Merge branches 'clk-mvebu', 'clk-const', 'clk-imx' and 'clk-rockchip' into clk-next
[linux-2.6-microblaze.git] / drivers / net / ethernet / marvell / octeontx2 / af / rvu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19
20 #include "rvu_trace.h"
21
22 #define DRV_NAME        "rvu_af"
23 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
24
25 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
26
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28                                 struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30                                   struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34                          int type, int num,
35                          void (mbox_handler)(struct work_struct *),
36                          void (mbox_up_handler)(struct work_struct *));
37 enum {
38         TYPE_AFVF,
39         TYPE_AFPF,
40 };
41
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44         { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45         { 0, }  /* end of table */
46 };
47
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63         struct rvu_hwinfo *hw = rvu->hw;
64
65         hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66         hw->cap.nix_fixed_txschq_mapping = false;
67         hw->cap.nix_shaping = true;
68         hw->cap.nix_tx_link_bp = true;
69         hw->cap.nix_rx_multicast = true;
70         hw->cap.nix_shaper_toggle_wait = false;
71         hw->rvu = rvu;
72
73         if (is_rvu_pre_96xx_C0(rvu)) {
74                 hw->cap.nix_fixed_txschq_mapping = true;
75                 hw->cap.nix_txsch_per_cgx_lmac = 4;
76                 hw->cap.nix_txsch_per_lbk_lmac = 132;
77                 hw->cap.nix_txsch_per_sdp_lmac = 76;
78                 hw->cap.nix_shaping = false;
79                 hw->cap.nix_tx_link_bp = false;
80                 if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
81                         hw->cap.nix_rx_multicast = false;
82         }
83         if (!is_rvu_pre_96xx_C0(rvu))
84                 hw->cap.nix_shaper_toggle_wait = true;
85
86         if (!is_rvu_otx2(rvu))
87                 hw->cap.per_pf_mbox_regs = true;
88 }
89
90 /* Poll a RVU block's register 'offset', for a 'zero'
91  * or 'nonzero' at bits specified by 'mask'
92  */
93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
94 {
95         unsigned long timeout = jiffies + usecs_to_jiffies(20000);
96         bool twice = false;
97         void __iomem *reg;
98         u64 reg_val;
99
100         reg = rvu->afreg_base + ((block << 28) | offset);
101 again:
102         reg_val = readq(reg);
103         if (zero && !(reg_val & mask))
104                 return 0;
105         if (!zero && (reg_val & mask))
106                 return 0;
107         if (time_before(jiffies, timeout)) {
108                 usleep_range(1, 5);
109                 goto again;
110         }
111         /* In scenarios where CPU is scheduled out before checking
112          * 'time_before' (above) and gets scheduled in such that
113          * jiffies are beyond timeout value, then check again if HW is
114          * done with the operation in the meantime.
115          */
116         if (!twice) {
117                 twice = true;
118                 goto again;
119         }
120         return -EBUSY;
121 }
122
123 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
124 {
125         int id;
126
127         if (!rsrc->bmap)
128                 return -EINVAL;
129
130         id = find_first_zero_bit(rsrc->bmap, rsrc->max);
131         if (id >= rsrc->max)
132                 return -ENOSPC;
133
134         __set_bit(id, rsrc->bmap);
135
136         return id;
137 }
138
139 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
140 {
141         int start;
142
143         if (!rsrc->bmap)
144                 return -EINVAL;
145
146         start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
147         if (start >= rsrc->max)
148                 return -ENOSPC;
149
150         bitmap_set(rsrc->bmap, start, nrsrc);
151         return start;
152 }
153
154 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
155 {
156         if (!rsrc->bmap)
157                 return;
158         if (start >= rsrc->max)
159                 return;
160
161         bitmap_clear(rsrc->bmap, start, nrsrc);
162 }
163
164 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
165 {
166         int start;
167
168         if (!rsrc->bmap)
169                 return false;
170
171         start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
172         if (start >= rsrc->max)
173                 return false;
174
175         return true;
176 }
177
178 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
179 {
180         if (!rsrc->bmap)
181                 return;
182
183         __clear_bit(id, rsrc->bmap);
184 }
185
186 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
187 {
188         int used;
189
190         if (!rsrc->bmap)
191                 return 0;
192
193         used = bitmap_weight(rsrc->bmap, rsrc->max);
194         return (rsrc->max - used);
195 }
196
197 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
198 {
199         if (!rsrc->bmap)
200                 return false;
201
202         return !test_bit(id, rsrc->bmap);
203 }
204
205 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
206 {
207         rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
208                              sizeof(long), GFP_KERNEL);
209         if (!rsrc->bmap)
210                 return -ENOMEM;
211         return 0;
212 }
213
214 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
215 {
216         kfree(rsrc->bmap);
217 }
218
219 /* Get block LF's HW index from a PF_FUNC's block slot number */
220 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
221 {
222         u16 match = 0;
223         int lf;
224
225         mutex_lock(&rvu->rsrc_lock);
226         for (lf = 0; lf < block->lf.max; lf++) {
227                 if (block->fn_map[lf] == pcifunc) {
228                         if (slot == match) {
229                                 mutex_unlock(&rvu->rsrc_lock);
230                                 return lf;
231                         }
232                         match++;
233                 }
234         }
235         mutex_unlock(&rvu->rsrc_lock);
236         return -ENODEV;
237 }
238
239 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
240  * Some silicon variants of OcteonTX2 supports
241  * multiple blocks of same type.
242  *
243  * @pcifunc has to be zero when no LF is yet attached.
244  *
245  * For a pcifunc if LFs are attached from multiple blocks of same type, then
246  * return blkaddr of first encountered block.
247  */
248 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
249 {
250         int devnum, blkaddr = -ENODEV;
251         u64 cfg, reg;
252         bool is_pf;
253
254         switch (blktype) {
255         case BLKTYPE_NPC:
256                 blkaddr = BLKADDR_NPC;
257                 goto exit;
258         case BLKTYPE_NPA:
259                 blkaddr = BLKADDR_NPA;
260                 goto exit;
261         case BLKTYPE_NIX:
262                 /* For now assume NIX0 */
263                 if (!pcifunc) {
264                         blkaddr = BLKADDR_NIX0;
265                         goto exit;
266                 }
267                 break;
268         case BLKTYPE_SSO:
269                 blkaddr = BLKADDR_SSO;
270                 goto exit;
271         case BLKTYPE_SSOW:
272                 blkaddr = BLKADDR_SSOW;
273                 goto exit;
274         case BLKTYPE_TIM:
275                 blkaddr = BLKADDR_TIM;
276                 goto exit;
277         case BLKTYPE_CPT:
278                 /* For now assume CPT0 */
279                 if (!pcifunc) {
280                         blkaddr = BLKADDR_CPT0;
281                         goto exit;
282                 }
283                 break;
284         }
285
286         /* Check if this is a RVU PF or VF */
287         if (pcifunc & RVU_PFVF_FUNC_MASK) {
288                 is_pf = false;
289                 devnum = rvu_get_hwvf(rvu, pcifunc);
290         } else {
291                 is_pf = true;
292                 devnum = rvu_get_pf(pcifunc);
293         }
294
295         /* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
296          * 'BLKADDR_NIX1'.
297          */
298         if (blktype == BLKTYPE_NIX) {
299                 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
300                         RVU_PRIV_HWVFX_NIXX_CFG(0);
301                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
302                 if (cfg) {
303                         blkaddr = BLKADDR_NIX0;
304                         goto exit;
305                 }
306
307                 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
308                         RVU_PRIV_HWVFX_NIXX_CFG(1);
309                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
310                 if (cfg)
311                         blkaddr = BLKADDR_NIX1;
312         }
313
314         if (blktype == BLKTYPE_CPT) {
315                 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
316                         RVU_PRIV_HWVFX_CPTX_CFG(0);
317                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
318                 if (cfg) {
319                         blkaddr = BLKADDR_CPT0;
320                         goto exit;
321                 }
322
323                 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
324                         RVU_PRIV_HWVFX_CPTX_CFG(1);
325                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
326                 if (cfg)
327                         blkaddr = BLKADDR_CPT1;
328         }
329
330 exit:
331         if (is_block_implemented(rvu->hw, blkaddr))
332                 return blkaddr;
333         return -ENODEV;
334 }
335
336 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
337                                 struct rvu_block *block, u16 pcifunc,
338                                 u16 lf, bool attach)
339 {
340         int devnum, num_lfs = 0;
341         bool is_pf;
342         u64 reg;
343
344         if (lf >= block->lf.max) {
345                 dev_err(&rvu->pdev->dev,
346                         "%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
347                         __func__, lf, block->name, block->lf.max);
348                 return;
349         }
350
351         /* Check if this is for a RVU PF or VF */
352         if (pcifunc & RVU_PFVF_FUNC_MASK) {
353                 is_pf = false;
354                 devnum = rvu_get_hwvf(rvu, pcifunc);
355         } else {
356                 is_pf = true;
357                 devnum = rvu_get_pf(pcifunc);
358         }
359
360         block->fn_map[lf] = attach ? pcifunc : 0;
361
362         switch (block->addr) {
363         case BLKADDR_NPA:
364                 pfvf->npalf = attach ? true : false;
365                 num_lfs = pfvf->npalf;
366                 break;
367         case BLKADDR_NIX0:
368         case BLKADDR_NIX1:
369                 pfvf->nixlf = attach ? true : false;
370                 num_lfs = pfvf->nixlf;
371                 break;
372         case BLKADDR_SSO:
373                 attach ? pfvf->sso++ : pfvf->sso--;
374                 num_lfs = pfvf->sso;
375                 break;
376         case BLKADDR_SSOW:
377                 attach ? pfvf->ssow++ : pfvf->ssow--;
378                 num_lfs = pfvf->ssow;
379                 break;
380         case BLKADDR_TIM:
381                 attach ? pfvf->timlfs++ : pfvf->timlfs--;
382                 num_lfs = pfvf->timlfs;
383                 break;
384         case BLKADDR_CPT0:
385                 attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
386                 num_lfs = pfvf->cptlfs;
387                 break;
388         case BLKADDR_CPT1:
389                 attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
390                 num_lfs = pfvf->cpt1_lfs;
391                 break;
392         }
393
394         reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
395         rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
396 }
397
398 inline int rvu_get_pf(u16 pcifunc)
399 {
400         return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
401 }
402
403 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
404 {
405         u64 cfg;
406
407         /* Get numVFs attached to this PF and first HWVF */
408         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
409         if (numvfs)
410                 *numvfs = (cfg >> 12) & 0xFF;
411         if (hwvf)
412                 *hwvf = cfg & 0xFFF;
413 }
414
415 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
416 {
417         int pf, func;
418         u64 cfg;
419
420         pf = rvu_get_pf(pcifunc);
421         func = pcifunc & RVU_PFVF_FUNC_MASK;
422
423         /* Get first HWVF attached to this PF */
424         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
425
426         return ((cfg & 0xFFF) + func - 1);
427 }
428
429 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
430 {
431         /* Check if it is a PF or VF */
432         if (pcifunc & RVU_PFVF_FUNC_MASK)
433                 return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
434         else
435                 return &rvu->pf[rvu_get_pf(pcifunc)];
436 }
437
438 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
439 {
440         int pf, vf, nvfs;
441         u64 cfg;
442
443         pf = rvu_get_pf(pcifunc);
444         if (pf >= rvu->hw->total_pfs)
445                 return false;
446
447         if (!(pcifunc & RVU_PFVF_FUNC_MASK))
448                 return true;
449
450         /* Check if VF is within number of VFs attached to this PF */
451         vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
452         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
453         nvfs = (cfg >> 12) & 0xFF;
454         if (vf >= nvfs)
455                 return false;
456
457         return true;
458 }
459
460 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
461 {
462         struct rvu_block *block;
463
464         if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
465                 return false;
466
467         block = &hw->block[blkaddr];
468         return block->implemented;
469 }
470
471 static void rvu_check_block_implemented(struct rvu *rvu)
472 {
473         struct rvu_hwinfo *hw = rvu->hw;
474         struct rvu_block *block;
475         int blkid;
476         u64 cfg;
477
478         /* For each block check if 'implemented' bit is set */
479         for (blkid = 0; blkid < BLK_COUNT; blkid++) {
480                 block = &hw->block[blkid];
481                 cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
482                 if (cfg & BIT_ULL(11))
483                         block->implemented = true;
484         }
485 }
486
487 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
488 {
489         rvu_write64(rvu, BLKADDR_RVUM,
490                     RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
491                     RVU_BLK_RVUM_REVID);
492 }
493
494 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
495 {
496         rvu_write64(rvu, BLKADDR_RVUM,
497                     RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
498 }
499
500 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
501 {
