Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52
53 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
54 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
55
56 /* Module parameters */
57 #define TX_TIMEO        5000
58 static int watchdog = TX_TIMEO;
59 module_param(watchdog, int, 0644);
60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
61
62 static int debug = -1;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
65
66 static int phyaddr = -1;
67 module_param(phyaddr, int, 0444);
68 MODULE_PARM_DESC(phyaddr, "Physical device address");
69
70 #define STMMAC_TX_THRESH(x)     ((x)->dma_tx_size / 4)
71 #define STMMAC_RX_THRESH(x)     ((x)->dma_rx_size / 4)
72
73 /* Limit to make sure XDP TX and slow path can coexist */
74 #define STMMAC_XSK_TX_BUDGET_MAX        256
75 #define STMMAC_TX_XSK_AVAIL             16
76 #define STMMAC_RX_FILL_BATCH            16
77
78 #define STMMAC_XDP_PASS         0
79 #define STMMAC_XDP_CONSUMED     BIT(0)
80 #define STMMAC_XDP_TX           BIT(1)
81 #define STMMAC_XDP_REDIRECT     BIT(2)
82
83 static int flow_ctrl = FLOW_AUTO;
84 module_param(flow_ctrl, int, 0644);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, 0644);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, 0644);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95
96 #define DEFAULT_BUFSIZE 1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, 0644);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100
101 #define STMMAC_RX_COPYBREAK     256
102
103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
104                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
105                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
106
107 #define STMMAC_DEFAULT_LPI_TIMER        1000
108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
109 module_param(eee_timer, int, 0644);
110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
112
113 /* By default the driver will use the ring mode to manage tx and rx descriptors,
114  * but allow user to force to use the chain instead of the ring
115  */
116 static unsigned int chain_mode;
117 module_param(chain_mode, int, 0444);
118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
119
120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
121 /* For MSI interrupts handling */
122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
128
129 #ifdef CONFIG_DEBUG_FS
130 static const struct net_device_ops stmmac_netdev_ops;
131 static void stmmac_init_fs(struct net_device *dev);
132 static void stmmac_exit_fs(struct net_device *dev);
133 #endif
134
135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
136
137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
138 {
139         int ret = 0;
140
141         if (enabled) {
142                 ret = clk_prepare_enable(priv->plat->stmmac_clk);
143                 if (ret)
144                         return ret;
145                 ret = clk_prepare_enable(priv->plat->pclk);
146                 if (ret) {
147                         clk_disable_unprepare(priv->plat->stmmac_clk);
148                         return ret;
149                 }
150                 if (priv->plat->clks_config) {
151                         ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
152                         if (ret) {
153                                 clk_disable_unprepare(priv->plat->stmmac_clk);
154                                 clk_disable_unprepare(priv->plat->pclk);
155                                 return ret;
156                         }
157                 }
158         } else {
159                 clk_disable_unprepare(priv->plat->stmmac_clk);
160                 clk_disable_unprepare(priv->plat->pclk);
161                 if (priv->plat->clks_config)
162                         priv->plat->clks_config(priv->plat->bsp_priv, enabled);
163         }
164
165         return ret;
166 }
167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
168
169 /**
170  * stmmac_verify_args - verify the driver parameters.
171  * Description: it checks the driver parameters and set a default in case of
172  * errors.
173  */
174 static void stmmac_verify_args(void)
175 {
176         if (unlikely(watchdog < 0))
177                 watchdog = TX_TIMEO;
178         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
179                 buf_sz = DEFAULT_BUFSIZE;
180         if (unlikely(flow_ctrl > 1))
181                 flow_ctrl = FLOW_AUTO;
182         else if (likely(flow_ctrl < 0))
183                 flow_ctrl = FLOW_OFF;
184         if (unlikely((pause < 0) || (pause > 0xffff)))
185                 pause = PAUSE_TIME;
186         if (eee_timer < 0)
187                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
188 }
189
190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
191 {
192         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
193         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
194         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
195         u32 queue;
196
197         for (queue = 0; queue < maxq; queue++) {
198                 struct stmmac_channel *ch = &priv->channel[queue];
199
200                 if (stmmac_xdp_is_enabled(priv) &&
201                     test_bit(queue, priv->af_xdp_zc_qps)) {
202                         napi_disable(&ch->rxtx_napi);
203                         continue;
204                 }
205
206                 if (queue < rx_queues_cnt)
207                         napi_disable(&ch->rx_napi);
208                 if (queue < tx_queues_cnt)
209                         napi_disable(&ch->tx_napi);
210         }
211 }
212
213 /**
214  * stmmac_disable_all_queues - Disable all queues
215  * @priv: driver private structure
216  */
217 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
218 {
219         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
220         struct stmmac_rx_queue *rx_q;
221         u32 queue;
222
223         /* synchronize_rcu() needed for pending XDP buffers to drain */
224         for (queue = 0; queue < rx_queues_cnt; queue++) {
225                 rx_q = &priv->rx_queue[queue];
226                 if (rx_q->xsk_pool) {
227                         synchronize_rcu();
228                         break;
229                 }
230         }
231
232         __stmmac_disable_all_queues(priv);
233 }
234
235 /**
236  * stmmac_enable_all_queues - Enable all queues
237  * @priv: driver private structure
238  */
239 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
240 {
241         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
242         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
243         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
244         u32 queue;
245
246         for (queue = 0; queue < maxq; queue++) {
247                 struct stmmac_channel *ch = &priv->channel[queue];
248
249                 if (stmmac_xdp_is_enabled(priv) &&
250                     test_bit(queue, priv->af_xdp_zc_qps)) {
251                         napi_enable(&ch->rxtx_napi);
252                         continue;
253                 }
254
255                 if (queue < rx_queues_cnt)
256                         napi_enable(&ch->rx_napi);
257                 if (queue < tx_queues_cnt)
258                         napi_enable(&ch->tx_napi);
259         }
260 }
261
262 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
263 {
264         if (!test_bit(STMMAC_DOWN, &priv->state) &&
265             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
266                 queue_work(priv->wq, &priv->service_task);
267 }
268
269 static void stmmac_global_err(struct stmmac_priv *priv)
270 {
271         netif_carrier_off(priv->dev);
272         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
273         stmmac_service_event_schedule(priv);
274 }
275
276 /**
277  * stmmac_clk_csr_set - dynamically set the MDC clock
278  * @priv: driver private structure
279  * Description: this is to dynamically set the MDC clock according to the csr
280  * clock input.
281  * Note:
282  *      If a specific clk_csr value is passed from the platform
283  *      this means that the CSR Clock Range selection cannot be
284  *      changed at run-time and it is fixed (as reported in the driver
285  *      documentation). Viceversa the driver will try to set the MDC
286  *      clock dynamically according to the actual clock input.
287  */
288 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
289 {
290         u32 clk_rate;
291
292         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
293
294         /* Platform provided default clk_csr would be assumed valid
295          * for all other cases except for the below mentioned ones.
296          * For values higher than the IEEE 802.3 specified frequency
297          * we can not estimate the proper divider as it is not known
298          * the frequency of clk_csr_i. So we do not change the default
299          * divider.
300          */
301         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
302                 if (clk_rate < CSR_F_35M)
303                         priv->clk_csr = STMMAC_CSR_20_35M;
304                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
305                         priv->clk_csr = STMMAC_CSR_35_60M;
306                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
307                         priv->clk_csr = STMMAC_CSR_60_100M;
308                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
309                         priv->clk_csr = STMMAC_CSR_100_150M;
310                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
311                         priv->clk_csr = STMMAC_CSR_150_250M;
312                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
313                         priv->clk_csr = STMMAC_CSR_250_300M;
314         }
315
316         if (priv->plat->has_sun8i) {
317                 if (clk_rate > 160000000)
318                         priv->clk_csr = 0x03;
319                 else if (clk_rate > 80000000)
320                         priv->clk_csr = 0x02;
321                 else if (clk_rate > 40000000)
322                         priv->clk_csr = 0x01;
323                 else
324                         priv->clk_csr = 0;
325         }
326
327         if (priv->plat->has_xgmac) {
328                 if (clk_rate > 400000000)
329                         priv->clk_csr = 0x5;
330                 else if (clk_rate > 350000000)
331                         priv->clk_csr = 0x4;
332                 else if (clk_rate > 300000000)
333                         priv->clk_csr = 0x3;
334                 else if (clk_rate > 250000000)
335                         priv->clk_csr = 0x2;
336                 else if (clk_rate > 150000000)
337                         priv->clk_csr = 0x1;
338                 else
339                         priv->clk_csr = 0x0;
340         }
341 }
342
343 static void print_pkt(unsigned char *buf, int len)
344 {
345         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
346         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
347 }
348
349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
350 {
351         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
352         u32 avail;
353
354         if (tx_q->dirty_tx > tx_q->cur_tx)
355                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
356         else
357                 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
358
359         return avail;
360 }
361
362 /**
363  * stmmac_rx_dirty - Get RX queue dirty
364  * @priv: driver private structure
365  * @queue: RX queue index
366  */
367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
368 {
369         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
370         u32 dirty;
371
372         if (rx_q->dirty_rx <= rx_q->cur_rx)
373                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
374         else
375                 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
376
377         return dirty;
378 }
379
380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
381 {
382         int tx_lpi_timer;
383
384         /* Clear/set the SW EEE timer flag based on LPI ET enablement */
385         priv->eee_sw_timer_en = en ? 0 : 1;
386         tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
387         stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
388 }
389
390 /**
391  * stmmac_enable_eee_mode - check and enter in LPI mode
392  * @priv: driver private structure
393  * Description: this function is to verify and enter in LPI mode in case of
394  * EEE.
395  */
396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
397 {
398         u32 tx_cnt = priv->plat->tx_queues_to_use;
399         u32 queue;
400
401         /* check if all TX queues have the work finished */
402         for (queue = 0; queue < tx_cnt; queue++) {
403                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
404
405                 if (tx_q->dirty_tx != tx_q->cur_tx)
406                         return; /* still unfinished work */
407         }
408
409         /* Check and enter in LPI mode */
410         if (!priv->tx_path_in_lpi_mode)
411                 stmmac_set_eee_mode(priv, priv->hw,
412                                 priv->plat->en_tx_lpi_clockgating);
413 }
414
415 /**
416  * stmmac_disable_eee_mode - disable and exit from LPI mode
417  * @priv: driver private structure
418  * Description: this function is to exit and disable EEE in case of
419  * LPI state is true. This is called by the xmit.
420  */
421 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
422 {
423         if (!priv->eee_sw_timer_en) {
424                 stmmac_lpi_entry_timer_config(priv, 0);
425                 return;
426         }
427
428         stmmac_reset_eee_mode(priv, priv->hw);
429         del_timer_sync(&priv->eee_ctrl_timer);
430         priv->tx_path_in_lpi_mode = false;
431 }
432
433 /**
434  * stmmac_eee_ctrl_timer - EEE TX SW timer.
435  * @t:  timer_list struct containing private info
436  * Description:
437  *  if there is no data transfer and if we are not in LPI state,
438  *  then MAC Transmitter can be moved to LPI state.
439  */
440 static void stmmac_eee_ctrl_timer(struct timer_list *t)
441 {
442         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
443
444         stmmac_enable_eee_mode(priv);
445         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
446 }
447
448 /**
449  * stmmac_eee_init - init EEE
450  * @priv: driver private structure
451  * Description:
452  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
453  *  can also manage EEE, this function enable the LPI state and start related
454  *  timer.
455  */
456 bool stmmac_eee_init(struct stmmac_priv *priv)
457 {
458         int eee_tw_timer = priv->eee_tw_timer;
459
460         /* Using PCS we cannot dial with the phy registers at this stage
461          * so we do not support extra feature like EEE.
462          */
463         if (priv->hw->pcs == STMMAC_PCS_TBI ||
464             priv->hw->pcs == STMMAC_PCS_RTBI)
465                 return false;
466
467         /* Check if MAC core supports the EEE feature. */
468         if (!priv->dma_cap.eee)
469                 return false;
470
471         mutex_lock(&priv->lock);
472
473         /* Check if it needs to be deactivated */
474         if (!priv->eee_active) {
475                 if (priv->eee_enabled) {
476                         netdev_dbg(priv->dev, "disable EEE\n");
477                         stmmac_lpi_entry_timer_config(priv, 0);
478                         del_timer_sync(&priv->eee_ctrl_timer);
479                         stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
480                 }
481                 mutex_unlock(&priv->lock);
482                 return false;
483         }
484
485         if (priv->eee_active && !priv->eee_enabled) {
486                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
487                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
488                                      eee_tw_timer);
489         }
490
491         if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
492                 del_timer_sync(&priv->eee_ctrl_timer);
493                 priv->tx_path_in_lpi_mode = false;
494                 stmmac_lpi_entry_timer_config(priv, 1);
495         } else {
496                 stmmac_lpi_entry_timer_config(priv, 0);
497                 mod_timer(&priv->eee_ctrl_timer,
498                           STMMAC_LPI_T(priv->tx_lpi_timer));
499         }
500
501         mutex_unlock(&priv->lock);
502         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
503         return true;
504 }
505
506 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
507  * @priv: driver private structure
508  * @p : descriptor pointer
509  * @skb : the socket buffer
510  * Description :
511  * This function will read timestamp from the descriptor & pass it to stack.
512  * and also perform some sanity checks.
513  */
514 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
515                                    struct dma_desc *p, struct sk_buff *skb)
516 {
517         struct skb_shared_hwtstamps shhwtstamp;
518         bool found = false;
519         s64 adjust = 0;
520         u64 ns = 0;
521
522         if (!priv->hwts_tx_en)
523                 return;
524
525         /* exit if skb doesn't support hw tstamp */
526         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
527                 return;
528
529         /* check tx tstamp status */
530         if (stmmac_get_tx_timestamp_status(priv, p)) {
531                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
532                 found = true;
533         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
534                 found = true;
535         }
536
537         if (found) {
538                 /* Correct the clk domain crossing(CDC) error */
539                 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
540                         adjust += -(2 * (NSEC_PER_SEC /
541                                          priv->plat->clk_ptp_rate));
542                         ns += adjust;
543                 }
544
545                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
546                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
547
548                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
549                 /* pass tstamp to stack */
550                 skb_tstamp_tx(skb, &shhwtstamp);
551         }
552 }
553
554 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
555  * @priv: driver private structure
556  * @p : descriptor pointer
557  * @np : next descriptor pointer
558  * @skb : the socket buffer
559  * Description :
560  * This function will read received packet's timestamp from the descriptor
561  * and pass it to stack. It also perform some sanity checks.
562  */
563 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
564                                    struct dma_desc *np, struct sk_buff *skb)
565 {
566         struct skb_shared_hwtstamps *shhwtstamp = NULL;
567         struct dma_desc *desc = p;
568         u64 adjust = 0;
569         u64 ns = 0;
570
571         if (!priv->hwts_rx_en)
572                 return;
573         /* For GMAC4, the valid timestamp is from CTX next desc. */
574         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
575                 desc = np;
576
577         /* Check if timestamp is available */
578         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
579                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
580
581                 /* Correct the clk domain crossing(CDC) error */
582                 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
583                         adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate);
584                         ns -= adjust;
585                 }
586
587                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
588                 shhwtstamp = skb_hwtstamps(skb);
589                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
590                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
591         } else  {
592                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
593         }
594 }
595
596 /**
597  *  stmmac_hwtstamp_set - control hardware timestamping.
598  *  @dev: device pointer.
599  *  @ifr: An IOCTL specific structure, that can contain a pointer to
600  *  a proprietary structure used to pass information to the driver.
601  *  Description:
602  *  This function configures the MAC to enable/disable both outgoing(TX)
603  *  and incoming(RX) packets time stamping based on user input.
604  *  Return Value:
605  *  0 on success and an appropriate -ve integer on failure.
606  */
607 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
608 {
609         struct stmmac_priv *priv = netdev_priv(dev);
610         struct hwtstamp_config config;
611         struct timespec64 now;
612         u64 temp = 0;
613         u32 ptp_v2 = 0;
614         u32 tstamp_all = 0;
615         u32 ptp_over_ipv4_udp = 0;
616         u32 ptp_over_ipv6_udp = 0;
617         u32 ptp_over_ethernet = 0;
618         u32 snap_type_sel = 0;
619         u32 ts_master_en = 0;
620         u32 ts_event_en = 0;
621         u32 sec_inc = 0;
622         u32 value = 0;
623         bool xmac;
624
625         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
626
627         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628                 netdev_alert(priv->dev, "No support for HW time stamping\n");
629                 priv->hwts_tx_en = 0;
630                 priv->hwts_rx_en = 0;
631
632                 return -EOPNOTSUPP;
633         }
634
635         if (copy_from_user(&config, ifr->ifr_data,
636                            sizeof(config)))
637                 return -EFAULT;
638
639         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640                    __func__, config.flags, config.tx_type, config.rx_filter);
641
642         /* reserved for future extensions */
643         if (config.flags)
644                 return -EINVAL;
645
646         if (config.tx_type != HWTSTAMP_TX_OFF &&
647             config.tx_type != HWTSTAMP_TX_ON)
648                 return -ERANGE;
649
650         if (priv->adv_ts) {
651                 switch (config.rx_filter) {
652                 case HWTSTAMP_FILTER_NONE:
653                         /* time stamp no incoming packet at all */
654                         config.rx_filter = HWTSTAMP_FILTER_NONE;
655                         break;
656
657                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658                         /* PTP v1, UDP, any kind of event packet */
659                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660                         /* 'xmac' hardware can support Sync, Pdelay_Req and
661                          * Pdelay_resp by setting bit14 and bits17/16 to 01
662                          * This leaves Delay_Req timestamps out.
663                          * Enable all events *and* general purpose message
664                          * timestamping
665                          */
666                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669                         break;
670
671                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672                         /* PTP v1, UDP, Sync packet */
673                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674                         /* take time stamp for SYNC messages only */
675                         ts_event_en = PTP_TCR_TSEVNTENA;
676
677                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679                         break;
680
681                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682                         /* PTP v1, UDP, Delay_req packet */
683                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684                         /* take time stamp for Delay_Req messages only */
685                         ts_master_en = PTP_TCR_TSMSTRENA;
686                         ts_event_en = PTP_TCR_TSEVNTENA;
687
688                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690                         break;
691
692                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693                         /* PTP v2, UDP, any kind of event packet */
694                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695                         ptp_v2 = PTP_TCR_TSVER2ENA;
696                         /* take time stamp for all event messages */
697                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698
699                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701                         break;
702
703                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704                         /* PTP v2, UDP, Sync packet */
705                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706                         ptp_v2 = PTP_TCR_TSVER2ENA;
707                         /* take time stamp for SYNC messages only */
708                         ts_event_en = PTP_TCR_TSEVNTENA;
709
710                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712                         break;
713
714                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715                         /* PTP v2, UDP, Delay_req packet */
716                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717                         ptp_v2 = PTP_TCR_TSVER2ENA;
718                         /* take time stamp for Delay_Req messages only */
719                         ts_master_en = PTP_TCR_TSMSTRENA;
720                         ts_event_en = PTP_TCR_TSEVNTENA;
721
722                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724                         break;
725
726                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
727                         /* PTP v2/802.AS1 any layer, any kind of event packet */
728                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729                         ptp_v2 = PTP_TCR_TSVER2ENA;
730                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731                         if (priv->synopsys_id != DWMAC_CORE_5_10)
732                                 ts_event_en = PTP_TCR_TSEVNTENA;
733                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735                         ptp_over_ethernet = PTP_TCR_TSIPENA;
736                         break;
737
738                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
739                         /* PTP v2/802.AS1, any layer, Sync packet */
740                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741                         ptp_v2 = PTP_TCR_TSVER2ENA;
742                         /* take time stamp for SYNC messages only */
743                         ts_event_en = PTP_TCR_TSEVNTENA;
744
745                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747                         ptp_over_ethernet = PTP_TCR_TSIPENA;
748                         break;
749
750                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751                         /* PTP v2/802.AS1, any layer, Delay_req packet */
752                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753                         ptp_v2 = PTP_TCR_TSVER2ENA;
754                         /* take time stamp for Delay_Req messages only */
755                         ts_master_en = PTP_TCR_TSMSTRENA;
756                         ts_event_en = PTP_TCR_TSEVNTENA;
757
758                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760                         ptp_over_ethernet = PTP_TCR_TSIPENA;
761                         break;
762
763                 case HWTSTAMP_FILTER_NTP_ALL:
764                 case HWTSTAMP_FILTER_ALL:
765                         /* time stamp any incoming packet */
766                         config.rx_filter = HWTSTAMP_FILTER_ALL;
767                         tstamp_all = PTP_TCR_TSENALL;
768                         break;
769
770                 default:
771                         return -ERANGE;
772                 }
773         } else {
774                 switch (config.rx_filter) {
775                 case HWTSTAMP_FILTER_NONE:
776                         config.rx_filter = HWTSTAMP_FILTER_NONE;
777                         break;
778                 default:
779                         /* PTP v1, UDP, any kind of event packet */
780                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781                         break;
782                 }
783         }
784         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786
787         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
788                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
789         else {
790                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
791                          tstamp_all | ptp_v2 | ptp_over_ethernet |
792                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
793                          ts_master_en | snap_type_sel);
794                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
795
796                 /* program Sub Second Increment reg */
797                 stmmac_config_sub_second_increment(priv,
798                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
799                                 xmac, &sec_inc);
800                 temp = div_u64(1000000000ULL, sec_inc);
801
802                 /* Store sub second increment and flags for later use */
803                 priv->sub_second_inc = sec_inc;
804                 priv->systime_flags = value;
805
806                 /* calculate default added value:
807                  * formula is :
808                  * addend = (2^32)/freq_div_ratio;
809                  * where, freq_div_ratio = 1e9ns/sec_inc
810                  */
811                 temp = (u64)(temp << 32);
812                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
813                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
814
815                 /* initialize system time */
816                 ktime_get_real_ts64(&now);
817
818                 /* lower 32 bits of tv_sec are safe until y2106 */
819                 stmmac_init_systime(priv, priv->ptpaddr,
820                                 (u32)now.tv_sec, now.tv_nsec);
821         }
822
823         memcpy(&priv->tstamp_config, &config, sizeof(config));
824
825         return copy_to_user(ifr->ifr_data, &config,
826                             sizeof(config)) ? -EFAULT : 0;
827 }
828
829 /**
830  *  stmmac_hwtstamp_get - read hardware timestamping.
831  *  @dev: device pointer.
832  *  @ifr: An IOCTL specific structure, that can contain a pointer to
833  *  a proprietary structure used to pass information to the driver.
834  *  Description:
835  *  This function obtain the current hardware timestamping settings
836  *  as requested.
837  */
838 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
839 {
840         struct stmmac_priv *priv = netdev_priv(dev);
841         struct hwtstamp_config *config = &priv->tstamp_config;
842
843         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
844                 return -EOPNOTSUPP;
845
846         return copy_to_user(ifr->ifr_data, config,
847                             sizeof(*config)) ? -EFAULT : 0;
848 }
849
850 /**
851  * stmmac_init_ptp - init PTP
852  * @priv: driver private structure
853  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
854  * This is done by looking at the HW cap. register.
855  * This function also registers the ptp driver.
