872         }
4873         while (count < limit) {
4874                 struct stmmac_rx_buffer *buf;
4875                 unsigned int buf1_len = 0;
4876                 struct dma_desc *np, *p;
4877                 int entry;
4878                 int res;
4879
4880                 if (!count && rx_q->state_saved) {
4881                         error = rx_q->state.error;
4882                         len = rx_q->state.len;
4883                 } else {
4884                         rx_q->state_saved = false;
4885                         error = 0;
4886                         len = 0;
4887                 }
4888
4889                 if (count >= limit)
4890                         break;
4891
4892 read_again:
4893                 buf1_len = 0;
4894                 entry = next_entry;
4895                 buf = &rx_q->buf_pool[entry];
4896
4897                 if (dirty >= STMMAC_RX_FILL_BATCH) {
4898                         failure = failure ||
4899                                   !stmmac_rx_refill_zc(priv, queue, dirty);
4900                         dirty = 0;
4901                 }
4902
4903                 if (priv->extend_desc)
4904                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4905                 else
4906                         p = rx_q->dma_rx + entry;
4907
4908                 /* read the status of the incoming frame */
4909                 status = stmmac_rx_status(priv, &priv->dev->stats,
4910                                           &priv->xstats, p);
4911                 /* check if managed by the DMA otherwise go ahead */
4912                 if (unlikely(status & dma_own))
4913                         break;
4914
4915                 /* Prefetch the next RX descriptor */
4916                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4917                                                 priv->dma_rx_size);
4918                 next_entry = rx_q->cur_rx;
4919
4920                 if (priv->extend_desc)
4921                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4922                 else
4923                         np = rx_q->dma_rx + next_entry;
4924
4925                 prefetch(np);
4926
4927                 if (priv->extend_desc)
4928                         stmmac_rx_extended_status(priv, &priv->dev->stats,
4929                                                   &priv->xstats,
4930                                                   rx_q->dma_erx + entry);
4931                 if (unlikely(status == discard_frame)) {
4932                         xsk_buff_free(buf->xdp);
4933                         buf->xdp = NULL;
4934                         dirty++;
4935                         error = 1;
4936                         if (!priv->hwts_rx_en)
4937                                 priv->dev->stats.rx_errors++;
4938                 }
4939
4940                 if (unlikely(error && (status & rx_not_ls)))
4941                         goto read_again;
4942                 if (unlikely(error)) {
4943                         count++;
4944                         continue;
4945                 }
4946
4947                 /* Ensure a valid XSK buffer before proceed */
4948                 if (!buf->xdp)
4949                         break;
4950
4951                 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4952                 if (likely(status & rx_not_ls)) {
4953                         xsk_buff_free(buf->xdp);
4954                         buf->xdp = NULL;
4955                         dirty++;
4956                         count++;
4957                         goto read_again;
4958                 }
4959
4960                 /* XDP ZC Frame only support primary buffers for now */
4961                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4962                 len += buf1_len;
4963
4964                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4965                  * Type frames (LLC/LLC-SNAP)
4966                  *
4967                  * llc_snap is never checked in GMAC >= 4, so this ACS
4968                  * feature is always disabled and packets need to be
4969                  * stripped manually.
4970                  */
4971                 if (likely(!(status & rx_not_ls)) &&
4972                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4973                      unlikely(status != llc_snap))) {
4974                         buf1_len -= ETH_FCS_LEN;
4975                         len -= ETH_FCS_LEN;
4976                 }
4977
4978                 /* RX buffer is good and fit into a XSK pool buffer */
4979                 buf->xdp->data_end = buf->xdp->data + buf1_len;
4980                 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4981
4982                 rcu_read_lock();
4983                 prog = READ_ONCE(priv->xdp_prog);
4984                 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4985                 rcu_read_unlock();
4986
4987                 switch (res) {
4988                 case STMMAC_XDP_PASS:
4989                         stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4990                         xsk_buff_free(buf->xdp);
4991                         break;
4992                 case STMMAC_XDP_CONSUMED:
4993                         xsk_buff_free(buf->xdp);
4994                         priv->dev->stats.rx_dropped++;
4995                         break;
4996                 case STMMAC_XDP_TX:
4997                 case STMMAC_XDP_REDIRECT:
4998                         xdp_status |= res;
4999                         break;
5000                 }
5001
5002                 buf->xdp = NULL;
5003                 dirty++;
5004                 count++;
5005         }
5006
5007         if (status & rx_not_ls) {
5008                 rx_q->state_saved = true;
5009                 rx_q->state.error = error;
5010                 rx_q->state.len = len;
5011         }
5012
5013         stmmac_finalize_xdp_rx(priv, xdp_status);
5014
5015         if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5016                 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5017                         xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5018                 else
5019                         xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5020
5021                 return (int)count;
5022         }
5023
5024         return failure ? limit : (int)count;
5025 }
5026
5027 /**
5028  * stmmac_rx - manage the receive process
5029  * @priv: driver private structure
5030  * @limit: napi bugget
5031  * @queue: RX queue index.
5032  * Description :  this the function called by the napi poll method.
5033  * It gets all the frames inside the ring.
5034  */
5035 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5036 {
5037         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5038         struct stmmac_channel *ch = &priv->channel[queue];
5039         unsigned int count = 0, error = 0, len = 0;
5040         int status = 0, coe = priv->hw->rx_csum;
5041         unsigned int next_entry = rx_q->cur_rx;
5042         enum dma_data_direction dma_dir;
5043         unsigned int desc_size;
5044         struct sk_buff *skb = NULL;
5045         struct xdp_buff xdp;
5046         int xdp_status = 0;
5047         int buf_sz;
5048
5049         dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5050         buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5051
5052         if (netif_msg_rx_status(priv)) {
5053                 void *rx_head;
5054
5055                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5056                 if (priv->extend_desc) {
5057                         rx_head = (void *)rx_q->dma_erx;
5058                         desc_size = sizeof(struct dma_extended_desc);
5059                 } else {
5060                         rx_head = (void *)rx_q->dma_rx;
5061                         desc_size = sizeof(struct dma_desc);
5062                 }
5063
5064                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5065                                     rx_q->dma_rx_phy, desc_size);
5066         }
5067         while (count < limit) {
5068                 unsigned int buf1_len = 0, buf2_len = 0;
5069                 enum pkt_hash_types hash_type;
5070                 struct stmmac_rx_buffer *buf;
5071                 struct dma_desc *np, *p;
5072                 int entry;
5073                 u32 hash;
5074
5075                 if (!count && rx_q->state_saved) {
5076                         skb = rx_q->state.skb;
5077                         error = rx_q->state.error;
5078                         len = rx_q->state.len;
5079                 } else {
5080                         rx_q->state_saved = false;
5081                         skb = NULL;
5082                         error = 0;
5083                         len = 0;
5084                 }
5085
5086                 if (count >= limit)
5087                         break;
5088
5089 read_again:
5090                 buf1_len = 0;
5091                 buf2_len = 0;
5092                 entry = next_entry;
5093                 buf = &rx_q->buf_pool[entry];
5094
5095                 if (priv->extend_desc)
5096                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5097                 else
5098                         p = rx_q->dma_rx + entry;
5099
5100                 /* read the status of the incoming frame */
5101                 status = stmmac_rx_status(priv, &priv->dev->stats,
5102                                 &priv->xstats, p);
5103                 /* check if managed by the DMA otherwise go ahead */
5104                 if (unlikely(status & dma_own))
5105                         break;
5106
5107                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5108                                                 priv->dma_rx_size);
5109                 next_entry = rx_q->cur_rx;
5110
5111                 if (priv->extend_desc)
5112                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5113                 else
5114                         np = rx_q->dma_rx + next_entry;
5115
5116                 prefetch(np);
5117
5118                 if (priv->extend_desc)
5119                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5120                                         &priv->xstats, rx_q->dma_erx + entry);
5121                 if (unlikely(status == discard_frame)) {
5122                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5123                         buf->page = NULL;
5124                         error = 1;
5125                         if (!priv->hwts_rx_en)
5126                                 priv->dev->stats.rx_errors++;
5127                 }
5128
5129                 if (unlikely(error && (status & rx_not_ls)))
5130                         goto read_again;
5131                 if (unlikely(error)) {
5132                         dev_kfree_skb(skb);
5133                         skb = NULL;
5134                         count++;
5135                         continue;
5136                 }
5137
5138                 /* Buffer is good. Go on. */
5139
5140                 prefetch(page_address(buf->page));
5141                 if (buf->sec_page)
5142                         prefetch(page_address(buf->sec_page));
5143
5144                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5145                 len += buf1_len;
5146                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5147                 len += buf2_len;
5148
5149                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5150                  * Type frames (LLC/LLC-SNAP)
5151                  *
5152                  * llc_snap is never checked in GMAC >= 4, so this ACS
5153                  * feature is always disabled and packets need to be
5154                  * stripped manually.
5155                  */
5156                 if (likely(!(status & rx_not_ls)) &&
5157                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5158                      unlikely(status != llc_snap))) {
5159                         if (buf2_len)
5160                                 buf2_len -= ETH_FCS_LEN;
5161                         else
5162                                 buf1_len -= ETH_FCS_LEN;
5163
5164                         len -= ETH_FCS_LEN;
5165                 }
5166
5167                 if (!skb) {
5168                         unsigned int pre_len, sync_len;
5169
5170                         dma_sync_single_for_cpu(priv->device, buf->addr,
5171                                                 buf1_len, dma_dir);
5172
5173                         xdp.data = page_address(buf->page) + buf->page_offset;
5174                         xdp.data_end = xdp.data + buf1_len;
5175                         xdp.data_hard_start = page_address(buf->page);
5176                         xdp_set_data_meta_invalid(&xdp);
5177                         xdp.frame_sz = buf_sz;
5178                         xdp.rxq = &rx_q->xdp_rxq;
5179
5180                         pre_len = xdp.data_end - xdp.data_hard_start -
5181                                   buf->page_offset;
5182                         skb = stmmac_xdp_run_prog(priv, &xdp);
5183                         /* Due xdp_adjust_tail: DMA sync for_device
5184                          * cover max len CPU touch
5185                          */
5186                         sync_len = xdp.data_end - xdp.data_hard_start -
5187                                    buf->page_offset;
5188                         sync_len = max(sync_len, pre_len);
5189
5190                         /* For Not XDP_PASS verdict */
5191                         if (IS_ERR(skb)) {
5192                                 unsigned int xdp_res = -PTR_ERR(skb);
5193
5194                                 if (xdp_res & STMMAC_XDP_CONSUMED) {
5195                                         page_pool_put_page(rx_q->page_pool,
5196                                                            virt_to_head_page(xdp.data),
5197                                                            sync_len, true);
5198                                         buf->page = NULL;
5199                                         priv->dev->stats.rx_dropped++;
5200
5201                                         /* Clear skb as it was set as
5202                                          * status by XDP program.
