Merge branches 'clk-range', 'clk-uniphier', 'clk-apple' and 'clk-qcom' into clk-next
[linux-2.6-microblaze.git] / drivers / net / ethernet / marvell / octeontx2 / af / rvu_npc_fs.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2020 Marvell.
5  */
6
7 #include <linux/bitfield.h>
8
9 #include "rvu_struct.h"
10 #include "rvu_reg.h"
11 #include "rvu.h"
12 #include "npc.h"
13
14 #define NPC_BYTESM              GENMASK_ULL(19, 16)
15 #define NPC_HDR_OFFSET          GENMASK_ULL(15, 8)
16 #define NPC_KEY_OFFSET          GENMASK_ULL(5, 0)
17 #define NPC_LDATA_EN            BIT_ULL(7)
18
19 static const char * const npc_flow_names[] = {
20         [NPC_DMAC]      = "dmac",
21         [NPC_SMAC]      = "smac",
22         [NPC_ETYPE]     = "ether type",
23         [NPC_VLAN_ETYPE_CTAG] = "vlan ether type ctag",
24         [NPC_VLAN_ETYPE_STAG] = "vlan ether type stag",
25         [NPC_OUTER_VID] = "outer vlan id",
26         [NPC_TOS]       = "tos",
27         [NPC_SIP_IPV4]  = "ipv4 source ip",
28         [NPC_DIP_IPV4]  = "ipv4 destination ip",
29         [NPC_SIP_IPV6]  = "ipv6 source ip",
30         [NPC_DIP_IPV6]  = "ipv6 destination ip",
31         [NPC_IPPROTO_TCP] = "ip proto tcp",
32         [NPC_IPPROTO_UDP] = "ip proto udp",
33         [NPC_IPPROTO_SCTP] = "ip proto sctp",
34         [NPC_IPPROTO_ICMP] = "ip proto icmp",
35         [NPC_IPPROTO_ICMP6] = "ip proto icmp6",
36         [NPC_IPPROTO_AH] = "ip proto AH",
37         [NPC_IPPROTO_ESP] = "ip proto ESP",
38         [NPC_SPORT_TCP] = "tcp source port",
39         [NPC_DPORT_TCP] = "tcp destination port",
40         [NPC_SPORT_UDP] = "udp source port",
41         [NPC_DPORT_UDP] = "udp destination port",
42         [NPC_SPORT_SCTP] = "sctp source port",
43         [NPC_DPORT_SCTP] = "sctp destination port",
44         [NPC_UNKNOWN]   = "unknown",
45 };
46
47 const char *npc_get_field_name(u8 hdr)
48 {
49         if (hdr >= ARRAY_SIZE(npc_flow_names))
50                 return npc_flow_names[NPC_UNKNOWN];
51
52         return npc_flow_names[hdr];
53 }
54
55 /* Compute keyword masks and figure out the number of keywords a field
56  * spans in the key.
57  */
58 static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type,
59                              u8 nr_bits, int start_kwi, int offset, u8 intf)
60 {
61         struct npc_key_field *field = &mcam->rx_key_fields[type];
62         u8 bits_in_kw;
63         int max_kwi;
64
65         if (mcam->banks_per_entry == 1)
66                 max_kwi = 1; /* NPC_MCAM_KEY_X1 */
67         else if (mcam->banks_per_entry == 2)
68                 max_kwi = 3; /* NPC_MCAM_KEY_X2 */
69         else
70                 max_kwi = 6; /* NPC_MCAM_KEY_X4 */
71
72         if (is_npc_intf_tx(intf))
73                 field = &mcam->tx_key_fields[type];
74
75         if (offset + nr_bits <= 64) {
76                 /* one KW only */
77                 if (start_kwi > max_kwi)
78                         return;
79                 field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0)
80                                              << offset;
81                 field->nr_kws = 1;
82         } else if (offset + nr_bits > 64 &&
83                    offset + nr_bits <= 128) {
84                 /* two KWs */
85                 if (start_kwi + 1 > max_kwi)
86                         return;
87                 /* first KW mask */
88                 bits_in_kw = 64 - offset;
89                 field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
90                                              << offset;
91                 /* second KW mask i.e. mask for rest of bits */
92                 bits_in_kw = nr_bits + offset - 64;
93                 field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0);
94                 field->nr_kws = 2;
95         } else {
96                 /* three KWs */
97                 if (start_kwi + 2 > max_kwi)
98                         return;
99                 /* first KW mask */
100                 bits_in_kw = 64 - offset;
101                 field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
102                                              << offset;
103                 /* second KW mask */
104                 field->kw_mask[start_kwi + 1] = ~0ULL;
105                 /* third KW mask i.e. mask for rest of bits */
106                 bits_in_kw = nr_bits + offset - 128;
107                 field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0);
108                 field->nr_kws = 3;
109         }
110 }
111
112 /* Helper function to figure out whether field exists in the key */
113 static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf)
114 {
115         struct npc_mcam *mcam = &rvu->hw->mcam;
116         struct npc_key_field *input;
117
118         input  = &mcam->rx_key_fields[type];
119         if (is_npc_intf_tx(intf))
120                 input  = &mcam->tx_key_fields[type];
121
122         return input->nr_kws > 0;
123 }
124
125 static bool npc_is_same(struct npc_key_field *input,
126                         struct npc_key_field *field)
127 {
128         return memcmp(&input->layer_mdata, &field->layer_mdata,
129                      sizeof(struct npc_layer_mdata)) == 0;
130 }
131
132 static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type,
133                                 u64 cfg, u8 lid, u8 lt, u8 intf)
134 {
135         struct npc_key_field *input = &mcam->rx_key_fields[type];
136
137         if (is_npc_intf_tx(intf))
138                 input = &mcam->tx_key_fields[type];
139
140         input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
141         input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg);
142         input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1;
143         input->layer_mdata.ltype = lt;
144         input->layer_mdata.lid = lid;
145 }
146
147 static bool npc_check_overlap_fields(struct npc_key_field *input1,
148                                      struct npc_key_field *input2)
149 {
150         int kwi;
151
152         /* Fields with same layer id and different ltypes are mutually
153          * exclusive hence they can be overlapped
154          */
155         if (input1->layer_mdata.lid == input2->layer_mdata.lid &&
156             input1->layer_mdata.ltype != input2->layer_mdata.ltype)
157                 return false;
158
159         for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) {
160                 if (input1->kw_mask[kwi] & input2->kw_mask[kwi])
161                         return true;
162         }
163
164         return false;
165 }
166
167 /* Helper function to check whether given field overlaps with any other fields
168  * in the key. Due to limitations on key size and the key extraction profile in
169  * use higher layers can overwrite lower layer's header fields. Hence overlap
170  * needs to be checked.