502         int err;
503
504         if (!block->implemented)
505                 return 0;
506
507         rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
508         err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
509                            true);
510         return err;
511 }
512
513 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
514 {
515         struct rvu_block *block = &rvu->hw->block[blkaddr];
516         int err;
517
518         if (!block->implemented)
519                 return;
520
521         rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
522         err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
523         if (err) {
524                 dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
525                 while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
526                         ;
527         }
528 }
529
530 static void rvu_reset_all_blocks(struct rvu *rvu)
531 {
532         /* Do a HW reset of all RVU blocks */
533         rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
534         rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
535         rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
536         rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
537         rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
538         rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
539         rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
540         rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
541         rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
542         rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
543         rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
544         rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
545         rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
546 }
547
548 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
549 {
550         struct rvu_pfvf *pfvf;
551         u64 cfg;
552         int lf;
553
554         for (lf = 0; lf < block->lf.max; lf++) {
555                 cfg = rvu_read64(rvu, block->addr,
556                                  block->lfcfg_reg | (lf << block->lfshift));
557                 if (!(cfg & BIT_ULL(63)))
558                         continue;
559
560                 /* Set this resource as being used */
561                 __set_bit(lf, block->lf.bmap);
562
563                 /* Get, to whom this LF is attached */
564                 pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
565                 rvu_update_rsrc_map(rvu, pfvf, block,
566                                     (cfg >> 8) & 0xFFFF, lf, true);
567
568                 /* Set start MSIX vector for this LF within this PF/VF */
569                 rvu_set_msix_offset(rvu, pfvf, block, lf);
570         }
571 }
572
573 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
574 {
575         int min_vecs;
576
577         if (!vf)
578                 goto check_pf;
579
580         if (!nvecs) {
581                 dev_warn(rvu->dev,
582                          "PF%d:VF%d is configured with zero msix vectors, %d\n",
583                          pf, vf - 1, nvecs);
584         }
585         return;
586
587 check_pf:
588         if (pf == 0)
589                 min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
590         else
591                 min_vecs = RVU_PF_INT_VEC_CNT;
592
593         if (!(nvecs < min_vecs))
594                 return;
595         dev_warn(rvu->dev,
596                  "PF%d is configured with too few vectors, %d, min is %d\n",
597                  pf, nvecs, min_vecs);
598 }
599
600 static int rvu_setup_msix_resources(struct rvu *rvu)
601 {
602         struct rvu_hwinfo *hw = rvu->hw;
603         int pf, vf, numvfs, hwvf, err;
604         int nvecs, offset, max_msix;
605         struct rvu_pfvf *pfvf;
606         u64 cfg, phy_addr;
607         dma_addr_t iova;
608
609         for (pf = 0; pf < hw->total_pfs; pf++) {
610                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
611                 /* If PF is not enabled, nothing to do */
612                 if (!((cfg >> 20) & 0x01))
613                         continue;
614
615                 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
616
617                 pfvf = &rvu->pf[pf];
618                 /* Get num of MSIX vectors attached to this PF */
619                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
620                 pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
621                 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
622
623                 /* Alloc msix bitmap for this PF */
624                 err = rvu_alloc_bitmap(&pfvf->msix);
625                 if (err)
626                         return err;
627
628                 /* Allocate memory for MSIX vector to RVU block LF mapping */
629                 pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
630                                                 sizeof(u16), GFP_KERNEL);
631                 if (!pfvf->msix_lfmap)
632                         return -ENOMEM;
633
634                 /* For PF0 (AF) firmware will set msix vector offsets for
635                  * AF, block AF and PF0_INT vectors, so jump to VFs.
636                  */
637                 if (!pf)
638                         goto setup_vfmsix;
639
640                 /* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
641                  * These are allocated on driver init and never freed,
642                  * so no need to set 'msix_lfmap' for these.
643                  */
644                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
645                 nvecs = (cfg >> 12) & 0xFF;
646                 cfg &= ~0x7FFULL;
647                 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
648                 rvu_write64(rvu, BLKADDR_RVUM,
649                             RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
650 setup_vfmsix:
651                 /* Alloc msix bitmap for VFs */
652                 for (vf = 0; vf < numvfs; vf++) {
653                         pfvf =  &rvu->hwvf[hwvf + vf];
654                         /* Get num of MSIX vectors attached to this VF */
655                         cfg = rvu_read64(rvu, BLKADDR_RVUM,
656                                          RVU_PRIV_PFX_MSIX_CFG(pf));
657                         pfvf->msix.max = (cfg & 0xFFF) + 1;
658                         rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
659
660                         /* Alloc msix bitmap for this VF */
661                         err = rvu_alloc_bitmap(&pfvf->msix);
662                         if (err)
663                                 return err;
664
665                         pfvf->msix_lfmap =
666                                 devm_kcalloc(rvu->dev, pfvf->msix.max,
667                                              sizeof(u16), GFP_KERNEL);
668                         if (!pfvf->msix_lfmap)
669                                 return -ENOMEM;
670
671                         /* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
672                          * These are allocated on driver init and never freed,
673                          * so no need to set 'msix_lfmap' for these.
674                          */
675                         cfg = rvu_read64(rvu, BLKADDR_RVUM,
676                                          RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
677                         nvecs = (cfg >> 12) & 0xFF;
678                         cfg &= ~0x7FFULL;
679                         offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
680                         rvu_write64(rvu, BLKADDR_RVUM,
681                                     RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
682                                     cfg | offset);
683                 }
684         }
685
686         /* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
687          * create an IOMMU mapping for the physical address configured by
688          * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
689          */
690         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
691         max_msix = cfg & 0xFFFFF;
692         if (rvu->fwdata && rvu->fwdata->msixtr_base)
693                 phy_addr = rvu->fwdata->msixtr_base;
694         else
695                 phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
696
697         iova = dma_map_resource(rvu->dev, phy_addr,
698                                 max_msix * PCI_MSIX_ENTRY_SIZE,
699                                 DMA_BIDIRECTIONAL, 0);
700
701         if (dma_mapping_error(rvu->dev, iova))
702                 return -ENOMEM;
703
704         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
705         rvu->msix_base_iova = iova;
706         rvu->msixtr_base_phy = phy_addr;
707
708         return 0;
709 }
710
711 static void rvu_reset_msix(struct rvu *rvu)
712 {
713         /* Restore msixtr base register */
714         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
715                     rvu->msixtr_base_phy);
716 }
717
718 static void rvu_free_hw_resources(struct rvu *rvu)
719 {
720         struct rvu_hwinfo *hw = rvu->hw;
721         struct rvu_block *block;
722         struct rvu_pfvf  *pfvf;
723         int id, max_msix;
724         u64 cfg;
725
726         rvu_npa_freemem(rvu);
727         rvu_npc_freemem(rvu);
728         rvu_nix_freemem(rvu);
729
730         /* Free block LF bitmaps */
731         for (id = 0; id < BLK_COUNT; id++) {
732                 block = &hw->block[id];
733                 kfree(block->lf.bmap);
734         }
735
736         /* Free MSIX bitmaps */
737         for (id = 0; id < hw->total_pfs; id++) {
738                 pfvf = &rvu->pf[id];
739                 kfree(pfvf->msix.bmap);
740         }
741
742         for (id = 0; id < hw->total_vfs; id++) {
743                 pfvf = &rvu->hwvf[id];
744                 kfree(pfvf->msix.bmap);
745         }
746
747         /* Unmap MSIX vector base IOVA mapping */
748         if (!rvu->msix_base_iova)
749                 return;
750         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
751         max_msix = cfg & 0xFFFFF;
752         dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
753                            max_msix * PCI_MSIX_ENTRY_SIZE,
754                            DMA_BIDIRECTIONAL, 0);
755
756         rvu_reset_msix(rvu);
757         mutex_destroy(&rvu->rsrc_lock);
758 }
759
760 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
761 {
762         struct rvu_hwinfo *hw = rvu->hw;
763         int pf, vf, numvfs, hwvf;
764         struct rvu_pfvf *pfvf;
765         u64 *mac;
766
767         for (pf = 0; pf < hw->total_pfs; pf++) {
768                 /* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
769                 if (!pf)
770                         goto lbkvf;
771
772                 if (!is_pf_cgxmapped(rvu, pf))
773                         continue;
774                 /* Assign MAC address to PF */
775                 pfvf = &rvu->pf[pf];
776                 if (rvu->fwdata && pf < PF_MACNUM_MAX) {
777                         mac = &rvu->fwdata->pf_macs[pf];
778                         if (*mac)
779                                 u64_to_ether_addr(*mac, pfvf->mac_addr);
780                         else
781                                 eth_random_addr(pfvf->mac_addr);
782                 } else {
783                         eth_random_addr(pfvf->mac_addr);
784                 }
785                 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
786
787 lbkvf:
788                 /* Assign MAC address to VFs*/
789                 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
790                 for (vf = 0; vf < numvfs; vf++, hwvf++) {
791                         pfvf = &rvu->hwvf[hwvf];
792                         if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
793                                 mac = &rvu->fwdata->vf_macs[hwvf];
794                                 if (*mac)
795                                         u64_to_ether_addr(*mac, pfvf->mac_addr);
796                                 else
797                                         eth_random_addr(pfvf->mac_addr);
798                         } else {
799                                 eth_random_addr(pfvf->mac_addr);
800                         }
801                         ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
802                 }
803         }
804 }
805
806 static int rvu_fwdata_init(struct rvu *rvu)
807 {
808         u64 fwdbase;
809         int err;
810
811         /* Get firmware data base address */
812         err = cgx_get_fwdata_base(&fwdbase);
813         if (err)
814                 goto fail;
815         rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
816         if (!rvu->fwdata)
817                 goto fail;
818         if (!is_rvu_fwdata_valid(rvu)) {
819                 dev_err(rvu->dev,
820                         "Mismatch in 'fwdata' struct btw kernel and firmware\n");
821                 iounmap(rvu->fwdata);
822                 rvu->fwdata = NULL;
823                 return -EINVAL;
824         }
825         return 0;
826 fail:
827         dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
828         return -EIO;
829 }
830
831 static void rvu_fwdata_exit(struct rvu *rvu)
832 {
833         if (rvu->fwdata)
834                 iounmap(rvu->fwdata);
835 }
836
837 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
838 {
839         struct rvu_hwinfo *hw = rvu->hw;
840         struct rvu_block *block;
841         int blkid;
842         u64 cfg;
843
844         /* Init NIX LF's bitmap */
845         block = &hw->block[blkaddr];
846         if (!block->implemented)
847                 return 0;
848         blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
849         cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
850         block->lf.max = cfg & 0xFFF;
851         block->addr = blkaddr;
852         block->type = BLKTYPE_NIX;
853         block->lfshift = 8;
854         block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
855         block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
856         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
857         block->lfcfg_reg = NIX_PRIV_LFX_CFG;
858         block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
859         block->lfreset_reg = NIX_AF_LF_RST;
860         block->rvu = rvu;
861         sprintf(block->name, "NIX%d", blkid);
862         rvu->nix_blkaddr[blkid] = blkaddr;
863         return rvu_alloc_bitmap(&block->lf);
864 }
865
866 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
867 {
868         struct rvu_hwinfo *hw = rvu->hw;
869         struct rvu_block *block;
870         int blkid;
871         u64 cfg;
872
873         /* Init CPT LF's bitmap */
874         block = &hw->block[blkaddr];
875         if (!block->implemented)
876                 return 0;
877         blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
878         cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
879         block->lf.max = cfg & 0xFF;
880         block->addr = blkaddr;
881         block->type = BLKTYPE_CPT;
882         block->multislot = true;
883         block->lfshift = 3;
884         block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
885         block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
