Merge branch '40GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next...
[linux-2.6-microblaze.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/crash_dump.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/version.h>
36 #include <linux/device.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/errno.h>
41 #include <linux/list.h>
42 #include <linux/string.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/interrupt.h>
45 #include <asm/byteorder.h>
46 #include <asm/param.h>
47 #include <linux/io.h>
48 #include <linux/netdev_features.h>
49 #include <linux/udp.h>
50 #include <linux/tcp.h>
51 #include <net/udp_tunnel.h>
52 #include <linux/ip.h>
53 #include <net/ipv6.h>
54 #include <net/tcp.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_vlan.h>
57 #include <linux/pkt_sched.h>
58 #include <linux/ethtool.h>
59 #include <linux/in.h>
60 #include <linux/random.h>
61 #include <net/ip6_checksum.h>
62 #include <linux/bitops.h>
63 #include <linux/vmalloc.h>
64 #include <linux/aer.h>
65 #include "qede.h"
66 #include "qede_ptp.h"
67
68 static char version[] =
69         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
70
71 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_MODULE_VERSION);
74
75 static uint debug;
76 module_param(debug, uint, 0);
77 MODULE_PARM_DESC(debug, " Default debug msglevel");
78
79 static const struct qed_eth_ops *qed_ops;
80
81 #define CHIP_NUM_57980S_40              0x1634
82 #define CHIP_NUM_57980S_10              0x1666
83 #define CHIP_NUM_57980S_MF              0x1636
84 #define CHIP_NUM_57980S_100             0x1644
85 #define CHIP_NUM_57980S_50              0x1654
86 #define CHIP_NUM_57980S_25              0x1656
87 #define CHIP_NUM_57980S_IOV             0x1664
88 #define CHIP_NUM_AH                     0x8070
89 #define CHIP_NUM_AH_IOV                 0x8090
90
91 #ifndef PCI_DEVICE_ID_NX2_57980E
92 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
93 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
94 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
95 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
96 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
97 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
98 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
99 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
100 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
101
102 #endif
103
104 enum qede_pci_private {
105         QEDE_PRIVATE_PF,
106         QEDE_PRIVATE_VF
107 };
108
109 static const struct pci_device_id qede_pci_tbl[] = {
110         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
111         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
112         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
113         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
114         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
115         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
116 #ifdef CONFIG_QED_SRIOV
117         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
118 #endif
119         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
120 #ifdef CONFIG_QED_SRIOV
121         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
122 #endif
123         { 0 }
124 };
125
126 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
127
128 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
129 static pci_ers_result_t
130 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
131
132 #define TX_TIMEOUT              (5 * HZ)
133
134 /* Utilize last protocol index for XDP */
135 #define XDP_PI  11
136
137 static void qede_remove(struct pci_dev *pdev);
138 static void qede_shutdown(struct pci_dev *pdev);
139 static void qede_link_update(void *dev, struct qed_link_output *link);
140 static void qede_schedule_recovery_handler(void *dev);
141 static void qede_recovery_handler(struct qede_dev *edev);
142 static void qede_schedule_hw_err_handler(void *dev,
143                                          enum qed_hw_err_type err_type);
144 static void qede_get_eth_tlv_data(void *edev, void *data);
145 static void qede_get_generic_tlv_data(void *edev,
146                                       struct qed_generic_tlvs *data);
147 static void qede_generic_hw_err_handler(struct qede_dev *edev);
148 #ifdef CONFIG_QED_SRIOV
149 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
150                             __be16 vlan_proto)
151 {
152         struct qede_dev *edev = netdev_priv(ndev);
153
154         if (vlan > 4095) {
155                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
156                 return -EINVAL;
157         }
158
159         if (vlan_proto != htons(ETH_P_8021Q))
160                 return -EPROTONOSUPPORT;
161
162         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
163                    vlan, vf);
164
165         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
166 }
167
168 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
169 {
170         struct qede_dev *edev = netdev_priv(ndev);
171
172         DP_VERBOSE(edev, QED_MSG_IOV,
173                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
174                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
175
176         if (!is_valid_ether_addr(mac)) {
177                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
178                 return -EINVAL;
179         }
180
181         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
182 }
183
184 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
185 {
186         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
187         struct qed_dev_info *qed_info = &edev->dev_info.common;
188         struct qed_update_vport_params *vport_params;
189         int rc;
190
191         vport_params = vzalloc(sizeof(*vport_params));
192         if (!vport_params)
193                 return -ENOMEM;
194         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
195
196         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
197
198         /* Enable/Disable Tx switching for PF */
199         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
200             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
201                 vport_params->vport_id = 0;
202                 vport_params->update_tx_switching_flg = 1;
203                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
204                 edev->ops->vport_update(edev->cdev, vport_params);
205         }
206
207         vfree(vport_params);
208         return rc;
209 }
210 #endif
211
212 static const struct pci_error_handlers qede_err_handler = {
213         .error_detected = qede_io_error_detected,
214 };
215
216 static struct pci_driver qede_pci_driver = {
217         .name = "qede",
218         .id_table = qede_pci_tbl,
219         .probe = qede_probe,
220         .remove = qede_remove,
221         .shutdown = qede_shutdown,
222 #ifdef CONFIG_QED_SRIOV
223         .sriov_configure = qede_sriov_configure,
224 #endif
225         .err_handler = &qede_err_handler,
226 };
227
228 static struct qed_eth_cb_ops qede_ll_ops = {
229         {
230 #ifdef CONFIG_RFS_ACCEL
231                 .arfs_filter_op = qede_arfs_filter_op,
232 #endif
233                 .link_update = qede_link_update,
234                 .schedule_recovery_handler = qede_schedule_recovery_handler,
235                 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
236                 .get_generic_tlv_data = qede_get_generic_tlv_data,
237                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
238         },
239         .force_mac = qede_force_mac,
240         .ports_update = qede_udp_ports_update,
241 };
242
243 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
244                              void *ptr)
245 {
246         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
247         struct ethtool_drvinfo drvinfo;
248         struct qede_dev *edev;
249
250         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
251                 goto done;
252
253         /* Check whether this is a qede device */
254         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
255                 goto done;
256
257         memset(&drvinfo, 0, sizeof(drvinfo));
258         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
259         if (strcmp(drvinfo.driver, "qede"))
260                 goto done;
261         edev = netdev_priv(ndev);
262
263         switch (event) {
264         case NETDEV_CHANGENAME:
265                 /* Notify qed of the name change */
266                 if (!edev->ops || !edev->ops->common)
267                         goto done;
268                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
269                 break;
270         case NETDEV_CHANGEADDR:
271                 edev = netdev_priv(ndev);
272                 qede_rdma_event_changeaddr(edev);
273                 break;
274         }
275
276 done:
277         return NOTIFY_DONE;
278 }
279
280 static struct notifier_block qede_netdev_notifier = {
281         .notifier_call = qede_netdev_event,
282 };
283
284 static
285 int __init qede_init(void)
286 {
287         int ret;
288
289         pr_info("qede_init: %s\n", version);
290
291         qed_ops = qed_get_eth_ops();
292         if (!qed_ops) {
293                 pr_notice("Failed to get qed ethtool operations\n");
294                 return -EINVAL;
295         }
296
297         /* Must register notifier before pci ops, since we might miss
298          * interface rename after pci probe and netdev registration.
299          */
300         ret = register_netdevice_notifier(&qede_netdev_notifier);
301         if (ret) {
302                 pr_notice("Failed to register netdevice_notifier\n");
303                 qed_put_eth_ops();
304                 return -EINVAL;
305         }
306
307         ret = pci_register_driver(&qede_pci_driver);
308         if (ret) {
309                 pr_notice("Failed to register driver\n");
310                 unregister_netdevice_notifier(&qede_netdev_notifier);
311                 qed_put_eth_ops();
312                 return -EINVAL;
313         }
314
315         return 0;
316 }
317
318 static void __exit qede_cleanup(void)
319 {
320         if (debug & QED_LOG_INFO_MASK)
321                 pr_info("qede_cleanup called\n");
322
323         unregister_netdevice_notifier(&qede_netdev_notifier);
324         pci_unregister_driver(&qede_pci_driver);
325         qed_put_eth_ops();
326 }
327
328 module_init(qede_init);
329 module_exit(qede_cleanup);
330
331 static int qede_open(struct net_device *ndev);
332 static int qede_close(struct net_device *ndev);
333
334 void qede_fill_by_demand_stats(struct qede_dev *edev)
335 {
336         struct qede_stats_common *p_common = &edev->stats.common;
337         struct qed_eth_stats stats;
338
339         edev->ops->get_vport_stats(edev->cdev, &stats);
340
341         p_common->no_buff_discards = stats.common.no_buff_discards;
342         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
343         p_common->ttl0_discard = stats.common.ttl0_discard;
344         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
345         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
346         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
347         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
348         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
349         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
350         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
351         p_common->mac_filter_discards = stats.common.mac_filter_discards;
352         p_common->gft_filter_drop = stats.common.gft_filter_drop;
353
354         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
355         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
356         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
357         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
358         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
359         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
360         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
361         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
362         p_common->coalesced_events = stats.common.tpa_coalesced_events;
363         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
364         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
365         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
366
367         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
368         p_common->rx_65_to_127_byte_packets =
369             stats.common.rx_65_to_127_byte_packets;
370         p_common->rx_128_to_255_byte_packets =
371             stats.common.rx_128_to_255_byte_packets;
372         p_common->rx_256_to_511_byte_packets =
373             stats.common.rx_256_to_511_byte_packets;
374         p_common->rx_512_to_1023_byte_packets =
375             stats.common.rx_512_to_1023_byte_packets;
376         p_common->rx_1024_to_1518_byte_packets =
377             stats.common.rx_1024_to_1518_byte_packets;
378         p_common->rx_crc_errors = stats.common.rx_crc_errors;
379         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
380         p_common->rx_pause_frames = stats.common.rx_pause_frames;
381         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
382         p_common->rx_align_errors = stats.common.rx_align_errors;
383         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
384         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
385         p_common->rx_jabbers = stats.common.rx_jabbers;
386         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
387         p_common->rx_fragments = stats.common.rx_fragments;
388         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
389         p_common->tx_65_to_127_byte_packets =
390             stats.common.tx_65_to_127_byte_packets;
391         p_common->tx_128_to_255_byte_packets =
392             stats.common.tx_128_to_255_byte_packets;
393         p_common->tx_256_to_511_byte_packets =
394             stats.common.tx_256_to_511_byte_packets;
395         p_common->tx_512_to_1023_byte_packets =
396             stats.common.tx_512_to_1023_byte_packets;
397         p_common->tx_1024_to_1518_byte_packets =
398             stats.common.tx_1024_to_1518_byte_packets;
399         p_common->tx_pause_frames = stats.common.tx_pause_frames;
400         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
401         p_common->brb_truncates = stats.common.brb_truncates;
402         p_common->brb_discards = stats.common.brb_discards;
403         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
