Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[linux-2.6-microblaze.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include <linux/aer.h>
39 #include "qede.h"
40 #include "qede_ptp.h"
41
42 static char version[] =
43         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52
53 static const struct qed_eth_ops *qed_ops;
54
55 #define CHIP_NUM_57980S_40              0x1634
56 #define CHIP_NUM_57980S_10              0x1666
57 #define CHIP_NUM_57980S_MF              0x1636
58 #define CHIP_NUM_57980S_100             0x1644
59 #define CHIP_NUM_57980S_50              0x1654
60 #define CHIP_NUM_57980S_25              0x1656
61 #define CHIP_NUM_57980S_IOV             0x1664
62 #define CHIP_NUM_AH                     0x8070
63 #define CHIP_NUM_AH_IOV                 0x8090
64
65 #ifndef PCI_DEVICE_ID_NX2_57980E
66 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
67 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
68 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
69 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
70 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
71 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
72 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
73 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
74 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
75
76 #endif
77
78 enum qede_pci_private {
79         QEDE_PRIVATE_PF,
80         QEDE_PRIVATE_VF
81 };
82
83 static const struct pci_device_id qede_pci_tbl[] = {
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
92 #endif
93         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
94 #ifdef CONFIG_QED_SRIOV
95         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
96 #endif
97         { 0 }
98 };
99
100 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
101
102 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
103 static pci_ers_result_t
104 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
105
106 #define TX_TIMEOUT              (5 * HZ)
107
108 /* Utilize last protocol index for XDP */
109 #define XDP_PI  11
110
111 static void qede_remove(struct pci_dev *pdev);
112 static void qede_shutdown(struct pci_dev *pdev);
113 static void qede_link_update(void *dev, struct qed_link_output *link);
114 static void qede_schedule_recovery_handler(void *dev);
115 static void qede_recovery_handler(struct qede_dev *edev);
116 static void qede_schedule_hw_err_handler(void *dev,
117                                          enum qed_hw_err_type err_type);
118 static void qede_get_eth_tlv_data(void *edev, void *data);
119 static void qede_get_generic_tlv_data(void *edev,
120                                       struct qed_generic_tlvs *data);
121 static void qede_generic_hw_err_handler(struct qede_dev *edev);
122 #ifdef CONFIG_QED_SRIOV
123 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
124                             __be16 vlan_proto)
125 {
126         struct qede_dev *edev = netdev_priv(ndev);
127
128         if (vlan > 4095) {
129                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
130                 return -EINVAL;
131         }
132
133         if (vlan_proto != htons(ETH_P_8021Q))
134                 return -EPROTONOSUPPORT;
135
136         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
137                    vlan, vf);
138
139         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
140 }
141
142 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
143 {
144         struct qede_dev *edev = netdev_priv(ndev);
145
146         DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
147
148         if (!is_valid_ether_addr(mac)) {
149                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
150                 return -EINVAL;
151         }
152
153         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
154 }
155
156 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
157 {
158         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
159         struct qed_dev_info *qed_info = &edev->dev_info.common;
160         struct qed_update_vport_params *vport_params;
161         int rc;
162
163         vport_params = vzalloc(sizeof(*vport_params));
164         if (!vport_params)
165                 return -ENOMEM;
166         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
167
168         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
169
170         /* Enable/Disable Tx switching for PF */
171         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
172             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
173                 vport_params->vport_id = 0;
174                 vport_params->update_tx_switching_flg = 1;
175                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
176                 edev->ops->vport_update(edev->cdev, vport_params);
177         }
178
179         vfree(vport_params);
180         return rc;
181 }
182 #endif
183
184 static const struct pci_error_handlers qede_err_handler = {
185         .error_detected = qede_io_error_detected,
186 };
187
188 static struct pci_driver qede_pci_driver = {
189         .name = "qede",
190         .id_table = qede_pci_tbl,
191         .probe = qede_probe,
192         .remove = qede_remove,
193         .shutdown = qede_shutdown,
194 #ifdef CONFIG_QED_SRIOV
195         .sriov_configure = qede_sriov_configure,
196 #endif
197         .err_handler = &qede_err_handler,
198 };
199
200 static struct qed_eth_cb_ops qede_ll_ops = {
201         {
202 #ifdef CONFIG_RFS_ACCEL
203                 .arfs_filter_op = qede_arfs_filter_op,
204 #endif
205                 .link_update = qede_link_update,
206                 .schedule_recovery_handler = qede_schedule_recovery_handler,
207                 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
208                 .get_generic_tlv_data = qede_get_generic_tlv_data,
209                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
210         },
211         .force_mac = qede_force_mac,
212         .ports_update = qede_udp_ports_update,
213 };
214
215 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
216                              void *ptr)
217 {
218         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
219         struct ethtool_drvinfo drvinfo;
220         struct qede_dev *edev;
221
222         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
223                 goto done;
224
225         /* Check whether this is a qede device */
226         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
227                 goto done;
228
229         memset(&drvinfo, 0, sizeof(drvinfo));
230         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
231         if (strcmp(drvinfo.driver, "qede"))
232                 goto done;
233         edev = netdev_priv(ndev);
234
235         switch (event) {
236         case NETDEV_CHANGENAME:
237                 /* Notify qed of the name change */
238                 if (!edev->ops || !edev->ops->common)
239                         goto done;
240                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
241                 break;
242         case NETDEV_CHANGEADDR:
243                 edev = netdev_priv(ndev);
244                 qede_rdma_event_changeaddr(edev);
245                 break;
246         }
247
248 done:
249         return NOTIFY_DONE;
250 }
251
252 static struct notifier_block qede_netdev_notifier = {
253         .notifier_call = qede_netdev_event,
254 };
255
256 static
257 int __init qede_init(void)
258 {
259         int ret;
260
261         pr_info("qede_init: %s\n", version);
262
263         qede_forced_speed_maps_init();
264
265         qed_ops = qed_get_eth_ops();
266         if (!qed_ops) {
267                 pr_notice("Failed to get qed ethtool operations\n");
268                 return -EINVAL;
269         }
270
271         /* Must register notifier before pci ops, since we might miss
272          * interface rename after pci probe and netdev registration.
273          */
274         ret = register_netdevice_notifier(&qede_netdev_notifier);
275         if (ret) {
276                 pr_notice("Failed to register netdevice_notifier\n");
277                 qed_put_eth_ops();
278                 return -EINVAL;
279         }
280
281         ret = pci_register_driver(&qede_pci_driver);
282         if (ret) {
283                 pr_notice("Failed to register driver\n");
284                 unregister_netdevice_notifier(&qede_netdev_notifier);
285                 qed_put_eth_ops();
286                 return -EINVAL;
287         }
288
289         return 0;
290 }
291
292 static void __exit qede_cleanup(void)
293 {
294         if (debug & QED_LOG_INFO_MASK)
295                 pr_info("qede_cleanup called\n");
296
297         unregister_netdevice_notifier(&qede_netdev_notifier);
298         pci_unregister_driver(&qede_pci_driver);
299         qed_put_eth_ops();
300 }
301
302 module_init(qede_init);
303 module_exit(qede_cleanup);
304
305 static int qede_open(struct net_device *ndev);
306 static int qede_close(struct net_device *ndev);
307
308 void qede_fill_by_demand_stats(struct qede_dev *edev)
309 {
310         struct qede_stats_common *p_common = &edev->stats.common;
311         struct qed_eth_stats stats;
312
313         edev->ops->get_vport_stats(edev->cdev, &stats);
314
315         p_common->no_buff_discards = stats.common.no_buff_discards;
316         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
317         p_common->ttl0_discard = stats.common.ttl0_discard;
318         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
319         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
320         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
321         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
322         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
323         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
324         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
325         p_common->mac_filter_discards = stats.common.mac_filter_discards;
326         p_common->gft_filter_drop = stats.common.gft_filter_drop;
327
328         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
329         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
330         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
331         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
332         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
333         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
334         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
335         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
336         p_common->coalesced_events = stats.common.tpa_coalesced_events;
337         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
338         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
339         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
340
341         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
342         p_common->rx_65_to_127_byte_packets =
343             stats.common.rx_65_to_127_byte_packets;
344         p_common->rx_128_to_255_byte_packets =
345             stats.common.rx_128_to_255_byte_packets;
346         p_common->rx_256_to_511_byte_packets =
347             stats.common.rx_256_to_511_byte_packets;
348         p_common->rx_512_to_1023_byte_packets =
349             stats.common.rx_512_to_1023_byte_packets;
350         p_common->rx_1024_to_1518_byte_packets =
351             stats.common.rx_1024_to_1518_byte_packets;
352         p_common->rx_crc_errors = stats.common.rx_crc_errors;
353         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
354         p_common->rx_pause_frames = stats.common.rx_pause_frames;
355         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
356         p_common->rx_align_errors = stats.common.rx_align_errors;
357         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
358         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
359         p_common->rx_jabbers = stats.common.rx_jabbers;
360         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
361         p_common->rx_fragments = stats.common.rx_fragments;
362         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
363         p_common->tx_65_to_127_byte_packets =
364             stats.common.tx_65_to_127_byte_packets;
365         p_common->tx_128_to_255_byte_packets =
366             stats.common.tx_128_to_255_byte_packets;
367         p_common->tx_256_to_511_byte_packets =
368             stats.common.tx_256_to_511_byte_packets;
369         p_common->tx_512_to_1023_byte_packets =
370             stats.common.tx_512_to_1023_byte_packets;
371         p_common->tx_1024_to_1518_byte_packets =
372             stats.common.tx_1024_to_1518_byte_packets;
373         p_common->tx_pause_frames = stats.common.tx_pause_frames;
374         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
375         p_common->brb_truncates = stats.common.brb_truncates;
376         p_common->brb_discards = stats.common.brb_discards;
377         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
378         p_common->link_change_count = stats.common.link_change_count;
379         p_common->ptp_skip_txts = edev->ptp_skip_txts;
380
381         if (QEDE_IS_BB(edev)) {
382                 struct qede_stats_bb *p_bb = &edev->stats.bb;
383
384                 p_bb->rx_1519_to_1522_byte_packets =
385                     stats.bb.rx_1519_to_1522_byte_packets;
386                 p_bb->rx_1519_to_2047_byte_packets =
387                     stats.bb.rx_1519_to_2047_byte_packets;
388                 p_bb->rx_2048_to_4095_byte_packets =
389                     stats.bb.rx_2048_to_4095_byte_packets;
390                 p_bb->rx_4096_to_9216_byte_packets =
391                     stats.bb.rx_4096_to_9216_byte_packets;
392                 p_bb->rx_9217_to_16383_byte_packets =
393                     stats.bb.rx_9217_to_16383_byte_packets;