886         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
887         block->lfcfg_reg = CPT_PRIV_LFX_CFG;
888         block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
889         block->lfreset_reg = CPT_AF_LF_RST;
890         block->rvu = rvu;
891         sprintf(block->name, "CPT%d", blkid);
892         return rvu_alloc_bitmap(&block->lf);
893 }
894
895 static void rvu_get_lbk_bufsize(struct rvu *rvu)
896 {
897         struct pci_dev *pdev = NULL;
898         void __iomem *base;
899         u64 lbk_const;
900
901         pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
902                               PCI_DEVID_OCTEONTX2_LBK, pdev);
903         if (!pdev)
904                 return;
905
906         base = pci_ioremap_bar(pdev, 0);
907         if (!base)
908                 goto err_put;
909
910         lbk_const = readq(base + LBK_CONST);
911
912         /* cache fifo size */
913         rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
914
915         iounmap(base);
916 err_put:
917         pci_dev_put(pdev);
918 }
919
920 static int rvu_setup_hw_resources(struct rvu *rvu)
921 {
922         struct rvu_hwinfo *hw = rvu->hw;
923         struct rvu_block *block;
924         int blkid, err;
925         u64 cfg;
926
927         /* Get HW supported max RVU PF & VF count */
928         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
929         hw->total_pfs = (cfg >> 32) & 0xFF;
930         hw->total_vfs = (cfg >> 20) & 0xFFF;
931         hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
932
933         /* Init NPA LF's bitmap */
934         block = &hw->block[BLKADDR_NPA];
935         if (!block->implemented)
936                 goto nix;
937         cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
938         block->lf.max = (cfg >> 16) & 0xFFF;
939         block->addr = BLKADDR_NPA;
940         block->type = BLKTYPE_NPA;
941         block->lfshift = 8;
942         block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
943         block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
944         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
945         block->lfcfg_reg = NPA_PRIV_LFX_CFG;
946         block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
947         block->lfreset_reg = NPA_AF_LF_RST;
948         block->rvu = rvu;
949         sprintf(block->name, "NPA");
950         err = rvu_alloc_bitmap(&block->lf);
951         if (err) {
952                 dev_err(rvu->dev,
953                         "%s: Failed to allocate NPA LF bitmap\n", __func__);
954                 return err;
955         }
956
957 nix:
958         err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
959         if (err) {
960                 dev_err(rvu->dev,
961                         "%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
962                 return err;
963         }
964
965         err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
966         if (err) {
967                 dev_err(rvu->dev,
968                         "%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
969                 return err;
970         }
971
972         /* Init SSO group's bitmap */
973         block = &hw->block[BLKADDR_SSO];
974         if (!block->implemented)
975                 goto ssow;
976         cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
977         block->lf.max = cfg & 0xFFFF;
978         block->addr = BLKADDR_SSO;
979         block->type = BLKTYPE_SSO;
980         block->multislot = true;
981         block->lfshift = 3;
982         block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
983         block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
984         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
985         block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
986         block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
987         block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
988         block->rvu = rvu;
989         sprintf(block->name, "SSO GROUP");
990         err = rvu_alloc_bitmap(&block->lf);
991         if (err) {
992                 dev_err(rvu->dev,
993                         "%s: Failed to allocate SSO LF bitmap\n", __func__);
994                 return err;
995         }
996
997 ssow:
998         /* Init SSO workslot's bitmap */
999         block = &hw->block[BLKADDR_SSOW];
1000         if (!block->implemented)
1001                 goto tim;
1002         block->lf.max = (cfg >> 56) & 0xFF;
1003         block->addr = BLKADDR_SSOW;
1004         block->type = BLKTYPE_SSOW;
1005         block->multislot = true;
1006         block->lfshift = 3;
1007         block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1008         block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1009         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1010         block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1011         block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1012         block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1013         block->rvu = rvu;
1014         sprintf(block->name, "SSOWS");
1015         err = rvu_alloc_bitmap(&block->lf);
1016         if (err) {
1017                 dev_err(rvu->dev,
1018                         "%s: Failed to allocate SSOW LF bitmap\n", __func__);
1019                 return err;
1020         }
1021
1022 tim:
1023         /* Init TIM LF's bitmap */
1024         block = &hw->block[BLKADDR_TIM];
1025         if (!block->implemented)
1026                 goto cpt;
1027         cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1028         block->lf.max = cfg & 0xFFFF;
1029         block->addr = BLKADDR_TIM;
1030         block->type = BLKTYPE_TIM;
1031         block->multislot = true;
1032         block->lfshift = 3;
1033         block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1034         block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1035         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1036         block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1037         block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1038         block->lfreset_reg = TIM_AF_LF_RST;
1039         block->rvu = rvu;
1040         sprintf(block->name, "TIM");
1041         err = rvu_alloc_bitmap(&block->lf);
1042         if (err) {
1043                 dev_err(rvu->dev,
1044                         "%s: Failed to allocate TIM LF bitmap\n", __func__);
1045                 return err;
1046         }
1047
1048 cpt:
1049         err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1050         if (err) {
1051                 dev_err(rvu->dev,
1052                         "%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1053                 return err;
1054         }
1055         err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1056         if (err) {
1057                 dev_err(rvu->dev,
1058                         "%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1059                 return err;
1060         }
1061
1062         /* Allocate memory for PFVF data */
1063         rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1064                                sizeof(struct rvu_pfvf), GFP_KERNEL);
1065         if (!rvu->pf) {
1066                 dev_err(rvu->dev,
1067                         "%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1068                 return -ENOMEM;
1069         }
1070
1071         rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1072                                  sizeof(struct rvu_pfvf), GFP_KERNEL);
1073         if (!rvu->hwvf) {
1074                 dev_err(rvu->dev,
1075                         "%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1076                 return -ENOMEM;
1077         }
1078
1079         mutex_init(&rvu->rsrc_lock);
1080
1081         rvu_fwdata_init(rvu);
1082
1083         err = rvu_setup_msix_resources(rvu);
1084         if (err) {
1085                 dev_err(rvu->dev,
1086                         "%s: Failed to setup MSIX resources\n", __func__);
1087                 return err;
1088         }
1089
1090         for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1091                 block = &hw->block[blkid];
1092                 if (!block->lf.bmap)
1093                         continue;
1094
1095                 /* Allocate memory for block LF/slot to pcifunc mapping info */
1096                 block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1097                                              sizeof(u16), GFP_KERNEL);
1098                 if (!block->fn_map) {
1099                         err = -ENOMEM;
1100                         goto msix_err;
1101                 }
1102
1103                 /* Scan all blocks to check if low level firmware has
1104                  * already provisioned any of the resources to a PF/VF.
1105                  */
1106                 rvu_scan_block(rvu, block);
1107         }
1108
1109         err = rvu_set_channels_base(rvu);
1110         if (err)
1111                 goto msix_err;
1112
1113         err = rvu_npc_init(rvu);
1114         if (err) {
1115                 dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1116                 goto npc_err;
1117         }
1118
1119         err = rvu_cgx_init(rvu);
1120         if (err) {
1121                 dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1122                 goto cgx_err;
1123         }
1124
1125         /* Assign MACs for CGX mapped functions */
1126         rvu_setup_pfvf_macaddress(rvu);
1127
1128         err = rvu_npa_init(rvu);
1129         if (err) {
1130                 dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1131                 goto npa_err;
1132         }
1133
1134         rvu_get_lbk_bufsize(rvu);
1135
1136         err = rvu_nix_init(rvu);
1137         if (err) {
1138                 dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1139                 goto nix_err;
1140         }
1141
1142         err = rvu_sdp_init(rvu);
1143         if (err) {
1144                 dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1145                 goto nix_err;
1146         }
1147
1148         rvu_program_channels(rvu);
1149
1150         return 0;
1151
1152 nix_err:
1153         rvu_nix_freemem(rvu);
1154 npa_err:
1155         rvu_npa_freemem(rvu);
1156 cgx_err:
1157         rvu_cgx_exit(rvu);
1158 npc_err:
1159         rvu_npc_freemem(rvu);
1160         rvu_fwdata_exit(rvu);
1161 msix_err:
1162         rvu_reset_msix(rvu);
1163         return err;
1164 }
1165
1166 /* NPA and NIX admin queue APIs */
1167 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1168 {
1169         if (!aq)
1170                 return;
1171
1172         qmem_free(rvu->dev, aq->inst);
1173         qmem_free(rvu->dev, aq->res);
1174         devm_kfree(rvu->dev, aq);
1175 }
1176
1177 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1178                  int qsize, int inst_size, int res_size)
1179 {
1180         struct admin_queue *aq;
1181         int err;
1182
1183         *ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1184         if (!*ad_queue)
1185                 return -ENOMEM;
1186         aq = *ad_queue;
1187
1188         /* Alloc memory for instructions i.e AQ */
1189         err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1190         if (err) {
1191                 devm_kfree(rvu->dev, aq);
1192                 return err;
1193         }
1194
1195         /* Alloc memory for results */
1196         err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1197         if (err) {
1198                 rvu_aq_free(rvu, aq);
1199                 return err;
1200         }
1201
1202         spin_lock_init(&aq->lock);
1203         return 0;
1204 }
1205
1206 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1207                            struct ready_msg_rsp *rsp)
1208 {
1209         if (rvu->fwdata) {
1210                 rsp->rclk_freq = rvu->fwdata->rclk;
1211                 rsp->sclk_freq = rvu->fwdata->sclk;
1212         }
1213         return 0;
1214 }
1215
1216 /* Get current count of a RVU block's LF/slots
1217  * provisioned to a given RVU func.
1218  */
1219 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1220 {
1221         switch (blkaddr) {
1222         case BLKADDR_NPA:
1223                 return pfvf->npalf ? 1 : 0;
1224         case BLKADDR_NIX0:
1225         case BLKADDR_NIX1:
1226                 return pfvf->nixlf ? 1 : 0;
1227         case BLKADDR_SSO:
1228                 return pfvf->sso;
1229         case BLKADDR_SSOW:
1230                 return pfvf->ssow;
1231         case BLKADDR_TIM:
1232                 return pfvf->timlfs;
1233         case BLKADDR_CPT0:
1234                 return pfvf->cptlfs;
1235         case BLKADDR_CPT1:
1236                 return pfvf->cpt1_lfs;
1237         }
1238         return 0;
1239 }
1240
1241 /* Return true if LFs of block type are attached to pcifunc */
1242 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1243 {
1244         switch (blktype) {
1245         case BLKTYPE_NPA:
1246                 return pfvf->npalf ? 1 : 0;
1247         case BLKTYPE_NIX:
1248                 return pfvf->nixlf ? 1 : 0;
1249         case BLKTYPE_SSO:
1250                 return !!pfvf->sso;
1251         case BLKTYPE_SSOW:
1252                 return !!pfvf->ssow;
1253         case BLKTYPE_TIM:
1254                 return !!pfvf->timlfs;
1255         case BLKTYPE_CPT:
1256                 return pfvf->cptlfs || pfvf->cpt1_lfs;
1257         }
1258
1259         return false;
1260 }
1261
1262 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1263 {
1264         struct rvu_pfvf *pfvf;
1265
1266         if (!is_pf_func_valid(rvu, pcifunc))
1267                 return false;
1268
1269         pfvf = rvu_get_pfvf(rvu, pcifunc);
1270
1271         /* Check if this PFFUNC has a LF of type blktype attached */
1272         if (!is_blktype_attached(pfvf, blktype))
1273                 return false;
1274
1275         return true;
1276 }
1277
1278 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1279                            int pcifunc, int slot)
1280 {
1281         u64 val;
1282
1283         val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1284         rvu_write64(rvu, block->addr, block->lookup_reg, val);
1285         /* Wait for the lookup to finish */
1286         /* TODO: put some timeout here */
1287         while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1288                 ;
1289
1290         val = rvu_read64(rvu, block->addr, block->lookup_reg);
1291
1292         /* Check LF valid bit */
1293         if (!(val & (1ULL << 12)))
1294                 return -1;
1295
1296         return (val & 0xFFF);
1297 }
1298
1299 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1300                               u16 global_slot, u16 *slot_in_block)
1301 {
1302         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1303         int numlfs, total_lfs = 0, nr_blocks = 0;
1304         int i, num_blkaddr[BLK_COUNT] = { 0 };
1305         struct rvu_block *block;
1306         int blkaddr;
1307         u16 start_slot;
1308
1309         if (!is_blktype_attached(pfvf, blktype))
1310                 return -ENODEV;
1311
1312         /* Get all the block addresses from which LFs are attached to
1313          * the given pcifunc in num_blkaddr[].
