Merge v5.14-rc3 into usb-next
[linux-2.6-microblaze.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52
53 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
54 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
55
56 /* Module parameters */
57 #define TX_TIMEO        5000
58 static int watchdog = TX_TIMEO;
59 module_param(watchdog, int, 0644);
60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
61
62 static int debug = -1;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
65
66 static int phyaddr = -1;
67 module_param(phyaddr, int, 0444);
68 MODULE_PARM_DESC(phyaddr, "Physical device address");
69
70 #define STMMAC_TX_THRESH(x)     ((x)->dma_tx_size / 4)
71 #define STMMAC_RX_THRESH(x)     ((x)->dma_rx_size / 4)
72
73 /* Limit to make sure XDP TX and slow path can coexist */
74 #define STMMAC_XSK_TX_BUDGET_MAX        256
75 #define STMMAC_TX_XSK_AVAIL             16
76 #define STMMAC_RX_FILL_BATCH            16
77
78 #define STMMAC_XDP_PASS         0
79 #define STMMAC_XDP_CONSUMED     BIT(0)
80 #define STMMAC_XDP_TX           BIT(1)
81 #define STMMAC_XDP_REDIRECT     BIT(2)
82
83 static int flow_ctrl = FLOW_AUTO;
84 module_param(flow_ctrl, int, 0644);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, 0644);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, 0644);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95
96 #define DEFAULT_BUFSIZE 1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, 0644);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100
101 #define STMMAC_RX_COPYBREAK     256
102
103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
104                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
105                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
106
107 #define STMMAC_DEFAULT_LPI_TIMER        1000
108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
109 module_param(eee_timer, int, 0644);
110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
112
113 /* By default the driver will use the ring mode to manage tx and rx descriptors,
114  * but allow user to force to use the chain instead of the ring
115  */
116 static unsigned int chain_mode;
117 module_param(chain_mode, int, 0444);
118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
119
120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
121 /* For MSI interrupts handling */
122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
128
129 #ifdef CONFIG_DEBUG_FS
130 static const struct net_device_ops stmmac_netdev_ops;
131 static void stmmac_init_fs(struct net_device *dev);
132 static void stmmac_exit_fs(struct net_device *dev);
133 #endif
134
135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
136
137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
138 {
139         int ret = 0;
140
141         if (enabled) {
142                 ret = clk_prepare_enable(priv->plat->stmmac_clk);
143                 if (ret)
144                         return ret;
145                 ret = clk_prepare_enable(priv->plat->pclk);
146                 if (ret) {
147                         clk_disable_unprepare(priv->plat->stmmac_clk);
148                         return ret;
149                 }
150                 if (priv->plat->clks_config) {
151                         ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
152                         if (ret) {
153                                 clk_disable_unprepare(priv->plat->stmmac_clk);
154                                 clk_disable_unprepare(priv->plat->pclk);
155                                 return ret;
156                         }
157                 }
158         } else {
159                 clk_disable_unprepare(priv->plat->stmmac_clk);
160                 clk_disable_unprepare(priv->plat->pclk);
161                 if (priv->plat->clks_config)
162                         priv->plat->clks_config(priv->plat->bsp_priv, enabled);
163         }
164
165         return ret;
166 }
167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
168
169 /**
170  * stmmac_verify_args - verify the driver parameters.
171  * Description: it checks the driver parameters and set a default in case of
172  * errors.
173  */
174 static void stmmac_verify_args(void)
175 {
176         if (unlikely(watchdog < 0))
177                 watchdog = TX_TIMEO;
178         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
179                 buf_sz = DEFAULT_BUFSIZE;
180         if (unlikely(flow_ctrl > 1))
181                 flow_ctrl = FLOW_AUTO;
182         else if (likely(flow_ctrl < 0))
183                 flow_ctrl = FLOW_OFF;
184         if (unlikely((pause < 0) || (pause > 0xffff)))
185                 pause = PAUSE_TIME;
186         if (eee_timer < 0)
187                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
188 }
189
190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
191 {
192         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
193         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
194         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
195         u32 queue;
196
197         for (queue = 0; queue < maxq; queue++) {
198                 struct stmmac_channel *ch = &priv->channel[queue];
199
200                 if (stmmac_xdp_is_enabled(priv) &&
201                     test_bit(queue, priv->af_xdp_zc_qps)) {
202                         napi_disable(&ch->rxtx_napi);
203                         continue;
204                 }
205
206                 if (queue < rx_queues_cnt)
207                         napi_disable(&ch->rx_napi);
208                 if (queue < tx_queues_cnt)
209                         napi_disable(&ch->tx_napi);
210         }
211 }
212
213 /**
214  * stmmac_disable_all_queues - Disable all queues
215  * @priv: driver private structure
216  */
217 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
218 {
219         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
220         struct stmmac_rx_queue *rx_q;
221         u32 queue;
222
223         /* synchronize_rcu() needed for pending XDP buffers to drain */
224         for (queue = 0; queue < rx_queues_cnt; queue++) {
225                 rx_q = &priv->rx_queue[queue];
226                 if (rx_q->xsk_pool) {
227                         synchronize_rcu();
228                         break;
229                 }
230         }
231
232         __stmmac_disable_all_queues(priv);
233 }
234
235 /**
236  * stmmac_enable_all_queues - Enable all queues
237  * @priv: driver private structure
238  */
239 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
240 {
241         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
242         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
243         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
244         u32 queue;
245
246         for (queue = 0; queue < maxq; queue++) {
247                 struct stmmac_channel *ch = &priv->channel[queue];
248
249                 if (stmmac_xdp_is_enabled(priv) &&
250                     test_bit(queue, priv->af_xdp_zc_qps)) {
251                         napi_enable(&ch->rxtx_napi);
252                         continue;
253                 }
254
255                 if (queue < rx_queues_cnt)
256                         napi_enable(&ch->rx_napi);
257                 if (queue < tx_queues_cnt)
258                         napi_enable(&ch->tx_napi);
259         }
260 }
261
262 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
263 {
264         if (!test_bit(STMMAC_DOWN, &priv->state) &&
265             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
266                 queue_work(priv->wq, &priv->service_task);
267 }
268
269 static void stmmac_global_err(struct stmmac_priv *priv)
270 {
271         netif_carrier_off(priv->dev);
272         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
273         stmmac_service_event_schedule(priv);
274 }
275
276 /**
277  * stmmac_clk_csr_set - dynamically set the MDC clock
278  * @priv: driver private structure
279  * Description: this is to dynamically set the MDC clock according to the csr
280  * clock input.
281  * Note:
282  *      If a specific clk_csr value is passed from the platform
283  *      this means that the CSR Clock Range selection cannot be
284  *      changed at run-time and it is fixed (as reported in the driver
285  *      documentation). Viceversa the driver will try to set the MDC
286  *      clock dynamically according to the actual clock input.
287  */
288 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
289 {
290         u32 clk_rate;
291
292         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
293
294         /* Platform provided default clk_csr would be assumed valid
295          * for all other cases except for the below mentioned ones.
296          * For values higher than the IEEE 802.3 specified frequency
297          * we can not estimate the proper divider as it is not known
298          * the frequency of clk_csr_i. So we do not change the default
299          * divider.
300          */
301         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
302                 if (clk_rate < CSR_F_35M)
303                         priv->clk_csr = STMMAC_CSR_20_35M;
304                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
305                         priv->clk_csr = STMMAC_CSR_35_60M;
306                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
307                         priv->clk_csr = STMMAC_CSR_60_100M;
308                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
309                         priv->clk_csr = STMMAC_CSR_100_150M;
310                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
311                         priv->clk_csr = STMMAC_CSR_150_250M;
312                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
313                         priv->clk_csr = STMMAC_CSR_250_300M;
314         }
315
316         if (priv->plat->has_sun8i) {
317                 if (clk_rate > 160000000)
318                         priv->clk_csr = 0x03;
319                 else if (clk_rate > 80000000)
320                         priv->clk_csr = 0x02;
321                 else if (clk_rate > 40000000)
322                         priv->clk_csr = 0x01;
323                 else
324                         priv->clk_csr = 0;
325         }
326
327         if (priv->plat->has_xgmac) {
328                 if (clk_rate > 400000000)
329                         priv->clk_csr = 0x5;
330                 else if (clk_rate > 350000000)
331                         priv->clk_csr = 0x4;
332                 else if (clk_rate > 300000000)
333                         priv->clk_csr = 0x3;
334                 else if (clk_rate > 250000000)
335                         priv->clk_csr = 0x2;
336                 else if (clk_rate > 150000000)
337                         priv->clk_csr = 0x1;
338                 else
339                         priv->clk_csr = 0x0;
340         }
341 }
342
343 static void print_pkt(unsigned char *buf, int len)
344 {
345         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
346         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
347 }
348
349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
350 {
351         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
352         u32 avail;
353
354         if (tx_q->dirty_tx > tx_q->cur_tx)
355                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
356         else
357                 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
358
359         return avail;
360 }
361
362 /**
363  * stmmac_rx_dirty - Get RX queue dirty
364  * @priv: driver private structure
365  * @queue: RX queue index
366  */
367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
368 {
369         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
370         u32 dirty;
371
372         if (rx_q->dirty_rx <= rx_q->cur_rx)
373                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
374         else
375                 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
376
377         return dirty;
378 }
379
380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
381 {
382         int tx_lpi_timer;
383
384         /* Clear/set the SW EEE timer flag based on LPI ET enablement */
385         priv->eee_sw_timer_en = en ? 0 : 1;
386         tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
387         stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
388 }
389
390 /**
391  * stmmac_enable_eee_mode - check and enter in LPI mode
392  * @priv: driver private structure
393  * Description: this function is to verify and enter in LPI mode in case of
394  * EEE.
395  */
396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
397 {
398         u32 tx_cnt = priv->plat->tx_queues_to_use;
399         u32 queue;
400
401         /* check if all TX queues have the work finished */
402         for (queue = 0; queue < tx_cnt; queue++) {
403                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
404
405                 if (tx_q->dirty_tx != tx_q->cur_tx)
406                         return; /* still unfinished work */
407         }
408
409         /* Check and enter in LPI mode */
410         if (!priv->tx_path_in_lpi_mode)
411                 stmmac_set_eee_mode(priv, priv->hw,
412                                 priv->plat->en_tx_lpi_clockgating);
413 }
414
415 /**
416  * stmmac_disable_eee_mode - disable and exit from LPI mode
417  * @priv: driver private structure
418  * Description: this function is to exit and disable EEE in case of
419  * LPI state is true. This is called by the xmit.
420  */
421 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
422 {
423         if (!priv->eee_sw_timer_en) {
424                 stmmac_lpi_entry_timer_config(priv, 0);
425                 return;
426         }
427
428         stmmac_reset_eee_mode(priv, priv->hw);
429         del_timer_sync(&priv->eee_ctrl_timer);
430         priv->tx_path_in_lpi_mode = false;
431 }
432
433 /**
434  * stmmac_eee_ctrl_timer - EEE TX SW timer.
435  * @t:  timer_list struct containing private info
436  * Description:
437  *  if there is no data transfer and if we are not in LPI state,
438  *  then MAC Transmitter can be moved to LPI state.
439  */
440 static void stmmac_eee_ctrl_timer(struct timer_list *t)
441 {
442         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
443
444         stmmac_enable_eee_mode(priv);
445         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
446 }
447
448 /**
449  * stmmac_eee_init - init EEE
450  * @priv: driver private structure
451  * Description:
452  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
453  *  can also manage EEE, this function enable the LPI state and start related
454  *  timer.
455  */
456 bool stmmac_eee_init(struct stmmac_priv *priv)
457 {
458         int eee_tw_timer = priv->eee_tw_timer;
459
460         /* Using PCS we cannot dial with the phy registers at this stage
461          * so we do not support extra feature like EEE.
462          */
463         if (priv->hw->pcs == STMMAC_PCS_TBI ||
464             priv->hw->pcs == STMMAC_PCS_RTBI)
465                 return false;
466
467         /* Check if MAC core supports the EEE feature. */
468         if (!priv->dma_cap.eee)
469                 return false;
470
471         mutex_lock(&priv->lock);
472
473         /* Check if it needs to be deactivated */
474         if (!priv->eee_active) {
475                 if (priv->eee_enabled) {
476                         netdev_dbg(priv->dev, "disable EEE\n");
477                         stmmac_lpi_entry_timer_config(priv, 0);
478                         del_timer_sync(&priv->eee_ctrl_timer);
479                         stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
480                 }
481                 mutex_unlock(&priv->lock);
482                 return false;
483         }
484
485         if (priv->eee_active && !priv->eee_enabled) {
486                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
487                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
488                                      eee_tw_timer);
489         }
490
491         if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
492                 del_timer_sync(&priv->eee_ctrl_timer);
493                 priv->tx_path_in_lpi_mode = false;
494                 stmmac_lpi_entry_timer_config(priv, 1);
495         } else {
496                 stmmac_lpi_entry_timer_config(priv, 0);
497                 mod_timer(&priv->eee_ctrl_timer,
498                           STMMAC_LPI_T(priv->tx_lpi_timer));
499         }
500
501         mutex_unlock(&priv->lock);
502         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
503         return true;
504 }
505
506 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
507  * @priv: driver private structure
508  * @p : descriptor pointer
509  * @skb : the socket buffer
510  * Description :
511  * This function will read timestamp from the descriptor & pass it to stack.
512  * and also perform some sanity checks.
513  */
514 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
515                                    struct dma_desc *p, struct sk_buff *skb)
516 {
517         struct skb_shared_hwtstamps shhwtstamp;
518         bool found = false;
519         s64 adjust = 0;
520         u64 ns = 0;
521
522         if (!priv->hwts_tx_en)
523                 return;
524
525         /* exit if skb doesn't support hw tstamp */
526         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
527                 return;
528
529         /* check tx tstamp status */
530         if (stmmac_get_tx_timestamp_status(priv, p)) {
531                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
532                 found = true;
533         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
534                 found = true;
535         }
536
537         if (found) {
538                 /* Correct the clk domain crossing(CDC) error */
539                 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
540                         adjust += -(2 * (NSEC_PER_SEC /
541                                          priv->plat->clk_ptp_rate));
542                         ns += adjust;
543                 }
544
545                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
546                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
547
548                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
549                 /* pass tstamp to stack */
550                 skb_tstamp_tx(skb, &shhwtstamp);
551         }
552 }
553
554 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
555  * @priv: driver private structure
556  * @p : descriptor pointer
557  * @np : next descriptor pointer
558  * @skb : the socket buffer
559  * Description :
560  * This function will read received packet's timestamp from the descriptor
561  * and pass it to stack. It also perform some sanity checks.
562  */
563 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
564                                    struct dma_desc *np, struct sk_buff *skb)
565 {
566         struct skb_shared_hwtstamps *shhwtstamp = NULL;
567         struct dma_desc *desc = p;
568         u64 adjust = 0;
569         u64 ns = 0;
570
571         if (!priv->hwts_rx_en)
572                 return;
573         /* For GMAC4, the valid timestamp is from CTX next desc. */
574         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
575                 desc = np;
576
577         /* Check if timestamp is available */
578         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
579                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
580
581                 /* Correct the clk domain crossing(CDC) error */
582                 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
583                         adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate);
584                         ns -= adjust;
585                 }
586
587                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
588                 shhwtstamp = skb_hwtstamps(skb);
589                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
590                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
591         } else  {
592                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
593         }
594 }
595
596 /**
597  *  stmmac_hwtstamp_set - control hardware timestamping.
598  *  @dev: device pointer.
599  *  @ifr: An IOCTL specific structure, that can contain a pointer to
600  *  a proprietary structure used to pass information to the driver.
601  *  Description:
602  *  This function configures the MAC to enable/disable both outgoing(TX)
603  *  and incoming(RX) packets time stamping based on user input.
604  *  Return Value:
605  *  0 on success and an appropriate -ve integer on failure.
606  */
607 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
608 {
609         struct stmmac_priv *priv = netdev_priv(dev);
610         struct hwtstamp_config config;
611         struct timespec64 now;
612         u64 temp = 0;
613         u32 ptp_v2 = 0;
614         u32 tstamp_all = 0;
615         u32 ptp_over_ipv4_udp = 0;
616         u32 ptp_over_ipv6_udp = 0;
617         u32 ptp_over_ethernet = 0;
618         u32 snap_type_sel = 0;
619         u32 ts_master_en = 0;
620         u32 ts_event_en = 0;
621         u32 sec_inc = 0;
622         u32 value = 0;
623         bool xmac;
624
625         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
626
627         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628                 netdev_alert(priv->dev, "No support for HW time stamping\n");
629                 priv->hwts_tx_en = 0;
630                 priv->hwts_rx_en = 0;
631
632                 return -EOPNOTSUPP;
633         }
634
635         if (copy_from_user(&config, ifr->ifr_data,
636                            sizeof(config)))
637                 return -EFAULT;
638
639         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640                    __func__, config.flags, config.tx_type, config.rx_filter);
641
642         /* reserved for future extensions */
643         if (config.flags)
644                 return -EINVAL;
645
646         if (config.tx_type != HWTSTAMP_TX_OFF &&
647             config.tx_type != HWTSTAMP_TX_ON)
648                 return -ERANGE;
649
650         if (priv->adv_ts) {
651                 switch (config.rx_filter) {
652                 case HWTSTAMP_FILTER_NONE:
653                         /* time stamp no incoming packet at all */
654                         config.rx_filter = HWTSTAMP_FILTER_NONE;
655                         break;
656
657                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658                         /* PTP v1, UDP, any kind of event packet */
659                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660                         /* 'xmac' hardware can support Sync, Pdelay_Req and
661                          * Pdelay_resp by setting bit14 and bits17/16 to 01
662                          * This leaves Delay_Req timestamps out.
663                          * Enable all events *and* general purpose message
664                          * timestamping
665                          */
666                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669                         break;
670
671                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672                         /* PTP v1, UDP, Sync packet */
673                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674                         /* take time stamp for SYNC messages only */
675                         ts_event_en = PTP_TCR_TSEVNTENA;
676
677                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679                         break;
680
681                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682                         /* PTP v1, UDP, Delay_req packet */
683                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684                         /* take time stamp for Delay_Req messages only */
685                         ts_master_en = PTP_TCR_TSMSTRENA;
686                         ts_event_en = PTP_TCR_TSEVNTENA;
687
688                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690                         break;
691
692                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693                         /* PTP v2, UDP, any kind of event packet */
694                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695                         ptp_v2 = PTP_TCR_TSVER2ENA;
696                         /* take time stamp for all event messages */
697                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698
699                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701                         break;
702
703                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704                         /* PTP v2, UDP, Sync packet */
705                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706                         ptp_v2 = PTP_TCR_TSVER2ENA;
707                         /* take time stamp for SYNC messages only */
708                         ts_event_en = PTP_TCR_TSEVNTENA;
709
710                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712                         break;
713
714                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715                         /* PTP v2, UDP, Delay_req packet */
716                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717                         ptp_v2 = PTP_TCR_TSVER2ENA;
718                         /* take time stamp for Delay_Req messages only */
719                         ts_master_en = PTP_TCR_TSMSTRENA;
720                         ts_event_en = PTP_TCR_TSEVNTENA;
721
722                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724                         break;
725
726                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
727                         /* PTP v2/802.AS1 any layer, any kind of event packet */
728                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729                         ptp_v2 = PTP_TCR_TSVER2ENA;
730                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731                         if (priv->synopsys_id != DWMAC_CORE_5_10)
732                                 ts_event_en = PTP_TCR_TSEVNTENA;
733                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735                         ptp_over_ethernet = PTP_TCR_TSIPENA;
736                         break;
737
738                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
739                         /* PTP v2/802.AS1, any layer, Sync packet */
740                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741                         ptp_v2 = PTP_TCR_TSVER2ENA;
742                         /* take time stamp for SYNC messages only */
743                         ts_event_en = PTP_TCR_TSEVNTENA;
744
745                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747                         ptp_over_ethernet = PTP_TCR_TSIPENA;
748                         break;
749
750                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751                         /* PTP v2/802.AS1, any layer, Delay_req packet */
752                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753                         ptp_v2 = PTP_TCR_TSVER2ENA;
754                         /* take time stamp for Delay_Req messages only */
755                         ts_master_en = PTP_TCR_TSMSTRENA;
756                         ts_event_en = PTP_TCR_TSEVNTENA;
757
758                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760                         ptp_over_ethernet = PTP_TCR_TSIPENA;
761                         break;
762
763                 case HWTSTAMP_FILTER_NTP_ALL:
764                 case HWTSTAMP_FILTER_ALL:
765                         /* time stamp any incoming packet */
766                         config.rx_filter = HWTSTAMP_FILTER_ALL;
767                         tstamp_all = PTP_TCR_TSENALL;
768                         break;
769
770                 default:
771                         return -ERANGE;
772                 }
773         } else {
774                 switch (config.rx_filter) {
775                 case HWTSTAMP_FILTER_NONE:
776                         config.rx_filter = HWTSTAMP_FILTER_NONE;
777                         break;
778                 default:
779                         /* PTP v1, UDP, any kind of event packet */
780                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781                         break;
782                 }
783         }
784         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786
787         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
788                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
789         else {
790                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
791                          tstamp_all | ptp_v2 | ptp_over_ethernet |
792                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
793                          ts_master_en | snap_type_sel);
794                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
795
796                 /* program Sub Second Increment reg */
797                 stmmac_config_sub_second_increment(priv,
798                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
799                                 xmac, &sec_inc);
800                 temp = div_u64(1000000000ULL, sec_inc);
801
802                 /* Store sub second increment and flags for later use */
803                 priv->sub_second_inc = sec_inc;
804                 priv->systime_flags = value;
805
806                 /* calculate default added value:
807                  * formula is :
808                  * addend = (2^32)/freq_div_ratio;
809                  * where, freq_div_ratio = 1e9ns/sec_inc
810                  */
811                 temp = (u64)(temp << 32);
812                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
813                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
814
815                 /* initialize system time */
816                 ktime_get_real_ts64(&now);
817
818                 /* lower 32 bits of tv_sec are safe until y2106 */
819                 stmmac_init_systime(priv, priv->ptpaddr,
820                                 (u32)now.tv_sec, now.tv_nsec);
821         }
822
823         memcpy(&priv->tstamp_config, &config, sizeof(config));
824
825         return copy_to_user(ifr->ifr_data, &config,
826                             sizeof(config)) ? -EFAULT : 0;
827 }
828
829 /**
830  *  stmmac_hwtstamp_get - read hardware timestamping.
831  *  @dev: device pointer.
832  *  @ifr: An IOCTL specific structure, that can contain a pointer to
833  *  a proprietary structure used to pass information to the driver.
834  *  Description:
835  *  This function obtain the current hardware timestamping settings
836  *  as requested.
837  */
838 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
839 {
840         struct stmmac_priv *priv = netdev_priv(dev);
841         struct hwtstamp_config *config = &priv->tstamp_config;
842
843         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
844                 return -EOPNOTSUPP;
845
846         return copy_to_user(ifr->ifr_data, config,
847                             sizeof(*config)) ? -EFAULT : 0;
848 }
849
850 /**
851  * stmmac_init_ptp - init PTP
852  * @priv: driver private structure
853  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
854  * This is done by looking at the HW cap. register.
855  * This function also registers the ptp driver.