394                 p_bb->tx_1519_to_2047_byte_packets =
395                     stats.bb.tx_1519_to_2047_byte_packets;
396                 p_bb->tx_2048_to_4095_byte_packets =
397                     stats.bb.tx_2048_to_4095_byte_packets;
398                 p_bb->tx_4096_to_9216_byte_packets =
399                     stats.bb.tx_4096_to_9216_byte_packets;
400                 p_bb->tx_9217_to_16383_byte_packets =
401                     stats.bb.tx_9217_to_16383_byte_packets;
402                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
403                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
404         } else {
405                 struct qede_stats_ah *p_ah = &edev->stats.ah;
406
407                 p_ah->rx_1519_to_max_byte_packets =
408                     stats.ah.rx_1519_to_max_byte_packets;
409                 p_ah->tx_1519_to_max_byte_packets =
410                     stats.ah.tx_1519_to_max_byte_packets;
411         }
412 }
413
414 static void qede_get_stats64(struct net_device *dev,
415                              struct rtnl_link_stats64 *stats)
416 {
417         struct qede_dev *edev = netdev_priv(dev);
418         struct qede_stats_common *p_common;
419
420         qede_fill_by_demand_stats(edev);
421         p_common = &edev->stats.common;
422
423         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
424                             p_common->rx_bcast_pkts;
425         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
426                             p_common->tx_bcast_pkts;
427
428         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
429                           p_common->rx_bcast_bytes;
430         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
431                           p_common->tx_bcast_bytes;
432
433         stats->tx_errors = p_common->tx_err_drop_pkts;
434         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
435
436         stats->rx_fifo_errors = p_common->no_buff_discards;
437
438         if (QEDE_IS_BB(edev))
439                 stats->collisions = edev->stats.bb.tx_total_collisions;
440         stats->rx_crc_errors = p_common->rx_crc_errors;
441         stats->rx_frame_errors = p_common->rx_align_errors;
442 }
443
444 #ifdef CONFIG_QED_SRIOV
445 static int qede_get_vf_config(struct net_device *dev, int vfidx,
446                               struct ifla_vf_info *ivi)
447 {
448         struct qede_dev *edev = netdev_priv(dev);
449
450         if (!edev->ops)
451                 return -EINVAL;
452
453         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
454 }
455
456 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
457                             int min_tx_rate, int max_tx_rate)
458 {
459         struct qede_dev *edev = netdev_priv(dev);
460
461         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
462                                         max_tx_rate);
463 }
464
465 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
466 {
467         struct qede_dev *edev = netdev_priv(dev);
468
469         if (!edev->ops)
470                 return -EINVAL;
471
472         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
473 }
474
475 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
476                                   int link_state)
477 {
478         struct qede_dev *edev = netdev_priv(dev);
479
480         if (!edev->ops)
481                 return -EINVAL;
482
483         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
484 }
485
486 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
487 {
488         struct qede_dev *edev = netdev_priv(dev);
489
490         if (!edev->ops)
491                 return -EINVAL;
492
493         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
494 }
495 #endif
496
497 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
498 {
499         struct qede_dev *edev = netdev_priv(dev);
500
501         if (!netif_running(dev))
502                 return -EAGAIN;
503
504         switch (cmd) {
505         case SIOCSHWTSTAMP:
506                 return qede_ptp_hw_ts(edev, ifr);
507         default:
508                 DP_VERBOSE(edev, QED_MSG_DEBUG,
509                            "default IOCTL cmd 0x%x\n", cmd);
510                 return -EOPNOTSUPP;
511         }
512
513         return 0;
514 }
515
516 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
517 {
518         DP_NOTICE(edev,
519                   "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
520                   txq->index, le16_to_cpu(*txq->hw_cons_ptr),
521                   qed_chain_get_cons_idx(&txq->tx_pbl),
522                   qed_chain_get_prod_idx(&txq->tx_pbl),
523                   jiffies);
524 }
525
526 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
527 {
528         struct qede_dev *edev = netdev_priv(dev);
529         struct qede_tx_queue *txq;
530         int cos;
531
532         netif_carrier_off(dev);
533         DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
534
535         if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
536                 return;
537
538         for_each_cos_in_txq(edev, cos) {
539                 txq = &edev->fp_array[txqueue].txq[cos];
540
541                 if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
542                     qed_chain_get_prod_idx(&txq->tx_pbl))
543                         qede_tx_log_print(edev, txq);
544         }
545
546         if (IS_VF(edev))
547                 return;
548
549         if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
550             edev->state == QEDE_STATE_RECOVERY) {
551                 DP_INFO(edev,
552                         "Avoid handling a Tx timeout while another HW error is being handled\n");
553                 return;
554         }
555
556         set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
557         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
558         schedule_delayed_work(&edev->sp_task, 0);
559 }
560
561 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
562 {
563         struct qede_dev *edev = netdev_priv(ndev);
564         int cos, count, offset;
565
566         if (num_tc > edev->dev_info.num_tc)
567                 return -EINVAL;
568
569         netdev_reset_tc(ndev);
570         netdev_set_num_tc(ndev, num_tc);
571
572         for_each_cos_in_txq(edev, cos) {
573                 count = QEDE_TSS_COUNT(edev);
574                 offset = cos * QEDE_TSS_COUNT(edev);
575                 netdev_set_tc_queue(ndev, cos, count, offset);
576         }
577
578         return 0;
579 }
580
581 static int
582 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
583                 __be16 proto)
584 {
585         switch (f->command) {
586         case FLOW_CLS_REPLACE:
587                 return qede_add_tc_flower_fltr(edev, proto, f);
588         case FLOW_CLS_DESTROY:
589                 return qede_delete_flow_filter(edev, f->cookie);
590         default:
591                 return -EOPNOTSUPP;
592         }
593 }
594
595 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
596                                   void *cb_priv)
597 {
598         struct flow_cls_offload *f;
599         struct qede_dev *edev = cb_priv;
600
601         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
602                 return -EOPNOTSUPP;
603
604         switch (type) {
605         case TC_SETUP_CLSFLOWER:
606                 f = type_data;
607                 return qede_set_flower(edev, f, f->common.protocol);
608         default:
609                 return -EOPNOTSUPP;
610         }
611 }
612
613 static LIST_HEAD(qede_block_cb_list);
614
615 static int
616 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
617                       void *type_data)
618 {
619         struct qede_dev *edev = netdev_priv(dev);
620         struct tc_mqprio_qopt *mqprio;
621
622         switch (type) {
623         case TC_SETUP_BLOCK:
624                 return flow_block_cb_setup_simple(type_data,
625                                                   &qede_block_cb_list,
626                                                   qede_setup_tc_block_cb,
627                                                   edev, edev, true);
628         case TC_SETUP_QDISC_MQPRIO:
629                 mqprio = type_data;
630
631                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
632                 return qede_setup_tc(dev, mqprio->num_tc);
633         default:
634                 return -EOPNOTSUPP;
635         }
636 }
637
638 static const struct net_device_ops qede_netdev_ops = {
639         .ndo_open               = qede_open,
640         .ndo_stop               = qede_close,
641         .ndo_start_xmit         = qede_start_xmit,
642         .ndo_select_queue       = qede_select_queue,
643         .ndo_set_rx_mode        = qede_set_rx_mode,
644         .ndo_set_mac_address    = qede_set_mac_addr,
645         .ndo_validate_addr      = eth_validate_addr,
646         .ndo_change_mtu         = qede_change_mtu,
647         .ndo_do_ioctl           = qede_ioctl,
648         .ndo_tx_timeout         = qede_tx_timeout,
649 #ifdef CONFIG_QED_SRIOV
650         .ndo_set_vf_mac         = qede_set_vf_mac,
651         .ndo_set_vf_vlan        = qede_set_vf_vlan,
652         .ndo_set_vf_trust       = qede_set_vf_trust,
653 #endif
654         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
655         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
656         .ndo_fix_features       = qede_fix_features,
657         .ndo_set_features       = qede_set_features,
658         .ndo_get_stats64        = qede_get_stats64,
659 #ifdef CONFIG_QED_SRIOV
660         .ndo_set_vf_link_state  = qede_set_vf_link_state,
661         .ndo_set_vf_spoofchk    = qede_set_vf_spoofchk,
662         .ndo_get_vf_config      = qede_get_vf_config,
663         .ndo_set_vf_rate        = qede_set_vf_rate,
664 #endif
665         .ndo_features_check     = qede_features_check,
666         .ndo_bpf                = qede_xdp,
667 #ifdef CONFIG_RFS_ACCEL
668         .ndo_rx_flow_steer      = qede_rx_flow_steer,
669 #endif
670         .ndo_xdp_xmit           = qede_xdp_transmit,
671         .ndo_setup_tc           = qede_setup_tc_offload,
672 };
673
674 static const struct net_device_ops qede_netdev_vf_ops = {
675         .ndo_open               = qede_open,
676         .ndo_stop               = qede_close,
677         .ndo_start_xmit         = qede_start_xmit,
678         .ndo_select_queue       = qede_select_queue,
679         .ndo_set_rx_mode        = qede_set_rx_mode,
680         .ndo_set_mac_address    = qede_set_mac_addr,
681         .ndo_validate_addr      = eth_validate_addr,
682         .ndo_change_mtu         = qede_change_mtu,
683         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
684         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
685         .ndo_fix_features       = qede_fix_features,
686         .ndo_set_features       = qede_set_features,
687         .ndo_get_stats64        = qede_get_stats64,
688         .ndo_features_check     = qede_features_check,
689 };
690
691 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
692         .ndo_open               = qede_open,
693         .ndo_stop               = qede_close,
694         .ndo_start_xmit         = qede_start_xmit,
695         .ndo_select_queue       = qede_select_queue,
696         .ndo_set_rx_mode        = qede_set_rx_mode,
697         .ndo_set_mac_address    = qede_set_mac_addr,
698         .ndo_validate_addr      = eth_validate_addr,
699         .ndo_change_mtu         = qede_change_mtu,
700         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
701         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
702         .ndo_fix_features       = qede_fix_features,
703         .ndo_set_features       = qede_set_features,
704         .ndo_get_stats64        = qede_get_stats64,
705         .ndo_features_check     = qede_features_check,
706         .ndo_bpf                = qede_xdp,
707         .ndo_xdp_xmit           = qede_xdp_transmit,
708 };
709
710 /* -------------------------------------------------------------------------
711  * START OF PROBE / REMOVE
712  * -------------------------------------------------------------------------
713  */
714
715 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
716                                             struct pci_dev *pdev,
717                                             struct qed_dev_eth_info *info,
718                                             u32 dp_module, u8 dp_level)
719 {
720         struct net_device *ndev;
721         struct qede_dev *edev;
722
723         ndev = alloc_etherdev_mqs(sizeof(*edev),
724                                   info->num_queues * info->num_tc,
725                                   info->num_queues);
726         if (!ndev) {
727                 pr_err("etherdev allocation failed\n");
728                 return NULL;
729         }
730
731         edev = netdev_priv(ndev);
732         edev->ndev = ndev;
733         edev->cdev = cdev;
734         edev->pdev = pdev;
735         edev->dp_module = dp_module;
736         edev->dp_level = dp_level;
737         edev->ops = qed_ops;
738
739         if (is_kdump_kernel()) {
740                 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
741                 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
742         } else {
743                 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
744                 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
745         }
746
747         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
748                 info->num_queues, info->num_queues);
749
750         SET_NETDEV_DEV(ndev, &pdev->dev);
751
752         memset(&edev->stats, 0, sizeof(edev->stats));
753         memcpy(&edev->dev_info, info, sizeof(*info));
754
755         /* As ethtool doesn't have the ability to show WoL behavior as
756          * 'default', if device supports it declare it's enabled.