404         p_common->link_change_count = stats.common.link_change_count;
405         p_common->ptp_skip_txts = edev->ptp_skip_txts;
406
407         if (QEDE_IS_BB(edev)) {
408                 struct qede_stats_bb *p_bb = &edev->stats.bb;
409
410                 p_bb->rx_1519_to_1522_byte_packets =
411                     stats.bb.rx_1519_to_1522_byte_packets;
412                 p_bb->rx_1519_to_2047_byte_packets =
413                     stats.bb.rx_1519_to_2047_byte_packets;
414                 p_bb->rx_2048_to_4095_byte_packets =
415                     stats.bb.rx_2048_to_4095_byte_packets;
416                 p_bb->rx_4096_to_9216_byte_packets =
417                     stats.bb.rx_4096_to_9216_byte_packets;
418                 p_bb->rx_9217_to_16383_byte_packets =
419                     stats.bb.rx_9217_to_16383_byte_packets;
420                 p_bb->tx_1519_to_2047_byte_packets =
421                     stats.bb.tx_1519_to_2047_byte_packets;
422                 p_bb->tx_2048_to_4095_byte_packets =
423                     stats.bb.tx_2048_to_4095_byte_packets;
424                 p_bb->tx_4096_to_9216_byte_packets =
425                     stats.bb.tx_4096_to_9216_byte_packets;
426                 p_bb->tx_9217_to_16383_byte_packets =
427                     stats.bb.tx_9217_to_16383_byte_packets;
428                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
429                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
430         } else {
431                 struct qede_stats_ah *p_ah = &edev->stats.ah;
432
433                 p_ah->rx_1519_to_max_byte_packets =
434                     stats.ah.rx_1519_to_max_byte_packets;
435                 p_ah->tx_1519_to_max_byte_packets =
436                     stats.ah.tx_1519_to_max_byte_packets;
437         }
438 }
439
440 static void qede_get_stats64(struct net_device *dev,
441                              struct rtnl_link_stats64 *stats)
442 {
443         struct qede_dev *edev = netdev_priv(dev);
444         struct qede_stats_common *p_common;
445
446         qede_fill_by_demand_stats(edev);
447         p_common = &edev->stats.common;
448
449         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
450                             p_common->rx_bcast_pkts;
451         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
452                             p_common->tx_bcast_pkts;
453
454         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
455                           p_common->rx_bcast_bytes;
456         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
457                           p_common->tx_bcast_bytes;
458
459         stats->tx_errors = p_common->tx_err_drop_pkts;
460         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
461
462         stats->rx_fifo_errors = p_common->no_buff_discards;
463
464         if (QEDE_IS_BB(edev))
465                 stats->collisions = edev->stats.bb.tx_total_collisions;
466         stats->rx_crc_errors = p_common->rx_crc_errors;
467         stats->rx_frame_errors = p_common->rx_align_errors;
468 }
469
470 #ifdef CONFIG_QED_SRIOV
471 static int qede_get_vf_config(struct net_device *dev, int vfidx,
472                               struct ifla_vf_info *ivi)
473 {
474         struct qede_dev *edev = netdev_priv(dev);
475
476         if (!edev->ops)
477                 return -EINVAL;
478
479         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
480 }
481
482 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
483                             int min_tx_rate, int max_tx_rate)
484 {
485         struct qede_dev *edev = netdev_priv(dev);
486
487         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
488                                         max_tx_rate);
489 }
490
491 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
492 {
493         struct qede_dev *edev = netdev_priv(dev);
494
495         if (!edev->ops)
496                 return -EINVAL;
497
498         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
499 }
500
501 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
502                                   int link_state)
503 {
504         struct qede_dev *edev = netdev_priv(dev);
505
506         if (!edev->ops)
507                 return -EINVAL;
508
509         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
510 }
511
512 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
513 {
514         struct qede_dev *edev = netdev_priv(dev);
515
516         if (!edev->ops)
517                 return -EINVAL;
518
519         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
520 }
521 #endif
522
523 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
524 {
525         struct qede_dev *edev = netdev_priv(dev);
526
527         if (!netif_running(dev))
528                 return -EAGAIN;
529
530         switch (cmd) {
531         case SIOCSHWTSTAMP:
532                 return qede_ptp_hw_ts(edev, ifr);
533         default:
534                 DP_VERBOSE(edev, QED_MSG_DEBUG,
535                            "default IOCTL cmd 0x%x\n", cmd);
536                 return -EOPNOTSUPP;
537         }
538
539         return 0;
540 }
541
542 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
543 {
544         DP_NOTICE(edev,
545                   "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
546                   txq->index, le16_to_cpu(*txq->hw_cons_ptr),
547                   qed_chain_get_cons_idx(&txq->tx_pbl),
548                   qed_chain_get_prod_idx(&txq->tx_pbl),
549                   jiffies);
550 }
551
552 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
553 {
554         struct qede_dev *edev = netdev_priv(dev);
555         struct qede_tx_queue *txq;
556         int cos;
557
558         netif_carrier_off(dev);
559         DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
560
561         if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
562                 return;
563
564         for_each_cos_in_txq(edev, cos) {
565                 txq = &edev->fp_array[txqueue].txq[cos];
566
567                 if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
568                     qed_chain_get_prod_idx(&txq->tx_pbl))
569                         qede_tx_log_print(edev, txq);
570         }
571
572         if (IS_VF(edev))
573                 return;
574
575         if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
576             edev->state == QEDE_STATE_RECOVERY) {
577                 DP_INFO(edev,
578                         "Avoid handling a Tx timeout while another HW error is being handled\n");
579                 return;
580         }
581
582         set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
583         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
584         schedule_delayed_work(&edev->sp_task, 0);
585 }
586
587 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
588 {
589         struct qede_dev *edev = netdev_priv(ndev);
590         int cos, count, offset;
591
592         if (num_tc > edev->dev_info.num_tc)
593                 return -EINVAL;
594
595         netdev_reset_tc(ndev);
596         netdev_set_num_tc(ndev, num_tc);
597
598         for_each_cos_in_txq(edev, cos) {
599                 count = QEDE_TSS_COUNT(edev);
600                 offset = cos * QEDE_TSS_COUNT(edev);
601                 netdev_set_tc_queue(ndev, cos, count, offset);
602         }
603
604         return 0;
605 }
606
607 static int
608 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
609                 __be16 proto)
610 {
611         switch (f->command) {
612         case FLOW_CLS_REPLACE:
613                 return qede_add_tc_flower_fltr(edev, proto, f);
614         case FLOW_CLS_DESTROY:
615                 return qede_delete_flow_filter(edev, f->cookie);
616         default:
617                 return -EOPNOTSUPP;
618         }
619 }
620
621 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
622                                   void *cb_priv)
623 {
624         struct flow_cls_offload *f;
625         struct qede_dev *edev = cb_priv;
626
627         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
628                 return -EOPNOTSUPP;
629
630         switch (type) {
631         case TC_SETUP_CLSFLOWER:
632                 f = type_data;
633                 return qede_set_flower(edev, f, f->common.protocol);
634         default:
635                 return -EOPNOTSUPP;
636         }
637 }
638
639 static LIST_HEAD(qede_block_cb_list);
640
641 static int
642 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
643                       void *type_data)
644 {
645         struct qede_dev *edev = netdev_priv(dev);
646         struct tc_mqprio_qopt *mqprio;
647
648         switch (type) {
649         case TC_SETUP_BLOCK:
650                 return flow_block_cb_setup_simple(type_data,
651                                                   &qede_block_cb_list,
652                                                   qede_setup_tc_block_cb,
653                                                   edev, edev, true);
654         case TC_SETUP_QDISC_MQPRIO:
655                 mqprio = type_data;
656
657                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
658                 return qede_setup_tc(dev, mqprio->num_tc);
659         default:
660                 return -EOPNOTSUPP;
661         }
662 }
663
664 static const struct net_device_ops qede_netdev_ops = {
665         .ndo_open = qede_open,
666         .ndo_stop = qede_close,
667         .ndo_start_xmit = qede_start_xmit,
668         .ndo_select_queue = qede_select_queue,
669         .ndo_set_rx_mode = qede_set_rx_mode,
670         .ndo_set_mac_address = qede_set_mac_addr,
671         .ndo_validate_addr = eth_validate_addr,
672         .ndo_change_mtu = qede_change_mtu,
673         .ndo_do_ioctl = qede_ioctl,
674         .ndo_tx_timeout = qede_tx_timeout,
675 #ifdef CONFIG_QED_SRIOV
676         .ndo_set_vf_mac = qede_set_vf_mac,
677         .ndo_set_vf_vlan = qede_set_vf_vlan,
678         .ndo_set_vf_trust = qede_set_vf_trust,
679 #endif
680         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
681         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
682         .ndo_fix_features = qede_fix_features,
683         .ndo_set_features = qede_set_features,
684         .ndo_get_stats64 = qede_get_stats64,
685 #ifdef CONFIG_QED_SRIOV
686         .ndo_set_vf_link_state = qede_set_vf_link_state,
687         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
688         .ndo_get_vf_config = qede_get_vf_config,
689         .ndo_set_vf_rate = qede_set_vf_rate,
690 #endif
691         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
692         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
693         .ndo_features_check = qede_features_check,
694         .ndo_bpf = qede_xdp,
695 #ifdef CONFIG_RFS_ACCEL
696         .ndo_rx_flow_steer = qede_rx_flow_steer,
697 #endif
698         .ndo_setup_tc = qede_setup_tc_offload,
699 };
700
701 static const struct net_device_ops qede_netdev_vf_ops = {
702         .ndo_open = qede_open,
703         .ndo_stop = qede_close,
704         .ndo_start_xmit = qede_start_xmit,
705         .ndo_select_queue = qede_select_queue,
706         .ndo_set_rx_mode = qede_set_rx_mode,
707         .ndo_set_mac_address = qede_set_mac_addr,
708         .ndo_validate_addr = eth_validate_addr,
709         .ndo_change_mtu = qede_change_mtu,
710         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
711         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
712         .ndo_fix_features = qede_fix_features,
713         .ndo_set_features = qede_set_features,
714         .ndo_get_stats64 = qede_get_stats64,
715         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
716         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
717         .ndo_features_check = qede_features_check,
718 };
719
720 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
721         .ndo_open = qede_open,
722         .ndo_stop = qede_close,
723         .ndo_start_xmit = qede_start_xmit,
724         .ndo_select_queue = qede_select_queue,
725         .ndo_set_rx_mode = qede_set_rx_mode,
726         .ndo_set_mac_address = qede_set_mac_addr,
727         .ndo_validate_addr = eth_validate_addr,
728         .ndo_change_mtu = qede_change_mtu,
729         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
730         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
731         .ndo_fix_features = qede_fix_features,
732         .ndo_set_features = qede_set_features,
733         .ndo_get_stats64 = qede_get_stats64,
734         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
735         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
736         .ndo_features_check = qede_features_check,
737         .ndo_bpf = qede_xdp,
738 };
739
740 /* -------------------------------------------------------------------------
741  * START OF PROBE / REMOVE
742  * -------------------------------------------------------------------------
743  */
744
745 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
746                                             struct pci_dev *pdev,
747                                             struct qed_dev_eth_info *info,
748                                             u32 dp_module, u8 dp_level)
749 {
750         struct net_device *ndev;
751         struct qede_dev *edev;
752
753         ndev = alloc_etherdev_mqs(sizeof(*edev),
754                                   info->num_queues * info->num_tc,
755                                   info->num_queues);
756         if (!ndev) {
757                 pr_err("etherdev allocation failed\n");
758                 return NULL;
759         }
760
761         edev = netdev_priv(ndev);
762         edev->ndev = ndev;
763         edev->cdev = cdev;
764         edev->pdev = pdev;
765         edev->dp_module = dp_module;
766         edev->dp_level = dp_level;
767         edev->ops = qed_ops;
768
769         if (is_kdump_kernel()) {
770                 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
771                 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
772         } else {
773                 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
774                 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
775         }
776
777         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
778                 info->num_queues, info->num_queues);
779
780         SET_NETDEV_DEV(ndev, &pdev->dev);
781
782         memset(&edev->stats, 0, sizeof(edev->stats));
783         memcpy(&edev->dev_info, info, sizeof(*info));
784
785         /* As ethtool doesn't have the ability to show WoL behavior as
786          * 'default', if device supports it declare it's enabled.