171  */
172 static bool npc_check_overlap(struct rvu *rvu, int blkaddr,
173                               enum key_fields type, u8 start_lid, u8 intf)
174 {
175         struct npc_mcam *mcam = &rvu->hw->mcam;
176         struct npc_key_field *dummy, *input;
177         int start_kwi, offset;
178         u8 nr_bits, lid, lt, ld;
179         u64 cfg;
180
181         dummy = &mcam->rx_key_fields[NPC_UNKNOWN];
182         input = &mcam->rx_key_fields[type];
183
184         if (is_npc_intf_tx(intf)) {
185                 dummy = &mcam->tx_key_fields[NPC_UNKNOWN];
186                 input = &mcam->tx_key_fields[type];
187         }
188
189         for (lid = start_lid; lid < NPC_MAX_LID; lid++) {
190                 for (lt = 0; lt < NPC_MAX_LT; lt++) {
191                         for (ld = 0; ld < NPC_MAX_LD; ld++) {
192                                 cfg = rvu_read64(rvu, blkaddr,
193                                                  NPC_AF_INTFX_LIDX_LTX_LDX_CFG
194                                                  (intf, lid, lt, ld));
195                                 if (!FIELD_GET(NPC_LDATA_EN, cfg))
196                                         continue;
197                                 memset(dummy, 0, sizeof(struct npc_key_field));
198                                 npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg,
199                                                     lid, lt, intf);
200                                 /* exclude input */
201                                 if (npc_is_same(input, dummy))
202                                         continue;
203                                 start_kwi = dummy->layer_mdata.key / 8;
204                                 offset = (dummy->layer_mdata.key * 8) % 64;
205                                 nr_bits = dummy->layer_mdata.len * 8;
206                                 /* form KW masks */
207                                 npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits,
208                                                  start_kwi, offset, intf);
209                                 /* check any input field bits falls in any
210                                  * other field bits.
211                                  */
212                                 if (npc_check_overlap_fields(dummy, input))
213                                         return true;
214                         }
215                 }
216         }
217
218         return false;
219 }
220
221 static bool npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type,
222                             u8 intf)
223 {
224         if (!npc_is_field_present(rvu, type, intf) ||
225             npc_check_overlap(rvu, blkaddr, type, 0, intf))
226                 return false;
227         return true;
228 }
229
230 static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number,
231                                   u8 key_nibble, u8 intf)
232 {
233         u8 offset = (key_nibble * 4) % 64; /* offset within key word */
234         u8 kwi = (key_nibble * 4) / 64; /* which word in key */
235         u8 nr_bits = 4; /* bits in a nibble */
236         u8 type;
237
238         switch (bit_number) {
239         case 0 ... 2:
240                 type = NPC_CHAN;
241                 break;
242         case 3:
243                 type = NPC_ERRLEV;
244                 break;
245         case 4 ... 5:
246                 type = NPC_ERRCODE;
247                 break;
248         case 6:
249                 type = NPC_LXMB;
250                 break;
251         /* check for LTYPE only as of now */
252         case 9:
253                 type = NPC_LA;
254                 break;
255         case 12:
256                 type = NPC_LB;
257                 break;
258         case 15:
259                 type = NPC_LC;
260                 break;
261         case 18:
262                 type = NPC_LD;
263                 break;
264         case 21:
265                 type = NPC_LE;
266                 break;
267         case 24:
268                 type = NPC_LF;
269                 break;
270         case 27:
271                 type = NPC_LG;
272                 break;
273         case 30:
274                 type = NPC_LH;
275                 break;
276         default:
277                 return;
278         }
279         npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
280 }
281
282 static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf)
283 {
284         struct npc_mcam *mcam = &rvu->hw->mcam;
285         struct npc_key_field *key_fields;
286         /* Ether type can come from three layers
287          * (ethernet, single tagged, double tagged)
288          */
289         struct npc_key_field *etype_ether;
290         struct npc_key_field *etype_tag1;
291         struct npc_key_field *etype_tag2;
292         /* Outer VLAN TCI can come from two layers
293          * (single tagged, double tagged)
294          */
295         struct npc_key_field *vlan_tag1;
296         struct npc_key_field *vlan_tag2;
297         u64 *features;
298         u8 start_lid;
299         int i;
300
301         key_fields = mcam->rx_key_fields;
302         features = &mcam->rx_features;
303
304         if (is_npc_intf_tx(intf)) {
305                 key_fields = mcam->tx_key_fields;
306                 features = &mcam->tx_features;
307         }
308
309         /* Handle header fields which can come from multiple layers like
310          * etype, outer vlan tci. These fields should have same position in
311          * the key otherwise to install a mcam rule more than one entry is
312          * needed which complicates mcam space management.
313          */
314         etype_ether = &key_fields[NPC_ETYPE_ETHER];
315         etype_tag1 = &key_fields[NPC_ETYPE_TAG1];
316         etype_tag2 = &key_fields[NPC_ETYPE_TAG2];
317         vlan_tag1 = &key_fields[NPC_VLAN_TAG1];
318         vlan_tag2 = &key_fields[NPC_VLAN_TAG2];
319
320         /* if key profile programmed does not extract Ethertype at all */
321         if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
322                 goto vlan_tci;
323
324         /* if key profile programmed extracts Ethertype from one layer */
325         if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
326                 key_fields[NPC_ETYPE] = *etype_ether;
327         if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws)
328                 key_fields[NPC_ETYPE] = *etype_tag1;
329         if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws)
330                 key_fields[NPC_ETYPE] = *etype_tag2;
331
332         /* if key profile programmed extracts Ethertype from multiple layers */
333         if (etype_ether->nr_kws && etype_tag1->nr_kws) {
334                 for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
335                         if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i])
336                                 goto vlan_tci;
337                 }
338                 key_fields[NPC_ETYPE] = *etype_tag1;
339         }
340         if (etype_ether->nr_kws && etype_tag2->nr_kws) {
341                 for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
342                         if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i])
343                                 goto vlan_tci;
344                 }
345                 key_fields[NPC_ETYPE] = *etype_tag2;
346         }
347         if (etype_tag1->nr_kws && etype_tag2->nr_kws) {
348                 for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
349                         if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i])
350                                 goto vlan_tci;
351                 }
352                 key_fields[NPC_ETYPE] = *etype_tag2;
353         }
354
355         /* check none of higher layers overwrite Ethertype */
356         start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1;
357         if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf))
358                 goto vlan_tci;
359         *features |= BIT_ULL(NPC_ETYPE);
360 vlan_tci:
361         /* if key profile does not extract outer vlan tci at all */
362         if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
363                 goto done;
364
365         /* if key profile extracts outer vlan tci from one layer */
366         if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
367                 key_fields[NPC_OUTER_VID] = *vlan_tag1;
368         if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws)
369                 key_fields[NPC_OUTER_VID] = *vlan_tag2;
370
371         /* if key profile extracts outer vlan tci from multiple layers */
372         if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) {
373                 for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
374                         if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i])
375                                 goto done;
376                 }
377                 key_fields[NPC_OUTER_VID] = *vlan_tag2;
378         }
379         /* check none of higher layers overwrite outer vlan tci */
380         start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1;
381         if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf))
382                 goto done;
383         *features |= BIT_ULL(NPC_OUTER_VID);
384 done:
385         return;
386 }
387
388 static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid,
389                            u8 lt, u64 cfg, u8 intf)
390 {
391         struct npc_mcam *mcam = &rvu->hw->mcam;
392         u8 hdr, key, nr_bytes, bit_offset;
393         u8 la_ltype, la_start;
394         /* starting KW index and starting bit position */
395         int start_kwi, offset;
396
397         nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1;
398         hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
399         key = FIELD_GET(NPC_KEY_OFFSET, cfg);
400         start_kwi = key / 8;
401         offset = (key * 8) % 64;
402
403         /* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding
404          * ethernet header.