5203                                          */
5204                                         skb = NULL;
5205
5206                                         if (unlikely((status & rx_not_ls)))
5207                                                 goto read_again;
5208
5209                                         count++;
5210                                         continue;
5211                                 } else if (xdp_res & (STMMAC_XDP_TX |
5212                                                       STMMAC_XDP_REDIRECT)) {
5213                                         xdp_status |= xdp_res;
5214                                         buf->page = NULL;
5215                                         skb = NULL;
5216                                         count++;
5217                                         continue;
5218                                 }
5219                         }
5220                 }
5221
5222                 if (!skb) {
5223                         /* XDP program may expand or reduce tail */
5224                         buf1_len = xdp.data_end - xdp.data;
5225
5226                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5227                         if (!skb) {
5228                                 priv->dev->stats.rx_dropped++;
5229                                 count++;
5230                                 goto drain_data;
5231                         }
5232
5233                         /* XDP program may adjust header */
5234                         skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5235                         skb_put(skb, buf1_len);
5236
5237                         /* Data payload copied into SKB, page ready for recycle */
5238                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5239                         buf->page = NULL;
5240                 } else if (buf1_len) {
5241                         dma_sync_single_for_cpu(priv->device, buf->addr,
5242                                                 buf1_len, dma_dir);
5243                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5244                                         buf->page, buf->page_offset, buf1_len,
5245                                         priv->dma_buf_sz);
5246
5247                         /* Data payload appended into SKB */
5248                         page_pool_release_page(rx_q->page_pool, buf->page);
5249                         buf->page = NULL;
5250                 }
5251
5252                 if (buf2_len) {
5253                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5254                                                 buf2_len, dma_dir);
5255                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5256                                         buf->sec_page, 0, buf2_len,
5257                                         priv->dma_buf_sz);
5258
5259                         /* Data payload appended into SKB */
5260                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
5261                         buf->sec_page = NULL;
5262                 }
5263
5264 drain_data:
5265                 if (likely(status & rx_not_ls))
5266                         goto read_again;
5267                 if (!skb)
5268                         continue;
5269
5270                 /* Got entire packet into SKB. Finish it. */
5271
5272                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5273                 stmmac_rx_vlan(priv->dev, skb);
5274                 skb->protocol = eth_type_trans(skb, priv->dev);
5275
5276                 if (unlikely(!coe))
5277                         skb_checksum_none_assert(skb);
5278                 else
5279                         skb->ip_summed = CHECKSUM_UNNECESSARY;
5280
5281                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5282                         skb_set_hash(skb, hash, hash_type);
5283
5284                 skb_record_rx_queue(skb, queue);
5285                 napi_gro_receive(&ch->rx_napi, skb);
5286                 skb = NULL;
5287
5288                 priv->dev->stats.rx_packets++;
5289                 priv->dev->stats.rx_bytes += len;
5290                 count++;
5291         }
5292
5293         if (status & rx_not_ls || skb) {
5294                 rx_q->state_saved = true;
5295                 rx_q->state.skb = skb;
5296                 rx_q->state.error = error;
5297                 rx_q->state.len = len;
5298         }
5299
5300         stmmac_finalize_xdp_rx(priv, xdp_status);
5301
5302         stmmac_rx_refill(priv, queue);
5303
5304         priv->xstats.rx_pkt_n += count;
5305
5306         return count;
5307 }
5308
5309 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5310 {
5311         struct stmmac_channel *ch =
5312                 container_of(napi, struct stmmac_channel, rx_napi);
5313         struct stmmac_priv *priv = ch->priv_data;
5314         u32 chan = ch->index;
5315         int work_done;
5316
5317         priv->xstats.napi_poll++;
5318
5319         work_done = stmmac_rx(priv, budget, chan);
5320         if (work_done < budget && napi_complete_done(napi, work_done)) {
5321                 unsigned long flags;
5322
5323                 spin_lock_irqsave(&ch->lock, flags);
5324                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5325                 spin_unlock_irqrestore(&ch->lock, flags);
5326         }
5327
5328         return work_done;
5329 }
5330
5331 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5332 {
5333         struct stmmac_channel *ch =
5334                 container_of(napi, struct stmmac_channel, tx_napi);
5335         struct stmmac_priv *priv = ch->priv_data;
5336         u32 chan = ch->index;
5337         int work_done;
5338
5339         priv->xstats.napi_poll++;
5340
5341         work_done = stmmac_tx_clean(priv, budget, chan);
5342         work_done = min(work_done, budget);
5343
5344         if (work_done < budget && napi_complete_done(napi, work_done)) {
5345                 unsigned long flags;
5346
5347                 spin_lock_irqsave(&ch->lock, flags);
5348                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5349                 spin_unlock_irqrestore(&ch->lock, flags);
5350         }
5351
5352         return work_done;
5353 }
5354
5355 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5356 {
5357         struct stmmac_channel *ch =
5358                 container_of(napi, struct stmmac_channel, rxtx_napi);
5359         struct stmmac_priv *priv = ch->priv_data;
5360         int rx_done, tx_done;
5361         u32 chan = ch->index;
5362
5363         priv->xstats.napi_poll++;
5364
5365         tx_done = stmmac_tx_clean(priv, budget, chan);
5366         tx_done = min(tx_done, budget);
5367
5368         rx_done = stmmac_rx_zc(priv, budget, chan);
5369
5370         /* If either TX or RX work is not complete, return budget
5371          * and keep pooling
5372          */
5373         if (tx_done >= budget || rx_done >= budget)
5374                 return budget;
5375
5376         /* all work done, exit the polling mode */
5377         if (napi_complete_done(napi, rx_done)) {
5378                 unsigned long flags;
5379
5380                 spin_lock_irqsave(&ch->lock, flags);
5381                 /* Both RX and TX work done are compelte,
5382                  * so enable both RX & TX IRQs.
5383                  */
5384                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5385                 spin_unlock_irqrestore(&ch->lock, flags);
5386         }
5387
5388         return min(rx_done, budget - 1);
5389 }
5390
5391 /**
5392  *  stmmac_tx_timeout
5393  *  @dev : Pointer to net device structure
5394  *  @txqueue: the index of the hanging transmit queue
5395  *  Description: this function is called when a packet transmission fails to
5396  *   complete within a reasonable time. The driver will mark the error in the
5397  *   netdev structure and arrange for the device to be reset to a sane state
5398  *   in order to transmit a new packet.
5399  */
5400 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5401 {
5402         struct stmmac_priv *priv = netdev_priv(dev);
5403
5404         stmmac_global_err(priv);
5405 }
5406
5407 /**
5408  *  stmmac_set_rx_mode - entry point for multicast addressing
5409  *  @dev : pointer to the device structure
5410  *  Description:
5411  *  This function is a driver entry point which gets called by the kernel
5412  *  whenever multicast addresses must be enabled/disabled.
5413  *  Return value:
5414  *  void.
5415  */
5416 static void stmmac_set_rx_mode(struct net_device *dev)
5417 {
5418         struct stmmac_priv *priv = netdev_priv(dev);
5419
5420         stmmac_set_filter(priv, priv->hw, dev);
5421 }
5422
5423 /**
5424  *  stmmac_change_mtu - entry point to change MTU size for the device.
5425  *  @dev : device pointer.
5426  *  @new_mtu : the new MTU size for the device.
5427  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5428  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5429  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5430  *  Return value:
5431  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5432  *  file on failure.
5433  */
5434 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5435 {
5436         struct stmmac_priv *priv = netdev_priv(dev);
5437         int txfifosz = priv->plat->tx_fifo_size;
5438         const int mtu = new_mtu;
5439
5440         if (txfifosz == 0)
5441                 txfifosz = priv->dma_cap.tx_fifo_size;
5442
5443         txfifosz /= priv->plat->tx_queues_to_use;
5444
5445         if (netif_running(dev)) {
5446                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
5447                 return -EBUSY;
5448         }
5449
5450         if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5451                 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5452                 return -EINVAL;
5453         }
5454
5455         new_mtu = STMMAC_ALIGN(new_mtu);
5456
5457         /* If condition true, FIFO is too small or MTU too large */
5458         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5459                 return -EINVAL;
5460
5461         dev->mtu = mtu;
5462
5463         netdev_update_features(dev);
5464
5465         return 0;
5466 }
5467
5468 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5469                                              netdev_features_t features)
5470 {
5471         struct stmmac_priv *priv = netdev_priv(dev);
5472
5473         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5474                 features &= ~NETIF_F_RXCSUM;
5475
5476         if (!priv->plat->tx_coe)
5477                 features &= ~NETIF_F_CSUM_MASK;
5478
5479         /* Some GMAC devices have a bugged Jumbo frame support that
5480          * needs to have the Tx COE disabled for oversized frames
5481          * (due to limited buffer sizes). In this case we disable
5482          * the TX csum insertion in the TDES and not use SF.