787          */
788         if (edev->dev_info.common.wol_support)
789                 edev->wol_enabled = true;
790
791         INIT_LIST_HEAD(&edev->vlan_list);
792
793         return edev;
794 }
795
796 static void qede_init_ndev(struct qede_dev *edev)
797 {
798         struct net_device *ndev = edev->ndev;
799         struct pci_dev *pdev = edev->pdev;
800         bool udp_tunnel_enable = false;
801         netdev_features_t hw_features;
802
803         pci_set_drvdata(pdev, ndev);
804
805         ndev->mem_start = edev->dev_info.common.pci_mem_start;
806         ndev->base_addr = ndev->mem_start;
807         ndev->mem_end = edev->dev_info.common.pci_mem_end;
808         ndev->irq = edev->dev_info.common.pci_irq;
809
810         ndev->watchdog_timeo = TX_TIMEOUT;
811
812         if (IS_VF(edev)) {
813                 if (edev->dev_info.xdp_supported)
814                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
815                 else
816                         ndev->netdev_ops = &qede_netdev_vf_ops;
817         } else {
818                 ndev->netdev_ops = &qede_netdev_ops;
819         }
820
821         qede_set_ethtool_ops(ndev);
822
823         ndev->priv_flags |= IFF_UNICAST_FLT;
824
825         /* user-changeble features */
826         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
827                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
828                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
829
830         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
831                 hw_features |= NETIF_F_NTUPLE;
832
833         if (edev->dev_info.common.vxlan_enable ||
834             edev->dev_info.common.geneve_enable)
835                 udp_tunnel_enable = true;
836
837         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
838                 hw_features |= NETIF_F_TSO_ECN;
839                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
840                                         NETIF_F_SG | NETIF_F_TSO |
841                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
842                                         NETIF_F_RXCSUM;
843         }
844
845         if (udp_tunnel_enable) {
846                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
847                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
848                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
849                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
850         }
851
852         if (edev->dev_info.common.gre_enable) {
853                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
854                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
855                                           NETIF_F_GSO_GRE_CSUM);
856         }
857
858         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
859                               NETIF_F_HIGHDMA;
860         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
861                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
862                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
863
864         ndev->hw_features = hw_features;
865
866         /* MTU range: 46 - 9600 */
867         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
868         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
869
870         /* Set network device HW mac */
871         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
872
873         ndev->mtu = edev->dev_info.common.mtu;
874 }
875
876 /* This function converts from 32b param to two params of level and module
877  * Input 32b decoding:
878  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
879  * 'happy' flow, e.g. memory allocation failed.
880  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
881  * and provide important parameters.
882  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
883  * module. VERBOSE prints are for tracking the specific flow in low level.
884  *
885  * Notice that the level should be that of the lowest required logs.
886  */
887 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
888 {
889         *p_dp_level = QED_LEVEL_NOTICE;
890         *p_dp_module = 0;
891
892         if (debug & QED_LOG_VERBOSE_MASK) {
893                 *p_dp_level = QED_LEVEL_VERBOSE;
894                 *p_dp_module = (debug & 0x3FFFFFFF);
895         } else if (debug & QED_LOG_INFO_MASK) {
896                 *p_dp_level = QED_LEVEL_INFO;
897         } else if (debug & QED_LOG_NOTICE_MASK) {
898                 *p_dp_level = QED_LEVEL_NOTICE;
899         }
900 }
901
902 static void qede_free_fp_array(struct qede_dev *edev)
903 {
904         if (edev->fp_array) {
905                 struct qede_fastpath *fp;
906                 int i;
907
908                 for_each_queue(i) {
909                         fp = &edev->fp_array[i];
910
911                         kfree(fp->sb_info);
912                         /* Handle mem alloc failure case where qede_init_fp
913                          * didn't register xdp_rxq_info yet.
914                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
915                          */
916                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
917                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
918                         kfree(fp->rxq);
919                         kfree(fp->xdp_tx);
920                         kfree(fp->txq);
921                 }
922                 kfree(edev->fp_array);
923         }
924
925         edev->num_queues = 0;
926         edev->fp_num_tx = 0;
927         edev->fp_num_rx = 0;
928 }
929
930 static int qede_alloc_fp_array(struct qede_dev *edev)
931 {
932         u8 fp_combined, fp_rx = edev->fp_num_rx;
933         struct qede_fastpath *fp;
934         int i;
935
936         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
937                                  sizeof(*edev->fp_array), GFP_KERNEL);
938         if (!edev->fp_array) {
939                 DP_NOTICE(edev, "fp array allocation failed\n");
940                 goto err;
941         }
942
943         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
944
945         /* Allocate the FP elements for Rx queues followed by combined and then
946          * the Tx. This ordering should be maintained so that the respective
947          * queues (Rx or Tx) will be together in the fastpath array and the
948          * associated ids will be sequential.
949          */
950         for_each_queue(i) {
951                 fp = &edev->fp_array[i];
952
953                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
954                 if (!fp->sb_info) {
955                         DP_NOTICE(edev, "sb info struct allocation failed\n");
956                         goto err;
957                 }
958
959                 if (fp_rx) {
960                         fp->type = QEDE_FASTPATH_RX;
961                         fp_rx--;
962                 } else if (fp_combined) {
963                         fp->type = QEDE_FASTPATH_COMBINED;
964                         fp_combined--;
965                 } else {
966                         fp->type = QEDE_FASTPATH_TX;
967                 }
968
969                 if (fp->type & QEDE_FASTPATH_TX) {
970                         fp->txq = kcalloc(edev->dev_info.num_tc,
971                                           sizeof(*fp->txq), GFP_KERNEL);
972                         if (!fp->txq)
973                                 goto err;
974                 }
975
976                 if (fp->type & QEDE_FASTPATH_RX) {
977                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
978                         if (!fp->rxq)
979                                 goto err;
980
981                         if (edev->xdp_prog) {
982                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
983                                                      GFP_KERNEL);
984                                 if (!fp->xdp_tx)
985                                         goto err;
986                                 fp->type |= QEDE_FASTPATH_XDP;
987                         }
988                 }
989         }
990
991         return 0;
992 err:
993         qede_free_fp_array(edev);
994         return -ENOMEM;
995 }
996
997 /* The qede lock is used to protect driver state change and driver flows that
998  * are not reentrant.
999  */
1000 void __qede_lock(struct qede_dev *edev)
1001 {
1002         mutex_lock(&edev->qede_lock);
1003 }
1004
1005 void __qede_unlock(struct qede_dev *edev)
1006 {
1007         mutex_unlock(&edev->qede_lock);
1008 }
1009
1010 /* This version of the lock should be used when acquiring the RTNL lock is also
1011  * needed in addition to the internal qede lock.
1012  */
1013 static void qede_lock(struct qede_dev *edev)
1014 {
1015         rtnl_lock();
1016         __qede_lock(edev);
1017 }
1018
1019 static void qede_unlock(struct qede_dev *edev)
1020 {
1021         __qede_unlock(edev);
1022         rtnl_unlock();
1023 }
1024
1025 static void qede_sp_task(struct work_struct *work)
1026 {
1027         struct qede_dev *edev = container_of(work, struct qede_dev,
1028                                              sp_task.work);
1029
1030         /* The locking scheme depends on the specific flag:
1031          * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1032          * ensure that ongoing flows are ended and new ones are not started.
1033          * In other cases - only the internal qede lock should be acquired.
1034          */
1035
1036         if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1037 #ifdef CONFIG_QED_SRIOV
1038                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1039                  * The recovery of the active VFs is currently not supported.
1040                  */
1041                 if (pci_num_vf(edev->pdev))
1042                         qede_sriov_configure(edev->pdev, 0);
1043 #endif
1044                 qede_lock(edev);
1045                 qede_recovery_handler(edev);
1046                 qede_unlock(edev);
1047         }
1048
1049         __qede_lock(edev);
1050
1051         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1052                 if (edev->state == QEDE_STATE_OPEN)
1053                         qede_config_rx_mode(edev->ndev);
1054
1055 #ifdef CONFIG_RFS_ACCEL
1056         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1057                 if (edev->state == QEDE_STATE_OPEN)
1058                         qede_process_arfs_filters(edev, false);
1059         }
1060 #endif
1061         if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1062                 qede_generic_hw_err_handler(edev);
1063         __qede_unlock(edev);
1064
1065         if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1066 #ifdef CONFIG_QED_SRIOV
1067                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1068                  * The recovery of the active VFs is currently not supported.
