octeontx2: Detect the mbox up or down message via register
[linux-2.6-microblaze.git] / drivers / net / ethernet / marvell / octeontx2 / af / rvu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23
24 #define DRV_NAME        "rvu_af"
25 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
26
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28                                 struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30                                   struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34                          int type, int num,
35                          void (mbox_handler)(struct work_struct *),
36                          void (mbox_up_handler)(struct work_struct *));
37 enum {
38         TYPE_AFVF,
39         TYPE_AFPF,
40 };
41
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44         { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45         { 0, }  /* end of table */
46 };
47
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63         struct rvu_hwinfo *hw = rvu->hw;
64
65         hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66         hw->cap.nix_fixed_txschq_mapping = false;
67         hw->cap.nix_shaping = true;
68         hw->cap.nix_tx_link_bp = true;
69         hw->cap.nix_rx_multicast = true;
70         hw->cap.nix_shaper_toggle_wait = false;
71         hw->cap.npc_hash_extract = false;
72         hw->cap.npc_exact_match_enabled = false;
73         hw->rvu = rvu;
74
75         if (is_rvu_pre_96xx_C0(rvu)) {
76                 hw->cap.nix_fixed_txschq_mapping = true;
77                 hw->cap.nix_txsch_per_cgx_lmac = 4;
78                 hw->cap.nix_txsch_per_lbk_lmac = 132;
79                 hw->cap.nix_txsch_per_sdp_lmac = 76;
80                 hw->cap.nix_shaping = false;
81                 hw->cap.nix_tx_link_bp = false;
82                 if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83                         hw->cap.nix_rx_multicast = false;
84         }
85         if (!is_rvu_pre_96xx_C0(rvu))
86                 hw->cap.nix_shaper_toggle_wait = true;
87
88         if (!is_rvu_otx2(rvu))
89                 hw->cap.per_pf_mbox_regs = true;
90
91         if (is_rvu_npc_hash_extract_en(rvu))
92                 hw->cap.npc_hash_extract = true;
93 }
94
95 /* Poll a RVU block's register 'offset', for a 'zero'
96  * or 'nonzero' at bits specified by 'mask'
97  */
98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100         unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101         bool twice = false;
102         void __iomem *reg;
103         u64 reg_val;
104
105         reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107         reg_val = readq(reg);
108         if (zero && !(reg_val & mask))
109                 return 0;
110         if (!zero && (reg_val & mask))
111                 return 0;
112         if (time_before(jiffies, timeout)) {
113                 usleep_range(1, 5);
114                 goto again;
115         }
116         /* In scenarios where CPU is scheduled out before checking
117          * 'time_before' (above) and gets scheduled in such that
118          * jiffies are beyond timeout value, then check again if HW is
119          * done with the operation in the meantime.
120          */
121         if (!twice) {
122                 twice = true;
123                 goto again;
124         }
125         return -EBUSY;
126 }
127
128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130         int id;
131
132         if (!rsrc->bmap)
133                 return -EINVAL;
134
135         id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136         if (id >= rsrc->max)
137                 return -ENOSPC;
138
139         __set_bit(id, rsrc->bmap);
140
141         return id;
142 }
143
144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146         int start;
147
148         if (!rsrc->bmap)
149                 return -EINVAL;
150
151         start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152         if (start >= rsrc->max)
153                 return -ENOSPC;
154
155         bitmap_set(rsrc->bmap, start, nrsrc);
156         return start;
157 }
158
159 void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161         if (!rsrc->bmap)
162                 return;
163         if (start >= rsrc->max)
164                 return;
165
166         bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168
169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171         int start;
172
173         if (!rsrc->bmap)
174                 return false;
175
176         start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177         if (start >= rsrc->max)
178                 return false;
179
180         return true;
181 }
182
183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185         if (!rsrc->bmap)
186                 return;
187
188         __clear_bit(id, rsrc->bmap);
189 }
190
191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193         int used;
194
195         if (!rsrc->bmap)
196                 return 0;
197
198         used = bitmap_weight(rsrc->bmap, rsrc->max);
199         return (rsrc->max - used);
200 }
201
202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204         if (!rsrc->bmap)
205                 return false;
206
207         return !test_bit(id, rsrc->bmap);
208 }
209
210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212         rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213                              sizeof(long), GFP_KERNEL);
214         if (!rsrc->bmap)
215                 return -ENOMEM;
216         return 0;
217 }
218
219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221         kfree(rsrc->bmap);
222 }
223
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227         u16 match = 0;
228         int lf;
229
230         mutex_lock(&rvu->rsrc_lock);
231         for (lf = 0; lf < block->lf.max; lf++) {
232                 if (block->fn_map[lf] == pcifunc) {
233                         if (slot == match) {
234                                 mutex_unlock(&rvu->rsrc_lock);
235                                 return lf;
236                         }
237                         match++;
238                 }
239         }
240         mutex_unlock(&rvu->rsrc_lock);
241         return -ENODEV;
242 }
243
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245  * Some silicon variants of OcteonTX2 supports
246  * multiple blocks of same type.