856  */
857 static int stmmac_init_ptp(struct stmmac_priv *priv)
858 {
859         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
860
861         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
862                 return -EOPNOTSUPP;
863
864         priv->adv_ts = 0;
865         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
866         if (xmac && priv->dma_cap.atime_stamp)
867                 priv->adv_ts = 1;
868         /* Dwmac 3.x core with extend_desc can support adv_ts */
869         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
870                 priv->adv_ts = 1;
871
872         if (priv->dma_cap.time_stamp)
873                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
874
875         if (priv->adv_ts)
876                 netdev_info(priv->dev,
877                             "IEEE 1588-2008 Advanced Timestamp supported\n");
878
879         priv->hwts_tx_en = 0;
880         priv->hwts_rx_en = 0;
881
882         stmmac_ptp_register(priv);
883
884         return 0;
885 }
886
887 static void stmmac_release_ptp(struct stmmac_priv *priv)
888 {
889         clk_disable_unprepare(priv->plat->clk_ptp_ref);
890         stmmac_ptp_unregister(priv);
891 }
892
893 /**
894  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
895  *  @priv: driver private structure
896  *  @duplex: duplex passed to the next function
897  *  Description: It is used for configuring the flow control in all queues
898  */
899 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
900 {
901         u32 tx_cnt = priv->plat->tx_queues_to_use;
902
903         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
904                         priv->pause, tx_cnt);
905 }
906
907 static void stmmac_validate(struct phylink_config *config,
908                             unsigned long *supported,
909                             struct phylink_link_state *state)
910 {
911         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
912         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
913         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
914         int tx_cnt = priv->plat->tx_queues_to_use;
915         int max_speed = priv->plat->max_speed;
916
917         phylink_set(mac_supported, 10baseT_Half);
918         phylink_set(mac_supported, 10baseT_Full);
919         phylink_set(mac_supported, 100baseT_Half);
920         phylink_set(mac_supported, 100baseT_Full);
921         phylink_set(mac_supported, 1000baseT_Half);
922         phylink_set(mac_supported, 1000baseT_Full);
923         phylink_set(mac_supported, 1000baseKX_Full);
924
925         phylink_set(mac_supported, Autoneg);
926         phylink_set(mac_supported, Pause);
927         phylink_set(mac_supported, Asym_Pause);
928         phylink_set_port_modes(mac_supported);
929
930         /* Cut down 1G if asked to */
931         if ((max_speed > 0) && (max_speed < 1000)) {
932                 phylink_set(mask, 1000baseT_Full);
933                 phylink_set(mask, 1000baseX_Full);
934         } else if (priv->plat->has_gmac4) {
935                 if (!max_speed || max_speed >= 2500) {
936                         phylink_set(mac_supported, 2500baseT_Full);
937                         phylink_set(mac_supported, 2500baseX_Full);
938                 }
939         } else if (priv->plat->has_xgmac) {
940                 if (!max_speed || (max_speed >= 2500)) {
941                         phylink_set(mac_supported, 2500baseT_Full);
942                         phylink_set(mac_supported, 2500baseX_Full);
943                 }
944                 if (!max_speed || (max_speed >= 5000)) {
945                         phylink_set(mac_supported, 5000baseT_Full);
946                 }
947                 if (!max_speed || (max_speed >= 10000)) {
948                         phylink_set(mac_supported, 10000baseSR_Full);
949                         phylink_set(mac_supported, 10000baseLR_Full);
950                         phylink_set(mac_supported, 10000baseER_Full);
951                         phylink_set(mac_supported, 10000baseLRM_Full);
952                         phylink_set(mac_supported, 10000baseT_Full);
953                         phylink_set(mac_supported, 10000baseKX4_Full);
954                         phylink_set(mac_supported, 10000baseKR_Full);
955                 }
956                 if (!max_speed || (max_speed >= 25000)) {
957                         phylink_set(mac_supported, 25000baseCR_Full);
958                         phylink_set(mac_supported, 25000baseKR_Full);
959                         phylink_set(mac_supported, 25000baseSR_Full);
960                 }
961                 if (!max_speed || (max_speed >= 40000)) {
962                         phylink_set(mac_supported, 40000baseKR4_Full);
963                         phylink_set(mac_supported, 40000baseCR4_Full);
964                         phylink_set(mac_supported, 40000baseSR4_Full);
965                         phylink_set(mac_supported, 40000baseLR4_Full);
966                 }
967                 if (!max_speed || (max_speed >= 50000)) {
968                         phylink_set(mac_supported, 50000baseCR2_Full);
969                         phylink_set(mac_supported, 50000baseKR2_Full);
970                         phylink_set(mac_supported, 50000baseSR2_Full);
971                         phylink_set(mac_supported, 50000baseKR_Full);
972                         phylink_set(mac_supported, 50000baseSR_Full);
973                         phylink_set(mac_supported, 50000baseCR_Full);
974                         phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
975                         phylink_set(mac_supported, 50000baseDR_Full);
976                 }
977                 if (!max_speed || (max_speed >= 100000)) {
978                         phylink_set(mac_supported, 100000baseKR4_Full);
979                         phylink_set(mac_supported, 100000baseSR4_Full);
980                         phylink_set(mac_supported, 100000baseCR4_Full);
981                         phylink_set(mac_supported, 100000baseLR4_ER4_Full);
982                         phylink_set(mac_supported, 100000baseKR2_Full);
983                         phylink_set(mac_supported, 100000baseSR2_Full);
984                         phylink_set(mac_supported, 100000baseCR2_Full);
985                         phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
986                         phylink_set(mac_supported, 100000baseDR2_Full);
987                 }
988         }
989
990         /* Half-Duplex can only work with single queue */
991         if (tx_cnt > 1) {
992                 phylink_set(mask, 10baseT_Half);
993                 phylink_set(mask, 100baseT_Half);
994                 phylink_set(mask, 1000baseT_Half);
995         }
996
997         linkmode_and(supported, supported, mac_supported);
998         linkmode_andnot(supported, supported, mask);
999
1000         linkmode_and(state->advertising, state->advertising, mac_supported);
1001         linkmode_andnot(state->advertising, state->advertising, mask);
1002
1003         /* If PCS is supported, check which modes it supports. */
1004         if (priv->hw->xpcs)
1005                 xpcs_validate(priv->hw->xpcs, supported, state);
1006 }
1007
1008 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
1009                               const struct phylink_link_state *state)
1010 {
1011         /* Nothing to do, xpcs_config() handles everything */
1012 }
1013
1014 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
1015 {
1016         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
1017         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
1018         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
1019         bool *hs_enable = &fpe_cfg->hs_enable;
1020
1021         if (is_up && *hs_enable) {
1022                 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
1023         } else {
1024                 *lo_state = FPE_STATE_OFF;
1025                 *lp_state = FPE_STATE_OFF;
1026         }
1027 }
1028
1029 static void stmmac_mac_link_down(struct phylink_config *config,
1030                                  unsigned int mode, phy_interface_t interface)
1031 {
1032         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1033
1034         stmmac_mac_set(priv, priv->ioaddr, false);
1035         priv->eee_active = false;
1036         priv->tx_lpi_enabled = false;
1037         stmmac_eee_init(priv);
1038         stmmac_set_eee_pls(priv, priv->hw, false);
1039
1040         if (priv->dma_cap.fpesel)
1041                 stmmac_fpe_link_state_handle(priv, false);
1042 }
1043
1044 static void stmmac_mac_link_up(struct phylink_config *config,
1045                                struct phy_device *phy,
1046                                unsigned int mode, phy_interface_t interface,
1047                                int speed, int duplex,
1048                                bool tx_pause, bool rx_pause)
1049 {
1050         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1051         u32 ctrl;
1052
1053         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1054         ctrl &= ~priv->hw->link.speed_mask;
1055
1056         if (interface == PHY_INTERFACE_MODE_USXGMII) {
1057                 switch (speed) {
1058                 case SPEED_10000:
1059                         ctrl |= priv->hw->link.xgmii.speed10000;
1060                         break;
1061                 case SPEED_5000:
1062                         ctrl |= priv->hw->link.xgmii.speed5000;
1063                         break;
1064                 case SPEED_2500:
1065                         ctrl |= priv->hw->link.xgmii.speed2500;
1066                         break;
1067                 default:
1068                         return;
1069                 }
1070         } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1071                 switch (speed) {
1072                 case SPEED_100000:
1073                         ctrl |= priv->hw->link.xlgmii.speed100000;
1074                         break;
1075                 case SPEED_50000:
1076                         ctrl |= priv->hw->link.xlgmii.speed50000;
1077                         break;
1078                 case SPEED_40000:
1079                         ctrl |= priv->hw->link.xlgmii.speed40000;
1080                         break;
1081                 case SPEED_25000:
1082                         ctrl |= priv->hw->link.xlgmii.speed25000;
1083                         break;
1084                 case SPEED_10000:
1085                         ctrl |= priv->hw->link.xgmii.speed10000;
1086                         break;
1087                 case SPEED_2500:
1088                         ctrl |= priv->hw->link.speed2500;
1089                         break;
1090                 case SPEED_1000:
1091                         ctrl |= priv->hw->link.speed1000;
1092                         break;
1093                 default:
1094                         return;
1095                 }
1096         } else {
1097                 switch (speed) {
1098                 case SPEED_2500:
1099                         ctrl |= priv->hw->link.speed2500;
1100                         break;
1101                 case SPEED_1000:
1102                         ctrl |= priv->hw->link.speed1000;
1103                         break;
1104                 case SPEED_100:
1105                         ctrl |= priv->hw->link.speed100;
1106                         break;
1107                 case SPEED_10:
1108                         ctrl |= priv->hw->link.speed10;
1109                         break;
1110                 default:
1111                         return;
1112                 }
1113         }
1114
1115         priv->speed = speed;
1116
1117         if (priv->plat->fix_mac_speed)
1118                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1119
1120         if (!duplex)
1121                 ctrl &= ~priv->hw->link.duplex;
1122         else
1123                 ctrl |= priv->hw->link.duplex;
1124
1125         /* Flow Control operation */
1126         if (tx_pause && rx_pause)
1127                 stmmac_mac_flow_ctrl(priv, duplex);
1128
1129         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1130
1131         stmmac_mac_set(priv, priv->ioaddr, true);
1132         if (phy && priv->dma_cap.eee) {
1133                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1134                 priv->eee_enabled = stmmac_eee_init(priv);
1135                 priv->tx_lpi_enabled = priv->eee_enabled;
1136                 stmmac_set_eee_pls(priv, priv->hw, true);
1137         }
1138
1139         if (priv->dma_cap.fpesel)
1140                 stmmac_fpe_link_state_handle(priv, true);
1141 }
1142
1143 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1144         .validate = stmmac_validate,
1145         .mac_config = stmmac_mac_config,
1146         .mac_link_down = stmmac_mac_link_down,
1147         .mac_link_up = stmmac_mac_link_up,
1148 };
1149
1150 /**
1151  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1152  * @priv: driver private structure
1153  * Description: this is to verify if the HW supports the PCS.
1154  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1155  * configured for the TBI, RTBI, or SGMII PHY interface.
1156  */
1157 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1158 {
1159         int interface = priv->plat->interface;
1160
1161         if (priv->dma_cap.pcs) {
1162                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1163                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1164                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1165                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1166                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1167                         priv->hw->pcs = STMMAC_PCS_RGMII;
1168                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1169                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1170                         priv->hw->pcs = STMMAC_PCS_SGMII;
1171                 }
1172         }
1173 }
1174
1175 /**
1176  * stmmac_init_phy - PHY initialization
1177  * @dev: net device structure
1178  * Description: it initializes the driver's PHY state, and attaches the PHY
1179  * to the mac driver.
1180  *  Return value:
1181  *  0 on success
1182  */
1183 static int stmmac_init_phy(struct net_device *dev)
1184 {
1185         struct stmmac_priv *priv = netdev_priv(dev);
1186         struct device_node *node;
1187         int ret;
1188
1189         node = priv->plat->phylink_node;
1190
1191         if (node)
1192                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1193
1194         /* Some DT bindings do not set-up the PHY handle. Let's try to
1195          * manually parse it
1196          */
1197         if (!node || ret) {
1198                 int addr = priv->plat->phy_addr;
1199                 struct phy_device *phydev;
1200
1201                 phydev = mdiobus_get_phy(priv->mii, addr);
1202                 if (!phydev) {
1203                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1204                         return -ENODEV;
1205                 }
1206
1207                 ret = phylink_connect_phy(priv->phylink, phydev);
1208         }
1209
1210         if (!priv->plat->pmt) {
1211                 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1212
1213                 phylink_ethtool_get_wol(priv->phylink, &wol);
1214                 device_set_wakeup_capable(priv->device, !!wol.supported);
1215         }
1216
1217         return ret;
1218 }
1219
1220 static int stmmac_phy_setup(struct stmmac_priv *priv)
1221 {
1222         struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1223         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1224         int mode = priv->plat->phy_interface;
1225         struct phylink *phylink;
1226
1227         priv->phylink_config.dev = &priv->dev->dev;
1228         priv->phylink_config.type = PHYLINK_NETDEV;
1229         priv->phylink_config.pcs_poll = true;
1230         if (priv->plat->mdio_bus_data)
1231                 priv->phylink_config.ovr_an_inband =
1232                         mdio_bus_data->xpcs_an_inband;
1233
1234         if (!fwnode)
1235                 fwnode = dev_fwnode(priv->device);
1236
1237         phylink = phylink_create(&priv->phylink_config, fwnode,
1238                                  mode, &stmmac_phylink_mac_ops);
1239         if (IS_ERR(phylink))
1240                 return PTR_ERR(phylink);
1241
1242         if (priv->hw->xpcs)
1243                 phylink_set_pcs(phylink, &priv->hw->xpcs->pcs);
1244
1245         priv->phylink = phylink;
1246         return 0;
1247 }
1248
1249 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1250 {
1251         u32 rx_cnt = priv->plat->rx_queues_to_use;
1252         unsigned int desc_size;
1253         void *head_rx;
1254         u32 queue;
1255
1256         /* Display RX rings */
1257         for (queue = 0; queue < rx_cnt; queue++) {
1258                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1259
1260                 pr_info("\tRX Queue %u rings\n", queue);
1261
1262                 if (priv->extend_desc) {
1263                         head_rx = (void *)rx_q->dma_erx;
1264                         desc_size = sizeof(struct dma_extended_desc);
1265                 } else {
1266                         head_rx = (void *)rx_q->dma_rx;
1267                         desc_size = sizeof(struct dma_desc);
1268                 }
1269
1270                 /* Display RX ring */
1271                 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1272                                     rx_q->dma_rx_phy, desc_size);
1273         }
1274 }
1275
1276 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1277 {
1278         u32 tx_cnt = priv->plat->tx_queues_to_use;
1279         unsigned int desc_size;
1280         void *head_tx;
1281         u32 queue;
1282
1283         /* Display TX rings */
1284         for (queue = 0; queue < tx_cnt; queue++) {
1285                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1286
1287                 pr_info("\tTX Queue %d rings\n", queue);
1288
1289                 if (priv->extend_desc) {
1290                         head_tx = (void *)tx_q->dma_etx;
1291                         desc_size = sizeof(struct dma_extended_desc);
1292                 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1293                         head_tx = (void *)tx_q->dma_entx;
1294                         desc_size = sizeof(struct dma_edesc);
1295                 } else {
1296                         head_tx = (void *)tx_q->dma_tx;
1297                         desc_size = sizeof(struct dma_desc);
1298                 }
1299
1300                 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1301                                     tx_q->dma_tx_phy, desc_size);
1302         }
1303 }
1304
1305 static void stmmac_display_rings(struct stmmac_priv *priv)
1306 {
1307         /* Display RX ring */
1308         stmmac_display_rx_rings(priv);
1309
1310         /* Display TX ring */
1311         stmmac_display_tx_rings(priv);
1312 }
1313
1314 static int stmmac_set_bfsize(int mtu, int bufsize)
1315 {
1316         int ret = bufsize;
1317
1318         if (mtu >= BUF_SIZE_8KiB)
1319                 ret = BUF_SIZE_16KiB;
1320         else if (mtu >= BUF_SIZE_4KiB)
1321                 ret = BUF_SIZE_8KiB;
1322         else if (mtu >= BUF_SIZE_2KiB)
1323                 ret = BUF_SIZE_4KiB;
1324         else if (mtu > DEFAULT_BUFSIZE)
1325                 ret = BUF_SIZE_2KiB;
1326         else
1327                 ret = DEFAULT_BUFSIZE;
1328
1329         return ret;
1330 }
1331
1332 /**
1333  * stmmac_clear_rx_descriptors - clear RX descriptors
1334  * @priv: driver private structure
1335  * @queue: RX queue index
1336  * Description: this function is called to clear the RX descriptors
1337  * in case of both basic and extended descriptors are used.
1338  */
1339 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1340 {
1341         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1342         int i;
1343
1344         /* Clear the RX descriptors */
1345         for (i = 0; i < priv->dma_rx_size; i++)
1346                 if (priv->extend_desc)
1347                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1348                                         priv->use_riwt, priv->mode,
1349                                         (i == priv->dma_rx_size - 1),
1350                                         priv->dma_buf_sz);
1351                 else
1352                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1353                                         priv->use_riwt, priv->mode,
1354                                         (i == priv->dma_rx_size - 1),
1355                                         priv->dma_buf_sz);
1356 }
1357
1358 /**
1359  * stmmac_clear_tx_descriptors - clear tx descriptors
1360  * @priv: driver private structure
1361  * @queue: TX queue index.
1362  * Description: this function is called to clear the TX descriptors
1363  * in case of both basic and extended descriptors are used.
1364  */
1365 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1366 {
1367         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1368         int i;
1369
1370         /* Clear the TX descriptors */
1371         for (i = 0; i < priv->dma_tx_size; i++) {
1372                 int last = (i == (priv->dma_tx_size - 1));
1373                 struct dma_desc *p;
1374
1375                 if (priv->extend_desc)
1376                         p = &tx_q->dma_etx[i].basic;
1377                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1378                         p = &tx_q->dma_entx[i].basic;
1379                 else
1380                         p = &tx_q->dma_tx[i];
1381
1382                 stmmac_init_tx_desc(priv, p, priv->mode, last);
1383         }
1384 }
1385
1386 /**
1387  * stmmac_clear_descriptors - clear descriptors
1388  * @priv: driver private structure
1389  * Description: this function is called to clear the TX and RX descriptors
1390  * in case of both basic and extended descriptors are used.
1391  */
1392 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1393 {
1394         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1395         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1396         u32 queue;
1397
1398         /* Clear the RX descriptors */
1399         for (queue = 0; queue < rx_queue_cnt; queue++)
1400                 stmmac_clear_rx_descriptors(priv, queue);
1401
1402         /* Clear the TX descriptors */
1403         for (queue = 0; queue < tx_queue_cnt; queue++)
1404                 stmmac_clear_tx_descriptors(priv, queue);
1405 }
1406
1407 /**
1408  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1409  * @priv: driver private structure
1410  * @p: descriptor pointer
1411  * @i: descriptor index
1412  * @flags: gfp flag
1413  * @queue: RX queue index
1414  * Description: this function is called to allocate a receive buffer, perform
1415  * the DMA mapping and init the descriptor.
1416  */
1417 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1418                                   int i, gfp_t flags, u32 queue)
1419 {
1420         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1421         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1422
1423         if (!buf->page) {
1424                 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1425                 if (!buf->page)
1426                         return -ENOMEM;
1427                 buf->page_offset = stmmac_rx_offset(priv);
1428         }
1429
1430         if (priv->sph && !buf->sec_page) {
1431                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1432                 if (!buf->sec_page)
1433                         return -ENOMEM;
1434
1435                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1436                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1437         } else {
1438                 buf->sec_page = NULL;
1439                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1440         }
1441
1442         buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1443
1444         stmmac_set_desc_addr(priv, p, buf->addr);
1445         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1446                 stmmac_init_desc3(priv, p);
1447
1448         return 0;
1449 }
1450
1451 /**
1452  * stmmac_free_rx_buffer - free RX dma buffers
1453  * @priv: private structure
1454  * @queue: RX queue index
1455  * @i: buffer index.
1456  */
1457 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1458 {
1459         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1460         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1461
1462         if (buf->page)
1463                 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1464         buf->page = NULL;
1465
1466         if (buf->sec_page)
1467                 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1468         buf->sec_page = NULL;
1469 }
1470
1471 /**
1472  * stmmac_free_tx_buffer - free RX dma buffers
1473  * @priv: private structure
1474  * @queue: RX queue index
1475  * @i: buffer index.
1476  */
1477 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1478 {
1479         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1480
1481         if (tx_q->tx_skbuff_dma[i].buf &&
1482             tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1483                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1484                         dma_unmap_page(priv->device,
1485                                        tx_q->tx_skbuff_dma[i].buf,
1486                                        tx_q->tx_skbuff_dma[i].len,
1487                                        DMA_TO_DEVICE);
1488                 else
1489                         dma_unmap_single(priv->device,
1490                                          tx_q->tx_skbuff_dma[i].buf,
1491                                          tx_q->tx_skbuff_dma[i].len,
1492                                          DMA_TO_DEVICE);
1493         }
1494
1495         if (tx_q->xdpf[i] &&
1496             (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1497              tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1498                 xdp_return_frame(tx_q->xdpf[i]);
1499                 tx_q->xdpf[i] = NULL;
1500         }
1501
1502         if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1503                 tx_q->xsk_frames_done++;
1504
1505         if (tx_q->tx_skbuff[i] &&
1506             tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1507                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1508                 tx_q->tx_skbuff[i] = NULL;
1509         }
1510
1511         tx_q->tx_skbuff_dma[i].buf = 0;
1512         tx_q->tx_skbuff_dma[i].map_as_page = false;
1513 }
1514
1515 /**
1516  * dma_free_rx_skbufs - free RX dma buffers
1517  * @priv: private structure
1518  * @queue: RX queue index
1519  */
1520 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1521 {
1522         int i;
1523
1524         for (i = 0; i < priv->dma_rx_size; i++)
1525                 stmmac_free_rx_buffer(priv, queue, i);
1526 }
1527
1528 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1529                                    gfp_t flags)
1530 {
1531         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1532         int i;
1533
1534         for (i = 0; i < priv->dma_rx_size; i++) {
1535                 struct dma_desc *p;
1536                 int ret;
1537
1538                 if (priv->extend_desc)
1539                         p = &((rx_q->dma_erx + i)->basic);
1540                 else
1541                         p = rx_q->dma_rx + i;
1542
1543                 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1544                                              queue);
1545                 if (ret)
1546                         return ret;
1547
1548                 rx_q->buf_alloc_num++;
1549         }
1550
1551         return 0;
1552 }
1553
1554 /**
1555  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1556  * @priv: private structure
1557  * @queue: RX queue index
1558  */
1559 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1560 {
1561         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1562         int i;
1563
1564         for (i = 0; i < priv->dma_rx_size; i++) {
1565                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1566
1567                 if (!buf->xdp)
1568                         continue;
1569
1570                 xsk_buff_free(buf->xdp);
1571                 buf->xdp = NULL;
1572         }
1573 }
1574
1575 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1576 {
1577         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1578         int i;
1579
1580         for (i = 0; i < priv->dma_rx_size; i++) {
1581                 struct stmmac_rx_buffer *buf;
1582                 dma_addr_t dma_addr;
1583                 struct dma_desc *p;
1584
1585                 if (priv->extend_desc)
1586                         p = (struct dma_desc *)(rx_q->dma_erx + i);
1587                 else
1588                         p = rx_q->dma_rx + i;
1589
1590                 buf = &rx_q->buf_pool[i];
1591
1592                 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1593                 if (!buf->xdp)
1594                         return -ENOMEM;
1595
1596                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1597                 stmmac_set_desc_addr(priv, p, dma_addr);
1598                 rx_q->buf_alloc_num++;
1599         }
1600
1601         return 0;
1602 }
1603
1604 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1605 {
1606         if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1607                 return NULL;
1608
1609         return xsk_get_pool_from_qid(priv->dev, queue);
1610 }
1611
1612 /**
1613  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1614  * @priv: driver private structure
1615  * @queue: RX queue index
1616  * @flags: gfp flag.
1617  * Description: this function initializes the DMA RX descriptors
1618  * and allocates the socket buffers. It supports the chained and ring
1619  * modes.
1620  */
1621 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1622 {
1623         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1624         int ret;
1625
1626         netif_dbg(priv, probe, priv->dev,
1627                   "(%s) dma_rx_phy=0x%08x\n", __func__,
1628                   (u32)rx_q->dma_rx_phy);
1629
1630         stmmac_clear_rx_descriptors(priv, queue);
1631
1632         xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1633
1634         rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1635
1636         if (rx_q->xsk_pool) {
1637                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1638                                                    MEM_TYPE_XSK_BUFF_POOL,
1639                                                    NULL));
1640                 netdev_info(priv->dev,
1641                             "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1642                             rx_q->queue_index);
1643                 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1644         } else {
1645                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1646                                                    MEM_TYPE_PAGE_POOL,
1647                                                    rx_q->page_pool));
1648                 netdev_info(priv->dev,
1649                             "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1650                             rx_q->queue_index);
1651         }
1652
1653         if (rx_q->xsk_pool) {
1654                 /* RX XDP ZC buffer pool may not be populated, e.g.
1655                  * xdpsock TX-only.
1656                  */
1657                 stmmac_alloc_rx_buffers_zc(priv, queue);
1658         } else {
1659                 ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1660                 if (ret < 0)
1661                         return -ENOMEM;
1662         }
1663
1664         rx_q->cur_rx = 0;
1665         rx_q->dirty_rx = 0;
1666
1667         /* Setup the chained descriptor addresses */
1668         if (priv->mode == STMMAC_CHAIN_MODE) {
1669                 if (priv->extend_desc)
1670                         stmmac_mode_init(priv, rx_q->dma_erx,
1671                                          rx_q->dma_rx_phy,
1672                                          priv->dma_rx_size, 1);
1673                 else
1674                         stmmac_mode_init(priv, rx_q->dma_rx,
1675                                          rx_q->dma_rx_phy,
1676                                          priv->dma_rx_size, 0);
1677         }
1678
1679         return 0;
1680 }
1681
1682 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1683 {
1684         struct stmmac_priv *priv = netdev_priv(dev);
1685         u32 rx_count = priv->plat->rx_queues_to_use;
1686         u32 queue;
1687         int ret;
1688
1689         /* RX INITIALIZATION */
1690         netif_dbg(priv, probe, priv->dev,
1691                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1692
1693         for (queue = 0; queue < rx_count; queue++) {
1694                 ret = __init_dma_rx_desc_rings(priv, queue, flags);
1695                 if (ret)
1696                         goto err_init_rx_buffers;
1697         }
1698
1699         return 0;
1700
1701 err_init_rx_buffers:
1702         while (queue >= 0) {
1703                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1704
1705                 if (rx_q->xsk_pool)
1706                         dma_free_rx_xskbufs(priv, queue);
1707                 else
1708                         dma_free_rx_skbufs(priv, queue);
1709
1710                 rx_q->buf_alloc_num = 0;
1711                 rx_q->xsk_pool = NULL;
1712
1713                 if (queue == 0)
1714                         break;
1715
1716                 queue--;
1717         }
1718
1719         return ret;
1720 }
1721
1722 /**
1723  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1724  * @priv: driver private structure
1725  * @queue : TX queue index
1726  * Description: this function initializes the DMA TX descriptors
1727  * and allocates the socket buffers. It supports the chained and ring
1728  * modes.
1729  */
1730 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1731 {
1732         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1733         int i;
1734
1735         netif_dbg(priv, probe, priv->dev,
1736                   "(%s) dma_tx_phy=0x%08x\n", __func__,
1737                   (u32)tx_q->dma_tx_phy);
1738
1739         /* Setup the chained descriptor addresses */
1740         if (priv->mode == STMMAC_CHAIN_MODE) {
1741                 if (priv->extend_desc)
1742                         stmmac_mode_init(priv, tx_q->dma_etx,
1743                                          tx_q->dma_tx_phy,
1744                                          priv->dma_tx_size, 1);
1745                 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1746                         stmmac_mode_init(priv, tx_q->dma_tx,
1747                                          tx_q->dma_tx_phy,
1748                                          priv->dma_tx_size, 0);
1749         }
1750
1751         tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1752
1753         for (i = 0; i < priv->dma_tx_size; i++) {
1754                 struct dma_desc *p;
1755
1756                 if (priv->extend_desc)
1757                         p = &((tx_q->dma_etx + i)->basic);
1758                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1759                         p = &((tx_q->dma_entx + i)->basic);
1760                 else
1761                         p = tx_q->dma_tx + i;
1762
1763                 stmmac_clear_desc(priv, p);
1764
1765                 tx_q->tx_skbuff_dma[i].buf = 0;
1766                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1767                 tx_q->tx_skbuff_dma[i].len = 0;
1768                 tx_q->tx_skbuff_dma[i].last_segment = false;
1769                 tx_q->tx_skbuff[i] = NULL;
1770         }
1771
1772         tx_q->dirty_tx = 0;
1773         tx_q->cur_tx = 0;
1774         tx_q->mss = 0;
1775
1776         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1777
1778         return 0;
1779 }
1780
1781 static int init_dma_tx_desc_rings(struct net_device *dev)
1782 {
1783         struct stmmac_priv *priv = netdev_priv(dev);
1784         u32 tx_queue_cnt;
1785         u32 queue;
1786
1787         tx_queue_cnt = priv->plat->tx_queues_to_use;
1788
1789         for (queue = 0; queue < tx_queue_cnt; queue++)
1790                 __init_dma_tx_desc_rings(priv, queue);
1791
1792         return 0;
1793 }
1794
1795 /**
1796  * init_dma_desc_rings - init the RX/TX descriptor rings
1797  * @dev: net device structure
1798  * @flags: gfp flag.
1799  * Description: this function initializes the DMA RX/TX descriptors
1800  * and allocates the socket buffers. It supports the chained and ring
1801  * modes.
1802  */
1803 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1804 {
1805         struct stmmac_priv *priv = netdev_priv(dev);
1806         int ret;
1807
1808         ret = init_dma_rx_desc_rings(dev, flags);
1809         if (ret)
1810                 return ret;
1811
1812         ret = init_dma_tx_desc_rings(dev);
1813
1814         stmmac_clear_descriptors(priv);
1815
1816         if (netif_msg_hw(priv))
1817                 stmmac_display_rings(priv);
1818
1819         return ret;
1820 }
1821
1822 /**
1823  * dma_free_tx_skbufs - free TX dma buffers
1824  * @priv: private structure
1825  * @queue: TX queue index
1826  */
1827 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1828 {
1829         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1830         int i;
1831
1832         tx_q->xsk_frames_done = 0;
1833
1834         for (i = 0; i < priv->dma_tx_size; i++)
1835                 stmmac_free_tx_buffer(priv, queue, i);
1836
1837         if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1838                 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1839                 tx_q->xsk_frames_done = 0;
1840                 tx_q->xsk_pool = NULL;
1841         }
1842 }
1843
1844 /**
1845  * stmmac_free_tx_skbufs - free TX skb buffers
1846  * @priv: private structure
1847  */
1848 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1849 {
1850         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1851         u32 queue;
1852
1853         for (queue = 0; queue < tx_queue_cnt; queue++)
1854                 dma_free_tx_skbufs(priv, queue);
1855 }
1856
1857 /**
1858  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1859  * @priv: private structure
1860  * @queue: RX queue index
1861  */
1862 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1863 {
1864         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1865
1866         /* Release the DMA RX socket buffers */
1867         if (rx_q->xsk_pool)
1868                 dma_free_rx_xskbufs(priv, queue);
1869         else
1870                 dma_free_rx_skbufs(priv, queue);
1871
1872         rx_q->buf_alloc_num = 0;
1873         rx_q->xsk_pool = NULL;
1874
1875         /* Free DMA regions of consistent memory previously allocated */
1876         if (!priv->extend_desc)
1877                 dma_free_coherent(priv->device, priv->dma_rx_size *
1878                                   sizeof(struct dma_desc),
1879                                   rx_q->dma_rx, rx_q->dma_rx_phy);
1880         else
1881                 dma_free_coherent(priv->device, priv->dma_rx_size *
1882                                   sizeof(struct dma_extended_desc),
1883                                   rx_q->dma_erx, rx_q->dma_rx_phy);
1884
1885         if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1886                 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1887
1888         kfree(rx_q->buf_pool);
1889         if (rx_q->page_pool)
1890                 page_pool_destroy(rx_q->page_pool);
1891 }
1892
1893 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1894 {
1895         u32 rx_count = priv->plat->rx_queues_to_use;
1896         u32 queue;
1897
1898         /* Free RX queue resources */
1899         for (queue = 0; queue < rx_count; queue++)
1900                 __free_dma_rx_desc_resources(priv, queue);
1901 }
1902
1903 /**
1904  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1905  * @priv: private structure
1906  * @queue: TX queue index
1907  */
1908 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1909 {
1910         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1911         size_t size;
1912         void *addr;
1913
1914         /* Release the DMA TX socket buffers */
1915         dma_free_tx_skbufs(priv, queue);
1916
1917         if (priv->extend_desc) {
1918                 size = sizeof(struct dma_extended_desc);
1919                 addr = tx_q->dma_etx;
1920         } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1921                 size = sizeof(struct dma_edesc);
1922                 addr = tx_q->dma_entx;
1923         } else {
1924                 size = sizeof(struct dma_desc);
1925                 addr = tx_q->dma_tx;
1926         }
1927
1928         size *= priv->dma_tx_size;
1929
1930         dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1931
1932         kfree(tx_q->tx_skbuff_dma);
1933         kfree(tx_q->tx_skbuff);
1934 }
1935
1936 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1937 {
1938         u32 tx_count = priv->plat->tx_queues_to_use;
1939         u32 queue;
1940
1941         /* Free TX queue resources */
1942         for (queue = 0; queue < tx_count; queue++)
1943                 __free_dma_tx_desc_resources(priv, queue);
1944 }
1945
1946 /**
1947  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1948  * @priv: private structure
1949  * @queue: RX queue index
1950  * Description: according to which descriptor can be used (extend or basic)
1951  * this function allocates the resources for TX and RX paths. In case of
1952  * reception, for example, it pre-allocated the RX socket buffer in order to
1953  * allow zero-copy mechanism.