5483          */
5484         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5485                 features &= ~NETIF_F_CSUM_MASK;
5486
5487         /* Disable tso if asked by ethtool */
5488         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5489                 if (features & NETIF_F_TSO)
5490                         priv->tso = true;
5491                 else
5492                         priv->tso = false;
5493         }
5494
5495         return features;
5496 }
5497
5498 static int stmmac_set_features(struct net_device *netdev,
5499                                netdev_features_t features)
5500 {
5501         struct stmmac_priv *priv = netdev_priv(netdev);
5502         bool sph_en;
5503         u32 chan;
5504
5505         /* Keep the COE Type in case of csum is supporting */
5506         if (features & NETIF_F_RXCSUM)
5507                 priv->hw->rx_csum = priv->plat->rx_coe;
5508         else
5509                 priv->hw->rx_csum = 0;
5510         /* No check needed because rx_coe has been set before and it will be
5511          * fixed in case of issue.
5512          */
5513         stmmac_rx_ipc(priv, priv->hw);
5514
5515         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5516
5517         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5518                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5519
5520         return 0;
5521 }
5522
5523 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5524 {
5525         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5526         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5527         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5528         bool *hs_enable = &fpe_cfg->hs_enable;
5529
5530         if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5531                 return;
5532
5533         /* If LP has sent verify mPacket, LP is FPE capable */
5534         if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5535                 if (*lp_state < FPE_STATE_CAPABLE)
5536                         *lp_state = FPE_STATE_CAPABLE;
5537
5538                 /* If user has requested FPE enable, quickly response */
5539                 if (*hs_enable)
5540                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5541                                                 MPACKET_RESPONSE);
5542         }
5543
5544         /* If Local has sent verify mPacket, Local is FPE capable */
5545         if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5546                 if (*lo_state < FPE_STATE_CAPABLE)
5547                         *lo_state = FPE_STATE_CAPABLE;
5548         }
5549
5550         /* If LP has sent response mPacket, LP is entering FPE ON */
5551         if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5552                 *lp_state = FPE_STATE_ENTERING_ON;
5553
5554         /* If Local has sent response mPacket, Local is entering FPE ON */
5555         if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5556                 *lo_state = FPE_STATE_ENTERING_ON;
5557
5558         if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5559             !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5560             priv->fpe_wq) {
5561                 queue_work(priv->fpe_wq, &priv->fpe_task);
5562         }
5563 }
5564
5565 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5566 {
5567         u32 rx_cnt = priv->plat->rx_queues_to_use;
5568         u32 tx_cnt = priv->plat->tx_queues_to_use;
5569         u32 queues_count;
5570         u32 queue;
5571         bool xmac;
5572
5573         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5574         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5575
5576         if (priv->irq_wake)
5577                 pm_wakeup_event(priv->device, 0);
5578
5579         if (priv->dma_cap.estsel)
5580                 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5581                                       &priv->xstats, tx_cnt);
5582
5583         if (priv->dma_cap.fpesel) {
5584                 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5585                                                    priv->dev);
5586
5587                 stmmac_fpe_event_status(priv, status);
5588         }
5589
5590         /* To handle GMAC own interrupts */
5591         if ((priv->plat->has_gmac) || xmac) {
5592                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5593
5594                 if (unlikely(status)) {
5595                         /* For LPI we need to save the tx status */
5596                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5597                                 priv->tx_path_in_lpi_mode = true;
5598                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5599                                 priv->tx_path_in_lpi_mode = false;
5600                 }
5601
5602                 for (queue = 0; queue < queues_count; queue++) {
5603                         status = stmmac_host_mtl_irq_status(priv, priv->hw,
5604                                                             queue);
5605                 }
5606
5607                 /* PCS link status */
5608                 if (priv->hw->pcs) {
5609                         if (priv->xstats.pcs_link)
5610                                 netif_carrier_on(priv->dev);
5611                         else
5612                                 netif_carrier_off(priv->dev);
5613                 }
5614
5615                 stmmac_timestamp_interrupt(priv, priv);
5616         }
5617 }
5618
5619 /**
5620  *  stmmac_interrupt - main ISR
5621  *  @irq: interrupt number.
5622  *  @dev_id: to pass the net device pointer.
5623  *  Description: this is the main driver interrupt service routine.
5624  *  It can call:
5625  *  o DMA service routine (to manage incoming frame reception and transmission
5626  *    status)
5627  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5628  *    interrupts.
5629  */
5630 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5631 {
5632         struct net_device *dev = (struct net_device *)dev_id;
5633         struct stmmac_priv *priv = netdev_priv(dev);
5634
5635         /* Check if adapter is up */
5636         if (test_bit(STMMAC_DOWN, &priv->state))
5637                 return IRQ_HANDLED;
5638
5639         /* Check if a fatal error happened */
5640         if (stmmac_safety_feat_interrupt(priv))
5641                 return IRQ_HANDLED;
5642
5643         /* To handle Common interrupts */
5644         stmmac_common_interrupt(priv);
5645
5646         /* To handle DMA interrupts */
5647         stmmac_dma_interrupt(priv);
5648
5649         return IRQ_HANDLED;
5650 }
5651
5652 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5653 {
5654         struct net_device *dev = (struct net_device *)dev_id;
5655         struct stmmac_priv *priv = netdev_priv(dev);
5656
5657         if (unlikely(!dev)) {
5658                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5659                 return IRQ_NONE;
5660         }
5661
5662         /* Check if adapter is up */
5663         if (test_bit(STMMAC_DOWN, &priv->state))
5664                 return IRQ_HANDLED;
5665
5666         /* To handle Common interrupts */
5667         stmmac_common_interrupt(priv);
5668
5669         return IRQ_HANDLED;
5670 }
5671
5672 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5673 {
5674         struct net_device *dev = (struct net_device *)dev_id;
5675         struct stmmac_priv *priv = netdev_priv(dev);
5676
5677         if (unlikely(!dev)) {
5678                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5679                 return IRQ_NONE;
5680         }
5681
5682         /* Check if adapter is up */
5683         if (test_bit(STMMAC_DOWN, &priv->state))
5684                 return IRQ_HANDLED;
5685
5686         /* Check if a fatal error happened */
5687         stmmac_safety_feat_interrupt(priv);
5688
5689         return IRQ_HANDLED;
5690 }
5691
5692 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5693 {
5694         struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5695         int chan = tx_q->queue_index;
5696         struct stmmac_priv *priv;
5697         int status;
5698
5699         priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5700
5701         if (unlikely(!data)) {
5702                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5703                 return IRQ_NONE;
5704         }
5705
5706         /* Check if adapter is up */
5707         if (test_bit(STMMAC_DOWN, &priv->state))
5708                 return IRQ_HANDLED;
5709
5710         status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5711
5712         if (unlikely(status & tx_hard_error_bump_tc)) {
5713                 /* Try to bump up the dma threshold on this failure */
5714                 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
5715                     tc <= 256) {
5716                         tc += 64;
5717                         if (priv->plat->force_thresh_dma_mode)
5718                                 stmmac_set_dma_operation_mode(priv,
5719                                                               tc,
5720                                                               tc,
5721                                                               chan);
5722                         else
5723                                 stmmac_set_dma_operation_mode(priv,
5724                                                               tc,
5725                                                               SF_DMA_MODE,
5726                                                               chan);
5727                         priv->xstats.threshold = tc;
5728                 }
5729         } else if (unlikely(status == tx_hard_error)) {
5730                 stmmac_tx_err(priv, chan);
5731         }
5732
5733         return IRQ_HANDLED;
5734 }
5735
5736 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5737 {
5738         struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5739         int chan = rx_q->queue_index;
5740         struct stmmac_priv *priv;
5741
5742         priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5743
5744         if (unlikely(!data)) {
5745                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5746                 return IRQ_NONE;
5747         }
5748
5749         /* Check if adapter is up */
5750         if (test_bit(STMMAC_DOWN, &priv->state))
5751                 return IRQ_HANDLED;
5752
5753         stmmac_napi_check(priv, chan, DMA_DIR_RX);
5754
5755         return IRQ_HANDLED;
5756 }
5757
5758 #ifdef CONFIG_NET_POLL_CONTROLLER
5759 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5760  * to allow network I/O with interrupts disabled.
5761  */
5762 static void stmmac_poll_controller(struct net_device *dev)
5763 {
5764         struct stmmac_priv *priv = netdev_priv(dev);
5765         int i;
5766
5767         /* If adapter is down, do nothing */
5768         if (test_bit(STMMAC_DOWN, &priv->state))
5769                 return;
5770
5771         if (priv->plat->multi_msi_en) {
5772                 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5773                         stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5774
5775                 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5776                         stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5777         } else {
5778                 disable_irq(dev->irq);
5779                 stmmac_interrupt(dev->irq, dev);
5780                 enable_irq(dev->irq);
5781         }
5782 }
5783 #endif
5784
5785 /**
5786  *  stmmac_ioctl - Entry point for the Ioctl
5787  *  @dev: Device pointer.
5788  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5789  *  a proprietary structure used to pass information to the driver.
5790  *  @cmd: IOCTL command
5791  *  Description:
5792  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5793  */
5794 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5795 {
5796         struct stmmac_priv *priv = netdev_priv (dev);
5797         int ret = -EOPNOTSUPP;
5798
5799         if (!netif_running(dev))
5800                 return -EINVAL;
5801
5802         switch (cmd) {
5803         case SIOCGMIIPHY:
5804         case SIOCGMIIREG:
5805         case SIOCSMIIREG:
5806                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5807                 break;
5808         case SIOCSHWTSTAMP:
5809                 ret = stmmac_hwtstamp_set(dev, rq);
5810                 break;
5811         case SIOCGHWTSTAMP:
5812                 ret = stmmac_hwtstamp_get(dev, rq);
5813                 break;
5814         default:
5815                 break;
5816         }
5817
5818         return ret;
5819 }
5820
5821 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5822                                     void *cb_priv)
5823 {
5824         struct stmmac_priv *priv = cb_priv;
5825         int ret = -EOPNOTSUPP;
5826
5827         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5828                 return ret;
5829
5830         __stmmac_disable_all_queues(priv);
5831
5832         switch (type) {
5833         case TC_SETUP_CLSU32:
5834                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5835                 break;
5836         case TC_SETUP_CLSFLOWER:
5837                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5838                 break;
5839         default:
5840                 break;
5841         }
5842
5843         stmmac_enable_all_queues(priv);
5844         return ret;
5845 }
5846
5847 static LIST_HEAD(stmmac_block_cb_list);
5848
5849 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5850                            void *type_data)
5851 {
5852         struct stmmac_priv *priv = netdev_priv(ndev);
5853
5854         switch (type) {
5855         case TC_SETUP_BLOCK:
5856                 return flow_block_cb_setup_simple(type_data,
5857                                                   &stmmac_block_cb_list,
5858                                                   stmmac_setup_tc_block_cb,
5859                                                   priv, priv, true);
5860         case TC_SETUP_QDISC_CBS:
5861                 return stmmac_tc_setup_cbs(priv, priv, type_data);
5862         case TC_SETUP_QDISC_TAPRIO:
5863                 return stmmac_tc_setup_taprio(priv, priv, type_data);
5864         case TC_SETUP_QDISC_ETF:
5865                 return stmmac_tc_setup_etf(priv, priv, type_data);
5866         default:
5867                 return -EOPNOTSUPP;
5868         }
5869 }
5870
5871 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5872                                struct net_device *sb_dev)
5873 {
5874         int gso = skb_shinfo(skb)->gso_type;
5875
5876         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5877                 /*
5878                  * There is no way to determine the number of TSO/USO
5879                  * capable Queues. Let's use always the Queue 0
5880                  * because if TSO/USO is supported then at least this
5881                  * one will be capable.