1069                  */
1070                 if (pci_num_vf(edev->pdev))
1071                         qede_sriov_configure(edev->pdev, 0);
1072 #endif
1073                 edev->ops->common->recovery_process(edev->cdev);
1074         }
1075 }
1076
1077 static void qede_update_pf_params(struct qed_dev *cdev)
1078 {
1079         struct qed_pf_params pf_params;
1080         u16 num_cons;
1081
1082         /* 64 rx + 64 tx + 64 XDP */
1083         memset(&pf_params, 0, sizeof(struct qed_pf_params));
1084
1085         /* 1 rx + 1 xdp + max tx cos */
1086         num_cons = QED_MIN_L2_CONS;
1087
1088         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1089
1090         /* Same for VFs - make sure they'll have sufficient connections
1091          * to support XDP Tx queues.
1092          */
1093         pf_params.eth_pf_params.num_vf_cons = 48;
1094
1095         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1096         qed_ops->common->update_pf_params(cdev, &pf_params);
1097 }
1098
1099 #define QEDE_FW_VER_STR_SIZE    80
1100
1101 static void qede_log_probe(struct qede_dev *edev)
1102 {
1103         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1104         u8 buf[QEDE_FW_VER_STR_SIZE];
1105         size_t left_size;
1106
1107         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1108                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1109                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1110                  p_dev_info->fw_eng,
1111                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1112                  QED_MFW_VERSION_3_OFFSET,
1113                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1114                  QED_MFW_VERSION_2_OFFSET,
1115                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1116                  QED_MFW_VERSION_1_OFFSET,
1117                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1118                  QED_MFW_VERSION_0_OFFSET);
1119
1120         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1121         if (p_dev_info->mbi_version && left_size)
1122                 snprintf(buf + strlen(buf), left_size,
1123                          " [MBI %d.%d.%d]",
1124                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1125                          QED_MBI_VERSION_2_OFFSET,
1126                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1127                          QED_MBI_VERSION_1_OFFSET,
1128                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1129                          QED_MBI_VERSION_0_OFFSET);
1130
1131         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1132                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1133                 buf, edev->ndev->name);
1134 }
1135
1136 enum qede_probe_mode {
1137         QEDE_PROBE_NORMAL,
1138         QEDE_PROBE_RECOVERY,
1139 };
1140
1141 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1142                         bool is_vf, enum qede_probe_mode mode)
1143 {
1144         struct qed_probe_params probe_params;
1145         struct qed_slowpath_params sp_params;
1146         struct qed_dev_eth_info dev_info;
1147         struct qede_dev *edev;
1148         struct qed_dev *cdev;
1149         int rc;
1150
1151         if (unlikely(dp_level & QED_LEVEL_INFO))
1152                 pr_notice("Starting qede probe\n");
1153
1154         memset(&probe_params, 0, sizeof(probe_params));
1155         probe_params.protocol = QED_PROTOCOL_ETH;
1156         probe_params.dp_module = dp_module;
1157         probe_params.dp_level = dp_level;
1158         probe_params.is_vf = is_vf;
1159         probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1160         cdev = qed_ops->common->probe(pdev, &probe_params);
1161         if (!cdev) {
1162                 rc = -ENODEV;
1163                 goto err0;
1164         }
1165
1166         qede_update_pf_params(cdev);
1167
1168         /* Start the Slowpath-process */
1169         memset(&sp_params, 0, sizeof(sp_params));
1170         sp_params.int_mode = QED_INT_MODE_MSIX;
1171         sp_params.drv_major = QEDE_MAJOR_VERSION;
1172         sp_params.drv_minor = QEDE_MINOR_VERSION;
1173         sp_params.drv_rev = QEDE_REVISION_VERSION;
1174         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1175         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1176         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1177         if (rc) {
1178                 pr_notice("Cannot start slowpath\n");
1179                 goto err1;
1180         }
1181
1182         /* Learn information crucial for qede to progress */
1183         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1184         if (rc)
1185                 goto err2;
1186
1187         if (mode != QEDE_PROBE_RECOVERY) {
1188                 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1189                                            dp_level);
1190                 if (!edev) {
1191                         rc = -ENOMEM;
1192                         goto err2;
1193                 }
1194         } else {
1195                 struct net_device *ndev = pci_get_drvdata(pdev);
1196
1197                 edev = netdev_priv(ndev);
1198                 edev->cdev = cdev;
1199                 memset(&edev->stats, 0, sizeof(edev->stats));
1200                 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1201         }
1202
1203         if (is_vf)
1204                 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1205
1206         qede_init_ndev(edev);
1207
1208         rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1209         if (rc)
1210                 goto err3;
1211
1212         if (mode != QEDE_PROBE_RECOVERY) {
1213                 /* Prepare the lock prior to the registration of the netdev,
1214                  * as once it's registered we might reach flows requiring it
1215                  * [it's even possible to reach a flow needing it directly
1216                  * from there, although it's unlikely].
1217                  */
1218                 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1219                 mutex_init(&edev->qede_lock);
1220
1221                 rc = register_netdev(edev->ndev);
1222                 if (rc) {
1223                         DP_NOTICE(edev, "Cannot register net-device\n");
1224                         goto err4;
1225                 }
1226         }
1227
1228         edev->ops->common->set_name(cdev, edev->ndev->name);
1229
1230         /* PTP not supported on VFs */
1231         if (!is_vf)
1232                 qede_ptp_enable(edev);
1233
1234         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1235
1236 #ifdef CONFIG_DCB
1237         if (!IS_VF(edev))
1238                 qede_set_dcbnl_ops(edev->ndev);
1239 #endif
1240
1241         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1242
1243         qede_log_probe(edev);
1244         return 0;
1245
1246 err4:
1247         qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1248 err3:
1249         free_netdev(edev->ndev);
1250 err2:
1251         qed_ops->common->slowpath_stop(cdev);
1252 err1:
1253         qed_ops->common->remove(cdev);
1254 err0:
1255         return rc;
1256 }
1257
1258 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1259 {
1260         bool is_vf = false;
1261         u32 dp_module = 0;
1262         u8 dp_level = 0;
1263
1264         switch ((enum qede_pci_private)id->driver_data) {
1265         case QEDE_PRIVATE_VF:
1266                 if (debug & QED_LOG_VERBOSE_MASK)
1267                         dev_err(&pdev->dev, "Probing a VF\n");
1268                 is_vf = true;
1269                 break;
1270         default:
1271                 if (debug & QED_LOG_VERBOSE_MASK)
1272                         dev_err(&pdev->dev, "Probing a PF\n");
1273         }
1274
1275         qede_config_debug(debug, &dp_module, &dp_level);
1276
1277         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1278                             QEDE_PROBE_NORMAL);
1279 }
1280
1281 enum qede_remove_mode {
1282         QEDE_REMOVE_NORMAL,
1283         QEDE_REMOVE_RECOVERY,
1284 };
1285
1286 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1287 {
1288         struct net_device *ndev = pci_get_drvdata(pdev);
1289         struct qede_dev *edev;
1290         struct qed_dev *cdev;
1291
1292         if (!ndev) {
1293                 dev_info(&pdev->dev, "Device has already been removed\n");
1294                 return;
1295         }
1296
1297         edev = netdev_priv(ndev);
1298         cdev = edev->cdev;
1299
1300         DP_INFO(edev, "Starting qede_remove\n");
1301
1302         qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1303
1304         if (mode != QEDE_REMOVE_RECOVERY) {
1305                 unregister_netdev(ndev);
1306
1307                 cancel_delayed_work_sync(&edev->sp_task);
1308
1309                 edev->ops->common->set_power_state(cdev, PCI_D0);
1310
1311                 pci_set_drvdata(pdev, NULL);
1312         }
1313
1314         qede_ptp_disable(edev);
1315
1316         /* Use global ops since we've freed edev */
1317         qed_ops->common->slowpath_stop(cdev);
1318         if (system_state == SYSTEM_POWER_OFF)
1319                 return;
1320         qed_ops->common->remove(cdev);
1321         edev->cdev = NULL;
1322
1323         /* Since this can happen out-of-sync with other flows,
1324          * don't release the netdevice until after slowpath stop
1325          * has been called to guarantee various other contexts
1326          * [e.g., QED register callbacks] won't break anything when
1327          * accessing the netdevice.
1328          */
1329         if (mode != QEDE_REMOVE_RECOVERY)
1330                 free_netdev(ndev);
1331
1332         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1333 }
1334
1335 static void qede_remove(struct pci_dev *pdev)
1336 {
1337         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1338 }
1339
1340 static void qede_shutdown(struct pci_dev *pdev)
1341 {
1342         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1343 }
1344
1345 /* -------------------------------------------------------------------------
1346  * START OF LOAD / UNLOAD
1347  * -------------------------------------------------------------------------
1348  */
1349
1350 static int qede_set_num_queues(struct qede_dev *edev)
1351 {
1352         int rc;
1353         u16 rss_num;
1354
1355         /* Setup queues according to possible resources*/
1356         if (edev->req_queues)
1357                 rss_num = edev->req_queues;
1358         else
1359                 rss_num = netif_get_num_default_rss_queues() *
1360                           edev->dev_info.common.num_hwfns;
1361
1362         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1363
1364         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1365         if (rc > 0) {
1366                 /* Managed to request interrupts for our queues */
1367                 edev->num_queues = rc;
1368                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1369                         QEDE_QUEUE_CNT(edev), rss_num);
1370                 rc = 0;
1371         }
1372
1373         edev->fp_num_tx = edev->req_num_tx;
1374         edev->fp_num_rx = edev->req_num_rx;
1375
1376         return rc;
1377 }
1378
1379 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1380                              u16 sb_id)
1381 {
1382         if (sb_info->sb_virt) {
1383                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1384                                               QED_SB_TYPE_L2_QUEUE);
1385                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1386                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1387                 memset(sb_info, 0, sizeof(*sb_info));
1388         }
1389 }
1390
1391 /* This function allocates fast-path status block memory */
1392 static int qede_alloc_mem_sb(struct qede_dev *edev,
1393                              struct qed_sb_info *sb_info, u16 sb_id)
1394 {
1395         struct status_block_e4 *sb_virt;
1396         dma_addr_t sb_phys;
1397         int rc;
1398
1399         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1400                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1401         if (!sb_virt) {
1402                 DP_ERR(edev, "Status block allocation failed\n");
1403                 return -ENOMEM;
1404         }
1405
1406         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1407                                         sb_virt, sb_phys, sb_id,
1408                                         QED_SB_TYPE_L2_QUEUE);
1409         if (rc) {
1410                 DP_ERR(edev, "Status block initialization failed\n");
1411                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1412                                   sb_virt, sb_phys);
1413                 return rc;
1414         }
1415
1416         return 0;
1417 }
1418
1419 static void qede_free_rx_buffers(struct qede_dev *edev,
1420                                  struct qede_rx_queue *rxq)
1421 {
1422         u16 i;
1423
1424         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1425                 struct sw_rx_data *rx_buf;
1426                 struct page *data;
1427
1428                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1429                 data = rx_buf->data;
1430
1431                 dma_unmap_page(&edev->pdev->dev,
1432                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1433
1434                 rx_buf->data = NULL;
1435                 __free_page(data);
1436         }
1437 }
1438
1439 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1440 {
1441         /* Free rx buffers */
1442         qede_free_rx_buffers(edev, rxq);
1443
1444         /* Free the parallel SW ring */
1445         kfree(rxq->sw_rx_ring);
1446
1447         /* Free the real RQ ring used by FW */
1448         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1449         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1450 }
1451
1452 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1453 {
1454         int i;
1455
1456         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1457                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1458
1459                 tpa_info->state = QEDE_AGG_STATE_NONE;
1460         }
1461 }
1462
1463 /* This function allocates all memory needed per Rx queue */
1464 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1465 {
1466         int i, rc, size;
1467
1468         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1469
1470         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1471
1472         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1473         size = rxq->rx_headroom +
1474                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1475
1476         /* Make sure that the headroom and  payload fit in a single page */
1477         if (rxq->rx_buf_size + size > PAGE_SIZE)
1478                 rxq->rx_buf_size = PAGE_SIZE - size;
1479
1480         /* Segment size to split a page in multiple equal parts,
1481          * unless XDP is used in which case we'd use the entire page.