405          */
406         if (is_npc_intf_tx(intf)) {
407                 la_ltype = NPC_LT_LA_IH_NIX_ETHER;
408                 la_start = 8;
409         } else {
410                 la_ltype = NPC_LT_LA_ETHER;
411                 la_start = 0;
412         }
413
414 #define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen)                            \
415 do {                                                                           \
416         if (lid == (hlid) && lt == (hlt)) {                                    \
417                 if ((hstart) >= hdr &&                                         \
418                     ((hstart) + (hlen)) <= (hdr + nr_bytes)) {                 \
419                         bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \
420                         npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \
421                         npc_set_kw_masks(mcam, (name), (hlen) * 8,             \
422                                          start_kwi, offset + bit_offset, intf);\
423                 }                                                              \
424         }                                                                      \
425 } while (0)
426
427         /* List LID, LTYPE, start offset from layer and length(in bytes) of
428          * packet header fields below.
429          * Example: Source IP is 4 bytes and starts at 12th byte of IP header
430          */
431         NPC_SCAN_HDR(NPC_TOS, NPC_LID_LC, NPC_LT_LC_IP, 1, 1);
432         NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4);
433         NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4);
434         NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
435         NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
436         NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2);
437         NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2);
438         NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2);
439         NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2);
440         NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2);
441         NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2);
442         NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2);
443         NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2);
444         NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2);
445         NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2);
446         NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2);
447         NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6);
448         NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start, 6);
449         /* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */
450         NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2);
451 }
452
453 static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf)
454 {
455         struct npc_mcam *mcam = &rvu->hw->mcam;
456         u64 *features = &mcam->rx_features;
457         u64 tcp_udp_sctp;
458         int hdr;
459
460         if (is_npc_intf_tx(intf))
461                 features = &mcam->tx_features;
462
463         for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) {
464                 if (npc_check_field(rvu, blkaddr, hdr, intf))
465                         *features |= BIT_ULL(hdr);
466         }
467
468         tcp_udp_sctp = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) |
469                        BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) |
470                        BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP);
471
472         /* for tcp/udp/sctp corresponding layer type should be in the key */
473         if (*features & tcp_udp_sctp) {
474                 if (!npc_check_field(rvu, blkaddr, NPC_LD, intf))
475                         *features &= ~tcp_udp_sctp;
476                 else
477                         *features |= BIT_ULL(NPC_IPPROTO_TCP) |
478                                      BIT_ULL(NPC_IPPROTO_UDP) |
479                                      BIT_ULL(NPC_IPPROTO_SCTP);
480         }
481
482         /* for AH/ICMP/ICMPv6/, check if corresponding layer type is present in the key */
483         if (npc_check_field(rvu, blkaddr, NPC_LD, intf)) {
484                 *features |= BIT_ULL(NPC_IPPROTO_AH);
485                 *features |= BIT_ULL(NPC_IPPROTO_ICMP);
486                 *features |= BIT_ULL(NPC_IPPROTO_ICMP6);
487         }
488
489         /* for ESP, check if corresponding layer type is present in the key */
490         if (npc_check_field(rvu, blkaddr, NPC_LE, intf))
491                 *features |= BIT_ULL(NPC_IPPROTO_ESP);
492
493         /* for vlan corresponding layer type should be in the key */
494         if (*features & BIT_ULL(NPC_OUTER_VID))
495                 if (!npc_check_field(rvu, blkaddr, NPC_LB, intf))
496                         *features &= ~BIT_ULL(NPC_OUTER_VID);
497
498         /* for vlan ethertypes corresponding layer type should be in the key */
499         if (npc_check_field(rvu, blkaddr, NPC_LB, intf))
500                 *features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG) |
501                              BIT_ULL(NPC_VLAN_ETYPE_STAG);
502 }
503
504 /* Scan key extraction profile and record how fields of our interest
505  * fill the key structure. Also verify Channel and DMAC exists in
506  * key and not overwritten by other header fields.
507  */
508 static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf)
509 {
510         struct npc_mcam *mcam = &rvu->hw->mcam;
511         u8 lid, lt, ld, bitnr;
512         u8 key_nibble = 0;
513         u64 cfg;
514
515         /* Scan and note how parse result is going to be in key.
516          * A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from
517          * parse result in the key. The enabled nibbles from parse result
518          * will be concatenated in key.