1954  */
1955 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1956 {
1957         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1958         struct stmmac_channel *ch = &priv->channel[queue];
1959         bool xdp_prog = stmmac_xdp_is_enabled(priv);
1960         struct page_pool_params pp_params = { 0 };
1961         unsigned int num_pages;
1962         unsigned int napi_id;
1963         int ret;
1964
1965         rx_q->queue_index = queue;
1966         rx_q->priv_data = priv;
1967
1968         pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1969         pp_params.pool_size = priv->dma_rx_size;
1970         num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1971         pp_params.order = ilog2(num_pages);
1972         pp_params.nid = dev_to_node(priv->device);
1973         pp_params.dev = priv->device;
1974         pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1975         pp_params.offset = stmmac_rx_offset(priv);
1976         pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1977
1978         rx_q->page_pool = page_pool_create(&pp_params);
1979         if (IS_ERR(rx_q->page_pool)) {
1980                 ret = PTR_ERR(rx_q->page_pool);
1981                 rx_q->page_pool = NULL;
1982                 return ret;
1983         }
1984
1985         rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1986                                  sizeof(*rx_q->buf_pool),
1987                                  GFP_KERNEL);
1988         if (!rx_q->buf_pool)
1989                 return -ENOMEM;
1990
1991         if (priv->extend_desc) {
1992                 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1993                                                    priv->dma_rx_size *
1994                                                    sizeof(struct dma_extended_desc),
1995                                                    &rx_q->dma_rx_phy,
1996                                                    GFP_KERNEL);
1997                 if (!rx_q->dma_erx)
1998                         return -ENOMEM;
1999
2000         } else {
2001                 rx_q->dma_rx = dma_alloc_coherent(priv->device,
2002                                                   priv->dma_rx_size *
2003                                                   sizeof(struct dma_desc),
2004                                                   &rx_q->dma_rx_phy,
2005                                                   GFP_KERNEL);
2006                 if (!rx_q->dma_rx)
2007                         return -ENOMEM;
2008         }
2009
2010         if (stmmac_xdp_is_enabled(priv) &&
2011             test_bit(queue, priv->af_xdp_zc_qps))
2012                 napi_id = ch->rxtx_napi.napi_id;
2013         else
2014                 napi_id = ch->rx_napi.napi_id;
2015
2016         ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2017                                rx_q->queue_index,
2018                                napi_id);
2019         if (ret) {
2020                 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2021                 return -EINVAL;
2022         }
2023
2024         return 0;
2025 }
2026
2027 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2028 {
2029         u32 rx_count = priv->plat->rx_queues_to_use;
2030         u32 queue;
2031         int ret;
2032
2033         /* RX queues buffers and DMA */
2034         for (queue = 0; queue < rx_count; queue++) {
2035                 ret = __alloc_dma_rx_desc_resources(priv, queue);
2036                 if (ret)
2037                         goto err_dma;
2038         }
2039
2040         return 0;
2041
2042 err_dma:
2043         free_dma_rx_desc_resources(priv);
2044
2045         return ret;
2046 }
2047
2048 /**
2049  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2050  * @priv: private structure
2051  * @queue: TX queue index
2052  * Description: according to which descriptor can be used (extend or basic)
2053  * this function allocates the resources for TX and RX paths. In case of
2054  * reception, for example, it pre-allocated the RX socket buffer in order to
2055  * allow zero-copy mechanism.
2056  */
2057 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2058 {
2059         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2060         size_t size;
2061         void *addr;
2062
2063         tx_q->queue_index = queue;
2064         tx_q->priv_data = priv;
2065
2066         tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2067                                       sizeof(*tx_q->tx_skbuff_dma),
2068                                       GFP_KERNEL);
2069         if (!tx_q->tx_skbuff_dma)
2070                 return -ENOMEM;
2071
2072         tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2073                                   sizeof(struct sk_buff *),
2074                                   GFP_KERNEL);
2075         if (!tx_q->tx_skbuff)
2076                 return -ENOMEM;
2077
2078         if (priv->extend_desc)
2079                 size = sizeof(struct dma_extended_desc);
2080         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2081                 size = sizeof(struct dma_edesc);
2082         else
2083                 size = sizeof(struct dma_desc);
2084
2085         size *= priv->dma_tx_size;
2086
2087         addr = dma_alloc_coherent(priv->device, size,
2088                                   &tx_q->dma_tx_phy, GFP_KERNEL);
2089         if (!addr)
2090                 return -ENOMEM;
2091
2092         if (priv->extend_desc)
2093                 tx_q->dma_etx = addr;
2094         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2095                 tx_q->dma_entx = addr;
2096         else
2097                 tx_q->dma_tx = addr;
2098
2099         return 0;
2100 }
2101
2102 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2103 {
2104         u32 tx_count = priv->plat->tx_queues_to_use;
2105         u32 queue;
2106         int ret;
2107
2108         /* TX queues buffers and DMA */
2109         for (queue = 0; queue < tx_count; queue++) {
2110                 ret = __alloc_dma_tx_desc_resources(priv, queue);
2111                 if (ret)
2112                         goto err_dma;
2113         }
2114
2115         return 0;
2116
2117 err_dma:
2118         free_dma_tx_desc_resources(priv);
2119         return ret;
2120 }
2121
2122 /**
2123  * alloc_dma_desc_resources - alloc TX/RX resources.
2124  * @priv: private structure
2125  * Description: according to which descriptor can be used (extend or basic)
2126  * this function allocates the resources for TX and RX paths. In case of
2127  * reception, for example, it pre-allocated the RX socket buffer in order to
2128  * allow zero-copy mechanism.
2129  */
2130 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2131 {
2132         /* RX Allocation */
2133         int ret = alloc_dma_rx_desc_resources(priv);
2134
2135         if (ret)
2136                 return ret;
2137
2138         ret = alloc_dma_tx_desc_resources(priv);
2139
2140         return ret;
2141 }
2142
2143 /**
2144  * free_dma_desc_resources - free dma desc resources
2145  * @priv: private structure
2146  */
2147 static void free_dma_desc_resources(struct stmmac_priv *priv)
2148 {
2149         /* Release the DMA TX socket buffers */
2150         free_dma_tx_desc_resources(priv);
2151
2152         /* Release the DMA RX socket buffers later
2153          * to ensure all pending XDP_TX buffers are returned.
2154          */
2155         free_dma_rx_desc_resources(priv);
2156 }
2157
2158 /**
2159  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2160  *  @priv: driver private structure
2161  *  Description: It is used for enabling the rx queues in the MAC
2162  */
2163 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2164 {
2165         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2166         int queue;
2167         u8 mode;
2168
2169         for (queue = 0; queue < rx_queues_count; queue++) {
2170                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2171                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2172         }
2173 }
2174
2175 /**
2176  * stmmac_start_rx_dma - start RX DMA channel
2177  * @priv: driver private structure
2178  * @chan: RX channel index
2179  * Description:
2180  * This starts a RX DMA channel
2181  */
2182 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2183 {
2184         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2185         stmmac_start_rx(priv, priv->ioaddr, chan);
2186 }
2187
2188 /**
2189  * stmmac_start_tx_dma - start TX DMA channel
2190  * @priv: driver private structure
2191  * @chan: TX channel index
2192  * Description:
2193  * This starts a TX DMA channel
2194  */
2195 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2196 {
2197         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2198         stmmac_start_tx(priv, priv->ioaddr, chan);
2199 }
2200
2201 /**
2202  * stmmac_stop_rx_dma - stop RX DMA channel
2203  * @priv: driver private structure
2204  * @chan: RX channel index
2205  * Description:
2206  * This stops a RX DMA channel
2207  */
2208 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2209 {
2210         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2211         stmmac_stop_rx(priv, priv->ioaddr, chan);
2212 }
2213
2214 /**
2215  * stmmac_stop_tx_dma - stop TX DMA channel
2216  * @priv: driver private structure
2217  * @chan: TX channel index
2218  * Description:
2219  * This stops a TX DMA channel
2220  */
2221 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2222 {
2223         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2224         stmmac_stop_tx(priv, priv->ioaddr, chan);
2225 }
2226
2227 /**
2228  * stmmac_start_all_dma - start all RX and TX DMA channels
2229  * @priv: driver private structure
2230  * Description:
2231  * This starts all the RX and TX DMA channels
2232  */
2233 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2234 {
2235         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2236         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2237         u32 chan = 0;
2238
2239         for (chan = 0; chan < rx_channels_count; chan++)
2240                 stmmac_start_rx_dma(priv, chan);
2241
2242         for (chan = 0; chan < tx_channels_count; chan++)
2243                 stmmac_start_tx_dma(priv, chan);
2244 }
2245
2246 /**
2247  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2248  * @priv: driver private structure
2249  * Description:
2250  * This stops the RX and TX DMA channels
2251  */
2252 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2253 {
2254         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2255         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2256         u32 chan = 0;
2257
2258         for (chan = 0; chan < rx_channels_count; chan++)
2259                 stmmac_stop_rx_dma(priv, chan);
2260
2261         for (chan = 0; chan < tx_channels_count; chan++)
2262                 stmmac_stop_tx_dma(priv, chan);
2263 }
2264
2265 /**
2266  *  stmmac_dma_operation_mode - HW DMA operation mode
2267  *  @priv: driver private structure
2268  *  Description: it is used for configuring the DMA operation mode register in
2269  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2270  */
2271 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2272 {
2273         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2274         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2275         int rxfifosz = priv->plat->rx_fifo_size;
2276         int txfifosz = priv->plat->tx_fifo_size;
2277         u32 txmode = 0;
2278         u32 rxmode = 0;
2279         u32 chan = 0;
2280         u8 qmode = 0;
2281
2282         if (rxfifosz == 0)
2283                 rxfifosz = priv->dma_cap.rx_fifo_size;
2284         if (txfifosz == 0)
2285                 txfifosz = priv->dma_cap.tx_fifo_size;
2286
2287         /* Adjust for real per queue fifo size */
2288         rxfifosz /= rx_channels_count;
2289         txfifosz /= tx_channels_count;
2290
2291         if (priv->plat->force_thresh_dma_mode) {
2292                 txmode = tc;
2293                 rxmode = tc;
2294         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2295                 /*
2296                  * In case of GMAC, SF mode can be enabled
2297                  * to perform the TX COE in HW. This depends on:
2298                  * 1) TX COE if actually supported
2299                  * 2) There is no bugged Jumbo frame support
2300                  *    that needs to not insert csum in the TDES.
2301                  */
2302                 txmode = SF_DMA_MODE;
2303                 rxmode = SF_DMA_MODE;
2304                 priv->xstats.threshold = SF_DMA_MODE;
2305         } else {
2306                 txmode = tc;
2307                 rxmode = SF_DMA_MODE;
2308         }
2309
2310         /* configure all channels */
2311         for (chan = 0; chan < rx_channels_count; chan++) {
2312                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2313                 u32 buf_size;
2314
2315                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2316
2317                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2318                                 rxfifosz, qmode);
2319
2320                 if (rx_q->xsk_pool) {
2321                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2322                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2323                                               buf_size,
2324                                               chan);
2325                 } else {
2326                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2327                                               priv->dma_buf_sz,
2328                                               chan);
2329                 }
2330         }
2331
2332         for (chan = 0; chan < tx_channels_count; chan++) {
2333                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2334
2335                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2336                                 txfifosz, qmode);
2337         }
2338 }
2339
2340 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2341 {
2342         struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2343         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2344         struct xsk_buff_pool *pool = tx_q->xsk_pool;
2345         unsigned int entry = tx_q->cur_tx;
2346         struct dma_desc *tx_desc = NULL;
2347         struct xdp_desc xdp_desc;
2348         bool work_done = true;
2349
2350         /* Avoids TX time-out as we are sharing with slow path */
2351         nq->trans_start = jiffies;
2352
2353         budget = min(budget, stmmac_tx_avail(priv, queue));
2354
2355         while (budget-- > 0) {
2356                 dma_addr_t dma_addr;
2357                 bool set_ic;
2358
2359                 /* We are sharing with slow path and stop XSK TX desc submission when
2360                  * available TX ring is less than threshold.
2361                  */
2362                 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2363                     !netif_carrier_ok(priv->dev)) {
2364                         work_done = false;
2365                         break;
2366                 }
2367
2368                 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2369                         break;
2370
2371                 if (likely(priv->extend_desc))
2372                         tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2373                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2374                         tx_desc = &tx_q->dma_entx[entry].basic;
2375                 else
2376                         tx_desc = tx_q->dma_tx + entry;
2377
2378                 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2379                 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2380
2381                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2382
2383                 /* To return XDP buffer to XSK pool, we simple call
2384                  * xsk_tx_completed(), so we don't need to fill up
2385                  * 'buf' and 'xdpf'.
2386                  */
2387                 tx_q->tx_skbuff_dma[entry].buf = 0;
2388                 tx_q->xdpf[entry] = NULL;
2389
2390                 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2391                 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2392                 tx_q->tx_skbuff_dma[entry].last_segment = true;
2393                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2394
2395                 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2396
2397                 tx_q->tx_count_frames++;
2398
2399                 if (!priv->tx_coal_frames[queue])
2400                         set_ic = false;
2401                 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2402                         set_ic = true;
2403                 else
2404                         set_ic = false;
2405
2406                 if (set_ic) {
2407                         tx_q->tx_count_frames = 0;
2408                         stmmac_set_tx_ic(priv, tx_desc);
2409                         priv->xstats.tx_set_ic_bit++;
2410                 }
2411
2412                 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2413                                        true, priv->mode, true, true,
2414                                        xdp_desc.len);
2415
2416                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2417
2418                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2419                 entry = tx_q->cur_tx;
2420         }
2421
2422         if (tx_desc) {
2423                 stmmac_flush_tx_descriptors(priv, queue);
2424                 xsk_tx_release(pool);
2425         }
2426
2427         /* Return true if all of the 3 conditions are met
2428          *  a) TX Budget is still available
2429          *  b) work_done = true when XSK TX desc peek is empty (no more
2430          *     pending XSK TX for transmission)
2431          */
2432         return !!budget && work_done;
2433 }
2434
2435 /**
2436  * stmmac_tx_clean - to manage the transmission completion
2437  * @priv: driver private structure
2438  * @budget: napi budget limiting this functions packet handling
2439  * @queue: TX queue index
2440  * Description: it reclaims the transmit resources after transmission completes.
2441  */
2442 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2443 {
2444         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2445         unsigned int bytes_compl = 0, pkts_compl = 0;
2446         unsigned int entry, xmits = 0, count = 0;
2447
2448         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2449
2450         priv->xstats.tx_clean++;
2451
2452         tx_q->xsk_frames_done = 0;
2453
2454         entry = tx_q->dirty_tx;
2455
2456         /* Try to clean all TX complete frame in 1 shot */
2457         while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2458                 struct xdp_frame *xdpf;
2459                 struct sk_buff *skb;
2460                 struct dma_desc *p;
2461                 int status;
2462
2463                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2464                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2465                         xdpf = tx_q->xdpf[entry];
2466                         skb = NULL;
2467                 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2468                         xdpf = NULL;
2469                         skb = tx_q->tx_skbuff[entry];
2470                 } else {
2471                         xdpf = NULL;
2472                         skb = NULL;
2473                 }
2474
2475                 if (priv->extend_desc)
2476                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
2477                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2478                         p = &tx_q->dma_entx[entry].basic;
2479                 else
2480                         p = tx_q->dma_tx + entry;
2481
2482                 status = stmmac_tx_status(priv, &priv->dev->stats,
2483                                 &priv->xstats, p, priv->ioaddr);
2484                 /* Check if the descriptor is owned by the DMA */
2485                 if (unlikely(status & tx_dma_own))
2486                         break;
2487
2488                 count++;
2489
2490                 /* Make sure descriptor fields are read after reading
2491                  * the own bit.
2492                  */
2493                 dma_rmb();
2494
2495                 /* Just consider the last segment and ...*/
2496                 if (likely(!(status & tx_not_ls))) {
2497                         /* ... verify the status error condition */
2498                         if (unlikely(status & tx_err)) {
2499                                 priv->dev->stats.tx_errors++;
2500                         } else {
2501                                 priv->dev->stats.tx_packets++;
2502                                 priv->xstats.tx_pkt_n++;
2503                         }
2504                         if (skb)
2505                                 stmmac_get_tx_hwtstamp(priv, p, skb);
2506                 }
2507
2508                 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2509                            tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2510                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
2511                                 dma_unmap_page(priv->device,
2512                                                tx_q->tx_skbuff_dma[entry].buf,
2513                                                tx_q->tx_skbuff_dma[entry].len,
2514                                                DMA_TO_DEVICE);
2515                         else
2516                                 dma_unmap_single(priv->device,
2517                                                  tx_q->tx_skbuff_dma[entry].buf,
2518                                                  tx_q->tx_skbuff_dma[entry].len,
2519                                                  DMA_TO_DEVICE);
2520                         tx_q->tx_skbuff_dma[entry].buf = 0;
2521                         tx_q->tx_skbuff_dma[entry].len = 0;
2522                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
2523                 }
2524
2525                 stmmac_clean_desc3(priv, tx_q, p);
2526
2527                 tx_q->tx_skbuff_dma[entry].last_segment = false;
2528                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2529
2530                 if (xdpf &&
2531                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2532                         xdp_return_frame_rx_napi(xdpf);
2533                         tx_q->xdpf[entry] = NULL;
2534                 }
2535
2536                 if (xdpf &&
2537                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2538                         xdp_return_frame(xdpf);
2539                         tx_q->xdpf[entry] = NULL;
2540                 }
2541
2542                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2543                         tx_q->xsk_frames_done++;
2544
2545                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2546                         if (likely(skb)) {
2547                                 pkts_compl++;
2548                                 bytes_compl += skb->len;
2549                                 dev_consume_skb_any(skb);
2550                                 tx_q->tx_skbuff[entry] = NULL;
2551                         }
2552                 }
2553
2554                 stmmac_release_tx_desc(priv, p, priv->mode);
2555
2556                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2557         }
2558         tx_q->dirty_tx = entry;
2559
2560         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2561                                   pkts_compl, bytes_compl);
2562
2563         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2564                                                                 queue))) &&
2565             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2566
2567                 netif_dbg(priv, tx_done, priv->dev,
2568                           "%s: restart transmit\n", __func__);
2569                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2570         }
2571
2572         if (tx_q->xsk_pool) {
2573                 bool work_done;
2574
2575                 if (tx_q->xsk_frames_done)
2576                         xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2577
2578                 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2579                         xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2580
2581                 /* For XSK TX, we try to send as many as possible.
2582                  * If XSK work done (XSK TX desc empty and budget still
2583                  * available), return "budget - 1" to reenable TX IRQ.
2584                  * Else, return "budget" to make NAPI continue polling.
2585                  */
2586                 work_done = stmmac_xdp_xmit_zc(priv, queue,
2587                                                STMMAC_XSK_TX_BUDGET_MAX);
2588                 if (work_done)
2589                         xmits = budget - 1;
2590                 else
2591                         xmits = budget;
2592         }
2593
2594         if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2595             priv->eee_sw_timer_en) {
2596                 stmmac_enable_eee_mode(priv);
2597                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2598         }
2599
2600         /* We still have pending packets, let's call for a new scheduling */
2601         if (tx_q->dirty_tx != tx_q->cur_tx)
2602                 hrtimer_start(&tx_q->txtimer,
2603                               STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2604                               HRTIMER_MODE_REL);
2605
2606         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2607
2608         /* Combine decisions from TX clean and XSK TX */
2609         return max(count, xmits);
2610 }
2611
2612 /**
2613  * stmmac_tx_err - to manage the tx error
2614  * @priv: driver private structure
2615  * @chan: channel index
2616  * Description: it cleans the descriptors and restarts the transmission
2617  * in case of transmission errors.
2618  */
2619 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2620 {
2621         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2622
2623         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2624
2625         stmmac_stop_tx_dma(priv, chan);
2626         dma_free_tx_skbufs(priv, chan);
2627         stmmac_clear_tx_descriptors(priv, chan);
2628         tx_q->dirty_tx = 0;
2629         tx_q->cur_tx = 0;
2630         tx_q->mss = 0;
2631         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2632         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2633                             tx_q->dma_tx_phy, chan);
2634         stmmac_start_tx_dma(priv, chan);
2635
2636         priv->dev->stats.tx_errors++;
2637         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2638 }
2639
2640 /**
2641  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2642  *  @priv: driver private structure
2643  *  @txmode: TX operating mode
2644  *  @rxmode: RX operating mode
2645  *  @chan: channel index
2646  *  Description: it is used for configuring of the DMA operation mode in
2647  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2648  *  mode.
2649  */
2650 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2651                                           u32 rxmode, u32 chan)
2652 {
2653         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2654         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2655         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2656         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2657         int rxfifosz = priv->plat->rx_fifo_size;
2658         int txfifosz = priv->plat->tx_fifo_size;
2659
2660         if (rxfifosz == 0)
2661                 rxfifosz = priv->dma_cap.rx_fifo_size;
2662         if (txfifosz == 0)
2663                 txfifosz = priv->dma_cap.tx_fifo_size;
2664
2665         /* Adjust for real per queue fifo size */
2666         rxfifosz /= rx_channels_count;
2667         txfifosz /= tx_channels_count;
2668
2669         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2670         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2671 }
2672
2673 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2674 {
2675         int ret;
2676
2677         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2678                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2679         if (ret && (ret != -EINVAL)) {
2680                 stmmac_global_err(priv);
2681                 return true;
2682         }
2683
2684         return false;
2685 }
2686
2687 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2688 {
2689         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2690                                                  &priv->xstats, chan, dir);
2691         struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2692         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2693         struct stmmac_channel *ch = &priv->channel[chan];
2694         struct napi_struct *rx_napi;
2695         struct napi_struct *tx_napi;
2696         unsigned long flags;
2697
2698         rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2699         tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2700
2701         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2702                 if (napi_schedule_prep(rx_napi)) {
2703                         spin_lock_irqsave(&ch->lock, flags);
2704                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2705                         spin_unlock_irqrestore(&ch->lock, flags);
2706                         __napi_schedule(rx_napi);
2707                 }
2708         }
2709
2710         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2711                 if (napi_schedule_prep(tx_napi)) {
2712                         spin_lock_irqsave(&ch->lock, flags);
2713                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2714                         spin_unlock_irqrestore(&ch->lock, flags);
2715                         __napi_schedule(tx_napi);
2716                 }
2717         }
2718
2719         return status;
2720 }
2721
2722 /**
2723  * stmmac_dma_interrupt - DMA ISR
2724  * @priv: driver private structure
2725  * Description: this is the DMA ISR. It is called by the main ISR.
2726  * It calls the dwmac dma routine and schedule poll method in case of some
2727  * work can be done.
2728  */
2729 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2730 {
2731         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2732         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2733         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2734                                 tx_channel_count : rx_channel_count;
2735         u32 chan;
2736         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2737
2738         /* Make sure we never check beyond our status buffer. */
2739         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2740                 channels_to_check = ARRAY_SIZE(status);
2741
2742         for (chan = 0; chan < channels_to_check; chan++)
2743                 status[chan] = stmmac_napi_check(priv, chan,
2744                                                  DMA_DIR_RXTX);
2745
2746         for (chan = 0; chan < tx_channel_count; chan++) {
2747                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2748                         /* Try to bump up the dma threshold on this failure */
2749                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2750                             (tc <= 256)) {
2751                                 tc += 64;
2752                                 if (priv->plat->force_thresh_dma_mode)
2753                                         stmmac_set_dma_operation_mode(priv,
2754                                                                       tc,
2755                                                                       tc,
2756                                                                       chan);
2757                                 else
2758                                         stmmac_set_dma_operation_mode(priv,
2759                                                                     tc,
2760                                                                     SF_DMA_MODE,
2761                                                                     chan);
2762                                 priv->xstats.threshold = tc;
2763                         }
2764                 } else if (unlikely(status[chan] == tx_hard_error)) {
2765                         stmmac_tx_err(priv, chan);
2766                 }
2767         }
2768 }
2769
2770 /**
2771  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2772  * @priv: driver private structure
2773  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2774  */
2775 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2776 {
2777         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2778                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2779
2780         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2781
2782         if (priv->dma_cap.rmon) {
2783                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2784                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2785         } else
2786                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2787 }
2788
2789 /**
2790  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2791  * @priv: driver private structure
2792  * Description:
2793  *  new GMAC chip generations have a new register to indicate the
2794  *  presence of the optional feature/functions.
2795  *  This can be also used to override the value passed through the
2796  *  platform and necessary for old MAC10/100 and GMAC chips.
2797  */
2798 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2799 {
2800         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2801 }
2802
2803 /**
2804  * stmmac_check_ether_addr - check if the MAC addr is valid
2805  * @priv: driver private structure
2806  * Description:
2807  * it is to verify if the MAC address is valid, in case of failures it
2808  * generates a random MAC address
2809  */
2810 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2811 {
2812         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2813                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2814                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2815                         eth_hw_addr_random(priv->dev);
2816                 dev_info(priv->device, "device MAC address %pM\n",
2817                          priv->dev->dev_addr);
2818         }
2819 }
2820
2821 /**
2822  * stmmac_init_dma_engine - DMA init.
2823  * @priv: driver private structure
2824  * Description:
2825  * It inits the DMA invoking the specific MAC/GMAC callback.
2826  * Some DMA parameters can be passed from the platform;
2827  * in case of these are not passed a default is kept for the MAC or GMAC.