1482          */
1483         if (!edev->xdp_prog) {
1484                 size = size + rxq->rx_buf_size;
1485                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1486         } else {
1487                 rxq->rx_buf_seg_size = PAGE_SIZE;
1488                 edev->ndev->features &= ~NETIF_F_GRO_HW;
1489         }
1490
1491         /* Allocate the parallel driver ring for Rx buffers */
1492         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1493         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1494         if (!rxq->sw_rx_ring) {
1495                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1496                 rc = -ENOMEM;
1497                 goto err;
1498         }
1499
1500         /* Allocate FW Rx ring  */
1501         rc = edev->ops->common->chain_alloc(edev->cdev,
1502                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1503                                             QED_CHAIN_MODE_NEXT_PTR,
1504                                             QED_CHAIN_CNT_TYPE_U16,
1505                                             RX_RING_SIZE,
1506                                             sizeof(struct eth_rx_bd),
1507                                             &rxq->rx_bd_ring, NULL);
1508         if (rc)
1509                 goto err;
1510
1511         /* Allocate FW completion ring */
1512         rc = edev->ops->common->chain_alloc(edev->cdev,
1513                                             QED_CHAIN_USE_TO_CONSUME,
1514                                             QED_CHAIN_MODE_PBL,
1515                                             QED_CHAIN_CNT_TYPE_U16,
1516                                             RX_RING_SIZE,
1517                                             sizeof(union eth_rx_cqe),
1518                                             &rxq->rx_comp_ring, NULL);
1519         if (rc)
1520                 goto err;
1521
1522         /* Allocate buffers for the Rx ring */
1523         rxq->filled_buffers = 0;
1524         for (i = 0; i < rxq->num_rx_buffers; i++) {
1525                 rc = qede_alloc_rx_buffer(rxq, false);
1526                 if (rc) {
1527                         DP_ERR(edev,
1528                                "Rx buffers allocation failed at index %d\n", i);
1529                         goto err;
1530                 }
1531         }
1532
1533         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1534         if (!edev->gro_disable)
1535                 qede_set_tpa_param(rxq);
1536 err:
1537         return rc;
1538 }
1539
1540 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1541 {
1542         /* Free the parallel SW ring */
1543         if (txq->is_xdp)
1544                 kfree(txq->sw_tx_ring.xdp);
1545         else
1546                 kfree(txq->sw_tx_ring.skbs);
1547
1548         /* Free the real RQ ring used by FW */
1549         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1550 }
1551
1552 /* This function allocates all memory needed per Tx queue */
1553 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1554 {
1555         union eth_tx_bd_types *p_virt;
1556         int size, rc;
1557
1558         txq->num_tx_buffers = edev->q_num_tx_buffers;
1559
1560         /* Allocate the parallel driver ring for Tx buffers */
1561         if (txq->is_xdp) {
1562                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1563                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1564                 if (!txq->sw_tx_ring.xdp)
1565                         goto err;
1566         } else {
1567                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1568                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1569                 if (!txq->sw_tx_ring.skbs)
1570                         goto err;
1571         }
1572
1573         rc = edev->ops->common->chain_alloc(edev->cdev,
1574                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1575                                             QED_CHAIN_MODE_PBL,
1576                                             QED_CHAIN_CNT_TYPE_U16,
1577                                             txq->num_tx_buffers,
1578                                             sizeof(*p_virt),
1579                                             &txq->tx_pbl, NULL);
1580         if (rc)
1581                 goto err;
1582
1583         return 0;
1584
1585 err:
1586         qede_free_mem_txq(edev, txq);
1587         return -ENOMEM;
1588 }
1589
1590 /* This function frees all memory of a single fp */
1591 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1592 {
1593         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1594
1595         if (fp->type & QEDE_FASTPATH_RX)
1596                 qede_free_mem_rxq(edev, fp->rxq);
1597
1598         if (fp->type & QEDE_FASTPATH_XDP)
1599                 qede_free_mem_txq(edev, fp->xdp_tx);
1600
1601         if (fp->type & QEDE_FASTPATH_TX) {
1602                 int cos;
1603
1604                 for_each_cos_in_txq(edev, cos)
1605                         qede_free_mem_txq(edev, &fp->txq[cos]);
1606         }
1607 }
1608
1609 /* This function allocates all memory needed for a single fp (i.e. an entity
1610  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1611  */
1612 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1613 {
1614         int rc = 0;
1615
1616         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1617         if (rc)
1618                 goto out;
1619
1620         if (fp->type & QEDE_FASTPATH_RX) {
1621                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1622                 if (rc)
1623                         goto out;
1624         }
1625
1626         if (fp->type & QEDE_FASTPATH_XDP) {
1627                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1628                 if (rc)
1629                         goto out;
1630         }
1631
1632         if (fp->type & QEDE_FASTPATH_TX) {
1633                 int cos;
1634
1635                 for_each_cos_in_txq(edev, cos) {
1636                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1637                         if (rc)
1638                                 goto out;
1639                 }
1640         }
1641
1642 out:
1643         return rc;
1644 }
1645
1646 static void qede_free_mem_load(struct qede_dev *edev)
1647 {
1648         int i;
1649
1650         for_each_queue(i) {
1651                 struct qede_fastpath *fp = &edev->fp_array[i];
1652
1653                 qede_free_mem_fp(edev, fp);
1654         }
1655 }
1656
1657 /* This function allocates all qede memory at NIC load. */
1658 static int qede_alloc_mem_load(struct qede_dev *edev)
1659 {
1660         int rc = 0, queue_id;
1661
1662         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1663                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1664
1665                 rc = qede_alloc_mem_fp(edev, fp);
1666                 if (rc) {
1667                         DP_ERR(edev,
1668                                "Failed to allocate memory for fastpath - rss id = %d\n",
1669                                queue_id);
1670                         qede_free_mem_load(edev);
1671                         return rc;
1672                 }
1673         }
1674
1675         return 0;
1676 }
1677
1678 static void qede_empty_tx_queue(struct qede_dev *edev,
1679                                 struct qede_tx_queue *txq)
1680 {
1681         unsigned int pkts_compl = 0, bytes_compl = 0;
1682         struct netdev_queue *netdev_txq;
1683         int rc, len = 0;
1684
1685         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1686
1687         while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1688                qed_chain_get_prod_idx(&txq->tx_pbl)) {
1689                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1690                            "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1691                            txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1692                            qed_chain_get_prod_idx(&txq->tx_pbl));
1693
1694                 rc = qede_free_tx_pkt(edev, txq, &len);
1695                 if (rc) {
1696                         DP_NOTICE(edev,
1697                                   "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1698                                   txq->index,
1699                                   qed_chain_get_cons_idx(&txq->tx_pbl),
1700                                   qed_chain_get_prod_idx(&txq->tx_pbl));
1701                         break;
1702                 }
1703
1704                 bytes_compl += len;
1705                 pkts_compl++;
1706                 txq->sw_tx_cons++;
1707         }
1708
1709         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1710 }
1711
1712 static void qede_empty_tx_queues(struct qede_dev *edev)
1713 {
1714         int i;
1715
1716         for_each_queue(i)
1717                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1718                         int cos;
1719
1720                         for_each_cos_in_txq(edev, cos) {
1721                                 struct qede_fastpath *fp;
1722
1723                                 fp = &edev->fp_array[i];
1724                                 qede_empty_tx_queue(edev,
1725                                                     &fp->txq[cos]);
1726                         }
1727                 }
1728 }
1729
1730 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1731 static void qede_init_fp(struct qede_dev *edev)
1732 {
1733         int queue_id, rxq_index = 0, txq_index = 0;
1734         struct qede_fastpath *fp;
1735
1736         for_each_queue(queue_id) {
1737                 fp = &edev->fp_array[queue_id];
1738
1739                 fp->edev = edev;
1740                 fp->id = queue_id;
1741
1742                 if (fp->type & QEDE_FASTPATH_XDP) {
1743                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1744                                                                 rxq_index);
1745                         fp->xdp_tx->is_xdp = 1;
1746                 }
1747
1748                 if (fp->type & QEDE_FASTPATH_RX) {
1749                         fp->rxq->rxq_id = rxq_index++;
1750
1751                         /* Determine how to map buffers for this queue */
1752                         if (fp->type & QEDE_FASTPATH_XDP)
1753                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1754                         else
1755                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1756                         fp->rxq->dev = &edev->pdev->dev;
1757
1758                         /* Driver have no error path from here */
1759                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1760                                                  fp->rxq->rxq_id) < 0);
1761                 }
1762
1763                 if (fp->type & QEDE_FASTPATH_TX) {
1764                         int cos;
1765
1766                         for_each_cos_in_txq(edev, cos) {
1767                                 struct qede_tx_queue *txq = &fp->txq[cos];
1768                                 u16 ndev_tx_id;
1769
1770                                 txq->cos = cos;
1771                                 txq->index = txq_index;
1772                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1773                                 txq->ndev_txq_id = ndev_tx_id;
1774