856  */
857 static int stmmac_init_ptp(struct stmmac_priv *priv)
858 {
859         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
860
861         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
862                 return -EOPNOTSUPP;
863
864         priv->adv_ts = 0;
865         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
866         if (xmac && priv->dma_cap.atime_stamp)
867                 priv->adv_ts = 1;
868         /* Dwmac 3.x core with extend_desc can support adv_ts */
869         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
870                 priv->adv_ts = 1;
871
872         if (priv->dma_cap.time_stamp)
873                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
874
875         if (priv->adv_ts)
876                 netdev_info(priv->dev,
877                             "IEEE 1588-2008 Advanced Timestamp supported\n");
878
879         priv->hwts_tx_en = 0;
880         priv->hwts_rx_en = 0;
881
882         stmmac_ptp_register(priv);
883
884         return 0;
885 }
886
887 static void stmmac_release_ptp(struct stmmac_priv *priv)
888 {
889         clk_disable_unprepare(priv->plat->clk_ptp_ref);
890         stmmac_ptp_unregister(priv);
891 }
892
893 /**
894  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
895  *  @priv: driver private structure
896  *  @duplex: duplex passed to the next function
897  *  Description: It is used for configuring the flow control in all queues
898  */
899 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
900 {
901         u32 tx_cnt = priv->plat->tx_queues_to_use;
902
903         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
904                         priv->pause, tx_cnt);
905 }
906
907 static void stmmac_validate(struct phylink_config *config,
908                             unsigned long *supported,
909                             struct phylink_link_state *state)
910 {
911         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
912         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
913         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
914         int tx_cnt = priv->plat->tx_queues_to_use;
915         int max_speed = priv->plat->max_speed;
916
917         phylink_set(mac_supported, 10baseT_Half);
918         phylink_set(mac_supported, 10baseT_Full);
919         phylink_set(mac_supported, 100baseT_Half);
920         phylink_set(mac_supported, 100baseT_Full);
921         phylink_set(mac_supported, 1000baseT_Half);
922         phylink_set(mac_supported, 1000baseT_Full);
923         phylink_set(mac_supported, 1000baseKX_Full);
924
925         phylink_set(mac_supported, Autoneg);
926         phylink_set(mac_supported, Pause);
927         phylink_set(mac_supported, Asym_Pause);
928         phylink_set_port_modes(mac_supported);
929
930         /* Cut down 1G if asked to */
931         if ((max_speed > 0) && (max_speed < 1000)) {
932                 phylink_set(mask, 1000baseT_Full);
933                 phylink_set(mask, 1000baseX_Full);
934         } else if (priv->plat->has_gmac4) {
935                 if (!max_speed || max_speed >= 2500) {
936                         phylink_set(mac_supported, 2500baseT_Full);
937                         phylink_set(mac_supported, 2500baseX_Full);
938                 }
939         } else if (priv->plat->has_xgmac) {
940                 if (!max_speed || (max_speed >= 2500)) {
941                         phylink_set(mac_supported, 2500baseT_Full);
942                         phylink_set(mac_supported, 2500baseX_Full);
943                 }
944                 if (!max_speed || (max_speed >= 5000)) {
945                         phylink_set(mac_supported, 5000baseT_Full);
946                 }
947                 if (!max_speed || (max_speed >= 10000)) {
948                         phylink_set(mac_supported, 10000baseSR_Full);
949                         phylink_set(mac_supported, 10000baseLR_Full);
950                         phylink_set(mac_supported, 10000baseER_Full);
951                         phylink_set(mac_supported, 10000baseLRM_Full);
952                         phylink_set(mac_supported, 10000baseT_Full);
953                         phylink_set(mac_supported, 10000baseKX4_Full);
954                         phylink_set(mac_supported, 10000baseKR_Full);
955                 }
956                 if (!max_speed || (max_speed >= 25000)) {
957                         phylink_set(mac_supported, 25000baseCR_Full);
958                         phylink_set(mac_supported, 25000baseKR_Full);
959                         phylink_set(mac_supported, 25000baseSR_Full);
960                 }
961                 if (!max_speed || (max_speed >= 40000)) {
962                         phylink_set(mac_supported, 40000baseKR4_Full);
963                         phylink_set(mac_supported, 40000baseCR4_Full);
964                         phylink_set(mac_supported, 40000baseSR4_Full);
965                         phylink_set(mac_supported, 40000baseLR4_Full);
966                 }
967                 if (!max_speed || (max_speed >= 50000)) {
968                         phylink_set(mac_supported, 50000baseCR2_Full);
969                         phylink_set(mac_supported, 50000baseKR2_Full);
970                         phylink_set(mac_supported, 50000baseSR2_Full);
971                         phylink_set(mac_supported, 50000baseKR_Full);
972                         phylink_set(mac_supported, 50000baseSR_Full);
973                         phylink_set(mac_supported, 50000baseCR_Full);
974                         phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
975                         phylink_set(mac_supported, 50000baseDR_Full);
976                 }
977                 if (!max_speed || (max_speed >= 100000)) {
978                         phylink_set(mac_supported, 100000baseKR4_Full);
979                         phylink_set(mac_supported, 100000baseSR4_Full);
980                         phylink_set(mac_supported, 100000baseCR4_Full);
981                         phylink_set(mac_supported, 100000baseLR4_ER4_Full);
982                         phylink_set(mac_supported, 100000baseKR2_Full);
983                         phylink_set(mac_supported, 100000baseSR2_Full);
984                         phylink_set(mac_supported, 100000baseCR2_Full);
985                         phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
986                         phylink_set(mac_supported, 100000baseDR2_Full);
987                 }
988         }
989
990         /* Half-Duplex can only work with single queue */
991         if (tx_cnt > 1) {
992                 phylink_set(mask, 10baseT_Half);
993                 phylink_set(mask, 100baseT_Half);
994                 phylink_set(mask, 1000baseT_Half);
995         }
996
997         linkmode_and(supported, supported, mac_supported);
998         linkmode_andnot(supported, supported, mask);
999
1000         linkmode_and(state->advertising, state->advertising, mac_supported);
1001         linkmode_andnot(state->advertising, state->advertising, mask);
1002
1003         /* If PCS is supported, check which modes it supports. */
1004         if (priv->hw->xpcs)
1005                 xpcs_validate(priv->hw->xpcs, supported, state);
1006 }
1007
1008 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
1009                               const struct phylink_link_state *state)
1010 {
1011         /* Nothing to do, xpcs_config() handles everything */
1012 }
1013
1014 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
1015 {
1016         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
1017         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
1018         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
1019         bool *hs_enable = &fpe_cfg->hs_enable;
1020
1021         if (is_up && *hs_enable) {
1022                 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
1023         } else {
1024                 *lo_state = FPE_STATE_OFF;
1025                 *lp_state = FPE_STATE_OFF;
1026         }
1027 }
1028
1029 static void stmmac_mac_link_down(struct phylink_config *config,
1030                                  unsigned int mode, phy_interface_t interface)
1031 {
1032         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1033
1034         stmmac_mac_set(priv, priv->ioaddr, false);
1035         priv->eee_active = false;
1036         priv->tx_lpi_enabled = false;
1037         stmmac_eee_init(priv);
1038         stmmac_set_eee_pls(priv, priv->hw, false);
1039
1040         if (priv->dma_cap.fpesel)
1041                 stmmac_fpe_link_state_handle(priv, false);
1042 }
1043
1044 static void stmmac_mac_link_up(struct phylink_config *config,
1045                                struct phy_device *phy,
1046                                unsigned int mode, phy_interface_t interface,
1047                                int speed, int duplex,
1048                                bool tx_pause, bool rx_pause)
1049 {
1050         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1051         u32 ctrl;
1052
1053         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1054         ctrl &= ~priv->hw->link.speed_mask;
1055
1056         if (interface == PHY_INTERFACE_MODE_USXGMII) {
1057                 switch (speed) {
1058                 case SPEED_10000:
1059                         ctrl |= priv->hw->link.xgmii.speed10000;
1060                         break;
1061                 case SPEED_5000:
1062                         ctrl |= priv->hw->link.xgmii.speed5000;
1063                         break;
1064                 case SPEED_2500:
1065                         ctrl |= priv->hw->link.xgmii.speed2500;
1066                         break;
1067                 default:
1068                         return;
1069                 }
1070         } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1071                 switch (speed) {
1072                 case SPEED_100000:
1073                         ctrl |= priv->hw->link.xlgmii.speed100000;
1074                         break;
1075                 case SPEED_50000:
1076                         ctrl |= priv->hw->link.xlgmii.speed50000;
1077                         break;
1078                 case SPEED_40000:
1079                         ctrl |= priv->hw->link.xlgmii.speed40000;
1080                         break;
1081                 case SPEED_25000:
1082                         ctrl |= priv->hw->link.xlgmii.speed25000;
1083                         break;
1084                 case SPEED_10000:
1085                         ctrl |= priv->hw->link.xgmii.speed10000;
1086                         break;
1087                 case SPEED_2500:
1088                         ctrl |= priv->hw->link.speed2500;
1089                         break;
1090                 case SPEED_1000:
1091                         ctrl |= priv->hw->link.speed1000;
1092                         break;
1093                 default:
1094                         return;
1095                 }
1096         } else {
1097                 switch (speed) {
1098                 case SPEED_2500:
1099                         ctrl |= priv->hw->link.speed2500;
1100                         break;
1101                 case SPEED_1000:
1102                         ctrl |= priv->hw->link.speed1000;
1103                         break;
1104                 case SPEED_100:
1105                         ctrl |= priv->hw->link.speed100;
1106                         break;
1107                 case SPEED_10:
1108                         ctrl |= priv->hw->link.speed10;
1109                         break;
1110                 default:
1111                         return;
1112                 }
1113         }
1114
1115         priv->speed = speed;
1116
1117         if (priv->plat->fix_mac_speed)
1118                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1119
1120         if (!duplex)
1121                 ctrl &= ~priv->hw->link.duplex;
1122         else
1123                 ctrl |= priv->hw->link.duplex;
1124
1125         /* Flow Control operation */
1126         if (tx_pause && rx_pause)
1127                 stmmac_mac_flow_ctrl(priv, duplex);
1128
1129         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1130
1131         stmmac_mac_set(priv, priv->ioaddr, true);
1132         if (phy && priv->dma_cap.eee) {
1133                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1134                 priv->eee_enabled = stmmac_eee_init(priv);
1135                 priv->tx_lpi_enabled = priv->eee_enabled;
1136                 stmmac_set_eee_pls(priv, priv->hw, true);
1137         }
1138
1139         if (priv->dma_cap.fpesel)
1140                 stmmac_fpe_link_state_handle(priv, true);
1141 }
1142
1143 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1144         .validate = stmmac_validate,
1145         .mac_config = stmmac_mac_config,
1146         .mac_link_down = stmmac_mac_link_down,
1147         .mac_link_up = stmmac_mac_link_up,
1148 };
1149
1150 /**
1151  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1152  * @priv: driver private structure
1153  * Description: this is to verify if the HW supports the PCS.
1154  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1155  * configured for the TBI, RTBI, or SGMII PHY interface.
1156  */
1157 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1158 {
1159         int interface = priv->plat->interface;
1160
1161         if (priv->dma_cap.pcs) {
1162                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1163                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1164                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1165                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1166                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1167                         priv->hw->pcs = STMMAC_PCS_RGMII;
1168                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1169                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1170                         priv->hw->pcs = STMMAC_PCS_SGMII;
1171                 }
1172         }
1173 }
1174
1175 /**
1176  * stmmac_init_phy - PHY initialization
1177  * @dev: net device structure
1178  * Description: it initializes the driver's PHY state, and attaches the PHY
1179  * to the mac driver.
1180  *  Return value:
1181  *  0 on success
1182  */
1183 static int stmmac_init_phy(struct net_device *dev)
1184 {
1185         struct stmmac_priv *priv = netdev_priv(dev);
1186         struct device_node *node;
1187         int ret;
1188
1189         node = priv->plat->phylink_node;
1190
1191         if (node)
1192                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1193
1194         /* Some DT bindings do not set-up the PHY handle. Let's try to
1195          * manually parse it
1196          */
1197         if (!node || ret) {
1198                 int addr = priv->plat->phy_addr;
1199                 struct phy_device *phydev;
1200
1201                 phydev = mdiobus_get_phy(priv->mii, addr);
1202                 if (!phydev) {
1203                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1204                         return -ENODEV;
1205                 }
1206
1207                 ret = phylink_connect_phy(priv->phylink, phydev);
1208         }
1209
1210         if (!priv->plat->pmt) {
1211                 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1212
1213                 phylink_ethtool_get_wol(priv->phylink, &wol);
1214                 device_set_wakeup_capable(priv->device, !!wol.supported);
1215         }
1216
1217         return ret;
1218 }
1219
1220 static int stmmac_phy_setup(struct stmmac_priv *priv)
1221 {
1222         struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1223         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1224         int mode = priv->plat->phy_interface;
1225         struct phylink *phylink;
1226
1227         priv->phylink_config.dev = &priv->dev->dev;
1228         priv->phylink_config.type = PHYLINK_NETDEV;
1229         priv->phylink_config.pcs_poll = true;
1230         if (priv->plat->mdio_bus_data)
1231                 priv->phylink_config.ovr_an_inband =
1232                         mdio_bus_data->xpcs_an_inband;
1233
1234         if (!fwnode)
1235                 fwnode = dev_fwnode(priv->device);
1236
1237         phylink = phylink_create(&priv->phylink_config, fwnode,
1238                                  mode, &stmmac_phylink_mac_ops);
1239         if (IS_ERR(phylink))
1240                 return PTR_ERR(phylink);
1241
1242         if (priv->hw->xpcs)
1243                 phylink_set_pcs(phylink, &priv->hw->xpcs->pcs);
1244
1245         priv->phylink = phylink;
1246         return 0;
1247 }
1248
1249 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1250 {
1251         u32 rx_cnt = priv->plat->rx_queues_to_use;
1252         unsigned int desc_size;
1253         void *head_rx;
1254         u32 queue;
1255
1256         /* Display RX rings */
1257         for (queue = 0; queue < rx_cnt; queue++) {
1258                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1259
1260                 pr_info("\tRX Queue %u rings\n", queue);
1261
1262                 if (priv->extend_desc) {
1263                         head_rx = (void *)rx_q->dma_erx;
1264                         desc_size = sizeof(struct dma_extended_desc);
1265                 } else {
1266                         head_rx = (void *)rx_q->dma_rx;
1267                         desc_size = sizeof(struct dma_desc);
1268                 }
1269
1270                 /* Display RX ring */
1271                 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1272                                     rx_q->dma_rx_phy, desc_size);
1273         }
1274 }
1275
1276 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1277 {
1278         u32 tx_cnt = priv->plat->tx_queues_to_use;
1279         unsigned int desc_size;
1280         void *head_tx;
1281         u32 queue;
1282
1283         /* Display TX rings */
1284         for (queue = 0; queue < tx_cnt; queue++) {
1285                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1286
1287                 pr_info("\tTX Queue %d rings\n", queue);
1288
1289                 if (priv->extend_desc) {
1290                         head_tx = (void *)tx_q->dma_etx;
1291                         desc_size = sizeof(struct dma_extended_desc);
1292                 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1293                         head_tx = (void *)tx_q->dma_entx;
1294                         desc_size = sizeof(struct dma_edesc);
1295                 } else {
1296                         head_tx = (void *)tx_q->dma_tx;
1297                         desc_size = sizeof(struct dma_desc);
1298                 }
1299
1300                 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1301                                     tx_q->dma_tx_phy, desc_size);
1302         }
1303 }
1304
1305 static void stmmac_display_rings(struct stmmac_priv *priv)
1306 {
1307         /* Display RX ring */
1308         stmmac_display_rx_rings(priv);
1309
1310         /* Display TX ring */
1311         stmmac_display_tx_rings(priv);
1312 }
1313
1314 static int stmmac_set_bfsize(int mtu, int bufsize)
1315 {
1316         int ret = bufsize;
1317
1318         if (mtu >= BUF_SIZE_8KiB)
1319                 ret = BUF_SIZE_16KiB;
1320         else if (mtu >= BUF_SIZE_4KiB)
1321                 ret = BUF_SIZE_8KiB;
1322         else if (mtu >= BUF_SIZE_2KiB)
1323                 ret = BUF_SIZE_4KiB;
1324         else if (mtu > DEFAULT_BUFSIZE)
1325                 ret = BUF_SIZE_2KiB;
1326         else
1327                 ret = DEFAULT_BUFSIZE;
1328
1329         return ret;
1330 }
1331
1332 /**
1333  * stmmac_clear_rx_descriptors - clear RX descriptors
1334  * @priv: driver private structure
1335  * @queue: RX queue index
1336  * Description: this function is called to clear the RX descriptors
1337  * in case of both basic and extended descriptors are used.
1338  */
1339 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1340 {
1341         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1342         int i;
1343
1344         /* Clear the RX descriptors */
1345         for (i = 0; i < priv->dma_rx_size; i++)
1346                 if (priv->extend_desc)
1347                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1348                                         priv->use_riwt, priv->mode,
1349                                         (i == priv->dma_rx_size - 1),
1350                                         priv->dma_buf_sz);
1351                 else
1352                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1353                                         priv->use_riwt, priv->mode,
1354                                         (i == priv->dma_rx_size - 1),
1355                                         priv->dma_buf_sz);
1356 }
1357
1358 /**
1359  * stmmac_clear_tx_descriptors - clear tx descriptors
1360  * @priv: driver private structure
1361  * @queue: TX queue index.
1362  * Description: this function is called to clear the TX descriptors
1363  * in case of both basic and extended descriptors are used.
1364  */
1365 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1366 {
1367         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1368         int i;
1369
1370         /* Clear the TX descriptors */
1371         for (i = 0; i < priv->dma_tx_size; i++) {
1372                 int last = (i == (priv->dma_tx_size - 1));
1373                 struct dma_desc *p;
1374
1375                 if (priv->extend_desc)
1376                         p = &tx_q->dma_etx[i].basic;
1377                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1378                         p = &tx_q->dma_entx[i].basic;
1379                 else
1380                         p = &tx_q->dma_tx[i];
1381
1382                 stmmac_init_tx_desc(priv, p, priv->mode, last);
1383         }
1384 }
1385
1386 /**
1387  * stmmac_clear_descriptors - clear descriptors
1388  * @priv: driver private structure
1389  * Description: this function is called to clear the TX and RX descriptors
1390  * in case of both basic and extended descriptors are used.
1391  */
1392 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1393 {
1394         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1395         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1396         u32 queue;
1397
1398         /* Clear the RX descriptors */
1399         for (queue = 0; queue < rx_queue_cnt; queue++)
1400                 stmmac_clear_rx_descriptors(priv, queue);
1401
1402         /* Clear the TX descriptors */
1403         for (queue = 0; queue < tx_queue_cnt; queue++)
1404                 stmmac_clear_tx_descriptors(priv, queue);
1405 }
1406
1407 /**
1408  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1409  * @priv: driver private structure
1410  * @p: descriptor pointer
1411  * @i: descriptor index
1412  * @flags: gfp flag
1413  * @queue: RX queue index
1414  * Description: this function is called to allocate a receive buffer, perform
1415  * the DMA mapping and init the descriptor.
1416  */
1417 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1418                                   int i, gfp_t flags, u32 queue)
1419 {
1420         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1421         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1422
1423         if (!buf->page) {
1424                 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1425                 if (!buf->page)
1426                         return -ENOMEM;
1427                 buf->page_offset = stmmac_rx_offset(priv);
1428         }
1429
1430         if (priv->sph && !buf->sec_page) {
1431                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1432                 if (!buf->sec_page)
1433                         return -ENOMEM;
1434
1435                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1436                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1437         } else {
1438                 buf->sec_page = NULL;
1439                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1440         }
1441
1442         buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1443
1444         stmmac_set_desc_addr(priv, p, buf->addr);
1445         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1446                 stmmac_init_desc3(priv, p);
1447
1448         return 0;
1449 }
1450
1451 /**
1452  * stmmac_free_rx_buffer - free RX dma buffers
1453  * @priv: private structure
1454  * @queue: RX queue index
1455  * @i: buffer index.
1456  */
1457 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1458 {
1459         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1460         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1461
1462         if (buf->page)
1463                 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1464         buf->page = NULL;
1465
1466         if (buf->sec_page)
1467                 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1468         buf->sec_page = NULL;
1469 }
1470
1471 /**
1472  * stmmac_free_tx_buffer - free RX dma buffers
1473  * @priv: private structure
1474  * @queue: RX queue index
1475  * @i: buffer index.
1476  */
1477 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1478 {
1479         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1480
1481         if (tx_q->tx_skbuff_dma[i].buf &&
1482             tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1483                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1484                         dma_unmap_page(priv->device,
1485                                        tx_q->tx_skbuff_dma[i].buf,
1486                                        tx_q->tx_skbuff_dma[i].len,
1487                                        DMA_TO_DEVICE);
1488                 else
1489                         dma_unmap_single(priv->device,
1490                                          tx_q->tx_skbuff_dma[i].buf,
1491                                          tx_q->tx_skbuff_dma[i].len,
1492                                          DMA_TO_DEVICE);
1493         }
1494
1495         if (tx_q->xdpf[i] &&
1496             (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1497              tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1498                 xdp_return_frame(tx_q->xdpf[i]);
1499                 tx_q->xdpf[i] = NULL;
1500         }
1501
1502         if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1503                 tx_q->xsk_frames_done++;
1504
1505         if (tx_q->tx_skbuff[i] &&
1506             tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1507                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1508                 tx_q->tx_skbuff[i] = NULL;
1509         }
1510
1511         tx_q->tx_skbuff_dma[i].buf = 0;
1512         tx_q->tx_skbuff_dma[i].map_as_page = false;
1513 }
1514
1515 /**
1516  * dma_free_rx_skbufs - free RX dma buffers
1517  * @priv: private structure
1518  * @queue: RX queue index
1519  */
1520 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1521 {
1522         int i;
1523
1524         for (i = 0; i < priv->dma_rx_size; i++)
1525                 stmmac_free_rx_buffer(priv, queue, i);
1526 }
1527
1528 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1529                                    gfp_t flags)
1530 {
1531         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1532         int i;
1533
1534         for (i = 0; i < priv->dma_rx_size; i++) {
1535                 struct dma_desc *p;
1536                 int ret;
1537
1538                 if (priv->extend_desc)
1539                         p = &((rx_q->dma_erx + i)->basic);
1540                 else
1541                         p = rx_q->dma_rx + i;
1542
1543                 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1544                                              queue);
1545                 if (ret)
1546                         return ret;
1547
1548                 rx_q->buf_alloc_num++;
1549         }
1550
1551         return 0;
1552 }
1553
1554 /**
1555  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1556  * @priv: private structure
1557  * @queue: RX queue index
1558  */
1559 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1560 {
1561         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1562         int i;
1563
1564         for (i = 0; i < priv->dma_rx_size; i++) {
1565                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1566
1567                 if (!buf->xdp)
1568                         continue;
1569
1570                 xsk_buff_free(buf->xdp);
1571                 buf->xdp = NULL;
1572         }
1573 }
1574
1575 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1576 {
1577         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1578         int i;
1579
1580         for (i = 0; i < priv->dma_rx_size; i++) {
1581                 struct stmmac_rx_buffer *buf;
1582                 dma_addr_t dma_addr;
1583                 struct dma_desc *p;
1584
1585                 if (priv->extend_desc)
1586                         p = (struct dma_desc *)(rx_q->dma_erx + i);
1587                 else
1588                         p = rx_q->dma_rx + i;
1589
1590                 buf = &rx_q->buf_pool[i];
1591
1592                 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1593                 if (!buf->xdp)
1594                         return -ENOMEM;
1595
1596                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1597                 stmmac_set_desc_addr(priv, p, dma_addr);
1598                 rx_q->buf_alloc_num++;
1599         }
1600
1601         return 0;
1602 }
1603
1604 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1605 {
1606         if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1607                 return NULL;
1608
1609         return xsk_get_pool_from_qid(priv->dev, queue);
1610 }
1611
1612 /**
1613  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1614  * @priv: driver private structure
1615  * @queue: RX queue index
1616  * @flags: gfp flag.
1617  * Description: this function initializes the DMA RX descriptors
1618  * and allocates the socket buffers. It supports the chained and ring
1619  * modes.
1620  */
1621 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1622 {
1623         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1624         int ret;
1625
1626         netif_dbg(priv, probe, priv->dev,
1627                   "(%s) dma_rx_phy=0x%08x\n", __func__,
1628                   (u32)rx_q->dma_rx_phy);
1629
1630         stmmac_clear_rx_descriptors(priv, queue);
1631
1632         xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1633
1634         rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1635
1636         if (rx_q->xsk_pool) {
1637                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1638                                                    MEM_TYPE_XSK_BUFF_POOL,
1639                                                    NULL));
1640                 netdev_info(priv->dev,
1641                             "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1642                             rx_q->queue_index);
1643                 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1644         } else {
1645                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1646                                                    MEM_TYPE_PAGE_POOL,
1647                                                    rx_q->page_pool));
1648                 netdev_info(priv->dev,
1649                             "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1650                             rx_q->queue_index);
1651         }
1652
1653         if (rx_q->xsk_pool) {
1654                 /* RX XDP ZC buffer pool may not be populated, e.g.
1655                  * xdpsock TX-only.
1656                  */
1657                 stmmac_alloc_rx_buffers_zc(priv, queue);
1658         } else {
1659                 ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1660                 if (ret < 0)
1661                         return -ENOMEM;
1662         }
1663
1664         rx_q->cur_rx = 0;
1665         rx_q->dirty_rx = 0;
1666
1667         /* Setup the chained descriptor addresses */
1668         if (priv->mode == STMMAC_CHAIN_MODE) {
1669                 if (priv->extend_desc)
1670                         stmmac_mode_init(priv, rx_q->dma_erx,
1671                                          rx_q->dma_rx_phy,
1672                                          priv->dma_rx_size, 1);
1673                 else
1674                         stmmac_mode_init(priv, rx_q->dma_rx,
1675                                          rx_q->dma_rx_phy,
1676                                          priv->dma_rx_size, 0);
1677         }
1678
1679         return 0;
1680 }
1681
1682 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1683 {
1684         struct stmmac_priv *priv = netdev_priv(dev);
1685         u32 rx_count = priv->plat->rx_queues_to_use;
1686         u32 queue;
1687         int ret;
1688
1689         /* RX INITIALIZATION */
1690         netif_dbg(priv, probe, priv->dev,
1691                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1692
1693         for (queue = 0; queue < rx_count; queue++) {
1694                 ret = __init_dma_rx_desc_rings(priv, queue, flags);
1695                 if (ret)
1696                         goto err_init_rx_buffers;
1697         }
1698
1699         return 0;
1700
1701 err_init_rx_buffers:
1702         while (queue >= 0) {
1703                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1704
1705                 if (rx_q->xsk_pool)
1706                         dma_free_rx_xskbufs(priv, queue);
1707                 else
1708                         dma_free_rx_skbufs(priv, queue);
1709
1710                 rx_q->buf_alloc_num = 0;
1711                 rx_q->xsk_pool = NULL;
1712
1713                 if (queue == 0)
1714                         break;
1715
1716                 queue--;
1717         }
1718
1719         return ret;
1720 }
1721
1722 /**
1723  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1724  * @priv: driver private structure
1725  * @queue : TX queue index
1726  * Description: this function initializes the DMA TX descriptors
1727  * and allocates the socket buffers. It supports the chained and ring
1728  * modes.
1729  */
1730 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1731 {
1732         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1733         int i;
1734
1735         netif_dbg(priv, probe, priv->dev,
1736                   "(%s) dma_tx_phy=0x%08x\n", __func__,
1737                   (u32)tx_q->dma_tx_phy);
1738
1739         /* Setup the chained descriptor addresses */
1740         if (priv->mode == STMMAC_CHAIN_MODE) {
1741                 if (priv->extend_desc)
1742                         stmmac_mode_init(priv, tx_q->dma_etx,
1743                                          tx_q->dma_tx_phy,
1744                                          priv->dma_tx_size, 1);
1745                 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1746                         stmmac_mode_init(priv, tx_q->dma_tx,
1747                                          tx_q->dma_tx_phy,
1748                                          priv->dma_tx_size, 0);
1749         }
1750
1751         tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1752
1753         for (i = 0; i < priv->dma_tx_size; i++) {
1754                 struct dma_desc *p;
1755
1756                 if (priv->extend_desc)
1757                         p = &((tx_q->dma_etx + i)->basic);
1758                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1759                         p = &((tx_q->dma_entx + i)->basic);
1760                 else
1761                         p = tx_q->dma_tx + i;
1762
1763                 stmmac_clear_desc(priv, p);
1764
1765                 tx_q->tx_skbuff_dma[i].buf = 0;
1766                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1767                 tx_q->tx_skbuff_dma[i].len = 0;
1768                 tx_q->tx_skbuff_dma[i].last_segment = false;
1769                 tx_q->tx_skbuff[i] = NULL;
1770         }
1771
1772         tx_q->dirty_tx = 0;
1773         tx_q->cur_tx = 0;
1774         tx_q->mss = 0;
1775
1776         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1777
1778         return 0;
1779 }
1780
1781 static int init_dma_tx_desc_rings(struct net_device *dev)
1782 {
1783         struct stmmac_priv *priv = netdev_priv(dev);
1784         u32 tx_queue_cnt;
1785         u32 queue;
1786
1787         tx_queue_cnt = priv->plat->tx_queues_to_use;
1788
1789         for (queue = 0; queue < tx_queue_cnt; queue++)
1790                 __init_dma_tx_desc_rings(priv, queue);
1791
1792         return 0;
1793 }
1794
1795 /**
1796  * init_dma_desc_rings - init the RX/TX descriptor rings
1797  * @dev: net device structure
1798  * @flags: gfp flag.
1799  * Description: this function initializes the DMA RX/TX descriptors
1800  * and allocates the socket buffers. It supports the chained and ring
1801  * modes.
1802  */
1803 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1804 {
1805         struct stmmac_priv *priv = netdev_priv(dev);
1806         int ret;
1807
1808         ret = init_dma_rx_desc_rings(dev, flags);
1809         if (ret)
1810                 return ret;
1811
1812         ret = init_dma_tx_desc_rings(dev);
1813
1814         stmmac_clear_descriptors(priv);
1815
1816         if (netif_msg_hw(priv))
1817                 stmmac_display_rings(priv);
1818
1819         return ret;
1820 }
1821
1822 /**
1823  * dma_free_tx_skbufs - free TX dma buffers
1824  * @priv: private structure
1825  * @queue: TX queue index
1826  */
1827 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1828 {
1829         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1830         int i;
1831
1832         tx_q->xsk_frames_done = 0;
1833
1834         for (i = 0; i < priv->dma_tx_size; i++)
1835                 stmmac_free_tx_buffer(priv, queue, i);
1836
1837         if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1838                 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1839                 tx_q->xsk_frames_done = 0;
1840                 tx_q->xsk_pool = NULL;
1841         }
1842 }
1843
1844 /**
1845  * stmmac_free_tx_skbufs - free TX skb buffers
1846  * @priv: private structure
1847  */
1848 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1849 {
1850         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1851         u32 queue;
1852
1853         for (queue = 0; queue < tx_queue_cnt; queue++)
1854                 dma_free_tx_skbufs(priv, queue);
1855 }
1856
1857 /**
1858  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1859  * @priv: private structure
1860  * @queue: RX queue index
1861  */
1862 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1863 {
1864         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1865
1866         /* Release the DMA RX socket buffers */
1867         if (rx_q->xsk_pool)
1868                 dma_free_rx_xskbufs(priv, queue);
1869         else
1870                 dma_free_rx_skbufs(priv, queue);
1871
1872         rx_q->buf_alloc_num = 0;
1873         rx_q->xsk_pool = NULL;
1874
1875         /* Free DMA regions of consistent memory previously allocated */
1876         if (!priv->extend_desc)
1877                 dma_free_coherent(priv->device, priv->dma_rx_size *
1878                                   sizeof(struct dma_desc),
1879                                   rx_q->dma_rx, rx_q->dma_rx_phy);
1880         else
1881                 dma_free_coherent(priv->device, priv->dma_rx_size *
1882                                   sizeof(struct dma_extended_desc),
1883                                   rx_q->dma_erx, rx_q->dma_rx_phy);
1884
1885         if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1886                 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1887
1888         kfree(rx_q->buf_pool);
1889         if (rx_q->page_pool)
1890                 page_pool_destroy(rx_q->page_pool);
1891 }
1892
1893 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1894 {
1895         u32 rx_count = priv->plat->rx_queues_to_use;
1896         u32 queue;
1897
1898         /* Free RX queue resources */
1899         for (queue = 0; queue < rx_count; queue++)
1900                 __free_dma_rx_desc_resources(priv, queue);
1901 }
1902
1903 /**
1904  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1905  * @priv: private structure
1906  * @queue: TX queue index
1907  */
1908 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1909 {
1910         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1911         size_t size;
1912         void *addr;
1913
1914         /* Release the DMA TX socket buffers */
1915         dma_free_tx_skbufs(priv, queue);
1916
1917         if (priv->extend_desc) {
1918                 size = sizeof(struct dma_extended_desc);
1919                 addr = tx_q->dma_etx;
1920         } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1921                 size = sizeof(struct dma_edesc);
1922                 addr = tx_q->dma_entx;
1923         } else {
1924                 size = sizeof(struct dma_desc);
1925                 addr = tx_q->dma_tx;
1926         }
1927
1928         size *= priv->dma_tx_size;
1929
1930         dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1931
1932         kfree(tx_q->tx_skbuff_dma);
1933         kfree(tx_q->tx_skbuff);
1934 }
1935
1936 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1937 {
1938         u32 tx_count = priv->plat->tx_queues_to_use;
1939         u32 queue;
1940
1941         /* Free TX queue resources */
1942         for (queue = 0; queue < tx_count; queue++)
1943                 __free_dma_tx_desc_resources(priv, queue);
1944 }
1945
1946 /**
1947  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1948  * @priv: private structure
1949  * @queue: RX queue index
1950  * Description: according to which descriptor can be used (extend or basic)
1951  * this function allocates the resources for TX and RX paths. In case of
1952  * reception, for example, it pre-allocated the RX socket buffer in order to
1953  * allow zero-copy mechanism.