1314          */
1315         for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1316                 block = &rvu->hw->block[blkaddr];
1317                 if (block->type != blktype)
1318                         continue;
1319                 if (!is_block_implemented(rvu->hw, blkaddr))
1320                         continue;
1321
1322                 numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1323                 if (numlfs) {
1324                         total_lfs += numlfs;
1325                         num_blkaddr[nr_blocks] = blkaddr;
1326                         nr_blocks++;
1327                 }
1328         }
1329
1330         if (global_slot >= total_lfs)
1331                 return -ENODEV;
1332
1333         /* Based on the given global slot number retrieve the
1334          * correct block address out of all attached block
1335          * addresses and slot number in that block.
1336          */
1337         total_lfs = 0;
1338         blkaddr = -ENODEV;
1339         for (i = 0; i < nr_blocks; i++) {
1340                 numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1341                 total_lfs += numlfs;
1342                 if (global_slot < total_lfs) {
1343                         blkaddr = num_blkaddr[i];
1344                         start_slot = total_lfs - numlfs;
1345                         *slot_in_block = global_slot - start_slot;
1346                         break;
1347                 }
1348         }
1349
1350         return blkaddr;
1351 }
1352
1353 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1354 {
1355         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1356         struct rvu_hwinfo *hw = rvu->hw;
1357         struct rvu_block *block;
1358         int slot, lf, num_lfs;
1359         int blkaddr;
1360
1361         blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1362         if (blkaddr < 0)
1363                 return;
1364
1365         if (blktype == BLKTYPE_NIX)
1366                 rvu_nix_reset_mac(pfvf, pcifunc);
1367
1368         block = &hw->block[blkaddr];
1369
1370         num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1371         if (!num_lfs)
1372                 return;
1373
1374         for (slot = 0; slot < num_lfs; slot++) {
1375                 lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1376                 if (lf < 0) /* This should never happen */
1377                         continue;
1378
1379                 /* Disable the LF */
1380                 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1381                             (lf << block->lfshift), 0x00ULL);
1382
1383                 /* Update SW maintained mapping info as well */
1384                 rvu_update_rsrc_map(rvu, pfvf, block,
1385                                     pcifunc, lf, false);
1386
1387                 /* Free the resource */
1388                 rvu_free_rsrc(&block->lf, lf);
1389
1390                 /* Clear MSIX vector offset for this LF */
1391                 rvu_clear_msix_offset(rvu, pfvf, block, lf);
1392         }
1393 }
1394
1395 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1396                             u16 pcifunc)
1397 {
1398         struct rvu_hwinfo *hw = rvu->hw;
1399         bool detach_all = true;
1400         struct rvu_block *block;
1401         int blkid;
1402
1403         mutex_lock(&rvu->rsrc_lock);
1404
1405         /* Check for partial resource detach */
1406         if (detach && detach->partial)
1407                 detach_all = false;
1408
1409         /* Check for RVU block's LFs attached to this func,
1410          * if so, detach them.
1411          */
1412         for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1413                 block = &hw->block[blkid];
1414                 if (!block->lf.bmap)
1415                         continue;
1416                 if (!detach_all && detach) {
1417                         if (blkid == BLKADDR_NPA && !detach->npalf)
1418                                 continue;
1419                         else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1420                                 continue;
1421                         else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1422                                 continue;
1423                         else if ((blkid == BLKADDR_SSO) && !detach->sso)
1424                                 continue;
1425                         else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1426                                 continue;
1427                         else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1428                                 continue;
1429                         else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1430                                 continue;
1431                         else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1432                                 continue;
1433                 }
1434                 rvu_detach_block(rvu, pcifunc, block->type);
1435         }
1436
1437         mutex_unlock(&rvu->rsrc_lock);
1438         return 0;
1439 }
1440
1441 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1442                                       struct rsrc_detach *detach,
1443                                       struct msg_rsp *rsp)
1444 {
1445         return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1446 }
1447
1448 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1449 {
1450         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1451         int blkaddr = BLKADDR_NIX0, vf;
1452         struct rvu_pfvf *pf;
1453
1454         pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1455
1456         /* All CGX mapped PFs are set with assigned NIX block during init */
1457         if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1458                 blkaddr = pf->nix_blkaddr;
1459         } else if (is_afvf(pcifunc)) {
1460                 vf = pcifunc - 1;
1461                 /* Assign NIX based on VF number. All even numbered VFs get
1462                  * NIX0 and odd numbered gets NIX1
1463                  */
1464                 blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1465                 /* NIX1 is not present on all silicons */
1466                 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1467                         blkaddr = BLKADDR_NIX0;
1468         }
1469
1470         /* if SDP1 then the blkaddr is NIX1 */
1471         if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1472                 blkaddr = BLKADDR_NIX1;
1473
1474         switch (blkaddr) {
1475         case BLKADDR_NIX1:
1476                 pfvf->nix_blkaddr = BLKADDR_NIX1;
1477                 pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1478                 pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1479                 break;
1480         case BLKADDR_NIX0:
1481         default:
1482                 pfvf->nix_blkaddr = BLKADDR_NIX0;
1483                 pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1484                 pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1485                 break;
1486         }
1487
1488         return pfvf->nix_blkaddr;
1489 }
1490
1491 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1492                                   u16 pcifunc, struct rsrc_attach *attach)
1493 {
1494         int blkaddr;
1495
1496         switch (blktype) {
1497         case BLKTYPE_NIX:
1498                 blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1499                 break;
1500         case BLKTYPE_CPT:
1501                 if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1502                         return rvu_get_blkaddr(rvu, blktype, 0);
1503                 blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1504                           BLKADDR_CPT0;
1505                 if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1506                         return -ENODEV;
1507                 break;
1508         default:
1509                 return rvu_get_blkaddr(rvu, blktype, 0);
1510         }
1511
1512         if (is_block_implemented(rvu->hw, blkaddr))
1513                 return blkaddr;
1514
1515         return -ENODEV;
1516 }
1517
1518 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1519                              int num_lfs, struct rsrc_attach *attach)
1520 {
1521         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1522         struct rvu_hwinfo *hw = rvu->hw;
1523         struct rvu_block *block;
1524         int slot, lf;
1525         int blkaddr;
1526         u64 cfg;
1527
1528         if (!num_lfs)
1529                 return;
1530
1531         blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1532         if (blkaddr < 0)
1533                 return;
1534
1535         block = &hw->block[blkaddr];
1536         if (!block->lf.bmap)
1537                 return;
1538
1539         for (slot = 0; slot < num_lfs; slot++) {
1540                 /* Allocate the resource */
1541                 lf = rvu_alloc_rsrc(&block->lf);
1542                 if (lf < 0)
1543                         return;
1544
1545                 cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1546                 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1547                             (lf << block->lfshift), cfg);
1548                 rvu_update_rsrc_map(rvu, pfvf, block,
1549                                     pcifunc, lf, true);
1550
1551                 /* Set start MSIX vector for this LF within this PF/VF */
1552                 rvu_set_msix_offset(rvu, pfvf, block, lf);
1553         }
1554 }
1555
1556 static int rvu_check_rsrc_availability(struct rvu *rvu,
1557                                        struct rsrc_attach *req, u16 pcifunc)
1558 {
1559         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1560         int free_lfs, mappedlfs, blkaddr;
1561         struct rvu_hwinfo *hw = rvu->hw;
1562         struct rvu_block *block;
1563
1564         /* Only one NPA LF can be attached */
1565         if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1566                 block = &hw->block[BLKADDR_NPA];
1567                 free_lfs = rvu_rsrc_free_count(&block->lf);
1568                 if (!free_lfs)
1569                         goto fail;
1570         } else if (req->npalf) {
1571                 dev_err(&rvu->pdev->dev,
1572                         "Func 0x%x: Invalid req, already has NPA\n",
1573                          pcifunc);
1574                 return -EINVAL;
1575         }
1576
1577         /* Only one NIX LF can be attached */
1578         if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1579                 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1580                                                  pcifunc, req);
1581                 if (blkaddr < 0)
1582                         return blkaddr;
1583                 block = &hw->block[blkaddr];
1584                 free_lfs = rvu_rsrc_free_count(&block->lf);
1585                 if (!free_lfs)
1586                         goto fail;
1587         } else if (req->nixlf) {
1588                 dev_err(&rvu->pdev->dev,
1589                         "Func 0x%x: Invalid req, already has NIX\n",
1590                         pcifunc);
1591                 return -EINVAL;
1592         }
1593
1594         if (req->sso) {
1595                 block = &hw->block[BLKADDR_SSO];
1596                 /* Is request within limits ? */
1597                 if (req->sso > block->lf.max) {
1598                         dev_err(&rvu->pdev->dev,
1599                                 "Func 0x%x: Invalid SSO req, %d > max %d\n",
1600                                  pcifunc, req->sso, block->lf.max);
1601                         return -EINVAL;
1602                 }
1603                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1604                 free_lfs = rvu_rsrc_free_count(&block->lf);
1605                 /* Check if additional resources are available */
1606                 if (req->sso > mappedlfs &&
1607                     ((req->sso - mappedlfs) > free_lfs))
1608                         goto fail;
1609         }
1610
1611         if (req->ssow) {
1612                 block = &hw->block[BLKADDR_SSOW];
1613                 if (req->ssow > block->lf.max) {
1614                         dev_err(&rvu->pdev->dev,
1615                                 "Func 0x%x: Invalid SSOW req, %d > max %d\n",
1616                                  pcifunc, req->sso, block->lf.max);
1617                         return -EINVAL;
1618                 }
1619                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1620                 free_lfs = rvu_rsrc_free_count(&block->lf);
1621                 if (req->ssow > mappedlfs &&
1622                     ((req->ssow - mappedlfs) > free_lfs))
1623                         goto fail;
1624         }
1625
1626         if (req->timlfs) {
1627                 block = &hw->block[BLKADDR_TIM];
1628                 if (req->timlfs > block->lf.max) {
1629                         dev_err(&rvu->pdev->dev,
1630                                 "Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1631                                  pcifunc, req->timlfs, block->lf.max);
1632                         return -EINVAL;
1633                 }
1634                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1635                 free_lfs = rvu_rsrc_free_count(&block->lf);
1636                 if (req->timlfs > mappedlfs &&
1637                     ((req->timlfs - mappedlfs) > free_lfs))
1638                         goto fail;
1639         }
1640
1641         if (req->cptlfs) {
1642                 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1643                                                  pcifunc, req);
1644                 if (blkaddr < 0)
1645                         return blkaddr;
1646                 block = &hw->block[blkaddr];
1647                 if (req->cptlfs > block->lf.max) {
1648                         dev_err(&rvu->pdev->dev,
1649                                 "Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1650                                  pcifunc, req->cptlfs, block->lf.max);
1651                         return -EINVAL;
1652                 }
1653                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1654                 free_lfs = rvu_rsrc_free_count(&block->lf);
1655                 if (req->cptlfs > mappedlfs &&
1656                     ((req->cptlfs - mappedlfs) > free_lfs))
1657                         goto fail;
1658         }
1659
1660         return 0;
1661
1662 fail:
1663         dev_info(rvu->dev, "Request for %s failed\n", block->name);
1664         return -ENOSPC;
1665 }
1666
1667 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1668                                        struct rsrc_attach *attach)
1669 {
1670         int blkaddr, num_lfs;
1671
1672         blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1673                                          attach->hdr.pcifunc, attach);
1674         if (blkaddr < 0)
1675                 return false;
1676
1677         num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1678                                         blkaddr);
1679         /* Requester already has LFs from given block ? */
1680         return !!num_lfs;
1681 }
1682
1683 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1684                                       struct rsrc_attach *attach,
1685                                       struct msg_rsp *rsp)
1686 {
1687         u16 pcifunc = attach->hdr.pcifunc;
1688         int err;
1689
1690         /* If first request, detach all existing attached resources */
1691         if (!attach->modify)
1692                 rvu_detach_rsrcs(rvu, NULL, pcifunc);
1693
1694         mutex_lock(&rvu->rsrc_lock);
1695
1696         /* Check if the request can be accommodated */
1697         err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1698         if (err)
1699                 goto exit;
1700
1701         /* Now attach the requested resources */
1702         if (attach->npalf)
1703                 rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1704
1705         if (attach->nixlf)
1706                 rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1707
1708         if (attach->sso) {
1709                 /* RVU func doesn't know which exact LF or slot is attached
1710                  * to it, it always sees as slot 0,1,2. So for a 'modify'
1711                  * request, simply detach all existing attached LFs/slots
1712                  * and attach a fresh.