2828  */
2829 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2830 {
2831         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2832         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2833         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2834         struct stmmac_rx_queue *rx_q;
2835         struct stmmac_tx_queue *tx_q;
2836         u32 chan = 0;
2837         int atds = 0;
2838         int ret = 0;
2839
2840         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2841                 dev_err(priv->device, "Invalid DMA configuration\n");
2842                 return -EINVAL;
2843         }
2844
2845         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2846                 atds = 1;
2847
2848         ret = stmmac_reset(priv, priv->ioaddr);
2849         if (ret) {
2850                 dev_err(priv->device, "Failed to reset the dma\n");
2851                 return ret;
2852         }
2853
2854         /* DMA Configuration */
2855         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2856
2857         if (priv->plat->axi)
2858                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2859
2860         /* DMA CSR Channel configuration */
2861         for (chan = 0; chan < dma_csr_ch; chan++)
2862                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2863
2864         /* DMA RX Channel Configuration */
2865         for (chan = 0; chan < rx_channels_count; chan++) {
2866                 rx_q = &priv->rx_queue[chan];
2867
2868                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2869                                     rx_q->dma_rx_phy, chan);
2870
2871                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2872                                      (rx_q->buf_alloc_num *
2873                                       sizeof(struct dma_desc));
2874                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2875                                        rx_q->rx_tail_addr, chan);
2876         }
2877
2878         /* DMA TX Channel Configuration */
2879         for (chan = 0; chan < tx_channels_count; chan++) {
2880                 tx_q = &priv->tx_queue[chan];
2881
2882                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2883                                     tx_q->dma_tx_phy, chan);
2884
2885                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2886                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2887                                        tx_q->tx_tail_addr, chan);
2888         }
2889
2890         return ret;
2891 }
2892
2893 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2894 {
2895         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2896
2897         hrtimer_start(&tx_q->txtimer,
2898                       STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2899                       HRTIMER_MODE_REL);
2900 }
2901
2902 /**
2903  * stmmac_tx_timer - mitigation sw timer for tx.
2904  * @t: data pointer
2905  * Description:
2906  * This is the timer handler to directly invoke the stmmac_tx_clean.
2907  */
2908 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2909 {
2910         struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2911         struct stmmac_priv *priv = tx_q->priv_data;
2912         struct stmmac_channel *ch;
2913         struct napi_struct *napi;
2914
2915         ch = &priv->channel[tx_q->queue_index];
2916         napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2917
2918         if (likely(napi_schedule_prep(napi))) {
2919                 unsigned long flags;
2920
2921                 spin_lock_irqsave(&ch->lock, flags);
2922                 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2923                 spin_unlock_irqrestore(&ch->lock, flags);
2924                 __napi_schedule(napi);
2925         }
2926
2927         return HRTIMER_NORESTART;
2928 }
2929
2930 /**
2931  * stmmac_init_coalesce - init mitigation options.
2932  * @priv: driver private structure
2933  * Description:
2934  * This inits the coalesce parameters: i.e. timer rate,
2935  * timer handler and default threshold used for enabling the
2936  * interrupt on completion bit.
2937  */
2938 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2939 {
2940         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2941         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2942         u32 chan;
2943
2944         for (chan = 0; chan < tx_channel_count; chan++) {
2945                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2946
2947                 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2948                 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2949
2950                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2951                 tx_q->txtimer.function = stmmac_tx_timer;
2952         }
2953
2954         for (chan = 0; chan < rx_channel_count; chan++)
2955                 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2956 }
2957
2958 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2959 {
2960         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2961         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2962         u32 chan;
2963
2964         /* set TX ring length */
2965         for (chan = 0; chan < tx_channels_count; chan++)
2966                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2967                                        (priv->dma_tx_size - 1), chan);
2968
2969         /* set RX ring length */
2970         for (chan = 0; chan < rx_channels_count; chan++)
2971                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2972                                        (priv->dma_rx_size - 1), chan);
2973 }
2974
2975 /**
2976  *  stmmac_set_tx_queue_weight - Set TX queue weight
2977  *  @priv: driver private structure
2978  *  Description: It is used for setting TX queues weight
2979  */
2980 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2981 {
2982         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2983         u32 weight;
2984         u32 queue;
2985
2986         for (queue = 0; queue < tx_queues_count; queue++) {
2987                 weight = priv->plat->tx_queues_cfg[queue].weight;
2988                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2989         }
2990 }
2991
2992 /**
2993  *  stmmac_configure_cbs - Configure CBS in TX queue
2994  *  @priv: driver private structure
2995  *  Description: It is used for configuring CBS in AVB TX queues
2996  */
2997 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2998 {
2999         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3000         u32 mode_to_use;
3001         u32 queue;
3002
3003         /* queue 0 is reserved for legacy traffic */
3004         for (queue = 1; queue < tx_queues_count; queue++) {
3005                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3006                 if (mode_to_use == MTL_QUEUE_DCB)
3007                         continue;
3008
3009                 stmmac_config_cbs(priv, priv->hw,
3010                                 priv->plat->tx_queues_cfg[queue].send_slope,
3011                                 priv->plat->tx_queues_cfg[queue].idle_slope,
3012                                 priv->plat->tx_queues_cfg[queue].high_credit,
3013                                 priv->plat->tx_queues_cfg[queue].low_credit,
3014                                 queue);
3015         }
3016 }
3017
3018 /**
3019  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3020  *  @priv: driver private structure
3021  *  Description: It is used for mapping RX queues to RX dma channels
3022  */
3023 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3024 {
3025         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3026         u32 queue;
3027         u32 chan;
3028
3029         for (queue = 0; queue < rx_queues_count; queue++) {
3030                 chan = priv->plat->rx_queues_cfg[queue].chan;
3031                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3032         }
3033 }
3034
3035 /**
3036  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3037  *  @priv: driver private structure
3038  *  Description: It is used for configuring the RX Queue Priority
3039  */
3040 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3041 {
3042         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3043         u32 queue;
3044         u32 prio;
3045
3046         for (queue = 0; queue < rx_queues_count; queue++) {
3047                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3048                         continue;
3049
3050                 prio = priv->plat->rx_queues_cfg[queue].prio;
3051                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3052         }
3053 }
3054
3055 /**
3056  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3057  *  @priv: driver private structure
3058  *  Description: It is used for configuring the TX Queue Priority
3059  */
3060 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3061 {
3062         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3063         u32 queue;
3064         u32 prio;
3065
3066         for (queue = 0; queue < tx_queues_count; queue++) {
3067                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3068                         continue;
3069
3070                 prio = priv->plat->tx_queues_cfg[queue].prio;
3071                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3072         }
3073 }
3074
3075 /**
3076  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3077  *  @priv: driver private structure
3078  *  Description: It is used for configuring the RX queue routing
3079  */
3080 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3081 {
3082         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3083         u32 queue;
3084         u8 packet;
3085
3086         for (queue = 0; queue < rx_queues_count; queue++) {
3087                 /* no specific packet type routing specified for the queue */
3088                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3089                         continue;
3090
3091                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3092                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3093         }
3094 }
3095
3096 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3097 {
3098         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3099                 priv->rss.enable = false;
3100                 return;
3101         }
3102
3103         if (priv->dev->features & NETIF_F_RXHASH)
3104                 priv->rss.enable = true;
3105         else
3106                 priv->rss.enable = false;
3107
3108         stmmac_rss_configure(priv, priv->hw, &priv->rss,
3109                              priv->plat->rx_queues_to_use);
3110 }
3111
3112 /**
3113  *  stmmac_mtl_configuration - Configure MTL
3114  *  @priv: driver private structure
3115  *  Description: It is used for configurring MTL
3116  */
3117 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3118 {
3119         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3120         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3121
3122         if (tx_queues_count > 1)
3123                 stmmac_set_tx_queue_weight(priv);
3124
3125         /* Configure MTL RX algorithms */
3126         if (rx_queues_count > 1)
3127                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3128                                 priv->plat->rx_sched_algorithm);
3129
3130         /* Configure MTL TX algorithms */
3131         if (tx_queues_count > 1)
3132                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3133                                 priv->plat->tx_sched_algorithm);
3134
3135         /* Configure CBS in AVB TX queues */
3136         if (tx_queues_count > 1)
3137                 stmmac_configure_cbs(priv);
3138
3139         /* Map RX MTL to DMA channels */
3140         stmmac_rx_queue_dma_chan_map(priv);
3141
3142         /* Enable MAC RX Queues */
3143         stmmac_mac_enable_rx_queues(priv);
3144
3145         /* Set RX priorities */
3146         if (rx_queues_count > 1)
3147                 stmmac_mac_config_rx_queues_prio(priv);
3148
3149         /* Set TX priorities */
3150         if (tx_queues_count > 1)
3151                 stmmac_mac_config_tx_queues_prio(priv);
3152
3153         /* Set RX routing */
3154         if (rx_queues_count > 1)
3155                 stmmac_mac_config_rx_queues_routing(priv);
3156
3157         /* Receive Side Scaling */
3158         if (rx_queues_count > 1)
3159                 stmmac_mac_config_rss(priv);
3160 }
3161
3162 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3163 {
3164         if (priv->dma_cap.asp) {
3165                 netdev_info(priv->dev, "Enabling Safety Features\n");
3166                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3167                                           priv->plat->safety_feat_cfg);
3168         } else {
3169                 netdev_info(priv->dev, "No Safety Features support found\n");
3170         }
3171 }
3172
3173 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3174 {
3175         char *name;
3176
3177         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3178         clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3179
3180         name = priv->wq_name;
3181         sprintf(name, "%s-fpe", priv->dev->name);
3182
3183         priv->fpe_wq = create_singlethread_workqueue(name);
3184         if (!priv->fpe_wq) {
3185                 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3186
3187                 return -ENOMEM;
3188         }
3189         netdev_info(priv->dev, "FPE workqueue start");
3190
3191         return 0;
3192 }
3193
3194 /**
3195  * stmmac_hw_setup - setup mac in a usable state.
3196  *  @dev : pointer to the device structure.
3197  *  @init_ptp: initialize PTP if set
3198  *  Description:
3199  *  this is the main function to setup the HW in a usable state because the
3200  *  dma engine is reset, the core registers are configured (e.g. AXI,
3201  *  Checksum features, timers). The DMA is ready to start receiving and
3202  *  transmitting.
3203  *  Return value:
3204  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3205  *  file on failure.
3206  */
3207 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
3208 {
3209         struct stmmac_priv *priv = netdev_priv(dev);
3210         u32 rx_cnt = priv->plat->rx_queues_to_use;
3211         u32 tx_cnt = priv->plat->tx_queues_to_use;
3212         bool sph_en;
3213         u32 chan;
3214         int ret;
3215
3216         /* DMA initialization and SW reset */
3217         ret = stmmac_init_dma_engine(priv);
3218         if (ret < 0) {
3219                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3220                            __func__);
3221                 return ret;
3222         }
3223
3224         /* Copy the MAC addr into the HW  */
3225         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3226
3227         /* PS and related bits will be programmed according to the speed */
3228         if (priv->hw->pcs) {
3229                 int speed = priv->plat->mac_port_sel_speed;
3230
3231                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3232                     (speed == SPEED_1000)) {
3233                         priv->hw->ps = speed;
3234                 } else {
3235                         dev_warn(priv->device, "invalid port speed\n");
3236                         priv->hw->ps = 0;
3237                 }
3238         }
3239
3240         /* Initialize the MAC Core */
3241         stmmac_core_init(priv, priv->hw, dev);
3242
3243         /* Initialize MTL*/
3244         stmmac_mtl_configuration(priv);
3245
3246         /* Initialize Safety Features */
3247         stmmac_safety_feat_configuration(priv);
3248
3249         ret = stmmac_rx_ipc(priv, priv->hw);
3250         if (!ret) {
3251                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3252                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3253                 priv->hw->rx_csum = 0;
3254         }
3255
3256         /* Enable the MAC Rx/Tx */
3257         stmmac_mac_set(priv, priv->ioaddr, true);
3258
3259         /* Set the HW DMA mode and the COE */
3260         stmmac_dma_operation_mode(priv);
3261
3262         stmmac_mmc_setup(priv);
3263
3264         if (init_ptp) {
3265                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3266                 if (ret < 0)
3267                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
3268
3269                 ret = stmmac_init_ptp(priv);
3270                 if (ret == -EOPNOTSUPP)
3271                         netdev_warn(priv->dev, "PTP not supported by HW\n");
3272                 else if (ret)
3273                         netdev_warn(priv->dev, "PTP init failed\n");
3274         }
3275
3276         priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3277
3278         /* Convert the timer from msec to usec */
3279         if (!priv->tx_lpi_timer)
3280                 priv->tx_lpi_timer = eee_timer * 1000;
3281
3282         if (priv->use_riwt) {
3283                 u32 queue;
3284
3285                 for (queue = 0; queue < rx_cnt; queue++) {
3286                         if (!priv->rx_riwt[queue])
3287                                 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3288
3289                         stmmac_rx_watchdog(priv, priv->ioaddr,
3290                                            priv->rx_riwt[queue], queue);
3291                 }
3292         }
3293
3294         if (priv->hw->pcs)
3295                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3296
3297         /* set TX and RX rings length */
3298         stmmac_set_rings_length(priv);
3299
3300         /* Enable TSO */
3301         if (priv->tso) {
3302                 for (chan = 0; chan < tx_cnt; chan++) {
3303                         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3304
3305                         /* TSO and TBS cannot co-exist */
3306                         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3307                                 continue;
3308
3309                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3310                 }
3311         }
3312
3313         /* Enable Split Header */
3314         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3315         for (chan = 0; chan < rx_cnt; chan++)
3316                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3317
3318
3319         /* VLAN Tag Insertion */
3320         if (priv->dma_cap.vlins)
3321                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3322
3323         /* TBS */
3324         for (chan = 0; chan < tx_cnt; chan++) {
3325                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3326                 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3327
3328                 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3329         }
3330
3331         /* Configure real RX and TX queues */
3332         netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3333         netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3334
3335         /* Start the ball rolling... */
3336         stmmac_start_all_dma(priv);
3337
3338         if (priv->dma_cap.fpesel) {
3339                 stmmac_fpe_start_wq(priv);
3340
3341                 if (priv->plat->fpe_cfg->enable)
3342                         stmmac_fpe_handshake(priv, true);
3343         }
3344
3345         return 0;
3346 }
3347
3348 static void stmmac_hw_teardown(struct net_device *dev)
3349 {
3350         struct stmmac_priv *priv = netdev_priv(dev);
3351
3352         clk_disable_unprepare(priv->plat->clk_ptp_ref);
3353 }
3354
3355 static void stmmac_free_irq(struct net_device *dev,
3356                             enum request_irq_err irq_err, int irq_idx)
3357 {
3358         struct stmmac_priv *priv = netdev_priv(dev);
3359         int j;
3360
3361         switch (irq_err) {
3362         case REQ_IRQ_ERR_ALL:
3363                 irq_idx = priv->plat->tx_queues_to_use;
3364                 fallthrough;
3365         case REQ_IRQ_ERR_TX:
3366                 for (j = irq_idx - 1; j >= 0; j--) {
3367                         if (priv->tx_irq[j] > 0) {
3368                                 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3369                                 free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3370                         }
3371                 }
3372                 irq_idx = priv->plat->rx_queues_to_use;
3373                 fallthrough;
3374         case REQ_IRQ_ERR_RX:
3375                 for (j = irq_idx - 1; j >= 0; j--) {
3376                         if (priv->rx_irq[j] > 0) {
3377                                 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3378                                 free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3379                         }
3380                 }
3381
3382                 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3383                         free_irq(priv->sfty_ue_irq, dev);
3384                 fallthrough;
3385         case REQ_IRQ_ERR_SFTY_UE:
3386                 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3387                         free_irq(priv->sfty_ce_irq, dev);
3388                 fallthrough;
3389         case REQ_IRQ_ERR_SFTY_CE:
3390                 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3391                         free_irq(priv->lpi_irq, dev);
3392                 fallthrough;
3393         case REQ_IRQ_ERR_LPI:
3394                 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3395                         free_irq(priv->wol_irq, dev);
3396                 fallthrough;
3397         case REQ_IRQ_ERR_WOL:
3398                 free_irq(dev->irq, dev);
3399                 fallthrough;
3400         case REQ_IRQ_ERR_MAC:
3401         case REQ_IRQ_ERR_NO:
3402                 /* If MAC IRQ request error, no more IRQ to free */
3403                 break;
3404         }
3405 }
3406
3407 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3408 {
3409         struct stmmac_priv *priv = netdev_priv(dev);
3410         enum request_irq_err irq_err;
3411         cpumask_t cpu_mask;
3412         int irq_idx = 0;
3413         char *int_name;
3414         int ret;
3415         int i;
3416
3417         /* For common interrupt */
3418         int_name = priv->int_name_mac;
3419         sprintf(int_name, "%s:%s", dev->name, "mac");
3420         ret = request_irq(dev->irq, stmmac_mac_interrupt,
3421                           0, int_name, dev);
3422         if (unlikely(ret < 0)) {
3423                 netdev_err(priv->dev,
3424                            "%s: alloc mac MSI %d (error: %d)\n",
3425                            __func__, dev->irq, ret);
3426                 irq_err = REQ_IRQ_ERR_MAC;
3427                 goto irq_error;
3428         }
3429
3430         /* Request the Wake IRQ in case of another line
3431          * is used for WoL
3432          */
3433         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3434                 int_name = priv->int_name_wol;
3435                 sprintf(int_name, "%s:%s", dev->name, "wol");
3436                 ret = request_irq(priv->wol_irq,
3437                                   stmmac_mac_interrupt,
3438                                   0, int_name, dev);
3439                 if (unlikely(ret < 0)) {
3440                         netdev_err(priv->dev,
3441                                    "%s: alloc wol MSI %d (error: %d)\n",
3442                                    __func__, priv->wol_irq, ret);
3443                         irq_err = REQ_IRQ_ERR_WOL;
3444                         goto irq_error;
3445                 }
3446         }
3447
3448         /* Request the LPI IRQ in case of another line
3449          * is used for LPI
3450          */
3451         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3452                 int_name = priv->int_name_lpi;
3453                 sprintf(int_name, "%s:%s", dev->name, "lpi");
3454                 ret = request_irq(priv->lpi_irq,
3455                                   stmmac_mac_interrupt,
3456                                   0, int_name, dev);
3457                 if (unlikely(ret < 0)) {
3458                         netdev_err(priv->dev,
3459                                    "%s: alloc lpi MSI %d (error: %d)\n",
3460                                    __func__, priv->lpi_irq, ret);
3461                         irq_err = REQ_IRQ_ERR_LPI;
3462                         goto irq_error;
3463                 }
3464         }
3465
3466         /* Request the Safety Feature Correctible Error line in
3467          * case of another line is used
3468          */
3469         if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3470                 int_name = priv->int_name_sfty_ce;
3471                 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3472                 ret = request_irq(priv->sfty_ce_irq,
3473                                   stmmac_safety_interrupt,
3474                                   0, int_name, dev);
3475                 if (unlikely(ret < 0)) {
3476                         netdev_err(priv->dev,
3477                                    "%s: alloc sfty ce MSI %d (error: %d)\n",
3478                                    __func__, priv->sfty_ce_irq, ret);
3479                         irq_err = REQ_IRQ_ERR_SFTY_CE;
3480                         goto irq_error;
3481                 }
3482         }
3483
3484         /* Request the Safety Feature Uncorrectible Error line in
3485          * case of another line is used
3486          */
3487         if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3488                 int_name = priv->int_name_sfty_ue;
3489                 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3490                 ret = request_irq(priv->sfty_ue_irq,
3491                                   stmmac_safety_interrupt,
3492                                   0, int_name, dev);
3493                 if (unlikely(ret < 0)) {
3494                         netdev_err(priv->dev,
3495                                    "%s: alloc sfty ue MSI %d (error: %d)\n",
3496                                    __func__, priv->sfty_ue_irq, ret);
3497                         irq_err = REQ_IRQ_ERR_SFTY_UE;
3498                         goto irq_error;
3499                 }
3500         }
3501
3502         /* Request Rx MSI irq */
3503         for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3504                 if (priv->rx_irq[i] == 0)
3505                         continue;
3506
3507                 int_name = priv->int_name_rx_irq[i];
3508                 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3509                 ret = request_irq(priv->rx_irq[i],
3510                                   stmmac_msi_intr_rx,
3511                                   0, int_name, &priv->rx_queue[i]);
3512                 if (unlikely(ret < 0)) {
3513                         netdev_err(priv->dev,
3514                                    "%s: alloc rx-%d  MSI %d (error: %d)\n",
3515                                    __func__, i, priv->rx_irq[i], ret);
3516                         irq_err = REQ_IRQ_ERR_RX;
3517                         irq_idx = i;
3518                         goto irq_error;
3519                 }
3520                 cpumask_clear(&cpu_mask);
3521                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3522                 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3523         }
3524
3525         /* Request Tx MSI irq */
3526         for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3527                 if (priv->tx_irq[i] == 0)
3528                         continue;
3529
3530                 int_name = priv->int_name_tx_irq[i];
3531                 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3532                 ret = request_irq(priv->tx_irq[i],
3533                                   stmmac_msi_intr_tx,
3534                                   0, int_name, &priv->tx_queue[i]);
3535                 if (unlikely(ret < 0)) {
3536                         netdev_err(priv->dev,
3537                                    "%s: alloc tx-%d  MSI %d (error: %d)\n",
3538                                    __func__, i, priv->tx_irq[i], ret);
3539                         irq_err = REQ_IRQ_ERR_TX;
3540                         irq_idx = i;
3541                         goto irq_error;
3542                 }
3543                 cpumask_clear(&cpu_mask);
3544                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3545                 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3546         }
3547
3548         return 0;
3549
3550 irq_error:
3551         stmmac_free_irq(dev, irq_err, irq_idx);
3552         return ret;
3553 }
3554
3555 static int stmmac_request_irq_single(struct net_device *dev)
3556 {
3557         struct stmmac_priv *priv = netdev_priv(dev);
3558         enum request_irq_err irq_err;
3559         int ret;
3560
3561         ret = request_irq(dev->irq, stmmac_interrupt,
3562                           IRQF_SHARED, dev->name, dev);
3563         if (unlikely(ret < 0)) {
3564                 netdev_err(priv->dev,
3565                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3566                            __func__, dev->irq, ret);
3567                 irq_err = REQ_IRQ_ERR_MAC;
3568                 goto irq_error;
3569         }
3570
3571         /* Request the Wake IRQ in case of another line
3572          * is used for WoL
3573          */
3574         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3575                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3576                                   IRQF_SHARED, dev->name, dev);
3577                 if (unlikely(ret < 0)) {
3578                         netdev_err(priv->dev,
3579                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3580                                    __func__, priv->wol_irq, ret);
3581                         irq_err = REQ_IRQ_ERR_WOL;
3582                         goto irq_error;
3583                 }
3584         }
3585
3586         /* Request the IRQ lines */
3587         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3588                 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3589                                   IRQF_SHARED, dev->name, dev);
3590                 if (unlikely(ret < 0)) {
3591                         netdev_err(priv->dev,
3592                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3593                                    __func__, priv->lpi_irq, ret);
3594                         irq_err = REQ_IRQ_ERR_LPI;
3595                         goto irq_error;
3596                 }
3597         }
3598
3599         return 0;
3600
3601 irq_error:
3602         stmmac_free_irq(dev, irq_err, 0);
3603         return ret;
3604 }
3605
3606 static int stmmac_request_irq(struct net_device *dev)
3607 {
3608         struct stmmac_priv *priv = netdev_priv(dev);
3609         int ret;
3610
3611         /* Request the IRQ lines */
3612         if (priv->plat->multi_msi_en)
3613                 ret = stmmac_request_irq_multi_msi(dev);
3614         else
3615                 ret = stmmac_request_irq_single(dev);
3616
3617         return ret;
3618 }
3619
3620 /**
3621  *  stmmac_open - open entry point of the driver
3622  *  @dev : pointer to the device structure.
3623  *  Description:
3624  *  This function is the open entry point of the driver.
3625  *  Return value:
3626  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3627  *  file on failure.
3628  */
3629 int stmmac_open(struct net_device *dev)
3630 {
3631         struct stmmac_priv *priv = netdev_priv(dev);
3632         int mode = priv->plat->phy_interface;
3633         int bfsize = 0;
3634         u32 chan;
3635         int ret;
3636
3637         ret = pm_runtime_get_sync(priv->device);
3638         if (ret < 0) {
3639                 pm_runtime_put_noidle(priv->device);
3640                 return ret;
3641         }
3642
3643         if (priv->hw->pcs != STMMAC_PCS_TBI &&
3644             priv->hw->pcs != STMMAC_PCS_RTBI &&
3645             (!priv->hw->xpcs ||
3646              xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3647                 ret = stmmac_init_phy(dev);
3648                 if (ret) {
3649                         netdev_err(priv->dev,
3650                                    "%s: Cannot attach to PHY (error: %d)\n",
3651                                    __func__, ret);
3652                         goto init_phy_error;
3653                 }
3654         }
3655
3656         /* Extra statistics */
3657         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3658         priv->xstats.threshold = tc;
3659
3660         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3661         if (bfsize < 0)
3662                 bfsize = 0;
3663
3664         if (bfsize < BUF_SIZE_16KiB)
3665                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3666
3667         priv->dma_buf_sz = bfsize;
3668         buf_sz = bfsize;
3669
3670         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3671
3672         if (!priv->dma_tx_size)
3673                 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3674         if (!priv->dma_rx_size)
3675                 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3676
3677         /* Earlier check for TBS */
3678         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3679                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3680                 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3681
3682                 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3683                 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3684         }
3685
3686         ret = alloc_dma_desc_resources(priv);
3687         if (ret < 0) {
3688                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3689                            __func__);
3690                 goto dma_desc_error;
3691         }
3692
3693         ret = init_dma_desc_rings(dev, GFP_KERNEL);
3694         if (ret < 0) {
3695                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3696                            __func__);
3697                 goto init_error;
3698         }
3699
3700         ret = stmmac_hw_setup(dev, true);
3701         if (ret < 0) {
3702                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3703                 goto init_error;
3704         }
3705
3706         stmmac_init_coalesce(priv);
3707
3708         phylink_start(priv->phylink);
3709         /* We may have called phylink_speed_down before */
3710         phylink_speed_up(priv->phylink);
3711
3712         ret = stmmac_request_irq(dev);
3713         if (ret)
3714                 goto irq_error;
3715
3716         stmmac_enable_all_queues(priv);
3717         netif_tx_start_all_queues(priv->dev);
3718
3719         return 0;
3720
3721 irq_error:
3722         phylink_stop(priv->phylink);
3723
3724         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3725                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3726
3727         stmmac_hw_teardown(dev);
3728 init_error:
3729         free_dma_desc_resources(priv);
3730 dma_desc_error:
3731         phylink_disconnect_phy(priv->phylink);
3732 init_phy_error:
3733         pm_runtime_put(priv->device);
3734         return ret;
3735 }
3736
3737 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3738 {
3739         set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3740
3741         if (priv->fpe_wq)
3742                 destroy_workqueue(priv->fpe_wq);
3743
3744         netdev_info(priv->dev, "FPE workqueue stop");
3745 }
3746
3747 /**
3748  *  stmmac_release - close entry point of the driver
3749  *  @dev : device pointer.
3750  *  Description:
3751  *  This is the stop entry point of the driver.