757          */
758         if (edev->dev_info.common.wol_support)
759                 edev->wol_enabled = true;
760
761         INIT_LIST_HEAD(&edev->vlan_list);
762
763         return edev;
764 }
765
766 static void qede_init_ndev(struct qede_dev *edev)
767 {
768         struct net_device *ndev = edev->ndev;
769         struct pci_dev *pdev = edev->pdev;
770         bool udp_tunnel_enable = false;
771         netdev_features_t hw_features;
772
773         pci_set_drvdata(pdev, ndev);
774
775         ndev->mem_start = edev->dev_info.common.pci_mem_start;
776         ndev->base_addr = ndev->mem_start;
777         ndev->mem_end = edev->dev_info.common.pci_mem_end;
778         ndev->irq = edev->dev_info.common.pci_irq;
779
780         ndev->watchdog_timeo = TX_TIMEOUT;
781
782         if (IS_VF(edev)) {
783                 if (edev->dev_info.xdp_supported)
784                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
785                 else
786                         ndev->netdev_ops = &qede_netdev_vf_ops;
787         } else {
788                 ndev->netdev_ops = &qede_netdev_ops;
789         }
790
791         qede_set_ethtool_ops(ndev);
792
793         ndev->priv_flags |= IFF_UNICAST_FLT;
794
795         /* user-changeble features */
796         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
797                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
798                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
799
800         if (edev->dev_info.common.b_arfs_capable)
801                 hw_features |= NETIF_F_NTUPLE;
802
803         if (edev->dev_info.common.vxlan_enable ||
804             edev->dev_info.common.geneve_enable)
805                 udp_tunnel_enable = true;
806
807         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
808                 hw_features |= NETIF_F_TSO_ECN;
809                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
810                                         NETIF_F_SG | NETIF_F_TSO |
811                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
812                                         NETIF_F_RXCSUM;
813         }
814
815         if (udp_tunnel_enable) {
816                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
817                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
818                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
819                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
820
821                 qede_set_udp_tunnels(edev);
822         }
823
824         if (edev->dev_info.common.gre_enable) {
825                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
826                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
827                                           NETIF_F_GSO_GRE_CSUM);
828         }
829
830         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
831                               NETIF_F_HIGHDMA;
832         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
833                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
834                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
835
836         ndev->hw_features = hw_features;
837
838         /* MTU range: 46 - 9600 */
839         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
840         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
841
842         /* Set network device HW mac */
843         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
844
845         ndev->mtu = edev->dev_info.common.mtu;
846 }
847
848 /* This function converts from 32b param to two params of level and module
849  * Input 32b decoding:
850  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
851  * 'happy' flow, e.g. memory allocation failed.
852  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
853  * and provide important parameters.
854  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
855  * module. VERBOSE prints are for tracking the specific flow in low level.
856  *
857  * Notice that the level should be that of the lowest required logs.
858  */
859 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
860 {
861         *p_dp_level = QED_LEVEL_NOTICE;
862         *p_dp_module = 0;
863
864         if (debug & QED_LOG_VERBOSE_MASK) {
865                 *p_dp_level = QED_LEVEL_VERBOSE;
866                 *p_dp_module = (debug & 0x3FFFFFFF);
867         } else if (debug & QED_LOG_INFO_MASK) {
868                 *p_dp_level = QED_LEVEL_INFO;
869         } else if (debug & QED_LOG_NOTICE_MASK) {
870                 *p_dp_level = QED_LEVEL_NOTICE;
871         }
872 }
873
874 static void qede_free_fp_array(struct qede_dev *edev)
875 {
876         if (edev->fp_array) {
877                 struct qede_fastpath *fp;
878                 int i;
879
880                 for_each_queue(i) {
881                         fp = &edev->fp_array[i];
882
883                         kfree(fp->sb_info);
884                         /* Handle mem alloc failure case where qede_init_fp
885                          * didn't register xdp_rxq_info yet.
886                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
887                          */
888                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
889                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
890                         kfree(fp->rxq);
891                         kfree(fp->xdp_tx);
892                         kfree(fp->txq);
893                 }
894                 kfree(edev->fp_array);
895         }
896
897         edev->num_queues = 0;
898         edev->fp_num_tx = 0;
899         edev->fp_num_rx = 0;
900 }
901
902 static int qede_alloc_fp_array(struct qede_dev *edev)
903 {
904         u8 fp_combined, fp_rx = edev->fp_num_rx;
905         struct qede_fastpath *fp;
906         void *mem;
907         int i;
908
909         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
910                                  sizeof(*edev->fp_array), GFP_KERNEL);
911         if (!edev->fp_array) {
912                 DP_NOTICE(edev, "fp array allocation failed\n");
913                 goto err;
914         }
915
916         mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
917                        sizeof(*edev->coal_entry), GFP_KERNEL);
918         if (!mem) {
919                 DP_ERR(edev, "coalesce entry allocation failed\n");
920                 kfree(edev->coal_entry);
921                 goto err;
922         }
923         edev->coal_entry = mem;
924
925         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
926
927         /* Allocate the FP elements for Rx queues followed by combined and then
928          * the Tx. This ordering should be maintained so that the respective
929          * queues (Rx or Tx) will be together in the fastpath array and the
930          * associated ids will be sequential.
931          */
932         for_each_queue(i) {
933                 fp = &edev->fp_array[i];
934
935                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
936                 if (!fp->sb_info) {
937                         DP_NOTICE(edev, "sb info struct allocation failed\n");
938                         goto err;
939                 }
940
941                 if (fp_rx) {
942                         fp->type = QEDE_FASTPATH_RX;
943                         fp_rx--;
944                 } else if (fp_combined) {
945                         fp->type = QEDE_FASTPATH_COMBINED;
946                         fp_combined--;
947                 } else {
948                         fp->type = QEDE_FASTPATH_TX;
949                 }
950
951                 if (fp->type & QEDE_FASTPATH_TX) {
952                         fp->txq = kcalloc(edev->dev_info.num_tc,
953                                           sizeof(*fp->txq), GFP_KERNEL);
954                         if (!fp->txq)
955                                 goto err;
956                 }
957
958                 if (fp->type & QEDE_FASTPATH_RX) {
959                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
960                         if (!fp->rxq)
961                                 goto err;
962
963                         if (edev->xdp_prog) {
964                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
965                                                      GFP_KERNEL);
966                                 if (!fp->xdp_tx)
967                                         goto err;
968                                 fp->type |= QEDE_FASTPATH_XDP;
969                         }
970                 }
971         }
972
973         return 0;
974 err:
975         qede_free_fp_array(edev);
976         return -ENOMEM;
977 }
978
979 /* The qede lock is used to protect driver state change and driver flows that
980  * are not reentrant.
981  */
982 void __qede_lock(struct qede_dev *edev)
983 {
984         mutex_lock(&edev->qede_lock);
985 }
986
987 void __qede_unlock(struct qede_dev *edev)
988 {
989         mutex_unlock(&edev->qede_lock);
990 }
991
992 /* This version of the lock should be used when acquiring the RTNL lock is also
993  * needed in addition to the internal qede lock.
994  */
995 static void qede_lock(struct qede_dev *edev)
996 {
997         rtnl_lock();
998         __qede_lock(edev);
999 }
1000
1001 static void qede_unlock(struct qede_dev *edev)
1002 {
1003         __qede_unlock(edev);
1004         rtnl_unlock();
1005 }
1006
1007 static void qede_sp_task(struct work_struct *work)
1008 {
1009         struct qede_dev *edev = container_of(work, struct qede_dev,
1010                                              sp_task.work);
1011
1012         /* The locking scheme depends on the specific flag:
1013          * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1014          * ensure that ongoing flows are ended and new ones are not started.
1015          * In other cases - only the internal qede lock should be acquired.
1016          */
1017
1018         if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1019 #ifdef CONFIG_QED_SRIOV
1020                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1021                  * The recovery of the active VFs is currently not supported.
1022                  */
1023                 if (pci_num_vf(edev->pdev))
1024                         qede_sriov_configure(edev->pdev, 0);
1025 #endif
1026                 qede_lock(edev);
1027                 qede_recovery_handler(edev);
1028                 qede_unlock(edev);
1029         }
1030
1031         __qede_lock(edev);
1032
1033         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1034                 if (edev->state == QEDE_STATE_OPEN)
1035                         qede_config_rx_mode(edev->ndev);
1036
1037 #ifdef CONFIG_RFS_ACCEL
1038         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1039                 if (edev->state == QEDE_STATE_OPEN)
1040                         qede_process_arfs_filters(edev, false);
1041         }
1042 #endif
1043         if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1044                 qede_generic_hw_err_handler(edev);
1045         __qede_unlock(edev);
1046
1047         if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1048 #ifdef CONFIG_QED_SRIOV
1049                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1050                  * The recovery of the active VFs is currently not supported.
1051                  */
1052                 if (pci_num_vf(edev->pdev))
1053                         qede_sriov_configure(edev->pdev, 0);
1054 #endif
1055                 edev->ops->common->recovery_process(edev->cdev);
1056         }
1057 }
1058
1059 static void qede_update_pf_params(struct qed_dev *cdev)
1060 {
1061         struct qed_pf_params pf_params;
1062         u16 num_cons;
1063
1064         /* 64 rx + 64 tx + 64 XDP */
1065         memset(&pf_params, 0, sizeof(struct qed_pf_params));
1066
1067         /* 1 rx + 1 xdp + max tx cos */
1068         num_cons = QED_MIN_L2_CONS;
1069
1070         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1071
1072         /* Same for VFs - make sure they'll have sufficient connections
1073          * to support XDP Tx queues.