1713                  */
1714                 if (attach->modify)
1715                         rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1716                 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1717                                  attach->sso, attach);
1718         }
1719
1720         if (attach->ssow) {
1721                 if (attach->modify)
1722                         rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1723                 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1724                                  attach->ssow, attach);
1725         }
1726
1727         if (attach->timlfs) {
1728                 if (attach->modify)
1729                         rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1730                 rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1731                                  attach->timlfs, attach);
1732         }
1733
1734         if (attach->cptlfs) {
1735                 if (attach->modify &&
1736                     rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1737                         rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1738                 rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1739                                  attach->cptlfs, attach);
1740         }
1741
1742 exit:
1743         mutex_unlock(&rvu->rsrc_lock);
1744         return err;
1745 }
1746
1747 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1748                                int blkaddr, int lf)
1749 {
1750         u16 vec;
1751
1752         if (lf < 0)
1753                 return MSIX_VECTOR_INVALID;
1754
1755         for (vec = 0; vec < pfvf->msix.max; vec++) {
1756                 if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1757                         return vec;
1758         }
1759         return MSIX_VECTOR_INVALID;
1760 }
1761
1762 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1763                                 struct rvu_block *block, int lf)
1764 {
1765         u16 nvecs, vec, offset;
1766         u64 cfg;
1767
1768         cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1769                          (lf << block->lfshift));
1770         nvecs = (cfg >> 12) & 0xFF;
1771
1772         /* Check and alloc MSIX vectors, must be contiguous */
1773         if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1774                 return;
1775
1776         offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1777
1778         /* Config MSIX offset in LF */
1779         rvu_write64(rvu, block->addr, block->msixcfg_reg |
1780                     (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1781
1782         /* Update the bitmap as well */
1783         for (vec = 0; vec < nvecs; vec++)
1784                 pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1785 }
1786
1787 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1788                                   struct rvu_block *block, int lf)
1789 {
1790         u16 nvecs, vec, offset;
1791         u64 cfg;
1792
1793         cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1794                          (lf << block->lfshift));
1795         nvecs = (cfg >> 12) & 0xFF;
1796
1797         /* Clear MSIX offset in LF */
1798         rvu_write64(rvu, block->addr, block->msixcfg_reg |
1799                     (lf << block->lfshift), cfg & ~0x7FFULL);
1800
1801         offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1802
1803         /* Update the mapping */
1804         for (vec = 0; vec < nvecs; vec++)
1805                 pfvf->msix_lfmap[offset + vec] = 0;
1806
1807         /* Free the same in MSIX bitmap */
1808         rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1809 }
1810
1811 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1812                                  struct msix_offset_rsp *rsp)
1813 {
1814         struct rvu_hwinfo *hw = rvu->hw;
1815         u16 pcifunc = req->hdr.pcifunc;
1816         struct rvu_pfvf *pfvf;
1817         int lf, slot, blkaddr;
1818
1819         pfvf = rvu_get_pfvf(rvu, pcifunc);
1820         if (!pfvf->msix.bmap)
1821                 return 0;
1822
1823         /* Set MSIX offsets for each block's LFs attached to this PF/VF */
1824         lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1825         rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1826
1827         /* Get BLKADDR from which LFs are attached to pcifunc */
1828         blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1829         if (blkaddr < 0) {
1830                 rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1831         } else {
1832                 lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1833                 rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1834         }
1835
1836         rsp->sso = pfvf->sso;
1837         for (slot = 0; slot < rsp->sso; slot++) {
1838                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1839                 rsp->sso_msixoff[slot] =
1840                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1841         }
1842
1843         rsp->ssow = pfvf->ssow;
1844         for (slot = 0; slot < rsp->ssow; slot++) {
1845                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1846                 rsp->ssow_msixoff[slot] =
1847                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1848         }
1849
1850         rsp->timlfs = pfvf->timlfs;
1851         for (slot = 0; slot < rsp->timlfs; slot++) {
1852                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1853                 rsp->timlf_msixoff[slot] =
1854                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1855         }
1856
1857         rsp->cptlfs = pfvf->cptlfs;
1858         for (slot = 0; slot < rsp->cptlfs; slot++) {
1859                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1860                 rsp->cptlf_msixoff[slot] =
1861                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1862         }
1863
1864         rsp->cpt1_lfs = pfvf->cpt1_lfs;
1865         for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1866                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1867                 rsp->cpt1_lf_msixoff[slot] =
1868                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1869         }
1870
1871         return 0;
1872 }
1873
1874 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1875                                    struct free_rsrcs_rsp *rsp)
1876 {
1877         struct rvu_hwinfo *hw = rvu->hw;
1878         struct rvu_block *block;
1879         struct nix_txsch *txsch;
1880         struct nix_hw *nix_hw;
1881
1882         mutex_lock(&rvu->rsrc_lock);
1883
1884         block = &hw->block[BLKADDR_NPA];
1885         rsp->npa = rvu_rsrc_free_count(&block->lf);
1886
1887         block = &hw->block[BLKADDR_NIX0];
1888         rsp->nix = rvu_rsrc_free_count(&block->lf);
1889
1890         block = &hw->block[BLKADDR_NIX1];
1891         rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1892
1893         block = &hw->block[BLKADDR_SSO];
1894         rsp->sso = rvu_rsrc_free_count(&block->lf);
1895
1896         block = &hw->block[BLKADDR_SSOW];
1897         rsp->ssow = rvu_rsrc_free_count(&block->lf);
1898
1899         block = &hw->block[BLKADDR_TIM];
1900         rsp->tim = rvu_rsrc_free_count(&block->lf);
1901
1902         block = &hw->block[BLKADDR_CPT0];
1903         rsp->cpt = rvu_rsrc_free_count(&block->lf);
1904
1905         block = &hw->block[BLKADDR_CPT1];
1906         rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1907
1908         if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1909                 rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1910                 rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1911                 rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1912                 rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1913                 /* NIX1 */
1914                 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1915                         goto out;
1916                 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1917                 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1918                 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1919                 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1920         } else {
1921                 nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1922                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1923                 rsp->schq[NIX_TXSCH_LVL_SMQ] =
1924                                 rvu_rsrc_free_count(&txsch->schq);
1925
1926                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1927                 rsp->schq[NIX_TXSCH_LVL_TL4] =
1928                                 rvu_rsrc_free_count(&txsch->schq);
1929
1930                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1931                 rsp->schq[NIX_TXSCH_LVL_TL3] =
1932                                 rvu_rsrc_free_count(&txsch->schq);
1933
1934                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1935                 rsp->schq[NIX_TXSCH_LVL_TL2] =
1936                                 rvu_rsrc_free_count(&txsch->schq);
1937
1938                 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1939                         goto out;
1940
1941                 nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1942                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1943                 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1944                                 rvu_rsrc_free_count(&txsch->schq);
1945
1946                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1947                 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1948                                 rvu_rsrc_free_count(&txsch->schq);
1949
1950                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1951                 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1952                                 rvu_rsrc_free_count(&txsch->schq);
1953
1954                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1955                 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1956                                 rvu_rsrc_free_count(&txsch->schq);
1957         }
1958
1959         rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1960 out:
1961         rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1962         mutex_unlock(&rvu->rsrc_lock);
1963
1964         return 0;
1965 }
1966
1967 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1968                             struct msg_rsp *rsp)
1969 {
1970         u16 pcifunc = req->hdr.pcifunc;
1971         u16 vf, numvfs;
1972         u64 cfg;
1973
1974         vf = pcifunc & RVU_PFVF_FUNC_MASK;
1975         cfg = rvu_read64(rvu, BLKADDR_RVUM,
1976                          RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1977         numvfs = (cfg >> 12) & 0xFF;
1978
1979         if (vf && vf <= numvfs)
1980                 __rvu_flr_handler(rvu, pcifunc);
1981         else
1982                 return RVU_INVALID_VF_ID;
1983
1984         return 0;
1985 }
1986
1987 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1988                                 struct get_hw_cap_rsp *rsp)
1989 {
1990         struct rvu_hwinfo *hw = rvu->hw;
1991
1992         rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1993         rsp->nix_shaping = hw->cap.nix_shaping;
1994
1995         return 0;
1996 }
1997
1998 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
1999                                  struct msg_rsp *rsp)
2000 {
2001         struct rvu_hwinfo *hw = rvu->hw;
2002         u16 pcifunc = req->hdr.pcifunc;
2003         struct rvu_pfvf *pfvf;
2004         int blkaddr, nixlf;
2005         u16 target;
2006
2007         /* Only PF can add VF permissions */
2008         if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
2009                 return -EOPNOTSUPP;
2010
2011         target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2012         pfvf = rvu_get_pfvf(rvu, target);
2013
2014         if (req->flags & RESET_VF_PERM) {
2015                 pfvf->flags &= RVU_CLEAR_VF_PERM;
2016         } else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2017                  (req->flags & VF_TRUSTED)) {
2018                 change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2019                 /* disable multicast and promisc entries */
2020                 if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2021                         blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2022                         if (blkaddr < 0)
2023                                 return 0;
2024                         nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2025                                            target, 0);
2026                         if (nixlf < 0)
2027                                 return 0;
2028                         npc_enadis_default_mce_entry(rvu, target, nixlf,
2029                                                      NIXLF_ALLMULTI_ENTRY,
2030                                                      false);
2031                         npc_enadis_default_mce_entry(rvu, target, nixlf,
2032                                                      NIXLF_PROMISC_ENTRY,
2033                                                      false);
2034                 }
2035         }
2036
2037         return 0;
2038 }
2039
2040 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2041                                 struct mbox_msghdr *req)
2042 {
2043         struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2044
2045         /* Check if valid, if not reply with a invalid msg */
2046         if (req->sig != OTX2_MBOX_REQ_SIG)
2047                 goto bad_message;
2048
2049         switch (req->id) {
2050 #define M(_name, _id, _fn_name, _req_type, _rsp_type)                   \
2051         case _id: {                                                     \
2052                 struct _rsp_type *rsp;                                  \
2053                 int err;                                                \
2054                                                                         \
2055                 rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(          \
2056                         mbox, devid,                                    \
2057                         sizeof(struct _rsp_type));                      \
2058                 /* some handlers should complete even if reply */       \
2059                 /* could not be allocated */                            \
2060                 if (!rsp &&                                             \
2061                     _id != MBOX_MSG_DETACH_RESOURCES &&                 \
2062                     _id != MBOX_MSG_NIX_TXSCH_FREE &&                   \
2063                     _id != MBOX_MSG_VF_FLR)                             \
2064                         return -ENOMEM;                                 \