3752  */
3753 int stmmac_release(struct net_device *dev)
3754 {
3755         struct stmmac_priv *priv = netdev_priv(dev);
3756         u32 chan;
3757
3758         if (device_may_wakeup(priv->device))
3759                 phylink_speed_down(priv->phylink, false);
3760         /* Stop and disconnect the PHY */
3761         phylink_stop(priv->phylink);
3762         phylink_disconnect_phy(priv->phylink);
3763
3764         stmmac_disable_all_queues(priv);
3765
3766         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3767                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3768
3769         /* Free the IRQ lines */
3770         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3771
3772         if (priv->eee_enabled) {
3773                 priv->tx_path_in_lpi_mode = false;
3774                 del_timer_sync(&priv->eee_ctrl_timer);
3775         }
3776
3777         /* Stop TX/RX DMA and clear the descriptors */
3778         stmmac_stop_all_dma(priv);
3779
3780         /* Release and free the Rx/Tx resources */
3781         free_dma_desc_resources(priv);
3782
3783         /* Disable the MAC Rx/Tx */
3784         stmmac_mac_set(priv, priv->ioaddr, false);
3785
3786         netif_carrier_off(dev);
3787
3788         stmmac_release_ptp(priv);
3789
3790         pm_runtime_put(priv->device);
3791
3792         if (priv->dma_cap.fpesel)
3793                 stmmac_fpe_stop_wq(priv);
3794
3795         return 0;
3796 }
3797
3798 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3799                                struct stmmac_tx_queue *tx_q)
3800 {
3801         u16 tag = 0x0, inner_tag = 0x0;
3802         u32 inner_type = 0x0;
3803         struct dma_desc *p;
3804
3805         if (!priv->dma_cap.vlins)
3806                 return false;
3807         if (!skb_vlan_tag_present(skb))
3808                 return false;
3809         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3810                 inner_tag = skb_vlan_tag_get(skb);
3811                 inner_type = STMMAC_VLAN_INSERT;
3812         }
3813
3814         tag = skb_vlan_tag_get(skb);
3815
3816         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3817                 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3818         else
3819                 p = &tx_q->dma_tx[tx_q->cur_tx];
3820
3821         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3822                 return false;
3823
3824         stmmac_set_tx_owner(priv, p);
3825         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3826         return true;
3827 }
3828
3829 /**
3830  *  stmmac_tso_allocator - close entry point of the driver
3831  *  @priv: driver private structure
3832  *  @des: buffer start address
3833  *  @total_len: total length to fill in descriptors
3834  *  @last_segment: condition for the last descriptor
3835  *  @queue: TX queue index
3836  *  Description:
3837  *  This function fills descriptor and request new descriptors according to
3838  *  buffer length to fill
3839  */
3840 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3841                                  int total_len, bool last_segment, u32 queue)
3842 {
3843         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3844         struct dma_desc *desc;
3845         u32 buff_size;
3846         int tmp_len;
3847
3848         tmp_len = total_len;
3849
3850         while (tmp_len > 0) {
3851                 dma_addr_t curr_addr;
3852
3853                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3854                                                 priv->dma_tx_size);
3855                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3856
3857                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3858                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3859                 else
3860                         desc = &tx_q->dma_tx[tx_q->cur_tx];
3861
3862                 curr_addr = des + (total_len - tmp_len);
3863                 if (priv->dma_cap.addr64 <= 32)
3864                         desc->des0 = cpu_to_le32(curr_addr);
3865                 else
3866                         stmmac_set_desc_addr(priv, desc, curr_addr);
3867
3868                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3869                             TSO_MAX_BUFF_SIZE : tmp_len;
3870
3871                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3872                                 0, 1,
3873                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3874                                 0, 0);
3875
3876                 tmp_len -= TSO_MAX_BUFF_SIZE;
3877         }
3878 }
3879
3880 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3881 {
3882         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3883         int desc_size;
3884
3885         if (likely(priv->extend_desc))
3886                 desc_size = sizeof(struct dma_extended_desc);
3887         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3888                 desc_size = sizeof(struct dma_edesc);
3889         else
3890                 desc_size = sizeof(struct dma_desc);
3891
3892         /* The own bit must be the latest setting done when prepare the
3893          * descriptor and then barrier is needed to make sure that
3894          * all is coherent before granting the DMA engine.
3895          */
3896         wmb();
3897
3898         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3899         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3900 }
3901
3902 /**
3903  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3904  *  @skb : the socket buffer
3905  *  @dev : device pointer
3906  *  Description: this is the transmit function that is called on TSO frames
3907  *  (support available on GMAC4 and newer chips).
3908  *  Diagram below show the ring programming in case of TSO frames:
3909  *
3910  *  First Descriptor
3911  *   --------
3912  *   | DES0 |---> buffer1 = L2/L3/L4 header
3913  *   | DES1 |---> TCP Payload (can continue on next descr...)
3914  *   | DES2 |---> buffer 1 and 2 len
3915  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3916  *   --------
3917  *      |
3918  *     ...
3919  *      |
3920  *   --------
3921  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3922  *   | DES1 | --|
3923  *   | DES2 | --> buffer 1 and 2 len
3924  *   | DES3 |
3925  *   --------
3926  *
3927  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3928  */
3929 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3930 {
3931         struct dma_desc *desc, *first, *mss_desc = NULL;
3932         struct stmmac_priv *priv = netdev_priv(dev);
3933         int nfrags = skb_shinfo(skb)->nr_frags;
3934         u32 queue = skb_get_queue_mapping(skb);
3935         unsigned int first_entry, tx_packets;
3936         int tmp_pay_len = 0, first_tx;
3937         struct stmmac_tx_queue *tx_q;
3938         bool has_vlan, set_ic;
3939         u8 proto_hdr_len, hdr;
3940         u32 pay_len, mss;
3941         dma_addr_t des;
3942         int i;
3943
3944         tx_q = &priv->tx_queue[queue];
3945         first_tx = tx_q->cur_tx;
3946
3947         /* Compute header lengths */
3948         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3949                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3950                 hdr = sizeof(struct udphdr);
3951         } else {
3952                 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3953                 hdr = tcp_hdrlen(skb);
3954         }
3955
3956         /* Desc availability based on threshold should be enough safe */
3957         if (unlikely(stmmac_tx_avail(priv, queue) <
3958                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3959                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3960                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3961                                                                 queue));
3962                         /* This is a hard error, log it. */
3963                         netdev_err(priv->dev,
3964                                    "%s: Tx Ring full when queue awake\n",
3965                                    __func__);
3966                 }
3967                 return NETDEV_TX_BUSY;
3968         }
3969
3970         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3971
3972         mss = skb_shinfo(skb)->gso_size;
3973
3974         /* set new MSS value if needed */
3975         if (mss != tx_q->mss) {
3976                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3977                         mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3978                 else
3979                         mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3980
3981                 stmmac_set_mss(priv, mss_desc, mss);
3982                 tx_q->mss = mss;
3983                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3984                                                 priv->dma_tx_size);
3985                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3986         }
3987
3988         if (netif_msg_tx_queued(priv)) {
3989                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3990                         __func__, hdr, proto_hdr_len, pay_len, mss);
3991                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3992                         skb->data_len);
3993         }
3994
3995         /* Check if VLAN can be inserted by HW */
3996         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3997
3998         first_entry = tx_q->cur_tx;
3999         WARN_ON(tx_q->tx_skbuff[first_entry]);
4000
4001         if (tx_q->tbs & STMMAC_TBS_AVAIL)
4002                 desc = &tx_q->dma_entx[first_entry].basic;
4003         else
4004                 desc = &tx_q->dma_tx[first_entry];
4005         first = desc;
4006
4007         if (has_vlan)
4008                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4009
4010         /* first descriptor: fill Headers on Buf1 */
4011         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4012                              DMA_TO_DEVICE);
4013         if (dma_mapping_error(priv->device, des))
4014                 goto dma_map_err;
4015
4016         tx_q->tx_skbuff_dma[first_entry].buf = des;
4017         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4018         tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4019         tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4020
4021         if (priv->dma_cap.addr64 <= 32) {
4022                 first->des0 = cpu_to_le32(des);
4023
4024                 /* Fill start of payload in buff2 of first descriptor */
4025                 if (pay_len)
4026                         first->des1 = cpu_to_le32(des + proto_hdr_len);
4027
4028                 /* If needed take extra descriptors to fill the remaining payload */
4029                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4030         } else {
4031                 stmmac_set_desc_addr(priv, first, des);
4032                 tmp_pay_len = pay_len;
4033                 des += proto_hdr_len;
4034                 pay_len = 0;
4035         }
4036
4037         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4038
4039         /* Prepare fragments */
4040         for (i = 0; i < nfrags; i++) {
4041                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4042
4043                 des = skb_frag_dma_map(priv->device, frag, 0,
4044                                        skb_frag_size(frag),
4045                                        DMA_TO_DEVICE);
4046                 if (dma_mapping_error(priv->device, des))
4047                         goto dma_map_err;
4048
4049                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4050                                      (i == nfrags - 1), queue);
4051
4052                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4053                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4054                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4055                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4056         }
4057
4058         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4059
4060         /* Only the last descriptor gets to point to the skb. */
4061         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4062         tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4063
4064         /* Manage tx mitigation */
4065         tx_packets = (tx_q->cur_tx + 1) - first_tx;
4066         tx_q->tx_count_frames += tx_packets;
4067
4068         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4069                 set_ic = true;
4070         else if (!priv->tx_coal_frames[queue])
4071                 set_ic = false;
4072         else if (tx_packets > priv->tx_coal_frames[queue])
4073                 set_ic = true;
4074         else if ((tx_q->tx_count_frames %
4075                   priv->tx_coal_frames[queue]) < tx_packets)
4076                 set_ic = true;
4077         else
4078                 set_ic = false;
4079
4080         if (set_ic) {
4081                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4082                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4083                 else
4084                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4085
4086                 tx_q->tx_count_frames = 0;
4087                 stmmac_set_tx_ic(priv, desc);
4088                 priv->xstats.tx_set_ic_bit++;
4089         }
4090
4091         /* We've used all descriptors we need for this skb, however,
4092          * advance cur_tx so that it references a fresh descriptor.
4093          * ndo_start_xmit will fill this descriptor the next time it's
4094          * called and stmmac_tx_clean may clean up to this descriptor.
4095          */
4096         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4097
4098         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4099                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4100                           __func__);
4101                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4102         }
4103
4104         dev->stats.tx_bytes += skb->len;
4105         priv->xstats.tx_tso_frames++;
4106         priv->xstats.tx_tso_nfrags += nfrags;
4107
4108         if (priv->sarc_type)
4109                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4110
4111         skb_tx_timestamp(skb);
4112
4113         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4114                      priv->hwts_tx_en)) {
4115                 /* declare that device is doing timestamping */
4116                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4117                 stmmac_enable_tx_timestamp(priv, first);
4118         }
4119
4120         /* Complete the first descriptor before granting the DMA */
4121         stmmac_prepare_tso_tx_desc(priv, first, 1,
4122                         proto_hdr_len,
4123                         pay_len,
4124                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4125                         hdr / 4, (skb->len - proto_hdr_len));
4126
4127         /* If context desc is used to change MSS */
4128         if (mss_desc) {
4129                 /* Make sure that first descriptor has been completely
4130                  * written, including its own bit. This is because MSS is
4131                  * actually before first descriptor, so we need to make
4132                  * sure that MSS's own bit is the last thing written.
4133                  */
4134                 dma_wmb();
4135                 stmmac_set_tx_owner(priv, mss_desc);
4136         }
4137
4138         if (netif_msg_pktdata(priv)) {
4139                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4140                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4141                         tx_q->cur_tx, first, nfrags);
4142                 pr_info(">>> frame to be transmitted: ");
4143                 print_pkt(skb->data, skb_headlen(skb));
4144         }
4145
4146         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4147
4148         stmmac_flush_tx_descriptors(priv, queue);
4149         stmmac_tx_timer_arm(priv, queue);
4150
4151         return NETDEV_TX_OK;
4152
4153 dma_map_err:
4154         dev_err(priv->device, "Tx dma map failed\n");
4155         dev_kfree_skb(skb);
4156         priv->dev->stats.tx_dropped++;
4157         return NETDEV_TX_OK;
4158 }
4159
4160 /**
4161  *  stmmac_xmit - Tx entry point of the driver
4162  *  @skb : the socket buffer
4163  *  @dev : device pointer
4164  *  Description : this is the tx entry point of the driver.
4165  *  It programs the chain or the ring and supports oversized frames
4166  *  and SG feature.
4167  */
4168 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4169 {
4170         unsigned int first_entry, tx_packets, enh_desc;
4171         struct stmmac_priv *priv = netdev_priv(dev);
4172         unsigned int nopaged_len = skb_headlen(skb);
4173         int i, csum_insertion = 0, is_jumbo = 0;
4174         u32 queue = skb_get_queue_mapping(skb);
4175         int nfrags = skb_shinfo(skb)->nr_frags;
4176         int gso = skb_shinfo(skb)->gso_type;
4177         struct dma_edesc *tbs_desc = NULL;
4178         struct dma_desc *desc, *first;
4179         struct stmmac_tx_queue *tx_q;
4180         bool has_vlan, set_ic;
4181         int entry, first_tx;
4182         dma_addr_t des;
4183
4184         tx_q = &priv->tx_queue[queue];
4185         first_tx = tx_q->cur_tx;
4186
4187         if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4188                 stmmac_disable_eee_mode(priv);
4189
4190         /* Manage oversized TCP frames for GMAC4 device */
4191         if (skb_is_gso(skb) && priv->tso) {
4192                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4193                         return stmmac_tso_xmit(skb, dev);
4194                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4195                         return stmmac_tso_xmit(skb, dev);
4196         }
4197
4198         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4199                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4200                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4201                                                                 queue));
4202                         /* This is a hard error, log it. */
4203                         netdev_err(priv->dev,
4204                                    "%s: Tx Ring full when queue awake\n",
4205                                    __func__);
4206                 }
4207                 return NETDEV_TX_BUSY;
4208         }
4209
4210         /* Check if VLAN can be inserted by HW */
4211         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4212
4213         entry = tx_q->cur_tx;
4214         first_entry = entry;
4215         WARN_ON(tx_q->tx_skbuff[first_entry]);
4216
4217         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4218
4219         if (likely(priv->extend_desc))
4220                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4221         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4222                 desc = &tx_q->dma_entx[entry].basic;
4223         else
4224                 desc = tx_q->dma_tx + entry;
4225
4226         first = desc;
4227
4228         if (has_vlan)
4229                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4230
4231         enh_desc = priv->plat->enh_desc;
4232         /* To program the descriptors according to the size of the frame */
4233         if (enh_desc)
4234                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4235
4236         if (unlikely(is_jumbo)) {
4237                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4238                 if (unlikely(entry < 0) && (entry != -EINVAL))
4239                         goto dma_map_err;
4240         }
4241
4242         for (i = 0; i < nfrags; i++) {
4243                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4244                 int len = skb_frag_size(frag);
4245                 bool last_segment = (i == (nfrags - 1));
4246
4247                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4248                 WARN_ON(tx_q->tx_skbuff[entry]);
4249
4250                 if (likely(priv->extend_desc))
4251                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4252                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4253                         desc = &tx_q->dma_entx[entry].basic;
4254                 else
4255                         desc = tx_q->dma_tx + entry;
4256
4257                 des = skb_frag_dma_map(priv->device, frag, 0, len,
4258                                        DMA_TO_DEVICE);
4259                 if (dma_mapping_error(priv->device, des))
4260                         goto dma_map_err; /* should reuse desc w/o issues */
4261
4262                 tx_q->tx_skbuff_dma[entry].buf = des;
4263
4264                 stmmac_set_desc_addr(priv, desc, des);
4265
4266                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4267                 tx_q->tx_skbuff_dma[entry].len = len;
4268                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4269                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4270
4271                 /* Prepare the descriptor and set the own bit too */
4272                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4273                                 priv->mode, 1, last_segment, skb->len);
4274         }
4275
4276         /* Only the last descriptor gets to point to the skb. */
4277         tx_q->tx_skbuff[entry] = skb;
4278         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4279
4280         /* According to the coalesce parameter the IC bit for the latest
4281          * segment is reset and the timer re-started to clean the tx status.
4282          * This approach takes care about the fragments: desc is the first
4283          * element in case of no SG.
4284          */
4285         tx_packets = (entry + 1) - first_tx;
4286         tx_q->tx_count_frames += tx_packets;
4287
4288         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4289                 set_ic = true;
4290         else if (!priv->tx_coal_frames[queue])
4291                 set_ic = false;
4292         else if (tx_packets > priv->tx_coal_frames[queue])
4293                 set_ic = true;
4294         else if ((tx_q->tx_count_frames %
4295                   priv->tx_coal_frames[queue]) < tx_packets)
4296                 set_ic = true;
4297         else
4298                 set_ic = false;
4299
4300         if (set_ic) {
4301                 if (likely(priv->extend_desc))
4302                         desc = &tx_q->dma_etx[entry].basic;
4303                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4304                         desc = &tx_q->dma_entx[entry].basic;
4305                 else
4306                         desc = &tx_q->dma_tx[entry];
4307
4308                 tx_q->tx_count_frames = 0;
4309                 stmmac_set_tx_ic(priv, desc);
4310                 priv->xstats.tx_set_ic_bit++;
4311         }
4312
4313         /* We've used all descriptors we need for this skb, however,
4314          * advance cur_tx so that it references a fresh descriptor.
4315          * ndo_start_xmit will fill this descriptor the next time it's
4316          * called and stmmac_tx_clean may clean up to this descriptor.
4317          */
4318         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4319         tx_q->cur_tx = entry;
4320
4321         if (netif_msg_pktdata(priv)) {
4322                 netdev_dbg(priv->dev,
4323                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4324                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4325                            entry, first, nfrags);
4326
4327                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4328                 print_pkt(skb->data, skb->len);
4329         }
4330
4331         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4332                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4333                           __func__);
4334                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4335         }
4336
4337         dev->stats.tx_bytes += skb->len;
4338
4339         if (priv->sarc_type)
4340                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4341
4342         skb_tx_timestamp(skb);
4343
4344         /* Ready to fill the first descriptor and set the OWN bit w/o any
4345          * problems because all the descriptors are actually ready to be
4346          * passed to the DMA engine.
4347          */
4348         if (likely(!is_jumbo)) {
4349                 bool last_segment = (nfrags == 0);
4350
4351                 des = dma_map_single(priv->device, skb->data,
4352                                      nopaged_len, DMA_TO_DEVICE);
4353                 if (dma_mapping_error(priv->device, des))
4354                         goto dma_map_err;
4355
4356                 tx_q->tx_skbuff_dma[first_entry].buf = des;
4357                 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4358                 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4359
4360                 stmmac_set_desc_addr(priv, first, des);
4361
4362                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4363                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4364
4365                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4366                              priv->hwts_tx_en)) {
4367                         /* declare that device is doing timestamping */
4368                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4369                         stmmac_enable_tx_timestamp(priv, first);
4370                 }
4371
4372                 /* Prepare the first descriptor setting the OWN bit too */
4373                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4374                                 csum_insertion, priv->mode, 0, last_segment,
4375                                 skb->len);
4376         }
4377
4378         if (tx_q->tbs & STMMAC_TBS_EN) {
4379                 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4380
4381                 tbs_desc = &tx_q->dma_entx[first_entry];
4382                 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4383         }
4384
4385         stmmac_set_tx_owner(priv, first);
4386
4387         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4388
4389         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4390
4391         stmmac_flush_tx_descriptors(priv, queue);
4392         stmmac_tx_timer_arm(priv, queue);
4393
4394         return NETDEV_TX_OK;
4395
4396 dma_map_err:
4397         netdev_err(priv->dev, "Tx DMA map failed\n");
4398         dev_kfree_skb(skb);
4399         priv->dev->stats.tx_dropped++;
4400         return NETDEV_TX_OK;
4401 }
4402
4403 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4404 {
4405         struct vlan_ethhdr *veth;
4406         __be16 vlan_proto;
4407         u16 vlanid;
4408
4409         veth = (struct vlan_ethhdr *)skb->data;
4410         vlan_proto = veth->h_vlan_proto;
4411
4412         if ((vlan_proto == htons(ETH_P_8021Q) &&
4413              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4414             (vlan_proto == htons(ETH_P_8021AD) &&
4415              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4416                 /* pop the vlan tag */
4417                 vlanid = ntohs(veth->h_vlan_TCI);
4418                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4419                 skb_pull(skb, VLAN_HLEN);
4420                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4421         }
4422 }
4423
4424 /**
4425  * stmmac_rx_refill - refill used skb preallocated buffers
4426  * @priv: driver private structure
4427  * @queue: RX queue index
4428  * Description : this is to reallocate the skb for the reception process
4429  * that is based on zero-copy.
4430  */
4431 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4432 {
4433         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4434         int dirty = stmmac_rx_dirty(priv, queue);
4435         unsigned int entry = rx_q->dirty_rx;
4436
4437         while (dirty-- > 0) {
4438                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4439                 struct dma_desc *p;
4440                 bool use_rx_wd;
4441
4442                 if (priv->extend_desc)
4443                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4444                 else
4445                         p = rx_q->dma_rx + entry;
4446
4447                 if (!buf->page) {
4448                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
4449                         if (!buf->page)
4450                                 break;
4451                 }
4452
4453                 if (priv->sph && !buf->sec_page) {
4454                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
4455                         if (!buf->sec_page)
4456                                 break;
4457
4458                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4459                 }
4460
4461                 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4462
4463                 stmmac_set_desc_addr(priv, p, buf->addr);
4464                 if (priv->sph)
4465                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4466                 else
4467                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4468                 stmmac_refill_desc3(priv, rx_q, p);
4469
4470                 rx_q->rx_count_frames++;
4471                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4472                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4473                         rx_q->rx_count_frames = 0;
4474
4475                 use_rx_wd = !priv->rx_coal_frames[queue];
4476                 use_rx_wd |= rx_q->rx_count_frames > 0;
4477                 if (!priv->use_riwt)
4478                         use_rx_wd = false;
4479
4480                 dma_wmb();
4481                 stmmac_set_rx_owner(priv, p, use_rx_wd);
4482
4483                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4484         }
4485         rx_q->dirty_rx = entry;
4486         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4487                             (rx_q->dirty_rx * sizeof(struct dma_desc));
4488         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4489 }
4490
4491 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4492                                        struct dma_desc *p,
4493                                        int status, unsigned int len)
4494 {
4495         unsigned int plen = 0, hlen = 0;
4496         int coe = priv->hw->rx_csum;
4497
4498         /* Not first descriptor, buffer is always zero */
4499         if (priv->sph && len)
4500                 return 0;
4501
4502         /* First descriptor, get split header length */
4503         stmmac_get_rx_header_len(priv, p, &hlen);
4504         if (priv->sph && hlen) {
4505                 priv->xstats.rx_split_hdr_pkt_n++;
4506                 return hlen;
4507         }
4508
4509         /* First descriptor, not last descriptor and not split header */
4510         if (status & rx_not_ls)
4511                 return priv->dma_buf_sz;
4512
4513         plen = stmmac_get_rx_frame_len(priv, p, coe);
4514
4515         /* First descriptor and last descriptor and not split header */
4516         return min_t(unsigned int, priv->dma_buf_sz, plen);
4517 }
4518
4519 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4520                                        struct dma_desc *p,
4521                                        int status, unsigned int len)
4522 {
4523         int coe = priv->hw->rx_csum;
4524         unsigned int plen = 0;
4525
4526         /* Not split header, buffer is not available */
4527         if (!priv->sph)
4528                 return 0;
4529
4530         /* Not last descriptor */
4531         if (status & rx_not_ls)
4532                 return priv->dma_buf_sz;
4533
4534         plen = stmmac_get_rx_frame_len(priv, p, coe);
4535
4536         /* Last descriptor */
4537         return plen - len;
4538 }
4539
4540 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4541                                 struct xdp_frame *xdpf, bool dma_map)
4542 {
4543         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4544         unsigned int entry = tx_q->cur_tx;
4545         struct dma_desc *tx_desc;
4546         dma_addr_t dma_addr;
4547         bool set_ic;
4548
4549         if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4550                 return STMMAC_XDP_CONSUMED;
4551
4552         if (likely(priv->extend_desc))
4553                 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4554         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4555                 tx_desc = &tx_q->dma_entx[entry].basic;
4556         else
4557                 tx_desc = tx_q->dma_tx + entry;
4558
4559         if (dma_map) {
4560                 dma_addr = dma_map_single(priv->device, xdpf->data,
4561                                           xdpf->len, DMA_TO_DEVICE);
4562                 if (dma_mapping_error(priv->device, dma_addr))
4563                         return STMMAC_XDP_CONSUMED;
4564
4565                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4566         } else {
4567                 struct page *page = virt_to_page(xdpf->data);
4568
4569                 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4570                            xdpf->headroom;
4571                 dma_sync_single_for_device(priv->device, dma_addr,
4572                                            xdpf->len, DMA_BIDIRECTIONAL);
4573
4574                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4575         }
4576
4577         tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4578         tx_q->tx_skbuff_dma[entry].map_as_page = false;
4579         tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4580         tx_q->tx_skbuff_dma[entry].last_segment = true;
4581         tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4582
4583         tx_q->xdpf[entry] = xdpf;
4584
4585         stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4586
4587         stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4588                                true, priv->mode, true, true,
4589                                xdpf->len);
4590
4591         tx_q->tx_count_frames++;
4592
4593         if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4594                 set_ic = true;
4595         else
4596                 set_ic = false;
4597
4598         if (set_ic) {
4599                 tx_q->tx_count_frames = 0;
4600                 stmmac_set_tx_ic(priv, tx_desc);
4601                 priv->xstats.tx_set_ic_bit++;
4602         }
4603
4604         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4605
4606         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4607         tx_q->cur_tx = entry;
4608
4609         return STMMAC_XDP_TX;
4610 }
4611
4612 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4613                                    int cpu)
4614 {
4615         int index = cpu;
4616
4617         if (unlikely(index < 0))
4618                 index = 0;
4619
4620         while (index >= priv->plat->tx_queues_to_use)
4621                 index -= priv->plat->tx_queues_to_use;
4622
4623         return index;
4624 }
4625
4626 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4627                                 struct xdp_buff *xdp)
4628 {
4629         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4630         int cpu = smp_processor_id();
4631         struct netdev_queue *nq;
4632         int queue;
4633         int res;
4634
4635         if (unlikely(!xdpf))
4636                 return STMMAC_XDP_CONSUMED;
4637
4638         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4639         nq = netdev_get_tx_queue(priv->dev, queue);
4640
4641         __netif_tx_lock(nq, cpu);
4642         /* Avoids TX time-out as we are sharing with slow path */
4643         nq->trans_start = jiffies;
4644
4645         res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4646         if (res == STMMAC_XDP_TX)
4647                 stmmac_flush_tx_descriptors(priv, queue);
4648
4649         __netif_tx_unlock(nq);
4650
4651         return res;
4652 }
4653
4654 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4655                                  struct bpf_prog *prog,
4656                                  struct xdp_buff *xdp)
4657 {
4658         u32 act;
4659         int res;
4660
4661         act = bpf_prog_run_xdp(prog, xdp);
4662         switch (act) {
4663         case XDP_PASS:
4664                 res = STMMAC_XDP_PASS;
4665                 break;
4666         case XDP_TX:
4667                 res = stmmac_xdp_xmit_back(priv, xdp);
4668                 break;
4669         case XDP_REDIRECT:
4670                 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4671                         res = STMMAC_XDP_CONSUMED;
4672                 else
4673                         res = STMMAC_XDP_REDIRECT;
4674                 break;
4675         default:
4676                 bpf_warn_invalid_xdp_action(act);
4677                 fallthrough;
4678         case XDP_ABORTED:
4679                 trace_xdp_exception(priv->dev, prog, act);
4680                 fallthrough;
4681         case XDP_DROP:
4682                 res = STMMAC_XDP_CONSUMED;
4683                 break;
4684         }
4685
4686         return res;
4687 }
4688
4689 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4690                                            struct xdp_buff *xdp)
4691 {
4692         struct bpf_prog *prog;
4693         int res;
4694
4695         prog = READ_ONCE(priv->xdp_prog);
4696         if (!prog) {
4697                 res = STMMAC_XDP_PASS;
4698                 goto out;
4699         }
4700
4701         res = __stmmac_xdp_run_prog(priv, prog, xdp);
4702 out:
4703         return ERR_PTR(-res);
4704 }
4705
4706 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4707                                    int xdp_status)
4708 {
4709         int cpu = smp_processor_id();
4710         int queue;
4711
4712         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4713
4714         if (xdp_status & STMMAC_XDP_TX)
4715                 stmmac_tx_timer_arm(priv, queue);
4716
4717         if (xdp_status & STMMAC_XDP_REDIRECT)
4718                 xdp_do_flush();
4719 }
4720
4721 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4722                                                struct xdp_buff *xdp)
4723 {
4724         unsigned int metasize = xdp->data - xdp->data_meta;
4725         unsigned int datasize = xdp->data_end - xdp->data;
4726         struct sk_buff *skb;
4727
4728         skb = __napi_alloc_skb(&ch->rxtx_napi,
4729                                xdp->data_end - xdp->data_hard_start,
4730                                GFP_ATOMIC | __GFP_NOWARN);
4731         if (unlikely(!skb))
4732                 return NULL;
4733
4734         skb_reserve(skb, xdp->data - xdp->data_hard_start);
4735         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4736         if (metasize)
4737                 skb_metadata_set(skb, metasize);
4738
4739         return skb;
4740 }
4741
4742 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4743                                    struct dma_desc *p, struct dma_desc *np,
4744                                    struct xdp_buff *xdp)
4745 {
4746         struct stmmac_channel *ch = &priv->channel[queue];
4747         unsigned int len = xdp->data_end - xdp->data;
4748         enum pkt_hash_types hash_type;
4749         int coe = priv->hw->rx_csum;
4750         struct sk_buff *skb;
4751         u32 hash;
4752
4753         skb = stmmac_construct_skb_zc(ch, xdp);
4754         if (!skb) {
4755                 priv->dev->stats.rx_dropped++;
4756                 return;
4757         }
4758
4759         stmmac_get_rx_hwtstamp(priv, p, np, skb);
4760         stmmac_rx_vlan(priv->dev, skb);
4761         skb->protocol = eth_type_trans(skb, priv->dev);
4762
4763         if (unlikely(!coe))
4764                 skb_checksum_none_assert(skb);
4765         else
4766                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4767
4768         if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4769                 skb_set_hash(skb, hash, hash_type);
4770
4771         skb_record_rx_queue(skb, queue);
4772         napi_gro_receive(&ch->rxtx_napi, skb);
4773
4774         priv->dev->stats.rx_packets++;
4775         priv->dev->stats.rx_bytes += len;
4776 }
4777
4778 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4779 {
4780         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4781         unsigned int entry = rx_q->dirty_rx;
4782         struct dma_desc *rx_desc = NULL;
4783         bool ret = true;
4784
4785         budget = min(budget, stmmac_rx_dirty(priv, queue));
4786
4787         while (budget-- > 0 && entry != rx_q->cur_rx) {
4788                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4789                 dma_addr_t dma_addr;
4790                 bool use_rx_wd;
4791
4792                 if (!buf->xdp) {
4793                         buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4794                         if (!buf->xdp) {
4795                                 ret = false;
4796                                 break;
4797                         }
4798                 }
4799
4800                 if (priv->extend_desc)
4801                         rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4802                 else
4803                         rx_desc = rx_q->dma_rx + entry;
4804
4805                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4806                 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4807                 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4808                 stmmac_refill_desc3(priv, rx_q, rx_desc);
4809
4810                 rx_q->rx_count_frames++;
4811                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4812                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4813                         rx_q->rx_count_frames = 0;
4814
4815                 use_rx_wd = !priv->rx_coal_frames[queue];
4816                 use_rx_wd |= rx_q->rx_count_frames > 0;
4817                 if (!priv->use_riwt)
4818                         use_rx_wd = false;
4819
4820                 dma_wmb();
4821                 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4822
4823                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4824         }
4825
4826         if (rx_desc) {
4827                 rx_q->dirty_rx = entry;
4828                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4829                                      (rx_q->dirty_rx * sizeof(struct dma_desc));
4830                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4831         }
4832
4833         return ret;
4834 }
4835
4836 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4837 {
4838         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4839         unsigned int count = 0, error = 0, len = 0;
4840         int dirty = stmmac_rx_dirty(priv, queue);
4841         unsigned int next_entry = rx_q->cur_rx;
4842         unsigned int desc_size;
4843         struct bpf_prog *prog;
4844         bool failure = false;
4845         int xdp_status = 0;
4846         int status = 0;
4847
4848         if (netif_msg_rx_status(priv)) {
4849                 void *rx_head;
4850
4851                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4852                 if (priv->extend_desc) {
4853                         rx_head = (void *)rx_q->dma_erx;
4854                         desc_size = sizeof(struct dma_extended_desc);
4855                 } else {
4856                         rx_head = (void *)rx_q->dma_rx;
4857                         desc_size = sizeof(struct dma_desc);
4858                 }
4859
4860                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4861                                     rx_q->dma_rx_phy, desc_size);
4862         }
4863         while (count < limit) {
4864                 struct stmmac_rx_buffer *buf;
4865                 unsigned int buf1_len = 0;
4866                 struct dma_desc *np, *p;
4867                 int entry;
4868                 int res;
4869
4870                 if (!count && rx_q->state_saved) {
4871                         error = rx_q->state.error;
4872                         len = rx_q->state.len;
4873                 } else {
4874                         rx_q->state_saved = false;
4875                         error = 0;
4876                         len = 0;
4877                 }
4878
4879                 if (count >= limit)
4880                         break;
4881
4882 read_again:
4883                 buf1_len = 0;
4884                 entry = next_entry;
4885                 buf = &rx_q->buf_pool[entry];
4886
4887                 if (dirty >= STMMAC_RX_FILL_BATCH) {
4888                         failure = failure ||
4889                                   !stmmac_rx_refill_zc(priv, queue, dirty);
4890                         dirty = 0;
4891                 }
4892
4893                 if (priv->extend_desc)
4894                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4895                 else
4896                         p = rx_q->dma_rx + entry;
4897
4898                 /* read the status of the incoming frame */
4899                 status = stmmac_rx_status(priv, &priv->dev->stats,
4900                                           &priv->xstats, p);
4901                 /* check if managed by the DMA otherwise go ahead */
4902                 if (unlikely(status & dma_own))
4903                         break;
4904
4905                 /* Prefetch the next RX descriptor */
4906                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4907                                                 priv->dma_rx_size);
4908                 next_entry = rx_q->cur_rx;
4909
4910                 if (priv->extend_desc)
4911                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4912                 else
4913                         np = rx_q->dma_rx + next_entry;
4914
4915                 prefetch(np);
4916
4917                 if (priv->extend_desc)
4918                         stmmac_rx_extended_status(priv, &priv->dev->stats,
4919                                                   &priv->xstats,
4920                                                   rx_q->dma_erx + entry);
4921                 if (unlikely(status == discard_frame)) {
4922                         xsk_buff_free(buf->xdp);
4923                         buf->xdp = NULL;
4924                         dirty++;
4925                         error = 1;
4926                         if (!priv->hwts_rx_en)
4927                                 priv->dev->stats.rx_errors++;
4928                 }
4929
4930                 if (unlikely(error && (status & rx_not_ls)))
4931                         goto read_again;
4932                 if (unlikely(error)) {
4933                         count++;
4934                         continue;
4935                 }
4936
4937                 /* Ensure a valid XSK buffer before proceed */
4938                 if (!buf->xdp)
4939                         break;
4940
4941                 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4942                 if (likely(status & rx_not_ls)) {
4943                         xsk_buff_free(buf->xdp);
4944                         buf->xdp = NULL;
4945                         dirty++;
4946                         count++;
4947                         goto read_again;
4948                 }
4949
4950                 /* XDP ZC Frame only support primary buffers for now */
4951                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4952                 len += buf1_len;
4953
4954                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4955                  * Type frames (LLC/LLC-SNAP)
4956                  *
4957                  * llc_snap is never checked in GMAC >= 4, so this ACS
4958                  * feature is always disabled and packets need to be
4959                  * stripped manually.