1074          */
1075         pf_params.eth_pf_params.num_vf_cons = 48;
1076
1077         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1078         qed_ops->common->update_pf_params(cdev, &pf_params);
1079 }
1080
1081 #define QEDE_FW_VER_STR_SIZE    80
1082
1083 static void qede_log_probe(struct qede_dev *edev)
1084 {
1085         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1086         u8 buf[QEDE_FW_VER_STR_SIZE];
1087         size_t left_size;
1088
1089         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1090                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1091                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1092                  p_dev_info->fw_eng,
1093                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1094                  QED_MFW_VERSION_3_OFFSET,
1095                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1096                  QED_MFW_VERSION_2_OFFSET,
1097                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1098                  QED_MFW_VERSION_1_OFFSET,
1099                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1100                  QED_MFW_VERSION_0_OFFSET);
1101
1102         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1103         if (p_dev_info->mbi_version && left_size)
1104                 snprintf(buf + strlen(buf), left_size,
1105                          " [MBI %d.%d.%d]",
1106                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1107                          QED_MBI_VERSION_2_OFFSET,
1108                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1109                          QED_MBI_VERSION_1_OFFSET,
1110                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1111                          QED_MBI_VERSION_0_OFFSET);
1112
1113         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1114                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1115                 buf, edev->ndev->name);
1116 }
1117
1118 enum qede_probe_mode {
1119         QEDE_PROBE_NORMAL,
1120         QEDE_PROBE_RECOVERY,
1121 };
1122
1123 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1124                         bool is_vf, enum qede_probe_mode mode)
1125 {
1126         struct qed_probe_params probe_params;
1127         struct qed_slowpath_params sp_params;
1128         struct qed_dev_eth_info dev_info;
1129         struct qede_dev *edev;
1130         struct qed_dev *cdev;
1131         int rc;
1132
1133         if (unlikely(dp_level & QED_LEVEL_INFO))
1134                 pr_notice("Starting qede probe\n");
1135
1136         memset(&probe_params, 0, sizeof(probe_params));
1137         probe_params.protocol = QED_PROTOCOL_ETH;
1138         probe_params.dp_module = dp_module;
1139         probe_params.dp_level = dp_level;
1140         probe_params.is_vf = is_vf;
1141         probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1142         cdev = qed_ops->common->probe(pdev, &probe_params);
1143         if (!cdev) {
1144                 rc = -ENODEV;
1145                 goto err0;
1146         }
1147
1148         qede_update_pf_params(cdev);
1149
1150         /* Start the Slowpath-process */
1151         memset(&sp_params, 0, sizeof(sp_params));
1152         sp_params.int_mode = QED_INT_MODE_MSIX;
1153         sp_params.drv_major = QEDE_MAJOR_VERSION;
1154         sp_params.drv_minor = QEDE_MINOR_VERSION;
1155         sp_params.drv_rev = QEDE_REVISION_VERSION;
1156         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1157         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1158         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1159         if (rc) {
1160                 pr_notice("Cannot start slowpath\n");
1161                 goto err1;
1162         }
1163
1164         /* Learn information crucial for qede to progress */
1165         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1166         if (rc)
1167                 goto err2;
1168
1169         if (mode != QEDE_PROBE_RECOVERY) {
1170                 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1171                                            dp_level);
1172                 if (!edev) {
1173                         rc = -ENOMEM;
1174                         goto err2;
1175                 }
1176
1177                 edev->devlink = qed_ops->common->devlink_register(cdev);
1178                 if (IS_ERR(edev->devlink)) {
1179                         DP_NOTICE(edev, "Cannot register devlink\n");
1180                         edev->devlink = NULL;
1181                         /* Go on, we can live without devlink */
1182                 }
1183         } else {
1184                 struct net_device *ndev = pci_get_drvdata(pdev);
1185
1186                 edev = netdev_priv(ndev);
1187
1188                 if (edev->devlink) {
1189                         struct qed_devlink *qdl = devlink_priv(edev->devlink);
1190
1191                         qdl->cdev = cdev;
1192                 }
1193                 edev->cdev = cdev;
1194                 memset(&edev->stats, 0, sizeof(edev->stats));
1195                 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1196         }
1197
1198         if (is_vf)
1199                 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1200
1201         qede_init_ndev(edev);
1202
1203         rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1204         if (rc)
1205                 goto err3;
1206
1207         if (mode != QEDE_PROBE_RECOVERY) {
1208                 /* Prepare the lock prior to the registration of the netdev,
1209                  * as once it's registered we might reach flows requiring it
1210                  * [it's even possible to reach a flow needing it directly
1211                  * from there, although it's unlikely].
1212                  */
1213                 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1214                 mutex_init(&edev->qede_lock);
1215
1216                 rc = register_netdev(edev->ndev);
1217                 if (rc) {
1218                         DP_NOTICE(edev, "Cannot register net-device\n");
1219                         goto err4;
1220                 }
1221         }
1222
1223         edev->ops->common->set_name(cdev, edev->ndev->name);
1224
1225         /* PTP not supported on VFs */
1226         if (!is_vf)
1227                 qede_ptp_enable(edev);
1228
1229         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1230
1231 #ifdef CONFIG_DCB
1232         if (!IS_VF(edev))
1233                 qede_set_dcbnl_ops(edev->ndev);
1234 #endif
1235
1236         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1237
1238         qede_log_probe(edev);
1239         return 0;
1240
1241 err4:
1242         qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1243 err3:
1244         if (mode != QEDE_PROBE_RECOVERY)
1245                 free_netdev(edev->ndev);
1246         else
1247                 edev->cdev = NULL;
1248 err2:
1249         qed_ops->common->slowpath_stop(cdev);
1250 err1:
1251         qed_ops->common->remove(cdev);
1252 err0:
1253         return rc;
1254 }
1255
1256 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1257 {
1258         bool is_vf = false;
1259         u32 dp_module = 0;
1260         u8 dp_level = 0;
1261
1262         switch ((enum qede_pci_private)id->driver_data) {
1263         case QEDE_PRIVATE_VF:
1264                 if (debug & QED_LOG_VERBOSE_MASK)
1265                         dev_err(&pdev->dev, "Probing a VF\n");
1266                 is_vf = true;
1267                 break;
1268         default:
1269                 if (debug & QED_LOG_VERBOSE_MASK)
1270                         dev_err(&pdev->dev, "Probing a PF\n");
1271         }
1272
1273         qede_config_debug(debug, &dp_module, &dp_level);
1274
1275         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1276                             QEDE_PROBE_NORMAL);
1277 }
1278
1279 enum qede_remove_mode {
1280         QEDE_REMOVE_NORMAL,
1281         QEDE_REMOVE_RECOVERY,
1282 };
1283
1284 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1285 {
1286         struct net_device *ndev = pci_get_drvdata(pdev);
1287         struct qede_dev *edev;
1288         struct qed_dev *cdev;
1289
1290         if (!ndev) {
1291                 dev_info(&pdev->dev, "Device has already been removed\n");
1292                 return;
1293         }
1294
1295         edev = netdev_priv(ndev);
1296         cdev = edev->cdev;
1297
1298         DP_INFO(edev, "Starting qede_remove\n");
1299
1300         qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1301
1302         if (mode != QEDE_REMOVE_RECOVERY) {
1303                 unregister_netdev(ndev);
1304
1305                 cancel_delayed_work_sync(&edev->sp_task);
1306
1307                 edev->ops->common->set_power_state(cdev, PCI_D0);
1308
1309                 pci_set_drvdata(pdev, NULL);
1310         }
1311
1312         qede_ptp_disable(edev);
1313
1314         /* Use global ops since we've freed edev */
1315         qed_ops->common->slowpath_stop(cdev);
1316         if (system_state == SYSTEM_POWER_OFF)
1317                 return;
1318
1319         if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1320                 qed_ops->common->devlink_unregister(edev->devlink);
1321                 edev->devlink = NULL;
1322         }
1323         qed_ops->common->remove(cdev);
1324         edev->cdev = NULL;
1325
1326         /* Since this can happen out-of-sync with other flows,
1327          * don't release the netdevice until after slowpath stop
1328          * has been called to guarantee various other contexts
1329          * [e.g., QED register callbacks] won't break anything when
1330          * accessing the netdevice.