519          */
520         cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf));
521         cfg &= NPC_PARSE_NIBBLE;
522         for_each_set_bit(bitnr, (unsigned long *)&cfg, 31) {
523                 npc_scan_parse_result(mcam, bitnr, key_nibble, intf);
524                 key_nibble++;
525         }
526
527         /* Scan and note how layer data is going to be in key */
528         for (lid = 0; lid < NPC_MAX_LID; lid++) {
529                 for (lt = 0; lt < NPC_MAX_LT; lt++) {
530                         for (ld = 0; ld < NPC_MAX_LD; ld++) {
531                                 cfg = rvu_read64(rvu, blkaddr,
532                                                  NPC_AF_INTFX_LIDX_LTX_LDX_CFG
533                                                  (intf, lid, lt, ld));
534                                 if (!FIELD_GET(NPC_LDATA_EN, cfg))
535                                         continue;
536                                 npc_scan_ldata(rvu, blkaddr, lid, lt, cfg,
537                                                intf);
538                         }
539                 }
540         }
541
542         return 0;
543 }
544
545 static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr)
546 {
547         int err;
548
549         err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX);
550         if (err)
551                 return err;
552
553         err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX);
554         if (err)
555                 return err;
556
557         /* Channel is mandatory */
558         if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) {
559                 dev_err(rvu->dev, "Channel not present in Key\n");
560                 return -EINVAL;
561         }
562         /* check that none of the fields overwrite channel */
563         if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) {
564                 dev_err(rvu->dev, "Channel cannot be overwritten\n");
565                 return -EINVAL;
566         }
567         /* DMAC should be present in key for unicast filter to work */
568         if (!npc_is_field_present(rvu, NPC_DMAC, NIX_INTF_RX)) {
569                 dev_err(rvu->dev, "DMAC not present in Key\n");
570                 return -EINVAL;
571         }
572         /* check that none of the fields overwrite DMAC */
573         if (npc_check_overlap(rvu, blkaddr, NPC_DMAC, 0, NIX_INTF_RX)) {
574                 dev_err(rvu->dev, "DMAC cannot be overwritten\n");
575                 return -EINVAL;
576         }
577
578         npc_set_features(rvu, blkaddr, NIX_INTF_TX);
579         npc_set_features(rvu, blkaddr, NIX_INTF_RX);
580         npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX);
581         npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX);
582
583         return 0;
584 }
585
586 int npc_flow_steering_init(struct rvu *rvu, int blkaddr)
587 {
588         struct npc_mcam *mcam = &rvu->hw->mcam;
589
590         INIT_LIST_HEAD(&mcam->mcam_rules);
591
592         return npc_scan_verify_kex(rvu, blkaddr);
593 }
594
595 static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf)
596 {
597         struct npc_mcam *mcam = &rvu->hw->mcam;
598         u64 *mcam_features = &mcam->rx_features;
599         u64 unsupported;
600         u8 bit;
601
602         if (is_npc_intf_tx(intf))
603                 mcam_features = &mcam->tx_features;
604
605         unsupported = (*mcam_features ^ features) & ~(*mcam_features);
606         if (unsupported) {
607                 dev_info(rvu->dev, "Unsupported flow(s):\n");
608                 for_each_set_bit(bit, (unsigned long *)&unsupported, 64)
609                         dev_info(rvu->dev, "%s ", npc_get_field_name(bit));
610                 return -EOPNOTSUPP;
611         }
612
613         return 0;
614 }
615
616 /* npc_update_entry - Based on the masks generated during
617  * the key scanning, updates the given entry with value and
618  * masks for the field of interest. Maximum 16 bytes of a packet
619  * header can be extracted by HW hence lo and hi are sufficient.
620  * When field bytes are less than or equal to 8 then hi should be
621  * 0 for value and mask.
622  *
623  * If exact match of value is required then mask should be all 1's.
624  * If any bits in mask are 0 then corresponding bits in value are
625  * dont care.
626  */
627 static void npc_update_entry(struct rvu *rvu, enum key_fields type,
628                              struct mcam_entry *entry, u64 val_lo,
629                              u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf)
630 {
631         struct npc_mcam *mcam = &rvu->hw->mcam;
632         struct mcam_entry dummy = { {0} };
633         struct npc_key_field *field;
634         u64 kw1, kw2, kw3;
635         u8 shift;
636         int i;
637
638         field = &mcam->rx_key_fields[type];
639         if (is_npc_intf_tx(intf))
640                 field = &mcam->tx_key_fields[type];
641
642         if (!field->nr_kws)
643                 return;
644
645         for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
646                 if (!field->kw_mask[i])
647                         continue;
648                 /* place key value in kw[x] */
649                 shift = __ffs64(field->kw_mask[i]);
650                 /* update entry value */
651                 kw1 = (val_lo << shift) & field->kw_mask[i];
652                 dummy.kw[i] = kw1;
653                 /* update entry mask */
654                 kw1 = (mask_lo << shift) & field->kw_mask[i];
655                 dummy.kw_mask[i] = kw1;
656
657                 if (field->nr_kws == 1)
658                         break;
659                 /* place remaining bits of key value in kw[x + 1] */
660                 if (field->nr_kws == 2) {
661                         /* update entry value */
662                         kw2 = shift ? val_lo >> (64 - shift) : 0;
663                         kw2 |= (val_hi << shift);
664                         kw2 &= field->kw_mask[i + 1];
665                         dummy.kw[i + 1] = kw2;
666                         /* update entry mask */
667                         kw2 = shift ? mask_lo >> (64 - shift) : 0;
668                         kw2 |= (mask_hi << shift);
669                         kw2 &= field->kw_mask[i + 1];
670                         dummy.kw_mask[i + 1] = kw2;
671                         break;
672                 }
673                 /* place remaining bits of key value in kw[x + 1], kw[x + 2] */
674                 if (field->nr_kws == 3) {
675                         /* update entry value */
676                         kw2 = shift ? val_lo >> (64 - shift) : 0;
677                         kw2 |= (val_hi << shift);
678                         kw2 &= field->kw_mask[i + 1];
679                         kw3 = shift ? val_hi >> (64 - shift) : 0;
680                         kw3 &= field->kw_mask[i + 2];
681                         dummy.kw[i + 1] = kw2;
682                         dummy.kw[i + 2] = kw3;
683                         /* update entry mask */
684                         kw2 = shift ? mask_lo >> (64 - shift) : 0;
685                         kw2 |= (mask_hi << shift);
686                         kw2 &= field->kw_mask[i + 1];
687                         kw3 = shift ? mask_hi >> (64 - shift) : 0;
688                         kw3 &= field->kw_mask[i + 2];
689                         dummy.kw_mask[i + 1] = kw2;
690                         dummy.kw_mask[i + 2] = kw3;
691                         break;
692                 }
693         }
694         /* dummy is ready with values and masks for given key
695          * field now clear and update input entry with those
696          */
697         for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
698                 if (!field->kw_mask[i])
699                         continue;
700                 entry->kw[i] &= ~field->kw_mask[i];
701                 entry->kw_mask[i] &= ~field->kw_mask[i];
702
703                 entry->kw[i] |= dummy.kw[i];
704                 entry->kw_mask[i] |= dummy.kw_mask[i];
705         }
706 }
707
708 #define IPV6_WORDS     4
709
710 static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry,
711                                  u64 features, struct flow_msg *pkt,
712                                  struct flow_msg *mask,
713                                  struct rvu_npc_mcam_rule *output, u8 intf)
714 {
715         u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS];
716         u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS];
717         struct flow_msg *opkt = &output->packet;
718         struct flow_msg *omask = &output->mask;
719         u64 mask_lo, mask_hi;
720         u64 val_lo, val_hi;
721
722         /* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet
723          * values to be programmed in MCAM should as below:
724          * val_high: 0xfe80000000000000
725          * val_low: 0x2c6863fffe5e2d0a
726          */
727         if (features & BIT_ULL(NPC_SIP_IPV6)) {
728                 be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS);
729                 be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);
730
731                 mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1];