5882                  */
5883                 return 0;
5884         }
5885
5886         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5887 }
5888
5889 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5890 {
5891         struct stmmac_priv *priv = netdev_priv(ndev);
5892         int ret = 0;
5893
5894         ret = pm_runtime_get_sync(priv->device);
5895         if (ret < 0) {
5896                 pm_runtime_put_noidle(priv->device);
5897                 return ret;
5898         }
5899
5900         ret = eth_mac_addr(ndev, addr);
5901         if (ret)
5902                 goto set_mac_error;
5903
5904         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5905
5906 set_mac_error:
5907         pm_runtime_put(priv->device);
5908
5909         return ret;
5910 }
5911
5912 #ifdef CONFIG_DEBUG_FS
5913 static struct dentry *stmmac_fs_dir;
5914
5915 static void sysfs_display_ring(void *head, int size, int extend_desc,
5916                                struct seq_file *seq, dma_addr_t dma_phy_addr)
5917 {
5918         int i;
5919         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5920         struct dma_desc *p = (struct dma_desc *)head;
5921         dma_addr_t dma_addr;
5922
5923         for (i = 0; i < size; i++) {
5924                 if (extend_desc) {
5925                         dma_addr = dma_phy_addr + i * sizeof(*ep);
5926                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5927                                    i, &dma_addr,
5928                                    le32_to_cpu(ep->basic.des0),
5929                                    le32_to_cpu(ep->basic.des1),
5930                                    le32_to_cpu(ep->basic.des2),
5931                                    le32_to_cpu(ep->basic.des3));
5932                         ep++;
5933                 } else {
5934                         dma_addr = dma_phy_addr + i * sizeof(*p);
5935                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5936                                    i, &dma_addr,
5937                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5938                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5939                         p++;
5940                 }
5941                 seq_printf(seq, "\n");
5942         }
5943 }
5944
5945 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5946 {
5947         struct net_device *dev = seq->private;
5948         struct stmmac_priv *priv = netdev_priv(dev);
5949         u32 rx_count = priv->plat->rx_queues_to_use;
5950         u32 tx_count = priv->plat->tx_queues_to_use;
5951         u32 queue;
5952
5953         if ((dev->flags & IFF_UP) == 0)
5954                 return 0;
5955
5956         for (queue = 0; queue < rx_count; queue++) {
5957                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5958
5959                 seq_printf(seq, "RX Queue %d:\n", queue);
5960
5961                 if (priv->extend_desc) {
5962                         seq_printf(seq, "Extended descriptor ring:\n");
5963                         sysfs_display_ring((void *)rx_q->dma_erx,
5964                                            priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5965                 } else {
5966                         seq_printf(seq, "Descriptor ring:\n");
5967                         sysfs_display_ring((void *)rx_q->dma_rx,
5968                                            priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5969                 }
5970         }
5971
5972         for (queue = 0; queue < tx_count; queue++) {
5973                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5974
5975                 seq_printf(seq, "TX Queue %d:\n", queue);
5976
5977                 if (priv->extend_desc) {
5978                         seq_printf(seq, "Extended descriptor ring:\n");
5979                         sysfs_display_ring((void *)tx_q->dma_etx,
5980                                            priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5981                 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5982                         seq_printf(seq, "Descriptor ring:\n");
5983                         sysfs_display_ring((void *)tx_q->dma_tx,
5984                                            priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5985                 }
5986         }
5987
5988         return 0;
5989 }
5990 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5991
5992 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5993 {
5994         struct net_device *dev = seq->private;
5995         struct stmmac_priv *priv = netdev_priv(dev);
5996
5997         if (!priv->hw_cap_support) {
5998                 seq_printf(seq, "DMA HW features not supported\n");
5999                 return 0;
6000         }
6001
6002         seq_printf(seq, "==============================\n");
6003         seq_printf(seq, "\tDMA HW features\n");
6004         seq_printf(seq, "==============================\n");
6005
6006         seq_printf(seq, "\t10/100 Mbps: %s\n",
6007                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6008         seq_printf(seq, "\t1000 Mbps: %s\n",
6009                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
6010         seq_printf(seq, "\tHalf duplex: %s\n",
6011                    (priv->dma_cap.half_duplex) ? "Y" : "N");
6012         seq_printf(seq, "\tHash Filter: %s\n",
6013                    (priv->dma_cap.hash_filter) ? "Y" : "N");
6014         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6015                    (priv->dma_cap.multi_addr) ? "Y" : "N");
6016         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6017                    (priv->dma_cap.pcs) ? "Y" : "N");
6018         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6019                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
6020         seq_printf(seq, "\tPMT Remote wake up: %s\n",
6021                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6022         seq_printf(seq, "\tPMT Magic Frame: %s\n",
6023                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6024         seq_printf(seq, "\tRMON module: %s\n",
6025                    (priv->dma_cap.rmon) ? "Y" : "N");
6026         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6027                    (priv->dma_cap.time_stamp) ? "Y" : "N");
6028         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6029                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
6030         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6031                    (priv->dma_cap.eee) ? "Y" : "N");
6032         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6033         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6034                    (priv->dma_cap.tx_coe) ? "Y" : "N");
6035         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6036                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6037                            (priv->dma_cap.rx_coe) ? "Y" : "N");
6038         } else {
6039                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6040                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6041                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6042                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6043         }
6044         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6045                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6046         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6047                    priv->dma_cap.number_rx_channel);
6048         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6049                    priv->dma_cap.number_tx_channel);
6050         seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6051                    priv->dma_cap.number_rx_queues);
6052         seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6053                    priv->dma_cap.number_tx_queues);
6054         seq_printf(seq, "\tEnhanced descriptors: %s\n",
6055                    (priv->dma_cap.enh_desc) ? "Y" : "N");
6056         seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6057         seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6058         seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6059         seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6060         seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6061                    priv->dma_cap.pps_out_num);
6062         seq_printf(seq, "\tSafety Features: %s\n",
6063                    priv->dma_cap.asp ? "Y" : "N");
6064         seq_printf(seq, "\tFlexible RX Parser: %s\n",
6065                    priv->dma_cap.frpsel ? "Y" : "N");
6066         seq_printf(seq, "\tEnhanced Addressing: %d\n",
6067                    priv->dma_cap.addr64);
6068         seq_printf(seq, "\tReceive Side Scaling: %s\n",
6069                    priv->dma_cap.rssen ? "Y" : "N");
6070         seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6071                    priv->dma_cap.vlhash ? "Y" : "N");
6072         seq_printf(seq, "\tSplit Header: %s\n",
6073                    priv->dma_cap.sphen ? "Y" : "N");
6074         seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6075                    priv->dma_cap.vlins ? "Y" : "N");
6076         seq_printf(seq, "\tDouble VLAN: %s\n",
6077                    priv->dma_cap.dvlan ? "Y" : "N");
6078         seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6079                    priv->dma_cap.l3l4fnum);
6080         seq_printf(seq, "\tARP Offloading: %s\n",
6081                    priv->dma_cap.arpoffsel ? "Y" : "N");
6082         seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6083                    priv->dma_cap.estsel ? "Y" : "N");
6084         seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6085                    priv->dma_cap.fpesel ? "Y" : "N");
6086         seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6087                    priv->dma_cap.tbssel ? "Y" : "N");
6088         return 0;
6089 }
6090 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6091
6092 /* Use network device events to rename debugfs file entries.