1954  */
1955 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1956 {
1957         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1958         struct stmmac_channel *ch = &priv->channel[queue];
1959         bool xdp_prog = stmmac_xdp_is_enabled(priv);
1960         struct page_pool_params pp_params = { 0 };
1961         unsigned int num_pages;
1962         unsigned int napi_id;
1963         int ret;
1964
1965         rx_q->queue_index = queue;
1966         rx_q->priv_data = priv;
1967
1968         pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1969         pp_params.pool_size = priv->dma_rx_size;
1970         num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1971         pp_params.order = ilog2(num_pages);
1972         pp_params.nid = dev_to_node(priv->device);
1973         pp_params.dev = priv->device;
1974         pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1975         pp_params.offset = stmmac_rx_offset(priv);
1976         pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1977
1978         rx_q->page_pool = page_pool_create(&pp_params);
1979         if (IS_ERR(rx_q->page_pool)) {
1980                 ret = PTR_ERR(rx_q->page_pool);
1981                 rx_q->page_pool = NULL;
1982                 return ret;
1983         }
1984
1985         rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1986                                  sizeof(*rx_q->buf_pool),
1987                                  GFP_KERNEL);
1988         if (!rx_q->buf_pool)
1989                 return -ENOMEM;
1990
1991         if (priv->extend_desc) {
1992                 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1993                                                    priv->dma_rx_size *
1994                                                    sizeof(struct dma_extended_desc),
1995                                                    &rx_q->dma_rx_phy,
1996                                                    GFP_KERNEL);
1997                 if (!rx_q->dma_erx)
1998                         return -ENOMEM;
1999
2000         } else {
2001                 rx_q->dma_rx = dma_alloc_coherent(priv->device,
2002                                                   priv->dma_rx_size *
2003                                                   sizeof(struct dma_desc),
2004                                                   &rx_q->dma_rx_phy,
2005                                                   GFP_KERNEL);
2006                 if (!rx_q->dma_rx)
2007                         return -ENOMEM;
2008         }
2009
2010         if (stmmac_xdp_is_enabled(priv) &&
2011             test_bit(queue, priv->af_xdp_zc_qps))
2012                 napi_id = ch->rxtx_napi.napi_id;
2013         else
2014                 napi_id = ch->rx_napi.napi_id;
2015
2016         ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2017                                rx_q->queue_index,
2018                                napi_id);
2019         if (ret) {
2020                 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2021                 return -EINVAL;
2022         }
2023
2024         return 0;
2025 }
2026
2027 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2028 {
2029         u32 rx_count = priv->plat->rx_queues_to_use;
2030         u32 queue;
2031         int ret;
2032
2033         /* RX queues buffers and DMA */
2034         for (queue = 0; queue < rx_count; queue++) {
2035                 ret = __alloc_dma_rx_desc_resources(priv, queue);
2036                 if (ret)
2037                         goto err_dma;
2038         }
2039
2040         return 0;
2041
2042 err_dma:
2043         free_dma_rx_desc_resources(priv);
2044
2045         return ret;
2046 }
2047
2048 /**
2049  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2050  * @priv: private structure
2051  * @queue: TX queue index
2052  * Description: according to which descriptor can be used (extend or basic)
2053  * this function allocates the resources for TX and RX paths. In case of
2054  * reception, for example, it pre-allocated the RX socket buffer in order to
2055  * allow zero-copy mechanism.
2056  */
2057 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2058 {
2059         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2060         size_t size;
2061         void *addr;
2062
2063         tx_q->queue_index = queue;
2064         tx_q->priv_data = priv;
2065
2066         tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2067                                       sizeof(*tx_q->tx_skbuff_dma),
2068                                       GFP_KERNEL);
2069         if (!tx_q->tx_skbuff_dma)
2070                 return -ENOMEM;
2071
2072         tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2073                                   sizeof(struct sk_buff *),
2074                                   GFP_KERNEL);
2075         if (!tx_q->tx_skbuff)
2076                 return -ENOMEM;
2077
2078         if (priv->extend_desc)
2079                 size = sizeof(struct dma_extended_desc);
2080         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2081                 size = sizeof(struct dma_edesc);
2082         else
2083                 size = sizeof(struct dma_desc);
2084
2085         size *= priv->dma_tx_size;
2086
2087         addr = dma_alloc_coherent(priv->device, size,
2088                                   &tx_q->dma_tx_phy, GFP_KERNEL);
2089         if (!addr)
2090                 return -ENOMEM;
2091
2092         if (priv->extend_desc)
2093                 tx_q->dma_etx = addr;
2094         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2095                 tx_q->dma_entx = addr;
2096         else
2097                 tx_q->dma_tx = addr;
2098
2099         return 0;
2100 }
2101
2102 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2103 {
2104         u32 tx_count = priv->plat->tx_queues_to_use;
2105         u32 queue;
2106         int ret;
2107
2108         /* TX queues buffers and DMA */
2109         for (queue = 0; queue < tx_count; queue++) {
2110                 ret = __alloc_dma_tx_desc_resources(priv, queue);
2111                 if (ret)
2112                         goto err_dma;
2113         }
2114
2115         return 0;
2116
2117 err_dma:
2118         free_dma_tx_desc_resources(priv);
2119         return ret;
2120 }
2121
2122 /**
2123  * alloc_dma_desc_resources - alloc TX/RX resources.
2124  * @priv: private structure
2125  * Description: according to which descriptor can be used (extend or basic)
2126  * this function allocates the resources for TX and RX paths. In case of
2127  * reception, for example, it pre-allocated the RX socket buffer in order to
2128  * allow zero-copy mechanism.
2129  */
2130 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2131 {
2132         /* RX Allocation */
2133         int ret = alloc_dma_rx_desc_resources(priv);
2134
2135         if (ret)
2136                 return ret;
2137
2138         ret = alloc_dma_tx_desc_resources(priv);
2139
2140         return ret;
2141 }
2142
2143 /**
2144  * free_dma_desc_resources - free dma desc resources
2145  * @priv: private structure
2146  */
2147 static void free_dma_desc_resources(struct stmmac_priv *priv)
2148 {
2149         /* Release the DMA TX socket buffers */
2150         free_dma_tx_desc_resources(priv);
2151
2152         /* Release the DMA RX socket buffers later
2153          * to ensure all pending XDP_TX buffers are returned.
2154          */
2155         free_dma_rx_desc_resources(priv);
2156 }
2157
2158 /**
2159  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2160  *  @priv: driver private structure
2161  *  Description: It is used for enabling the rx queues in the MAC
2162  */
2163 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2164 {
2165         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2166         int queue;
2167         u8 mode;
2168
2169         for (queue = 0; queue < rx_queues_count; queue++) {
2170                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2171                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2172         }
2173 }
2174
2175 /**
2176  * stmmac_start_rx_dma - start RX DMA channel
2177  * @priv: driver private structure
2178  * @chan: RX channel index
2179  * Description:
2180  * This starts a RX DMA channel
2181  */
2182 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2183 {
2184         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2185         stmmac_start_rx(priv, priv->ioaddr, chan);
2186 }
2187
2188 /**
2189  * stmmac_start_tx_dma - start TX DMA channel
2190  * @priv: driver private structure
2191  * @chan: TX channel index
2192  * Description:
2193  * This starts a TX DMA channel
2194  */
2195 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2196 {
2197         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2198         stmmac_start_tx(priv, priv->ioaddr, chan);
2199 }
2200
2201 /**
2202  * stmmac_stop_rx_dma - stop RX DMA channel
2203  * @priv: driver private structure
2204  * @chan: RX channel index
2205  * Description:
2206  * This stops a RX DMA channel
2207  */
2208 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2209 {
2210         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2211         stmmac_stop_rx(priv, priv->ioaddr, chan);
2212 }
2213
2214 /**
2215  * stmmac_stop_tx_dma - stop TX DMA channel
2216  * @priv: driver private structure
2217  * @chan: TX channel index
2218  * Description:
2219  * This stops a TX DMA channel
2220  */
2221 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2222 {
2223         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2224         stmmac_stop_tx(priv, priv->ioaddr, chan);
2225 }
2226
2227 /**
2228  * stmmac_start_all_dma - start all RX and TX DMA channels
2229  * @priv: driver private structure
2230  * Description:
2231  * This starts all the RX and TX DMA channels
2232  */
2233 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2234 {
2235         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2236         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2237         u32 chan = 0;
2238
2239         for (chan = 0; chan < rx_channels_count; chan++)
2240                 stmmac_start_rx_dma(priv, chan);
2241
2242         for (chan = 0; chan < tx_channels_count; chan++)
2243                 stmmac_start_tx_dma(priv, chan);
2244 }
2245
2246 /**
2247  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2248  * @priv: driver private structure
2249  * Description:
2250  * This stops the RX and TX DMA channels
2251  */
2252 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2253 {
2254         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2255         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2256         u32 chan = 0;
2257
2258         for (chan = 0; chan < rx_channels_count; chan++)
2259                 stmmac_stop_rx_dma(priv, chan);
2260
2261         for (chan = 0; chan < tx_channels_count; chan++)
2262                 stmmac_stop_tx_dma(priv, chan);
2263 }
2264
2265 /**
2266  *  stmmac_dma_operation_mode - HW DMA operation mode
2267  *  @priv: driver private structure
2268  *  Description: it is used for configuring the DMA operation mode register in
2269  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2270  */
2271 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2272 {
2273         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2274         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2275         int rxfifosz = priv->plat->rx_fifo_size;
2276         int txfifosz = priv->plat->tx_fifo_size;
2277         u32 txmode = 0;
2278         u32 rxmode = 0;
2279         u32 chan = 0;
2280         u8 qmode = 0;
2281
2282         if (rxfifosz == 0)
2283                 rxfifosz = priv->dma_cap.rx_fifo_size;
2284         if (txfifosz == 0)
2285                 txfifosz = priv->dma_cap.tx_fifo_size;
2286
2287         /* Adjust for real per queue fifo size */
2288         rxfifosz /= rx_channels_count;
2289         txfifosz /= tx_channels_count;
2290
2291         if (priv->plat->force_thresh_dma_mode) {
2292                 txmode = tc;
2293                 rxmode = tc;
2294         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2295                 /*
2296                  * In case of GMAC, SF mode can be enabled
2297                  * to perform the TX COE in HW. This depends on:
2298                  * 1) TX COE if actually supported
2299                  * 2) There is no bugged Jumbo frame support
2300                  *    that needs to not insert csum in the TDES.
2301                  */
2302                 txmode = SF_DMA_MODE;
2303                 rxmode = SF_DMA_MODE;
2304                 priv->xstats.threshold = SF_DMA_MODE;
2305         } else {
2306                 txmode = tc;
2307                 rxmode = SF_DMA_MODE;
2308         }
2309
2310         /* configure all channels */
2311         for (chan = 0; chan < rx_channels_count; chan++) {
2312                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2313                 u32 buf_size;
2314
2315                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2316
2317                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2318                                 rxfifosz, qmode);
2319
2320                 if (rx_q->xsk_pool) {
2321                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2322                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2323                                               buf_size,
2324                                               chan);
2325                 } else {
2326                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2327                                               priv->dma_buf_sz,
2328                                               chan);
2329                 }
2330         }
2331
2332         for (chan = 0; chan < tx_channels_count; chan++) {
2333                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2334
2335                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2336                                 txfifosz, qmode);
2337         }
2338 }
2339
2340 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2341 {
2342         struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2343         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2344         struct xsk_buff_pool *pool = tx_q->xsk_pool;
2345         unsigned int entry = tx_q->cur_tx;
2346         struct dma_desc *tx_desc = NULL;
2347         struct xdp_desc xdp_desc;
2348         bool work_done = true;
2349
2350         /* Avoids TX time-out as we are sharing with slow path */
2351         nq->trans_start = jiffies;
2352
2353         budget = min(budget, stmmac_tx_avail(priv, queue));
2354
2355         while (budget-- > 0) {
2356                 dma_addr_t dma_addr;
2357                 bool set_ic;
2358
2359                 /* We are sharing with slow path and stop XSK TX desc submission when
2360                  * available TX ring is less than threshold.
2361                  */
2362                 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2363                     !netif_carrier_ok(priv->dev)) {
2364                         work_done = false;
2365                         break;
2366                 }
2367
2368                 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2369                         break;
2370
2371                 if (likely(priv->extend_desc))
2372                         tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2373                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2374                         tx_desc = &tx_q->dma_entx[entry].basic;
2375                 else
2376                         tx_desc = tx_q->dma_tx + entry;
2377
2378                 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2379                 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2380
2381                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2382
2383                 /* To return XDP buffer to XSK pool, we simple call
2384                  * xsk_tx_completed(), so we don't need to fill up
2385                  * 'buf' and 'xdpf'.
2386                  */
2387                 tx_q->tx_skbuff_dma[entry].buf = 0;
2388                 tx_q->xdpf[entry] = NULL;
2389
2390                 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2391                 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2392                 tx_q->tx_skbuff_dma[entry].last_segment = true;
2393                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2394
2395                 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2396
2397                 tx_q->tx_count_frames++;
2398
2399                 if (!priv->tx_coal_frames[queue])
2400                         set_ic = false;
2401                 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2402                         set_ic = true;
2403                 else
2404                         set_ic = false;
2405
2406                 if (set_ic) {
2407                         tx_q->tx_count_frames = 0;
2408                         stmmac_set_tx_ic(priv, tx_desc);
2409                         priv->xstats.tx_set_ic_bit++;
2410                 }
2411
2412                 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2413                                        true, priv->mode, true, true,
2414                                        xdp_desc.len);
2415
2416                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2417
2418                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2419                 entry = tx_q->cur_tx;
2420         }
2421
2422         if (tx_desc) {
2423                 stmmac_flush_tx_descriptors(priv, queue);
2424                 xsk_tx_release(pool);
2425         }
2426
2427         /* Return true if all of the 3 conditions are met
2428          *  a) TX Budget is still available
2429          *  b) work_done = true when XSK TX desc peek is empty (no more
2430          *     pending XSK TX for transmission)
2431          */
2432         return !!budget && work_done;
2433 }
2434
2435 /**
2436  * stmmac_tx_clean - to manage the transmission completion
2437  * @priv: driver private structure
2438  * @budget: napi budget limiting this functions packet handling
2439  * @queue: TX queue index
2440  * Description: it reclaims the transmit resources after transmission completes.
2441  */
2442 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2443 {
2444         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2445         unsigned int bytes_compl = 0, pkts_compl = 0;
2446         unsigned int entry, xmits = 0, count = 0;
2447
2448         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2449
2450         priv->xstats.tx_clean++;
2451
2452         tx_q->xsk_frames_done = 0;
2453
2454         entry = tx_q->dirty_tx;
2455
2456         /* Try to clean all TX complete frame in 1 shot */
2457         while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2458                 struct xdp_frame *xdpf;
2459                 struct sk_buff *skb;
2460                 struct dma_desc *p;
2461                 int status;
2462
2463                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2464                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2465                         xdpf = tx_q->xdpf[entry];
2466                         skb = NULL;
2467                 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2468                         xdpf = NULL;
2469                         skb = tx_q->tx_skbuff[entry];
2470                 } else {
2471                         xdpf = NULL;
2472                         skb = NULL;
2473                 }
2474
2475                 if (priv->extend_desc)
2476                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
2477                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2478                         p = &tx_q->dma_entx[entry].basic;
2479                 else
2480                         p = tx_q->dma_tx + entry;
2481
2482                 status = stmmac_tx_status(priv, &priv->dev->stats,
2483                                 &priv->xstats, p, priv->ioaddr);
2484                 /* Check if the descriptor is owned by the DMA */
2485                 if (unlikely(status & tx_dma_own))
2486                         break;
2487
2488                 count++;
2489
2490                 /* Make sure descriptor fields are read after reading
2491                  * the own bit.
2492                  */
2493                 dma_rmb();
2494
2495                 /* Just consider the last segment and ...*/
2496                 if (likely(!(status & tx_not_ls))) {
2497                         /* ... verify the status error condition */
2498                         if (unlikely(status & tx_err)) {
2499                                 priv->dev->stats.tx_errors++;
2500                         } else {
2501                                 priv->dev->stats.tx_packets++;
2502                                 priv->xstats.tx_pkt_n++;
2503                                 priv->xstats.txq_stats[queue].tx_pkt_n++;
2504                         }
2505                         if (skb)
2506                                 stmmac_get_tx_hwtstamp(priv, p, skb);
2507                 }
2508
2509                 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2510                            tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2511                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
2512                                 dma_unmap_page(priv->device,
2513                                                tx_q->tx_skbuff_dma[entry].buf,
2514                                                tx_q->tx_skbuff_dma[entry].len,
2515                                                DMA_TO_DEVICE);
2516                         else
2517                                 dma_unmap_single(priv->device,
2518                                                  tx_q->tx_skbuff_dma[entry].buf,
2519                                                  tx_q->tx_skbuff_dma[entry].len,
2520                                                  DMA_TO_DEVICE);
2521                         tx_q->tx_skbuff_dma[entry].buf = 0;
2522                         tx_q->tx_skbuff_dma[entry].len = 0;
2523                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
2524                 }
2525
2526                 stmmac_clean_desc3(priv, tx_q, p);
2527
2528                 tx_q->tx_skbuff_dma[entry].last_segment = false;
2529                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2530
2531                 if (xdpf &&
2532                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2533                         xdp_return_frame_rx_napi(xdpf);
2534                         tx_q->xdpf[entry] = NULL;
2535                 }
2536
2537                 if (xdpf &&
2538                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2539                         xdp_return_frame(xdpf);
2540                         tx_q->xdpf[entry] = NULL;
2541                 }
2542
2543                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2544                         tx_q->xsk_frames_done++;
2545
2546                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2547                         if (likely(skb)) {
2548                                 pkts_compl++;
2549                                 bytes_compl += skb->len;
2550                                 dev_consume_skb_any(skb);
2551                                 tx_q->tx_skbuff[entry] = NULL;
2552                         }
2553                 }
2554
2555                 stmmac_release_tx_desc(priv, p, priv->mode);
2556
2557                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2558         }
2559         tx_q->dirty_tx = entry;
2560
2561         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2562                                   pkts_compl, bytes_compl);
2563
2564         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2565                                                                 queue))) &&
2566             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2567
2568                 netif_dbg(priv, tx_done, priv->dev,
2569                           "%s: restart transmit\n", __func__);
2570                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2571         }
2572
2573         if (tx_q->xsk_pool) {
2574                 bool work_done;
2575
2576                 if (tx_q->xsk_frames_done)
2577                         xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2578
2579                 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2580                         xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2581
2582                 /* For XSK TX, we try to send as many as possible.
2583                  * If XSK work done (XSK TX desc empty and budget still
2584                  * available), return "budget - 1" to reenable TX IRQ.
2585                  * Else, return "budget" to make NAPI continue polling.
2586                  */
2587                 work_done = stmmac_xdp_xmit_zc(priv, queue,
2588                                                STMMAC_XSK_TX_BUDGET_MAX);
2589                 if (work_done)
2590                         xmits = budget - 1;
2591                 else
2592                         xmits = budget;
2593         }
2594
2595         if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2596             priv->eee_sw_timer_en) {
2597                 stmmac_enable_eee_mode(priv);
2598                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2599         }
2600
2601         /* We still have pending packets, let's call for a new scheduling */
2602         if (tx_q->dirty_tx != tx_q->cur_tx)
2603                 hrtimer_start(&tx_q->txtimer,
2604                               STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2605                               HRTIMER_MODE_REL);
2606
2607         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2608
2609         /* Combine decisions from TX clean and XSK TX */
2610         return max(count, xmits);
2611 }
2612
2613 /**
2614  * stmmac_tx_err - to manage the tx error
2615  * @priv: driver private structure
2616  * @chan: channel index
2617  * Description: it cleans the descriptors and restarts the transmission
2618  * in case of transmission errors.
2619  */
2620 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2621 {
2622         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2623
2624         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2625
2626         stmmac_stop_tx_dma(priv, chan);
2627         dma_free_tx_skbufs(priv, chan);
2628         stmmac_clear_tx_descriptors(priv, chan);
2629         tx_q->dirty_tx = 0;
2630         tx_q->cur_tx = 0;
2631         tx_q->mss = 0;
2632         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2633         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2634                             tx_q->dma_tx_phy, chan);
2635         stmmac_start_tx_dma(priv, chan);
2636
2637         priv->dev->stats.tx_errors++;
2638         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2639 }
2640
2641 /**
2642  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2643  *  @priv: driver private structure
2644  *  @txmode: TX operating mode
2645  *  @rxmode: RX operating mode
2646  *  @chan: channel index
2647  *  Description: it is used for configuring of the DMA operation mode in
2648  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2649  *  mode.
2650  */
2651 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2652                                           u32 rxmode, u32 chan)
2653 {
2654         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2655         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2656         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2657         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2658         int rxfifosz = priv->plat->rx_fifo_size;
2659         int txfifosz = priv->plat->tx_fifo_size;
2660
2661         if (rxfifosz == 0)
2662                 rxfifosz = priv->dma_cap.rx_fifo_size;
2663         if (txfifosz == 0)
2664                 txfifosz = priv->dma_cap.tx_fifo_size;
2665
2666         /* Adjust for real per queue fifo size */
2667         rxfifosz /= rx_channels_count;
2668         txfifosz /= tx_channels_count;
2669
2670         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2671         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2672 }
2673
2674 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2675 {
2676         int ret;
2677
2678         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2679                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2680         if (ret && (ret != -EINVAL)) {
2681                 stmmac_global_err(priv);
2682                 return true;
2683         }
2684
2685         return false;
2686 }
2687
2688 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2689 {
2690         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2691                                                  &priv->xstats, chan, dir);
2692         struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2693         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2694         struct stmmac_channel *ch = &priv->channel[chan];
2695         struct napi_struct *rx_napi;
2696         struct napi_struct *tx_napi;
2697         unsigned long flags;
2698
2699         rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2700         tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2701
2702         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2703                 if (napi_schedule_prep(rx_napi)) {
2704                         spin_lock_irqsave(&ch->lock, flags);
2705                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2706                         spin_unlock_irqrestore(&ch->lock, flags);
2707                         __napi_schedule(rx_napi);
2708                 }
2709         }
2710
2711         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2712                 if (napi_schedule_prep(tx_napi)) {
2713                         spin_lock_irqsave(&ch->lock, flags);
2714                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2715                         spin_unlock_irqrestore(&ch->lock, flags);
2716                         __napi_schedule(tx_napi);
2717                 }
2718         }
2719
2720         return status;
2721 }
2722
2723 /**
2724  * stmmac_dma_interrupt - DMA ISR
2725  * @priv: driver private structure
2726  * Description: this is the DMA ISR. It is called by the main ISR.
2727  * It calls the dwmac dma routine and schedule poll method in case of some
2728  * work can be done.
2729  */
2730 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2731 {
2732         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2733         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2734         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2735                                 tx_channel_count : rx_channel_count;
2736         u32 chan;
2737         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2738
2739         /* Make sure we never check beyond our status buffer. */
2740         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2741                 channels_to_check = ARRAY_SIZE(status);
2742
2743         for (chan = 0; chan < channels_to_check; chan++)
2744                 status[chan] = stmmac_napi_check(priv, chan,
2745                                                  DMA_DIR_RXTX);
2746
2747         for (chan = 0; chan < tx_channel_count; chan++) {
2748                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2749                         /* Try to bump up the dma threshold on this failure */
2750                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2751                             (tc <= 256)) {
2752                                 tc += 64;
2753                                 if (priv->plat->force_thresh_dma_mode)
2754                                         stmmac_set_dma_operation_mode(priv,
2755                                                                       tc,
2756                                                                       tc,
2757                                                                       chan);
2758                                 else
2759                                         stmmac_set_dma_operation_mode(priv,
2760                                                                     tc,
2761                                                                     SF_DMA_MODE,
2762                                                                     chan);
2763                                 priv->xstats.threshold = tc;
2764                         }
2765                 } else if (unlikely(status[chan] == tx_hard_error)) {
2766                         stmmac_tx_err(priv, chan);
2767                 }
2768         }
2769 }
2770
2771 /**
2772  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2773  * @priv: driver private structure
2774  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2775  */
2776 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2777 {
2778         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2779                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2780
2781         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2782
2783         if (priv->dma_cap.rmon) {
2784                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2785                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2786         } else
2787                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2788 }
2789
2790 /**
2791  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2792  * @priv: driver private structure
2793  * Description:
2794  *  new GMAC chip generations have a new register to indicate the
2795  *  presence of the optional feature/functions.
2796  *  This can be also used to override the value passed through the
2797  *  platform and necessary for old MAC10/100 and GMAC chips.
2798  */
2799 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2800 {
2801         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2802 }
2803
2804 /**
2805  * stmmac_check_ether_addr - check if the MAC addr is valid
2806  * @priv: driver private structure
2807  * Description:
2808  * it is to verify if the MAC address is valid, in case of failures it
2809  * generates a random MAC address
2810  */
2811 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2812 {
2813         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2814                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2815                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2816                         eth_hw_addr_random(priv->dev);
2817                 dev_info(priv->device, "device MAC address %pM\n",
2818                          priv->dev->dev_addr);
2819         }
2820 }
2821
2822 /**
2823  * stmmac_init_dma_engine - DMA init.
2824  * @priv: driver private structure
2825  * Description:
2826  * It inits the DMA invoking the specific MAC/GMAC callback.
2827  * Some DMA parameters can be passed from the platform;
2828  * in case of these are not passed a default is kept for the MAC or GMAC.