1331          */
1332         if (mode != QEDE_REMOVE_RECOVERY) {
1333                 kfree(edev->coal_entry);
1334                 free_netdev(ndev);
1335         }
1336
1337         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1338 }
1339
1340 static void qede_remove(struct pci_dev *pdev)
1341 {
1342         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1343 }
1344
1345 static void qede_shutdown(struct pci_dev *pdev)
1346 {
1347         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1348 }
1349
1350 /* -------------------------------------------------------------------------
1351  * START OF LOAD / UNLOAD
1352  * -------------------------------------------------------------------------
1353  */
1354
1355 static int qede_set_num_queues(struct qede_dev *edev)
1356 {
1357         int rc;
1358         u16 rss_num;
1359
1360         /* Setup queues according to possible resources*/
1361         if (edev->req_queues)
1362                 rss_num = edev->req_queues;
1363         else
1364                 rss_num = netif_get_num_default_rss_queues() *
1365                           edev->dev_info.common.num_hwfns;
1366
1367         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1368
1369         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1370         if (rc > 0) {
1371                 /* Managed to request interrupts for our queues */
1372                 edev->num_queues = rc;
1373                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1374                         QEDE_QUEUE_CNT(edev), rss_num);
1375                 rc = 0;
1376         }
1377
1378         edev->fp_num_tx = edev->req_num_tx;
1379         edev->fp_num_rx = edev->req_num_rx;
1380
1381         return rc;
1382 }
1383
1384 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1385                              u16 sb_id)
1386 {
1387         if (sb_info->sb_virt) {
1388                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1389                                               QED_SB_TYPE_L2_QUEUE);
1390                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1391                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1392                 memset(sb_info, 0, sizeof(*sb_info));
1393         }
1394 }
1395
1396 /* This function allocates fast-path status block memory */
1397 static int qede_alloc_mem_sb(struct qede_dev *edev,
1398                              struct qed_sb_info *sb_info, u16 sb_id)
1399 {
1400         struct status_block_e4 *sb_virt;
1401         dma_addr_t sb_phys;
1402         int rc;
1403
1404         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1405                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1406         if (!sb_virt) {
1407                 DP_ERR(edev, "Status block allocation failed\n");
1408                 return -ENOMEM;
1409         }
1410
1411         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1412                                         sb_virt, sb_phys, sb_id,
1413                                         QED_SB_TYPE_L2_QUEUE);
1414         if (rc) {
1415                 DP_ERR(edev, "Status block initialization failed\n");
1416                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1417                                   sb_virt, sb_phys);
1418                 return rc;
1419         }
1420
1421         return 0;
1422 }
1423
1424 static void qede_free_rx_buffers(struct qede_dev *edev,
1425                                  struct qede_rx_queue *rxq)
1426 {
1427         u16 i;
1428
1429         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1430                 struct sw_rx_data *rx_buf;
1431                 struct page *data;
1432
1433                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1434                 data = rx_buf->data;
1435
1436                 dma_unmap_page(&edev->pdev->dev,
1437                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1438
1439                 rx_buf->data = NULL;
1440                 __free_page(data);
1441         }
1442 }
1443
1444 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1445 {
1446         /* Free rx buffers */
1447         qede_free_rx_buffers(edev, rxq);
1448
1449         /* Free the parallel SW ring */
1450         kfree(rxq->sw_rx_ring);
1451
1452         /* Free the real RQ ring used by FW */
1453         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1454         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1455 }
1456
1457 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1458 {
1459         int i;
1460
1461         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1462                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1463
1464                 tpa_info->state = QEDE_AGG_STATE_NONE;
1465         }
1466 }
1467
1468 /* This function allocates all memory needed per Rx queue */
1469 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1470 {
1471         struct qed_chain_init_params params = {
1472                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1473                 .num_elems      = RX_RING_SIZE,
1474         };
1475         struct qed_dev *cdev = edev->cdev;
1476         int i, rc, size;
1477
1478         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1479
1480         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1481
1482         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1483         size = rxq->rx_headroom +
1484                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1485
1486         /* Make sure that the headroom and  payload fit in a single page */
1487         if (rxq->rx_buf_size + size > PAGE_SIZE)
1488                 rxq->rx_buf_size = PAGE_SIZE - size;
1489
1490         /* Segment size to split a page in multiple equal parts,
1491          * unless XDP is used in which case we'd use the entire page.
1492          */
1493         if (!edev->xdp_prog) {
1494                 size = size + rxq->rx_buf_size;
1495                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1496         } else {
1497                 rxq->rx_buf_seg_size = PAGE_SIZE;
1498                 edev->ndev->features &= ~NETIF_F_GRO_HW;
1499         }
1500
1501         /* Allocate the parallel driver ring for Rx buffers */
1502         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1503         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1504         if (!rxq->sw_rx_ring) {
1505                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1506                 rc = -ENOMEM;
1507                 goto err;
1508         }
1509
1510         /* Allocate FW Rx ring  */
1511         params.mode = QED_CHAIN_MODE_NEXT_PTR;
1512         params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1513         params.elem_size = sizeof(struct eth_rx_bd);
1514
1515         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1516         if (rc)
1517                 goto err;
1518
1519         /* Allocate FW completion ring */
1520         params.mode = QED_CHAIN_MODE_PBL;
1521         params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1522         params.elem_size = sizeof(union eth_rx_cqe);
1523
1524         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1525         if (rc)
1526                 goto err;
1527
1528         /* Allocate buffers for the Rx ring */
1529         rxq->filled_buffers = 0;
1530         for (i = 0; i < rxq->num_rx_buffers; i++) {
1531                 rc = qede_alloc_rx_buffer(rxq, false);
1532                 if (rc) {
1533                         DP_ERR(edev,
1534                                "Rx buffers allocation failed at index %d\n", i);
1535                         goto err;
1536                 }
1537         }
1538
1539         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1540         if (!edev->gro_disable)
1541                 qede_set_tpa_param(rxq);
1542 err:
1543         return rc;
1544 }
1545
1546 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1547 {
1548         /* Free the parallel SW ring */
1549         if (txq->is_xdp)
1550                 kfree(txq->sw_tx_ring.xdp);
1551         else
1552                 kfree(txq->sw_tx_ring.skbs);
1553
1554         /* Free the real RQ ring used by FW */
1555         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1556 }
1557
1558 /* This function allocates all memory needed per Tx queue */
1559 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1560 {
1561         struct qed_chain_init_params params = {
1562                 .mode           = QED_CHAIN_MODE_PBL,
1563                 .intended_use   = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1564                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1565                 .num_elems      = edev->q_num_tx_buffers,
1566                 .elem_size      = sizeof(union eth_tx_bd_types),
1567         };
1568         int size, rc;
1569
1570         txq->num_tx_buffers = edev->q_num_tx_buffers;
1571
1572         /* Allocate the parallel driver ring for Tx buffers */
1573         if (txq->is_xdp) {
1574                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1575                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1576                 if (!txq->sw_tx_ring.xdp)
1577                         goto err;
1578         } else {
1579                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1580                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1581                 if (!txq->sw_tx_ring.skbs)
1582                         goto err;
1583         }
1584
1585         rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1586         if (rc)
1587                 goto err;
1588
1589         return 0;
1590
1591 err:
1592         qede_free_mem_txq(edev, txq);
1593         return -ENOMEM;
1594 }
1595
1596 /* This function frees all memory of a single fp */
1597 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1598 {
1599         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1600
1601         if (fp->type & QEDE_FASTPATH_RX)
1602                 qede_free_mem_rxq(edev, fp->rxq);
1603
1604         if (fp->type & QEDE_FASTPATH_XDP)
1605                 qede_free_mem_txq(edev, fp->xdp_tx);
1606
1607         if (fp->type & QEDE_FASTPATH_TX) {
1608                 int cos;
1609
1610                 for_each_cos_in_txq(edev, cos)
1611                         qede_free_mem_txq(edev, &fp->txq[cos]);
1612         }
1613 }
1614
1615 /* This function allocates all memory needed for a single fp (i.e. an entity
1616  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1617  */
1618 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1619 {
1620         int rc = 0;
1621
1622         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1623         if (rc)
1624                 goto out;
1625
1626         if (fp->type & QEDE_FASTPATH_RX) {
1627                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1628                 if (rc)
1629                         goto out;
1630         }
1631
1632         if (fp->type & QEDE_FASTPATH_XDP) {
1633                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1634                 if (rc)
1635                         goto out;
1636         }
1637
1638         if (fp->type & QEDE_FASTPATH_TX) {
1639                 int cos;
1640
1641                 for_each_cos_in_txq(edev, cos) {
1642                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1643                         if (rc)
1644                                 goto out;
1645                 }
1646         }
1647
1648 out:
1649         return rc;
1650 }
1651
1652 static void qede_free_mem_load(struct qede_dev *edev)
1653 {
1654         int i;
1655
1656         for_each_queue(i) {
1657                 struct qede_fastpath *fp = &edev->fp_array[i];
1658
1659                 qede_free_mem_fp(edev, fp);
1660         }
1661 }
1662
1663 /* This function allocates all qede memory at NIC load. */
1664 static int qede_alloc_mem_load(struct qede_dev *edev)
1665 {
1666         int rc = 0, queue_id;
1667
1668         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1669                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1670
1671                 rc = qede_alloc_mem_fp(edev, fp);
1672                 if (rc) {
1673                         DP_ERR(edev,
1674                                "Failed to allocate memory for fastpath - rss id = %d\n",
1675                                queue_id);
1676                         qede_free_mem_load(edev);
1677                         return rc;
1678                 }
1679         }
1680
1681         return 0;
1682 }
1683
1684 static void qede_empty_tx_queue(struct qede_dev *edev,
1685                                 struct qede_tx_queue *txq)
1686 {
1687         unsigned int pkts_compl = 0, bytes_compl = 0;
1688         struct netdev_queue *netdev_txq;
1689         int rc, len = 0;
1690
1691         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1692
1693         while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1694                qed_chain_get_prod_idx(&txq->tx_pbl)) {
1695                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1696                            "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1697                            txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1698                            qed_chain_get_prod_idx(&txq->tx_pbl));
1699
1700                 rc = qede_free_tx_pkt(edev, txq, &len);
1701                 if (rc) {
1702                         DP_NOTICE(edev,
1703                                   "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1704                                   txq->index,
1705                                   qed_chain_get_cons_idx(&txq->tx_pbl),
1706                                   qed_chain_get_prod_idx(&txq->tx_pbl));
1707                         break;
1708                 }
1709
1710                 bytes_compl += len;
1711                 pkts_compl++;
1712                 txq->sw_tx_cons++;
1713         }
1714
1715         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1716 }
1717
1718 static void qede_empty_tx_queues(struct qede_dev *edev)
1719 {
1720         int i;
1721
1722         for_each_queue(i)
1723                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1724                         int cos;
1725
1726                         for_each_cos_in_txq(edev, cos) {
1727                                 struct qede_fastpath *fp;