6093  */
6094 static int stmmac_device_event(struct notifier_block *unused,
6095                                unsigned long event, void *ptr)
6096 {
6097         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6098         struct stmmac_priv *priv = netdev_priv(dev);
6099
6100         if (dev->netdev_ops != &stmmac_netdev_ops)
6101                 goto done;
6102
6103         switch (event) {
6104         case NETDEV_CHANGENAME:
6105                 if (priv->dbgfs_dir)
6106                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6107                                                          priv->dbgfs_dir,
6108                                                          stmmac_fs_dir,
6109                                                          dev->name);
6110                 break;
6111         }
6112 done:
6113         return NOTIFY_DONE;
6114 }
6115
6116 static struct notifier_block stmmac_notifier = {
6117         .notifier_call = stmmac_device_event,
6118 };
6119
6120 static void stmmac_init_fs(struct net_device *dev)
6121 {
6122         struct stmmac_priv *priv = netdev_priv(dev);
6123
6124         rtnl_lock();
6125
6126         /* Create per netdev entries */
6127         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6128
6129         /* Entry to report DMA RX/TX rings */
6130         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6131                             &stmmac_rings_status_fops);
6132
6133         /* Entry to report the DMA HW features */
6134         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6135                             &stmmac_dma_cap_fops);
6136
6137         rtnl_unlock();
6138 }
6139
6140 static void stmmac_exit_fs(struct net_device *dev)
6141 {
6142         struct stmmac_priv *priv = netdev_priv(dev);
6143
6144         debugfs_remove_recursive(priv->dbgfs_dir);
6145 }
6146 #endif /* CONFIG_DEBUG_FS */
6147
6148 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6149 {
6150         unsigned char *data = (unsigned char *)&vid_le;
6151         unsigned char data_byte = 0;
6152         u32 crc = ~0x0;
6153         u32 temp = 0;
6154         int i, bits;
6155
6156         bits = get_bitmask_order(VLAN_VID_MASK);
6157         for (i = 0; i < bits; i++) {
6158                 if ((i % 8) == 0)
6159                         data_byte = data[i / 8];
6160
6161                 temp = ((crc & 1) ^ data_byte) & 1;
6162                 crc >>= 1;
6163                 data_byte >>= 1;
6164
6165                 if (temp)
6166                         crc ^= 0xedb88320;
6167         }
6168
6169         return crc;
6170 }
6171
6172 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6173 {
6174         u32 crc, hash = 0;
6175         __le16 pmatch = 0;
6176         int count = 0;
6177         u16 vid = 0;
6178
6179         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6180                 __le16 vid_le = cpu_to_le16(vid);
6181                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6182                 hash |= (1 << crc);
6183                 count++;
6184         }
6185
6186         if (!priv->dma_cap.vlhash) {
6187                 if (count > 2) /* VID = 0 always passes filter */
6188                         return -EOPNOTSUPP;
6189
6190                 pmatch = cpu_to_le16(vid);
6191                 hash = 0;
6192         }
6193
6194         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6195 }
6196
6197 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6198 {
6199         struct stmmac_priv *priv = netdev_priv(ndev);
6200         bool is_double = false;
6201         int ret;
6202
6203         if (be16_to_cpu(proto) == ETH_P_8021AD)
6204                 is_double = true;
6205
6206         set_bit(vid, priv->active_vlans);
6207         ret = stmmac_vlan_update(priv, is_double);
6208         if (ret) {
6209                 clear_bit(vid, priv->active_vlans);
6210                 return ret;
6211         }
6212
6213         if (priv->hw->num_vlan) {
6214                 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6215                 if (ret)
6216                         return ret;
6217         }
6218
6219         return 0;
6220 }
6221
6222 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6223 {
6224         struct stmmac_priv *priv = netdev_priv(ndev);
6225         bool is_double = false;
6226         int ret;
6227
6228         ret = pm_runtime_get_sync(priv->device);
6229         if (ret < 0) {
6230                 pm_runtime_put_noidle(priv->device);
6231                 return ret;
6232         }
6233
6234         if (be16_to_cpu(proto) == ETH_P_8021AD)
6235                 is_double = true;
6236
6237         clear_bit(vid, priv->active_vlans);
6238
6239         if (priv->hw->num_vlan) {
6240                 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6241                 if (ret)
6242                         goto del_vlan_error;
6243         }
6244
6245         ret = stmmac_vlan_update(priv, is_double);
6246
6247 del_vlan_error:
6248         pm_runtime_put(priv->device);
6249
6250         return ret;
6251 }
6252
6253 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6254 {
6255         struct stmmac_priv *priv = netdev_priv(dev);
6256
6257         switch (bpf->command) {
6258         case XDP_SETUP_PROG:
6259                 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6260         case XDP_SETUP_XSK_POOL:
6261                 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6262                                              bpf->xsk.queue_id);
6263         default:
6264                 return -EOPNOTSUPP;
6265         }
6266 }
6267
6268 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6269                            struct xdp_frame **frames, u32 flags)
6270 {
6271         struct stmmac_priv *priv = netdev_priv(dev);
6272         int cpu = smp_processor_id();
6273         struct netdev_queue *nq;
6274         int i, nxmit = 0;
6275         int queue;
6276
6277         if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6278                 return -ENETDOWN;
6279
6280         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6281                 return -EINVAL;
6282
6283         queue = stmmac_xdp_get_tx_queue(priv, cpu);
6284         nq = netdev_get_tx_queue(priv->dev, queue);
6285
6286         __netif_tx_lock(nq, cpu);
6287         /* Avoids TX time-out as we are sharing with slow path */
6288         nq->trans_start = jiffies;
6289
6290         for (i = 0; i < num_frames; i++) {
6291                 int res;
6292
6293                 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6294                 if (res == STMMAC_XDP_CONSUMED)
6295                         break;
6296
6297                 nxmit++;
6298         }
6299
6300         if (flags & XDP_XMIT_FLUSH) {
6301                 stmmac_flush_tx_descriptors(priv, queue);
6302                 stmmac_tx_timer_arm(priv, queue);
6303         }
6304
6305         __netif_tx_unlock(nq);
6306
6307         return nxmit;
6308 }
6309
6310 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6311 {
6312         struct stmmac_channel *ch = &priv->channel[queue];
6313         unsigned long flags;
6314
6315         spin_lock_irqsave(&ch->lock, flags);
6316         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6317         spin_unlock_irqrestore(&ch->lock, flags);
6318
6319         stmmac_stop_rx_dma(priv, queue);
6320         __free_dma_rx_desc_resources(priv, queue);
6321 }
6322
6323 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6324 {
6325         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6326         struct stmmac_channel *ch = &priv->channel[queue];
6327         unsigned long flags;
6328         u32 buf_size;
6329         int ret;
6330
6331         ret = __alloc_dma_rx_desc_resources(priv, queue);
6332         if (ret) {
6333                 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6334                 return;
6335         }
6336
6337         ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6338         if (ret) {
6339                 __free_dma_rx_desc_resources(priv, queue);
6340                 netdev_err(priv->dev, "Failed to init RX desc.\n");
6341                 return;
6342         }
6343
6344         stmmac_clear_rx_descriptors(priv, queue);
6345
6346         stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6347                             rx_q->dma_rx_phy, rx_q->queue_index);
6348
6349         rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6350                              sizeof(struct dma_desc));
6351         stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6352                                rx_q->rx_tail_addr, rx_q->queue_index);
6353
6354         if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6355                 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6356                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6357                                       buf_size,
6358                                       rx_q->queue_index);
6359         } else {
6360                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6361                                       priv->dma_buf_sz,
6362                                       rx_q->queue_index);
6363         }
6364
6365         stmmac_start_rx_dma(priv, queue);
6366
6367         spin_lock_irqsave(&ch->lock, flags);
6368         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6369         spin_unlock_irqrestore(&ch->lock, flags);
6370 }
6371
6372 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6373 {
6374         struct stmmac_channel *ch = &priv->channel[queue];
6375         unsigned long flags;
6376
6377         spin_lock_irqsave(&ch->lock, flags);
6378         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6379         spin_unlock_irqrestore(&ch->lock, flags);
6380
6381         stmmac_stop_tx_dma(priv, queue);
6382         __free_dma_tx_desc_resources(priv, queue);
6383 }
6384
6385 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6386 {
6387         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6388         struct stmmac_channel *ch = &priv->channel[queue];
6389         unsigned long flags;
6390         int ret;
6391
6392         ret = __alloc_dma_tx_desc_resources(priv, queue);
6393         if (ret) {
6394                 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6395                 return;
6396         }
6397
6398         ret = __init_dma_tx_desc_rings(priv, queue);
6399         if (ret) {
6400                 __free_dma_tx_desc_resources(priv, queue);
6401                 netdev_err(priv->dev, "Failed to init TX desc.\n");
6402                 return;
6403         }
6404
6405         stmmac_clear_tx_descriptors(priv, queue);
6406
6407         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6408                             tx_q->dma_tx_phy, tx_q->queue_index);
6409
6410         if (tx_q->tbs & STMMAC_TBS_AVAIL)
6411                 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6412
6413         tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6414         stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6415                                tx_q->tx_tail_addr, tx_q->queue_index);
6416
6417         stmmac_start_tx_dma(priv, queue);
6418
6419         spin_lock_irqsave(&ch->lock, flags);
6420         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6421         spin_unlock_irqrestore(&ch->lock, flags);
6422 }
6423
6424 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6425 {
6426         struct stmmac_priv *priv = netdev_priv(dev);
6427         struct stmmac_rx_queue *rx_q;
6428         struct stmmac_tx_queue *tx_q;
6429         struct stmmac_channel *ch;
6430
6431         if (test_bit(STMMAC_DOWN, &priv->state) ||
6432             !netif_carrier_ok(priv->dev))
6433                 return -ENETDOWN;
6434
6435         if (!stmmac_xdp_is_enabled(priv))
6436                 return -ENXIO;
6437
6438         if (queue >= priv->plat->rx_queues_to_use ||
6439             queue >= priv->plat->tx_queues_to_use)
6440                 return -EINVAL;
6441
6442         rx_q = &priv->rx_queue[queue];
6443         tx_q = &priv->tx_queue[queue];
6444         ch = &priv->channel[queue];
6445
6446         if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6447                 return -ENXIO;
6448
6449         if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6450                 /* EQoS does not have per-DMA channel SW interrupt,
6451                  * so we schedule RX Napi straight-away.