2829  */
2830 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2831 {
2832         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2833         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2834         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2835         struct stmmac_rx_queue *rx_q;
2836         struct stmmac_tx_queue *tx_q;
2837         u32 chan = 0;
2838         int atds = 0;
2839         int ret = 0;
2840
2841         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2842                 dev_err(priv->device, "Invalid DMA configuration\n");
2843                 return -EINVAL;
2844         }
2845
2846         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2847                 atds = 1;
2848
2849         ret = stmmac_reset(priv, priv->ioaddr);
2850         if (ret) {
2851                 dev_err(priv->device, "Failed to reset the dma\n");
2852                 return ret;
2853         }
2854
2855         /* DMA Configuration */
2856         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2857
2858         if (priv->plat->axi)
2859                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2860
2861         /* DMA CSR Channel configuration */
2862         for (chan = 0; chan < dma_csr_ch; chan++)
2863                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2864
2865         /* DMA RX Channel Configuration */
2866         for (chan = 0; chan < rx_channels_count; chan++) {
2867                 rx_q = &priv->rx_queue[chan];
2868
2869                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2870                                     rx_q->dma_rx_phy, chan);
2871
2872                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2873                                      (rx_q->buf_alloc_num *
2874                                       sizeof(struct dma_desc));
2875                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2876                                        rx_q->rx_tail_addr, chan);
2877         }
2878
2879         /* DMA TX Channel Configuration */
2880         for (chan = 0; chan < tx_channels_count; chan++) {
2881                 tx_q = &priv->tx_queue[chan];
2882
2883                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2884                                     tx_q->dma_tx_phy, chan);
2885
2886                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2887                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2888                                        tx_q->tx_tail_addr, chan);
2889         }
2890
2891         return ret;
2892 }
2893
2894 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2895 {
2896         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2897
2898         hrtimer_start(&tx_q->txtimer,
2899                       STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2900                       HRTIMER_MODE_REL);
2901 }
2902
2903 /**
2904  * stmmac_tx_timer - mitigation sw timer for tx.
2905  * @t: data pointer
2906  * Description:
2907  * This is the timer handler to directly invoke the stmmac_tx_clean.
2908  */
2909 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2910 {
2911         struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2912         struct stmmac_priv *priv = tx_q->priv_data;
2913         struct stmmac_channel *ch;
2914         struct napi_struct *napi;
2915
2916         ch = &priv->channel[tx_q->queue_index];
2917         napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2918
2919         if (likely(napi_schedule_prep(napi))) {
2920                 unsigned long flags;
2921
2922                 spin_lock_irqsave(&ch->lock, flags);
2923                 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2924                 spin_unlock_irqrestore(&ch->lock, flags);
2925                 __napi_schedule(napi);
2926         }
2927
2928         return HRTIMER_NORESTART;
2929 }
2930
2931 /**
2932  * stmmac_init_coalesce - init mitigation options.
2933  * @priv: driver private structure
2934  * Description:
2935  * This inits the coalesce parameters: i.e. timer rate,
2936  * timer handler and default threshold used for enabling the
2937  * interrupt on completion bit.
2938  */
2939 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2940 {
2941         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2942         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2943         u32 chan;
2944
2945         for (chan = 0; chan < tx_channel_count; chan++) {
2946                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2947
2948                 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2949                 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2950
2951                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2952                 tx_q->txtimer.function = stmmac_tx_timer;
2953         }
2954
2955         for (chan = 0; chan < rx_channel_count; chan++)
2956                 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2957 }
2958
2959 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2960 {
2961         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2962         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2963         u32 chan;
2964
2965         /* set TX ring length */
2966         for (chan = 0; chan < tx_channels_count; chan++)
2967                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2968                                        (priv->dma_tx_size - 1), chan);
2969
2970         /* set RX ring length */
2971         for (chan = 0; chan < rx_channels_count; chan++)
2972                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2973                                        (priv->dma_rx_size - 1), chan);
2974 }
2975
2976 /**
2977  *  stmmac_set_tx_queue_weight - Set TX queue weight
2978  *  @priv: driver private structure
2979  *  Description: It is used for setting TX queues weight
2980  */
2981 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2982 {
2983         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2984         u32 weight;
2985         u32 queue;
2986
2987         for (queue = 0; queue < tx_queues_count; queue++) {
2988                 weight = priv->plat->tx_queues_cfg[queue].weight;
2989                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2990         }
2991 }
2992
2993 /**
2994  *  stmmac_configure_cbs - Configure CBS in TX queue
2995  *  @priv: driver private structure
2996  *  Description: It is used for configuring CBS in AVB TX queues
2997  */
2998 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2999 {
3000         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3001         u32 mode_to_use;
3002         u32 queue;
3003
3004         /* queue 0 is reserved for legacy traffic */
3005         for (queue = 1; queue < tx_queues_count; queue++) {
3006                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3007                 if (mode_to_use == MTL_QUEUE_DCB)
3008                         continue;
3009
3010                 stmmac_config_cbs(priv, priv->hw,
3011                                 priv->plat->tx_queues_cfg[queue].send_slope,
3012                                 priv->plat->tx_queues_cfg[queue].idle_slope,
3013                                 priv->plat->tx_queues_cfg[queue].high_credit,
3014                                 priv->plat->tx_queues_cfg[queue].low_credit,
3015                                 queue);
3016         }
3017 }
3018
3019 /**
3020  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3021  *  @priv: driver private structure
3022  *  Description: It is used for mapping RX queues to RX dma channels
3023  */
3024 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3025 {
3026         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3027         u32 queue;
3028         u32 chan;
3029
3030         for (queue = 0; queue < rx_queues_count; queue++) {
3031                 chan = priv->plat->rx_queues_cfg[queue].chan;
3032                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3033         }
3034 }
3035
3036 /**
3037  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3038  *  @priv: driver private structure
3039  *  Description: It is used for configuring the RX Queue Priority
3040  */
3041 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3042 {
3043         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3044         u32 queue;
3045         u32 prio;
3046
3047         for (queue = 0; queue < rx_queues_count; queue++) {
3048                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3049                         continue;
3050
3051                 prio = priv->plat->rx_queues_cfg[queue].prio;
3052                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3053         }
3054 }
3055
3056 /**
3057  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3058  *  @priv: driver private structure
3059  *  Description: It is used for configuring the TX Queue Priority
3060  */
3061 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3062 {
3063         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3064         u32 queue;
3065         u32 prio;
3066
3067         for (queue = 0; queue < tx_queues_count; queue++) {
3068                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3069                         continue;
3070
3071                 prio = priv->plat->tx_queues_cfg[queue].prio;
3072                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3073         }
3074 }
3075
3076 /**
3077  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3078  *  @priv: driver private structure
3079  *  Description: It is used for configuring the RX queue routing
3080  */
3081 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3082 {
3083         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3084         u32 queue;
3085         u8 packet;
3086
3087         for (queue = 0; queue < rx_queues_count; queue++) {
3088                 /* no specific packet type routing specified for the queue */
3089                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3090                         continue;
3091
3092                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3093                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3094         }
3095 }
3096
3097 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3098 {
3099         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3100                 priv->rss.enable = false;
3101                 return;
3102         }
3103
3104         if (priv->dev->features & NETIF_F_RXHASH)
3105                 priv->rss.enable = true;
3106         else
3107                 priv->rss.enable = false;
3108
3109         stmmac_rss_configure(priv, priv->hw, &priv->rss,
3110                              priv->plat->rx_queues_to_use);
3111 }
3112
3113 /**
3114  *  stmmac_mtl_configuration - Configure MTL
3115  *  @priv: driver private structure
3116  *  Description: It is used for configurring MTL
3117  */
3118 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3119 {
3120         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3121         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3122
3123         if (tx_queues_count > 1)
3124                 stmmac_set_tx_queue_weight(priv);
3125
3126         /* Configure MTL RX algorithms */
3127         if (rx_queues_count > 1)
3128                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3129                                 priv->plat->rx_sched_algorithm);
3130
3131         /* Configure MTL TX algorithms */
3132         if (tx_queues_count > 1)
3133                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3134                                 priv->plat->tx_sched_algorithm);
3135
3136         /* Configure CBS in AVB TX queues */
3137         if (tx_queues_count > 1)
3138                 stmmac_configure_cbs(priv);
3139
3140         /* Map RX MTL to DMA channels */
3141         stmmac_rx_queue_dma_chan_map(priv);
3142
3143         /* Enable MAC RX Queues */
3144         stmmac_mac_enable_rx_queues(priv);
3145
3146         /* Set RX priorities */
3147         if (rx_queues_count > 1)
3148                 stmmac_mac_config_rx_queues_prio(priv);
3149
3150         /* Set TX priorities */
3151         if (tx_queues_count > 1)
3152                 stmmac_mac_config_tx_queues_prio(priv);
3153
3154         /* Set RX routing */
3155         if (rx_queues_count > 1)
3156                 stmmac_mac_config_rx_queues_routing(priv);
3157
3158         /* Receive Side Scaling */
3159         if (rx_queues_count > 1)
3160                 stmmac_mac_config_rss(priv);
3161 }
3162
3163 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3164 {
3165         if (priv->dma_cap.asp) {
3166                 netdev_info(priv->dev, "Enabling Safety Features\n");
3167                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3168                                           priv->plat->safety_feat_cfg);
3169         } else {
3170                 netdev_info(priv->dev, "No Safety Features support found\n");
3171         }
3172 }
3173
3174 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3175 {
3176         char *name;
3177
3178         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3179         clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3180
3181         name = priv->wq_name;
3182         sprintf(name, "%s-fpe", priv->dev->name);
3183
3184         priv->fpe_wq = create_singlethread_workqueue(name);
3185         if (!priv->fpe_wq) {
3186                 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3187
3188                 return -ENOMEM;
3189         }
3190         netdev_info(priv->dev, "FPE workqueue start");
3191
3192         return 0;
3193 }
3194
3195 /**
3196  * stmmac_hw_setup - setup mac in a usable state.
3197  *  @dev : pointer to the device structure.
3198  *  @init_ptp: initialize PTP if set
3199  *  Description:
3200  *  this is the main function to setup the HW in a usable state because the
3201  *  dma engine is reset, the core registers are configured (e.g. AXI,
3202  *  Checksum features, timers). The DMA is ready to start receiving and
3203  *  transmitting.
3204  *  Return value:
3205  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3206  *  file on failure.
3207  */
3208 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
3209 {
3210         struct stmmac_priv *priv = netdev_priv(dev);
3211         u32 rx_cnt = priv->plat->rx_queues_to_use;
3212         u32 tx_cnt = priv->plat->tx_queues_to_use;
3213         bool sph_en;
3214         u32 chan;
3215         int ret;
3216
3217         /* DMA initialization and SW reset */
3218         ret = stmmac_init_dma_engine(priv);
3219         if (ret < 0) {
3220                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3221                            __func__);
3222                 return ret;
3223         }
3224
3225         /* Copy the MAC addr into the HW  */
3226         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3227
3228         /* PS and related bits will be programmed according to the speed */
3229         if (priv->hw->pcs) {
3230                 int speed = priv->plat->mac_port_sel_speed;
3231
3232                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3233                     (speed == SPEED_1000)) {
3234                         priv->hw->ps = speed;
3235                 } else {
3236                         dev_warn(priv->device, "invalid port speed\n");
3237                         priv->hw->ps = 0;
3238                 }
3239         }
3240
3241         /* Initialize the MAC Core */
3242         stmmac_core_init(priv, priv->hw, dev);
3243
3244         /* Initialize MTL*/
3245         stmmac_mtl_configuration(priv);
3246
3247         /* Initialize Safety Features */
3248         stmmac_safety_feat_configuration(priv);
3249
3250         ret = stmmac_rx_ipc(priv, priv->hw);
3251         if (!ret) {
3252                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3253                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3254                 priv->hw->rx_csum = 0;
3255         }
3256
3257         /* Enable the MAC Rx/Tx */
3258         stmmac_mac_set(priv, priv->ioaddr, true);
3259
3260         /* Set the HW DMA mode and the COE */
3261         stmmac_dma_operation_mode(priv);
3262
3263         stmmac_mmc_setup(priv);
3264
3265         if (init_ptp) {
3266                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3267                 if (ret < 0)
3268                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
3269
3270                 ret = stmmac_init_ptp(priv);
3271                 if (ret == -EOPNOTSUPP)
3272                         netdev_warn(priv->dev, "PTP not supported by HW\n");
3273                 else if (ret)
3274                         netdev_warn(priv->dev, "PTP init failed\n");
3275         }
3276
3277         priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3278
3279         /* Convert the timer from msec to usec */
3280         if (!priv->tx_lpi_timer)
3281                 priv->tx_lpi_timer = eee_timer * 1000;
3282
3283         if (priv->use_riwt) {
3284                 u32 queue;
3285
3286                 for (queue = 0; queue < rx_cnt; queue++) {
3287                         if (!priv->rx_riwt[queue])
3288                                 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3289
3290                         stmmac_rx_watchdog(priv, priv->ioaddr,
3291                                            priv->rx_riwt[queue], queue);
3292                 }
3293         }
3294
3295         if (priv->hw->pcs)
3296                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3297
3298         /* set TX and RX rings length */
3299         stmmac_set_rings_length(priv);
3300
3301         /* Enable TSO */
3302         if (priv->tso) {
3303                 for (chan = 0; chan < tx_cnt; chan++) {
3304                         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3305
3306                         /* TSO and TBS cannot co-exist */
3307                         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3308                                 continue;
3309
3310                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3311                 }
3312         }
3313
3314         /* Enable Split Header */
3315         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3316         for (chan = 0; chan < rx_cnt; chan++)
3317                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3318
3319
3320         /* VLAN Tag Insertion */
3321         if (priv->dma_cap.vlins)
3322                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3323
3324         /* TBS */
3325         for (chan = 0; chan < tx_cnt; chan++) {
3326                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3327                 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3328
3329                 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3330         }
3331
3332         /* Configure real RX and TX queues */
3333         netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3334         netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3335
3336         /* Start the ball rolling... */
3337         stmmac_start_all_dma(priv);
3338
3339         if (priv->dma_cap.fpesel) {
3340                 stmmac_fpe_start_wq(priv);
3341
3342                 if (priv->plat->fpe_cfg->enable)
3343                         stmmac_fpe_handshake(priv, true);
3344         }
3345
3346         return 0;
3347 }
3348
3349 static void stmmac_hw_teardown(struct net_device *dev)
3350 {
3351         struct stmmac_priv *priv = netdev_priv(dev);
3352
3353         clk_disable_unprepare(priv->plat->clk_ptp_ref);
3354 }
3355
3356 static void stmmac_free_irq(struct net_device *dev,
3357                             enum request_irq_err irq_err, int irq_idx)
3358 {
3359         struct stmmac_priv *priv = netdev_priv(dev);
3360         int j;
3361
3362         switch (irq_err) {
3363         case REQ_IRQ_ERR_ALL:
3364                 irq_idx = priv->plat->tx_queues_to_use;
3365                 fallthrough;
3366         case REQ_IRQ_ERR_TX:
3367                 for (j = irq_idx - 1; j >= 0; j--) {
3368                         if (priv->tx_irq[j] > 0) {
3369                                 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3370                                 free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3371                         }
3372                 }
3373                 irq_idx = priv->plat->rx_queues_to_use;
3374                 fallthrough;
3375         case REQ_IRQ_ERR_RX:
3376                 for (j = irq_idx - 1; j >= 0; j--) {
3377                         if (priv->rx_irq[j] > 0) {
3378                                 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3379                                 free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3380                         }
3381                 }
3382
3383                 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3384                         free_irq(priv->sfty_ue_irq, dev);
3385                 fallthrough;
3386         case REQ_IRQ_ERR_SFTY_UE:
3387                 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3388                         free_irq(priv->sfty_ce_irq, dev);
3389                 fallthrough;
3390         case REQ_IRQ_ERR_SFTY_CE:
3391                 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3392                         free_irq(priv->lpi_irq, dev);
3393                 fallthrough;
3394         case REQ_IRQ_ERR_LPI:
3395                 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3396                         free_irq(priv->wol_irq, dev);
3397                 fallthrough;
3398         case REQ_IRQ_ERR_WOL:
3399                 free_irq(dev->irq, dev);
3400                 fallthrough;
3401         case REQ_IRQ_ERR_MAC:
3402         case REQ_IRQ_ERR_NO:
3403                 /* If MAC IRQ request error, no more IRQ to free */
3404                 break;
3405         }
3406 }
3407
3408 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3409 {
3410         struct stmmac_priv *priv = netdev_priv(dev);
3411         enum request_irq_err irq_err;
3412         cpumask_t cpu_mask;
3413         int irq_idx = 0;
3414         char *int_name;
3415         int ret;
3416         int i;
3417
3418         /* For common interrupt */
3419         int_name = priv->int_name_mac;
3420         sprintf(int_name, "%s:%s", dev->name, "mac");
3421         ret = request_irq(dev->irq, stmmac_mac_interrupt,
3422                           0, int_name, dev);
3423         if (unlikely(ret < 0)) {
3424                 netdev_err(priv->dev,
3425                            "%s: alloc mac MSI %d (error: %d)\n",
3426                            __func__, dev->irq, ret);
3427                 irq_err = REQ_IRQ_ERR_MAC;
3428                 goto irq_error;
3429         }
3430
3431         /* Request the Wake IRQ in case of another line
3432          * is used for WoL
3433          */
3434         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3435                 int_name = priv->int_name_wol;
3436                 sprintf(int_name, "%s:%s", dev->name, "wol");
3437                 ret = request_irq(priv->wol_irq,
3438                                   stmmac_mac_interrupt,
3439                                   0, int_name, dev);
3440                 if (unlikely(ret < 0)) {
3441                         netdev_err(priv->dev,
3442                                    "%s: alloc wol MSI %d (error: %d)\n",
3443                                    __func__, priv->wol_irq, ret);
3444                         irq_err = REQ_IRQ_ERR_WOL;
3445                         goto irq_error;
3446                 }
3447         }
3448
3449         /* Request the LPI IRQ in case of another line
3450          * is used for LPI
3451          */
3452         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3453                 int_name = priv->int_name_lpi;
3454                 sprintf(int_name, "%s:%s", dev->name, "lpi");
3455                 ret = request_irq(priv->lpi_irq,
3456                                   stmmac_mac_interrupt,
3457                                   0, int_name, dev);
3458                 if (unlikely(ret < 0)) {
3459                         netdev_err(priv->dev,
3460                                    "%s: alloc lpi MSI %d (error: %d)\n",
3461                                    __func__, priv->lpi_irq, ret);
3462                         irq_err = REQ_IRQ_ERR_LPI;
3463                         goto irq_error;
3464                 }
3465         }
3466
3467         /* Request the Safety Feature Correctible Error line in
3468          * case of another line is used
3469          */
3470         if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3471                 int_name = priv->int_name_sfty_ce;
3472                 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3473                 ret = request_irq(priv->sfty_ce_irq,
3474                                   stmmac_safety_interrupt,
3475                                   0, int_name, dev);
3476                 if (unlikely(ret < 0)) {
3477                         netdev_err(priv->dev,
3478                                    "%s: alloc sfty ce MSI %d (error: %d)\n",
3479                                    __func__, priv->sfty_ce_irq, ret);
3480                         irq_err = REQ_IRQ_ERR_SFTY_CE;
3481                         goto irq_error;
3482                 }
3483         }
3484
3485         /* Request the Safety Feature Uncorrectible Error line in
3486          * case of another line is used
3487          */
3488         if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3489                 int_name = priv->int_name_sfty_ue;
3490                 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3491                 ret = request_irq(priv->sfty_ue_irq,
3492                                   stmmac_safety_interrupt,
3493                                   0, int_name, dev);
3494                 if (unlikely(ret < 0)) {
3495                         netdev_err(priv->dev,
3496                                    "%s: alloc sfty ue MSI %d (error: %d)\n",
3497                                    __func__, priv->sfty_ue_irq, ret);
3498                         irq_err = REQ_IRQ_ERR_SFTY_UE;
3499                         goto irq_error;
3500                 }
3501         }
3502
3503         /* Request Rx MSI irq */
3504         for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3505                 if (priv->rx_irq[i] == 0)
3506                         continue;
3507
3508                 int_name = priv->int_name_rx_irq[i];
3509                 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3510                 ret = request_irq(priv->rx_irq[i],
3511                                   stmmac_msi_intr_rx,
3512                                   0, int_name, &priv->rx_queue[i]);
3513                 if (unlikely(ret < 0)) {
3514                         netdev_err(priv->dev,
3515                                    "%s: alloc rx-%d  MSI %d (error: %d)\n",
3516                                    __func__, i, priv->rx_irq[i], ret);
3517                         irq_err = REQ_IRQ_ERR_RX;
3518                         irq_idx = i;
3519                         goto irq_error;
3520                 }
3521                 cpumask_clear(&cpu_mask);
3522                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3523                 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3524         }
3525
3526         /* Request Tx MSI irq */
3527         for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3528                 if (priv->tx_irq[i] == 0)
3529                         continue;
3530
3531                 int_name = priv->int_name_tx_irq[i];
3532                 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3533                 ret = request_irq(priv->tx_irq[i],
3534                                   stmmac_msi_intr_tx,
3535                                   0, int_name, &priv->tx_queue[i]);
3536                 if (unlikely(ret < 0)) {
3537                         netdev_err(priv->dev,
3538                                    "%s: alloc tx-%d  MSI %d (error: %d)\n",
3539                                    __func__, i, priv->tx_irq[i], ret);
3540                         irq_err = REQ_IRQ_ERR_TX;
3541                         irq_idx = i;
3542                         goto irq_error;
3543                 }
3544                 cpumask_clear(&cpu_mask);
3545                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3546                 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3547         }
3548
3549         return 0;
3550
3551 irq_error:
3552         stmmac_free_irq(dev, irq_err, irq_idx);
3553         return ret;
3554 }
3555
3556 static int stmmac_request_irq_single(struct net_device *dev)
3557 {
3558         struct stmmac_priv *priv = netdev_priv(dev);
3559         enum request_irq_err irq_err;
3560         int ret;
3561
3562         ret = request_irq(dev->irq, stmmac_interrupt,
3563                           IRQF_SHARED, dev->name, dev);
3564         if (unlikely(ret < 0)) {
3565                 netdev_err(priv->dev,
3566                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3567                            __func__, dev->irq, ret);
3568                 irq_err = REQ_IRQ_ERR_MAC;
3569                 goto irq_error;
3570         }
3571
3572         /* Request the Wake IRQ in case of another line
3573          * is used for WoL
3574          */
3575         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3576                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3577                                   IRQF_SHARED, dev->name, dev);
3578                 if (unlikely(ret < 0)) {
3579                         netdev_err(priv->dev,
3580                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3581                                    __func__, priv->wol_irq, ret);
3582                         irq_err = REQ_IRQ_ERR_WOL;
3583                         goto irq_error;
3584                 }
3585         }
3586
3587         /* Request the IRQ lines */
3588         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3589                 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3590                                   IRQF_SHARED, dev->name, dev);
3591                 if (unlikely(ret < 0)) {
3592                         netdev_err(priv->dev,
3593                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3594                                    __func__, priv->lpi_irq, ret);
3595                         irq_err = REQ_IRQ_ERR_LPI;
3596                         goto irq_error;
3597                 }
3598         }
3599
3600         return 0;
3601
3602 irq_error:
3603         stmmac_free_irq(dev, irq_err, 0);
3604         return ret;
3605 }
3606
3607 static int stmmac_request_irq(struct net_device *dev)
3608 {
3609         struct stmmac_priv *priv = netdev_priv(dev);
3610         int ret;
3611
3612         /* Request the IRQ lines */
3613         if (priv->plat->multi_msi_en)
3614                 ret = stmmac_request_irq_multi_msi(dev);
3615         else
3616                 ret = stmmac_request_irq_single(dev);
3617
3618         return ret;
3619 }
3620
3621 /**
3622  *  stmmac_open - open entry point of the driver
3623  *  @dev : pointer to the device structure.
3624  *  Description:
3625  *  This function is the open entry point of the driver.
3626  *  Return value:
3627  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3628  *  file on failure.
3629  */
3630 int stmmac_open(struct net_device *dev)
3631 {
3632         struct stmmac_priv *priv = netdev_priv(dev);
3633         int mode = priv->plat->phy_interface;
3634         int bfsize = 0;
3635         u32 chan;
3636         int ret;
3637
3638         ret = pm_runtime_get_sync(priv->device);
3639         if (ret < 0) {
3640                 pm_runtime_put_noidle(priv->device);
3641                 return ret;
3642         }
3643
3644         if (priv->hw->pcs != STMMAC_PCS_TBI &&
3645             priv->hw->pcs != STMMAC_PCS_RTBI &&
3646             (!priv->hw->xpcs ||
3647              xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3648                 ret = stmmac_init_phy(dev);
3649                 if (ret) {
3650                         netdev_err(priv->dev,
3651                                    "%s: Cannot attach to PHY (error: %d)\n",
3652                                    __func__, ret);
3653                         goto init_phy_error;
3654                 }
3655         }
3656
3657         /* Extra statistics */
3658         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3659         priv->xstats.threshold = tc;
3660
3661         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3662         if (bfsize < 0)
3663                 bfsize = 0;
3664
3665         if (bfsize < BUF_SIZE_16KiB)
3666                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3667
3668         priv->dma_buf_sz = bfsize;
3669         buf_sz = bfsize;
3670
3671         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3672
3673         if (!priv->dma_tx_size)
3674                 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3675         if (!priv->dma_rx_size)
3676                 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3677
3678         /* Earlier check for TBS */
3679         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3680                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3681                 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3682
3683                 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3684                 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3685         }
3686
3687         ret = alloc_dma_desc_resources(priv);
3688         if (ret < 0) {
3689                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3690                            __func__);
3691                 goto dma_desc_error;
3692         }
3693
3694         ret = init_dma_desc_rings(dev, GFP_KERNEL);
3695         if (ret < 0) {
3696                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3697                            __func__);
3698                 goto init_error;
3699         }
3700
3701         ret = stmmac_hw_setup(dev, true);
3702         if (ret < 0) {
3703                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3704                 goto init_error;
3705         }
3706
3707         stmmac_init_coalesce(priv);
3708
3709         phylink_start(priv->phylink);
3710         /* We may have called phylink_speed_down before */
3711         phylink_speed_up(priv->phylink);
3712
3713         ret = stmmac_request_irq(dev);
3714         if (ret)
3715                 goto irq_error;
3716
3717         stmmac_enable_all_queues(priv);
3718         netif_tx_start_all_queues(priv->dev);
3719
3720         return 0;
3721
3722 irq_error:
3723         phylink_stop(priv->phylink);
3724
3725         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3726                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3727
3728         stmmac_hw_teardown(dev);
3729 init_error:
3730         free_dma_desc_resources(priv);
3731 dma_desc_error:
3732         phylink_disconnect_phy(priv->phylink);
3733 init_phy_error:
3734         pm_runtime_put(priv->device);
3735         return ret;
3736 }
3737
3738 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3739 {
3740         set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3741
3742         if (priv->fpe_wq)
3743                 destroy_workqueue(priv->fpe_wq);
3744
3745         netdev_info(priv->dev, "FPE workqueue stop");
3746 }
3747
3748 /**
3749  *  stmmac_release - close entry point of the driver
3750  *  @dev : device pointer.
3751  *  Description:
3752  *  This is the stop entry point of the driver.