732                 mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3];
733                 val_hi = (u64)src_ip[0] << 32 | src_ip[1];
734                 val_lo = (u64)src_ip[2] << 32 | src_ip[3];
735
736                 npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi,
737                                  mask_lo, mask_hi, intf);
738                 memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src));
739                 memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src));
740         }
741         if (features & BIT_ULL(NPC_DIP_IPV6)) {
742                 be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS);
743                 be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);
744
745                 mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1];
746                 mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3];
747                 val_hi = (u64)dst_ip[0] << 32 | dst_ip[1];
748                 val_lo = (u64)dst_ip[2] << 32 | dst_ip[3];
749
750                 npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi,
751                                  mask_lo, mask_hi, intf);
752                 memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst));
753                 memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst));
754         }
755 }
756
757 static void npc_update_vlan_features(struct rvu *rvu, struct mcam_entry *entry,
758                                      u64 features, u8 intf)
759 {
760         bool ctag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_CTAG));
761         bool stag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_STAG));
762         bool vid = !!(features & BIT_ULL(NPC_OUTER_VID));
763
764         /* If only VLAN id is given then always match outer VLAN id */
765         if (vid && !ctag && !stag) {
766                 npc_update_entry(rvu, NPC_LB, entry,
767                                  NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0,
768                                  NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf);
769                 return;
770         }
771         if (ctag)
772                 npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_CTAG, 0,
773                                  ~0ULL, 0, intf);
774         if (stag)
775                 npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_STAG_QINQ, 0,
776                                  ~0ULL, 0, intf);
777 }
778
779 static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry,
780                             u64 features, struct flow_msg *pkt,
781                             struct flow_msg *mask,
782                             struct rvu_npc_mcam_rule *output, u8 intf)
783 {
784         u64 dmac_mask = ether_addr_to_u64(mask->dmac);
785         u64 smac_mask = ether_addr_to_u64(mask->smac);
786         u64 dmac_val = ether_addr_to_u64(pkt->dmac);
787         u64 smac_val = ether_addr_to_u64(pkt->smac);
788         struct flow_msg *opkt = &output->packet;
789         struct flow_msg *omask = &output->mask;
790
791         if (!features)
792                 return;
793
794         /* For tcp/udp/sctp LTYPE should be present in entry */
795         if (features & BIT_ULL(NPC_IPPROTO_TCP))
796                 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP,
797                                  0, ~0ULL, 0, intf);
798         if (features & BIT_ULL(NPC_IPPROTO_UDP))
799                 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP,
800                                  0, ~0ULL, 0, intf);
801         if (features & BIT_ULL(NPC_IPPROTO_SCTP))
802                 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP,
803                                  0, ~0ULL, 0, intf);
804         if (features & BIT_ULL(NPC_IPPROTO_ICMP))
805                 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP,
806                                  0, ~0ULL, 0, intf);
807         if (features & BIT_ULL(NPC_IPPROTO_ICMP6))
808                 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP6,
809                                  0, ~0ULL, 0, intf);
810
811         /* For AH, LTYPE should be present in entry */
812         if (features & BIT_ULL(NPC_IPPROTO_AH))
813                 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_AH,
814                                  0, ~0ULL, 0, intf);
815         /* For ESP, LTYPE should be present in entry */
816         if (features & BIT_ULL(NPC_IPPROTO_ESP))
817                 npc_update_entry(rvu, NPC_LE, entry, NPC_LT_LE_ESP,
818                                  0, ~0ULL, 0, intf);
819
820 #define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi)       \
821 do {                                                                          \
822         if (features & BIT_ULL((field))) {                                    \
823                 npc_update_entry(rvu, (field), entry, (val_lo), (val_hi),     \
824                                  (mask_lo), (mask_hi), intf);                 \
825                 memcpy(&opkt->member, &pkt->member, sizeof(pkt->member));     \
826                 memcpy(&omask->member, &mask->member, sizeof(mask->member));  \
827         }                                                                     \
828 } while (0)
829
830         NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0);
831         NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0);
832         NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0,
833                        ntohs(mask->etype), 0);
834         NPC_WRITE_FLOW(NPC_TOS, tos, pkt->tos, 0, mask->tos, 0);
835         NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0,
836                        ntohl(mask->ip4src), 0);
837         NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0,
838                        ntohl(mask->ip4dst), 0);
839         NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0,
840                        ntohs(mask->sport), 0);
841         NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0,
842                        ntohs(mask->sport), 0);
843         NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0,
844                        ntohs(mask->dport), 0);
845         NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0,
846                        ntohs(mask->dport), 0);
847         NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0,
848                        ntohs(mask->sport), 0);
849         NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0,
850                        ntohs(mask->dport), 0);
851
852         NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0,
853                        ntohs(mask->vlan_tci), 0);
854
855         npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf);
856         npc_update_vlan_features(rvu, entry, features, intf);
857 }
858
859 static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam,
860                                                     u16 entry)
861 {
862         struct rvu_npc_mcam_rule *iter;
863
864         mutex_lock(&mcam->lock);
865         list_for_each_entry(iter, &mcam->mcam_rules, list) {
866                 if (iter->entry == entry) {
867                         mutex_unlock(&mcam->lock);
868                         return iter;
869                 }
870         }
871         mutex_unlock(&mcam->lock);
872
873         return NULL;
874 }
875
876 static void rvu_mcam_add_rule(struct npc_mcam *mcam,
877                               struct rvu_npc_mcam_rule *rule)
878 {
879         struct list_head *head = &mcam->mcam_rules;
880         struct rvu_npc_mcam_rule *iter;
881
882         mutex_lock(&mcam->lock);
883         list_for_each_entry(iter, &mcam->mcam_rules, list) {
884                 if (iter->entry > rule->entry)
885                         break;
886                 head = &iter->list;
887         }
888
889         list_add(&rule->list, head);
890         mutex_unlock(&mcam->lock);
891 }
892
893 static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc,
894                                               struct rvu_npc_mcam_rule *rule)
895 {
896         struct npc_mcam_oper_counter_req free_req = { 0 };
897         struct msg_rsp free_rsp;
898
899         if (!rule->has_cntr)
900                 return;
901
902         free_req.hdr.pcifunc = pcifunc;
903         free_req.cntr = rule->cntr;
904
905         rvu_mbox_handler_npc_mcam_free_counter(rvu, &free_req, &free_rsp);
906         rule->has_cntr = false;
907 }
908
909 static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc,
910                                          struct rvu_npc_mcam_rule *rule,
911                                          struct npc_install_flow_rsp *rsp)
912 {
913         struct npc_mcam_alloc_counter_req cntr_req = { 0 };
914         struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
915         int err;
916
917         cntr_req.hdr.pcifunc = pcifunc;
918         cntr_req.contig = true;
919         cntr_req.count = 1;
920
921         /* we try to allocate a counter to track the stats of this
922          * rule. If counter could not be allocated then proceed
923          * without counter because counters are limited than entries.