1775                                 if (edev->dev_info.is_legacy)
1776                                         txq->is_legacy = true;
1777                                 txq->dev = &edev->pdev->dev;
1778                         }
1779
1780                         txq_index++;
1781                 }
1782
1783                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1784                          edev->ndev->name, queue_id);
1785         }
1786 }
1787
1788 static int qede_set_real_num_queues(struct qede_dev *edev)
1789 {
1790         int rc = 0;
1791
1792         rc = netif_set_real_num_tx_queues(edev->ndev,
1793                                           QEDE_TSS_COUNT(edev) *
1794                                           edev->dev_info.num_tc);
1795         if (rc) {
1796                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1797                 return rc;
1798         }
1799
1800         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1801         if (rc) {
1802                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1803                 return rc;
1804         }
1805
1806         return 0;
1807 }
1808
1809 static void qede_napi_disable_remove(struct qede_dev *edev)
1810 {
1811         int i;
1812
1813         for_each_queue(i) {
1814                 napi_disable(&edev->fp_array[i].napi);
1815
1816                 netif_napi_del(&edev->fp_array[i].napi);
1817         }
1818 }
1819
1820 static void qede_napi_add_enable(struct qede_dev *edev)
1821 {
1822         int i;
1823
1824         /* Add NAPI objects */
1825         for_each_queue(i) {
1826                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1827                                qede_poll, NAPI_POLL_WEIGHT);
1828                 napi_enable(&edev->fp_array[i].napi);
1829         }
1830 }
1831
1832 static void qede_sync_free_irqs(struct qede_dev *edev)
1833 {
1834         int i;
1835
1836         for (i = 0; i < edev->int_info.used_cnt; i++) {
1837                 if (edev->int_info.msix_cnt) {
1838                         synchronize_irq(edev->int_info.msix[i].vector);
1839                         free_irq(edev->int_info.msix[i].vector,
1840                                  &edev->fp_array[i]);
1841                 } else {
1842                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1843                 }
1844         }
1845
1846         edev->int_info.used_cnt = 0;
1847 }
1848
1849 static int qede_req_msix_irqs(struct qede_dev *edev)
1850 {
1851         int i, rc;
1852
1853         /* Sanitize number of interrupts == number of prepared RSS queues */
1854         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1855                 DP_ERR(edev,
1856                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1857                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1858                 return -EINVAL;
1859         }
1860
1861         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1862 #ifdef CONFIG_RFS_ACCEL
1863                 struct qede_fastpath *fp = &edev->fp_array[i];
1864
1865                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1866                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1867                                               edev->int_info.msix[i].vector);
1868                         if (rc) {
1869                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1870                                 qede_free_arfs(edev);
1871                         }
1872                 }
1873 #endif
1874                 rc = request_irq(edev->int_info.msix[i].vector,
1875                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1876                                  &edev->fp_array[i]);
1877                 if (rc) {
1878                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1879                         qede_sync_free_irqs(edev);
1880                         return rc;
1881                 }
1882                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1883                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1884                            edev->fp_array[i].name, i,
1885                            &edev->fp_array[i]);
1886                 edev->int_info.used_cnt++;
1887         }
1888
1889         return 0;
1890 }
1891
1892 static void qede_simd_fp_handler(void *cookie)
1893 {
1894         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1895
1896         napi_schedule_irqoff(&fp->napi);
1897 }
1898
1899 static int qede_setup_irqs(struct qede_dev *edev)
1900 {
1901         int i, rc = 0;
1902
1903         /* Learn Interrupt configuration */
1904         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1905         if (rc)
1906                 return rc;
1907
1908         if (edev->int_info.msix_cnt) {
1909                 rc = qede_req_msix_irqs(edev);
1910                 if (rc)
1911                         return rc;
1912                 edev->ndev->irq = edev->int_info.msix[0].vector;
1913         } else {
1914                 const struct qed_common_ops *ops;
1915
1916                 /* qed should learn receive the RSS ids and callbacks */
1917                 ops = edev->ops->common;
1918                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1919                         ops->simd_handler_config(edev->cdev,
1920                                                  &edev->fp_array[i], i,
1921                                                  qede_simd_fp_handler);
1922                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1923         }
1924         return 0;
1925 }
1926
1927 static int qede_drain_txq(struct qede_dev *edev,
1928                           struct qede_tx_queue *txq, bool allow_drain)
1929 {
1930         int rc, cnt = 1000;
1931
1932         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1933                 if (!cnt) {
1934                         if (allow_drain) {
1935                                 DP_NOTICE(edev,
1936                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1937                                           txq->index);
1938                                 rc = edev->ops->common->drain(edev->cdev);
1939                                 if (rc)
1940                                         return rc;
1941                                 return qede_drain_txq(edev, txq, false);
1942                         }
1943                         DP_NOTICE(edev,
1944                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1945                                   txq->index, txq->sw_tx_prod,
1946                                   txq->sw_tx_cons);
1947                         return -ENODEV;
1948                 }
1949                 cnt--;
1950                 usleep_range(1000, 2000);
1951                 barrier();
1952         }
1953
1954         /* FW finished processing, wait for HW to transmit all tx packets */
1955         usleep_range(1000, 2000);
1956
1957         return 0;
1958 }
1959
1960 static int qede_stop_txq(struct qede_dev *edev,
1961                          struct qede_tx_queue *txq, int rss_id)
1962 {
1963         /* delete doorbell from doorbell recovery mechanism */
1964         edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1965                                            &txq->tx_db);
1966
1967         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1968 }
1969
1970 static int qede_stop_queues(struct qede_dev *edev)
1971 {
1972         struct qed_update_vport_params *vport_update_params;
1973         struct qed_dev *cdev = edev->cdev;
1974         struct qede_fastpath *fp;
1975         int rc, i;
1976
1977         /* Disable the vport */
1978         vport_update_params = vzalloc(sizeof(*vport_update_params));
1979         if (!vport_update_params)
1980                 return -ENOMEM;
1981
1982         vport_update_params->vport_id = 0;
1983         vport_update_params->update_vport_active_flg = 1;
1984         vport_update_params->vport_active_flg = 0;
1985         vport_update_params->update_rss_flg = 0;
1986
1987         rc = edev->ops->vport_update(cdev, vport_update_params);
1988         vfree(vport_update_params);
1989
1990         if (rc) {
1991                 DP_ERR(edev, "Failed to update vport\n");
1992                 return rc;
1993         }
1994
1995         /* Flush Tx queues. If needed, request drain from MCP */
1996         for_each_queue(i) {
1997                 fp = &edev->fp_array[i];
1998
1999                 if (fp->type & QEDE_FASTPATH_TX) {
2000                         int cos;
2001
2002                         for_each_cos_in_txq(edev, cos) {
2003                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2004                                 if (rc)
2005                                         return rc;
2006                         }
2007                 }
2008
2009                 if (fp->type & QEDE_FASTPATH_XDP) {
2010                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
2011                         if (rc)
2012                                 return rc;
2013                 }
2014         }
2015
2016         /* Stop all Queues in reverse order */
2017         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2018                 fp = &edev->fp_array[i];
2019
2020                 /* Stop the Tx Queue(s) */
2021                 if (fp->type & QEDE_FASTPATH_TX) {
2022                         int cos;
2023
2024                         for_each_cos_in_txq(edev, cos) {
2025                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2026                                 if (rc)
2027                                         return rc;
2028                         }
2029                 }
2030
2031                 /* Stop the Rx Queue */
2032                 if (fp->type & QEDE_FASTPATH_RX) {
2033                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2034                         if (rc) {
2035                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2036                                 return rc;
2037                         }
2038                 }
2039
2040                 /* Stop the XDP forwarding queue */
2041                 if (fp->type & QEDE_FASTPATH_XDP) {
2042                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
2043                         if (rc)
2044                                 return rc;
2045
2046                         bpf_prog_put(fp->rxq->xdp_prog);
2047                 }
2048         }
2049
2050         /* Stop the vport */
2051         rc = edev->ops->vport_stop(cdev, 0);
2052         if (rc)
2053                 DP_ERR(edev, "Failed to stop VPORT\n");
2054
2055         return rc;
2056 }
2057
2058 static int qede_start_txq(struct qede_dev *edev,
2059                           struct qede_fastpath *fp,
2060                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2061 {
2062         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2063         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2064         struct qed_queue_start_common_params params;
2065         struct qed_txq_start_ret_params ret_params;
2066         int rc;
2067
2068         memset(&params, 0, sizeof(params));
2069         memset(&ret_params, 0, sizeof(ret_params));
2070
2071         /* Let the XDP queue share the queue-zone with one of the regular txq.
2072          * We don't really care about its coalescing.