3753  */
3754 int stmmac_release(struct net_device *dev)
3755 {
3756         struct stmmac_priv *priv = netdev_priv(dev);
3757         u32 chan;
3758
3759         if (device_may_wakeup(priv->device))
3760                 phylink_speed_down(priv->phylink, false);
3761         /* Stop and disconnect the PHY */
3762         phylink_stop(priv->phylink);
3763         phylink_disconnect_phy(priv->phylink);
3764
3765         stmmac_disable_all_queues(priv);
3766
3767         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3768                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3769
3770         /* Free the IRQ lines */
3771         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3772
3773         if (priv->eee_enabled) {
3774                 priv->tx_path_in_lpi_mode = false;
3775                 del_timer_sync(&priv->eee_ctrl_timer);
3776         }
3777
3778         /* Stop TX/RX DMA and clear the descriptors */
3779         stmmac_stop_all_dma(priv);
3780
3781         /* Release and free the Rx/Tx resources */
3782         free_dma_desc_resources(priv);
3783
3784         /* Disable the MAC Rx/Tx */
3785         stmmac_mac_set(priv, priv->ioaddr, false);
3786
3787         netif_carrier_off(dev);
3788
3789         stmmac_release_ptp(priv);
3790
3791         pm_runtime_put(priv->device);
3792
3793         if (priv->dma_cap.fpesel)
3794                 stmmac_fpe_stop_wq(priv);
3795
3796         return 0;
3797 }
3798
3799 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3800                                struct stmmac_tx_queue *tx_q)
3801 {
3802         u16 tag = 0x0, inner_tag = 0x0;
3803         u32 inner_type = 0x0;
3804         struct dma_desc *p;
3805
3806         if (!priv->dma_cap.vlins)
3807                 return false;
3808         if (!skb_vlan_tag_present(skb))
3809                 return false;
3810         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3811                 inner_tag = skb_vlan_tag_get(skb);
3812                 inner_type = STMMAC_VLAN_INSERT;
3813         }
3814
3815         tag = skb_vlan_tag_get(skb);
3816
3817         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3818                 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3819         else
3820                 p = &tx_q->dma_tx[tx_q->cur_tx];
3821
3822         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3823                 return false;
3824
3825         stmmac_set_tx_owner(priv, p);
3826         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3827         return true;
3828 }
3829
3830 /**
3831  *  stmmac_tso_allocator - close entry point of the driver
3832  *  @priv: driver private structure
3833  *  @des: buffer start address
3834  *  @total_len: total length to fill in descriptors
3835  *  @last_segment: condition for the last descriptor
3836  *  @queue: TX queue index
3837  *  Description:
3838  *  This function fills descriptor and request new descriptors according to
3839  *  buffer length to fill
3840  */
3841 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3842                                  int total_len, bool last_segment, u32 queue)
3843 {
3844         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3845         struct dma_desc *desc;
3846         u32 buff_size;
3847         int tmp_len;
3848
3849         tmp_len = total_len;
3850
3851         while (tmp_len > 0) {
3852                 dma_addr_t curr_addr;
3853
3854                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3855                                                 priv->dma_tx_size);
3856                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3857
3858                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3859                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3860                 else
3861                         desc = &tx_q->dma_tx[tx_q->cur_tx];
3862
3863                 curr_addr = des + (total_len - tmp_len);
3864                 if (priv->dma_cap.addr64 <= 32)
3865                         desc->des0 = cpu_to_le32(curr_addr);
3866                 else
3867                         stmmac_set_desc_addr(priv, desc, curr_addr);
3868
3869                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3870                             TSO_MAX_BUFF_SIZE : tmp_len;
3871
3872                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3873                                 0, 1,
3874                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3875                                 0, 0);
3876
3877                 tmp_len -= TSO_MAX_BUFF_SIZE;
3878         }
3879 }
3880
3881 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3882 {
3883         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3884         int desc_size;
3885
3886         if (likely(priv->extend_desc))
3887                 desc_size = sizeof(struct dma_extended_desc);
3888         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3889                 desc_size = sizeof(struct dma_edesc);
3890         else
3891                 desc_size = sizeof(struct dma_desc);
3892
3893         /* The own bit must be the latest setting done when prepare the
3894          * descriptor and then barrier is needed to make sure that
3895          * all is coherent before granting the DMA engine.
3896          */
3897         wmb();
3898
3899         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3900         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3901 }
3902
3903 /**
3904  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3905  *  @skb : the socket buffer
3906  *  @dev : device pointer
3907  *  Description: this is the transmit function that is called on TSO frames
3908  *  (support available on GMAC4 and newer chips).
3909  *  Diagram below show the ring programming in case of TSO frames:
3910  *
3911  *  First Descriptor
3912  *   --------
3913  *   | DES0 |---> buffer1 = L2/L3/L4 header
3914  *   | DES1 |---> TCP Payload (can continue on next descr...)
3915  *   | DES2 |---> buffer 1 and 2 len
3916  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3917  *   --------
3918  *      |
3919  *     ...
3920  *      |
3921  *   --------
3922  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3923  *   | DES1 | --|
3924  *   | DES2 | --> buffer 1 and 2 len
3925  *   | DES3 |
3926  *   --------
3927  *
3928  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3929  */
3930 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3931 {
3932         struct dma_desc *desc, *first, *mss_desc = NULL;
3933         struct stmmac_priv *priv = netdev_priv(dev);
3934         int nfrags = skb_shinfo(skb)->nr_frags;
3935         u32 queue = skb_get_queue_mapping(skb);
3936         unsigned int first_entry, tx_packets;
3937         int tmp_pay_len = 0, first_tx;
3938         struct stmmac_tx_queue *tx_q;
3939         bool has_vlan, set_ic;
3940         u8 proto_hdr_len, hdr;
3941         u32 pay_len, mss;
3942         dma_addr_t des;
3943         int i;
3944
3945         tx_q = &priv->tx_queue[queue];
3946         first_tx = tx_q->cur_tx;
3947
3948         /* Compute header lengths */
3949         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3950                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3951                 hdr = sizeof(struct udphdr);
3952         } else {
3953                 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3954                 hdr = tcp_hdrlen(skb);
3955         }
3956
3957         /* Desc availability based on threshold should be enough safe */
3958         if (unlikely(stmmac_tx_avail(priv, queue) <
3959                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3960                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3961                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3962                                                                 queue));
3963                         /* This is a hard error, log it. */
3964                         netdev_err(priv->dev,
3965                                    "%s: Tx Ring full when queue awake\n",
3966                                    __func__);
3967                 }
3968                 return NETDEV_TX_BUSY;
3969         }
3970
3971         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3972
3973         mss = skb_shinfo(skb)->gso_size;
3974
3975         /* set new MSS value if needed */
3976         if (mss != tx_q->mss) {
3977                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3978                         mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3979                 else
3980                         mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3981
3982                 stmmac_set_mss(priv, mss_desc, mss);
3983                 tx_q->mss = mss;
3984                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3985                                                 priv->dma_tx_size);
3986                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3987         }
3988
3989         if (netif_msg_tx_queued(priv)) {
3990                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3991                         __func__, hdr, proto_hdr_len, pay_len, mss);
3992                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3993                         skb->data_len);
3994         }
3995
3996         /* Check if VLAN can be inserted by HW */
3997         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3998
3999         first_entry = tx_q->cur_tx;
4000         WARN_ON(tx_q->tx_skbuff[first_entry]);
4001
4002         if (tx_q->tbs & STMMAC_TBS_AVAIL)
4003                 desc = &tx_q->dma_entx[first_entry].basic;
4004         else
4005                 desc = &tx_q->dma_tx[first_entry];
4006         first = desc;
4007
4008         if (has_vlan)
4009                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4010
4011         /* first descriptor: fill Headers on Buf1 */
4012         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4013                              DMA_TO_DEVICE);
4014         if (dma_mapping_error(priv->device, des))
4015                 goto dma_map_err;
4016
4017         tx_q->tx_skbuff_dma[first_entry].buf = des;
4018         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4019         tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4020         tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4021
4022         if (priv->dma_cap.addr64 <= 32) {
4023                 first->des0 = cpu_to_le32(des);
4024
4025                 /* Fill start of payload in buff2 of first descriptor */
4026                 if (pay_len)
4027                         first->des1 = cpu_to_le32(des + proto_hdr_len);
4028
4029                 /* If needed take extra descriptors to fill the remaining payload */
4030                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4031         } else {
4032                 stmmac_set_desc_addr(priv, first, des);
4033                 tmp_pay_len = pay_len;
4034                 des += proto_hdr_len;
4035                 pay_len = 0;
4036         }
4037
4038         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4039
4040         /* Prepare fragments */
4041         for (i = 0; i < nfrags; i++) {
4042                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4043
4044                 des = skb_frag_dma_map(priv->device, frag, 0,
4045                                        skb_frag_size(frag),
4046                                        DMA_TO_DEVICE);
4047                 if (dma_mapping_error(priv->device, des))
4048                         goto dma_map_err;
4049
4050                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4051                                      (i == nfrags - 1), queue);
4052
4053                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4054                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4055                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4056                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4057         }
4058
4059         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4060
4061         /* Only the last descriptor gets to point to the skb. */
4062         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4063         tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4064
4065         /* Manage tx mitigation */
4066         tx_packets = (tx_q->cur_tx + 1) - first_tx;
4067         tx_q->tx_count_frames += tx_packets;
4068
4069         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4070                 set_ic = true;
4071         else if (!priv->tx_coal_frames[queue])
4072                 set_ic = false;
4073         else if (tx_packets > priv->tx_coal_frames[queue])
4074                 set_ic = true;
4075         else if ((tx_q->tx_count_frames %
4076                   priv->tx_coal_frames[queue]) < tx_packets)
4077                 set_ic = true;
4078         else
4079                 set_ic = false;
4080
4081         if (set_ic) {
4082                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4083                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4084                 else
4085                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4086
4087                 tx_q->tx_count_frames = 0;
4088                 stmmac_set_tx_ic(priv, desc);
4089                 priv->xstats.tx_set_ic_bit++;
4090         }
4091
4092         /* We've used all descriptors we need for this skb, however,
4093          * advance cur_tx so that it references a fresh descriptor.
4094          * ndo_start_xmit will fill this descriptor the next time it's
4095          * called and stmmac_tx_clean may clean up to this descriptor.
4096          */
4097         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4098
4099         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4100                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4101                           __func__);
4102                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4103         }
4104
4105         dev->stats.tx_bytes += skb->len;
4106         priv->xstats.tx_tso_frames++;
4107         priv->xstats.tx_tso_nfrags += nfrags;
4108
4109         if (priv->sarc_type)
4110                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4111
4112         skb_tx_timestamp(skb);
4113
4114         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4115                      priv->hwts_tx_en)) {
4116                 /* declare that device is doing timestamping */
4117                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4118                 stmmac_enable_tx_timestamp(priv, first);
4119         }
4120
4121         /* Complete the first descriptor before granting the DMA */
4122         stmmac_prepare_tso_tx_desc(priv, first, 1,
4123                         proto_hdr_len,
4124                         pay_len,
4125                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4126                         hdr / 4, (skb->len - proto_hdr_len));
4127
4128         /* If context desc is used to change MSS */
4129         if (mss_desc) {
4130                 /* Make sure that first descriptor has been completely
4131                  * written, including its own bit. This is because MSS is
4132                  * actually before first descriptor, so we need to make
4133                  * sure that MSS's own bit is the last thing written.
4134                  */
4135                 dma_wmb();
4136                 stmmac_set_tx_owner(priv, mss_desc);
4137         }
4138
4139         if (netif_msg_pktdata(priv)) {
4140                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4141                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4142                         tx_q->cur_tx, first, nfrags);
4143                 pr_info(">>> frame to be transmitted: ");
4144                 print_pkt(skb->data, skb_headlen(skb));
4145         }
4146
4147         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4148
4149         stmmac_flush_tx_descriptors(priv, queue);
4150         stmmac_tx_timer_arm(priv, queue);
4151
4152         return NETDEV_TX_OK;
4153
4154 dma_map_err:
4155         dev_err(priv->device, "Tx dma map failed\n");
4156         dev_kfree_skb(skb);
4157         priv->dev->stats.tx_dropped++;
4158         return NETDEV_TX_OK;
4159 }
4160
4161 /**
4162  *  stmmac_xmit - Tx entry point of the driver
4163  *  @skb : the socket buffer
4164  *  @dev : device pointer
4165  *  Description : this is the tx entry point of the driver.
4166  *  It programs the chain or the ring and supports oversized frames
4167  *  and SG feature.
4168  */
4169 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4170 {
4171         unsigned int first_entry, tx_packets, enh_desc;
4172         struct stmmac_priv *priv = netdev_priv(dev);
4173         unsigned int nopaged_len = skb_headlen(skb);
4174         int i, csum_insertion = 0, is_jumbo = 0;
4175         u32 queue = skb_get_queue_mapping(skb);
4176         int nfrags = skb_shinfo(skb)->nr_frags;
4177         int gso = skb_shinfo(skb)->gso_type;
4178         struct dma_edesc *tbs_desc = NULL;
4179         struct dma_desc *desc, *first;
4180         struct stmmac_tx_queue *tx_q;
4181         bool has_vlan, set_ic;
4182         int entry, first_tx;
4183         dma_addr_t des;
4184
4185         tx_q = &priv->tx_queue[queue];
4186         first_tx = tx_q->cur_tx;
4187
4188         if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4189                 stmmac_disable_eee_mode(priv);
4190
4191         /* Manage oversized TCP frames for GMAC4 device */
4192         if (skb_is_gso(skb) && priv->tso) {
4193                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4194                         return stmmac_tso_xmit(skb, dev);
4195                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4196                         return stmmac_tso_xmit(skb, dev);
4197         }
4198
4199         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4200                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4201                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4202                                                                 queue));
4203                         /* This is a hard error, log it. */
4204                         netdev_err(priv->dev,
4205                                    "%s: Tx Ring full when queue awake\n",
4206                                    __func__);
4207                 }
4208                 return NETDEV_TX_BUSY;
4209         }
4210
4211         /* Check if VLAN can be inserted by HW */
4212         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4213
4214         entry = tx_q->cur_tx;
4215         first_entry = entry;
4216         WARN_ON(tx_q->tx_skbuff[first_entry]);
4217
4218         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4219
4220         if (likely(priv->extend_desc))
4221                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4222         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4223                 desc = &tx_q->dma_entx[entry].basic;
4224         else
4225                 desc = tx_q->dma_tx + entry;
4226
4227         first = desc;
4228
4229         if (has_vlan)
4230                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4231
4232         enh_desc = priv->plat->enh_desc;
4233         /* To program the descriptors according to the size of the frame */
4234         if (enh_desc)
4235                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4236
4237         if (unlikely(is_jumbo)) {
4238                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4239                 if (unlikely(entry < 0) && (entry != -EINVAL))
4240                         goto dma_map_err;
4241         }
4242
4243         for (i = 0; i < nfrags; i++) {
4244                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4245                 int len = skb_frag_size(frag);
4246                 bool last_segment = (i == (nfrags - 1));
4247
4248                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4249                 WARN_ON(tx_q->tx_skbuff[entry]);
4250
4251                 if (likely(priv->extend_desc))
4252                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4253                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4254                         desc = &tx_q->dma_entx[entry].basic;
4255                 else
4256                         desc = tx_q->dma_tx + entry;
4257
4258                 des = skb_frag_dma_map(priv->device, frag, 0, len,
4259                                        DMA_TO_DEVICE);
4260                 if (dma_mapping_error(priv->device, des))
4261                         goto dma_map_err; /* should reuse desc w/o issues */
4262
4263                 tx_q->tx_skbuff_dma[entry].buf = des;
4264
4265                 stmmac_set_desc_addr(priv, desc, des);
4266
4267                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4268                 tx_q->tx_skbuff_dma[entry].len = len;
4269                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4270                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4271
4272                 /* Prepare the descriptor and set the own bit too */
4273                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4274                                 priv->mode, 1, last_segment, skb->len);
4275         }
4276
4277         /* Only the last descriptor gets to point to the skb. */
4278         tx_q->tx_skbuff[entry] = skb;
4279         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4280
4281         /* According to the coalesce parameter the IC bit for the latest
4282          * segment is reset and the timer re-started to clean the tx status.
4283          * This approach takes care about the fragments: desc is the first
4284          * element in case of no SG.
4285          */
4286         tx_packets = (entry + 1) - first_tx;
4287         tx_q->tx_count_frames += tx_packets;
4288
4289         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4290                 set_ic = true;
4291         else if (!priv->tx_coal_frames[queue])
4292                 set_ic = false;
4293         else if (tx_packets > priv->tx_coal_frames[queue])
4294                 set_ic = true;
4295         else if ((tx_q->tx_count_frames %
4296                   priv->tx_coal_frames[queue]) < tx_packets)
4297                 set_ic = true;
4298         else
4299                 set_ic = false;
4300
4301         if (set_ic) {
4302                 if (likely(priv->extend_desc))
4303                         desc = &tx_q->dma_etx[entry].basic;
4304                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4305                         desc = &tx_q->dma_entx[entry].basic;
4306                 else
4307                         desc = &tx_q->dma_tx[entry];
4308
4309                 tx_q->tx_count_frames = 0;
4310                 stmmac_set_tx_ic(priv, desc);
4311                 priv->xstats.tx_set_ic_bit++;
4312         }
4313
4314         /* We've used all descriptors we need for this skb, however,
4315          * advance cur_tx so that it references a fresh descriptor.
4316          * ndo_start_xmit will fill this descriptor the next time it's
4317          * called and stmmac_tx_clean may clean up to this descriptor.
4318          */
4319         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4320         tx_q->cur_tx = entry;
4321
4322         if (netif_msg_pktdata(priv)) {
4323                 netdev_dbg(priv->dev,
4324                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4325                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4326                            entry, first, nfrags);
4327
4328                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4329                 print_pkt(skb->data, skb->len);
4330         }
4331
4332         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4333                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4334                           __func__);
4335                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4336         }
4337
4338         dev->stats.tx_bytes += skb->len;
4339
4340         if (priv->sarc_type)
4341                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4342
4343         skb_tx_timestamp(skb);
4344
4345         /* Ready to fill the first descriptor and set the OWN bit w/o any
4346          * problems because all the descriptors are actually ready to be
4347          * passed to the DMA engine.
4348          */
4349         if (likely(!is_jumbo)) {
4350                 bool last_segment = (nfrags == 0);
4351
4352                 des = dma_map_single(priv->device, skb->data,
4353                                      nopaged_len, DMA_TO_DEVICE);
4354                 if (dma_mapping_error(priv->device, des))
4355                         goto dma_map_err;
4356
4357                 tx_q->tx_skbuff_dma[first_entry].buf = des;
4358                 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4359                 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4360
4361                 stmmac_set_desc_addr(priv, first, des);
4362
4363                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4364                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4365
4366                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4367                              priv->hwts_tx_en)) {
4368                         /* declare that device is doing timestamping */
4369                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4370                         stmmac_enable_tx_timestamp(priv, first);
4371                 }
4372
4373                 /* Prepare the first descriptor setting the OWN bit too */
4374                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4375                                 csum_insertion, priv->mode, 0, last_segment,
4376                                 skb->len);
4377         }
4378
4379         if (tx_q->tbs & STMMAC_TBS_EN) {
4380                 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4381
4382                 tbs_desc = &tx_q->dma_entx[first_entry];
4383                 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4384         }
4385
4386         stmmac_set_tx_owner(priv, first);
4387
4388         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4389
4390         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4391
4392         stmmac_flush_tx_descriptors(priv, queue);
4393         stmmac_tx_timer_arm(priv, queue);
4394
4395         return NETDEV_TX_OK;
4396
4397 dma_map_err:
4398         netdev_err(priv->dev, "Tx DMA map failed\n");
4399         dev_kfree_skb(skb);
4400         priv->dev->stats.tx_dropped++;
4401         return NETDEV_TX_OK;
4402 }
4403
4404 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4405 {
4406         struct vlan_ethhdr *veth;
4407         __be16 vlan_proto;
4408         u16 vlanid;
4409
4410         veth = (struct vlan_ethhdr *)skb->data;
4411         vlan_proto = veth->h_vlan_proto;
4412
4413         if ((vlan_proto == htons(ETH_P_8021Q) &&
4414              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4415             (vlan_proto == htons(ETH_P_8021AD) &&
4416              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4417                 /* pop the vlan tag */
4418                 vlanid = ntohs(veth->h_vlan_TCI);
4419                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4420                 skb_pull(skb, VLAN_HLEN);
4421                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4422         }
4423 }
4424
4425 /**
4426  * stmmac_rx_refill - refill used skb preallocated buffers
4427  * @priv: driver private structure
4428  * @queue: RX queue index
4429  * Description : this is to reallocate the skb for the reception process
4430  * that is based on zero-copy.
4431  */
4432 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4433 {
4434         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4435         int dirty = stmmac_rx_dirty(priv, queue);
4436         unsigned int entry = rx_q->dirty_rx;
4437
4438         while (dirty-- > 0) {
4439                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4440                 struct dma_desc *p;
4441                 bool use_rx_wd;
4442
4443                 if (priv->extend_desc)
4444                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4445                 else
4446                         p = rx_q->dma_rx + entry;
4447
4448                 if (!buf->page) {
4449                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
4450                         if (!buf->page)
4451                                 break;
4452                 }
4453
4454                 if (priv->sph && !buf->sec_page) {
4455                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
4456                         if (!buf->sec_page)
4457                                 break;
4458
4459                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4460                 }
4461
4462                 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4463
4464                 stmmac_set_desc_addr(priv, p, buf->addr);
4465                 if (priv->sph)
4466                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4467                 else
4468                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4469                 stmmac_refill_desc3(priv, rx_q, p);
4470
4471                 rx_q->rx_count_frames++;
4472                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4473                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4474                         rx_q->rx_count_frames = 0;
4475
4476                 use_rx_wd = !priv->rx_coal_frames[queue];
4477                 use_rx_wd |= rx_q->rx_count_frames > 0;
4478                 if (!priv->use_riwt)
4479                         use_rx_wd = false;
4480
4481                 dma_wmb();
4482                 stmmac_set_rx_owner(priv, p, use_rx_wd);
4483
4484                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4485         }
4486         rx_q->dirty_rx = entry;
4487         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4488                             (rx_q->dirty_rx * sizeof(struct dma_desc));
4489         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4490 }
4491
4492 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4493                                        struct dma_desc *p,
4494                                        int status, unsigned int len)
4495 {
4496         unsigned int plen = 0, hlen = 0;
4497         int coe = priv->hw->rx_csum;
4498
4499         /* Not first descriptor, buffer is always zero */
4500         if (priv->sph && len)
4501                 return 0;
4502
4503         /* First descriptor, get split header length */
4504         stmmac_get_rx_header_len(priv, p, &hlen);
4505         if (priv->sph && hlen) {
4506                 priv->xstats.rx_split_hdr_pkt_n++;
4507                 return hlen;
4508         }
4509
4510         /* First descriptor, not last descriptor and not split header */
4511         if (status & rx_not_ls)
4512                 return priv->dma_buf_sz;
4513
4514         plen = stmmac_get_rx_frame_len(priv, p, coe);
4515
4516         /* First descriptor and last descriptor and not split header */
4517         return min_t(unsigned int, priv->dma_buf_sz, plen);
4518 }
4519
4520 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4521                                        struct dma_desc *p,
4522                                        int status, unsigned int len)
4523 {
4524         int coe = priv->hw->rx_csum;
4525         unsigned int plen = 0;
4526
4527         /* Not split header, buffer is not available */
4528         if (!priv->sph)
4529                 return 0;
4530
4531         /* Not last descriptor */
4532         if (status & rx_not_ls)
4533                 return priv->dma_buf_sz;
4534
4535         plen = stmmac_get_rx_frame_len(priv, p, coe);
4536
4537         /* Last descriptor */
4538         return plen - len;
4539 }
4540
4541 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4542                                 struct xdp_frame *xdpf, bool dma_map)
4543 {
4544         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4545         unsigned int entry = tx_q->cur_tx;
4546         struct dma_desc *tx_desc;
4547         dma_addr_t dma_addr;
4548         bool set_ic;
4549
4550         if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4551                 return STMMAC_XDP_CONSUMED;
4552
4553         if (likely(priv->extend_desc))
4554                 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4555         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4556                 tx_desc = &tx_q->dma_entx[entry].basic;
4557         else
4558                 tx_desc = tx_q->dma_tx + entry;
4559
4560         if (dma_map) {
4561                 dma_addr = dma_map_single(priv->device, xdpf->data,
4562                                           xdpf->len, DMA_TO_DEVICE);
4563                 if (dma_mapping_error(priv->device, dma_addr))
4564                         return STMMAC_XDP_CONSUMED;
4565
4566                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4567         } else {
4568                 struct page *page = virt_to_page(xdpf->data);
4569
4570                 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4571                            xdpf->headroom;
4572                 dma_sync_single_for_device(priv->device, dma_addr,
4573                                            xdpf->len, DMA_BIDIRECTIONAL);
4574
4575                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4576         }
4577
4578         tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4579         tx_q->tx_skbuff_dma[entry].map_as_page = false;
4580         tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4581         tx_q->tx_skbuff_dma[entry].last_segment = true;
4582         tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4583
4584         tx_q->xdpf[entry] = xdpf;
4585
4586         stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4587
4588         stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4589                                true, priv->mode, true, true,
4590                                xdpf->len);
4591
4592         tx_q->tx_count_frames++;
4593
4594         if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4595                 set_ic = true;
4596         else
4597                 set_ic = false;
4598
4599         if (set_ic) {
4600                 tx_q->tx_count_frames = 0;
4601                 stmmac_set_tx_ic(priv, tx_desc);
4602                 priv->xstats.tx_set_ic_bit++;
4603         }
4604
4605         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4606
4607         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4608         tx_q->cur_tx = entry;
4609
4610         return STMMAC_XDP_TX;
4611 }
4612
4613 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4614                                    int cpu)
4615 {
4616         int index = cpu;
4617
4618         if (unlikely(index < 0))
4619                 index = 0;
4620
4621         while (index >= priv->plat->tx_queues_to_use)
4622                 index -= priv->plat->tx_queues_to_use;
4623
4624         return index;
4625 }
4626
4627 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4628                                 struct xdp_buff *xdp)
4629 {
4630         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4631         int cpu = smp_processor_id();
4632         struct netdev_queue *nq;
4633         int queue;
4634         int res;
4635
4636         if (unlikely(!xdpf))
4637                 return STMMAC_XDP_CONSUMED;
4638
4639         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4640         nq = netdev_get_tx_queue(priv->dev, queue);
4641
4642         __netif_tx_lock(nq, cpu);
4643         /* Avoids TX time-out as we are sharing with slow path */
4644         nq->trans_start = jiffies;
4645
4646         res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4647         if (res == STMMAC_XDP_TX)
4648                 stmmac_flush_tx_descriptors(priv, queue);
4649
4650         __netif_tx_unlock(nq);
4651
4652         return res;
4653 }
4654
4655 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4656                                  struct bpf_prog *prog,
4657                                  struct xdp_buff *xdp)
4658 {
4659         u32 act;
4660         int res;
4661
4662         act = bpf_prog_run_xdp(prog, xdp);
4663         switch (act) {
4664         case XDP_PASS:
4665                 res = STMMAC_XDP_PASS;
4666                 break;
4667         case XDP_TX:
4668                 res = stmmac_xdp_xmit_back(priv, xdp);
4669                 break;
4670         case XDP_REDIRECT:
4671                 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4672                         res = STMMAC_XDP_CONSUMED;
4673                 else
4674                         res = STMMAC_XDP_REDIRECT;
4675                 break;
4676         default:
4677                 bpf_warn_invalid_xdp_action(act);
4678                 fallthrough;
4679         case XDP_ABORTED:
4680                 trace_xdp_exception(priv->dev, prog, act);
4681                 fallthrough;
4682         case XDP_DROP:
4683                 res = STMMAC_XDP_CONSUMED;
4684                 break;
4685         }
4686
4687         return res;
4688 }
4689
4690 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4691                                            struct xdp_buff *xdp)
4692 {
4693         struct bpf_prog *prog;
4694         int res;
4695
4696         prog = READ_ONCE(priv->xdp_prog);
4697         if (!prog) {
4698                 res = STMMAC_XDP_PASS;
4699                 goto out;
4700         }
4701
4702         res = __stmmac_xdp_run_prog(priv, prog, xdp);
4703 out:
4704         return ERR_PTR(-res);
4705 }
4706
4707 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4708                                    int xdp_status)
4709 {
4710         int cpu = smp_processor_id();
4711         int queue;
4712
4713         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4714
4715         if (xdp_status & STMMAC_XDP_TX)
4716                 stmmac_tx_timer_arm(priv, queue);
4717
4718         if (xdp_status & STMMAC_XDP_REDIRECT)
4719                 xdp_do_flush();
4720 }
4721
4722 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4723                                                struct xdp_buff *xdp)
4724 {
4725         unsigned int metasize = xdp->data - xdp->data_meta;
4726         unsigned int datasize = xdp->data_end - xdp->data;
4727         struct sk_buff *skb;
4728
4729         skb = __napi_alloc_skb(&ch->rxtx_napi,
4730                                xdp->data_end - xdp->data_hard_start,
4731                                GFP_ATOMIC | __GFP_NOWARN);
4732         if (unlikely(!skb))
4733                 return NULL;
4734
4735         skb_reserve(skb, xdp->data - xdp->data_hard_start);
4736         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4737         if (metasize)
4738                 skb_metadata_set(skb, metasize);
4739
4740         return skb;
4741 }
4742
4743 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4744                                    struct dma_desc *p, struct dma_desc *np,
4745                                    struct xdp_buff *xdp)
4746 {
4747         struct stmmac_channel *ch = &priv->channel[queue];
4748         unsigned int len = xdp->data_end - xdp->data;
4749         enum pkt_hash_types hash_type;
4750         int coe = priv->hw->rx_csum;
4751         struct sk_buff *skb;
4752         u32 hash;
4753
4754         skb = stmmac_construct_skb_zc(ch, xdp);
4755         if (!skb) {
4756                 priv->dev->stats.rx_dropped++;
4757                 return;
4758         }
4759
4760         stmmac_get_rx_hwtstamp(priv, p, np, skb);
4761         stmmac_rx_vlan(priv->dev, skb);
4762         skb->protocol = eth_type_trans(skb, priv->dev);
4763
4764         if (unlikely(!coe))
4765                 skb_checksum_none_assert(skb);
4766         else
4767                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4768
4769         if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4770                 skb_set_hash(skb, hash, hash_type);
4771
4772         skb_record_rx_queue(skb, queue);
4773         napi_gro_receive(&ch->rxtx_napi, skb);
4774
4775         priv->dev->stats.rx_packets++;
4776         priv->dev->stats.rx_bytes += len;
4777 }
4778
4779 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4780 {
4781         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4782         unsigned int entry = rx_q->dirty_rx;
4783         struct dma_desc *rx_desc = NULL;
4784         bool ret = true;
4785
4786         budget = min(budget, stmmac_rx_dirty(priv, queue));
4787
4788         while (budget-- > 0 && entry != rx_q->cur_rx) {
4789                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4790                 dma_addr_t dma_addr;
4791                 bool use_rx_wd;
4792
4793                 if (!buf->xdp) {
4794                         buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4795                         if (!buf->xdp) {
4796                                 ret = false;
4797                                 break;
4798                         }
4799                 }
4800
4801                 if (priv->extend_desc)
4802                         rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4803                 else
4804                         rx_desc = rx_q->dma_rx + entry;
4805
4806                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4807                 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4808                 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4809                 stmmac_refill_desc3(priv, rx_q, rx_desc);
4810
4811                 rx_q->rx_count_frames++;
4812                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4813                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4814                         rx_q->rx_count_frames = 0;
4815
4816                 use_rx_wd = !priv->rx_coal_frames[queue];
4817                 use_rx_wd |= rx_q->rx_count_frames > 0;
4818                 if (!priv->use_riwt)
4819                         use_rx_wd = false;
4820
4821                 dma_wmb();
4822                 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4823
4824                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4825         }
4826
4827         if (rx_desc) {
4828                 rx_q->dirty_rx = entry;
4829                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4830                                      (rx_q->dirty_rx * sizeof(struct dma_desc));
4831                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4832         }
4833
4834         return ret;
4835 }
4836
4837 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4838 {
4839         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4840         unsigned int count = 0, error = 0, len = 0;
4841         int dirty = stmmac_rx_dirty(priv, queue);
4842         unsigned int next_entry = rx_q->cur_rx;
4843         unsigned int desc_size;
4844         struct bpf_prog *prog;
4845         bool failure = false;
4846         int xdp_status = 0;
4847         int status = 0;
4848
4849         if (netif_msg_rx_status(priv)) {
4850                 void *rx_head;
4851
4852                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4853                 if (priv->extend_desc) {
4854                         rx_head = (void *)rx_q->dma_erx;
4855                         desc_size = sizeof(struct dma_extended_desc);
4856                 } else {
4857                         rx_head = (void *)rx_q->dma_rx;
4858                         desc_size = sizeof(struct dma_desc);
4859                 }
4860
4861                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4862                                     rx_q->dma_rx_phy, desc_size);
4863         }
4864         while (count < limit) {
4865                 struct stmmac_rx_buffer *buf;
4866                 unsigned int buf1_len = 0;
4867                 struct dma_desc *np, *p;
4868                 int entry;
4869                 int res;
4870
4871                 if (!count && rx_q->state_saved) {
4872                         error = rx_q->state.error;
4873                         len = rx_q->state.len;
4874                 } else {
4875                         rx_q->state_saved = false;
4876                         error = 0;
4877                         len = 0;
4878                 }
4879
4880                 if (count >= limit)
4881                         break;
4882
4883 read_again:
4884                 buf1_len = 0;
4885                 entry = next_entry;
4886                 buf = &rx_q->buf_pool[entry];
4887
4888                 if (dirty >= STMMAC_RX_FILL_BATCH) {
4889                         failure = failure ||
4890                                   !stmmac_rx_refill_zc(priv, queue, dirty);
4891                         dirty = 0;
4892                 }
4893
4894                 if (priv->extend_desc)
4895                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4896                 else
4897                         p = rx_q->dma_rx + entry;
4898
4899                 /* read the status of the incoming frame */
4900                 status = stmmac_rx_status(priv, &priv->dev->stats,
4901                                           &priv->xstats, p);
4902                 /* check if managed by the DMA otherwise go ahead */
4903                 if (unlikely(status & dma_own))
4904                         break;
4905
4906                 /* Prefetch the next RX descriptor */
4907                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4908                                                 priv->dma_rx_size);
4909                 next_entry = rx_q->cur_rx;
4910
4911                 if (priv->extend_desc)
4912                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4913                 else
4914                         np = rx_q->dma_rx + next_entry;
4915
4916                 prefetch(np);
4917
4918                 /* Ensure a valid XSK buffer before proceed */
4919                 if (!buf->xdp)
4920                         break;
4921
4922                 if (priv->extend_desc)
4923                         stmmac_rx_extended_status(priv, &priv->dev->stats,
4924                                                   &priv->xstats,
4925                                                   rx_q->dma_erx + entry);
4926                 if (unlikely(status == discard_frame)) {
4927                         xsk_buff_free(buf->xdp);
4928                         buf->xdp = NULL;
4929                         dirty++;
4930                         error = 1;
4931                         if (!priv->hwts_rx_en)
4932                                 priv->dev->stats.rx_errors++;
4933                 }
4934
4935                 if (unlikely(error && (status & rx_not_ls)))
4936                         goto read_again;
4937                 if (unlikely(error)) {
4938                         count++;
4939                         continue;
4940                 }
4941
4942                 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4943                 if (likely(status & rx_not_ls)) {
4944                         xsk_buff_free(buf->xdp);
4945                         buf->xdp = NULL;
4946                         dirty++;
4947                         count++;
4948                         goto read_again;
4949                 }
4950
4951                 /* XDP ZC Frame only support primary buffers for now */
4952                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4953                 len += buf1_len;
4954
4955                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4956                  * Type frames (LLC/LLC-SNAP)
4957                  *
4958                  * llc_snap is never checked in GMAC >= 4, so this ACS
4959                  * feature is always disabled and packets need to be
4960                  * stripped manually.