924          */
925         err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req,
926                                                       &cntr_rsp);
927         if (!err && cntr_rsp.count) {
928                 rule->cntr = cntr_rsp.cntr;
929                 rule->has_cntr = true;
930                 rsp->counter = rule->cntr;
931         } else {
932                 rsp->counter = err;
933         }
934 }
935
936 static void npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
937                                 struct mcam_entry *entry,
938                                 struct npc_install_flow_req *req,
939                                 u16 target, bool pf_set_vfs_mac)
940 {
941         struct rvu_switch *rswitch = &rvu->rswitch;
942         struct nix_rx_action action;
943
944         if (rswitch->mode == DEVLINK_ESWITCH_MODE_SWITCHDEV && pf_set_vfs_mac)
945                 req->chan_mask = 0x0; /* Do not care channel */
946
947         npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0, req->chan_mask,
948                          0, NIX_INTF_RX);
949
950         *(u64 *)&action = 0x00;
951         action.pf_func = target;
952         action.op = req->op;
953         action.index = req->index;
954         action.match_id = req->match_id;
955         action.flow_key_alg = req->flow_key_alg;
956
957         if (req->op == NIX_RX_ACTION_DEFAULT && pfvf->def_ucast_rule)
958                 action = pfvf->def_ucast_rule->rx_action;
959
960         entry->action = *(u64 *)&action;
961
962         /* VTAG0 starts at 0th byte of LID_B.
963          * VTAG1 starts at 4th byte of LID_B.
964          */
965         entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) |
966                              FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) |
967                              FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) |
968                              FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) |
969                              FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) |
970                              FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) |
971                              FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) |
972                              FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4);
973 }
974
975 static void npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
976                                 struct mcam_entry *entry,
977                                 struct npc_install_flow_req *req, u16 target)
978 {
979         struct nix_tx_action action;
980         u64 mask = ~0ULL;
981
982         /* If AF is installing then do not care about
983          * PF_FUNC in Send Descriptor
984          */
985         if (is_pffunc_af(req->hdr.pcifunc))
986                 mask = 0;
987
988         npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target),
989                          0, mask, 0, NIX_INTF_TX);
990
991         *(u64 *)&action = 0x00;
992         action.op = req->op;
993         action.index = req->index;
994         action.match_id = req->match_id;
995
996         entry->action = *(u64 *)&action;
997
998         /* VTAG0 starts at 0th byte of LID_B.
999          * VTAG1 starts at 4th byte of LID_B.
1000          */
1001         entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) |
1002                              FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) |
1003                              FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) |
1004                              FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) |
1005                              FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) |
1006                              FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) |
1007                              FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) |
1008                              FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24);
1009 }
1010
1011 static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target,
1012                             int nixlf, struct rvu_pfvf *pfvf,
1013                             struct npc_install_flow_req *req,
1014                             struct npc_install_flow_rsp *rsp, bool enable,
1015                             bool pf_set_vfs_mac)
1016 {
1017         struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule;
1018         u64 features, installed_features, missing_features = 0;
1019         struct npc_mcam_write_entry_req write_req = { 0 };
1020         struct npc_mcam *mcam = &rvu->hw->mcam;
1021         struct rvu_npc_mcam_rule dummy = { 0 };
1022         struct rvu_npc_mcam_rule *rule;
1023         u16 owner = req->hdr.pcifunc;
1024         struct msg_rsp write_rsp;
1025         struct mcam_entry *entry;
1026         int entry_index, err;
1027         bool new = false;
1028
1029         installed_features = req->features;
1030         features = req->features;
1031         entry = &write_req.entry_data;
1032         entry_index = req->entry;
1033
1034         npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy,
1035                         req->intf);
1036
1037         if (is_npc_intf_rx(req->intf))
1038                 npc_update_rx_entry(rvu, pfvf, entry, req, target, pf_set_vfs_mac);
1039         else
1040                 npc_update_tx_entry(rvu, pfvf, entry, req, target);
1041
1042         /* Default unicast rules do not exist for TX */
1043         if (is_npc_intf_tx(req->intf))
1044                 goto find_rule;
1045
1046         if (req->default_rule) {
1047                 entry_index = npc_get_nixlf_mcam_index(mcam, target, nixlf,
1048                                                        NIXLF_UCAST_ENTRY);
1049                 enable = is_mcam_entry_enabled(rvu, mcam, blkaddr, entry_index);
1050         }
1051
1052         /* update mcam entry with default unicast rule attributes */
1053         if (def_ucast_rule && (req->default_rule && req->append)) {
1054                 missing_features = (def_ucast_rule->features ^ features) &
1055                                         def_ucast_rule->features;
1056                 if (missing_features)
1057                         npc_update_flow(rvu, entry, missing_features,
1058                                         &def_ucast_rule->packet,
1059                                         &def_ucast_rule->mask,
1060                                         &dummy, req->intf);
1061                 installed_features = req->features | missing_features;
1062         }
1063
1064 find_rule:
1065         rule = rvu_mcam_find_rule(mcam, entry_index);
1066         if (!rule) {
1067                 rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1068                 if (!rule)
1069                         return -ENOMEM;
1070                 new = true;
1071         }
1072
1073         /* allocate new counter if rule has no counter */