1728
1729                                 fp = &edev->fp_array[i];
1730                                 qede_empty_tx_queue(edev,
1731                                                     &fp->txq[cos]);
1732                         }
1733                 }
1734 }
1735
1736 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1737 static void qede_init_fp(struct qede_dev *edev)
1738 {
1739         int queue_id, rxq_index = 0, txq_index = 0;
1740         struct qede_fastpath *fp;
1741         bool init_xdp = false;
1742
1743         for_each_queue(queue_id) {
1744                 fp = &edev->fp_array[queue_id];
1745
1746                 fp->edev = edev;
1747                 fp->id = queue_id;
1748
1749                 if (fp->type & QEDE_FASTPATH_XDP) {
1750                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1751                                                                 rxq_index);
1752                         fp->xdp_tx->is_xdp = 1;
1753
1754                         spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1755                         init_xdp = true;
1756                 }
1757
1758                 if (fp->type & QEDE_FASTPATH_RX) {
1759                         fp->rxq->rxq_id = rxq_index++;
1760
1761                         /* Determine how to map buffers for this queue */
1762                         if (fp->type & QEDE_FASTPATH_XDP)
1763                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1764                         else
1765                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1766                         fp->rxq->dev = &edev->pdev->dev;
1767
1768                         /* Driver have no error path from here */
1769                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1770                                                  fp->rxq->rxq_id, 0) < 0);
1771
1772                         if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1773                                                        MEM_TYPE_PAGE_ORDER0,
1774                                                        NULL)) {
1775                                 DP_NOTICE(edev,
1776                                           "Failed to register XDP memory model\n");
1777                         }
1778                 }
1779
1780                 if (fp->type & QEDE_FASTPATH_TX) {
1781                         int cos;
1782
1783                         for_each_cos_in_txq(edev, cos) {
1784                                 struct qede_tx_queue *txq = &fp->txq[cos];
1785                                 u16 ndev_tx_id;
1786
1787                                 txq->cos = cos;
1788                                 txq->index = txq_index;
1789                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1790                                 txq->ndev_txq_id = ndev_tx_id;
1791
1792                                 if (edev->dev_info.is_legacy)
1793                                         txq->is_legacy = true;
1794                                 txq->dev = &edev->pdev->dev;
1795                         }
1796
1797                         txq_index++;
1798                 }
1799
1800                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1801                          edev->ndev->name, queue_id);
1802         }
1803
1804         if (init_xdp) {
1805                 edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1806                 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1807         }
1808 }
1809
1810 static int qede_set_real_num_queues(struct qede_dev *edev)
1811 {
1812         int rc = 0;
1813
1814         rc = netif_set_real_num_tx_queues(edev->ndev,
1815                                           QEDE_TSS_COUNT(edev) *
1816                                           edev->dev_info.num_tc);
1817         if (rc) {
1818                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1819                 return rc;
1820         }
1821
1822         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1823         if (rc) {
1824                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1825                 return rc;
1826         }
1827
1828         return 0;
1829 }
1830
1831 static void qede_napi_disable_remove(struct qede_dev *edev)
1832 {
1833         int i;
1834
1835         for_each_queue(i) {
1836                 napi_disable(&edev->fp_array[i].napi);
1837
1838                 netif_napi_del(&edev->fp_array[i].napi);
1839         }
1840 }
1841
1842 static void qede_napi_add_enable(struct qede_dev *edev)
1843 {
1844         int i;
1845
1846         /* Add NAPI objects */
1847         for_each_queue(i) {
1848                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1849                                qede_poll, NAPI_POLL_WEIGHT);
1850                 napi_enable(&edev->fp_array[i].napi);
1851         }
1852 }
1853
1854 static void qede_sync_free_irqs(struct qede_dev *edev)
1855 {
1856         int i;
1857
1858         for (i = 0; i < edev->int_info.used_cnt; i++) {
1859                 if (edev->int_info.msix_cnt) {
1860                         synchronize_irq(edev->int_info.msix[i].vector);
1861                         free_irq(edev->int_info.msix[i].vector,
1862                                  &edev->fp_array[i]);
1863                 } else {
1864                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1865                 }
1866         }
1867
1868         edev->int_info.used_cnt = 0;
1869 }
1870
1871 static int qede_req_msix_irqs(struct qede_dev *edev)
1872 {
1873         int i, rc;
1874
1875         /* Sanitize number of interrupts == number of prepared RSS queues */
1876         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1877                 DP_ERR(edev,
1878                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1879                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1880                 return -EINVAL;
1881         }
1882
1883         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1884 #ifdef CONFIG_RFS_ACCEL
1885                 struct qede_fastpath *fp = &edev->fp_array[i];
1886
1887                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1888                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1889                                               edev->int_info.msix[i].vector);
1890                         if (rc) {
1891                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1892                                 qede_free_arfs(edev);
1893                         }
1894                 }
1895 #endif
1896                 rc = request_irq(edev->int_info.msix[i].vector,
1897                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1898                                  &edev->fp_array[i]);
1899                 if (rc) {
1900                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1901                         qede_sync_free_irqs(edev);
1902                         return rc;
1903                 }
1904                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1905                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1906                            edev->fp_array[i].name, i,
1907                            &edev->fp_array[i]);
1908                 edev->int_info.used_cnt++;
1909         }
1910
1911         return 0;
1912 }
1913
1914 static void qede_simd_fp_handler(void *cookie)
1915 {
1916         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1917
1918         napi_schedule_irqoff(&fp->napi);
1919 }
1920
1921 static int qede_setup_irqs(struct qede_dev *edev)
1922 {
1923         int i, rc = 0;
1924
1925         /* Learn Interrupt configuration */
1926         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1927         if (rc)
1928                 return rc;
1929
1930         if (edev->int_info.msix_cnt) {
1931                 rc = qede_req_msix_irqs(edev);
1932                 if (rc)
1933                         return rc;
1934                 edev->ndev->irq = edev->int_info.msix[0].vector;
1935         } else {
1936                 const struct qed_common_ops *ops;
1937
1938                 /* qed should learn receive the RSS ids and callbacks */
1939                 ops = edev->ops->common;
1940                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1941                         ops->simd_handler_config(edev->cdev,
1942                                                  &edev->fp_array[i], i,
1943                                                  qede_simd_fp_handler);
1944                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1945         }
1946         return 0;
1947 }
1948
1949 static int qede_drain_txq(struct qede_dev *edev,
1950                           struct qede_tx_queue *txq, bool allow_drain)
1951 {
1952         int rc, cnt = 1000;
1953
1954         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1955                 if (!cnt) {
1956                         if (allow_drain) {
1957                                 DP_NOTICE(edev,
1958                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1959                                           txq->index);
1960                                 rc = edev->ops->common->drain(edev->cdev);
1961                                 if (rc)
1962                                         return rc;
1963                                 return qede_drain_txq(edev, txq, false);
1964                         }
1965                         DP_NOTICE(edev,
1966                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1967                                   txq->index, txq->sw_tx_prod,
1968                                   txq->sw_tx_cons);
1969                         return -ENODEV;
1970                 }
1971                 cnt--;
1972                 usleep_range(1000, 2000);
1973                 barrier();
1974         }
1975
1976         /* FW finished processing, wait for HW to transmit all tx packets */
1977         usleep_range(1000, 2000);
1978
1979         return 0;
1980 }
1981
1982 static int qede_stop_txq(struct qede_dev *edev,
1983                          struct qede_tx_queue *txq, int rss_id)
1984 {
1985         /* delete doorbell from doorbell recovery mechanism */
1986         edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1987                                            &txq->tx_db);
1988
1989         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1990 }
1991
1992 static int qede_stop_queues(struct qede_dev *edev)
1993 {
1994         struct qed_update_vport_params *vport_update_params;
1995         struct qed_dev *cdev = edev->cdev;
1996         struct qede_fastpath *fp;
1997         int rc, i;
1998
1999         /* Disable the vport */
2000         vport_update_params = vzalloc(sizeof(*vport_update_params));
2001         if (!vport_update_params)
2002                 return -ENOMEM;
2003
2004         vport_update_params->vport_id = 0;
2005         vport_update_params->update_vport_active_flg = 1;
2006         vport_update_params->vport_active_flg = 0;
2007         vport_update_params->update_rss_flg = 0;
2008
2009         rc = edev->ops->vport_update(cdev, vport_update_params);
2010         vfree(vport_update_params);
2011
2012         if (rc) {
2013                 DP_ERR(edev, "Failed to update vport\n");
2014                 return rc;
2015         }
2016
2017         /* Flush Tx queues. If needed, request drain from MCP */
2018         for_each_queue(i) {
2019                 fp = &edev->fp_array[i];
2020
2021                 if (fp->type & QEDE_FASTPATH_TX) {
2022                         int cos;
2023
2024                         for_each_cos_in_txq(edev, cos) {
2025                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2026                                 if (rc)
2027                                         return rc;
2028                         }
2029                 }
2030
2031                 if (fp->type & QEDE_FASTPATH_XDP) {
2032                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
2033                         if (rc)
2034                                 return rc;
2035                 }
2036         }
2037
2038         /* Stop all Queues in reverse order */
2039         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2040                 fp = &edev->fp_array[i];
2041
2042                 /* Stop the Tx Queue(s) */
2043                 if (fp->type & QEDE_FASTPATH_TX) {
2044                         int cos;
2045
2046                         for_each_cos_in_txq(edev, cos) {
2047                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2048                                 if (rc)
2049                                         return rc;
2050                         }
2051                 }
2052
2053                 /* Stop the Rx Queue */
2054                 if (fp->type & QEDE_FASTPATH_RX) {
2055                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2056                         if (rc) {
2057                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2058                                 return rc;
2059                         }
2060                 }
2061
2062                 /* Stop the XDP forwarding queue */
2063                 if (fp->type & QEDE_FASTPATH_XDP) {
2064                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
2065                         if (rc)
2066                                 return rc;
2067
2068                         bpf_prog_put(fp->rxq->xdp_prog);
2069                 }
2070         }
2071
2072         /* Stop the vport */
2073         rc = edev->ops->vport_stop(cdev, 0);
2074         if (rc)
2075                 DP_ERR(edev, "Failed to stop VPORT\n");
2076
2077         return rc;
2078 }
2079
2080 static int qede_start_txq(struct qede_dev *edev,
2081                           struct qede_fastpath *fp,
2082                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2083 {
2084         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2085         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2086         struct qed_queue_start_common_params params;
2087         struct qed_txq_start_ret_params ret_params;
2088         int rc;
2089
2090         memset(&params, 0, sizeof(params));
2091         memset(&ret_params, 0, sizeof(ret_params));
2092
2093         /* Let the XDP queue share the queue-zone with one of the regular txq.
2094          * We don't really care about its coalescing.