4960                  */
4961                 if (likely(!(status & rx_not_ls)) &&
4962                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4963                      unlikely(status != llc_snap))) {
4964                         buf1_len -= ETH_FCS_LEN;
4965                         len -= ETH_FCS_LEN;
4966                 }
4967
4968                 /* RX buffer is good and fit into a XSK pool buffer */
4969                 buf->xdp->data_end = buf->xdp->data + buf1_len;
4970                 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4971
4972                 prog = READ_ONCE(priv->xdp_prog);
4973                 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4974
4975                 switch (res) {
4976                 case STMMAC_XDP_PASS:
4977                         stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4978                         xsk_buff_free(buf->xdp);
4979                         break;
4980                 case STMMAC_XDP_CONSUMED:
4981                         xsk_buff_free(buf->xdp);
4982                         priv->dev->stats.rx_dropped++;
4983                         break;
4984                 case STMMAC_XDP_TX:
4985                 case STMMAC_XDP_REDIRECT:
4986                         xdp_status |= res;
4987                         break;
4988                 }
4989
4990                 buf->xdp = NULL;
4991                 dirty++;
4992                 count++;
4993         }
4994
4995         if (status & rx_not_ls) {
4996                 rx_q->state_saved = true;
4997                 rx_q->state.error = error;
4998                 rx_q->state.len = len;
4999         }
5000
5001         stmmac_finalize_xdp_rx(priv, xdp_status);
5002
5003         if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5004                 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5005                         xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5006                 else
5007                         xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5008
5009                 return (int)count;
5010         }
5011
5012         return failure ? limit : (int)count;
5013 }
5014
5015 /**
5016  * stmmac_rx - manage the receive process
5017  * @priv: driver private structure
5018  * @limit: napi bugget
5019  * @queue: RX queue index.
5020  * Description :  this the function called by the napi poll method.
5021  * It gets all the frames inside the ring.
5022  */
5023 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5024 {
5025         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5026         struct stmmac_channel *ch = &priv->channel[queue];
5027         unsigned int count = 0, error = 0, len = 0;
5028         int status = 0, coe = priv->hw->rx_csum;
5029         unsigned int next_entry = rx_q->cur_rx;
5030         enum dma_data_direction dma_dir;
5031         unsigned int desc_size;
5032         struct sk_buff *skb = NULL;
5033         struct xdp_buff xdp;
5034         int xdp_status = 0;
5035         int buf_sz;
5036
5037         dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5038         buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5039
5040         if (netif_msg_rx_status(priv)) {
5041                 void *rx_head;
5042
5043                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5044                 if (priv->extend_desc) {
5045                         rx_head = (void *)rx_q->dma_erx;
5046                         desc_size = sizeof(struct dma_extended_desc);
5047                 } else {
5048                         rx_head = (void *)rx_q->dma_rx;
5049                         desc_size = sizeof(struct dma_desc);
5050                 }
5051
5052                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5053                                     rx_q->dma_rx_phy, desc_size);
5054         }
5055         while (count < limit) {
5056                 unsigned int buf1_len = 0, buf2_len = 0;
5057                 enum pkt_hash_types hash_type;
5058                 struct stmmac_rx_buffer *buf;
5059                 struct dma_desc *np, *p;
5060                 int entry;
5061                 u32 hash;
5062
5063                 if (!count && rx_q->state_saved) {
5064                         skb = rx_q->state.skb;
5065                         error = rx_q->state.error;
5066                         len = rx_q->state.len;
5067                 } else {
5068                         rx_q->state_saved = false;
5069                         skb = NULL;
5070                         error = 0;
5071                         len = 0;
5072                 }
5073
5074                 if (count >= limit)
5075                         break;
5076
5077 read_again:
5078                 buf1_len = 0;
5079                 buf2_len = 0;
5080                 entry = next_entry;
5081                 buf = &rx_q->buf_pool[entry];
5082
5083                 if (priv->extend_desc)
5084                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5085                 else
5086                         p = rx_q->dma_rx + entry;
5087
5088                 /* read the status of the incoming frame */
5089                 status = stmmac_rx_status(priv, &priv->dev->stats,
5090                                 &priv->xstats, p);
5091                 /* check if managed by the DMA otherwise go ahead */
5092                 if (unlikely(status & dma_own))
5093                         break;
5094
5095                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5096                                                 priv->dma_rx_size);
5097                 next_entry = rx_q->cur_rx;
5098
5099                 if (priv->extend_desc)
5100                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5101                 else
5102                         np = rx_q->dma_rx + next_entry;
5103
5104                 prefetch(np);
5105
5106                 if (priv->extend_desc)
5107                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5108                                         &priv->xstats, rx_q->dma_erx + entry);
5109                 if (unlikely(status == discard_frame)) {
5110                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5111                         buf->page = NULL;
5112                         error = 1;
5113                         if (!priv->hwts_rx_en)
5114                                 priv->dev->stats.rx_errors++;
5115                 }
5116
5117                 if (unlikely(error && (status & rx_not_ls)))
5118                         goto read_again;
5119                 if (unlikely(error)) {
5120                         dev_kfree_skb(skb);
5121                         skb = NULL;
5122                         count++;
5123                         continue;
5124                 }
5125
5126                 /* Buffer is good. Go on. */
5127
5128                 prefetch(page_address(buf->page) + buf->page_offset);
5129                 if (buf->sec_page)
5130                         prefetch(page_address(buf->sec_page));
5131
5132                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5133                 len += buf1_len;
5134                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5135                 len += buf2_len;
5136
5137                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5138                  * Type frames (LLC/LLC-SNAP)
5139                  *
5140                  * llc_snap is never checked in GMAC >= 4, so this ACS
5141                  * feature is always disabled and packets need to be
5142                  * stripped manually.
5143                  */
5144                 if (likely(!(status & rx_not_ls)) &&
5145                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5146                      unlikely(status != llc_snap))) {
5147                         if (buf2_len)
5148                                 buf2_len -= ETH_FCS_LEN;
5149                         else
5150                                 buf1_len -= ETH_FCS_LEN;
5151
5152                         len -= ETH_FCS_LEN;
5153                 }
5154
5155                 if (!skb) {
5156                         unsigned int pre_len, sync_len;
5157
5158                         dma_sync_single_for_cpu(priv->device, buf->addr,
5159                                                 buf1_len, dma_dir);
5160
5161                         xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5162                         xdp_prepare_buff(&xdp, page_address(buf->page),
5163                                          buf->page_offset, buf1_len, false);
5164
5165                         pre_len = xdp.data_end - xdp.data_hard_start -
5166                                   buf->page_offset;
5167                         skb = stmmac_xdp_run_prog(priv, &xdp);
5168                         /* Due xdp_adjust_tail: DMA sync for_device
5169                          * cover max len CPU touch
5170                          */
5171                         sync_len = xdp.data_end - xdp.data_hard_start -
5172                                    buf->page_offset;
5173                         sync_len = max(sync_len, pre_len);
5174
5175                         /* For Not XDP_PASS verdict */
5176                         if (IS_ERR(skb)) {
5177                                 unsigned int xdp_res = -PTR_ERR(skb);
5178
5179                                 if (xdp_res & STMMAC_XDP_CONSUMED) {
5180                                         page_pool_put_page(rx_q->page_pool,
5181                                                            virt_to_head_page(xdp.data),
5182                                                            sync_len, true);
5183                                         buf->page = NULL;
5184                                         priv->dev->stats.rx_dropped++;
5185
5186                                         /* Clear skb as it was set as
5187                                          * status by XDP program.
5188                                          */
5189                                         skb = NULL;
5190
5191                                         if (unlikely((status & rx_not_ls)))
5192                                                 goto read_again;
5193
5194                                         count++;
5195                                         continue;
5196                                 } else if (xdp_res & (STMMAC_XDP_TX |
5197                                                       STMMAC_XDP_REDIRECT)) {
5198                                         xdp_status |= xdp_res;
5199                                         buf->page = NULL;
5200                                         skb = NULL;
5201                                         count++;
5202                                         continue;
5203                                 }
5204                         }
5205                 }
5206
5207                 if (!skb) {
5208                         /* XDP program may expand or reduce tail */
5209                         buf1_len = xdp.data_end - xdp.data;
5210
5211                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5212                         if (!skb) {
5213                                 priv->dev->stats.rx_dropped++;
5214                                 count++;
5215                                 goto drain_data;
5216                         }
5217
5218                         /* XDP program may adjust header */
5219                         skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5220                         skb_put(skb, buf1_len);
5221
5222                         /* Data payload copied into SKB, page ready for recycle */
5223                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5224                         buf->page = NULL;
5225                 } else if (buf1_len) {
5226                         dma_sync_single_for_cpu(priv->device, buf->addr,
5227                                                 buf1_len, dma_dir);
5228                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5229                                         buf->page, buf->page_offset, buf1_len,
5230                                         priv->dma_buf_sz);
5231
5232                         /* Data payload appended into SKB */
5233                         page_pool_release_page(rx_q->page_pool, buf->page);
5234                         buf->page = NULL;
5235                 }
5236
5237                 if (buf2_len) {
5238                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5239                                                 buf2_len, dma_dir);
5240                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5241                                         buf->sec_page, 0, buf2_len,
5242                                         priv->dma_buf_sz);
5243
5244                         /* Data payload appended into SKB */
5245                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
5246                         buf->sec_page = NULL;
5247                 }
5248
5249 drain_data:
5250                 if (likely(status & rx_not_ls))
5251                         goto read_again;
5252                 if (!skb)
5253                         continue;
5254
5255                 /* Got entire packet into SKB. Finish it. */
5256
5257                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5258                 stmmac_rx_vlan(priv->dev, skb);
5259                 skb->protocol = eth_type_trans(skb, priv->dev);
5260
5261                 if (unlikely(!coe))
5262                         skb_checksum_none_assert(skb);
5263                 else
5264                         skb->ip_summed = CHECKSUM_UNNECESSARY;
5265
5266                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5267                         skb_set_hash(skb, hash, hash_type);
5268
5269                 skb_record_rx_queue(skb, queue);
5270                 napi_gro_receive(&ch->rx_napi, skb);
5271                 skb = NULL;
5272
5273                 priv->dev->stats.rx_packets++;
5274                 priv->dev->stats.rx_bytes += len;
5275                 count++;
5276         }
5277
5278         if (status & rx_not_ls || skb) {
5279                 rx_q->state_saved = true;
5280                 rx_q->state.skb = skb;
5281                 rx_q->state.error = error;
5282                 rx_q->state.len = len;
5283         }
5284
5285         stmmac_finalize_xdp_rx(priv, xdp_status);
5286
5287         stmmac_rx_refill(priv, queue);
5288
5289         priv->xstats.rx_pkt_n += count;
5290
5291         return count;
5292 }
5293
5294 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5295 {
5296         struct stmmac_channel *ch =
5297                 container_of(napi, struct stmmac_channel, rx_napi);
5298         struct stmmac_priv *priv = ch->priv_data;
5299         u32 chan = ch->index;
5300         int work_done;
5301
5302         priv->xstats.napi_poll++;
5303
5304         work_done = stmmac_rx(priv, budget, chan);
5305         if (work_done < budget && napi_complete_done(napi, work_done)) {
5306                 unsigned long flags;
5307
5308                 spin_lock_irqsave(&ch->lock, flags);
5309                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5310                 spin_unlock_irqrestore(&ch->lock, flags);
5311         }
5312
5313         return work_done;
5314 }
5315
5316 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5317 {
5318         struct stmmac_channel *ch =
5319                 container_of(napi, struct stmmac_channel, tx_napi);
5320         struct stmmac_priv *priv = ch->priv_data;
5321         u32 chan = ch->index;
5322         int work_done;
5323
5324         priv->xstats.napi_poll++;
5325
5326         work_done = stmmac_tx_clean(priv, budget, chan);
5327         work_done = min(work_done, budget);
5328
5329         if (work_done < budget && napi_complete_done(napi, work_done)) {
5330                 unsigned long flags;
5331
5332                 spin_lock_irqsave(&ch->lock, flags);
5333                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5334                 spin_unlock_irqrestore(&ch->lock, flags);
5335         }
5336
5337         return work_done;
5338 }
5339
5340 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5341 {
5342         struct stmmac_channel *ch =
5343                 container_of(napi, struct stmmac_channel, rxtx_napi);
5344         struct stmmac_priv *priv = ch->priv_data;
5345         int rx_done, tx_done;
5346         u32 chan = ch->index;
5347
5348         priv->xstats.napi_poll++;
5349
5350         tx_done = stmmac_tx_clean(priv, budget, chan);
5351         tx_done = min(tx_done, budget);
5352
5353         rx_done = stmmac_rx_zc(priv, budget, chan);
5354
5355         /* If either TX or RX work is not complete, return budget
5356          * and keep pooling
5357          */
5358         if (tx_done >= budget || rx_done >= budget)
5359                 return budget;
5360
5361         /* all work done, exit the polling mode */
5362         if (napi_complete_done(napi, rx_done)) {
5363                 unsigned long flags;
5364
5365                 spin_lock_irqsave(&ch->lock, flags);
5366                 /* Both RX and TX work done are compelte,
5367                  * so enable both RX & TX IRQs.
5368                  */
5369                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5370                 spin_unlock_irqrestore(&ch->lock, flags);
5371         }
5372
5373         return min(rx_done, budget - 1);
5374 }
5375
5376 /**
5377  *  stmmac_tx_timeout
5378  *  @dev : Pointer to net device structure
5379  *  @txqueue: the index of the hanging transmit queue
5380  *  Description: this function is called when a packet transmission fails to
5381  *   complete within a reasonable time. The driver will mark the error in the
5382  *   netdev structure and arrange for the device to be reset to a sane state
5383  *   in order to transmit a new packet.
5384  */
5385 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5386 {
5387         struct stmmac_priv *priv = netdev_priv(dev);
5388
5389         stmmac_global_err(priv);
5390 }
5391
5392 /**
5393  *  stmmac_set_rx_mode - entry point for multicast addressing
5394  *  @dev : pointer to the device structure
5395  *  Description:
5396  *  This function is a driver entry point which gets called by the kernel
5397  *  whenever multicast addresses must be enabled/disabled.
5398  *  Return value:
5399  *  void.
5400  */
5401 static void stmmac_set_rx_mode(struct net_device *dev)
5402 {
5403         struct stmmac_priv *priv = netdev_priv(dev);
5404
5405         stmmac_set_filter(priv, priv->hw, dev);
5406 }
5407
5408 /**
5409  *  stmmac_change_mtu - entry point to change MTU size for the device.
5410  *  @dev : device pointer.
5411  *  @new_mtu : the new MTU size for the device.
5412  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5413  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5414  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5415  *  Return value:
5416  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5417  *  file on failure.
5418  */
5419 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5420 {
5421         struct stmmac_priv *priv = netdev_priv(dev);
5422         int txfifosz = priv->plat->tx_fifo_size;
5423         const int mtu = new_mtu;
5424
5425         if (txfifosz == 0)
5426                 txfifosz = priv->dma_cap.tx_fifo_size;
5427
5428         txfifosz /= priv->plat->tx_queues_to_use;
5429
5430         if (netif_running(dev)) {
5431                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
5432                 return -EBUSY;
5433         }
5434
5435         if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5436                 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5437                 return -EINVAL;
5438         }
5439
5440         new_mtu = STMMAC_ALIGN(new_mtu);
5441
5442         /* If condition true, FIFO is too small or MTU too large */
5443         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5444                 return -EINVAL;
5445
5446         dev->mtu = mtu;
5447
5448         netdev_update_features(dev);
5449
5450         return 0;
5451 }
5452
5453 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5454                                              netdev_features_t features)
5455 {
5456         struct stmmac_priv *priv = netdev_priv(dev);
5457
5458         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5459                 features &= ~NETIF_F_RXCSUM;
5460
5461         if (!priv->plat->tx_coe)
5462                 features &= ~NETIF_F_CSUM_MASK;
5463
5464         /* Some GMAC devices have a bugged Jumbo frame support that
5465          * needs to have the Tx COE disabled for oversized frames
5466          * (due to limited buffer sizes). In this case we disable
5467          * the TX csum insertion in the TDES and not use SF.
5468          */
5469         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5470                 features &= ~NETIF_F_CSUM_MASK;
5471
5472         /* Disable tso if asked by ethtool */
5473         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5474                 if (features & NETIF_F_TSO)
5475                         priv->tso = true;
5476                 else
5477                         priv->tso = false;
5478         }
5479
5480         return features;
5481 }
5482
5483 static int stmmac_set_features(struct net_device *netdev,
5484                                netdev_features_t features)
5485 {
5486         struct stmmac_priv *priv = netdev_priv(netdev);
5487         bool sph_en;
5488         u32 chan;
5489
5490         /* Keep the COE Type in case of csum is supporting */
5491         if (features & NETIF_F_RXCSUM)
5492                 priv->hw->rx_csum = priv->plat->rx_coe;
5493         else
5494                 priv->hw->rx_csum = 0;
5495         /* No check needed because rx_coe has been set before and it will be
5496          * fixed in case of issue.
5497          */
5498         stmmac_rx_ipc(priv, priv->hw);
5499
5500         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5501
5502         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5503                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5504
5505         return 0;
5506 }
5507
5508 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5509 {
5510         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5511         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5512         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5513         bool *hs_enable = &fpe_cfg->hs_enable;
5514
5515         if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5516                 return;
5517
5518         /* If LP has sent verify mPacket, LP is FPE capable */
5519         if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5520                 if (*lp_state < FPE_STATE_CAPABLE)
5521                         *lp_state = FPE_STATE_CAPABLE;
5522
5523                 /* If user has requested FPE enable, quickly response */
5524                 if (*hs_enable)
5525                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5526                                                 MPACKET_RESPONSE);
5527         }
5528
5529         /* If Local has sent verify mPacket, Local is FPE capable */
5530         if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5531                 if (*lo_state < FPE_STATE_CAPABLE)
5532                         *lo_state = FPE_STATE_CAPABLE;
5533         }
5534
5535         /* If LP has sent response mPacket, LP is entering FPE ON */
5536         if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5537                 *lp_state = FPE_STATE_ENTERING_ON;
5538
5539         /* If Local has sent response mPacket, Local is entering FPE ON */
5540         if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5541                 *lo_state = FPE_STATE_ENTERING_ON;
5542
5543         if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5544             !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5545             priv->fpe_wq) {
5546                 queue_work(priv->fpe_wq, &priv->fpe_task);
5547         }
5548 }
5549
5550 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5551 {
5552         u32 rx_cnt = priv->plat->rx_queues_to_use;
5553         u32 tx_cnt = priv->plat->tx_queues_to_use;
5554         u32 queues_count;
5555         u32 queue;
5556         bool xmac;
5557
5558         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5559         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5560
5561         if (priv->irq_wake)
5562                 pm_wakeup_event(priv->device, 0);
5563
5564         if (priv->dma_cap.estsel)
5565                 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5566                                       &priv->xstats, tx_cnt);
5567
5568         if (priv->dma_cap.fpesel) {
5569                 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5570                                                    priv->dev);
5571
5572                 stmmac_fpe_event_status(priv, status);
5573         }
5574
5575         /* To handle GMAC own interrupts */
5576         if ((priv->plat->has_gmac) || xmac) {
5577                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5578
5579                 if (unlikely(status)) {
5580                         /* For LPI we need to save the tx status */
5581                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5582                                 priv->tx_path_in_lpi_mode = true;
5583                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5584                                 priv->tx_path_in_lpi_mode = false;
5585                 }
5586
5587                 for (queue = 0; queue < queues_count; queue++) {
5588                         status = stmmac_host_mtl_irq_status(priv, priv->hw,
5589                                                             queue);
5590                 }
5591
5592                 /* PCS link status */
5593                 if (priv->hw->pcs) {
5594                         if (priv->xstats.pcs_link)
5595                                 netif_carrier_on(priv->dev);
5596                         else
5597                                 netif_carrier_off(priv->dev);
5598                 }
5599
5600                 stmmac_timestamp_interrupt(priv, priv);
5601         }
5602 }
5603
5604 /**
5605  *  stmmac_interrupt - main ISR
5606  *  @irq: interrupt number.
5607  *  @dev_id: to pass the net device pointer.
5608  *  Description: this is the main driver interrupt service routine.
5609  *  It can call:
5610  *  o DMA service routine (to manage incoming frame reception and transmission
5611  *    status)
5612  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5613  *    interrupts.