2065                 if (rsp) {                                              \
2066                         rsp->hdr.id = _id;                              \
2067                         rsp->hdr.sig = OTX2_MBOX_RSP_SIG;               \
2068                         rsp->hdr.pcifunc = req->pcifunc;                \
2069                         rsp->hdr.rc = 0;                                \
2070                 }                                                       \
2071                                                                         \
2072                 err = rvu_mbox_handler_ ## _fn_name(rvu,                \
2073                                                     (struct _req_type *)req, \
2074                                                     rsp);               \
2075                 if (rsp && err)                                         \
2076                         rsp->hdr.rc = err;                              \
2077                                                                         \
2078                 trace_otx2_msg_process(mbox->pdev, _id, err);           \
2079                 return rsp ? err : -ENOMEM;                             \
2080         }
2081 MBOX_MESSAGES
2082 #undef M
2083
2084 bad_message:
2085         default:
2086                 otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2087                 return -ENODEV;
2088         }
2089 }
2090
2091 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
2092 {
2093         struct rvu *rvu = mwork->rvu;
2094         int offset, err, id, devid;
2095         struct otx2_mbox_dev *mdev;
2096         struct mbox_hdr *req_hdr;
2097         struct mbox_msghdr *msg;
2098         struct mbox_wq_info *mw;
2099         struct otx2_mbox *mbox;
2100
2101         switch (type) {
2102         case TYPE_AFPF:
2103                 mw = &rvu->afpf_wq_info;
2104                 break;
2105         case TYPE_AFVF:
2106                 mw = &rvu->afvf_wq_info;
2107                 break;
2108         default:
2109                 return;
2110         }
2111
2112         devid = mwork - mw->mbox_wrk;
2113         mbox = &mw->mbox;
2114         mdev = &mbox->dev[devid];
2115
2116         /* Process received mbox messages */
2117         req_hdr = mdev->mbase + mbox->rx_start;
2118         if (mw->mbox_wrk[devid].num_msgs == 0)
2119                 return;
2120
2121         offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2122
2123         for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2124                 msg = mdev->mbase + offset;
2125
2126                 /* Set which PF/VF sent this message based on mbox IRQ */
2127                 switch (type) {
2128                 case TYPE_AFPF:
2129                         msg->pcifunc &=
2130                                 ~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2131                         msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2132                         break;
2133                 case TYPE_AFVF:
2134                         msg->pcifunc &=
2135                                 ~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2136                         msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2137                         break;
2138                 }
2139
2140                 err = rvu_process_mbox_msg(mbox, devid, msg);
2141                 if (!err) {
2142                         offset = mbox->rx_start + msg->next_msgoff;
2143                         continue;
2144                 }
2145
2146                 if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2147                         dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2148                                  err, otx2_mbox_id2name(msg->id),
2149                                  msg->id, rvu_get_pf(msg->pcifunc),
2150                                  (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2151                 else
2152                         dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2153                                  err, otx2_mbox_id2name(msg->id),
2154                                  msg->id, devid);
2155         }
2156         mw->mbox_wrk[devid].num_msgs = 0;
2157
2158         /* Send mbox responses to VF/PF */
2159         otx2_mbox_msg_send(mbox, devid);
2160 }
2161
2162 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2163 {
2164         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2165
2166         __rvu_mbox_handler(mwork, TYPE_AFPF);
2167 }
2168
2169 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2170 {
2171         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2172
2173         __rvu_mbox_handler(mwork, TYPE_AFVF);
2174 }
2175
2176 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2177 {
2178         struct rvu *rvu = mwork->rvu;
2179         struct otx2_mbox_dev *mdev;
2180         struct mbox_hdr *rsp_hdr;
2181         struct mbox_msghdr *msg;
2182         struct mbox_wq_info *mw;
2183         struct otx2_mbox *mbox;
2184         int offset, id, devid;
2185
2186         switch (type) {
2187         case TYPE_AFPF:
2188                 mw = &rvu->afpf_wq_info;
2189                 break;
2190         case TYPE_AFVF:
2191                 mw = &rvu->afvf_wq_info;
2192                 break;
2193         default:
2194                 return;
2195         }
2196
2197         devid = mwork - mw->mbox_wrk_up;
2198         mbox = &mw->mbox_up;
2199         mdev = &mbox->dev[devid];
2200
2201         rsp_hdr = mdev->mbase + mbox->rx_start;
2202         if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2203                 dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2204                 return;
2205         }
2206
2207         offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2208
2209         for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2210                 msg = mdev->mbase + offset;
2211
2212                 if (msg->id >= MBOX_MSG_MAX) {
2213                         dev_err(rvu->dev,
2214                                 "Mbox msg with unknown ID 0x%x\n", msg->id);
2215                         goto end;
2216                 }
2217
2218                 if (msg->sig != OTX2_MBOX_RSP_SIG) {
2219                         dev_err(rvu->dev,
2220                                 "Mbox msg with wrong signature %x, ID 0x%x\n",
2221                                 msg->sig, msg->id);
2222                         goto end;
2223                 }
2224
2225                 switch (msg->id) {
2226                 case MBOX_MSG_CGX_LINK_EVENT:
2227                         break;
2228                 default:
2229                         if (msg->rc)
2230                                 dev_err(rvu->dev,
2231                                         "Mbox msg response has err %d, ID 0x%x\n",
2232                                         msg->rc, msg->id);
2233                         break;
2234                 }
2235 end:
2236                 offset = mbox->rx_start + msg->next_msgoff;
2237                 mdev->msgs_acked++;
2238         }
2239         mw->mbox_wrk_up[devid].up_num_msgs = 0;
2240
2241         otx2_mbox_reset(mbox, devid);
2242 }
2243
2244 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2245 {
2246         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2247
2248         __rvu_mbox_up_handler(mwork, TYPE_AFPF);
2249 }
2250
2251 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2252 {
2253         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2254
2255         __rvu_mbox_up_handler(mwork, TYPE_AFVF);
2256 }
2257
2258 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2259                                 int num, int type)
2260 {
2261         struct rvu_hwinfo *hw = rvu->hw;
2262         int region;
2263         u64 bar4;
2264
2265         /* For cn10k platform VF mailbox regions of a PF follows after the
2266          * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2267          * RVU_PF_VF_BAR4_ADDR register.
2268          */
2269         if (type == TYPE_AFVF) {
2270                 for (region = 0; region < num; region++) {
2271                         if (hw->cap.per_pf_mbox_regs) {
2272                                 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2273                                                   RVU_AF_PFX_BAR4_ADDR(0)) +
2274                                                   MBOX_SIZE;
2275                                 bar4 += region * MBOX_SIZE;
2276                         } else {
2277                                 bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2278                                 bar4 += region * MBOX_SIZE;
2279                         }
2280                         mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2281                         if (!mbox_addr[region])
2282                                 goto error;
2283                 }
2284                 return 0;
2285         }
2286
2287         /* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2288          * PF registers. Whereas for Octeontx2 it is read from
2289          * RVU_AF_PF_BAR4_ADDR register.
2290          */
2291         for (region = 0; region < num; region++) {
2292                 if (hw->cap.per_pf_mbox_regs) {
2293                         bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2294                                           RVU_AF_PFX_BAR4_ADDR(region));
2295                 } else {
2296                         bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2297                                           RVU_AF_PF_BAR4_ADDR);
2298                         bar4 += region * MBOX_SIZE;
2299                 }
2300                 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2301                 if (!mbox_addr[region])
2302                         goto error;
2303         }
2304         return 0;
2305
2306 error:
2307         while (region--)
2308                 iounmap((void __iomem *)mbox_addr[region]);
2309         return -ENOMEM;
2310 }
2311
2312 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2313                          int type, int num,
2314                          void (mbox_handler)(struct work_struct *),
2315                          void (mbox_up_handler)(struct work_struct *))
2316 {
2317         int err = -EINVAL, i, dir, dir_up;
2318         void __iomem *reg_base;
2319         struct rvu_work *mwork;
2320         void **mbox_regions;
2321         const char *name;
2322
2323         mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2324         if (!mbox_regions)
2325                 return -ENOMEM;
2326
2327         switch (type) {
2328         case TYPE_AFPF:
2329                 name = "rvu_afpf_mailbox";
2330                 dir = MBOX_DIR_AFPF;
2331                 dir_up = MBOX_DIR_AFPF_UP;
2332                 reg_base = rvu->afreg_base;
2333                 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2334                 if (err)
2335                         goto free_regions;
2336                 break;
2337         case TYPE_AFVF:
2338                 name = "rvu_afvf_mailbox";
2339                 dir = MBOX_DIR_PFVF;
2340                 dir_up = MBOX_DIR_PFVF_UP;
2341                 reg_base = rvu->pfreg_base;
2342                 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2343                 if (err)
2344                         goto free_regions;
2345                 break;
2346         default:
2347                 goto free_regions;
2348         }
2349
2350         mw->mbox_wq = alloc_workqueue(name,
2351                                       WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2352                                       num);
2353         if (!mw->mbox_wq) {
2354                 err = -ENOMEM;
2355                 goto unmap_regions;
2356         }
2357
2358         mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2359                                     sizeof(struct rvu_work), GFP_KERNEL);
2360         if (!mw->mbox_wrk) {
2361                 err = -ENOMEM;
2362                 goto exit;
2363         }
2364
2365         mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2366                                        sizeof(struct rvu_work), GFP_KERNEL);
2367         if (!mw->mbox_wrk_up) {
2368                 err = -ENOMEM;
2369                 goto exit;
2370         }
2371
2372         err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2373                                      reg_base, dir, num);
2374         if (err)
2375                 goto exit;
2376
2377         err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2378                                      reg_base, dir_up, num);
2379         if (err)
2380                 goto exit;
2381
2382         for (i = 0; i < num; i++) {
2383                 mwork = &mw->mbox_wrk[i];
2384                 mwork->rvu = rvu;
2385                 INIT_WORK(&mwork->work, mbox_handler);
2386
2387                 mwork = &mw->mbox_wrk_up[i];
2388                 mwork->rvu = rvu;
2389                 INIT_WORK(&mwork->work, mbox_up_handler);
2390         }
2391         kfree(mbox_regions);
2392         return 0;
2393
2394 exit:
2395         destroy_workqueue(mw->mbox_wq);
2396 unmap_regions:
2397         while (num--)
2398                 iounmap((void __iomem *)mbox_regions[num]);
2399 free_regions:
2400         kfree(mbox_regions);
2401         return err;
2402 }
2403
2404 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2405 {
2406         struct otx2_mbox *mbox = &mw->mbox;
2407         struct otx2_mbox_dev *mdev;
2408         int devid;
2409
2410         if (mw->mbox_wq) {
2411                 destroy_workqueue(mw->mbox_wq);
2412                 mw->mbox_wq = NULL;
2413         }
2414
2415         for (devid = 0; devid < mbox->ndevs; devid++) {
2416                 mdev = &mbox->dev[devid];
2417                 if (mdev->hwbase)
2418                         iounmap((void __iomem *)mdev->hwbase);
2419         }
2420
2421         otx2_mbox_destroy(&mw->mbox);
2422         otx2_mbox_destroy(&mw->mbox_up);
2423 }
2424
2425 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2426                            int mdevs, u64 intr)
2427 {
2428         struct otx2_mbox_dev *mdev;
2429         struct otx2_mbox *mbox;
2430         struct mbox_hdr *hdr;
2431         int i;
2432
2433         for (i = first; i < mdevs; i++) {
2434                 /* start from 0 */
2435                 if (!(intr & BIT_ULL(i - first)))
2436                         continue;
2437
2438                 mbox = &mw->mbox;
2439                 mdev = &mbox->dev[i];
2440                 hdr = mdev->mbase + mbox->rx_start;
2441
2442                 /*The hdr->num_msgs is set to zero immediately in the interrupt
2443                  * handler to  ensure that it holds a correct value next time
2444                  * when the interrupt handler is called.
2445                  * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2446                  * pf>mbox.up_num_msgs holds the data for use in
2447                  * pfaf_mbox_up_handler.