2073          */
2074         if (txq->is_xdp)
2075                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2076         else
2077                 params.queue_id = txq->index;
2078
2079         params.p_sb = fp->sb_info;
2080         params.sb_idx = sb_idx;
2081         params.tc = txq->cos;
2082
2083         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2084                                    page_cnt, &ret_params);
2085         if (rc) {
2086                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2087                 return rc;
2088         }
2089
2090         txq->doorbell_addr = ret_params.p_doorbell;
2091         txq->handle = ret_params.p_handle;
2092
2093         /* Determine the FW consumer address associated */
2094         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2095
2096         /* Prepare the doorbell parameters */
2097         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2098         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2099         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2100                   DQ_XCM_ETH_TX_BD_PROD_CMD);
2101         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2102
2103         /* register doorbell with doorbell recovery mechanism */
2104         rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2105                                                 &txq->tx_db, DB_REC_WIDTH_32B,
2106                                                 DB_REC_KERNEL);
2107
2108         return rc;
2109 }
2110
2111 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2112 {
2113         int vlan_removal_en = 1;
2114         struct qed_dev *cdev = edev->cdev;
2115         struct qed_dev_info *qed_info = &edev->dev_info.common;
2116         struct qed_update_vport_params *vport_update_params;
2117         struct qed_queue_start_common_params q_params;
2118         struct qed_start_vport_params start = {0};
2119         int rc, i;
2120
2121         if (!edev->num_queues) {
2122                 DP_ERR(edev,
2123                        "Cannot update V-VPORT as active as there are no Rx queues\n");
2124                 return -EINVAL;
2125         }
2126
2127         vport_update_params = vzalloc(sizeof(*vport_update_params));
2128         if (!vport_update_params)
2129                 return -ENOMEM;
2130
2131         start.handle_ptp_pkts = !!(edev->ptp);
2132         start.gro_enable = !edev->gro_disable;
2133         start.mtu = edev->ndev->mtu;
2134         start.vport_id = 0;
2135         start.drop_ttl0 = true;
2136         start.remove_inner_vlan = vlan_removal_en;
2137         start.clear_stats = clear_stats;
2138
2139         rc = edev->ops->vport_start(cdev, &start);
2140
2141         if (rc) {
2142                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2143                 goto out;
2144         }
2145
2146         DP_VERBOSE(edev, NETIF_MSG_IFUP,
2147                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2148                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2149
2150         for_each_queue(i) {
2151                 struct qede_fastpath *fp = &edev->fp_array[i];
2152                 dma_addr_t p_phys_table;
2153                 u32 page_cnt;
2154
2155                 if (fp->type & QEDE_FASTPATH_RX) {
2156                         struct qed_rxq_start_ret_params ret_params;
2157                         struct qede_rx_queue *rxq = fp->rxq;
2158                         __le16 *val;
2159
2160                         memset(&ret_params, 0, sizeof(ret_params));
2161                         memset(&q_params, 0, sizeof(q_params));
2162                         q_params.queue_id = rxq->rxq_id;
2163                         q_params.vport_id = 0;
2164                         q_params.p_sb = fp->sb_info;
2165                         q_params.sb_idx = RX_PI;
2166
2167                         p_phys_table =
2168                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2169                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2170
2171                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
2172                                                    rxq->rx_buf_size,
2173                                                    rxq->rx_bd_ring.p_phys_addr,
2174                                                    p_phys_table,
2175                                                    page_cnt, &ret_params);
2176                         if (rc) {
2177                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2178                                        rc);
2179                                 goto out;
2180                         }
2181
2182                         /* Use the return parameters */
2183                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2184                         rxq->handle = ret_params.p_handle;
2185
2186                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2187                         rxq->hw_cons_ptr = val;
2188
2189                         qede_update_rx_prod(edev, rxq);
2190                 }
2191
2192                 if (fp->type & QEDE_FASTPATH_XDP) {
2193                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2194                         if (rc)
2195                                 goto out;
2196
2197                         bpf_prog_add(edev->xdp_prog, 1);
2198                         fp->rxq->xdp_prog = edev->xdp_prog;
2199                 }
2200
2201                 if (fp->type & QEDE_FASTPATH_TX) {
2202                         int cos;
2203
2204                         for_each_cos_in_txq(edev, cos) {
2205                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2206                                                     TX_PI(cos));
2207                                 if (rc)
2208                                         goto out;
2209                         }
2210                 }
2211         }
2212
2213         /* Prepare and send the vport enable */
2214         vport_update_params->vport_id = start.vport_id;
2215         vport_update_params->update_vport_active_flg = 1;
2216         vport_update_params->vport_active_flg = 1;
2217
2218         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2219             qed_info->tx_switching) {
2220                 vport_update_params->update_tx_switching_flg = 1;
2221                 vport_update_params->tx_switching_flg = 1;
2222         }
2223
2224         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2225                              &vport_update_params->update_rss_flg);
2226
2227         rc = edev->ops->vport_update(cdev, vport_update_params);
2228         if (rc)
2229                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2230
2231 out:
2232         vfree(vport_update_params);
2233         return rc;
2234 }
2235
2236 enum qede_unload_mode {
2237         QEDE_UNLOAD_NORMAL,
2238         QEDE_UNLOAD_RECOVERY,
2239 };
2240
2241 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2242                         bool is_locked)
2243 {
2244         struct qed_link_params link_params;
2245         int rc;
2246
2247         DP_INFO(edev, "Starting qede unload\n");
2248
2249         if (!is_locked)
2250                 __qede_lock(edev);
2251
2252         clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2253
2254         if (mode != QEDE_UNLOAD_RECOVERY)
2255                 edev->state = QEDE_STATE_CLOSED;
2256
2257         qede_rdma_dev_event_close(edev);
2258
2259         /* Close OS Tx */
2260         netif_tx_disable(edev->ndev);
2261         netif_carrier_off(edev->ndev);
2262
2263         if (mode != QEDE_UNLOAD_RECOVERY) {
2264                 /* Reset the link */
2265                 memset(&link_params, 0, sizeof(link_params));
2266                 link_params.link_up = false;
2267                 edev->ops->common->set_link(edev->cdev, &link_params);
2268
2269                 rc = qede_stop_queues(edev);
2270                 if (rc) {
2271                         qede_sync_free_irqs(edev);
2272                         goto out;
2273                 }
2274
2275                 DP_INFO(edev, "Stopped Queues\n");
2276         }
2277
2278         qede_vlan_mark_nonconfigured(edev);
2279         edev->ops->fastpath_stop(edev->cdev);
2280
2281         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2282                 qede_poll_for_freeing_arfs_filters(edev);
2283                 qede_free_arfs(edev);
2284         }
2285
2286         /* Release the interrupts */
2287         qede_sync_free_irqs(edev);
2288         edev->ops->common->set_fp_int(edev->cdev, 0);
2289
2290         qede_napi_disable_remove(edev);
2291
2292         if (mode == QEDE_UNLOAD_RECOVERY)
2293                 qede_empty_tx_queues(edev);
2294
2295         qede_free_mem_load(edev);
2296         qede_free_fp_array(edev);
2297
2298 out:
2299         if (!is_locked)
2300                 __qede_unlock(edev);
2301
2302         if (mode != QEDE_UNLOAD_RECOVERY)
2303                 DP_NOTICE(edev, "Link is down\n");
2304
2305         edev->ptp_skip_txts = 0;
2306
2307         DP_INFO(edev, "Ending qede unload\n");
2308 }
2309
2310 enum qede_load_mode {
2311         QEDE_LOAD_NORMAL,
2312         QEDE_LOAD_RELOAD,
2313         QEDE_LOAD_RECOVERY,
2314 };
2315
2316 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2317                      bool is_locked)
2318 {
2319         struct qed_link_params link_params;
2320         u8 num_tc;
2321         int rc;
2322
2323         DP_INFO(edev, "Starting qede load\n");
2324
2325         if (!is_locked)
2326                 __qede_lock(edev);
2327
2328         rc = qede_set_num_queues(edev);
2329         if (rc)
2330                 goto out;
2331
2332         rc = qede_alloc_fp_array(edev);
2333         if (rc)
2334                 goto out;
2335
2336         qede_init_fp(edev);
2337
2338         rc = qede_alloc_mem_load(edev);
2339         if (rc)
2340                 goto err1;
2341         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2342                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2343
2344         rc = qede_set_real_num_queues(edev);
2345         if (rc)
2346                 goto err2;
2347
2348         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2349                 rc = qede_alloc_arfs(edev);
2350                 if (rc)
2351                         DP_NOTICE(edev, "aRFS memory allocation failed\n");
2352         }
2353
2354         qede_napi_add_enable(edev);
2355         DP_INFO(edev, "Napi added and enabled\n");
2356
2357         rc = qede_setup_irqs(edev);
2358         if (rc)
2359                 goto err3;
2360         DP_INFO(edev, "Setup IRQs succeeded\n");
2361
2362         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2363         if (rc)
2364                 goto err4;
2365         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2366
2367         num_tc = netdev_get_num_tc(edev->ndev);
2368         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2369         qede_setup_tc(edev->ndev, num_tc);
2370
2371         /* Program un-configured VLANs */
2372         qede_configure_vlan_filters(edev);
2373
2374         set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2375
2376         /* Ask for link-up using current configuration */
2377         memset(&link_params, 0, sizeof(link_params));
2378         link_params.link_up = true;
2379         edev->ops->common->set_link(edev->cdev, &link_params);
2380
2381         edev->state = QEDE_STATE_OPEN;
2382
2383         DP_INFO(edev, "Ending successfully qede load\n");
2384
2385         goto out;
2386 err4:
2387         qede_sync_free_irqs(edev);
2388         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2389 err3:
2390         qede_napi_disable_remove(edev);
2391 err2:
2392         qede_free_mem_load(edev);
2393 err1:
2394         edev->ops->common->set_fp_int(edev->cdev, 0);
2395         qede_free_fp_array(edev);
2396         edev->num_queues = 0;
2397         edev->fp_num_tx = 0;
2398         edev->fp_num_rx = 0;
2399 out:
2400         if (!is_locked)
2401                 __qede_unlock(edev);
2402
2403         return rc;
2404 }
2405
2406 /* 'func' should be able to run between unload and reload assuming interface
2407  * is actually running, or afterwards in case it's currently DOWN.
2408  */
2409 void qede_reload(struct qede_dev *edev,
2410                  struct qede_reload_args *args, bool is_locked)
2411 {
2412         if (!is_locked)
2413                 __qede_lock(edev);
2414
2415         /* Since qede_lock is held, internal state wouldn't change even
2416          * if netdev state would start transitioning. Check whether current
2417          * internal configuration indicates device is up, then reload.