4961                  */
4962                 if (likely(!(status & rx_not_ls)) &&
4963                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4964                      unlikely(status != llc_snap))) {
4965                         buf1_len -= ETH_FCS_LEN;
4966                         len -= ETH_FCS_LEN;
4967                 }
4968
4969                 /* RX buffer is good and fit into a XSK pool buffer */
4970                 buf->xdp->data_end = buf->xdp->data + buf1_len;
4971                 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4972
4973                 prog = READ_ONCE(priv->xdp_prog);
4974                 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4975
4976                 switch (res) {
4977                 case STMMAC_XDP_PASS:
4978                         stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4979                         xsk_buff_free(buf->xdp);
4980                         break;
4981                 case STMMAC_XDP_CONSUMED:
4982                         xsk_buff_free(buf->xdp);
4983                         priv->dev->stats.rx_dropped++;
4984                         break;
4985                 case STMMAC_XDP_TX:
4986                 case STMMAC_XDP_REDIRECT:
4987                         xdp_status |= res;
4988                         break;
4989                 }
4990
4991                 buf->xdp = NULL;
4992                 dirty++;
4993                 count++;
4994         }
4995
4996         if (status & rx_not_ls) {
4997                 rx_q->state_saved = true;
4998                 rx_q->state.error = error;
4999                 rx_q->state.len = len;
5000         }
5001
5002         stmmac_finalize_xdp_rx(priv, xdp_status);
5003
5004         priv->xstats.rx_pkt_n += count;
5005         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5006
5007         if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5008                 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5009                         xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5010                 else
5011                         xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5012
5013                 return (int)count;
5014         }
5015
5016         return failure ? limit : (int)count;
5017 }
5018
5019 /**
5020  * stmmac_rx - manage the receive process
5021  * @priv: driver private structure
5022  * @limit: napi bugget
5023  * @queue: RX queue index.
5024  * Description :  this the function called by the napi poll method.
5025  * It gets all the frames inside the ring.
5026  */
5027 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5028 {
5029         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5030         struct stmmac_channel *ch = &priv->channel[queue];
5031         unsigned int count = 0, error = 0, len = 0;
5032         int status = 0, coe = priv->hw->rx_csum;
5033         unsigned int next_entry = rx_q->cur_rx;
5034         enum dma_data_direction dma_dir;
5035         unsigned int desc_size;
5036         struct sk_buff *skb = NULL;
5037         struct xdp_buff xdp;
5038         int xdp_status = 0;
5039         int buf_sz;
5040
5041         dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5042         buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5043
5044         if (netif_msg_rx_status(priv)) {
5045                 void *rx_head;
5046
5047                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5048                 if (priv->extend_desc) {
5049                         rx_head = (void *)rx_q->dma_erx;
5050                         desc_size = sizeof(struct dma_extended_desc);
5051                 } else {
5052                         rx_head = (void *)rx_q->dma_rx;
5053                         desc_size = sizeof(struct dma_desc);
5054                 }
5055
5056                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5057                                     rx_q->dma_rx_phy, desc_size);
5058         }
5059         while (count < limit) {
5060                 unsigned int buf1_len = 0, buf2_len = 0;
5061                 enum pkt_hash_types hash_type;
5062                 struct stmmac_rx_buffer *buf;
5063                 struct dma_desc *np, *p;
5064                 int entry;
5065                 u32 hash;
5066
5067                 if (!count && rx_q->state_saved) {
5068                         skb = rx_q->state.skb;
5069                         error = rx_q->state.error;
5070                         len = rx_q->state.len;
5071                 } else {
5072                         rx_q->state_saved = false;
5073                         skb = NULL;
5074                         error = 0;
5075                         len = 0;
5076                 }
5077
5078                 if (count >= limit)
5079                         break;
5080
5081 read_again:
5082                 buf1_len = 0;
5083                 buf2_len = 0;
5084                 entry = next_entry;
5085                 buf = &rx_q->buf_pool[entry];
5086
5087                 if (priv->extend_desc)
5088                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5089                 else
5090                         p = rx_q->dma_rx + entry;
5091
5092                 /* read the status of the incoming frame */
5093                 status = stmmac_rx_status(priv, &priv->dev->stats,
5094                                 &priv->xstats, p);
5095                 /* check if managed by the DMA otherwise go ahead */
5096                 if (unlikely(status & dma_own))
5097                         break;
5098
5099                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5100                                                 priv->dma_rx_size);
5101                 next_entry = rx_q->cur_rx;
5102
5103                 if (priv->extend_desc)
5104                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5105                 else
5106                         np = rx_q->dma_rx + next_entry;
5107
5108                 prefetch(np);
5109
5110                 if (priv->extend_desc)
5111                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5112                                         &priv->xstats, rx_q->dma_erx + entry);
5113                 if (unlikely(status == discard_frame)) {
5114                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5115                         buf->page = NULL;
5116                         error = 1;
5117                         if (!priv->hwts_rx_en)
5118                                 priv->dev->stats.rx_errors++;
5119                 }
5120
5121                 if (unlikely(error && (status & rx_not_ls)))
5122                         goto read_again;
5123                 if (unlikely(error)) {
5124                         dev_kfree_skb(skb);
5125                         skb = NULL;
5126                         count++;
5127                         continue;
5128                 }
5129
5130                 /* Buffer is good. Go on. */
5131
5132                 prefetch(page_address(buf->page) + buf->page_offset);
5133                 if (buf->sec_page)
5134                         prefetch(page_address(buf->sec_page));
5135
5136                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5137                 len += buf1_len;
5138                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5139                 len += buf2_len;
5140
5141                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5142                  * Type frames (LLC/LLC-SNAP)
5143                  *
5144                  * llc_snap is never checked in GMAC >= 4, so this ACS
5145                  * feature is always disabled and packets need to be
5146                  * stripped manually.
5147                  */
5148                 if (likely(!(status & rx_not_ls)) &&
5149                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5150                      unlikely(status != llc_snap))) {
5151                         if (buf2_len)
5152                                 buf2_len -= ETH_FCS_LEN;
5153                         else
5154                                 buf1_len -= ETH_FCS_LEN;
5155
5156                         len -= ETH_FCS_LEN;
5157                 }
5158
5159                 if (!skb) {
5160                         unsigned int pre_len, sync_len;
5161
5162                         dma_sync_single_for_cpu(priv->device, buf->addr,
5163                                                 buf1_len, dma_dir);
5164
5165                         xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5166                         xdp_prepare_buff(&xdp, page_address(buf->page),
5167                                          buf->page_offset, buf1_len, false);
5168
5169                         pre_len = xdp.data_end - xdp.data_hard_start -
5170                                   buf->page_offset;
5171                         skb = stmmac_xdp_run_prog(priv, &xdp);
5172                         /* Due xdp_adjust_tail: DMA sync for_device
5173                          * cover max len CPU touch
5174                          */
5175                         sync_len = xdp.data_end - xdp.data_hard_start -
5176                                    buf->page_offset;
5177                         sync_len = max(sync_len, pre_len);
5178
5179                         /* For Not XDP_PASS verdict */
5180                         if (IS_ERR(skb)) {
5181                                 unsigned int xdp_res = -PTR_ERR(skb);
5182
5183                                 if (xdp_res & STMMAC_XDP_CONSUMED) {
5184                                         page_pool_put_page(rx_q->page_pool,
5185                                                            virt_to_head_page(xdp.data),
5186                                                            sync_len, true);
5187                                         buf->page = NULL;
5188                                         priv->dev->stats.rx_dropped++;
5189
5190                                         /* Clear skb as it was set as
5191                                          * status by XDP program.
5192                                          */
5193                                         skb = NULL;
5194
5195                                         if (unlikely((status & rx_not_ls)))
5196                                                 goto read_again;
5197
5198                                         count++;
5199                                         continue;
5200                                 } else if (xdp_res & (STMMAC_XDP_TX |
5201                                                       STMMAC_XDP_REDIRECT)) {
5202                                         xdp_status |= xdp_res;
5203                                         buf->page = NULL;
5204                                         skb = NULL;
5205                                         count++;
5206                                         continue;
5207                                 }
5208                         }
5209                 }
5210
5211                 if (!skb) {
5212                         /* XDP program may expand or reduce tail */
5213                         buf1_len = xdp.data_end - xdp.data;
5214
5215                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5216                         if (!skb) {
5217                                 priv->dev->stats.rx_dropped++;
5218                                 count++;
5219                                 goto drain_data;
5220                         }
5221
5222                         /* XDP program may adjust header */
5223                         skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5224                         skb_put(skb, buf1_len);
5225
5226                         /* Data payload copied into SKB, page ready for recycle */
5227                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5228                         buf->page = NULL;
5229                 } else if (buf1_len) {
5230                         dma_sync_single_for_cpu(priv->device, buf->addr,
5231                                                 buf1_len, dma_dir);
5232                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5233                                         buf->page, buf->page_offset, buf1_len,
5234                                         priv->dma_buf_sz);
5235
5236                         /* Data payload appended into SKB */
5237                         page_pool_release_page(rx_q->page_pool, buf->page);
5238                         buf->page = NULL;
5239                 }
5240
5241                 if (buf2_len) {
5242                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5243                                                 buf2_len, dma_dir);
5244                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5245                                         buf->sec_page, 0, buf2_len,
5246                                         priv->dma_buf_sz);
5247
5248                         /* Data payload appended into SKB */
5249                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
5250                         buf->sec_page = NULL;
5251                 }
5252
5253 drain_data:
5254                 if (likely(status & rx_not_ls))
5255                         goto read_again;
5256                 if (!skb)
5257                         continue;
5258
5259                 /* Got entire packet into SKB. Finish it. */
5260
5261                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5262                 stmmac_rx_vlan(priv->dev, skb);
5263                 skb->protocol = eth_type_trans(skb, priv->dev);
5264
5265                 if (unlikely(!coe))
5266                         skb_checksum_none_assert(skb);
5267                 else
5268                         skb->ip_summed = CHECKSUM_UNNECESSARY;
5269
5270                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5271                         skb_set_hash(skb, hash, hash_type);
5272
5273                 skb_record_rx_queue(skb, queue);
5274                 napi_gro_receive(&ch->rx_napi, skb);
5275                 skb = NULL;
5276
5277                 priv->dev->stats.rx_packets++;
5278                 priv->dev->stats.rx_bytes += len;
5279                 count++;
5280         }
5281
5282         if (status & rx_not_ls || skb) {
5283                 rx_q->state_saved = true;
5284                 rx_q->state.skb = skb;
5285                 rx_q->state.error = error;
5286                 rx_q->state.len = len;
5287         }
5288
5289         stmmac_finalize_xdp_rx(priv, xdp_status);
5290
5291         stmmac_rx_refill(priv, queue);
5292
5293         priv->xstats.rx_pkt_n += count;
5294         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5295
5296         return count;
5297 }
5298
5299 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5300 {
5301         struct stmmac_channel *ch =
5302                 container_of(napi, struct stmmac_channel, rx_napi);
5303         struct stmmac_priv *priv = ch->priv_data;
5304         u32 chan = ch->index;
5305         int work_done;
5306
5307         priv->xstats.napi_poll++;
5308
5309         work_done = stmmac_rx(priv, budget, chan);
5310         if (work_done < budget && napi_complete_done(napi, work_done)) {
5311                 unsigned long flags;
5312
5313                 spin_lock_irqsave(&ch->lock, flags);
5314                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5315                 spin_unlock_irqrestore(&ch->lock, flags);
5316         }
5317
5318         return work_done;
5319 }
5320
5321 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5322 {
5323         struct stmmac_channel *ch =
5324                 container_of(napi, struct stmmac_channel, tx_napi);
5325         struct stmmac_priv *priv = ch->priv_data;
5326         u32 chan = ch->index;
5327         int work_done;
5328
5329         priv->xstats.napi_poll++;
5330
5331         work_done = stmmac_tx_clean(priv, budget, chan);
5332         work_done = min(work_done, budget);
5333
5334         if (work_done < budget && napi_complete_done(napi, work_done)) {
5335                 unsigned long flags;
5336
5337                 spin_lock_irqsave(&ch->lock, flags);
5338                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5339                 spin_unlock_irqrestore(&ch->lock, flags);
5340         }
5341
5342         return work_done;
5343 }
5344
5345 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5346 {
5347         struct stmmac_channel *ch =
5348                 container_of(napi, struct stmmac_channel, rxtx_napi);
5349         struct stmmac_priv *priv = ch->priv_data;
5350         int rx_done, tx_done;
5351         u32 chan = ch->index;
5352
5353         priv->xstats.napi_poll++;
5354
5355         tx_done = stmmac_tx_clean(priv, budget, chan);
5356         tx_done = min(tx_done, budget);
5357
5358         rx_done = stmmac_rx_zc(priv, budget, chan);
5359
5360         /* If either TX or RX work is not complete, return budget
5361          * and keep pooling
5362          */
5363         if (tx_done >= budget || rx_done >= budget)
5364                 return budget;
5365
5366         /* all work done, exit the polling mode */
5367         if (napi_complete_done(napi, rx_done)) {
5368                 unsigned long flags;
5369
5370                 spin_lock_irqsave(&ch->lock, flags);
5371                 /* Both RX and TX work done are compelte,
5372                  * so enable both RX & TX IRQs.
5373                  */
5374                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5375                 spin_unlock_irqrestore(&ch->lock, flags);
5376         }
5377
5378         return min(rx_done, budget - 1);
5379 }
5380
5381 /**
5382  *  stmmac_tx_timeout
5383  *  @dev : Pointer to net device structure
5384  *  @txqueue: the index of the hanging transmit queue
5385  *  Description: this function is called when a packet transmission fails to
5386  *   complete within a reasonable time. The driver will mark the error in the
5387  *   netdev structure and arrange for the device to be reset to a sane state
5388  *   in order to transmit a new packet.
5389  */
5390 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5391 {
5392         struct stmmac_priv *priv = netdev_priv(dev);
5393
5394         stmmac_global_err(priv);
5395 }
5396
5397 /**
5398  *  stmmac_set_rx_mode - entry point for multicast addressing
5399  *  @dev : pointer to the device structure
5400  *  Description:
5401  *  This function is a driver entry point which gets called by the kernel
5402  *  whenever multicast addresses must be enabled/disabled.
5403  *  Return value:
5404  *  void.
5405  */
5406 static void stmmac_set_rx_mode(struct net_device *dev)
5407 {
5408         struct stmmac_priv *priv = netdev_priv(dev);
5409
5410         stmmac_set_filter(priv, priv->hw, dev);
5411 }
5412
5413 /**
5414  *  stmmac_change_mtu - entry point to change MTU size for the device.
5415  *  @dev : device pointer.
5416  *  @new_mtu : the new MTU size for the device.
5417  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5418  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5419  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5420  *  Return value:
5421  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5422  *  file on failure.
5423  */
5424 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5425 {
5426         struct stmmac_priv *priv = netdev_priv(dev);
5427         int txfifosz = priv->plat->tx_fifo_size;
5428         const int mtu = new_mtu;
5429
5430         if (txfifosz == 0)
5431                 txfifosz = priv->dma_cap.tx_fifo_size;
5432
5433         txfifosz /= priv->plat->tx_queues_to_use;
5434
5435         if (netif_running(dev)) {
5436                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
5437                 return -EBUSY;
5438         }
5439
5440         if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5441                 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5442                 return -EINVAL;
5443         }
5444
5445         new_mtu = STMMAC_ALIGN(new_mtu);
5446
5447         /* If condition true, FIFO is too small or MTU too large */
5448         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5449                 return -EINVAL;
5450
5451         dev->mtu = mtu;
5452
5453         netdev_update_features(dev);
5454
5455         return 0;
5456 }
5457
5458 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5459                                              netdev_features_t features)
5460 {
5461         struct stmmac_priv *priv = netdev_priv(dev);
5462
5463         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5464                 features &= ~NETIF_F_RXCSUM;
5465
5466         if (!priv->plat->tx_coe)
5467                 features &= ~NETIF_F_CSUM_MASK;
5468
5469         /* Some GMAC devices have a bugged Jumbo frame support that
5470          * needs to have the Tx COE disabled for oversized frames
5471          * (due to limited buffer sizes). In this case we disable
5472          * the TX csum insertion in the TDES and not use SF.
5473          */
5474         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5475                 features &= ~NETIF_F_CSUM_MASK;
5476
5477         /* Disable tso if asked by ethtool */
5478         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5479                 if (features & NETIF_F_TSO)
5480                         priv->tso = true;
5481                 else
5482                         priv->tso = false;
5483         }
5484
5485         return features;
5486 }
5487
5488 static int stmmac_set_features(struct net_device *netdev,
5489                                netdev_features_t features)
5490 {
5491         struct stmmac_priv *priv = netdev_priv(netdev);
5492         bool sph_en;
5493         u32 chan;
5494
5495         /* Keep the COE Type in case of csum is supporting */
5496         if (features & NETIF_F_RXCSUM)
5497                 priv->hw->rx_csum = priv->plat->rx_coe;
5498         else
5499                 priv->hw->rx_csum = 0;
5500         /* No check needed because rx_coe has been set before and it will be
5501          * fixed in case of issue.
5502          */
5503         stmmac_rx_ipc(priv, priv->hw);
5504
5505         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5506
5507         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5508                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5509
5510         return 0;
5511 }
5512
5513 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5514 {
5515         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5516         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5517         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5518         bool *hs_enable = &fpe_cfg->hs_enable;
5519
5520         if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5521                 return;
5522
5523         /* If LP has sent verify mPacket, LP is FPE capable */
5524         if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5525                 if (*lp_state < FPE_STATE_CAPABLE)
5526                         *lp_state = FPE_STATE_CAPABLE;
5527
5528                 /* If user has requested FPE enable, quickly response */
5529                 if (*hs_enable)
5530                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5531                                                 MPACKET_RESPONSE);
5532         }
5533
5534         /* If Local has sent verify mPacket, Local is FPE capable */
5535         if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5536                 if (*lo_state < FPE_STATE_CAPABLE)
5537                         *lo_state = FPE_STATE_CAPABLE;
5538         }
5539
5540         /* If LP has sent response mPacket, LP is entering FPE ON */
5541         if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5542                 *lp_state = FPE_STATE_ENTERING_ON;
5543
5544         /* If Local has sent response mPacket, Local is entering FPE ON */
5545         if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5546                 *lo_state = FPE_STATE_ENTERING_ON;
5547
5548         if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5549             !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5550             priv->fpe_wq) {
5551                 queue_work(priv->fpe_wq, &priv->fpe_task);
5552         }
5553 }
5554
5555 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5556 {
5557         u32 rx_cnt = priv->plat->rx_queues_to_use;
5558         u32 tx_cnt = priv->plat->tx_queues_to_use;
5559         u32 queues_count;
5560         u32 queue;
5561         bool xmac;
5562
5563         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5564         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5565
5566         if (priv->irq_wake)
5567                 pm_wakeup_event(priv->device, 0);
5568
5569         if (priv->dma_cap.estsel)
5570                 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5571                                       &priv->xstats, tx_cnt);
5572
5573         if (priv->dma_cap.fpesel) {
5574                 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5575                                                    priv->dev);
5576
5577                 stmmac_fpe_event_status(priv, status);
5578         }
5579
5580         /* To handle GMAC own interrupts */
5581         if ((priv->plat->has_gmac) || xmac) {
5582                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5583
5584                 if (unlikely(status)) {
5585                         /* For LPI we need to save the tx status */
5586                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5587                                 priv->tx_path_in_lpi_mode = true;
5588                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5589                                 priv->tx_path_in_lpi_mode = false;
5590                 }
5591
5592                 for (queue = 0; queue < queues_count; queue++) {
5593                         status = stmmac_host_mtl_irq_status(priv, priv->hw,
5594                                                             queue);
5595                 }
5596
5597                 /* PCS link status */
5598                 if (priv->hw->pcs) {
5599                         if (priv->xstats.pcs_link)
5600                                 netif_carrier_on(priv->dev);
5601                         else
5602                                 netif_carrier_off(priv->dev);
5603                 }
5604
5605                 stmmac_timestamp_interrupt(priv, priv);
5606         }
5607 }
5608
5609 /**
5610  *  stmmac_interrupt - main ISR
5611  *  @irq: interrupt number.
5612  *  @dev_id: to pass the net device pointer.
5613  *  Description: this is the main driver interrupt service routine.
5614  *  It can call:
5615  *  o DMA service routine (to manage incoming frame reception and transmission
5616  *    status)
5617  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5618  *    interrupts.