2448                  */
2449
2450                 if (hdr->num_msgs) {
2451                         mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2452                         hdr->num_msgs = 0;
2453                         queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2454                 }
2455                 mbox = &mw->mbox_up;
2456                 mdev = &mbox->dev[i];
2457                 hdr = mdev->mbase + mbox->rx_start;
2458                 if (hdr->num_msgs) {
2459                         mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2460                         hdr->num_msgs = 0;
2461                         queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2462                 }
2463         }
2464 }
2465
2466 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2467 {
2468         struct rvu *rvu = (struct rvu *)rvu_irq;
2469         int vfs = rvu->vfs;
2470         u64 intr;
2471
2472         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2473         /* Clear interrupts */
2474         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2475         if (intr)
2476                 trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2477
2478         /* Sync with mbox memory region */
2479         rmb();
2480
2481         rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2482
2483         /* Handle VF interrupts */
2484         if (vfs > 64) {
2485                 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2486                 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2487
2488                 rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2489                 vfs -= 64;
2490         }
2491
2492         intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2493         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2494         if (intr)
2495                 trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2496
2497         rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2498
2499         return IRQ_HANDLED;
2500 }
2501
2502 static void rvu_enable_mbox_intr(struct rvu *rvu)
2503 {
2504         struct rvu_hwinfo *hw = rvu->hw;
2505
2506         /* Clear spurious irqs, if any */
2507         rvu_write64(rvu, BLKADDR_RVUM,
2508                     RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2509
2510         /* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2511         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2512                     INTR_MASK(hw->total_pfs) & ~1ULL);
2513 }
2514
2515 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2516 {
2517         struct rvu_block *block;
2518         int slot, lf, num_lfs;
2519         int err;
2520
2521         block = &rvu->hw->block[blkaddr];
2522         num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2523                                         block->addr);
2524         if (!num_lfs)
2525                 return;
2526         for (slot = 0; slot < num_lfs; slot++) {
2527                 lf = rvu_get_lf(rvu, block, pcifunc, slot);
2528                 if (lf < 0)
2529                         continue;
2530
2531                 /* Cleanup LF and reset it */
2532                 if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2533                         rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2534                 else if (block->addr == BLKADDR_NPA)
2535                         rvu_npa_lf_teardown(rvu, pcifunc, lf);
2536                 else if ((block->addr == BLKADDR_CPT0) ||
2537                          (block->addr == BLKADDR_CPT1))
2538                         rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2539                                             slot);
2540
2541                 err = rvu_lf_reset(rvu, block, lf);
2542                 if (err) {
2543                         dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2544                                 block->addr, lf);
2545                 }
2546         }
2547 }
2548
2549 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2550 {
2551         mutex_lock(&rvu->flr_lock);
2552         /* Reset order should reflect inter-block dependencies:
2553          * 1. Reset any packet/work sources (NIX, CPT, TIM)
2554          * 2. Flush and reset SSO/SSOW
2555          * 3. Cleanup pools (NPA)
2556          */
2557         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2558         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2559         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2560         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2561         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2562         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2563         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2564         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2565         rvu_reset_lmt_map_tbl(rvu, pcifunc);
2566         rvu_detach_rsrcs(rvu, NULL, pcifunc);
2567         mutex_unlock(&rvu->flr_lock);
2568 }
2569
2570 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2571 {
2572         int reg = 0;
2573
2574         /* pcifunc = 0(PF0) | (vf + 1) */
2575         __rvu_flr_handler(rvu, vf + 1);
2576
2577         if (vf >= 64) {
2578                 reg = 1;
2579                 vf = vf - 64;
2580         }
2581
2582         /* Signal FLR finish and enable IRQ */
2583         rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2584         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2585 }
2586
2587 static void rvu_flr_handler(struct work_struct *work)
2588 {
2589         struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2590         struct rvu *rvu = flrwork->rvu;
2591         u16 pcifunc, numvfs, vf;
2592         u64 cfg;
2593         int pf;
2594
2595         pf = flrwork - rvu->flr_wrk;
2596         if (pf >= rvu->hw->total_pfs) {
2597                 rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2598                 return;
2599         }
2600
2601         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2602         numvfs = (cfg >> 12) & 0xFF;
2603         pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2604
2605         for (vf = 0; vf < numvfs; vf++)
2606                 __rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2607
2608         __rvu_flr_handler(rvu, pcifunc);
2609
2610         /* Signal FLR finish */
2611         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2612
2613         /* Enable interrupt */
2614         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2615 }
2616
2617 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2618 {
2619         int dev, vf, reg = 0;
2620         u64 intr;
2621
2622         if (start_vf >= 64)
2623                 reg = 1;
2624
2625         intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2626         if (!intr)
2627                 return;
2628
2629         for (vf = 0; vf < numvfs; vf++) {
2630                 if (!(intr & BIT_ULL(vf)))
2631                         continue;
2632                 /* Clear and disable the interrupt */
2633                 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2634                 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2635
2636                 dev = vf + start_vf + rvu->hw->total_pfs;
2637                 queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2638         }
2639 }
2640
2641 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2642 {
2643         struct rvu *rvu = (struct rvu *)rvu_irq;
2644         u64 intr;
2645         u8  pf;
2646
2647         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2648         if (!intr)
2649                 goto afvf_flr;
2650
2651         for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2652                 if (intr & (1ULL << pf)) {
2653                         /* clear interrupt */
2654                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2655                                     BIT_ULL(pf));
2656                         /* Disable the interrupt */
2657                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2658                                     BIT_ULL(pf));
2659                         /* PF is already dead do only AF related operations */
2660                         queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2661                 }
2662         }
2663
2664 afvf_flr:
2665         rvu_afvf_queue_flr_work(rvu, 0, 64);
2666         if (rvu->vfs > 64)
2667                 rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2668
2669         return IRQ_HANDLED;
2670 }
2671
2672 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2673 {
2674         int vf;
2675
2676         /* Nothing to be done here other than clearing the
2677          * TRPEND bit.
2678          */
2679         for (vf = 0; vf < 64; vf++) {
2680                 if (intr & (1ULL << vf)) {
2681                         /* clear the trpend due to ME(master enable) */
2682                         rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2683                         /* clear interrupt */
2684                         rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2685                 }
2686         }
2687 }
2688
2689 /* Handles ME interrupts from VFs of AF */
2690 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2691 {
2692         struct rvu *rvu = (struct rvu *)rvu_irq;
2693         int vfset;
2694         u64 intr;
2695
2696         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2697
2698         for (vfset = 0; vfset <= 1; vfset++) {
2699                 intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2700                 if (intr)
2701                         rvu_me_handle_vfset(rvu, vfset, intr);
2702         }
2703
2704         return IRQ_HANDLED;
2705 }
2706
2707 /* Handles ME interrupts from PFs */
2708 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2709 {
2710         struct rvu *rvu = (struct rvu *)rvu_irq;
2711         u64 intr;
2712         u8  pf;
2713
2714         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2715
2716         /* Nothing to be done here other than clearing the
2717          * TRPEND bit.
2718          */
2719         for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2720                 if (intr & (1ULL << pf)) {
2721                         /* clear the trpend due to ME(master enable) */
2722                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2723                                     BIT_ULL(pf));
2724                         /* clear interrupt */
2725                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2726                                     BIT_ULL(pf));
2727                 }
2728         }
2729
2730         return IRQ_HANDLED;
2731 }
2732
2733 static void rvu_unregister_interrupts(struct rvu *rvu)
2734 {
2735         int irq;
2736
2737         rvu_cpt_unregister_interrupts(rvu);
2738
2739         /* Disable the Mbox interrupt */
2740         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2741                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2742
2743         /* Disable the PF FLR interrupt */
2744         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2745                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2746
2747         /* Disable the PF ME interrupt */
2748         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2749                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2750
2751         for (irq = 0; irq < rvu->num_vec; irq++) {
2752                 if (rvu->irq_allocated[irq]) {
2753                         free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2754                         rvu->irq_allocated[irq] = false;
2755                 }
2756         }
2757
2758         pci_free_irq_vectors(rvu->pdev);
2759         rvu->num_vec = 0;
2760 }
2761
2762 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2763 {
2764         struct rvu_pfvf *pfvf = &rvu->pf[0];
2765         int offset;
2766
2767         pfvf = &rvu->pf[0];
2768         offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2769
2770         /* Make sure there are enough MSIX vectors configured so that
2771          * VF interrupts can be handled. Offset equal to zero means
2772          * that PF vectors are not configured and overlapping AF vectors.
2773          */
2774         return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2775                offset;
2776 }
2777
2778 static int rvu_register_interrupts(struct rvu *rvu)
2779 {
2780         int ret, offset, pf_vec_start;
2781
2782         rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2783
2784         rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2785                                            NAME_SIZE, GFP_KERNEL);
2786         if (!rvu->irq_name)
2787                 return -ENOMEM;
2788
2789         rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2790                                           sizeof(bool), GFP_KERNEL);
2791         if (!rvu->irq_allocated)
2792                 return -ENOMEM;
2793
2794         /* Enable MSI-X */
2795         ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2796                                     rvu->num_vec, PCI_IRQ_MSIX);
2797         if (ret < 0) {
2798                 dev_err(rvu->dev,
2799                         "RVUAF: Request for %d msix vectors failed, ret %d\n",
2800                         rvu->num_vec, ret);
2801                 return ret;
2802         }
2803
2804         /* Register mailbox interrupt handler */
2805         sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2806         ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2807                           rvu_mbox_intr_handler, 0,
2808                           &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2809         if (ret) {
2810                 dev_err(rvu->dev,
2811                         "RVUAF: IRQ registration failed for mbox irq\n");
2812                 goto fail;
2813         }
2814
2815         rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2816
2817         /* Enable mailbox interrupts from all PFs */
2818         rvu_enable_mbox_intr(rvu);
2819
2820         /* Register FLR interrupt handler */
2821         sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2822                 "RVUAF FLR");
2823         ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2824                           rvu_flr_intr_handler, 0,
2825                           &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2826                           rvu);
2827         if (ret) {
2828                 dev_err(rvu->dev,
2829                         "RVUAF: IRQ registration failed for FLR\n");
2830                 goto fail;
2831         }
2832         rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2833
2834         /* Enable FLR interrupt for all PFs*/
2835         rvu_write64(rvu, BLKADDR_RVUM,
2836                     RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2837
2838         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2839                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2840
2841         /* Register ME interrupt handler */
2842         sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2843                 "RVUAF ME");
2844         ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2845                           rvu_me_pf_intr_handler, 0,
2846                           &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2847                           rvu);
2848         if (ret) {
2849                 dev_err(rvu->dev,
2850                         "RVUAF: IRQ registration failed for ME\n");
2851         }
2852         rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2853
2854         /* Clear TRPEND bit for all PF */
2855         rvu_write64(rvu, BLKADDR_RVUM,
2856                     RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2857         /* Enable ME interrupt for all PFs*/
2858         rvu_write64(rvu, BLKADDR_RVUM,
2859                     RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2860
2861         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2862                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2863
2864         if (!rvu_afvf_msix_vectors_num_ok(rvu))
2865                 return 0;
2866
2867         /* Get PF MSIX vectors offset. */
2868         pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2869                                   RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2870
2871         /* Register MBOX0 interrupt. */
2872         offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2873         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2874         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2875                           rvu_mbox_intr_handler, 0,
2876                           &rvu->irq_name[offset * NAME_SIZE],
2877                           rvu);
2878         if (ret)
2879                 dev_err(rvu->dev,
2880                         "RVUAF: IRQ registration failed for Mbox0\n");
2881
2882         rvu->irq_allocated[offset] = true;
2883
2884         /* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2885          * simply increment current offset by 1.