2418          */
2419         if (edev->state == QEDE_STATE_OPEN) {
2420                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2421                 if (args)
2422                         args->func(edev, args);
2423                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2424
2425                 /* Since no one is going to do it for us, re-configure */
2426                 qede_config_rx_mode(edev->ndev);
2427         } else if (args) {
2428                 args->func(edev, args);
2429         }
2430
2431         if (!is_locked)
2432                 __qede_unlock(edev);
2433 }
2434
2435 /* called with rtnl_lock */
2436 static int qede_open(struct net_device *ndev)
2437 {
2438         struct qede_dev *edev = netdev_priv(ndev);
2439         int rc;
2440
2441         netif_carrier_off(ndev);
2442
2443         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2444
2445         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2446         if (rc)
2447                 return rc;
2448
2449         udp_tunnel_get_rx_info(ndev);
2450
2451         edev->ops->common->update_drv_state(edev->cdev, true);
2452
2453         return 0;
2454 }
2455
2456 static int qede_close(struct net_device *ndev)
2457 {
2458         struct qede_dev *edev = netdev_priv(ndev);
2459
2460         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2461
2462         edev->ops->common->update_drv_state(edev->cdev, false);
2463
2464         return 0;
2465 }
2466
2467 static void qede_link_update(void *dev, struct qed_link_output *link)
2468 {
2469         struct qede_dev *edev = dev;
2470
2471         if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2472                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2473                 return;
2474         }
2475
2476         if (link->link_up) {
2477                 if (!netif_carrier_ok(edev->ndev)) {
2478                         DP_NOTICE(edev, "Link is up\n");
2479                         netif_tx_start_all_queues(edev->ndev);
2480                         netif_carrier_on(edev->ndev);
2481                         qede_rdma_dev_event_open(edev);
2482                 }
2483         } else {
2484                 if (netif_carrier_ok(edev->ndev)) {
2485                         DP_NOTICE(edev, "Link is down\n");
2486                         netif_tx_disable(edev->ndev);
2487                         netif_carrier_off(edev->ndev);
2488                         qede_rdma_dev_event_close(edev);
2489                 }
2490         }
2491 }
2492
2493 static void qede_schedule_recovery_handler(void *dev)
2494 {
2495         struct qede_dev *edev = dev;
2496
2497         if (edev->state == QEDE_STATE_RECOVERY) {
2498                 DP_NOTICE(edev,
2499                           "Avoid scheduling a recovery handling since already in recovery state\n");
2500                 return;
2501         }
2502
2503         set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2504         schedule_delayed_work(&edev->sp_task, 0);
2505
2506         DP_INFO(edev, "Scheduled a recovery handler\n");
2507 }
2508
2509 static void qede_recovery_failed(struct qede_dev *edev)
2510 {
2511         netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2512
2513         netif_device_detach(edev->ndev);
2514
2515         if (edev->cdev)
2516                 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2517 }
2518
2519 static void qede_recovery_handler(struct qede_dev *edev)
2520 {
2521         u32 curr_state = edev->state;
2522         int rc;
2523
2524         DP_NOTICE(edev, "Starting a recovery process\n");
2525
2526         /* No need to acquire first the qede_lock since is done by qede_sp_task
2527          * before calling this function.
2528          */
2529         edev->state = QEDE_STATE_RECOVERY;
2530
2531         edev->ops->common->recovery_prolog(edev->cdev);
2532
2533         if (curr_state == QEDE_STATE_OPEN)
2534                 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2535
2536         __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2537
2538         rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2539                           IS_VF(edev), QEDE_PROBE_RECOVERY);
2540         if (rc) {
2541                 edev->cdev = NULL;
2542                 goto err;
2543         }
2544
2545         if (curr_state == QEDE_STATE_OPEN) {
2546                 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2547                 if (rc)
2548                         goto err;
2549
2550                 qede_config_rx_mode(edev->ndev);
2551                 udp_tunnel_get_rx_info(edev->ndev);
2552         }
2553
2554         edev->state = curr_state;
2555
2556         DP_NOTICE(edev, "Recovery handling is done\n");
2557
2558         return;
2559
2560 err:
2561         qede_recovery_failed(edev);
2562 }
2563
2564 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2565 {
2566         struct qed_dev *cdev = edev->cdev;
2567
2568         DP_NOTICE(edev,
2569                   "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2570                   edev->err_flags);
2571
2572         /* Get a call trace of the flow that led to the error */
2573         WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2574
2575         /* Prevent HW attentions from being reasserted */
2576         if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2577                 edev->ops->common->attn_clr_enable(cdev, true);
2578
2579         DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2580 }
2581
2582 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2583 {
2584         struct qed_dev *cdev = edev->cdev;
2585
2586         DP_NOTICE(edev,
2587                   "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2588                   edev->err_flags);
2589
2590         /* Trigger a recovery process.
2591          * This is placed in the sleep requiring section just to make
2592          * sure it is the last one, and that all the other operations
2593          * were completed.
2594          */
2595         if (test_bit(QEDE_ERR_IS_RECOVERABLE, &edev->err_flags))
2596                 edev->ops->common->recovery_process(cdev);
2597
2598         clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2599
2600         DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2601 }
2602
2603 static void qede_set_hw_err_flags(struct qede_dev *edev,
2604                                   enum qed_hw_err_type err_type)
2605 {
2606         unsigned long err_flags = 0;
2607
2608         switch (err_type) {
2609         case QED_HW_ERR_DMAE_FAIL:
2610                 set_bit(QEDE_ERR_WARN, &err_flags);
2611                 fallthrough;
2612         case QED_HW_ERR_MFW_RESP_FAIL:
2613         case QED_HW_ERR_HW_ATTN:
2614         case QED_HW_ERR_RAMROD_FAIL:
2615         case QED_HW_ERR_FW_ASSERT:
2616                 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2617                 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2618                 break;
2619
2620         default:
2621                 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2622                 break;
2623         }
2624
2625         edev->err_flags |= err_flags;
2626 }
2627
2628 static void qede_schedule_hw_err_handler(void *dev,
2629                                          enum qed_hw_err_type err_type)
2630 {
2631         struct qede_dev *edev = dev;
2632
2633         /* Fan failure cannot be masked by handling of another HW error or by a
2634          * concurrent recovery process.
2635          */
2636         if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2637              edev->state == QEDE_STATE_RECOVERY) &&
2638              err_type != QED_HW_ERR_FAN_FAIL) {
2639                 DP_INFO(edev,
2640                         "Avoid scheduling an error handling while another HW error is being handled\n");
2641                 return;
2642         }
2643
2644         if (err_type >= QED_HW_ERR_LAST) {
2645                 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2646                 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2647                 return;
2648         }
2649
2650         qede_set_hw_err_flags(edev, err_type);
2651         qede_atomic_hw_err_handler(edev);
2652         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2653         schedule_delayed_work(&edev->sp_task, 0);
2654
2655         DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2656 }
2657
2658 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2659 {
2660         struct netdev_queue *netdev_txq;
2661
2662         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2663         if (netif_xmit_stopped(netdev_txq))
2664                 return true;
2665
2666         return false;
2667 }
2668
2669 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2670 {
2671         struct qede_dev *edev = dev;
2672         struct netdev_hw_addr *ha;
2673         int i;
2674
2675         if (edev->ndev->features & NETIF_F_IP_CSUM)
2676                 data->feat_flags |= QED_TLV_IP_CSUM;
2677         if (edev->ndev->features & NETIF_F_TSO)
2678                 data->feat_flags |= QED_TLV_LSO;
2679
2680         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2681         memset(data->mac[1], 0, ETH_ALEN);
2682         memset(data->mac[2], 0, ETH_ALEN);
2683         /* Copy the first two UC macs */
2684         netif_addr_lock_bh(edev->ndev);
2685         i = 1;
2686         netdev_for_each_uc_addr(ha, edev->ndev) {
2687                 ether_addr_copy(data->mac[i++], ha->addr);
2688                 if (i == QED_TLV_MAC_COUNT)
2689                         break;
2690         }
2691
2692         netif_addr_unlock_bh(edev->ndev);
2693 }
2694
2695 static void qede_get_eth_tlv_data(void *dev, void *data)
2696 {
2697         struct qed_mfw_tlv_eth *etlv = data;
2698         struct qede_dev *edev = dev;
2699         struct qede_fastpath *fp;
2700         int i;
2701
2702         etlv->lso_maxoff_size = 0XFFFF;
2703         etlv->lso_maxoff_size_set = true;
2704         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2705         etlv->lso_minseg_size_set = true;
2706         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2707         etlv->prom_mode_set = true;
2708         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2709         etlv->tx_descr_size_set = true;
2710         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2711         etlv->rx_descr_size_set = true;
2712         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2713         etlv->iov_offload_set = true;
2714
2715         /* Fill information regarding queues; Should be done under the qede
2716          * lock to guarantee those don't change beneath our feet.
2717          */
2718         etlv->txqs_empty = true;
2719         etlv->rxqs_empty = true;
2720         etlv->num_txqs_full = 0;
2721         etlv->num_rxqs_full = 0;
2722
2723         __qede_lock(edev);
2724         for_each_queue(i) {
2725                 fp = &edev->fp_array[i];
2726                 if (fp->type & QEDE_FASTPATH_TX) {
2727                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2728
2729                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2730                                 etlv->txqs_empty = false;
2731                         if (qede_is_txq_full(edev, txq))
2732                                 etlv->num_txqs_full++;
2733                 }
2734                 if (fp->type & QEDE_FASTPATH_RX) {
2735                         if (qede_has_rx_work(fp->rxq))
2736                                 etlv->rxqs_empty = false;
2737
2738                         /* This one is a bit tricky; Firmware might stop
2739                          * placing packets if ring is not yet full.
2740                          * Give an approximation.
2741                          */
2742                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2743                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2744                             RX_RING_SIZE - 100)
2745                                 etlv->num_rxqs_full++;
2746                 }
2747         }
2748         __qede_unlock(edev);
2749
2750         etlv->txqs_empty_set = true;
2751         etlv->rxqs_empty_set = true;
2752         etlv->num_txqs_full_set = true;
2753         etlv->num_rxqs_full_set = true;
2754 }
2755
2756 /**
2757  * qede_io_error_detected - called when PCI error is detected
2758  * @pdev: Pointer to PCI device
2759  * @state: The current pci connection state
2760  *
2761  * This function is called after a PCI bus error affecting
2762  * this device has been detected.
2763  */
2764 static pci_ers_result_t
2765 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2766 {
2767         struct net_device *dev = pci_get_drvdata(pdev);
2768         struct qede_dev *edev = netdev_priv(dev);
2769
2770         if (!edev)
2771                 return PCI_ERS_RESULT_NONE;
2772
2773         DP_NOTICE(edev, "IO error detected [%d]\n", state);
2774
2775         __qede_lock(edev);
2776         if (edev->state == QEDE_STATE_RECOVERY) {
2777                 DP_NOTICE(edev, "Device already in the recovery state\n");
2778                 __qede_unlock(edev);
2779                 return PCI_ERS_RESULT_NONE;
2780         }
2781
2782         /* PF handles the recovery of its VFs */
2783         if (IS_VF(edev)) {
2784                 DP_VERBOSE(edev, QED_MSG_IOV,
2785                            "VF recovery is handled by its PF\n");
2786                 __qede_unlock(edev);
2787                 return PCI_ERS_RESULT_RECOVERED;
2788         }
2789
2790         /* Close OS Tx */
2791         netif_tx_disable(edev->ndev);
2792         netif_carrier_off(edev->ndev);
2793
2794         set_bit(QEDE_SP_AER, &edev->sp_flags);
2795         schedule_delayed_work(&edev->sp_task, 0);
2796
2797         __qede_unlock(edev);
2798
2799         return PCI_ERS_RESULT_CAN_RECOVER;
2800 }