5614  */
5615 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5616 {
5617         struct net_device *dev = (struct net_device *)dev_id;
5618         struct stmmac_priv *priv = netdev_priv(dev);
5619
5620         /* Check if adapter is up */
5621         if (test_bit(STMMAC_DOWN, &priv->state))
5622                 return IRQ_HANDLED;
5623
5624         /* Check if a fatal error happened */
5625         if (stmmac_safety_feat_interrupt(priv))
5626                 return IRQ_HANDLED;
5627
5628         /* To handle Common interrupts */
5629         stmmac_common_interrupt(priv);
5630
5631         /* To handle DMA interrupts */
5632         stmmac_dma_interrupt(priv);
5633
5634         return IRQ_HANDLED;
5635 }
5636
5637 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5638 {
5639         struct net_device *dev = (struct net_device *)dev_id;
5640         struct stmmac_priv *priv = netdev_priv(dev);
5641
5642         if (unlikely(!dev)) {
5643                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5644                 return IRQ_NONE;
5645         }
5646
5647         /* Check if adapter is up */
5648         if (test_bit(STMMAC_DOWN, &priv->state))
5649                 return IRQ_HANDLED;
5650
5651         /* To handle Common interrupts */
5652         stmmac_common_interrupt(priv);
5653
5654         return IRQ_HANDLED;
5655 }
5656
5657 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5658 {
5659         struct net_device *dev = (struct net_device *)dev_id;
5660         struct stmmac_priv *priv = netdev_priv(dev);
5661
5662         if (unlikely(!dev)) {
5663                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5664                 return IRQ_NONE;
5665         }
5666
5667         /* Check if adapter is up */
5668         if (test_bit(STMMAC_DOWN, &priv->state))
5669                 return IRQ_HANDLED;
5670
5671         /* Check if a fatal error happened */
5672         stmmac_safety_feat_interrupt(priv);
5673
5674         return IRQ_HANDLED;
5675 }
5676
5677 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5678 {
5679         struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5680         int chan = tx_q->queue_index;
5681         struct stmmac_priv *priv;
5682         int status;
5683
5684         priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5685
5686         if (unlikely(!data)) {
5687                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5688                 return IRQ_NONE;
5689         }
5690
5691         /* Check if adapter is up */
5692         if (test_bit(STMMAC_DOWN, &priv->state))
5693                 return IRQ_HANDLED;
5694
5695         status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5696
5697         if (unlikely(status & tx_hard_error_bump_tc)) {
5698                 /* Try to bump up the dma threshold on this failure */
5699                 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
5700                     tc <= 256) {
5701                         tc += 64;
5702                         if (priv->plat->force_thresh_dma_mode)
5703                                 stmmac_set_dma_operation_mode(priv,
5704                                                               tc,
5705                                                               tc,
5706                                                               chan);
5707                         else
5708                                 stmmac_set_dma_operation_mode(priv,
5709                                                               tc,
5710                                                               SF_DMA_MODE,
5711                                                               chan);
5712                         priv->xstats.threshold = tc;
5713                 }
5714         } else if (unlikely(status == tx_hard_error)) {
5715                 stmmac_tx_err(priv, chan);
5716         }
5717
5718         return IRQ_HANDLED;
5719 }
5720
5721 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5722 {
5723         struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5724         int chan = rx_q->queue_index;
5725         struct stmmac_priv *priv;
5726
5727         priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5728
5729         if (unlikely(!data)) {
5730                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5731                 return IRQ_NONE;
5732         }
5733
5734         /* Check if adapter is up */
5735         if (test_bit(STMMAC_DOWN, &priv->state))
5736                 return IRQ_HANDLED;
5737
5738         stmmac_napi_check(priv, chan, DMA_DIR_RX);
5739
5740         return IRQ_HANDLED;
5741 }
5742
5743 #ifdef CONFIG_NET_POLL_CONTROLLER
5744 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5745  * to allow network I/O with interrupts disabled.
5746  */
5747 static void stmmac_poll_controller(struct net_device *dev)
5748 {
5749         struct stmmac_priv *priv = netdev_priv(dev);
5750         int i;
5751
5752         /* If adapter is down, do nothing */
5753         if (test_bit(STMMAC_DOWN, &priv->state))
5754                 return;
5755
5756         if (priv->plat->multi_msi_en) {
5757                 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5758                         stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5759
5760                 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5761                         stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5762         } else {
5763                 disable_irq(dev->irq);
5764                 stmmac_interrupt(dev->irq, dev);
5765                 enable_irq(dev->irq);
5766         }
5767 }
5768 #endif
5769
5770 /**
5771  *  stmmac_ioctl - Entry point for the Ioctl
5772  *  @dev: Device pointer.
5773  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5774  *  a proprietary structure used to pass information to the driver.
5775  *  @cmd: IOCTL command
5776  *  Description:
5777  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5778  */
5779 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5780 {
5781         struct stmmac_priv *priv = netdev_priv (dev);
5782         int ret = -EOPNOTSUPP;
5783
5784         if (!netif_running(dev))
5785                 return -EINVAL;
5786
5787         switch (cmd) {
5788         case SIOCGMIIPHY:
5789         case SIOCGMIIREG:
5790         case SIOCSMIIREG:
5791                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5792                 break;
5793         case SIOCSHWTSTAMP:
5794                 ret = stmmac_hwtstamp_set(dev, rq);
5795                 break;
5796         case SIOCGHWTSTAMP:
5797                 ret = stmmac_hwtstamp_get(dev, rq);
5798                 break;
5799         default:
5800                 break;
5801         }
5802
5803         return ret;
5804 }
5805
5806 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5807                                     void *cb_priv)
5808 {
5809         struct stmmac_priv *priv = cb_priv;
5810         int ret = -EOPNOTSUPP;
5811
5812         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5813                 return ret;
5814
5815         __stmmac_disable_all_queues(priv);
5816
5817         switch (type) {
5818         case TC_SETUP_CLSU32:
5819                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5820                 break;
5821         case TC_SETUP_CLSFLOWER:
5822                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5823                 break;
5824         default:
5825                 break;
5826         }
5827
5828         stmmac_enable_all_queues(priv);
5829         return ret;
5830 }
5831
5832 static LIST_HEAD(stmmac_block_cb_list);
5833
5834 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5835                            void *type_data)
5836 {
5837         struct stmmac_priv *priv = netdev_priv(ndev);
5838
5839         switch (type) {
5840         case TC_SETUP_BLOCK:
5841                 return flow_block_cb_setup_simple(type_data,
5842                                                   &stmmac_block_cb_list,
5843                                                   stmmac_setup_tc_block_cb,
5844                                                   priv, priv, true);
5845         case TC_SETUP_QDISC_CBS:
5846                 return stmmac_tc_setup_cbs(priv, priv, type_data);
5847         case TC_SETUP_QDISC_TAPRIO:
5848                 return stmmac_tc_setup_taprio(priv, priv, type_data);
5849         case TC_SETUP_QDISC_ETF:
5850                 return stmmac_tc_setup_etf(priv, priv, type_data);
5851         default:
5852                 return -EOPNOTSUPP;
5853         }
5854 }
5855
5856 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5857                                struct net_device *sb_dev)
5858 {
5859         int gso = skb_shinfo(skb)->gso_type;
5860
5861         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5862                 /*
5863                  * There is no way to determine the number of TSO/USO
5864                  * capable Queues. Let's use always the Queue 0
5865                  * because if TSO/USO is supported then at least this
5866                  * one will be capable.
5867                  */
5868                 return 0;
5869         }
5870
5871         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5872 }
5873
5874 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5875 {
5876         struct stmmac_priv *priv = netdev_priv(ndev);
5877         int ret = 0;
5878
5879         ret = pm_runtime_get_sync(priv->device);
5880         if (ret < 0) {
5881                 pm_runtime_put_noidle(priv->device);
5882                 return ret;
5883         }
5884
5885         ret = eth_mac_addr(ndev, addr);
5886         if (ret)
5887                 goto set_mac_error;
5888
5889         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5890
5891 set_mac_error:
5892         pm_runtime_put(priv->device);
5893
5894         return ret;
5895 }
5896
5897 #ifdef CONFIG_DEBUG_FS
5898 static struct dentry *stmmac_fs_dir;
5899
5900 static void sysfs_display_ring(void *head, int size, int extend_desc,
5901                                struct seq_file *seq, dma_addr_t dma_phy_addr)
5902 {
5903         int i;
5904         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5905         struct dma_desc *p = (struct dma_desc *)head;
5906         dma_addr_t dma_addr;
5907
5908         for (i = 0; i < size; i++) {
5909                 if (extend_desc) {
5910                         dma_addr = dma_phy_addr + i * sizeof(*ep);
5911                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5912                                    i, &dma_addr,
5913                                    le32_to_cpu(ep->basic.des0),
5914                                    le32_to_cpu(ep->basic.des1),
5915                                    le32_to_cpu(ep->basic.des2),
5916                                    le32_to_cpu(ep->basic.des3));
5917                         ep++;
5918                 } else {
5919                         dma_addr = dma_phy_addr + i * sizeof(*p);
5920                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5921                                    i, &dma_addr,
5922                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5923                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5924                         p++;
5925                 }
5926                 seq_printf(seq, "\n");
5927         }
5928 }
5929
5930 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5931 {
5932         struct net_device *dev = seq->private;
5933         struct stmmac_priv *priv = netdev_priv(dev);
5934         u32 rx_count = priv->plat->rx_queues_to_use;
5935         u32 tx_count = priv->plat->tx_queues_to_use;
5936         u32 queue;
5937
5938         if ((dev->flags & IFF_UP) == 0)
5939                 return 0;
5940
5941         for (queue = 0; queue < rx_count; queue++) {
5942                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5943
5944                 seq_printf(seq, "RX Queue %d:\n", queue);
5945
5946                 if (priv->extend_desc) {
5947                         seq_printf(seq, "Extended descriptor ring:\n");
5948                         sysfs_display_ring((void *)rx_q->dma_erx,
5949                                            priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5950                 } else {
5951                         seq_printf(seq, "Descriptor ring:\n");
5952                         sysfs_display_ring((void *)rx_q->dma_rx,
5953                                            priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5954                 }
5955         }
5956
5957         for (queue = 0; queue < tx_count; queue++) {
5958                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5959
5960                 seq_printf(seq, "TX Queue %d:\n", queue);
5961
5962                 if (priv->extend_desc) {
5963                         seq_printf(seq, "Extended descriptor ring:\n");
5964                         sysfs_display_ring((void *)tx_q->dma_etx,
5965                                            priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5966                 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5967                         seq_printf(seq, "Descriptor ring:\n");
5968                         sysfs_display_ring((void *)tx_q->dma_tx,
5969                                            priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5970                 }
5971         }
5972
5973         return 0;
5974 }
5975 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5976
5977 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5978 {
5979         struct net_device *dev = seq->private;
5980         struct stmmac_priv *priv = netdev_priv(dev);
5981
5982         if (!priv->hw_cap_support) {
5983                 seq_printf(seq, "DMA HW features not supported\n");
5984                 return 0;
5985         }
5986
5987         seq_printf(seq, "==============================\n");
5988         seq_printf(seq, "\tDMA HW features\n");
5989         seq_printf(seq, "==============================\n");
5990
5991         seq_printf(seq, "\t10/100 Mbps: %s\n",
5992                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
5993         seq_printf(seq, "\t1000 Mbps: %s\n",
5994                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
5995         seq_printf(seq, "\tHalf duplex: %s\n",
5996                    (priv->dma_cap.half_duplex) ? "Y" : "N");
5997         seq_printf(seq, "\tHash Filter: %s\n",
5998                    (priv->dma_cap.hash_filter) ? "Y" : "N");
5999         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6000                    (priv->dma_cap.multi_addr) ? "Y" : "N");
6001         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6002                    (priv->dma_cap.pcs) ? "Y" : "N");
6003         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6004                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
6005         seq_printf(seq, "\tPMT Remote wake up: %s\n",
6006                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6007         seq_printf(seq, "\tPMT Magic Frame: %s\n",
6008                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6009         seq_printf(seq, "\tRMON module: %s\n",
6010                    (priv->dma_cap.rmon) ? "Y" : "N");
6011         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6012                    (priv->dma_cap.time_stamp) ? "Y" : "N");
6013         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6014                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
6015         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6016                    (priv->dma_cap.eee) ? "Y" : "N");
6017         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6018         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6019                    (priv->dma_cap.tx_coe) ? "Y" : "N");
6020         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6021                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6022                            (priv->dma_cap.rx_coe) ? "Y" : "N");
6023         } else {
6024                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6025                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6026                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6027                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6028         }
6029         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6030                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6031         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6032                    priv->dma_cap.number_rx_channel);
6033         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6034                    priv->dma_cap.number_tx_channel);
6035         seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6036                    priv->dma_cap.number_rx_queues);
6037         seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6038                    priv->dma_cap.number_tx_queues);
6039         seq_printf(seq, "\tEnhanced descriptors: %s\n",
6040                    (priv->dma_cap.enh_desc) ? "Y" : "N");
6041         seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6042         seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6043         seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6044         seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6045         seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6046                    priv->dma_cap.pps_out_num);
6047         seq_printf(seq, "\tSafety Features: %s\n",
6048                    priv->dma_cap.asp ? "Y" : "N");
6049         seq_printf(seq, "\tFlexible RX Parser: %s\n",
6050                    priv->dma_cap.frpsel ? "Y" : "N");
6051         seq_printf(seq, "\tEnhanced Addressing: %d\n",
6052                    priv->dma_cap.addr64);
6053         seq_printf(seq, "\tReceive Side Scaling: %s\n",
6054                    priv->dma_cap.rssen ? "Y" : "N");
6055         seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6056                    priv->dma_cap.vlhash ? "Y" : "N");
6057         seq_printf(seq, "\tSplit Header: %s\n",
6058                    priv->dma_cap.sphen ? "Y" : "N");
6059         seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6060                    priv->dma_cap.vlins ? "Y" : "N");
6061         seq_printf(seq, "\tDouble VLAN: %s\n",
6062                    priv->dma_cap.dvlan ? "Y" : "N");
6063         seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6064                    priv->dma_cap.l3l4fnum);
6065         seq_printf(seq, "\tARP Offloading: %s\n",
6066                    priv->dma_cap.arpoffsel ? "Y" : "N");
6067         seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6068                    priv->dma_cap.estsel ? "Y" : "N");
6069         seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6070                    priv->dma_cap.fpesel ? "Y" : "N");
6071         seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6072                    priv->dma_cap.tbssel ? "Y" : "N");
6073         return 0;
6074 }
6075 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6076
6077 /* Use network device events to rename debugfs file entries.
6078  */
6079 static int stmmac_device_event(struct notifier_block *unused,
6080                                unsigned long event, void *ptr)
6081 {
6082         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6083         struct stmmac_priv *priv = netdev_priv(dev);
6084
6085         if (dev->netdev_ops != &stmmac_netdev_ops)
6086                 goto done;
6087
6088         switch (event) {
6089         case NETDEV_CHANGENAME:
6090                 if (priv->dbgfs_dir)
6091                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6092                                                          priv->dbgfs_dir,
6093                                                          stmmac_fs_dir,
6094                                                          dev->name);
6095                 break;
6096         }
6097 done:
6098         return NOTIFY_DONE;
6099 }
6100
6101 static struct notifier_block stmmac_notifier = {
6102         .notifier_call = stmmac_device_event,
6103 };
6104
6105 static void stmmac_init_fs(struct net_device *dev)
6106 {
6107         struct stmmac_priv *priv = netdev_priv(dev);
6108
6109         rtnl_lock();
6110
6111         /* Create per netdev entries */
6112         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6113
6114         /* Entry to report DMA RX/TX rings */
6115         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6116                             &stmmac_rings_status_fops);
6117
6118         /* Entry to report the DMA HW features */
6119         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6120                             &stmmac_dma_cap_fops);
6121
6122         rtnl_unlock();
6123 }
6124
6125 static void stmmac_exit_fs(struct net_device *dev)
6126 {
6127         struct stmmac_priv *priv = netdev_priv(dev);
6128
6129         debugfs_remove_recursive(priv->dbgfs_dir);
6130 }
6131 #endif /* CONFIG_DEBUG_FS */
6132
6133 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6134 {
6135         unsigned char *data = (unsigned char *)&vid_le;
6136         unsigned char data_byte = 0;
6137         u32 crc = ~0x0;
6138         u32 temp = 0;
6139         int i, bits;
6140
6141         bits = get_bitmask_order(VLAN_VID_MASK);
6142         for (i = 0; i < bits; i++) {
6143                 if ((i % 8) == 0)
6144                         data_byte = data[i / 8];
6145
6146                 temp = ((crc & 1) ^ data_byte) & 1;
6147                 crc >>= 1;
6148                 data_byte >>= 1;
6149
6150                 if (temp)
6151                         crc ^= 0xedb88320;
6152         }
6153
6154         return crc;
6155 }
6156
6157 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6158 {
6159         u32 crc, hash = 0;
6160         __le16 pmatch = 0;
6161         int count = 0;
6162         u16 vid = 0;
6163
6164         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6165                 __le16 vid_le = cpu_to_le16(vid);
6166                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6167                 hash |= (1 << crc);
6168                 count++;
6169         }
6170
6171         if (!priv->dma_cap.vlhash) {
6172                 if (count > 2) /* VID = 0 always passes filter */
6173                         return -EOPNOTSUPP;
6174
6175                 pmatch = cpu_to_le16(vid);
6176                 hash = 0;
6177         }
6178
6179         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6180 }
6181
6182 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6183 {
6184         struct stmmac_priv *priv = netdev_priv(ndev);
6185         bool is_double = false;
6186         int ret;
6187
6188         if (be16_to_cpu(proto) == ETH_P_8021AD)
6189                 is_double = true;
6190
6191         set_bit(vid, priv->active_vlans);
6192         ret = stmmac_vlan_update(priv, is_double);
6193         if (ret) {
6194                 clear_bit(vid, priv->active_vlans);
6195                 return ret;
6196         }
6197
6198         if (priv->hw->num_vlan) {
6199                 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6200                 if (ret)
6201                         return ret;
6202         }
6203
6204         return 0;
6205 }
6206
6207 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6208 {
6209         struct stmmac_priv *priv = netdev_priv(ndev);
6210         bool is_double = false;
6211         int ret;
6212
6213         ret = pm_runtime_get_sync(priv->device);
6214         if (ret < 0) {
6215                 pm_runtime_put_noidle(priv->device);
6216                 return ret;
6217         }
6218
6219         if (be16_to_cpu(proto) == ETH_P_8021AD)
6220                 is_double = true;
6221
6222         clear_bit(vid, priv->active_vlans);
6223
6224         if (priv->hw->num_vlan) {
6225                 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6226                 if (ret)
6227                         goto del_vlan_error;
6228         }
6229
6230         ret = stmmac_vlan_update(priv, is_double);
6231
6232 del_vlan_error:
6233         pm_runtime_put(priv->device);
6234
6235         return ret;
6236 }
6237
6238 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6239 {
6240         struct stmmac_priv *priv = netdev_priv(dev);
6241
6242         switch (bpf->command) {
6243         case XDP_SETUP_PROG:
6244                 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6245         case XDP_SETUP_XSK_POOL:
6246                 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6247                                              bpf->xsk.queue_id);
6248         default:
6249                 return -EOPNOTSUPP;
6250         }
6251 }
6252
6253 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6254                            struct xdp_frame **frames, u32 flags)
6255 {
6256         struct stmmac_priv *priv = netdev_priv(dev);
6257         int cpu = smp_processor_id();
6258         struct netdev_queue *nq;
6259         int i, nxmit = 0;
6260         int queue;
6261
6262         if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6263                 return -ENETDOWN;
6264
6265         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6266                 return -EINVAL;
6267
6268         queue = stmmac_xdp_get_tx_queue(priv, cpu);
6269         nq = netdev_get_tx_queue(priv->dev, queue);
6270
6271         __netif_tx_lock(nq, cpu);
6272         /* Avoids TX time-out as we are sharing with slow path */
6273         nq->trans_start = jiffies;
6274
6275         for (i = 0; i < num_frames; i++) {
6276                 int res;
6277
6278                 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6279                 if (res == STMMAC_XDP_CONSUMED)
6280                         break;
6281
6282                 nxmit++;
6283         }
6284
6285         if (flags & XDP_XMIT_FLUSH) {
6286                 stmmac_flush_tx_descriptors(priv, queue);
6287                 stmmac_tx_timer_arm(priv, queue);
6288         }
6289
6290         __netif_tx_unlock(nq);
6291
6292         return nxmit;
6293 }
6294
6295 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6296 {
6297         struct stmmac_channel *ch = &priv->channel[queue];
6298         unsigned long flags;
6299
6300         spin_lock_irqsave(&ch->lock, flags);
6301         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6302         spin_unlock_irqrestore(&ch->lock, flags);
6303
6304         stmmac_stop_rx_dma(priv, queue);
6305         __free_dma_rx_desc_resources(priv, queue);
6306 }
6307
6308 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6309 {
6310         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6311         struct stmmac_channel *ch = &priv->channel[queue];
6312         unsigned long flags;
6313         u32 buf_size;
6314         int ret;
6315
6316         ret = __alloc_dma_rx_desc_resources(priv, queue);
6317         if (ret) {
6318                 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6319                 return;
6320         }
6321
6322         ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6323         if (ret) {
6324                 __free_dma_rx_desc_resources(priv, queue);
6325                 netdev_err(priv->dev, "Failed to init RX desc.\n");
6326                 return;
6327         }
6328
6329         stmmac_clear_rx_descriptors(priv, queue);
6330
6331         stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6332                             rx_q->dma_rx_phy, rx_q->queue_index);
6333
6334         rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6335                              sizeof(struct dma_desc));
6336         stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6337                                rx_q->rx_tail_addr, rx_q->queue_index);
6338
6339         if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6340                 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6341                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6342                                       buf_size,
6343                                       rx_q->queue_index);
6344         } else {
6345                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6346                                       priv->dma_buf_sz,
6347                                       rx_q->queue_index);
6348         }
6349
6350         stmmac_start_rx_dma(priv, queue);
6351
6352         spin_lock_irqsave(&ch->lock, flags);
6353         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6354         spin_unlock_irqrestore(&ch->lock, flags);
6355 }
6356
6357 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6358 {
6359         struct stmmac_channel *ch = &priv->channel[queue];
6360         unsigned long flags;
6361
6362         spin_lock_irqsave(&ch->lock, flags);
6363         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6364         spin_unlock_irqrestore(&ch->lock, flags);
6365
6366         stmmac_stop_tx_dma(priv, queue);
6367         __free_dma_tx_desc_resources(priv, queue);
6368 }
6369
6370 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6371 {
6372         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6373         struct stmmac_channel *ch = &priv->channel[queue];
6374         unsigned long flags;
6375         int ret;
6376
6377         ret = __alloc_dma_tx_desc_resources(priv, queue);
6378         if (ret) {
6379                 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6380                 return;
6381         }
6382
6383         ret = __init_dma_tx_desc_rings(priv, queue);
6384         if (ret) {
6385                 __free_dma_tx_desc_resources(priv, queue);
6386                 netdev_err(priv->dev, "Failed to init TX desc.\n");
6387                 return;
6388         }
6389
6390         stmmac_clear_tx_descriptors(priv, queue);
6391
6392         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6393                             tx_q->dma_tx_phy, tx_q->queue_index);
6394
6395         if (tx_q->tbs & STMMAC_TBS_AVAIL)
6396                 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6397
6398         tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6399         stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6400                                tx_q->tx_tail_addr, tx_q->queue_index);
6401
6402         stmmac_start_tx_dma(priv, queue);
6403
6404         spin_lock_irqsave(&ch->lock, flags);
6405         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6406         spin_unlock_irqrestore(&ch->lock, flags);
6407 }
6408
6409 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6410 {
6411         struct stmmac_priv *priv = netdev_priv(dev);
6412         struct stmmac_rx_queue *rx_q;
6413         struct stmmac_tx_queue *tx_q;
6414         struct stmmac_channel *ch;
6415
6416         if (test_bit(STMMAC_DOWN, &priv->state) ||
6417             !netif_carrier_ok(priv->dev))
6418                 return -ENETDOWN;
6419
6420         if (!stmmac_xdp_is_enabled(priv))
6421                 return -ENXIO;
6422
6423         if (queue >= priv->plat->rx_queues_to_use ||
6424             queue >= priv->plat->tx_queues_to_use)
6425                 return -EINVAL;
6426
6427         rx_q = &priv->rx_queue[queue];
6428         tx_q = &priv->tx_queue[queue];
6429         ch = &priv->channel[queue];
6430
6431         if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6432                 return -ENXIO;
6433
6434         if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6435                 /* EQoS does not have per-DMA channel SW interrupt,
6436                  * so we schedule RX Napi straight-away.
6437                  */
6438                 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6439                         __napi_schedule(&ch->rxtx_napi);
6440         }
6441
6442         return 0;
6443 }
6444
6445 static const struct net_device_ops stmmac_netdev_ops = {
6446         .ndo_open = stmmac_open,
6447         .ndo_start_xmit = stmmac_xmit,
6448         .ndo_stop = stmmac_release,
6449         .ndo_change_mtu = stmmac_change_mtu,
6450         .ndo_fix_features = stmmac_fix_features,
6451         .ndo_set_features = stmmac_set_features,
6452         .ndo_set_rx_mode = stmmac_set_rx_mode,
6453         .ndo_tx_timeout = stmmac_tx_timeout,
6454         .ndo_do_ioctl = stmmac_ioctl,
6455         .ndo_setup_tc = stmmac_setup_tc,
6456         .ndo_select_queue = stmmac_select_queue,
6457 #ifdef CONFIG_NET_POLL_CONTROLLER
6458         .ndo_poll_controller = stmmac_poll_controller,
6459 #endif
6460         .ndo_set_mac_address = stmmac_set_mac_address,
6461         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6462         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6463         .ndo_bpf = stmmac_bpf,
6464         .ndo_xdp_xmit = stmmac_xdp_xmit,
6465         .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6466 };
6467
6468 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6469 {
6470         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6471                 return;
6472         if (test_bit(STMMAC_DOWN, &priv->state))
6473                 return;
6474
6475         netdev_err(priv->dev, "Reset adapter.\n");
6476
6477         rtnl_lock();
6478         netif_trans_update(priv->dev);
6479         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6480                 usleep_range(1000, 2000);
6481
6482         set_bit(STMMAC_DOWN, &priv->state);
6483         dev_close(priv->dev);
6484         dev_open(priv->dev, NULL);
6485         clear_bit(STMMAC_DOWN, &priv->state);
6486         clear_bit(STMMAC_RESETING, &priv->state);
6487         rtnl_unlock();
6488 }
6489
6490 static void stmmac_service_task(struct work_struct *work)
6491 {
6492         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6493                         service_task);
6494
6495         stmmac_reset_subtask(priv);
6496         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6497 }
6498
6499 /**
6500  *  stmmac_hw_init - Init the MAC device
6501  *  @priv: driver private structure
6502  *  Description: this function is to configure the MAC device according to
6503  *  some platform parameters or the HW capability register. It prepares the
6504  *  driver to use either ring or chain modes and to setup either enhanced or
6505  *  normal descriptors.
6506  */
6507 static int stmmac_hw_init(struct stmmac_priv *priv)
6508 {
6509         int ret;
6510
6511         /* dwmac-sun8i only work in chain mode */
6512         if (priv->plat->has_sun8i)
6513                 chain_mode = 1;
6514         priv->chain_mode = chain_mode;
6515
6516         /* Initialize HW Interface */
6517         ret = stmmac_hwif_init(priv);
6518         if (ret)
6519                 return ret;
6520
6521         /* Get the HW capability (new GMAC newer than 3.50a) */
6522         priv->hw_cap_support = stmmac_get_hw_features(priv);
6523         if (priv->hw_cap_support) {
6524                 dev_info(priv->device, "DMA HW capability register supported\n");
6525
6526                 /* We can override some gmac/dma configuration fields: e.g.
6527                  * enh_desc, tx_coe (e.g. that are passed through the
6528                  * platform) with the values from the HW capability
6529                  * register (if supported).