2886          */
2887         offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2888         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2889         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2890                           rvu_mbox_intr_handler, 0,
2891                           &rvu->irq_name[offset * NAME_SIZE],
2892                           rvu);
2893         if (ret)
2894                 dev_err(rvu->dev,
2895                         "RVUAF: IRQ registration failed for Mbox1\n");
2896
2897         rvu->irq_allocated[offset] = true;
2898
2899         /* Register FLR interrupt handler for AF's VFs */
2900         offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2901         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2902         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2903                           rvu_flr_intr_handler, 0,
2904                           &rvu->irq_name[offset * NAME_SIZE], rvu);
2905         if (ret) {
2906                 dev_err(rvu->dev,
2907                         "RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2908                 goto fail;
2909         }
2910         rvu->irq_allocated[offset] = true;
2911
2912         offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2913         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2914         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2915                           rvu_flr_intr_handler, 0,
2916                           &rvu->irq_name[offset * NAME_SIZE], rvu);
2917         if (ret) {
2918                 dev_err(rvu->dev,
2919                         "RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2920                 goto fail;
2921         }
2922         rvu->irq_allocated[offset] = true;
2923
2924         /* Register ME interrupt handler for AF's VFs */
2925         offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2926         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2927         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2928                           rvu_me_vf_intr_handler, 0,
2929                           &rvu->irq_name[offset * NAME_SIZE], rvu);
2930         if (ret) {
2931                 dev_err(rvu->dev,
2932                         "RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2933                 goto fail;
2934         }
2935         rvu->irq_allocated[offset] = true;
2936
2937         offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2938         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2939         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2940                           rvu_me_vf_intr_handler, 0,
2941                           &rvu->irq_name[offset * NAME_SIZE], rvu);
2942         if (ret) {
2943                 dev_err(rvu->dev,
2944                         "RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2945                 goto fail;
2946         }
2947         rvu->irq_allocated[offset] = true;
2948
2949         ret = rvu_cpt_register_interrupts(rvu);
2950         if (ret)
2951                 goto fail;
2952
2953         return 0;
2954
2955 fail:
2956         rvu_unregister_interrupts(rvu);
2957         return ret;
2958 }
2959
2960 static void rvu_flr_wq_destroy(struct rvu *rvu)
2961 {
2962         if (rvu->flr_wq) {
2963                 destroy_workqueue(rvu->flr_wq);
2964                 rvu->flr_wq = NULL;
2965         }
2966 }
2967
2968 static int rvu_flr_init(struct rvu *rvu)
2969 {
2970         int dev, num_devs;
2971         u64 cfg;
2972         int pf;
2973
2974         /* Enable FLR for all PFs*/
2975         for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2976                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2977                 rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2978                             cfg | BIT_ULL(22));
2979         }
2980
2981         rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2982                                       WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2983                                        1);
2984         if (!rvu->flr_wq)
2985                 return -ENOMEM;
2986
2987         num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2988         rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2989                                     sizeof(struct rvu_work), GFP_KERNEL);
2990         if (!rvu->flr_wrk) {
2991                 destroy_workqueue(rvu->flr_wq);
2992                 return -ENOMEM;
2993         }
2994
2995         for (dev = 0; dev < num_devs; dev++) {
2996                 rvu->flr_wrk[dev].rvu = rvu;
2997                 INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2998         }
2999
3000         mutex_init(&rvu->flr_lock);
3001
3002         return 0;
3003 }
3004
3005 static void rvu_disable_afvf_intr(struct rvu *rvu)
3006 {
3007         int vfs = rvu->vfs;
3008
3009         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3010         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3011         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3012         if (vfs <= 64)
3013                 return;
3014
3015         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3016                       INTR_MASK(vfs - 64));
3017         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3018         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3019 }
3020
3021 static void rvu_enable_afvf_intr(struct rvu *rvu)
3022 {
3023         int vfs = rvu->vfs;
3024
3025         /* Clear any pending interrupts and enable AF VF interrupts for
3026          * the first 64 VFs.
3027          */
3028         /* Mbox */
3029         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3030         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3031
3032         /* FLR */
3033         rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3034         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3035         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3036
3037         /* Same for remaining VFs, if any. */
3038         if (vfs <= 64)
3039                 return;
3040
3041         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3042         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3043                       INTR_MASK(vfs - 64));
3044
3045         rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3046         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3047         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3048 }
3049
3050 int rvu_get_num_lbk_chans(void)
3051 {
3052         struct pci_dev *pdev;
3053         void __iomem *base;
3054         int ret = -EIO;
3055
3056         pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3057                               NULL);
3058         if (!pdev)
3059                 goto err;
3060
3061         base = pci_ioremap_bar(pdev, 0);
3062         if (!base)
3063                 goto err_put;
3064
3065         /* Read number of available LBK channels from LBK(0)_CONST register. */
3066         ret = (readq(base + 0x10) >> 32) & 0xffff;
3067         iounmap(base);
3068 err_put:
3069         pci_dev_put(pdev);
3070 err:
3071         return ret;
3072 }
3073
3074 static int rvu_enable_sriov(struct rvu *rvu)
3075 {
3076         struct pci_dev *pdev = rvu->pdev;
3077         int err, chans, vfs;
3078
3079         if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3080                 dev_warn(&pdev->dev,
3081                          "Skipping SRIOV enablement since not enough IRQs are available\n");
3082                 return 0;
3083         }
3084
3085         chans = rvu_get_num_lbk_chans();
3086         if (chans < 0)
3087                 return chans;
3088
3089         vfs = pci_sriov_get_totalvfs(pdev);
3090
3091         /* Limit VFs in case we have more VFs than LBK channels available. */
3092         if (vfs > chans)
3093                 vfs = chans;
3094
3095         if (!vfs)
3096                 return 0;
3097
3098         /* LBK channel number 63 is used for switching packets between
3099          * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3100          */
3101         if (vfs > 62)
3102                 vfs = 62;
3103
3104         /* Save VFs number for reference in VF interrupts handlers.
3105          * Since interrupts might start arriving during SRIOV enablement
3106          * ordinary API cannot be used to get number of enabled VFs.
3107          */
3108         rvu->vfs = vfs;
3109
3110         err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3111                             rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3112         if (err)
3113                 return err;
3114
3115         rvu_enable_afvf_intr(rvu);
3116         /* Make sure IRQs are enabled before SRIOV. */
3117         mb();
3118
3119         err = pci_enable_sriov(pdev, vfs);
3120         if (err) {
3121                 rvu_disable_afvf_intr(rvu);
3122                 rvu_mbox_destroy(&rvu->afvf_wq_info);
3123                 return err;
3124         }
3125
3126         return 0;
3127 }
3128
3129 static void rvu_disable_sriov(struct rvu *rvu)
3130 {
3131         rvu_disable_afvf_intr(rvu);
3132         rvu_mbox_destroy(&rvu->afvf_wq_info);
3133         pci_disable_sriov(rvu->pdev);
3134 }
3135
3136 static void rvu_update_module_params(struct rvu *rvu)
3137 {
3138         const char *default_pfl_name = "default";
3139
3140         strscpy(rvu->mkex_pfl_name,
3141                 mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3142         strscpy(rvu->kpu_pfl_name,
3143                 kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3144 }
3145
3146 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3147 {
3148         struct device *dev = &pdev->dev;
3149         struct rvu *rvu;
3150         int    err;
3151
3152         rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3153         if (!rvu)
3154                 return -ENOMEM;
3155
3156         rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3157         if (!rvu->hw) {
3158                 devm_kfree(dev, rvu);
3159                 return -ENOMEM;
3160         }
3161
3162         pci_set_drvdata(pdev, rvu);
3163         rvu->pdev = pdev;
3164         rvu->dev = &pdev->dev;
3165
3166         err = pci_enable_device(pdev);
3167         if (err) {
3168                 dev_err(dev, "Failed to enable PCI device\n");
3169                 goto err_freemem;
3170         }
3171
3172         err = pci_request_regions(pdev, DRV_NAME);
3173         if (err) {
3174                 dev_err(dev, "PCI request regions failed 0x%x\n", err);
3175                 goto err_disable_device;
3176         }
3177
3178         err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3179         if (err) {
3180                 dev_err(dev, "DMA mask config failed, abort\n");
3181                 goto err_release_regions;
3182         }
3183
3184         pci_set_master(pdev);
3185
3186         rvu->ptp = ptp_get();
3187         if (IS_ERR(rvu->ptp)) {
3188                 err = PTR_ERR(rvu->ptp);
3189                 if (err == -EPROBE_DEFER)
3190                         goto err_release_regions;
3191                 rvu->ptp = NULL;
3192         }
3193
3194         /* Map Admin function CSRs */
3195         rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3196         rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3197         if (!rvu->afreg_base || !rvu->pfreg_base) {
3198                 dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3199                 err = -ENOMEM;
3200                 goto err_put_ptp;
3201         }
3202
3203         /* Store module params in rvu structure */
3204         rvu_update_module_params(rvu);
3205
3206         /* Check which blocks the HW supports */
3207         rvu_check_block_implemented(rvu);
3208
3209         rvu_reset_all_blocks(rvu);
3210
3211         rvu_setup_hw_capabilities(rvu);
3212
3213         err = rvu_setup_hw_resources(rvu);
3214         if (err)
3215                 goto err_put_ptp;
3216
3217         /* Init mailbox btw AF and PFs */
3218         err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3219                             rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3220                             rvu_afpf_mbox_up_handler);
3221         if (err) {
3222                 dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3223                 goto err_hwsetup;
3224         }
3225
3226         err = rvu_flr_init(rvu);
3227         if (err) {
3228                 dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3229                 goto err_mbox;
3230         }
3231
3232         err = rvu_register_interrupts(rvu);
3233         if (err) {
3234                 dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3235                 goto err_flr;
3236         }
3237
3238         err = rvu_register_dl(rvu);
3239         if (err) {
3240                 dev_err(dev, "%s: Failed to register devlink\n", __func__);
3241                 goto err_irq;
3242         }
3243
3244         rvu_setup_rvum_blk_revid(rvu);
3245
3246         /* Enable AF's VFs (if any) */
3247         err = rvu_enable_sriov(rvu);
3248         if (err) {
3249                 dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3250                 goto err_dl;
3251         }
3252
3253         /* Initialize debugfs */
3254         rvu_dbg_init(rvu);
3255
3256         mutex_init(&rvu->rswitch.switch_lock);
3257
3258         if (rvu->fwdata)
3259                 ptp_start(rvu->ptp, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3260                           rvu->fwdata->ptp_ext_tstamp);
3261
3262         return 0;
3263 err_dl:
3264         rvu_unregister_dl(rvu);
3265 err_irq:
3266         rvu_unregister_interrupts(rvu);
3267 err_flr:
3268         rvu_flr_wq_destroy(rvu);
3269 err_mbox:
3270         rvu_mbox_destroy(&rvu->afpf_wq_info);
3271 err_hwsetup:
3272         rvu_cgx_exit(rvu);
3273         rvu_fwdata_exit(rvu);
3274         rvu_reset_all_blocks(rvu);
3275         rvu_free_hw_resources(rvu);
3276         rvu_clear_rvum_blk_revid(rvu);
3277 err_put_ptp:
3278         ptp_put(rvu->ptp);
3279 err_release_regions:
3280         pci_release_regions(pdev);
3281 err_disable_device:
3282         pci_disable_device(pdev);
3283 err_freemem:
3284         pci_set_drvdata(pdev, NULL);
3285         devm_kfree(&pdev->dev, rvu->hw);
3286         devm_kfree(dev, rvu);
3287         return err;
3288 }
3289
3290 static void rvu_remove(struct pci_dev *pdev)
3291 {
3292         struct rvu *rvu = pci_get_drvdata(pdev);
3293
3294         rvu_dbg_exit(rvu);
3295         rvu_unregister_dl(rvu);
3296         rvu_unregister_interrupts(rvu);
3297         rvu_flr_wq_destroy(rvu);
3298         rvu_cgx_exit(rvu);
3299         rvu_fwdata_exit(rvu);
3300         rvu_mbox_destroy(&rvu->afpf_wq_info);
3301         rvu_disable_sriov(rvu);
3302         rvu_reset_all_blocks(rvu);
3303         rvu_free_hw_resources(rvu);
3304         rvu_clear_rvum_blk_revid(rvu);
3305         ptp_put(rvu->ptp);
3306         pci_release_regions(pdev);
3307         pci_disable_device(pdev);
3308         pci_set_drvdata(pdev, NULL);
3309
3310         devm_kfree(&pdev->dev, rvu->hw);
3311         devm_kfree(&pdev->dev, rvu);
3312 }
3313
3314 static struct pci_driver rvu_driver = {
3315         .name = DRV_NAME,
3316         .id_table = rvu_id_table,
3317         .probe = rvu_probe,
3318         .remove = rvu_remove,
3319 };
3320
3321 static int __init rvu_init_module(void)
3322 {
3323         int err;
3324
3325         pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3326
3327         err = pci_register_driver(&cgx_driver);
3328         if (err < 0)
3329                 return err;
3330
3331         err = pci_register_driver(&ptp_driver);
3332         if (err < 0)
3333                 goto ptp_err;
3334
3335         err =  pci_register_driver(&rvu_driver);
3336         if (err < 0)
3337                 goto rvu_err;
3338
3339         return 0;
3340 rvu_err:
3341         pci_unregister_driver(&ptp_driver);
3342 ptp_err:
3343         pci_unregister_driver(&cgx_driver);
3344
3345         return err;
3346 }
3347
3348 static void __exit rvu_cleanup_module(void)
3349 {
3350         pci_unregister_driver(&rvu_driver);
3351         pci_unregister_driver(&ptp_driver);
3352         pci_unregister_driver(&cgx_driver);
3353 }
3354
3355 module_init(rvu_init_module);
3356 module_exit(rvu_cleanup_module);