5619  */
5620 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5621 {
5622         struct net_device *dev = (struct net_device *)dev_id;
5623         struct stmmac_priv *priv = netdev_priv(dev);
5624
5625         /* Check if adapter is up */
5626         if (test_bit(STMMAC_DOWN, &priv->state))
5627                 return IRQ_HANDLED;
5628
5629         /* Check if a fatal error happened */
5630         if (stmmac_safety_feat_interrupt(priv))
5631                 return IRQ_HANDLED;
5632
5633         /* To handle Common interrupts */
5634         stmmac_common_interrupt(priv);
5635
5636         /* To handle DMA interrupts */
5637         stmmac_dma_interrupt(priv);
5638
5639         return IRQ_HANDLED;
5640 }
5641
5642 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5643 {
5644         struct net_device *dev = (struct net_device *)dev_id;
5645         struct stmmac_priv *priv = netdev_priv(dev);
5646
5647         if (unlikely(!dev)) {
5648                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5649                 return IRQ_NONE;
5650         }
5651
5652         /* Check if adapter is up */
5653         if (test_bit(STMMAC_DOWN, &priv->state))
5654                 return IRQ_HANDLED;
5655
5656         /* To handle Common interrupts */
5657         stmmac_common_interrupt(priv);
5658
5659         return IRQ_HANDLED;
5660 }
5661
5662 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5663 {
5664         struct net_device *dev = (struct net_device *)dev_id;
5665         struct stmmac_priv *priv = netdev_priv(dev);
5666
5667         if (unlikely(!dev)) {
5668                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5669                 return IRQ_NONE;
5670         }
5671
5672         /* Check if adapter is up */
5673         if (test_bit(STMMAC_DOWN, &priv->state))
5674                 return IRQ_HANDLED;
5675
5676         /* Check if a fatal error happened */
5677         stmmac_safety_feat_interrupt(priv);
5678
5679         return IRQ_HANDLED;
5680 }
5681
5682 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5683 {
5684         struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5685         int chan = tx_q->queue_index;
5686         struct stmmac_priv *priv;
5687         int status;
5688
5689         priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5690
5691         if (unlikely(!data)) {
5692                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5693                 return IRQ_NONE;
5694         }
5695
5696         /* Check if adapter is up */
5697         if (test_bit(STMMAC_DOWN, &priv->state))
5698                 return IRQ_HANDLED;
5699
5700         status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5701
5702         if (unlikely(status & tx_hard_error_bump_tc)) {
5703                 /* Try to bump up the dma threshold on this failure */
5704                 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
5705                     tc <= 256) {
5706                         tc += 64;
5707                         if (priv->plat->force_thresh_dma_mode)
5708                                 stmmac_set_dma_operation_mode(priv,
5709                                                               tc,
5710                                                               tc,
5711                                                               chan);
5712                         else
5713                                 stmmac_set_dma_operation_mode(priv,
5714                                                               tc,
5715                                                               SF_DMA_MODE,
5716                                                               chan);
5717                         priv->xstats.threshold = tc;
5718                 }
5719         } else if (unlikely(status == tx_hard_error)) {
5720                 stmmac_tx_err(priv, chan);
5721         }
5722
5723         return IRQ_HANDLED;
5724 }
5725
5726 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5727 {
5728         struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5729         int chan = rx_q->queue_index;
5730         struct stmmac_priv *priv;
5731
5732         priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5733
5734         if (unlikely(!data)) {
5735                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5736                 return IRQ_NONE;
5737         }
5738
5739         /* Check if adapter is up */
5740         if (test_bit(STMMAC_DOWN, &priv->state))
5741                 return IRQ_HANDLED;
5742
5743         stmmac_napi_check(priv, chan, DMA_DIR_RX);
5744
5745         return IRQ_HANDLED;
5746 }
5747
5748 #ifdef CONFIG_NET_POLL_CONTROLLER
5749 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5750  * to allow network I/O with interrupts disabled.
5751  */
5752 static void stmmac_poll_controller(struct net_device *dev)
5753 {
5754         struct stmmac_priv *priv = netdev_priv(dev);
5755         int i;
5756
5757         /* If adapter is down, do nothing */
5758         if (test_bit(STMMAC_DOWN, &priv->state))
5759                 return;
5760
5761         if (priv->plat->multi_msi_en) {
5762                 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5763                         stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5764
5765                 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5766                         stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5767         } else {
5768                 disable_irq(dev->irq);
5769                 stmmac_interrupt(dev->irq, dev);
5770                 enable_irq(dev->irq);
5771         }
5772 }
5773 #endif
5774
5775 /**
5776  *  stmmac_ioctl - Entry point for the Ioctl
5777  *  @dev: Device pointer.
5778  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5779  *  a proprietary structure used to pass information to the driver.
5780  *  @cmd: IOCTL command
5781  *  Description:
5782  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5783  */
5784 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5785 {
5786         struct stmmac_priv *priv = netdev_priv (dev);
5787         int ret = -EOPNOTSUPP;
5788
5789         if (!netif_running(dev))
5790                 return -EINVAL;
5791
5792         switch (cmd) {
5793         case SIOCGMIIPHY:
5794         case SIOCGMIIREG:
5795         case SIOCSMIIREG:
5796                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5797                 break;
5798         case SIOCSHWTSTAMP:
5799                 ret = stmmac_hwtstamp_set(dev, rq);
5800                 break;
5801         case SIOCGHWTSTAMP:
5802                 ret = stmmac_hwtstamp_get(dev, rq);
5803                 break;
5804         default:
5805                 break;
5806         }
5807
5808         return ret;
5809 }
5810
5811 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5812                                     void *cb_priv)
5813 {
5814         struct stmmac_priv *priv = cb_priv;
5815         int ret = -EOPNOTSUPP;
5816
5817         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5818                 return ret;
5819
5820         __stmmac_disable_all_queues(priv);
5821
5822         switch (type) {
5823         case TC_SETUP_CLSU32:
5824                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5825                 break;
5826         case TC_SETUP_CLSFLOWER:
5827                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5828                 break;
5829         default:
5830                 break;
5831         }
5832
5833         stmmac_enable_all_queues(priv);
5834         return ret;
5835 }
5836
5837 static LIST_HEAD(stmmac_block_cb_list);
5838
5839 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5840                            void *type_data)
5841 {
5842         struct stmmac_priv *priv = netdev_priv(ndev);
5843
5844         switch (type) {
5845         case TC_SETUP_BLOCK:
5846                 return flow_block_cb_setup_simple(type_data,
5847                                                   &stmmac_block_cb_list,
5848                                                   stmmac_setup_tc_block_cb,
5849                                                   priv, priv, true);
5850         case TC_SETUP_QDISC_CBS:
5851                 return stmmac_tc_setup_cbs(priv, priv, type_data);
5852         case TC_SETUP_QDISC_TAPRIO:
5853                 return stmmac_tc_setup_taprio(priv, priv, type_data);
5854         case TC_SETUP_QDISC_ETF:
5855                 return stmmac_tc_setup_etf(priv, priv, type_data);
5856         default:
5857                 return -EOPNOTSUPP;
5858         }
5859 }
5860
5861 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5862                                struct net_device *sb_dev)
5863 {
5864         int gso = skb_shinfo(skb)->gso_type;
5865
5866         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5867                 /*
5868                  * There is no way to determine the number of TSO/USO
5869                  * capable Queues. Let's use always the Queue 0
5870                  * because if TSO/USO is supported then at least this
5871                  * one will be capable.
5872                  */
5873                 return 0;
5874         }
5875
5876         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5877 }
5878
5879 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5880 {
5881         struct stmmac_priv *priv = netdev_priv(ndev);
5882         int ret = 0;
5883
5884         ret = pm_runtime_get_sync(priv->device);
5885         if (ret < 0) {
5886                 pm_runtime_put_noidle(priv->device);
5887                 return ret;
5888         }
5889
5890         ret = eth_mac_addr(ndev, addr);
5891         if (ret)
5892                 goto set_mac_error;
5893
5894         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5895
5896 set_mac_error:
5897         pm_runtime_put(priv->device);
5898
5899         return ret;
5900 }
5901
5902 #ifdef CONFIG_DEBUG_FS
5903 static struct dentry *stmmac_fs_dir;
5904
5905 static void sysfs_display_ring(void *head, int size, int extend_desc,
5906                                struct seq_file *seq, dma_addr_t dma_phy_addr)
5907 {
5908         int i;
5909         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5910         struct dma_desc *p = (struct dma_desc *)head;
5911         dma_addr_t dma_addr;
5912
5913         for (i = 0; i < size; i++) {
5914                 if (extend_desc) {
5915                         dma_addr = dma_phy_addr + i * sizeof(*ep);
5916                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5917                                    i, &dma_addr,
5918                                    le32_to_cpu(ep->basic.des0),
5919                                    le32_to_cpu(ep->basic.des1),
5920                                    le32_to_cpu(ep->basic.des2),
5921                                    le32_to_cpu(ep->basic.des3));
5922                         ep++;
5923                 } else {
5924                         dma_addr = dma_phy_addr + i * sizeof(*p);
5925                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5926                                    i, &dma_addr,
5927                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5928                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5929                         p++;
5930                 }
5931                 seq_printf(seq, "\n");
5932         }
5933 }
5934
5935 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5936 {
5937         struct net_device *dev = seq->private;
5938         struct stmmac_priv *priv = netdev_priv(dev);
5939         u32 rx_count = priv->plat->rx_queues_to_use;
5940         u32 tx_count = priv->plat->tx_queues_to_use;
5941         u32 queue;
5942
5943         if ((dev->flags & IFF_UP) == 0)
5944                 return 0;
5945
5946         for (queue = 0; queue < rx_count; queue++) {
5947                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5948
5949                 seq_printf(seq, "RX Queue %d:\n", queue);
5950
5951                 if (priv->extend_desc) {
5952                         seq_printf(seq, "Extended descriptor ring:\n");
5953                         sysfs_display_ring((void *)rx_q->dma_erx,
5954                                            priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5955                 } else {
5956                         seq_printf(seq, "Descriptor ring:\n");
5957                         sysfs_display_ring((void *)rx_q->dma_rx,
5958                                            priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5959                 }
5960         }
5961
5962         for (queue = 0; queue < tx_count; queue++) {
5963                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5964
5965                 seq_printf(seq, "TX Queue %d:\n", queue);
5966
5967                 if (priv->extend_desc) {
5968                         seq_printf(seq, "Extended descriptor ring:\n");
5969                         sysfs_display_ring((void *)tx_q->dma_etx,
5970                                            priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5971                 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5972                         seq_printf(seq, "Descriptor ring:\n");
5973                         sysfs_display_ring((void *)tx_q->dma_tx,
5974                                            priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5975                 }
5976         }
5977
5978         return 0;
5979 }
5980 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5981
5982 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5983 {
5984         struct net_device *dev = seq->private;
5985         struct stmmac_priv *priv = netdev_priv(dev);
5986
5987         if (!priv->hw_cap_support) {
5988                 seq_printf(seq, "DMA HW features not supported\n");
5989                 return 0;
5990         }
5991
5992         seq_printf(seq, "==============================\n");
5993         seq_printf(seq, "\tDMA HW features\n");
5994         seq_printf(seq, "==============================\n");
5995
5996         seq_printf(seq, "\t10/100 Mbps: %s\n",
5997                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
5998         seq_printf(seq, "\t1000 Mbps: %s\n",
5999                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
6000         seq_printf(seq, "\tHalf duplex: %s\n",
6001                    (priv->dma_cap.half_duplex) ? "Y" : "N");
6002         seq_printf(seq, "\tHash Filter: %s\n",
6003                    (priv->dma_cap.hash_filter) ? "Y" : "N");
6004         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6005                    (priv->dma_cap.multi_addr) ? "Y" : "N");
6006         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6007                    (priv->dma_cap.pcs) ? "Y" : "N");
6008         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6009                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
6010         seq_printf(seq, "\tPMT Remote wake up: %s\n",
6011                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6012         seq_printf(seq, "\tPMT Magic Frame: %s\n",
6013                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6014         seq_printf(seq, "\tRMON module: %s\n",
6015                    (priv->dma_cap.rmon) ? "Y" : "N");
6016         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6017                    (priv->dma_cap.time_stamp) ? "Y" : "N");
6018         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6019                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
6020         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6021                    (priv->dma_cap.eee) ? "Y" : "N");
6022         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6023         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6024                    (priv->dma_cap.tx_coe) ? "Y" : "N");
6025         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6026                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6027                            (priv->dma_cap.rx_coe) ? "Y" : "N");
6028         } else {
6029                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6030                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6031                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6032                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6033         }
6034         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6035                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6036         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6037                    priv->dma_cap.number_rx_channel);
6038         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6039                    priv->dma_cap.number_tx_channel);
6040         seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6041                    priv->dma_cap.number_rx_queues);
6042         seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6043                    priv->dma_cap.number_tx_queues);
6044         seq_printf(seq, "\tEnhanced descriptors: %s\n",
6045                    (priv->dma_cap.enh_desc) ? "Y" : "N");
6046         seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6047         seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6048         seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6049         seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6050         seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6051                    priv->dma_cap.pps_out_num);
6052         seq_printf(seq, "\tSafety Features: %s\n",
6053                    priv->dma_cap.asp ? "Y" : "N");
6054         seq_printf(seq, "\tFlexible RX Parser: %s\n",
6055                    priv->dma_cap.frpsel ? "Y" : "N");
6056         seq_printf(seq, "\tEnhanced Addressing: %d\n",
6057                    priv->dma_cap.addr64);
6058         seq_printf(seq, "\tReceive Side Scaling: %s\n",
6059                    priv->dma_cap.rssen ? "Y" : "N");
6060         seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6061                    priv->dma_cap.vlhash ? "Y" : "N");
6062         seq_printf(seq, "\tSplit Header: %s\n",
6063                    priv->dma_cap.sphen ? "Y" : "N");
6064         seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6065                    priv->dma_cap.vlins ? "Y" : "N");
6066         seq_printf(seq, "\tDouble VLAN: %s\n",
6067                    priv->dma_cap.dvlan ? "Y" : "N");
6068         seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6069                    priv->dma_cap.l3l4fnum);
6070         seq_printf(seq, "\tARP Offloading: %s\n",
6071                    priv->dma_cap.arpoffsel ? "Y" : "N");
6072         seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6073                    priv->dma_cap.estsel ? "Y" : "N");
6074         seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6075                    priv->dma_cap.fpesel ? "Y" : "N");
6076         seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6077                    priv->dma_cap.tbssel ? "Y" : "N");
6078         return 0;
6079 }
6080 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6081
6082 /* Use network device events to rename debugfs file entries.
6083  */
6084 static int stmmac_device_event(struct notifier_block *unused,
6085                                unsigned long event, void *ptr)
6086 {
6087         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6088         struct stmmac_priv *priv = netdev_priv(dev);
6089
6090         if (dev->netdev_ops != &stmmac_netdev_ops)
6091                 goto done;
6092
6093         switch (event) {
6094         case NETDEV_CHANGENAME:
6095                 if (priv->dbgfs_dir)
6096                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6097                                                          priv->dbgfs_dir,
6098                                                          stmmac_fs_dir,
6099                                                          dev->name);
6100                 break;
6101         }
6102 done:
6103         return NOTIFY_DONE;
6104 }
6105
6106 static struct notifier_block stmmac_notifier = {
6107         .notifier_call = stmmac_device_event,
6108 };
6109
6110 static void stmmac_init_fs(struct net_device *dev)
6111 {
6112         struct stmmac_priv *priv = netdev_priv(dev);
6113
6114         rtnl_lock();
6115
6116         /* Create per netdev entries */
6117         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6118
6119         /* Entry to report DMA RX/TX rings */
6120         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6121                             &stmmac_rings_status_fops);
6122
6123         /* Entry to report the DMA HW features */
6124         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6125                             &stmmac_dma_cap_fops);
6126
6127         rtnl_unlock();
6128 }
6129
6130 static void stmmac_exit_fs(struct net_device *dev)
6131 {
6132         struct stmmac_priv *priv = netdev_priv(dev);
6133
6134         debugfs_remove_recursive(priv->dbgfs_dir);
6135 }
6136 #endif /* CONFIG_DEBUG_FS */
6137
6138 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6139 {
6140         unsigned char *data = (unsigned char *)&vid_le;
6141         unsigned char data_byte = 0;
6142         u32 crc = ~0x0;
6143         u32 temp = 0;
6144         int i, bits;
6145
6146         bits = get_bitmask_order(VLAN_VID_MASK);
6147         for (i = 0; i < bits; i++) {
6148                 if ((i % 8) == 0)
6149                         data_byte = data[i / 8];
6150
6151                 temp = ((crc & 1) ^ data_byte) & 1;
6152                 crc >>= 1;
6153                 data_byte >>= 1;
6154
6155                 if (temp)
6156                         crc ^= 0xedb88320;
6157         }
6158
6159         return crc;
6160 }
6161
6162 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6163 {
6164         u32 crc, hash = 0;
6165         __le16 pmatch = 0;
6166         int count = 0;
6167         u16 vid = 0;
6168
6169         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6170                 __le16 vid_le = cpu_to_le16(vid);
6171                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6172                 hash |= (1 << crc);
6173                 count++;
6174         }
6175
6176         if (!priv->dma_cap.vlhash) {
6177                 if (count > 2) /* VID = 0 always passes filter */
6178                         return -EOPNOTSUPP;
6179
6180                 pmatch = cpu_to_le16(vid);
6181                 hash = 0;
6182         }
6183
6184         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6185 }
6186
6187 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6188 {
6189         struct stmmac_priv *priv = netdev_priv(ndev);
6190         bool is_double = false;
6191         int ret;
6192
6193         if (be16_to_cpu(proto) == ETH_P_8021AD)
6194                 is_double = true;
6195
6196         set_bit(vid, priv->active_vlans);
6197         ret = stmmac_vlan_update(priv, is_double);
6198         if (ret) {
6199                 clear_bit(vid, priv->active_vlans);
6200                 return ret;
6201         }
6202
6203         if (priv->hw->num_vlan) {
6204                 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6205                 if (ret)
6206                         return ret;
6207         }
6208
6209         return 0;
6210 }
6211
6212 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6213 {
6214         struct stmmac_priv *priv = netdev_priv(ndev);
6215         bool is_double = false;
6216         int ret;
6217
6218         ret = pm_runtime_get_sync(priv->device);
6219         if (ret < 0) {
6220                 pm_runtime_put_noidle(priv->device);
6221                 return ret;
6222         }
6223
6224         if (be16_to_cpu(proto) == ETH_P_8021AD)
6225                 is_double = true;
6226
6227         clear_bit(vid, priv->active_vlans);
6228
6229         if (priv->hw->num_vlan) {
6230                 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6231                 if (ret)
6232                         goto del_vlan_error;
6233         }
6234
6235         ret = stmmac_vlan_update(priv, is_double);
6236
6237 del_vlan_error:
6238         pm_runtime_put(priv->device);
6239
6240         return ret;
6241 }
6242
6243 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6244 {
6245         struct stmmac_priv *priv = netdev_priv(dev);
6246
6247         switch (bpf->command) {
6248         case XDP_SETUP_PROG:
6249                 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6250         case XDP_SETUP_XSK_POOL:
6251                 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6252                                              bpf->xsk.queue_id);
6253         default:
6254                 return -EOPNOTSUPP;
6255         }
6256 }
6257
6258 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6259                            struct xdp_frame **frames, u32 flags)
6260 {
6261         struct stmmac_priv *priv = netdev_priv(dev);
6262         int cpu = smp_processor_id();
6263         struct netdev_queue *nq;
6264         int i, nxmit = 0;
6265         int queue;
6266
6267         if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6268                 return -ENETDOWN;
6269
6270         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6271                 return -EINVAL;
6272
6273         queue = stmmac_xdp_get_tx_queue(priv, cpu);
6274         nq = netdev_get_tx_queue(priv->dev, queue);
6275
6276         __netif_tx_lock(nq, cpu);
6277         /* Avoids TX time-out as we are sharing with slow path */
6278         nq->trans_start = jiffies;
6279
6280         for (i = 0; i < num_frames; i++) {
6281                 int res;
6282
6283                 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6284                 if (res == STMMAC_XDP_CONSUMED)
6285                         break;
6286
6287                 nxmit++;
6288         }
6289
6290         if (flags & XDP_XMIT_FLUSH) {
6291                 stmmac_flush_tx_descriptors(priv, queue);
6292                 stmmac_tx_timer_arm(priv, queue);
6293         }
6294
6295         __netif_tx_unlock(nq);
6296
6297         return nxmit;
6298 }
6299
6300 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6301 {
6302         struct stmmac_channel *ch = &priv->channel[queue];
6303         unsigned long flags;
6304
6305         spin_lock_irqsave(&ch->lock, flags);
6306         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6307         spin_unlock_irqrestore(&ch->lock, flags);
6308
6309         stmmac_stop_rx_dma(priv, queue);
6310         __free_dma_rx_desc_resources(priv, queue);
6311 }
6312
6313 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6314 {
6315         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6316         struct stmmac_channel *ch = &priv->channel[queue];
6317         unsigned long flags;
6318         u32 buf_size;
6319         int ret;
6320
6321         ret = __alloc_dma_rx_desc_resources(priv, queue);
6322         if (ret) {
6323                 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6324                 return;
6325         }
6326
6327         ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6328         if (ret) {
6329                 __free_dma_rx_desc_resources(priv, queue);
6330                 netdev_err(priv->dev, "Failed to init RX desc.\n");
6331                 return;
6332         }
6333
6334         stmmac_clear_rx_descriptors(priv, queue);
6335
6336         stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6337                             rx_q->dma_rx_phy, rx_q->queue_index);
6338
6339         rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6340                              sizeof(struct dma_desc));
6341         stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6342                                rx_q->rx_tail_addr, rx_q->queue_index);
6343
6344         if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6345                 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6346                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6347                                       buf_size,
6348                                       rx_q->queue_index);
6349         } else {
6350                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6351                                       priv->dma_buf_sz,
6352                                       rx_q->queue_index);
6353         }
6354
6355         stmmac_start_rx_dma(priv, queue);
6356
6357         spin_lock_irqsave(&ch->lock, flags);
6358         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6359         spin_unlock_irqrestore(&ch->lock, flags);
6360 }
6361
6362 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6363 {
6364         struct stmmac_channel *ch = &priv->channel[queue];
6365         unsigned long flags;
6366
6367         spin_lock_irqsave(&ch->lock, flags);
6368         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6369         spin_unlock_irqrestore(&ch->lock, flags);
6370
6371         stmmac_stop_tx_dma(priv, queue);
6372         __free_dma_tx_desc_resources(priv, queue);
6373 }
6374
6375 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6376 {
6377         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6378         struct stmmac_channel *ch = &priv->channel[queue];
6379         unsigned long flags;
6380         int ret;
6381
6382         ret = __alloc_dma_tx_desc_resources(priv, queue);
6383         if (ret) {
6384                 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6385                 return;
6386         }
6387
6388         ret = __init_dma_tx_desc_rings(priv, queue);
6389         if (ret) {
6390                 __free_dma_tx_desc_resources(priv, queue);
6391                 netdev_err(priv->dev, "Failed to init TX desc.\n");
6392                 return;
6393         }
6394
6395         stmmac_clear_tx_descriptors(priv, queue);
6396
6397         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6398                             tx_q->dma_tx_phy, tx_q->queue_index);
6399
6400         if (tx_q->tbs & STMMAC_TBS_AVAIL)
6401                 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6402
6403         tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6404         stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6405                                tx_q->tx_tail_addr, tx_q->queue_index);
6406
6407         stmmac_start_tx_dma(priv, queue);
6408
6409         spin_lock_irqsave(&ch->lock, flags);
6410         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6411         spin_unlock_irqrestore(&ch->lock, flags);
6412 }
6413
6414 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6415 {
6416         struct stmmac_priv *priv = netdev_priv(dev);
6417         struct stmmac_rx_queue *rx_q;
6418         struct stmmac_tx_queue *tx_q;
6419         struct stmmac_channel *ch;
6420
6421         if (test_bit(STMMAC_DOWN, &priv->state) ||
6422             !netif_carrier_ok(priv->dev))
6423                 return -ENETDOWN;
6424
6425         if (!stmmac_xdp_is_enabled(priv))
6426                 return -ENXIO;
6427
6428         if (queue >= priv->plat->rx_queues_to_use ||
6429             queue >= priv->plat->tx_queues_to_use)
6430                 return -EINVAL;
6431
6432         rx_q = &priv->rx_queue[queue];
6433         tx_q = &priv->tx_queue[queue];
6434         ch = &priv->channel[queue];
6435
6436         if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6437                 return -ENXIO;
6438
6439         if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6440                 /* EQoS does not have per-DMA channel SW interrupt,
6441                  * so we schedule RX Napi straight-away.
6442                  */
6443                 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6444                         __napi_schedule(&ch->rxtx_napi);
6445         }
6446
6447         return 0;
6448 }
6449
6450 static const struct net_device_ops stmmac_netdev_ops = {
6451         .ndo_open = stmmac_open,
6452         .ndo_start_xmit = stmmac_xmit,
6453         .ndo_stop = stmmac_release,
6454         .ndo_change_mtu = stmmac_change_mtu,
6455         .ndo_fix_features = stmmac_fix_features,
6456         .ndo_set_features = stmmac_set_features,
6457         .ndo_set_rx_mode = stmmac_set_rx_mode,
6458         .ndo_tx_timeout = stmmac_tx_timeout,
6459         .ndo_eth_ioctl = stmmac_ioctl,
6460         .ndo_setup_tc = stmmac_setup_tc,
6461         .ndo_select_queue = stmmac_select_queue,
6462 #ifdef CONFIG_NET_POLL_CONTROLLER
6463         .ndo_poll_controller = stmmac_poll_controller,
6464 #endif
6465         .ndo_set_mac_address = stmmac_set_mac_address,
6466         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6467         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6468         .ndo_bpf = stmmac_bpf,
6469         .ndo_xdp_xmit = stmmac_xdp_xmit,
6470         .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6471 };
6472
6473 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6474 {
6475         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6476                 return;
6477         if (test_bit(STMMAC_DOWN, &priv->state))
6478                 return;
6479
6480         netdev_err(priv->dev, "Reset adapter.\n");
6481
6482         rtnl_lock();
6483         netif_trans_update(priv->dev);
6484         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6485                 usleep_range(1000, 2000);
6486
6487         set_bit(STMMAC_DOWN, &priv->state);
6488         dev_close(priv->dev);
6489         dev_open(priv->dev, NULL);
6490         clear_bit(STMMAC_DOWN, &priv->state);
6491         clear_bit(STMMAC_RESETING, &priv->state);
6492         rtnl_unlock();
6493 }
6494
6495 static void stmmac_service_task(struct work_struct *work)
6496 {
6497         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6498                         service_task);
6499
6500         stmmac_reset_subtask(priv);
6501         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6502 }
6503
6504 /**
6505  *  stmmac_hw_init - Init the MAC device
6506  *  @priv: driver private structure
6507  *  Description: this function is to configure the MAC device according to
6508  *  some platform parameters or the HW capability register. It prepares the
6509  *  driver to use either ring or chain modes and to setup either enhanced or
6510  *  normal descriptors.
6511  */
6512 static int stmmac_hw_init(struct stmmac_priv *priv)
6513 {
6514         int ret;
6515
6516         /* dwmac-sun8i only work in chain mode */
6517         if (priv->plat->has_sun8i)
6518                 chain_mode = 1;
6519         priv->chain_mode = chain_mode;
6520
6521         /* Initialize HW Interface */
6522         ret = stmmac_hwif_init(priv);
6523         if (ret)
6524                 return ret;
6525
6526         /* Get the HW capability (new GMAC newer than 3.50a) */
6527         priv->hw_cap_support = stmmac_get_hw_features(priv);
6528         if (priv->hw_cap_support) {
6529                 dev_info(priv->device, "DMA HW capability register supported\n");
6530
6531                 /* We can override some gmac/dma configuration fields: e.g.
6532                  * enh_desc, tx_coe (e.g. that are passed through the
6533                  * platform) with the values from the HW capability
6534                  * register (if supported).