2095          */
2096         if (txq->is_xdp)
2097                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2098         else
2099                 params.queue_id = txq->index;
2100
2101         params.p_sb = fp->sb_info;
2102         params.sb_idx = sb_idx;
2103         params.tc = txq->cos;
2104
2105         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2106                                    page_cnt, &ret_params);
2107         if (rc) {
2108                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2109                 return rc;
2110         }
2111
2112         txq->doorbell_addr = ret_params.p_doorbell;
2113         txq->handle = ret_params.p_handle;
2114
2115         /* Determine the FW consumer address associated */
2116         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2117
2118         /* Prepare the doorbell parameters */
2119         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2120         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2121         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2122                   DQ_XCM_ETH_TX_BD_PROD_CMD);
2123         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2124
2125         /* register doorbell with doorbell recovery mechanism */
2126         rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2127                                                 &txq->tx_db, DB_REC_WIDTH_32B,
2128                                                 DB_REC_KERNEL);
2129
2130         return rc;
2131 }
2132
2133 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2134 {
2135         int vlan_removal_en = 1;
2136         struct qed_dev *cdev = edev->cdev;
2137         struct qed_dev_info *qed_info = &edev->dev_info.common;
2138         struct qed_update_vport_params *vport_update_params;
2139         struct qed_queue_start_common_params q_params;
2140         struct qed_start_vport_params start = {0};
2141         int rc, i;
2142
2143         if (!edev->num_queues) {
2144                 DP_ERR(edev,
2145                        "Cannot update V-VPORT as active as there are no Rx queues\n");
2146                 return -EINVAL;
2147         }
2148
2149         vport_update_params = vzalloc(sizeof(*vport_update_params));
2150         if (!vport_update_params)
2151                 return -ENOMEM;
2152
2153         start.handle_ptp_pkts = !!(edev->ptp);
2154         start.gro_enable = !edev->gro_disable;
2155         start.mtu = edev->ndev->mtu;
2156         start.vport_id = 0;
2157         start.drop_ttl0 = true;
2158         start.remove_inner_vlan = vlan_removal_en;
2159         start.clear_stats = clear_stats;
2160
2161         rc = edev->ops->vport_start(cdev, &start);
2162
2163         if (rc) {
2164                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2165                 goto out;
2166         }
2167
2168         DP_VERBOSE(edev, NETIF_MSG_IFUP,
2169                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2170                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2171
2172         for_each_queue(i) {
2173                 struct qede_fastpath *fp = &edev->fp_array[i];
2174                 dma_addr_t p_phys_table;
2175                 u32 page_cnt;
2176
2177                 if (fp->type & QEDE_FASTPATH_RX) {
2178                         struct qed_rxq_start_ret_params ret_params;
2179                         struct qede_rx_queue *rxq = fp->rxq;
2180                         __le16 *val;
2181
2182                         memset(&ret_params, 0, sizeof(ret_params));
2183                         memset(&q_params, 0, sizeof(q_params));
2184                         q_params.queue_id = rxq->rxq_id;
2185                         q_params.vport_id = 0;
2186                         q_params.p_sb = fp->sb_info;
2187                         q_params.sb_idx = RX_PI;
2188
2189                         p_phys_table =
2190                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2191                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2192
2193                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
2194                                                    rxq->rx_buf_size,
2195                                                    rxq->rx_bd_ring.p_phys_addr,
2196                                                    p_phys_table,
2197                                                    page_cnt, &ret_params);
2198                         if (rc) {
2199                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2200                                        rc);
2201                                 goto out;
2202                         }
2203
2204                         /* Use the return parameters */
2205                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2206                         rxq->handle = ret_params.p_handle;
2207
2208                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2209                         rxq->hw_cons_ptr = val;
2210
2211                         qede_update_rx_prod(edev, rxq);
2212                 }
2213
2214                 if (fp->type & QEDE_FASTPATH_XDP) {
2215                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2216                         if (rc)
2217                                 goto out;
2218
2219                         bpf_prog_add(edev->xdp_prog, 1);
2220                         fp->rxq->xdp_prog = edev->xdp_prog;
2221                 }
2222
2223                 if (fp->type & QEDE_FASTPATH_TX) {
2224                         int cos;
2225
2226                         for_each_cos_in_txq(edev, cos) {
2227                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2228                                                     TX_PI(cos));
2229                                 if (rc)
2230                                         goto out;
2231                         }
2232                 }
2233         }
2234
2235         /* Prepare and send the vport enable */
2236         vport_update_params->vport_id = start.vport_id;
2237         vport_update_params->update_vport_active_flg = 1;
2238         vport_update_params->vport_active_flg = 1;
2239
2240         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2241             qed_info->tx_switching) {
2242                 vport_update_params->update_tx_switching_flg = 1;
2243                 vport_update_params->tx_switching_flg = 1;
2244         }
2245
2246         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2247                              &vport_update_params->update_rss_flg);
2248
2249         rc = edev->ops->vport_update(cdev, vport_update_params);
2250         if (rc)
2251                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2252
2253 out:
2254         vfree(vport_update_params);
2255         return rc;
2256 }
2257
2258 enum qede_unload_mode {
2259         QEDE_UNLOAD_NORMAL,
2260         QEDE_UNLOAD_RECOVERY,
2261 };
2262
2263 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2264                         bool is_locked)
2265 {
2266         struct qed_link_params link_params;
2267         int rc;
2268
2269         DP_INFO(edev, "Starting qede unload\n");
2270
2271         if (!is_locked)
2272                 __qede_lock(edev);
2273
2274         clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2275
2276         if (mode != QEDE_UNLOAD_RECOVERY)
2277                 edev->state = QEDE_STATE_CLOSED;
2278
2279         qede_rdma_dev_event_close(edev);
2280
2281         /* Close OS Tx */
2282         netif_tx_disable(edev->ndev);
2283         netif_carrier_off(edev->ndev);
2284
2285         if (mode != QEDE_UNLOAD_RECOVERY) {
2286                 /* Reset the link */
2287                 memset(&link_params, 0, sizeof(link_params));
2288                 link_params.link_up = false;
2289                 edev->ops->common->set_link(edev->cdev, &link_params);
2290
2291                 rc = qede_stop_queues(edev);
2292                 if (rc) {
2293                         qede_sync_free_irqs(edev);
2294                         goto out;
2295                 }
2296
2297                 DP_INFO(edev, "Stopped Queues\n");
2298         }
2299
2300         qede_vlan_mark_nonconfigured(edev);
2301         edev->ops->fastpath_stop(edev->cdev);
2302
2303         if (edev->dev_info.common.b_arfs_capable) {
2304                 qede_poll_for_freeing_arfs_filters(edev);
2305                 qede_free_arfs(edev);
2306         }
2307
2308         /* Release the interrupts */
2309         qede_sync_free_irqs(edev);
2310         edev->ops->common->set_fp_int(edev->cdev, 0);
2311
2312         qede_napi_disable_remove(edev);
2313
2314         if (mode == QEDE_UNLOAD_RECOVERY)
2315                 qede_empty_tx_queues(edev);
2316
2317         qede_free_mem_load(edev);
2318         qede_free_fp_array(edev);
2319
2320 out:
2321         if (!is_locked)
2322                 __qede_unlock(edev);
2323
2324         if (mode != QEDE_UNLOAD_RECOVERY)
2325                 DP_NOTICE(edev, "Link is down\n");
2326
2327         edev->ptp_skip_txts = 0;
2328
2329         DP_INFO(edev, "Ending qede unload\n");
2330 }
2331
2332 enum qede_load_mode {
2333         QEDE_LOAD_NORMAL,
2334         QEDE_LOAD_RELOAD,
2335         QEDE_LOAD_RECOVERY,
2336 };
2337
2338 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2339                      bool is_locked)
2340 {
2341         struct qed_link_params link_params;
2342         struct ethtool_coalesce coal = {};
2343         u8 num_tc;
2344         int rc, i;
2345
2346         DP_INFO(edev, "Starting qede load\n");
2347
2348         if (!is_locked)
2349                 __qede_lock(edev);
2350
2351         rc = qede_set_num_queues(edev);
2352         if (rc)
2353                 goto out;
2354
2355         rc = qede_alloc_fp_array(edev);
2356         if (rc)
2357                 goto out;
2358
2359         qede_init_fp(edev);
2360
2361         rc = qede_alloc_mem_load(edev);
2362         if (rc)
2363                 goto err1;
2364         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2365                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2366
2367         rc = qede_set_real_num_queues(edev);
2368         if (rc)
2369                 goto err2;
2370
2371         if (qede_alloc_arfs(edev)) {
2372                 edev->ndev->features &= ~NETIF_F_NTUPLE;
2373                 edev->dev_info.common.b_arfs_capable = false;
2374         }
2375
2376         qede_napi_add_enable(edev);
2377         DP_INFO(edev, "Napi added and enabled\n");
2378
2379         rc = qede_setup_irqs(edev);
2380         if (rc)
2381                 goto err3;
2382         DP_INFO(edev, "Setup IRQs succeeded\n");
2383
2384         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2385         if (rc)
2386                 goto err4;
2387         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2388
2389         num_tc = netdev_get_num_tc(edev->ndev);
2390         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2391         qede_setup_tc(edev->ndev, num_tc);
2392
2393         /* Program un-configured VLANs */
2394         qede_configure_vlan_filters(edev);
2395
2396         set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2397
2398         /* Ask for link-up using current configuration */
2399         memset(&link_params, 0, sizeof(link_params));
2400         link_params.link_up = true;
2401         edev->ops->common->set_link(edev->cdev, &link_params);
2402
2403         edev->state = QEDE_STATE_OPEN;
2404
2405         coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2406         coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2407
2408         for_each_queue(i) {
2409                 if (edev->coal_entry[i].isvalid) {
2410                         coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2411                         coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2412                 }
2413                 __qede_unlock(edev);
2414                 qede_set_per_coalesce(edev->ndev, i, &coal);
2415                 __qede_lock(edev);
2416         }
2417         DP_INFO(edev, "Ending successfully qede load\n");
2418
2419         goto out;
2420 err4:
2421         qede_sync_free_irqs(edev);
2422         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2423 err3:
2424         qede_napi_disable_remove(edev);
2425 err2:
2426         qede_free_mem_load(edev);
2427 err1:
2428         edev->ops->common->set_fp_int(edev->cdev, 0);
2429         qede_free_fp_array(edev);
2430         edev->num_queues = 0;
2431         edev->fp_num_tx = 0;
2432         edev->fp_num_rx = 0;
2433 out:
2434         if (!is_locked)
2435                 __qede_unlock(edev);
2436
2437         return rc;
2438 }
2439
2440 /* 'func' should be able to run between unload and reload assuming interface
2441  * is actually running, or afterwards in case it's currently DOWN.
2442  */
2443 void qede_reload(struct qede_dev *edev,
2444                  struct qede_reload_args *args, bool is_locked)
2445 {
2446         if (!is_locked)
2447                 __qede_lock(edev);
2448
2449         /* Since qede_lock is held, internal state wouldn't change even
2450          * if netdev state would start transitioning. Check whether current
2451          * internal configuration indicates device is up, then reload.