6452                  */
6453                 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6454                         __napi_schedule(&ch->rxtx_napi);
6455         }
6456
6457         return 0;
6458 }
6459
6460 static const struct net_device_ops stmmac_netdev_ops = {
6461         .ndo_open = stmmac_open,
6462         .ndo_start_xmit = stmmac_xmit,
6463         .ndo_stop = stmmac_release,
6464         .ndo_change_mtu = stmmac_change_mtu,
6465         .ndo_fix_features = stmmac_fix_features,
6466         .ndo_set_features = stmmac_set_features,
6467         .ndo_set_rx_mode = stmmac_set_rx_mode,
6468         .ndo_tx_timeout = stmmac_tx_timeout,
6469         .ndo_do_ioctl = stmmac_ioctl,
6470         .ndo_setup_tc = stmmac_setup_tc,
6471         .ndo_select_queue = stmmac_select_queue,
6472 #ifdef CONFIG_NET_POLL_CONTROLLER
6473         .ndo_poll_controller = stmmac_poll_controller,
6474 #endif
6475         .ndo_set_mac_address = stmmac_set_mac_address,
6476         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6477         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6478         .ndo_bpf = stmmac_bpf,
6479         .ndo_xdp_xmit = stmmac_xdp_xmit,
6480         .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6481 };
6482
6483 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6484 {
6485         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6486                 return;
6487         if (test_bit(STMMAC_DOWN, &priv->state))
6488                 return;
6489
6490         netdev_err(priv->dev, "Reset adapter.\n");
6491
6492         rtnl_lock();
6493         netif_trans_update(priv->dev);
6494         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6495                 usleep_range(1000, 2000);
6496
6497         set_bit(STMMAC_DOWN, &priv->state);
6498         dev_close(priv->dev);
6499         dev_open(priv->dev, NULL);
6500         clear_bit(STMMAC_DOWN, &priv->state);
6501         clear_bit(STMMAC_RESETING, &priv->state);
6502         rtnl_unlock();
6503 }
6504
6505 static void stmmac_service_task(struct work_struct *work)
6506 {
6507         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6508                         service_task);
6509
6510         stmmac_reset_subtask(priv);
6511         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6512 }
6513
6514 /**
6515  *  stmmac_hw_init - Init the MAC device
6516  *  @priv: driver private structure
6517  *  Description: this function is to configure the MAC device according to
6518  *  some platform parameters or the HW capability register. It prepares the
6519  *  driver to use either ring or chain modes and to setup either enhanced or
6520  *  normal descriptors.
6521  */
6522 static int stmmac_hw_init(struct stmmac_priv *priv)
6523 {
6524         int ret;
6525
6526         /* dwmac-sun8i only work in chain mode */
6527         if (priv->plat->has_sun8i)
6528                 chain_mode = 1;
6529         priv->chain_mode = chain_mode;
6530
6531         /* Initialize HW Interface */
6532         ret = stmmac_hwif_init(priv);
6533         if (ret)
6534                 return ret;
6535
6536         /* Get the HW capability (new GMAC newer than 3.50a) */
6537         priv->hw_cap_support = stmmac_get_hw_features(priv);
6538         if (priv->hw_cap_support) {
6539                 dev_info(priv->device, "DMA HW capability register supported\n");
6540
6541                 /* We can override some gmac/dma configuration fields: e.g.
6542                  * enh_desc, tx_coe (e.g. that are passed through the
6543                  * platform) with the values from the HW capability
6544                  * register (if supported).
6545                  */
6546                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6547                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
6548                 priv->hw->pmt = priv->plat->pmt;
6549                 if (priv->dma_cap.hash_tb_sz) {
6550                         priv->hw->multicast_filter_bins =
6551                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
6552                         priv->hw->mcast_bits_log2 =
6553                                         ilog2(priv->hw->multicast_filter_bins);
6554                 }
6555
6556                 /* TXCOE doesn't work in thresh DMA mode */
6557                 if (priv->plat->force_thresh_dma_mode)
6558                         priv->plat->tx_coe = 0;
6559                 else
6560                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
6561
6562                 /* In case of GMAC4 rx_coe is from HW cap register. */
6563                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6564
6565                 if (priv->dma_cap.rx_coe_type2)
6566                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6567                 else if (priv->dma_cap.rx_coe_type1)
6568                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6569
6570         } else {
6571                 dev_info(priv->device, "No HW DMA feature register supported\n");
6572         }
6573
6574         if (priv->plat->rx_coe) {
6575                 priv->hw->rx_csum = priv->plat->rx_coe;
6576                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6577                 if (priv->synopsys_id < DWMAC_CORE_4_00)
6578                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6579         }
6580         if (priv->plat->tx_coe)
6581                 dev_info(priv->device, "TX Checksum insertion supported\n");
6582
6583         if (priv->plat->pmt) {
6584                 dev_info(priv->device, "Wake-Up On Lan supported\n");
6585                 device_set_wakeup_capable(priv->device, 1);
6586         }
6587
6588         if (priv->dma_cap.tsoen)
6589                 dev_info(priv->device, "TSO supported\n");
6590
6591         priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6592         priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6593
6594         /* Run HW quirks, if any */
6595         if (priv->hwif_quirks) {
6596                 ret = priv->hwif_quirks(priv);
6597                 if (ret)
6598                         return ret;
6599         }
6600
6601         /* Rx Watchdog is available in the COREs newer than the 3.40.
6602          * In some case, for example on bugged HW this feature
6603          * has to be disable and this can be done by passing the
6604          * riwt_off field from the platform.
6605          */
6606         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6607             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6608                 priv->use_riwt = 1;
6609                 dev_info(priv->device,
6610                          "Enable RX Mitigation via HW Watchdog Timer\n");
6611         }
6612
6613         return 0;
6614 }
6615
6616 static void stmmac_napi_add(struct net_device *dev)
6617 {
6618         struct stmmac_priv *priv = netdev_priv(dev);
6619         u32 queue, maxq;
6620
6621         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6622
6623         for (queue = 0; queue < maxq; queue++) {
6624                 struct stmmac_channel *ch = &priv->channel[queue];
6625
6626                 ch->priv_data = priv;
6627                 ch->index = queue;
6628                 spin_lock_init(&ch->lock);
6629
6630                 if (queue < priv->plat->rx_queues_to_use) {
6631                         netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6632                                        NAPI_POLL_WEIGHT);
6633                 }
6634                 if (queue < priv->plat->tx_queues_to_use) {
6635                         netif_tx_napi_add(dev, &ch->tx_napi,
6636                                           stmmac_napi_poll_tx,
6637                                           NAPI_POLL_WEIGHT);
6638                 }
6639                 if (queue < priv->plat->rx_queues_to_use &&
6640                     queue < priv->plat->tx_queues_to_use) {
6641                         netif_napi_add(dev, &ch->rxtx_napi,
6642                                        stmmac_napi_poll_rxtx,
6643                                        NAPI_POLL_WEIGHT);
6644                 }
6645         }
6646 }
6647
6648 static void stmmac_napi_del(struct net_device *dev)
6649 {
6650         struct stmmac_priv *priv = netdev_priv(dev);
6651         u32 queue, maxq;
6652
6653         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6654
6655         for (queue = 0; queue < maxq; queue++) {
6656                 struct stmmac_channel *ch = &priv->channel[queue];
6657
6658                 if (queue < priv->plat->rx_queues_to_use)
6659                         netif_napi_del(&ch->rx_napi);
6660                 if (queue < priv->plat->tx_queues_to_use)
6661                         netif_napi_del(&ch->tx_napi);
6662                 if (queue < priv->plat->rx_queues_to_use &&
6663                     queue < priv->plat->tx_queues_to_use) {
6664                         netif_napi_del(&ch->rxtx_napi);
6665                 }
6666         }
6667 }
6668
6669 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6670 {
6671         struct stmmac_priv *priv = netdev_priv(dev);
6672         int ret = 0;
6673
6674         if (netif_running(dev))
6675                 stmmac_release(dev);
6676
6677         stmmac_napi_del(dev);
6678
6679         priv->plat->rx_queues_to_use = rx_cnt;
6680         priv->plat->tx_queues_to_use = tx_cnt;
6681
6682         stmmac_napi_add(dev);
6683
6684         if (netif_running(dev))
6685                 ret = stmmac_open(dev);
6686
6687         return ret;
6688 }
6689
6690 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6691 {
6692         struct stmmac_priv *priv = netdev_priv(dev);
6693         int ret = 0;
6694
6695         if (netif_running(dev))
6696                 stmmac_release(dev);
6697
6698         priv->dma_rx_size = rx_size;
6699         priv->dma_tx_size = tx_size;
6700
6701         if (netif_running(dev))
6702                 ret = stmmac_open(dev);
6703
6704         return ret;
6705 }
6706
6707 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6708 static void stmmac_fpe_lp_task(struct work_struct *work)
6709 {
6710         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6711                                                 fpe_task);
6712         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6713         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6714         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6715         bool *hs_enable = &fpe_cfg->hs_enable;
6716         bool *enable = &fpe_cfg->enable;
6717         int retries = 20;
6718
6719         while (retries-- > 0) {
6720                 /* Bail out immediately if FPE handshake is OFF */
6721                 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6722                         break;
6723
6724                 if (*lo_state == FPE_STATE_ENTERING_ON &&
6725                     *lp_state == FPE_STATE_ENTERING_ON) {
6726                         stmmac_fpe_configure(priv, priv->ioaddr,
6727                                              priv->plat->tx_queues_to_use,
6728                                              priv->plat->rx_queues_to_use,
6729                                              *enable);
6730
6731                         netdev_info(priv->dev, "configured FPE\n");
6732
6733                         *lo_state = FPE_STATE_ON;
6734                         *lp_state = FPE_STATE_ON;
6735                         netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6736                         break;
6737                 }
6738
6739                 if ((*lo_state == FPE_STATE_CAPABLE ||
6740                      *lo_state == FPE_STATE_ENTERING_ON) &&
6741                      *lp_state != FPE_STATE_ON) {
6742                         netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6743                                     *lo_state, *lp_state);
6744                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6745                                                 MPACKET_VERIFY);
6746                 }
6747                 /* Sleep then retry */
6748                 msleep(500);
6749         }
6750
6751         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6752 }
6753
6754 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6755 {
6756         if (priv->plat->fpe_cfg->hs_enable != enable) {
6757                 if (enable) {
6758                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6759                                                 MPACKET_VERIFY);
6760                 } else {
6761                         priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6762                         priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6763                 }
6764
6765                 priv->plat->fpe_cfg->hs_enable = enable;
6766         }
6767 }
6768
6769 /**
6770  * stmmac_dvr_probe
6771  * @device: device pointer
6772  * @plat_dat: platform data pointer
6773  * @res: stmmac resource pointer
6774  * Description: this is the main probe function used to
6775  * call the alloc_etherdev, allocate the priv structure.
6776  * Return:
6777  * returns 0 on success, otherwise errno.