6535                  */
6536                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6537                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6538                                 !priv->plat->use_phy_wol;
6539                 priv->hw->pmt = priv->plat->pmt;
6540                 if (priv->dma_cap.hash_tb_sz) {
6541                         priv->hw->multicast_filter_bins =
6542                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
6543                         priv->hw->mcast_bits_log2 =
6544                                         ilog2(priv->hw->multicast_filter_bins);
6545                 }
6546
6547                 /* TXCOE doesn't work in thresh DMA mode */
6548                 if (priv->plat->force_thresh_dma_mode)
6549                         priv->plat->tx_coe = 0;
6550                 else
6551                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
6552
6553                 /* In case of GMAC4 rx_coe is from HW cap register. */
6554                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6555
6556                 if (priv->dma_cap.rx_coe_type2)
6557                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6558                 else if (priv->dma_cap.rx_coe_type1)
6559                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6560
6561         } else {
6562                 dev_info(priv->device, "No HW DMA feature register supported\n");
6563         }
6564
6565         if (priv->plat->rx_coe) {
6566                 priv->hw->rx_csum = priv->plat->rx_coe;
6567                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6568                 if (priv->synopsys_id < DWMAC_CORE_4_00)
6569                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6570         }
6571         if (priv->plat->tx_coe)
6572                 dev_info(priv->device, "TX Checksum insertion supported\n");
6573
6574         if (priv->plat->pmt) {
6575                 dev_info(priv->device, "Wake-Up On Lan supported\n");
6576                 device_set_wakeup_capable(priv->device, 1);
6577         }
6578
6579         if (priv->dma_cap.tsoen)
6580                 dev_info(priv->device, "TSO supported\n");
6581
6582         priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6583         priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6584
6585         /* Run HW quirks, if any */
6586         if (priv->hwif_quirks) {
6587                 ret = priv->hwif_quirks(priv);
6588                 if (ret)
6589                         return ret;
6590         }
6591
6592         /* Rx Watchdog is available in the COREs newer than the 3.40.
6593          * In some case, for example on bugged HW this feature
6594          * has to be disable and this can be done by passing the
6595          * riwt_off field from the platform.
6596          */
6597         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6598             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6599                 priv->use_riwt = 1;
6600                 dev_info(priv->device,
6601                          "Enable RX Mitigation via HW Watchdog Timer\n");
6602         }
6603
6604         return 0;
6605 }
6606
6607 static void stmmac_napi_add(struct net_device *dev)
6608 {
6609         struct stmmac_priv *priv = netdev_priv(dev);
6610         u32 queue, maxq;
6611
6612         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6613
6614         for (queue = 0; queue < maxq; queue++) {
6615                 struct stmmac_channel *ch = &priv->channel[queue];
6616
6617                 ch->priv_data = priv;
6618                 ch->index = queue;
6619                 spin_lock_init(&ch->lock);
6620
6621                 if (queue < priv->plat->rx_queues_to_use) {
6622                         netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6623                                        NAPI_POLL_WEIGHT);
6624                 }
6625                 if (queue < priv->plat->tx_queues_to_use) {
6626                         netif_tx_napi_add(dev, &ch->tx_napi,
6627                                           stmmac_napi_poll_tx,
6628                                           NAPI_POLL_WEIGHT);
6629                 }
6630                 if (queue < priv->plat->rx_queues_to_use &&
6631                     queue < priv->plat->tx_queues_to_use) {
6632                         netif_napi_add(dev, &ch->rxtx_napi,
6633                                        stmmac_napi_poll_rxtx,
6634                                        NAPI_POLL_WEIGHT);
6635                 }
6636         }
6637 }
6638
6639 static void stmmac_napi_del(struct net_device *dev)
6640 {
6641         struct stmmac_priv *priv = netdev_priv(dev);
6642         u32 queue, maxq;
6643
6644         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6645
6646         for (queue = 0; queue < maxq; queue++) {
6647                 struct stmmac_channel *ch = &priv->channel[queue];
6648
6649                 if (queue < priv->plat->rx_queues_to_use)
6650                         netif_napi_del(&ch->rx_napi);
6651                 if (queue < priv->plat->tx_queues_to_use)
6652                         netif_napi_del(&ch->tx_napi);
6653                 if (queue < priv->plat->rx_queues_to_use &&
6654                     queue < priv->plat->tx_queues_to_use) {
6655                         netif_napi_del(&ch->rxtx_napi);
6656                 }
6657         }
6658 }
6659
6660 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6661 {
6662         struct stmmac_priv *priv = netdev_priv(dev);
6663         int ret = 0;
6664
6665         if (netif_running(dev))
6666                 stmmac_release(dev);
6667
6668         stmmac_napi_del(dev);
6669
6670         priv->plat->rx_queues_to_use = rx_cnt;
6671         priv->plat->tx_queues_to_use = tx_cnt;
6672
6673         stmmac_napi_add(dev);
6674
6675         if (netif_running(dev))
6676                 ret = stmmac_open(dev);
6677
6678         return ret;
6679 }
6680
6681 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6682 {
6683         struct stmmac_priv *priv = netdev_priv(dev);
6684         int ret = 0;
6685
6686         if (netif_running(dev))
6687                 stmmac_release(dev);
6688
6689         priv->dma_rx_size = rx_size;
6690         priv->dma_tx_size = tx_size;
6691
6692         if (netif_running(dev))
6693                 ret = stmmac_open(dev);
6694
6695         return ret;
6696 }
6697
6698 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6699 static void stmmac_fpe_lp_task(struct work_struct *work)
6700 {
6701         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6702                                                 fpe_task);
6703         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6704         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6705         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6706         bool *hs_enable = &fpe_cfg->hs_enable;
6707         bool *enable = &fpe_cfg->enable;
6708         int retries = 20;
6709
6710         while (retries-- > 0) {
6711                 /* Bail out immediately if FPE handshake is OFF */
6712                 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6713                         break;
6714
6715                 if (*lo_state == FPE_STATE_ENTERING_ON &&
6716                     *lp_state == FPE_STATE_ENTERING_ON) {
6717                         stmmac_fpe_configure(priv, priv->ioaddr,
6718                                              priv->plat->tx_queues_to_use,
6719                                              priv->plat->rx_queues_to_use,
6720                                              *enable);
6721
6722                         netdev_info(priv->dev, "configured FPE\n");
6723
6724                         *lo_state = FPE_STATE_ON;
6725                         *lp_state = FPE_STATE_ON;
6726                         netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6727                         break;
6728                 }
6729
6730                 if ((*lo_state == FPE_STATE_CAPABLE ||
6731                      *lo_state == FPE_STATE_ENTERING_ON) &&
6732                      *lp_state != FPE_STATE_ON) {
6733                         netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6734                                     *lo_state, *lp_state);
6735                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6736                                                 MPACKET_VERIFY);
6737                 }
6738                 /* Sleep then retry */
6739                 msleep(500);
6740         }
6741
6742         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6743 }
6744
6745 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6746 {
6747         if (priv->plat->fpe_cfg->hs_enable != enable) {
6748                 if (enable) {
6749                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6750                                                 MPACKET_VERIFY);
6751                 } else {
6752                         priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6753                         priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6754                 }
6755
6756                 priv->plat->fpe_cfg->hs_enable = enable;
6757         }
6758 }
6759
6760 /**
6761  * stmmac_dvr_probe
6762  * @device: device pointer
6763  * @plat_dat: platform data pointer
6764  * @res: stmmac resource pointer
6765  * Description: this is the main probe function used to
6766  * call the alloc_etherdev, allocate the priv structure.
6767  * Return:
6768  * returns 0 on success, otherwise errno.
6769  */
6770 int stmmac_dvr_probe(struct device *device,
6771                      struct plat_stmmacenet_data *plat_dat,
6772                      struct stmmac_resources *res)
6773 {
6774         struct net_device *ndev = NULL;
6775         struct stmmac_priv *priv;
6776         u32 rxq;
6777         int i, ret = 0;
6778
6779         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6780                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6781         if (!ndev)
6782                 return -ENOMEM;
6783
6784         SET_NETDEV_DEV(ndev, device);
6785
6786         priv = netdev_priv(ndev);
6787         priv->device = device;
6788         priv->dev = ndev;
6789
6790         stmmac_set_ethtool_ops(ndev);
6791         priv->pause = pause;
6792         priv->plat = plat_dat;
6793         priv->ioaddr = res->addr;
6794         priv->dev->base_addr = (unsigned long)res->addr;
6795         priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6796
6797         priv->dev->irq = res->irq;
6798         priv->wol_irq = res->wol_irq;
6799         priv->lpi_irq = res->lpi_irq;
6800         priv->sfty_ce_irq = res->sfty_ce_irq;
6801         priv->sfty_ue_irq = res->sfty_ue_irq;
6802         for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6803                 priv->rx_irq[i] = res->rx_irq[i];
6804         for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6805                 priv->tx_irq[i] = res->tx_irq[i];
6806
6807         if (!is_zero_ether_addr(res->mac))
6808                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
6809
6810         dev_set_drvdata(device, priv->dev);
6811
6812         /* Verify driver arguments */
6813         stmmac_verify_args();
6814
6815         priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6816         if (!priv->af_xdp_zc_qps)
6817                 return -ENOMEM;
6818
6819         /* Allocate workqueue */
6820         priv->wq = create_singlethread_workqueue("stmmac_wq");
6821         if (!priv->wq) {
6822                 dev_err(priv->device, "failed to create workqueue\n");
6823                 return -ENOMEM;
6824         }
6825
6826         INIT_WORK(&priv->service_task, stmmac_service_task);
6827
6828         /* Initialize Link Partner FPE workqueue */
6829         INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6830
6831         /* Override with kernel parameters if supplied XXX CRS XXX
6832          * this needs to have multiple instances
6833          */
6834         if ((phyaddr >= 0) && (phyaddr <= 31))
6835                 priv->plat->phy_addr = phyaddr;
6836
6837         if (priv->plat->stmmac_rst) {
6838                 ret = reset_control_assert(priv->plat->stmmac_rst);
6839                 reset_control_deassert(priv->plat->stmmac_rst);
6840                 /* Some reset controllers have only reset callback instead of
6841                  * assert + deassert callbacks pair.
6842                  */
6843                 if (ret == -ENOTSUPP)
6844                         reset_control_reset(priv->plat->stmmac_rst);
6845         }
6846
6847         ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6848         if (ret == -ENOTSUPP)
6849                 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6850                         ERR_PTR(ret));
6851
6852         /* Init MAC and get the capabilities */
6853         ret = stmmac_hw_init(priv);
6854         if (ret)
6855                 goto error_hw_init;
6856
6857         /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6858          */
6859         if (priv->synopsys_id < DWMAC_CORE_5_20)
6860                 priv->plat->dma_cfg->dche = false;
6861
6862         stmmac_check_ether_addr(priv);
6863
6864         ndev->netdev_ops = &stmmac_netdev_ops;
6865
6866         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6867                             NETIF_F_RXCSUM;
6868
6869         ret = stmmac_tc_init(priv, priv);
6870         if (!ret) {
6871                 ndev->hw_features |= NETIF_F_HW_TC;
6872         }
6873
6874         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6875                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6876                 if (priv->plat->has_gmac4)
6877                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
6878                 priv->tso = true;
6879                 dev_info(priv->device, "TSO feature enabled\n");
6880         }
6881
6882         if (priv->dma_cap.sphen) {
6883                 ndev->hw_features |= NETIF_F_GRO;
6884                 priv->sph_cap = true;
6885                 priv->sph = priv->sph_cap;
6886                 dev_info(priv->device, "SPH feature enabled\n");
6887         }
6888
6889         /* The current IP register MAC_HW_Feature1[ADDR64] only define
6890          * 32/40/64 bit width, but some SOC support others like i.MX8MP
6891          * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
6892          * So overwrite dma_cap.addr64 according to HW real design.
6893          */
6894         if (priv->plat->addr64)
6895                 priv->dma_cap.addr64 = priv->plat->addr64;
6896
6897         if (priv->dma_cap.addr64) {
6898                 ret = dma_set_mask_and_coherent(device,
6899                                 DMA_BIT_MASK(priv->dma_cap.addr64));
6900                 if (!ret) {
6901                         dev_info(priv->device, "Using %d bits DMA width\n",
6902                                  priv->dma_cap.addr64);
6903
6904                         /*
6905                          * If more than 32 bits can be addressed, make sure to
6906                          * enable enhanced addressing mode.
6907                          */
6908                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
6909                                 priv->plat->dma_cfg->eame = true;
6910                 } else {
6911                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
6912                         if (ret) {
6913                                 dev_err(priv->device, "Failed to set DMA Mask\n");
6914                                 goto error_hw_init;
6915                         }
6916
6917                         priv->dma_cap.addr64 = 32;
6918                 }
6919         }
6920
6921         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
6922         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
6923 #ifdef STMMAC_VLAN_TAG_USED
6924         /* Both mac100 and gmac support receive VLAN tag detection */
6925         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
6926         if (priv->dma_cap.vlhash) {
6927                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6928                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
6929         }
6930         if (priv->dma_cap.vlins) {
6931                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
6932                 if (priv->dma_cap.dvlan)
6933                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
6934         }
6935 #endif
6936         priv->msg_enable = netif_msg_init(debug, default_msg_level);
6937
6938         /* Initialize RSS */
6939         rxq = priv->plat->rx_queues_to_use;
6940         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
6941         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
6942                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
6943
6944         if (priv->dma_cap.rssen && priv->plat->rss_en)
6945                 ndev->features |= NETIF_F_RXHASH;
6946
6947         /* MTU range: 46 - hw-specific max */
6948         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
6949         if (priv->plat->has_xgmac)
6950                 ndev->max_mtu = XGMAC_JUMBO_LEN;
6951         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
6952                 ndev->max_mtu = JUMBO_LEN;
6953         else
6954                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
6955         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
6956          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
6957          */
6958         if ((priv->plat->maxmtu < ndev->max_mtu) &&
6959             (priv->plat->maxmtu >= ndev->min_mtu))
6960                 ndev->max_mtu = priv->plat->maxmtu;
6961         else if (priv->plat->maxmtu < ndev->min_mtu)
6962                 dev_warn(priv->device,
6963                          "%s: warning: maxmtu having invalid value (%d)\n",
6964                          __func__, priv->plat->maxmtu);
6965
6966         if (flow_ctrl)
6967                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
6968
6969         /* Setup channels NAPI */
6970         stmmac_napi_add(ndev);
6971
6972         mutex_init(&priv->lock);
6973
6974         /* If a specific clk_csr value is passed from the platform
6975          * this means that the CSR Clock Range selection cannot be
6976          * changed at run-time and it is fixed. Viceversa the driver'll try to
6977          * set the MDC clock dynamically according to the csr actual
6978          * clock input.
6979          */
6980         if (priv->plat->clk_csr >= 0)
6981                 priv->clk_csr = priv->plat->clk_csr;
6982         else
6983                 stmmac_clk_csr_set(priv);
6984
6985         stmmac_check_pcs_mode(priv);
6986
6987         pm_runtime_get_noresume(device);
6988         pm_runtime_set_active(device);
6989         pm_runtime_enable(device);
6990
6991         if (priv->hw->pcs != STMMAC_PCS_TBI &&
6992             priv->hw->pcs != STMMAC_PCS_RTBI) {
6993                 /* MDIO bus Registration */
6994                 ret = stmmac_mdio_register(ndev);
6995                 if (ret < 0) {
6996                         dev_err(priv->device,
6997                                 "%s: MDIO bus (id: %d) registration failed",
6998                                 __func__, priv->plat->bus_id);
6999                         goto error_mdio_register;
7000                 }
7001         }
7002
7003         if (priv->plat->speed_mode_2500)
7004                 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7005
7006         if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7007                 ret = stmmac_xpcs_setup(priv->mii);
7008                 if (ret)
7009                         goto error_xpcs_setup;
7010         }
7011
7012         ret = stmmac_phy_setup(priv);
7013         if (ret) {
7014                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7015                 goto error_phy_setup;
7016         }
7017
7018         ret = register_netdev(ndev);
7019         if (ret) {
7020                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7021                         __func__, ret);
7022                 goto error_netdev_register;
7023         }
7024
7025         if (priv->plat->serdes_powerup) {
7026                 ret = priv->plat->serdes_powerup(ndev,
7027                                                  priv->plat->bsp_priv);
7028
7029                 if (ret < 0)
7030                         goto error_serdes_powerup;
7031         }
7032
7033 #ifdef CONFIG_DEBUG_FS
7034         stmmac_init_fs(ndev);
7035 #endif
7036
7037         /* Let pm_runtime_put() disable the clocks.
7038          * If CONFIG_PM is not enabled, the clocks will stay powered.
7039          */
7040         pm_runtime_put(device);
7041
7042         return ret;
7043
7044 error_serdes_powerup:
7045         unregister_netdev(ndev);
7046 error_netdev_register:
7047         phylink_destroy(priv->phylink);
7048 error_xpcs_setup:
7049 error_phy_setup:
7050         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7051             priv->hw->pcs != STMMAC_PCS_RTBI)
7052                 stmmac_mdio_unregister(ndev);
7053 error_mdio_register:
7054         stmmac_napi_del(ndev);
7055 error_hw_init:
7056         destroy_workqueue(priv->wq);
7057         bitmap_free(priv->af_xdp_zc_qps);
7058
7059         return ret;
7060 }
7061 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7062
7063 /**
7064  * stmmac_dvr_remove
7065  * @dev: device pointer
7066  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7067  * changes the link status, releases the DMA descriptor rings.
7068  */
7069 int stmmac_dvr_remove(struct device *dev)
7070 {
7071         struct net_device *ndev = dev_get_drvdata(dev);
7072         struct stmmac_priv *priv = netdev_priv(ndev);
7073
7074         netdev_info(priv->dev, "%s: removing driver", __func__);
7075
7076         stmmac_stop_all_dma(priv);
7077         stmmac_mac_set(priv, priv->ioaddr, false);
7078         netif_carrier_off(ndev);
7079         unregister_netdev(ndev);
7080
7081         /* Serdes power down needs to happen after VLAN filter
7082          * is deleted that is triggered by unregister_netdev().
7083          */
7084         if (priv->plat->serdes_powerdown)
7085                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7086
7087 #ifdef CONFIG_DEBUG_FS
7088         stmmac_exit_fs(ndev);
7089 #endif
7090         phylink_destroy(priv->phylink);
7091         if (priv->plat->stmmac_rst)
7092                 reset_control_assert(priv->plat->stmmac_rst);
7093         reset_control_assert(priv->plat->stmmac_ahb_rst);
7094         pm_runtime_put(dev);
7095         pm_runtime_disable(dev);
7096         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7097             priv->hw->pcs != STMMAC_PCS_RTBI)
7098                 stmmac_mdio_unregister(ndev);
7099         destroy_workqueue(priv->wq);
7100         mutex_destroy(&priv->lock);
7101         bitmap_free(priv->af_xdp_zc_qps);
7102
7103         return 0;
7104 }
7105 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7106
7107 /**
7108  * stmmac_suspend - suspend callback
7109  * @dev: device pointer
7110  * Description: this is the function to suspend the device and it is called
7111  * by the platform driver to stop the network queue, release the resources,
7112  * program the PMT register (for WoL), clean and release driver resources.
7113  */
7114 int stmmac_suspend(struct device *dev)
7115 {
7116         struct net_device *ndev = dev_get_drvdata(dev);
7117         struct stmmac_priv *priv = netdev_priv(ndev);
7118         u32 chan;
7119         int ret;
7120
7121         if (!ndev || !netif_running(ndev))
7122                 return 0;
7123
7124         phylink_mac_change(priv->phylink, false);
7125
7126         mutex_lock(&priv->lock);
7127
7128         netif_device_detach(ndev);
7129
7130         stmmac_disable_all_queues(priv);
7131
7132         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7133                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7134
7135         if (priv->eee_enabled) {
7136                 priv->tx_path_in_lpi_mode = false;
7137                 del_timer_sync(&priv->eee_ctrl_timer);
7138         }
7139
7140         /* Stop TX/RX DMA */
7141         stmmac_stop_all_dma(priv);
7142
7143         if (priv->plat->serdes_powerdown)
7144                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7145
7146         /* Enable Power down mode by programming the PMT regs */
7147         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7148                 stmmac_pmt(priv, priv->hw, priv->wolopts);
7149                 priv->irq_wake = 1;
7150         } else {
7151                 mutex_unlock(&priv->lock);
7152                 rtnl_lock();
7153                 if (device_may_wakeup(priv->device))
7154                         phylink_speed_down(priv->phylink, false);
7155                 phylink_stop(priv->phylink);
7156                 rtnl_unlock();
7157                 mutex_lock(&priv->lock);
7158
7159                 stmmac_mac_set(priv, priv->ioaddr, false);
7160                 pinctrl_pm_select_sleep_state(priv->device);
7161                 /* Disable clock in case of PWM is off */
7162                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
7163                 ret = pm_runtime_force_suspend(dev);
7164                 if (ret) {
7165                         mutex_unlock(&priv->lock);
7166                         return ret;
7167                 }
7168         }
7169
7170         mutex_unlock(&priv->lock);
7171
7172         if (priv->dma_cap.fpesel) {
7173                 /* Disable FPE */
7174                 stmmac_fpe_configure(priv, priv->ioaddr,
7175                                      priv->plat->tx_queues_to_use,
7176                                      priv->plat->rx_queues_to_use, false);
7177
7178                 stmmac_fpe_handshake(priv, false);
7179                 stmmac_fpe_stop_wq(priv);
7180         }
7181
7182         priv->speed = SPEED_UNKNOWN;
7183         return 0;
7184 }
7185 EXPORT_SYMBOL_GPL(stmmac_suspend);
7186
7187 /**
7188  * stmmac_reset_queues_param - reset queue parameters
7189  * @priv: device pointer
7190  */
7191 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7192 {
7193         u32 rx_cnt = priv->plat->rx_queues_to_use;
7194         u32 tx_cnt = priv->plat->tx_queues_to_use;
7195         u32 queue;
7196
7197         for (queue = 0; queue < rx_cnt; queue++) {
7198                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7199
7200                 rx_q->cur_rx = 0;
7201                 rx_q->dirty_rx = 0;
7202         }
7203
7204         for (queue = 0; queue < tx_cnt; queue++) {
7205                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7206
7207                 tx_q->cur_tx = 0;
7208                 tx_q->dirty_tx = 0;
7209                 tx_q->mss = 0;
7210
7211                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7212         }
7213 }
7214
7215 /**
7216  * stmmac_resume - resume callback
7217  * @dev: device pointer
7218  * Description: when resume this function is invoked to setup the DMA and CORE
7219  * in a usable state.
7220  */
7221 int stmmac_resume(struct device *dev)
7222 {
7223         struct net_device *ndev = dev_get_drvdata(dev);
7224         struct stmmac_priv *priv = netdev_priv(ndev);
7225         int ret;
7226
7227         if (!netif_running(ndev))
7228                 return 0;
7229
7230         /* Power Down bit, into the PM register, is cleared
7231          * automatically as soon as a magic packet or a Wake-up frame
7232          * is received. Anyway, it's better to manually clear
7233          * this bit because it can generate problems while resuming
7234          * from another devices (e.g. serial console).
7235          */
7236         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7237                 mutex_lock(&priv->lock);
7238                 stmmac_pmt(priv, priv->hw, 0);
7239                 mutex_unlock(&priv->lock);
7240                 priv->irq_wake = 0;
7241         } else {
7242                 pinctrl_pm_select_default_state(priv->device);
7243                 /* enable the clk previously disabled */
7244                 ret = pm_runtime_force_resume(dev);
7245                 if (ret)
7246                         return ret;
7247                 if (priv->plat->clk_ptp_ref)
7248                         clk_prepare_enable(priv->plat->clk_ptp_ref);
7249                 /* reset the phy so that it's ready */
7250                 if (priv->mii)
7251                         stmmac_mdio_reset(priv->mii);
7252         }
7253
7254         if (priv->plat->serdes_powerup) {
7255                 ret = priv->plat->serdes_powerup(ndev,
7256                                                  priv->plat->bsp_priv);
7257
7258                 if (ret < 0)
7259                         return ret;
7260         }
7261
7262         if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
7263                 rtnl_lock();
7264                 phylink_start(priv->phylink);
7265                 /* We may have called phylink_speed_down before */
7266                 phylink_speed_up(priv->phylink);
7267                 rtnl_unlock();
7268         }
7269
7270         rtnl_lock();
7271         mutex_lock(&priv->lock);
7272
7273         stmmac_reset_queues_param(priv);
7274
7275         stmmac_free_tx_skbufs(priv);
7276         stmmac_clear_descriptors(priv);
7277
7278         stmmac_hw_setup(ndev, false);
7279         stmmac_init_coalesce(priv);
7280         stmmac_set_rx_mode(ndev);
7281
7282         stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7283
7284         stmmac_enable_all_queues(priv);
7285
7286         mutex_unlock(&priv->lock);
7287         rtnl_unlock();
7288
7289         phylink_mac_change(priv->phylink, true);
7290
7291         netif_device_attach(ndev);
7292
7293         return 0;
7294 }
7295 EXPORT_SYMBOL_GPL(stmmac_resume);
7296
7297 #ifndef MODULE
7298 static int __init stmmac_cmdline_opt(char *str)
7299 {
7300         char *opt;
7301
7302         if (!str || !*str)
7303                 return -EINVAL;
7304         while ((opt = strsep(&str, ",")) != NULL) {
7305                 if (!strncmp(opt, "debug:", 6)) {
7306                         if (kstrtoint(opt + 6, 0, &debug))
7307                                 goto err;
7308                 } else if (!strncmp(opt, "phyaddr:", 8)) {
7309                         if (kstrtoint(opt + 8, 0, &phyaddr))
7310                                 goto err;
7311                 } else if (!strncmp(opt, "buf_sz:", 7)) {
7312                         if (kstrtoint(opt + 7, 0, &buf_sz))
7313                                 goto err;
7314                 } else if (!strncmp(opt, "tc:", 3)) {
7315                         if (kstrtoint(opt + 3, 0, &tc))
7316                                 goto err;
7317                 } else if (!strncmp(opt, "watchdog:", 9)) {
7318                         if (kstrtoint(opt + 9, 0, &watchdog))
7319                                 goto err;
7320                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7321                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
7322                                 goto err;
7323                 } else if (!strncmp(opt, "pause:", 6)) {
7324                         if (kstrtoint(opt + 6, 0, &pause))
7325                                 goto err;
7326                 } else if (!strncmp(opt, "eee_timer:", 10)) {
7327                         if (kstrtoint(opt + 10, 0, &eee_timer))
7328                                 goto err;
7329                 } else if (!strncmp(opt, "chain_mode:", 11)) {
7330                         if (kstrtoint(opt + 11, 0, &chain_mode))
7331                                 goto err;
7332                 }
7333         }
7334         return 0;
7335
7336 err:
7337         pr_err("%s: ERROR broken module parameter conversion", __func__);
7338         return -EINVAL;
7339 }
7340
7341 __setup("stmmaceth=", stmmac_cmdline_opt);
7342 #endif /* MODULE */
7343
7344 static int __init stmmac_init(void)
7345 {
7346 #ifdef CONFIG_DEBUG_FS
7347         /* Create debugfs main directory if it doesn't exist yet */
7348         if (!stmmac_fs_dir)
7349                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7350         register_netdevice_notifier(&stmmac_notifier);
7351 #endif
7352
7353         return 0;
7354 }
7355
7356 static void __exit stmmac_exit(void)
7357 {
7358 #ifdef CONFIG_DEBUG_FS
7359         unregister_netdevice_notifier(&stmmac_notifier);
7360         debugfs_remove_recursive(stmmac_fs_dir);
7361 #endif
7362 }
7363
7364 module_init(stmmac_init)
7365 module_exit(stmmac_exit)
7366
7367 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7368 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7369 MODULE_LICENSE("GPL");