1074         if (!req->default_rule && req->set_cntr && !rule->has_cntr)
1075                 rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp);
1076
1077         /* if user wants to delete an existing counter for a rule then
1078          * free the counter
1079          */
1080         if (!req->set_cntr && rule->has_cntr)
1081                 rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1082
1083         write_req.hdr.pcifunc = owner;
1084
1085         /* AF owns the default rules so change the owner just to relax
1086          * the checks in rvu_mbox_handler_npc_mcam_write_entry
1087          */
1088         if (req->default_rule)
1089                 write_req.hdr.pcifunc = 0;
1090
1091         write_req.entry = entry_index;
1092         write_req.intf = req->intf;
1093         write_req.enable_entry = (u8)enable;
1094         /* if counter is available then clear and use it */
1095         if (req->set_cntr && rule->has_cntr) {
1096                 rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), 0x00);
1097                 write_req.set_cntr = 1;
1098                 write_req.cntr = rule->cntr;
1099         }
1100
1101         /* update rule */
1102         memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet));
1103         memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask));
1104         rule->entry = entry_index;
1105         memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action));
1106         if (is_npc_intf_tx(req->intf))
1107                 memcpy(&rule->tx_action, &entry->action,
1108                        sizeof(struct nix_tx_action));
1109         rule->vtag_action = entry->vtag_action;
1110         rule->features = installed_features;
1111         rule->default_rule = req->default_rule;
1112         rule->owner = owner;
1113         rule->enable = enable;
1114         rule->chan_mask = write_req.entry_data.kw_mask[0] & NPC_KEX_CHAN_MASK;
1115         rule->chan = write_req.entry_data.kw[0] & NPC_KEX_CHAN_MASK;
1116         rule->chan &= rule->chan_mask;
1117         if (is_npc_intf_tx(req->intf))
1118                 rule->intf = pfvf->nix_tx_intf;
1119         else
1120                 rule->intf = pfvf->nix_rx_intf;
1121
1122         if (new)
1123                 rvu_mcam_add_rule(mcam, rule);
1124         if (req->default_rule)
1125                 pfvf->def_ucast_rule = rule;
1126
1127         /* write to mcam entry registers */
1128         err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req,
1129                                                     &write_rsp);
1130         if (err) {
1131                 rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1132                 if (new) {
1133                         list_del(&rule->list);
1134                         kfree(rule);
1135                 }
1136                 return err;
1137         }
1138
1139         /* VF's MAC address is being changed via PF  */
1140         if (pf_set_vfs_mac) {
1141                 ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1142                 ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1143                 set_bit(PF_SET_VF_MAC, &pfvf->flags);
1144         }
1145
1146         if (test_bit(PF_SET_VF_CFG, &pfvf->flags) &&
1147             req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7)
1148                 rule->vfvlan_cfg = true;
1149
1150         if (is_npc_intf_rx(req->intf) && req->match_id &&
1151             (req->op == NIX_RX_ACTIONOP_UCAST || req->op == NIX_RX_ACTIONOP_RSS))
1152                 return rvu_nix_setup_ratelimit_aggr(rvu, req->hdr.pcifunc,
1153                                              req->index, req->match_id);
1154
1155         return 0;
1156 }
1157
1158 int rvu_mbox_handler_npc_install_flow(struct rvu *rvu,
1159                                       struct npc_install_flow_req *req,
1160                                       struct npc_install_flow_rsp *rsp)
1161 {
1162         bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK);
1163         struct rvu_switch *rswitch = &rvu->rswitch;
1164         int blkaddr, nixlf, err;
1165         struct rvu_pfvf *pfvf;
1166         bool pf_set_vfs_mac = false;
1167         bool enable = true;
1168         u16 target;
1169
1170         blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1171         if (blkaddr < 0) {
1172                 dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1173                 return NPC_MCAM_INVALID_REQ;
1174         }
1175
1176         if (!is_npc_interface_valid(rvu, req->intf))
1177                 return NPC_FLOW_INTF_INVALID;
1178
1179         if (from_vf && req->default_rule)
1180                 return NPC_FLOW_VF_PERM_DENIED;
1181
1182         /* Each PF/VF info is maintained in struct rvu_pfvf.
1183          * rvu_pfvf for the target PF/VF needs to be retrieved
1184          * hence modify pcifunc accordingly.
1185          */
1186
1187         /* AF installing for a PF/VF */
1188         if (!req->hdr.pcifunc)
1189                 target = req->vf;
1190         /* PF installing for its VF */
1191         else if (!from_vf && req->vf) {
1192                 target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf;
1193                 pf_set_vfs_mac = req->default_rule &&
1194                                 (req->features & BIT_ULL(NPC_DMAC));
1195         }
1196         /* msg received from PF/VF */
1197         else
1198                 target = req->hdr.pcifunc;
1199
1200         /* ignore chan_mask in case pf func is not AF, revisit later */
1201         if (!is_pffunc_af(req->hdr.pcifunc))
1202                 req->chan_mask = 0xFFF;
1203
1204         err = npc_check_unsupported_flows(rvu, req->features, req->intf);
1205         if (err)
1206                 return NPC_FLOW_NOT_SUPPORTED;
1207
1208         pfvf = rvu_get_pfvf(rvu, target);
1209
1210         /* PF installing for its VF */
1211         if (req->hdr.pcifunc && !from_vf && req->vf)
1212                 set_bit(PF_SET_VF_CFG, &pfvf->flags);
1213
1214         /* update req destination mac addr */
1215         if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) &&
1216             is_zero_ether_addr(req->packet.dmac)) {
1217                 ether_addr_copy(req->packet.dmac, pfvf->mac_addr);
1218                 eth_broadcast_addr((u8 *)&req->mask.dmac);
1219         }
1220
1221         /* Proceed if NIXLF is attached or not for TX rules */
1222         err = nix_get_nixlf(rvu, target, &nixlf, NULL);
1223         if (err && is_npc_intf_rx(req->intf) && !pf_set_vfs_mac)
1224                 return NPC_FLOW_NO_NIXLF;
1225
1226         /* don't enable rule when nixlf not attached or initialized */
1227         if (!(is_nixlf_attached(rvu, target) &&
1228               test_bit(NIXLF_INITIALIZED, &pfvf->flags)))
1229                 enable = false;
1230
1231         /* Packets reaching NPC in Tx path implies that a
1232          * NIXLF is properly setup and transmitting.
1233          * Hence rules can be enabled for Tx.