6778  */
6779 int stmmac_dvr_probe(struct device *device,
6780                      struct plat_stmmacenet_data *plat_dat,
6781                      struct stmmac_resources *res)
6782 {
6783         struct net_device *ndev = NULL;
6784         struct stmmac_priv *priv;
6785         u32 rxq;
6786         int i, ret = 0;
6787
6788         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6789                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6790         if (!ndev)
6791                 return -ENOMEM;
6792
6793         SET_NETDEV_DEV(ndev, device);
6794
6795         priv = netdev_priv(ndev);
6796         priv->device = device;
6797         priv->dev = ndev;
6798
6799         stmmac_set_ethtool_ops(ndev);
6800         priv->pause = pause;
6801         priv->plat = plat_dat;
6802         priv->ioaddr = res->addr;
6803         priv->dev->base_addr = (unsigned long)res->addr;
6804         priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6805
6806         priv->dev->irq = res->irq;
6807         priv->wol_irq = res->wol_irq;
6808         priv->lpi_irq = res->lpi_irq;
6809         priv->sfty_ce_irq = res->sfty_ce_irq;
6810         priv->sfty_ue_irq = res->sfty_ue_irq;
6811         for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6812                 priv->rx_irq[i] = res->rx_irq[i];
6813         for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6814                 priv->tx_irq[i] = res->tx_irq[i];
6815
6816         if (!is_zero_ether_addr(res->mac))
6817                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
6818
6819         dev_set_drvdata(device, priv->dev);
6820
6821         /* Verify driver arguments */
6822         stmmac_verify_args();
6823
6824         priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6825         if (!priv->af_xdp_zc_qps)
6826                 return -ENOMEM;
6827
6828         /* Allocate workqueue */
6829         priv->wq = create_singlethread_workqueue("stmmac_wq");
6830         if (!priv->wq) {
6831                 dev_err(priv->device, "failed to create workqueue\n");
6832                 return -ENOMEM;
6833         }
6834
6835         INIT_WORK(&priv->service_task, stmmac_service_task);
6836
6837         /* Initialize Link Partner FPE workqueue */
6838         INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6839
6840         /* Override with kernel parameters if supplied XXX CRS XXX
6841          * this needs to have multiple instances
6842          */
6843         if ((phyaddr >= 0) && (phyaddr <= 31))
6844                 priv->plat->phy_addr = phyaddr;
6845
6846         if (priv->plat->stmmac_rst) {
6847                 ret = reset_control_assert(priv->plat->stmmac_rst);
6848                 reset_control_deassert(priv->plat->stmmac_rst);
6849                 /* Some reset controllers have only reset callback instead of
6850                  * assert + deassert callbacks pair.
6851                  */
6852                 if (ret == -ENOTSUPP)
6853                         reset_control_reset(priv->plat->stmmac_rst);
6854         }
6855
6856         /* Init MAC and get the capabilities */
6857         ret = stmmac_hw_init(priv);
6858         if (ret)
6859                 goto error_hw_init;
6860
6861         /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6862          */
6863         if (priv->synopsys_id < DWMAC_CORE_5_20)
6864                 priv->plat->dma_cfg->dche = false;
6865
6866         stmmac_check_ether_addr(priv);
6867
6868         ndev->netdev_ops = &stmmac_netdev_ops;
6869
6870         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6871                             NETIF_F_RXCSUM;
6872
6873         ret = stmmac_tc_init(priv, priv);
6874         if (!ret) {
6875                 ndev->hw_features |= NETIF_F_HW_TC;
6876         }
6877
6878         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6879                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6880                 if (priv->plat->has_gmac4)
6881                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
6882                 priv->tso = true;
6883                 dev_info(priv->device, "TSO feature enabled\n");
6884         }
6885
6886         if (priv->dma_cap.sphen) {
6887                 ndev->hw_features |= NETIF_F_GRO;
6888                 priv->sph_cap = true;
6889                 priv->sph = priv->sph_cap;
6890                 dev_info(priv->device, "SPH feature enabled\n");
6891         }
6892
6893         /* The current IP register MAC_HW_Feature1[ADDR64] only define
6894          * 32/40/64 bit width, but some SOC support others like i.MX8MP
6895          * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
6896          * So overwrite dma_cap.addr64 according to HW real design.
6897          */
6898         if (priv->plat->addr64)
6899                 priv->dma_cap.addr64 = priv->plat->addr64;
6900
6901         if (priv->dma_cap.addr64) {
6902                 ret = dma_set_mask_and_coherent(device,
6903                                 DMA_BIT_MASK(priv->dma_cap.addr64));
6904                 if (!ret) {
6905                         dev_info(priv->device, "Using %d bits DMA width\n",
6906                                  priv->dma_cap.addr64);
6907
6908                         /*
6909                          * If more than 32 bits can be addressed, make sure to
6910                          * enable enhanced addressing mode.
6911                          */
6912                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
6913                                 priv->plat->dma_cfg->eame = true;
6914                 } else {
6915                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
6916                         if (ret) {
6917                                 dev_err(priv->device, "Failed to set DMA Mask\n");
6918                                 goto error_hw_init;
6919                         }
6920
6921                         priv->dma_cap.addr64 = 32;
6922                 }
6923         }
6924
6925         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
6926         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
6927 #ifdef STMMAC_VLAN_TAG_USED
6928         /* Both mac100 and gmac support receive VLAN tag detection */
6929         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
6930         if (priv->dma_cap.vlhash) {
6931                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6932                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
6933         }
6934         if (priv->dma_cap.vlins) {
6935                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
6936                 if (priv->dma_cap.dvlan)
6937                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
6938         }
6939 #endif
6940         priv->msg_enable = netif_msg_init(debug, default_msg_level);
6941
6942         /* Initialize RSS */
6943         rxq = priv->plat->rx_queues_to_use;
6944         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
6945         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
6946                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
6947
6948         if (priv->dma_cap.rssen && priv->plat->rss_en)
6949                 ndev->features |= NETIF_F_RXHASH;
6950
6951         /* MTU range: 46 - hw-specific max */
6952         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
6953         if (priv->plat->has_xgmac)
6954                 ndev->max_mtu = XGMAC_JUMBO_LEN;
6955         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
6956                 ndev->max_mtu = JUMBO_LEN;
6957         else
6958                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
6959         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
6960          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
6961          */
6962         if ((priv->plat->maxmtu < ndev->max_mtu) &&
6963             (priv->plat->maxmtu >= ndev->min_mtu))
6964                 ndev->max_mtu = priv->plat->maxmtu;
6965         else if (priv->plat->maxmtu < ndev->min_mtu)
6966                 dev_warn(priv->device,
6967                          "%s: warning: maxmtu having invalid value (%d)\n",
6968                          __func__, priv->plat->maxmtu);
6969
6970         if (flow_ctrl)
6971                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
6972
6973         /* Setup channels NAPI */
6974         stmmac_napi_add(ndev);
6975
6976         mutex_init(&priv->lock);
6977
6978         /* If a specific clk_csr value is passed from the platform
6979          * this means that the CSR Clock Range selection cannot be
6980          * changed at run-time and it is fixed. Viceversa the driver'll try to
6981          * set the MDC clock dynamically according to the csr actual
6982          * clock input.
6983          */
6984         if (priv->plat->clk_csr >= 0)
6985                 priv->clk_csr = priv->plat->clk_csr;
6986         else
6987                 stmmac_clk_csr_set(priv);
6988
6989         stmmac_check_pcs_mode(priv);
6990
6991         pm_runtime_get_noresume(device);
6992         pm_runtime_set_active(device);
6993         pm_runtime_enable(device);
6994
6995         if (priv->hw->pcs != STMMAC_PCS_TBI &&
6996             priv->hw->pcs != STMMAC_PCS_RTBI) {
6997                 /* MDIO bus Registration */
6998                 ret = stmmac_mdio_register(ndev);
6999                 if (ret < 0) {
7000                         dev_err(priv->device,
7001                                 "%s: MDIO bus (id: %d) registration failed",
7002                                 __func__, priv->plat->bus_id);
7003                         goto error_mdio_register;
7004                 }
7005         }
7006
7007         ret = stmmac_phy_setup(priv);
7008         if (ret) {
7009                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7010                 goto error_phy_setup;
7011         }
7012
7013         ret = register_netdev(ndev);
7014         if (ret) {
7015                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7016                         __func__, ret);
7017                 goto error_netdev_register;
7018         }
7019
7020         if (priv->plat->serdes_powerup) {
7021                 ret = priv->plat->serdes_powerup(ndev,
7022                                                  priv->plat->bsp_priv);
7023
7024                 if (ret < 0)
7025                         goto error_serdes_powerup;
7026         }
7027
7028 #ifdef CONFIG_DEBUG_FS
7029         stmmac_init_fs(ndev);
7030 #endif
7031
7032         /* Let pm_runtime_put() disable the clocks.
7033          * If CONFIG_PM is not enabled, the clocks will stay powered.
7034          */
7035         pm_runtime_put(device);
7036
7037         return ret;
7038
7039 error_serdes_powerup:
7040         unregister_netdev(ndev);
7041 error_netdev_register:
7042         phylink_destroy(priv->phylink);
7043 error_phy_setup:
7044         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7045             priv->hw->pcs != STMMAC_PCS_RTBI)
7046                 stmmac_mdio_unregister(ndev);
7047 error_mdio_register:
7048         stmmac_napi_del(ndev);
7049 error_hw_init:
7050         destroy_workqueue(priv->wq);
7051         stmmac_bus_clks_config(priv, false);
7052         bitmap_free(priv->af_xdp_zc_qps);
7053
7054         return ret;
7055 }
7056 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7057
7058 /**
7059  * stmmac_dvr_remove
7060  * @dev: device pointer
7061  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7062  * changes the link status, releases the DMA descriptor rings.
7063  */
7064 int stmmac_dvr_remove(struct device *dev)
7065 {
7066         struct net_device *ndev = dev_get_drvdata(dev);
7067         struct stmmac_priv *priv = netdev_priv(ndev);
7068
7069         netdev_info(priv->dev, "%s: removing driver", __func__);
7070
7071         stmmac_stop_all_dma(priv);
7072         stmmac_mac_set(priv, priv->ioaddr, false);
7073         netif_carrier_off(ndev);
7074         unregister_netdev(ndev);
7075
7076         /* Serdes power down needs to happen after VLAN filter
7077          * is deleted that is triggered by unregister_netdev().