2452          */
2453         if (edev->state == QEDE_STATE_OPEN) {
2454                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2455                 if (args)
2456                         args->func(edev, args);
2457                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2458
2459                 /* Since no one is going to do it for us, re-configure */
2460                 qede_config_rx_mode(edev->ndev);
2461         } else if (args) {
2462                 args->func(edev, args);
2463         }
2464
2465         if (!is_locked)
2466                 __qede_unlock(edev);
2467 }
2468
2469 /* called with rtnl_lock */
2470 static int qede_open(struct net_device *ndev)
2471 {
2472         struct qede_dev *edev = netdev_priv(ndev);
2473         int rc;
2474
2475         netif_carrier_off(ndev);
2476
2477         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2478
2479         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2480         if (rc)
2481                 return rc;
2482
2483         udp_tunnel_nic_reset_ntf(ndev);
2484
2485         edev->ops->common->update_drv_state(edev->cdev, true);
2486
2487         return 0;
2488 }
2489
2490 static int qede_close(struct net_device *ndev)
2491 {
2492         struct qede_dev *edev = netdev_priv(ndev);
2493
2494         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2495
2496         if (edev->cdev)
2497                 edev->ops->common->update_drv_state(edev->cdev, false);
2498
2499         return 0;
2500 }
2501
2502 static void qede_link_update(void *dev, struct qed_link_output *link)
2503 {
2504         struct qede_dev *edev = dev;
2505
2506         if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2507                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2508                 return;
2509         }
2510
2511         if (link->link_up) {
2512                 if (!netif_carrier_ok(edev->ndev)) {
2513                         DP_NOTICE(edev, "Link is up\n");
2514                         netif_tx_start_all_queues(edev->ndev);
2515                         netif_carrier_on(edev->ndev);
2516                         qede_rdma_dev_event_open(edev);
2517                 }
2518         } else {
2519                 if (netif_carrier_ok(edev->ndev)) {
2520                         DP_NOTICE(edev, "Link is down\n");
2521                         netif_tx_disable(edev->ndev);
2522                         netif_carrier_off(edev->ndev);
2523                         qede_rdma_dev_event_close(edev);
2524                 }
2525         }
2526 }
2527
2528 static void qede_schedule_recovery_handler(void *dev)
2529 {
2530         struct qede_dev *edev = dev;
2531
2532         if (edev->state == QEDE_STATE_RECOVERY) {
2533                 DP_NOTICE(edev,
2534                           "Avoid scheduling a recovery handling since already in recovery state\n");
2535                 return;
2536         }
2537
2538         set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2539         schedule_delayed_work(&edev->sp_task, 0);
2540
2541         DP_INFO(edev, "Scheduled a recovery handler\n");
2542 }
2543
2544 static void qede_recovery_failed(struct qede_dev *edev)
2545 {
2546         netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2547
2548         netif_device_detach(edev->ndev);
2549
2550         if (edev->cdev)
2551                 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2552 }
2553
2554 static void qede_recovery_handler(struct qede_dev *edev)
2555 {
2556         u32 curr_state = edev->state;
2557         int rc;
2558
2559         DP_NOTICE(edev, "Starting a recovery process\n");
2560
2561         /* No need to acquire first the qede_lock since is done by qede_sp_task
2562          * before calling this function.
2563          */
2564         edev->state = QEDE_STATE_RECOVERY;
2565
2566         edev->ops->common->recovery_prolog(edev->cdev);
2567
2568         if (curr_state == QEDE_STATE_OPEN)
2569                 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2570
2571         __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2572
2573         rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2574                           IS_VF(edev), QEDE_PROBE_RECOVERY);
2575         if (rc) {
2576                 edev->cdev = NULL;
2577                 goto err;
2578         }
2579
2580         if (curr_state == QEDE_STATE_OPEN) {
2581                 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2582                 if (rc)
2583                         goto err;
2584
2585                 qede_config_rx_mode(edev->ndev);
2586                 udp_tunnel_nic_reset_ntf(edev->ndev);
2587         }
2588
2589         edev->state = curr_state;
2590
2591         DP_NOTICE(edev, "Recovery handling is done\n");
2592
2593         return;
2594
2595 err:
2596         qede_recovery_failed(edev);
2597 }
2598
2599 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2600 {
2601         struct qed_dev *cdev = edev->cdev;
2602
2603         DP_NOTICE(edev,
2604                   "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2605                   edev->err_flags);
2606
2607         /* Get a call trace of the flow that led to the error */
2608         WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2609
2610         /* Prevent HW attentions from being reasserted */
2611         if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2612                 edev->ops->common->attn_clr_enable(cdev, true);
2613
2614         DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2615 }
2616
2617 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2618 {
2619         DP_NOTICE(edev,
2620                   "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2621                   edev->err_flags);
2622
2623         if (edev->devlink)
2624                 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2625
2626         clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2627
2628         DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2629 }
2630
2631 static void qede_set_hw_err_flags(struct qede_dev *edev,
2632                                   enum qed_hw_err_type err_type)
2633 {
2634         unsigned long err_flags = 0;
2635
2636         switch (err_type) {
2637         case QED_HW_ERR_DMAE_FAIL:
2638                 set_bit(QEDE_ERR_WARN, &err_flags);
2639                 fallthrough;
2640         case QED_HW_ERR_MFW_RESP_FAIL:
2641         case QED_HW_ERR_HW_ATTN:
2642         case QED_HW_ERR_RAMROD_FAIL:
2643         case QED_HW_ERR_FW_ASSERT:
2644                 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2645                 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2646                 break;
2647
2648         default:
2649                 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2650                 break;
2651         }
2652
2653         edev->err_flags |= err_flags;
2654 }
2655
2656 static void qede_schedule_hw_err_handler(void *dev,
2657                                          enum qed_hw_err_type err_type)
2658 {
2659         struct qede_dev *edev = dev;
2660
2661         /* Fan failure cannot be masked by handling of another HW error or by a
2662          * concurrent recovery process.
2663          */
2664         if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2665              edev->state == QEDE_STATE_RECOVERY) &&
2666              err_type != QED_HW_ERR_FAN_FAIL) {
2667                 DP_INFO(edev,
2668                         "Avoid scheduling an error handling while another HW error is being handled\n");
2669                 return;
2670         }
2671
2672         if (err_type >= QED_HW_ERR_LAST) {
2673                 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2674                 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2675                 return;
2676         }
2677
2678         edev->last_err_type = err_type;
2679         qede_set_hw_err_flags(edev, err_type);
2680         qede_atomic_hw_err_handler(edev);
2681         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2682         schedule_delayed_work(&edev->sp_task, 0);
2683
2684         DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2685 }
2686
2687 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2688 {
2689         struct netdev_queue *netdev_txq;
2690
2691         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2692         if (netif_xmit_stopped(netdev_txq))
2693                 return true;
2694
2695         return false;
2696 }
2697
2698 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2699 {
2700         struct qede_dev *edev = dev;
2701         struct netdev_hw_addr *ha;
2702         int i;
2703
2704         if (edev->ndev->features & NETIF_F_IP_CSUM)
2705                 data->feat_flags |= QED_TLV_IP_CSUM;
2706         if (edev->ndev->features & NETIF_F_TSO)
2707                 data->feat_flags |= QED_TLV_LSO;
2708
2709         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2710         eth_zero_addr(data->mac[1]);
2711         eth_zero_addr(data->mac[2]);
2712         /* Copy the first two UC macs */
2713         netif_addr_lock_bh(edev->ndev);
2714         i = 1;
2715         netdev_for_each_uc_addr(ha, edev->ndev) {
2716                 ether_addr_copy(data->mac[i++], ha->addr);
2717                 if (i == QED_TLV_MAC_COUNT)
2718                         break;
2719         }
2720
2721         netif_addr_unlock_bh(edev->ndev);
2722 }
2723
2724 static void qede_get_eth_tlv_data(void *dev, void *data)
2725 {
2726         struct qed_mfw_tlv_eth *etlv = data;
2727         struct qede_dev *edev = dev;
2728         struct qede_fastpath *fp;
2729         int i;
2730
2731         etlv->lso_maxoff_size = 0XFFFF;
2732         etlv->lso_maxoff_size_set = true;
2733         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2734         etlv->lso_minseg_size_set = true;
2735         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2736         etlv->prom_mode_set = true;
2737         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2738         etlv->tx_descr_size_set = true;
2739         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2740         etlv->rx_descr_size_set = true;
2741         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2742         etlv->iov_offload_set = true;
2743
2744         /* Fill information regarding queues; Should be done under the qede
2745          * lock to guarantee those don't change beneath our feet.
2746          */
2747         etlv->txqs_empty = true;
2748         etlv->rxqs_empty = true;
2749         etlv->num_txqs_full = 0;
2750         etlv->num_rxqs_full = 0;
2751
2752         __qede_lock(edev);
2753         for_each_queue(i) {
2754                 fp = &edev->fp_array[i];
2755                 if (fp->type & QEDE_FASTPATH_TX) {
2756                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2757
2758                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2759                                 etlv->txqs_empty = false;
2760                         if (qede_is_txq_full(edev, txq))
2761                                 etlv->num_txqs_full++;
2762                 }
2763                 if (fp->type & QEDE_FASTPATH_RX) {
2764                         if (qede_has_rx_work(fp->rxq))
2765                                 etlv->rxqs_empty = false;
2766
2767                         /* This one is a bit tricky; Firmware might stop
2768                          * placing packets if ring is not yet full.
2769                          * Give an approximation.
2770                          */
2771                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2772                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2773                             RX_RING_SIZE - 100)
2774                                 etlv->num_rxqs_full++;
2775                 }
2776         }
2777         __qede_unlock(edev);
2778
2779         etlv->txqs_empty_set = true;
2780         etlv->rxqs_empty_set = true;
2781         etlv->num_txqs_full_set = true;
2782         etlv->num_rxqs_full_set = true;
2783 }
2784
2785 /**
2786  * qede_io_error_detected - called when PCI error is detected
2787  * @pdev: Pointer to PCI device
2788  * @state: The current pci connection state
2789  *
2790  * This function is called after a PCI bus error affecting
2791  * this device has been detected.
2792  */
2793 static pci_ers_result_t
2794 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2795 {
2796         struct net_device *dev = pci_get_drvdata(pdev);
2797         struct qede_dev *edev = netdev_priv(dev);
2798
2799         if (!edev)
2800                 return PCI_ERS_RESULT_NONE;
2801
2802         DP_NOTICE(edev, "IO error detected [%d]\n", state);
2803
2804         __qede_lock(edev);
2805         if (edev->state == QEDE_STATE_RECOVERY) {
2806                 DP_NOTICE(edev, "Device already in the recovery state\n");
2807                 __qede_unlock(edev);
2808                 return PCI_ERS_RESULT_NONE;
2809         }
2810
2811         /* PF handles the recovery of its VFs */
2812         if (IS_VF(edev)) {
2813                 DP_VERBOSE(edev, QED_MSG_IOV,
2814                            "VF recovery is handled by its PF\n");
2815                 __qede_unlock(edev);
2816                 return PCI_ERS_RESULT_RECOVERED;
2817         }
2818
2819         /* Close OS Tx */
2820         netif_tx_disable(edev->ndev);
2821         netif_carrier_off(edev->ndev);
2822
2823         set_bit(QEDE_SP_AER, &edev->sp_flags);
2824         schedule_delayed_work(&edev->sp_task, 0);
2825
2826         __qede_unlock(edev);
2827
2828         return PCI_ERS_RESULT_CAN_RECOVER;
2829 }