1234          */
1235         if (is_npc_intf_tx(req->intf))
1236                 enable = true;
1237
1238         /* Do not allow requests from uninitialized VFs */
1239         if (from_vf && !enable)
1240                 return NPC_FLOW_VF_NOT_INIT;
1241
1242         /* PF sets VF mac & VF NIXLF is not attached, update the mac addr */
1243         if (pf_set_vfs_mac && !enable) {
1244                 ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1245                 ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1246                 set_bit(PF_SET_VF_MAC, &pfvf->flags);
1247                 return 0;
1248         }
1249
1250         mutex_lock(&rswitch->switch_lock);
1251         err = npc_install_flow(rvu, blkaddr, target, nixlf, pfvf,
1252                                req, rsp, enable, pf_set_vfs_mac);
1253         mutex_unlock(&rswitch->switch_lock);
1254
1255         return err;
1256 }
1257
1258 static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule,
1259                            u16 pcifunc)
1260 {
1261         struct npc_mcam_ena_dis_entry_req dis_req = { 0 };
1262         struct msg_rsp dis_rsp;
1263
1264         if (rule->default_rule)
1265                 return 0;
1266
1267         if (rule->has_cntr)
1268                 rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule);
1269
1270         dis_req.hdr.pcifunc = pcifunc;
1271         dis_req.entry = rule->entry;
1272
1273         list_del(&rule->list);
1274         kfree(rule);
1275
1276         return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp);
1277 }
1278
1279 int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu,
1280                                      struct npc_delete_flow_req *req,
1281                                      struct msg_rsp *rsp)
1282 {
1283         struct npc_mcam *mcam = &rvu->hw->mcam;
1284         struct rvu_npc_mcam_rule *iter, *tmp;
1285         u16 pcifunc = req->hdr.pcifunc;
1286         struct list_head del_list;
1287
1288         INIT_LIST_HEAD(&del_list);
1289
1290         mutex_lock(&mcam->lock);
1291         list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) {
1292                 if (iter->owner == pcifunc) {
1293                         /* All rules */
1294                         if (req->all) {
1295                                 list_move_tail(&iter->list, &del_list);
1296                         /* Range of rules */
1297                         } else if (req->end && iter->entry >= req->start &&
1298                                    iter->entry <= req->end) {
1299                                 list_move_tail(&iter->list, &del_list);
1300                         /* single rule */
1301                         } else if (req->entry == iter->entry) {
1302                                 list_move_tail(&iter->list, &del_list);
1303                                 break;
1304                         }
1305                 }
1306         }
1307         mutex_unlock(&mcam->lock);
1308
1309         list_for_each_entry_safe(iter, tmp, &del_list, list) {
1310                 u16 entry = iter->entry;
1311
1312                 /* clear the mcam entry target pcifunc */
1313                 mcam->entry2target_pffunc[entry] = 0x0;
1314                 if (npc_delete_flow(rvu, iter, pcifunc))
1315                         dev_err(rvu->dev, "rule deletion failed for entry:%u",
1316                                 entry);
1317         }
1318
1319         return 0;
1320 }
1321
1322 static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr,
1323                                  struct rvu_npc_mcam_rule *rule,
1324                                  struct rvu_pfvf *pfvf)
1325 {
1326         struct npc_mcam_write_entry_req write_req = { 0 };
1327         struct mcam_entry *entry = &write_req.entry_data;
1328         struct npc_mcam *mcam = &rvu->hw->mcam;
1329         struct msg_rsp rsp;
1330         u8 intf, enable;
1331         int err;
1332
1333         ether_addr_copy(rule->packet.dmac, pfvf->mac_addr);
1334
1335         npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry,
1336                             entry, &intf,  &enable);
1337
1338         npc_update_entry(rvu, NPC_DMAC, entry,
1339                          ether_addr_to_u64(pfvf->mac_addr), 0,
1340                          0xffffffffffffull, 0, intf);
1341
1342         write_req.hdr.pcifunc = rule->owner;
1343         write_req.entry = rule->entry;
1344         write_req.intf = pfvf->nix_rx_intf;
1345
1346         mutex_unlock(&mcam->lock);
1347         err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp);
1348         mutex_lock(&mcam->lock);
1349
1350         return err;
1351 }
1352
1353 void npc_mcam_enable_flows(struct rvu *rvu, u16 target)
1354 {
1355         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target);
1356         struct rvu_npc_mcam_rule *def_ucast_rule;
1357         struct npc_mcam *mcam = &rvu->hw->mcam;
1358         struct rvu_npc_mcam_rule *rule;
1359         int blkaddr, bank, index;
1360         u64 def_action;
1361
1362         blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1363         if (blkaddr < 0)
1364                 return;
1365
1366         def_ucast_rule = pfvf->def_ucast_rule;
1367
1368         mutex_lock(&mcam->lock);
1369         list_for_each_entry(rule, &mcam->mcam_rules, list) {
1370                 if (is_npc_intf_rx(rule->intf) &&
1371                     rule->rx_action.pf_func == target && !rule->enable) {
1372                         if (rule->default_rule) {
1373                                 npc_enable_mcam_entry(rvu, mcam, blkaddr,
1374                                                       rule->entry, true);
1375                                 rule->enable = true;
1376                                 continue;
1377                         }
1378
1379                         if (rule->vfvlan_cfg)
1380                                 npc_update_dmac_value(rvu, blkaddr, rule, pfvf);
1381
1382                         if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) {
1383                                 if (!def_ucast_rule)
1384                                         continue;
1385                                 /* Use default unicast entry action */
1386                                 rule->rx_action = def_ucast_rule->rx_action;
1387                                 def_action = *(u64 *)&def_ucast_rule->rx_action;
1388                                 bank = npc_get_bank(mcam, rule->entry);
1389                                 rvu_write64(rvu, blkaddr,
1390                                             NPC_AF_MCAMEX_BANKX_ACTION
1391                                             (rule->entry, bank), def_action);
1392                         }
1393
1394                         npc_enable_mcam_entry(rvu, mcam, blkaddr,
1395                                               rule->entry, true);
1396                         rule->enable = true;
1397                 }
1398         }
1399
1400         /* Enable MCAM entries installed by PF with target as VF pcifunc */
1401         for (index = 0; index < mcam->bmap_entries; index++) {
1402                 if (mcam->entry2target_pffunc[index] == target)
1403                         npc_enable_mcam_entry(rvu, mcam, blkaddr,
1404                                               index, true);
1405         }
1406         mutex_unlock(&mcam->lock);
1407 }
1408
1409 void npc_mcam_disable_flows(struct rvu *rvu, u16 target)
1410 {
1411         struct npc_mcam *mcam = &rvu->hw->mcam;
1412         int blkaddr, index;
1413
1414         blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1415         if (blkaddr < 0)
1416                 return;
1417
1418         mutex_lock(&mcam->lock);
1419         /* Disable MCAM entries installed by PF with target as VF pcifunc */
1420         for (index = 0; index < mcam->bmap_entries; index++) {
1421                 if (mcam->entry2target_pffunc[index] == target)
1422                         npc_enable_mcam_entry(rvu, mcam, blkaddr,
1423                                               index, false);
1424         }
1425         mutex_unlock(&mcam->lock);
1426 }