7078          */
7079         if (priv->plat->serdes_powerdown)
7080                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7081
7082 #ifdef CONFIG_DEBUG_FS
7083         stmmac_exit_fs(ndev);
7084 #endif
7085         phylink_destroy(priv->phylink);
7086         if (priv->plat->stmmac_rst)
7087                 reset_control_assert(priv->plat->stmmac_rst);
7088         pm_runtime_put(dev);
7089         pm_runtime_disable(dev);
7090         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7091             priv->hw->pcs != STMMAC_PCS_RTBI)
7092                 stmmac_mdio_unregister(ndev);
7093         destroy_workqueue(priv->wq);
7094         mutex_destroy(&priv->lock);
7095         bitmap_free(priv->af_xdp_zc_qps);
7096
7097         return 0;
7098 }
7099 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7100
7101 /**
7102  * stmmac_suspend - suspend callback
7103  * @dev: device pointer
7104  * Description: this is the function to suspend the device and it is called
7105  * by the platform driver to stop the network queue, release the resources,
7106  * program the PMT register (for WoL), clean and release driver resources.
7107  */
7108 int stmmac_suspend(struct device *dev)
7109 {
7110         struct net_device *ndev = dev_get_drvdata(dev);
7111         struct stmmac_priv *priv = netdev_priv(ndev);
7112         u32 chan;
7113         int ret;
7114
7115         if (!ndev || !netif_running(ndev))
7116                 return 0;
7117
7118         phylink_mac_change(priv->phylink, false);
7119
7120         mutex_lock(&priv->lock);
7121
7122         netif_device_detach(ndev);
7123
7124         stmmac_disable_all_queues(priv);
7125
7126         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7127                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7128
7129         if (priv->eee_enabled) {
7130                 priv->tx_path_in_lpi_mode = false;
7131                 del_timer_sync(&priv->eee_ctrl_timer);
7132         }
7133
7134         /* Stop TX/RX DMA */
7135         stmmac_stop_all_dma(priv);
7136
7137         if (priv->plat->serdes_powerdown)
7138                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7139
7140         /* Enable Power down mode by programming the PMT regs */
7141         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7142                 stmmac_pmt(priv, priv->hw, priv->wolopts);
7143                 priv->irq_wake = 1;
7144         } else {
7145                 mutex_unlock(&priv->lock);
7146                 rtnl_lock();
7147                 if (device_may_wakeup(priv->device))
7148                         phylink_speed_down(priv->phylink, false);
7149                 phylink_stop(priv->phylink);
7150                 rtnl_unlock();
7151                 mutex_lock(&priv->lock);
7152
7153                 stmmac_mac_set(priv, priv->ioaddr, false);
7154                 pinctrl_pm_select_sleep_state(priv->device);
7155                 /* Disable clock in case of PWM is off */
7156                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
7157                 ret = pm_runtime_force_suspend(dev);
7158                 if (ret) {
7159                         mutex_unlock(&priv->lock);
7160                         return ret;
7161                 }
7162         }
7163
7164         mutex_unlock(&priv->lock);
7165
7166         if (priv->dma_cap.fpesel) {
7167                 /* Disable FPE */
7168                 stmmac_fpe_configure(priv, priv->ioaddr,
7169                                      priv->plat->tx_queues_to_use,
7170                                      priv->plat->rx_queues_to_use, false);
7171
7172                 stmmac_fpe_handshake(priv, false);
7173         }
7174
7175         priv->speed = SPEED_UNKNOWN;
7176         return 0;
7177 }
7178 EXPORT_SYMBOL_GPL(stmmac_suspend);
7179
7180 /**
7181  * stmmac_reset_queues_param - reset queue parameters
7182  * @priv: device pointer
7183  */
7184 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7185 {
7186         u32 rx_cnt = priv->plat->rx_queues_to_use;
7187         u32 tx_cnt = priv->plat->tx_queues_to_use;
7188         u32 queue;
7189
7190         for (queue = 0; queue < rx_cnt; queue++) {
7191                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7192
7193                 rx_q->cur_rx = 0;
7194                 rx_q->dirty_rx = 0;
7195         }
7196
7197         for (queue = 0; queue < tx_cnt; queue++) {
7198                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7199
7200                 tx_q->cur_tx = 0;
7201                 tx_q->dirty_tx = 0;
7202                 tx_q->mss = 0;
7203
7204                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7205         }
7206 }
7207
7208 /**
7209  * stmmac_resume - resume callback
7210  * @dev: device pointer
7211  * Description: when resume this function is invoked to setup the DMA and CORE
7212  * in a usable state.
7213  */
7214 int stmmac_resume(struct device *dev)
7215 {
7216         struct net_device *ndev = dev_get_drvdata(dev);
7217         struct stmmac_priv *priv = netdev_priv(ndev);
7218         int ret;
7219
7220         if (!netif_running(ndev))
7221                 return 0;
7222
7223         /* Power Down bit, into the PM register, is cleared
7224          * automatically as soon as a magic packet or a Wake-up frame
7225          * is received. Anyway, it's better to manually clear
7226          * this bit because it can generate problems while resuming
7227          * from another devices (e.g. serial console).
7228          */
7229         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7230                 mutex_lock(&priv->lock);
7231                 stmmac_pmt(priv, priv->hw, 0);
7232                 mutex_unlock(&priv->lock);
7233                 priv->irq_wake = 0;
7234         } else {
7235                 pinctrl_pm_select_default_state(priv->device);
7236                 /* enable the clk previously disabled */
7237                 ret = pm_runtime_force_resume(dev);
7238                 if (ret)
7239                         return ret;
7240                 if (priv->plat->clk_ptp_ref)
7241                         clk_prepare_enable(priv->plat->clk_ptp_ref);
7242                 /* reset the phy so that it's ready */
7243                 if (priv->mii)
7244                         stmmac_mdio_reset(priv->mii);
7245         }
7246
7247         if (priv->plat->serdes_powerup) {
7248                 ret = priv->plat->serdes_powerup(ndev,
7249                                                  priv->plat->bsp_priv);
7250
7251                 if (ret < 0)
7252                         return ret;
7253         }
7254
7255         if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
7256                 rtnl_lock();
7257                 phylink_start(priv->phylink);
7258                 /* We may have called phylink_speed_down before */
7259                 phylink_speed_up(priv->phylink);
7260                 rtnl_unlock();
7261         }
7262
7263         rtnl_lock();
7264         mutex_lock(&priv->lock);
7265
7266         stmmac_reset_queues_param(priv);
7267
7268         stmmac_free_tx_skbufs(priv);
7269         stmmac_clear_descriptors(priv);
7270
7271         stmmac_hw_setup(ndev, false);
7272         stmmac_init_coalesce(priv);
7273         stmmac_set_rx_mode(ndev);
7274
7275         stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7276
7277         stmmac_enable_all_queues(priv);
7278
7279         mutex_unlock(&priv->lock);
7280         rtnl_unlock();
7281
7282         phylink_mac_change(priv->phylink, true);
7283
7284         netif_device_attach(ndev);
7285
7286         return 0;
7287 }
7288 EXPORT_SYMBOL_GPL(stmmac_resume);
7289
7290 #ifndef MODULE
7291 static int __init stmmac_cmdline_opt(char *str)
7292 {
7293         char *opt;
7294
7295         if (!str || !*str)
7296                 return -EINVAL;
7297         while ((opt = strsep(&str, ",")) != NULL) {
7298                 if (!strncmp(opt, "debug:", 6)) {
7299                         if (kstrtoint(opt + 6, 0, &debug))
7300                                 goto err;
7301                 } else if (!strncmp(opt, "phyaddr:", 8)) {
7302                         if (kstrtoint(opt + 8, 0, &phyaddr))
7303                                 goto err;
7304                 } else if (!strncmp(opt, "buf_sz:", 7)) {
7305                         if (kstrtoint(opt + 7, 0, &buf_sz))
7306                                 goto err;
7307                 } else if (!strncmp(opt, "tc:", 3)) {
7308                         if (kstrtoint(opt + 3, 0, &tc))
7309                                 goto err;
7310                 } else if (!strncmp(opt, "watchdog:", 9)) {
7311                         if (kstrtoint(opt + 9, 0, &watchdog))
7312                                 goto err;
7313                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7314                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
7315                                 goto err;
7316                 } else if (!strncmp(opt, "pause:", 6)) {
7317                         if (kstrtoint(opt + 6, 0, &pause))
7318                                 goto err;
7319                 } else if (!strncmp(opt, "eee_timer:", 10)) {
7320                         if (kstrtoint(opt + 10, 0, &eee_timer))
7321                                 goto err;
7322                 } else if (!strncmp(opt, "chain_mode:", 11)) {
7323                         if (kstrtoint(opt + 11, 0, &chain_mode))
7324                                 goto err;
7325                 }
7326         }
7327         return 0;
7328
7329 err:
7330         pr_err("%s: ERROR broken module parameter conversion", __func__);
7331         return -EINVAL;
7332 }
7333
7334 __setup("stmmaceth=", stmmac_cmdline_opt);
7335 #endif /* MODULE */
7336
7337 static int __init stmmac_init(void)
7338 {
7339 #ifdef CONFIG_DEBUG_FS
7340         /* Create debugfs main directory if it doesn't exist yet */
7341         if (!stmmac_fs_dir)
7342                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7343         register_netdevice_notifier(&stmmac_notifier);
7344 #endif
7345
7346         return 0;
7347 }
7348
7349 static void __exit stmmac_exit(void)
7350 {
7351 #ifdef CONFIG_DEBUG_FS
7352         unregister_netdevice_notifier(&stmmac_notifier);
7353         debugfs_remove_recursive(stmmac_fs_dir);
7354 #endif
7355 }
7356
7357 module_init(stmmac_init)
7358 module_exit(stmmac_exit)
7359
7360 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7361 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7362 MODULE_LICENSE("GPL");