6530                  */
6531                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6532                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6533                                 !priv->plat->use_phy_wol;
6534                 priv->hw->pmt = priv->plat->pmt;
6535                 if (priv->dma_cap.hash_tb_sz) {
6536                         priv->hw->multicast_filter_bins =
6537                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
6538                         priv->hw->mcast_bits_log2 =
6539                                         ilog2(priv->hw->multicast_filter_bins);
6540                 }
6541
6542                 /* TXCOE doesn't work in thresh DMA mode */
6543                 if (priv->plat->force_thresh_dma_mode)
6544                         priv->plat->tx_coe = 0;
6545                 else
6546                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
6547
6548                 /* In case of GMAC4 rx_coe is from HW cap register. */
6549                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6550
6551                 if (priv->dma_cap.rx_coe_type2)
6552                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6553                 else if (priv->dma_cap.rx_coe_type1)
6554                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6555
6556         } else {
6557                 dev_info(priv->device, "No HW DMA feature register supported\n");
6558         }
6559
6560         if (priv->plat->rx_coe) {
6561                 priv->hw->rx_csum = priv->plat->rx_coe;
6562                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6563                 if (priv->synopsys_id < DWMAC_CORE_4_00)
6564                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6565         }
6566         if (priv->plat->tx_coe)
6567                 dev_info(priv->device, "TX Checksum insertion supported\n");
6568
6569         if (priv->plat->pmt) {
6570                 dev_info(priv->device, "Wake-Up On Lan supported\n");
6571                 device_set_wakeup_capable(priv->device, 1);
6572         }
6573
6574         if (priv->dma_cap.tsoen)
6575                 dev_info(priv->device, "TSO supported\n");
6576
6577         priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6578         priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6579
6580         /* Run HW quirks, if any */
6581         if (priv->hwif_quirks) {
6582                 ret = priv->hwif_quirks(priv);
6583                 if (ret)
6584                         return ret;
6585         }
6586
6587         /* Rx Watchdog is available in the COREs newer than the 3.40.
6588          * In some case, for example on bugged HW this feature
6589          * has to be disable and this can be done by passing the
6590          * riwt_off field from the platform.
6591          */
6592         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6593             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6594                 priv->use_riwt = 1;
6595                 dev_info(priv->device,
6596                          "Enable RX Mitigation via HW Watchdog Timer\n");
6597         }
6598
6599         return 0;
6600 }
6601
6602 static void stmmac_napi_add(struct net_device *dev)
6603 {
6604         struct stmmac_priv *priv = netdev_priv(dev);
6605         u32 queue, maxq;
6606
6607         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6608
6609         for (queue = 0; queue < maxq; queue++) {
6610                 struct stmmac_channel *ch = &priv->channel[queue];
6611
6612                 ch->priv_data = priv;
6613                 ch->index = queue;
6614                 spin_lock_init(&ch->lock);
6615
6616                 if (queue < priv->plat->rx_queues_to_use) {
6617                         netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6618                                        NAPI_POLL_WEIGHT);
6619                 }
6620                 if (queue < priv->plat->tx_queues_to_use) {
6621                         netif_tx_napi_add(dev, &ch->tx_napi,
6622                                           stmmac_napi_poll_tx,
6623                                           NAPI_POLL_WEIGHT);
6624                 }
6625                 if (queue < priv->plat->rx_queues_to_use &&
6626                     queue < priv->plat->tx_queues_to_use) {
6627                         netif_napi_add(dev, &ch->rxtx_napi,
6628                                        stmmac_napi_poll_rxtx,
6629                                        NAPI_POLL_WEIGHT);
6630                 }
6631         }
6632 }
6633
6634 static void stmmac_napi_del(struct net_device *dev)
6635 {
6636         struct stmmac_priv *priv = netdev_priv(dev);
6637         u32 queue, maxq;
6638
6639         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6640
6641         for (queue = 0; queue < maxq; queue++) {
6642                 struct stmmac_channel *ch = &priv->channel[queue];
6643
6644                 if (queue < priv->plat->rx_queues_to_use)
6645                         netif_napi_del(&ch->rx_napi);
6646                 if (queue < priv->plat->tx_queues_to_use)
6647                         netif_napi_del(&ch->tx_napi);
6648                 if (queue < priv->plat->rx_queues_to_use &&
6649                     queue < priv->plat->tx_queues_to_use) {
6650                         netif_napi_del(&ch->rxtx_napi);
6651                 }
6652         }
6653 }
6654
6655 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6656 {
6657         struct stmmac_priv *priv = netdev_priv(dev);
6658         int ret = 0;
6659
6660         if (netif_running(dev))
6661                 stmmac_release(dev);
6662
6663         stmmac_napi_del(dev);
6664
6665         priv->plat->rx_queues_to_use = rx_cnt;
6666         priv->plat->tx_queues_to_use = tx_cnt;
6667
6668         stmmac_napi_add(dev);
6669
6670         if (netif_running(dev))
6671                 ret = stmmac_open(dev);
6672
6673         return ret;
6674 }
6675
6676 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6677 {
6678         struct stmmac_priv *priv = netdev_priv(dev);
6679         int ret = 0;
6680
6681         if (netif_running(dev))
6682                 stmmac_release(dev);
6683
6684         priv->dma_rx_size = rx_size;
6685         priv->dma_tx_size = tx_size;
6686
6687         if (netif_running(dev))
6688                 ret = stmmac_open(dev);
6689
6690         return ret;
6691 }
6692
6693 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6694 static void stmmac_fpe_lp_task(struct work_struct *work)
6695 {
6696         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6697                                                 fpe_task);
6698         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6699         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6700         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6701         bool *hs_enable = &fpe_cfg->hs_enable;
6702         bool *enable = &fpe_cfg->enable;
6703         int retries = 20;
6704
6705         while (retries-- > 0) {
6706                 /* Bail out immediately if FPE handshake is OFF */
6707                 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6708                         break;
6709
6710                 if (*lo_state == FPE_STATE_ENTERING_ON &&
6711                     *lp_state == FPE_STATE_ENTERING_ON) {
6712                         stmmac_fpe_configure(priv, priv->ioaddr,
6713                                              priv->plat->tx_queues_to_use,
6714                                              priv->plat->rx_queues_to_use,
6715                                              *enable);
6716
6717                         netdev_info(priv->dev, "configured FPE\n");
6718
6719                         *lo_state = FPE_STATE_ON;
6720                         *lp_state = FPE_STATE_ON;
6721                         netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6722                         break;
6723                 }
6724
6725                 if ((*lo_state == FPE_STATE_CAPABLE ||
6726                      *lo_state == FPE_STATE_ENTERING_ON) &&
6727                      *lp_state != FPE_STATE_ON) {
6728                         netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6729                                     *lo_state, *lp_state);
6730                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6731                                                 MPACKET_VERIFY);
6732                 }
6733                 /* Sleep then retry */
6734                 msleep(500);
6735         }
6736
6737         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6738 }
6739
6740 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6741 {
6742         if (priv->plat->fpe_cfg->hs_enable != enable) {
6743                 if (enable) {
6744                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6745                                                 MPACKET_VERIFY);
6746                 } else {
6747                         priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6748                         priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6749                 }
6750
6751                 priv->plat->fpe_cfg->hs_enable = enable;
6752         }
6753 }
6754
6755 /**
6756  * stmmac_dvr_probe
6757  * @device: device pointer
6758  * @plat_dat: platform data pointer
6759  * @res: stmmac resource pointer
6760  * Description: this is the main probe function used to
6761  * call the alloc_etherdev, allocate the priv structure.
6762  * Return:
6763  * returns 0 on success, otherwise errno.
6764  */
6765 int stmmac_dvr_probe(struct device *device,
6766                      struct plat_stmmacenet_data *plat_dat,
6767                      struct stmmac_resources *res)
6768 {
6769         struct net_device *ndev = NULL;
6770         struct stmmac_priv *priv;
6771         u32 rxq;
6772         int i, ret = 0;
6773
6774         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6775                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6776         if (!ndev)
6777                 return -ENOMEM;
6778
6779         SET_NETDEV_DEV(ndev, device);
6780
6781         priv = netdev_priv(ndev);
6782         priv->device = device;
6783         priv->dev = ndev;
6784
6785         stmmac_set_ethtool_ops(ndev);
6786         priv->pause = pause;
6787         priv->plat = plat_dat;
6788         priv->ioaddr = res->addr;
6789         priv->dev->base_addr = (unsigned long)res->addr;
6790         priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6791
6792         priv->dev->irq = res->irq;
6793         priv->wol_irq = res->wol_irq;
6794         priv->lpi_irq = res->lpi_irq;
6795         priv->sfty_ce_irq = res->sfty_ce_irq;
6796         priv->sfty_ue_irq = res->sfty_ue_irq;
6797         for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6798                 priv->rx_irq[i] = res->rx_irq[i];
6799         for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6800                 priv->tx_irq[i] = res->tx_irq[i];
6801
6802         if (!is_zero_ether_addr(res->mac))
6803                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
6804
6805         dev_set_drvdata(device, priv->dev);
6806
6807         /* Verify driver arguments */
6808         stmmac_verify_args();
6809
6810         priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6811         if (!priv->af_xdp_zc_qps)
6812                 return -ENOMEM;
6813
6814         /* Allocate workqueue */
6815         priv->wq = create_singlethread_workqueue("stmmac_wq");
6816         if (!priv->wq) {
6817                 dev_err(priv->device, "failed to create workqueue\n");
6818                 return -ENOMEM;
6819         }
6820
6821         INIT_WORK(&priv->service_task, stmmac_service_task);
6822
6823         /* Initialize Link Partner FPE workqueue */
6824         INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6825
6826         /* Override with kernel parameters if supplied XXX CRS XXX
6827          * this needs to have multiple instances
6828          */
6829         if ((phyaddr >= 0) && (phyaddr <= 31))
6830                 priv->plat->phy_addr = phyaddr;
6831
6832         if (priv->plat->stmmac_rst) {
6833                 ret = reset_control_assert(priv->plat->stmmac_rst);
6834                 reset_control_deassert(priv->plat->stmmac_rst);
6835                 /* Some reset controllers have only reset callback instead of
6836                  * assert + deassert callbacks pair.
6837                  */
6838                 if (ret == -ENOTSUPP)
6839                         reset_control_reset(priv->plat->stmmac_rst);
6840         }
6841
6842         ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6843         if (ret == -ENOTSUPP)
6844                 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6845                         ERR_PTR(ret));
6846
6847         /* Init MAC and get the capabilities */
6848         ret = stmmac_hw_init(priv);
6849         if (ret)
6850                 goto error_hw_init;
6851
6852         /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6853          */
6854         if (priv->synopsys_id < DWMAC_CORE_5_20)
6855                 priv->plat->dma_cfg->dche = false;
6856
6857         stmmac_check_ether_addr(priv);
6858
6859         ndev->netdev_ops = &stmmac_netdev_ops;
6860
6861         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6862                             NETIF_F_RXCSUM;
6863
6864         ret = stmmac_tc_init(priv, priv);
6865         if (!ret) {
6866                 ndev->hw_features |= NETIF_F_HW_TC;
6867         }
6868
6869         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6870                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6871                 if (priv->plat->has_gmac4)
6872                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
6873                 priv->tso = true;
6874                 dev_info(priv->device, "TSO feature enabled\n");
6875         }
6876
6877         if (priv->dma_cap.sphen) {
6878                 ndev->hw_features |= NETIF_F_GRO;
6879                 priv->sph_cap = true;
6880                 priv->sph = priv->sph_cap;
6881                 dev_info(priv->device, "SPH feature enabled\n");
6882         }
6883
6884         /* The current IP register MAC_HW_Feature1[ADDR64] only define
6885          * 32/40/64 bit width, but some SOC support others like i.MX8MP
6886          * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
6887          * So overwrite dma_cap.addr64 according to HW real design.
6888          */
6889         if (priv->plat->addr64)
6890                 priv->dma_cap.addr64 = priv->plat->addr64;
6891
6892         if (priv->dma_cap.addr64) {
6893                 ret = dma_set_mask_and_coherent(device,
6894                                 DMA_BIT_MASK(priv->dma_cap.addr64));
6895                 if (!ret) {
6896                         dev_info(priv->device, "Using %d bits DMA width\n",
6897                                  priv->dma_cap.addr64);
6898
6899                         /*
6900                          * If more than 32 bits can be addressed, make sure to
6901                          * enable enhanced addressing mode.
6902                          */
6903                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
6904                                 priv->plat->dma_cfg->eame = true;
6905                 } else {
6906                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
6907                         if (ret) {
6908                                 dev_err(priv->device, "Failed to set DMA Mask\n");
6909                                 goto error_hw_init;
6910                         }
6911
6912                         priv->dma_cap.addr64 = 32;
6913                 }
6914         }
6915
6916         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
6917         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
6918 #ifdef STMMAC_VLAN_TAG_USED
6919         /* Both mac100 and gmac support receive VLAN tag detection */
6920         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
6921         if (priv->dma_cap.vlhash) {
6922                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6923                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
6924         }
6925         if (priv->dma_cap.vlins) {
6926                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
6927                 if (priv->dma_cap.dvlan)
6928                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
6929         }
6930 #endif
6931         priv->msg_enable = netif_msg_init(debug, default_msg_level);
6932
6933         /* Initialize RSS */
6934         rxq = priv->plat->rx_queues_to_use;
6935         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
6936         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
6937                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
6938
6939         if (priv->dma_cap.rssen && priv->plat->rss_en)
6940                 ndev->features |= NETIF_F_RXHASH;
6941
6942         /* MTU range: 46 - hw-specific max */
6943         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
6944         if (priv->plat->has_xgmac)
6945                 ndev->max_mtu = XGMAC_JUMBO_LEN;
6946         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
6947                 ndev->max_mtu = JUMBO_LEN;
6948         else
6949                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
6950         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
6951          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
6952          */
6953         if ((priv->plat->maxmtu < ndev->max_mtu) &&
6954             (priv->plat->maxmtu >= ndev->min_mtu))
6955                 ndev->max_mtu = priv->plat->maxmtu;
6956         else if (priv->plat->maxmtu < ndev->min_mtu)
6957                 dev_warn(priv->device,
6958                          "%s: warning: maxmtu having invalid value (%d)\n",
6959                          __func__, priv->plat->maxmtu);
6960
6961         if (flow_ctrl)
6962                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
6963
6964         /* Setup channels NAPI */
6965         stmmac_napi_add(ndev);
6966
6967         mutex_init(&priv->lock);
6968
6969         /* If a specific clk_csr value is passed from the platform
6970          * this means that the CSR Clock Range selection cannot be
6971          * changed at run-time and it is fixed. Viceversa the driver'll try to
6972          * set the MDC clock dynamically according to the csr actual
6973          * clock input.
6974          */
6975         if (priv->plat->clk_csr >= 0)
6976                 priv->clk_csr = priv->plat->clk_csr;
6977         else
6978                 stmmac_clk_csr_set(priv);
6979
6980         stmmac_check_pcs_mode(priv);
6981
6982         pm_runtime_get_noresume(device);
6983         pm_runtime_set_active(device);
6984         pm_runtime_enable(device);
6985
6986         if (priv->hw->pcs != STMMAC_PCS_TBI &&
6987             priv->hw->pcs != STMMAC_PCS_RTBI) {
6988                 /* MDIO bus Registration */
6989                 ret = stmmac_mdio_register(ndev);
6990                 if (ret < 0) {
6991                         dev_err(priv->device,
6992                                 "%s: MDIO bus (id: %d) registration failed",
6993                                 __func__, priv->plat->bus_id);
6994                         goto error_mdio_register;
6995                 }
6996         }
6997
6998         if (priv->plat->speed_mode_2500)
6999                 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7000
7001         if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7002                 ret = stmmac_xpcs_setup(priv->mii);
7003                 if (ret)
7004                         goto error_xpcs_setup;
7005         }
7006
7007         ret = stmmac_phy_setup(priv);
7008         if (ret) {
7009                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7010                 goto error_phy_setup;
7011         }
7012
7013         ret = register_netdev(ndev);
7014         if (ret) {
7015                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7016                         __func__, ret);
7017                 goto error_netdev_register;
7018         }
7019
7020         if (priv->plat->serdes_powerup) {
7021                 ret = priv->plat->serdes_powerup(ndev,
7022                                                  priv->plat->bsp_priv);
7023
7024                 if (ret < 0)
7025                         goto error_serdes_powerup;
7026         }
7027
7028 #ifdef CONFIG_DEBUG_FS
7029         stmmac_init_fs(ndev);
7030 #endif
7031
7032         /* Let pm_runtime_put() disable the clocks.
7033          * If CONFIG_PM is not enabled, the clocks will stay powered.
7034          */
7035         pm_runtime_put(device);
7036
7037         return ret;
7038
7039 error_serdes_powerup:
7040         unregister_netdev(ndev);
7041 error_netdev_register:
7042         phylink_destroy(priv->phylink);
7043 error_xpcs_setup:
7044 error_phy_setup:
7045         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7046             priv->hw->pcs != STMMAC_PCS_RTBI)
7047                 stmmac_mdio_unregister(ndev);
7048 error_mdio_register:
7049         stmmac_napi_del(ndev);
7050 error_hw_init:
7051         destroy_workqueue(priv->wq);
7052         bitmap_free(priv->af_xdp_zc_qps);
7053
7054         return ret;
7055 }
7056 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7057
7058 /**
7059  * stmmac_dvr_remove
7060  * @dev: device pointer
7061  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7062  * changes the link status, releases the DMA descriptor rings.
7063  */
7064 int stmmac_dvr_remove(struct device *dev)
7065 {
7066         struct net_device *ndev = dev_get_drvdata(dev);
7067         struct stmmac_priv *priv = netdev_priv(ndev);
7068
7069         netdev_info(priv->dev, "%s: removing driver", __func__);
7070
7071         stmmac_stop_all_dma(priv);
7072         stmmac_mac_set(priv, priv->ioaddr, false);
7073         netif_carrier_off(ndev);
7074         unregister_netdev(ndev);
7075
7076         /* Serdes power down needs to happen after VLAN filter
7077          * is deleted that is triggered by unregister_netdev().
7078          */
7079         if (priv->plat->serdes_powerdown)
7080                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7081
7082 #ifdef CONFIG_DEBUG_FS
7083         stmmac_exit_fs(ndev);
7084 #endif
7085         phylink_destroy(priv->phylink);
7086         if (priv->plat->stmmac_rst)
7087                 reset_control_assert(priv->plat->stmmac_rst);
7088         reset_control_assert(priv->plat->stmmac_ahb_rst);
7089         pm_runtime_put(dev);
7090         pm_runtime_disable(dev);
7091         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7092             priv->hw->pcs != STMMAC_PCS_RTBI)
7093                 stmmac_mdio_unregister(ndev);
7094         destroy_workqueue(priv->wq);
7095         mutex_destroy(&priv->lock);
7096         bitmap_free(priv->af_xdp_zc_qps);
7097
7098         return 0;
7099 }
7100 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7101
7102 /**
7103  * stmmac_suspend - suspend callback
7104  * @dev: device pointer
7105  * Description: this is the function to suspend the device and it is called
7106  * by the platform driver to stop the network queue, release the resources,
7107  * program the PMT register (for WoL), clean and release driver resources.
7108  */
7109 int stmmac_suspend(struct device *dev)
7110 {
7111         struct net_device *ndev = dev_get_drvdata(dev);
7112         struct stmmac_priv *priv = netdev_priv(ndev);
7113         u32 chan;
7114         int ret;
7115
7116         if (!ndev || !netif_running(ndev))
7117                 return 0;
7118
7119         phylink_mac_change(priv->phylink, false);
7120
7121         mutex_lock(&priv->lock);
7122
7123         netif_device_detach(ndev);
7124
7125         stmmac_disable_all_queues(priv);
7126
7127         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7128                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7129
7130         if (priv->eee_enabled) {
7131                 priv->tx_path_in_lpi_mode = false;
7132                 del_timer_sync(&priv->eee_ctrl_timer);
7133         }
7134
7135         /* Stop TX/RX DMA */
7136         stmmac_stop_all_dma(priv);
7137
7138         if (priv->plat->serdes_powerdown)
7139                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7140
7141         /* Enable Power down mode by programming the PMT regs */
7142         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7143                 stmmac_pmt(priv, priv->hw, priv->wolopts);
7144                 priv->irq_wake = 1;
7145         } else {
7146                 mutex_unlock(&priv->lock);
7147                 rtnl_lock();
7148                 if (device_may_wakeup(priv->device))
7149                         phylink_speed_down(priv->phylink, false);
7150                 phylink_stop(priv->phylink);
7151                 rtnl_unlock();
7152                 mutex_lock(&priv->lock);
7153
7154                 stmmac_mac_set(priv, priv->ioaddr, false);
7155                 pinctrl_pm_select_sleep_state(priv->device);
7156                 /* Disable clock in case of PWM is off */
7157                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
7158                 ret = pm_runtime_force_suspend(dev);
7159                 if (ret) {
7160                         mutex_unlock(&priv->lock);
7161                         return ret;
7162                 }
7163         }
7164
7165         mutex_unlock(&priv->lock);
7166
7167         if (priv->dma_cap.fpesel) {
7168                 /* Disable FPE */
7169                 stmmac_fpe_configure(priv, priv->ioaddr,
7170                                      priv->plat->tx_queues_to_use,
7171                                      priv->plat->rx_queues_to_use, false);
7172
7173                 stmmac_fpe_handshake(priv, false);
7174                 stmmac_fpe_stop_wq(priv);
7175         }
7176
7177         priv->speed = SPEED_UNKNOWN;
7178         return 0;
7179 }
7180 EXPORT_SYMBOL_GPL(stmmac_suspend);
7181
7182 /**
7183  * stmmac_reset_queues_param - reset queue parameters
7184  * @priv: device pointer
7185  */
7186 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7187 {
7188         u32 rx_cnt = priv->plat->rx_queues_to_use;
7189         u32 tx_cnt = priv->plat->tx_queues_to_use;
7190         u32 queue;
7191
7192         for (queue = 0; queue < rx_cnt; queue++) {
7193                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7194
7195                 rx_q->cur_rx = 0;
7196                 rx_q->dirty_rx = 0;
7197         }
7198
7199         for (queue = 0; queue < tx_cnt; queue++) {
7200                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7201
7202                 tx_q->cur_tx = 0;
7203                 tx_q->dirty_tx = 0;
7204                 tx_q->mss = 0;
7205
7206                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7207         }
7208 }
7209
7210 /**
7211  * stmmac_resume - resume callback
7212  * @dev: device pointer
7213  * Description: when resume this function is invoked to setup the DMA and CORE
7214  * in a usable state.
7215  */
7216 int stmmac_resume(struct device *dev)
7217 {
7218         struct net_device *ndev = dev_get_drvdata(dev);
7219         struct stmmac_priv *priv = netdev_priv(ndev);
7220         int ret;
7221
7222         if (!netif_running(ndev))
7223                 return 0;
7224
7225         /* Power Down bit, into the PM register, is cleared
7226          * automatically as soon as a magic packet or a Wake-up frame
7227          * is received. Anyway, it's better to manually clear
7228          * this bit because it can generate problems while resuming
7229          * from another devices (e.g. serial console).
7230          */
7231         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7232                 mutex_lock(&priv->lock);
7233                 stmmac_pmt(priv, priv->hw, 0);
7234                 mutex_unlock(&priv->lock);
7235                 priv->irq_wake = 0;
7236         } else {
7237                 pinctrl_pm_select_default_state(priv->device);
7238                 /* enable the clk previously disabled */
7239                 ret = pm_runtime_force_resume(dev);
7240                 if (ret)
7241                         return ret;
7242                 if (priv->plat->clk_ptp_ref)
7243                         clk_prepare_enable(priv->plat->clk_ptp_ref);
7244                 /* reset the phy so that it's ready */
7245                 if (priv->mii)
7246                         stmmac_mdio_reset(priv->mii);
7247         }
7248
7249         if (priv->plat->serdes_powerup) {
7250                 ret = priv->plat->serdes_powerup(ndev,
7251                                                  priv->plat->bsp_priv);
7252
7253                 if (ret < 0)
7254                         return ret;
7255         }
7256
7257         if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
7258                 rtnl_lock();
7259                 phylink_start(priv->phylink);
7260                 /* We may have called phylink_speed_down before */
7261                 phylink_speed_up(priv->phylink);
7262                 rtnl_unlock();
7263         }
7264
7265         rtnl_lock();
7266         mutex_lock(&priv->lock);
7267
7268         stmmac_reset_queues_param(priv);
7269
7270         stmmac_free_tx_skbufs(priv);
7271         stmmac_clear_descriptors(priv);
7272
7273         stmmac_hw_setup(ndev, false);
7274         stmmac_init_coalesce(priv);
7275         stmmac_set_rx_mode(ndev);
7276
7277         stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7278
7279         stmmac_enable_all_queues(priv);
7280
7281         mutex_unlock(&priv->lock);
7282         rtnl_unlock();
7283
7284         phylink_mac_change(priv->phylink, true);
7285
7286         netif_device_attach(ndev);
7287
7288         return 0;
7289 }
7290 EXPORT_SYMBOL_GPL(stmmac_resume);
7291
7292 #ifndef MODULE
7293 static int __init stmmac_cmdline_opt(char *str)
7294 {
7295         char *opt;
7296
7297         if (!str || !*str)
7298                 return -EINVAL;
7299         while ((opt = strsep(&str, ",")) != NULL) {
7300                 if (!strncmp(opt, "debug:", 6)) {
7301                         if (kstrtoint(opt + 6, 0, &debug))
7302                                 goto err;
7303                 } else if (!strncmp(opt, "phyaddr:", 8)) {
7304                         if (kstrtoint(opt + 8, 0, &phyaddr))
7305                                 goto err;
7306                 } else if (!strncmp(opt, "buf_sz:", 7)) {
7307                         if (kstrtoint(opt + 7, 0, &buf_sz))
7308                                 goto err;
7309                 } else if (!strncmp(opt, "tc:", 3)) {
7310                         if (kstrtoint(opt + 3, 0, &tc))
7311                                 goto err;
7312                 } else if (!strncmp(opt, "watchdog:", 9)) {
7313                         if (kstrtoint(opt + 9, 0, &watchdog))
7314                                 goto err;
7315                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7316                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
7317                                 goto err;
7318                 } else if (!strncmp(opt, "pause:", 6)) {
7319                         if (kstrtoint(opt + 6, 0, &pause))
7320                                 goto err;
7321                 } else if (!strncmp(opt, "eee_timer:", 10)) {
7322                         if (kstrtoint(opt + 10, 0, &eee_timer))
7323                                 goto err;
7324                 } else if (!strncmp(opt, "chain_mode:", 11)) {
7325                         if (kstrtoint(opt + 11, 0, &chain_mode))
7326                                 goto err;
7327                 }
7328         }
7329         return 0;
7330
7331 err:
7332         pr_err("%s: ERROR broken module parameter conversion", __func__);
7333         return -EINVAL;
7334 }
7335
7336 __setup("stmmaceth=", stmmac_cmdline_opt);
7337 #endif /* MODULE */
7338
7339 static int __init stmmac_init(void)
7340 {
7341 #ifdef CONFIG_DEBUG_FS
7342         /* Create debugfs main directory if it doesn't exist yet */
7343         if (!stmmac_fs_dir)
7344                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7345         register_netdevice_notifier(&stmmac_notifier);
7346 #endif
7347
7348         return 0;
7349 }
7350
7351 static void __exit stmmac_exit(void)
7352 {
7353 #ifdef CONFIG_DEBUG_FS
7354         unregister_netdevice_notifier(&stmmac_notifier);
7355         debugfs_remove_recursive(stmmac_fs_dir);
7356 #endif
7357 }
7358
7359 module_init(stmmac_init)
7360 module_exit(stmmac_exit)
7361
7362 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7363 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7364 MODULE_LICENSE("GPL");