247  *
248  * @pcifunc has to be zero when no LF is yet attached.
249  *
250  * For a pcifunc if LFs are attached from multiple blocks of same type, then
251  * return blkaddr of first encountered block.
252  */
253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255         int devnum, blkaddr = -ENODEV;
256         u64 cfg, reg;
257         bool is_pf;
258
259         switch (blktype) {
260         case BLKTYPE_NPC:
261                 blkaddr = BLKADDR_NPC;
262                 goto exit;
263         case BLKTYPE_NPA:
264                 blkaddr = BLKADDR_NPA;
265                 goto exit;
266         case BLKTYPE_NIX:
267                 /* For now assume NIX0 */
268                 if (!pcifunc) {
269                         blkaddr = BLKADDR_NIX0;
270                         goto exit;
271                 }
272                 break;
273         case BLKTYPE_SSO:
274                 blkaddr = BLKADDR_SSO;
275                 goto exit;
276         case BLKTYPE_SSOW:
277                 blkaddr = BLKADDR_SSOW;
278                 goto exit;
279         case BLKTYPE_TIM:
280                 blkaddr = BLKADDR_TIM;
281                 goto exit;
282         case BLKTYPE_CPT:
283                 /* For now assume CPT0 */
284                 if (!pcifunc) {
285                         blkaddr = BLKADDR_CPT0;
286                         goto exit;
287                 }
288                 break;
289         }
290
291         /* Check if this is a RVU PF or VF */
292         if (pcifunc & RVU_PFVF_FUNC_MASK) {
293                 is_pf = false;
294                 devnum = rvu_get_hwvf(rvu, pcifunc);
295         } else {
296                 is_pf = true;
297                 devnum = rvu_get_pf(pcifunc);
298         }
299
300         /* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301          * 'BLKADDR_NIX1'.
302          */
303         if (blktype == BLKTYPE_NIX) {
304                 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305                         RVU_PRIV_HWVFX_NIXX_CFG(0);
306                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307                 if (cfg) {
308                         blkaddr = BLKADDR_NIX0;
309                         goto exit;
310                 }
311
312                 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313                         RVU_PRIV_HWVFX_NIXX_CFG(1);
314                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315                 if (cfg)
316                         blkaddr = BLKADDR_NIX1;
317         }
318
319         if (blktype == BLKTYPE_CPT) {
320                 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321                         RVU_PRIV_HWVFX_CPTX_CFG(0);
322                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323                 if (cfg) {
324                         blkaddr = BLKADDR_CPT0;
325                         goto exit;
326                 }
327
328                 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329                         RVU_PRIV_HWVFX_CPTX_CFG(1);
330                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331                 if (cfg)
332                         blkaddr = BLKADDR_CPT1;
333         }
334
335 exit:
336         if (is_block_implemented(rvu->hw, blkaddr))
337                 return blkaddr;
338         return -ENODEV;
339 }
340
341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342                                 struct rvu_block *block, u16 pcifunc,
343                                 u16 lf, bool attach)
344 {
345         int devnum, num_lfs = 0;
346         bool is_pf;
347         u64 reg;
348
349         if (lf >= block->lf.max) {
350                 dev_err(&rvu->pdev->dev,
351                         "%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352                         __func__, lf, block->name, block->lf.max);
353                 return;
354         }
355
356         /* Check if this is for a RVU PF or VF */
357         if (pcifunc & RVU_PFVF_FUNC_MASK) {
358                 is_pf = false;
359                 devnum = rvu_get_hwvf(rvu, pcifunc);
360         } else {
361                 is_pf = true;
362                 devnum = rvu_get_pf(pcifunc);
363         }
364
365         block->fn_map[lf] = attach ? pcifunc : 0;
366
367         switch (block->addr) {
368         case BLKADDR_NPA:
369                 pfvf->npalf = attach ? true : false;
370                 num_lfs = pfvf->npalf;
371                 break;
372         case BLKADDR_NIX0:
373         case BLKADDR_NIX1:
374                 pfvf->nixlf = attach ? true : false;
375                 num_lfs = pfvf->nixlf;
376                 break;
377         case BLKADDR_SSO:
378                 attach ? pfvf->sso++ : pfvf->sso--;
379                 num_lfs = pfvf->sso;
380                 break;
381         case BLKADDR_SSOW:
382                 attach ? pfvf->ssow++ : pfvf->ssow--;
383                 num_lfs = pfvf->ssow;
384                 break;
385         case BLKADDR_TIM:
386                 attach ? pfvf->timlfs++ : pfvf->timlfs--;
387                 num_lfs = pfvf->timlfs;
388                 break;
389         case BLKADDR_CPT0:
390                 attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391                 num_lfs = pfvf->cptlfs;
392                 break;
393         case BLKADDR_CPT1:
394                 attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395                 num_lfs = pfvf->cpt1_lfs;
396                 break;
397         }
398
399         reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400         rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402
403 inline int rvu_get_pf(u16 pcifunc)
404 {
405         return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
406 }
407
408 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
409 {
410         u64 cfg;
411
412         /* Get numVFs attached to this PF and first HWVF */
413         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
414         if (numvfs)
415                 *numvfs = (cfg >> 12) & 0xFF;
416         if (hwvf)
417                 *hwvf = cfg & 0xFFF;
418 }
419
420 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
421 {
422         int pf, func;
423         u64 cfg;
424
425         pf = rvu_get_pf(pcifunc);
426         func = pcifunc & RVU_PFVF_FUNC_MASK;
427
428         /* Get first HWVF attached to this PF */
429         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
430
431         return ((cfg & 0xFFF) + func - 1);
432 }
433
434 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
435 {
436         /* Check if it is a PF or VF */
437         if (pcifunc & RVU_PFVF_FUNC_MASK)
438                 return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
439         else
440                 return &rvu->pf[rvu_get_pf(pcifunc)];
441 }
442
443 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
444 {
445         int pf, vf, nvfs;
446         u64 cfg;
447
448         pf = rvu_get_pf(pcifunc);
449         if (pf >= rvu->hw->total_pfs)
450                 return false;
451
452         if (!(pcifunc & RVU_PFVF_FUNC_MASK))
453                 return true;
454
455         /* Check if VF is within number of VFs attached to this PF */
456         vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
457         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
458         nvfs = (cfg >> 12) & 0xFF;
459         if (vf >= nvfs)
460                 return false;
461
462         return true;
463 }
464
465 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
466 {
467         struct rvu_block *block;
468
469         if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
470                 return false;
471
472         block = &hw->block[blkaddr];
473         return block->implemented;
474 }
475
476 static void rvu_check_block_implemented(struct rvu *rvu)
477 {
478         struct rvu_hwinfo *hw = rvu->hw;
479         struct rvu_block *block;
480         int blkid;
481         u64 cfg;
482
483         /* For each block check if 'implemented' bit is set */
484         for (blkid = 0; blkid < BLK_COUNT; blkid++) {
485                 block = &hw->block[blkid];
486                 cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
487                 if (cfg & BIT_ULL(11))
488                         block->implemented = true;
489         }
490 }
491
492 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
493 {
494         rvu_write64(rvu, BLKADDR_RVUM,
495                     RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
496                     RVU_BLK_RVUM_REVID);
497 }
498
499 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
500 {
501         rvu_write64(rvu, BLKADDR_RVUM,
502                     RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
503 }
504
505 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
506 {
507         int err;
508
509         if (!block->implemented)
510                 return 0;
511
512         rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
513         err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
514                            true);
515         return err;
516 }
517
518 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
519 {
520         struct rvu_block *block = &rvu->hw->block[blkaddr];
521         int err;
522
523         if (!block->implemented)
524                 return;
525
526         rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
527         err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
528         if (err) {
529                 dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
530                 while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
531                         ;
532         }
533 }
534
535 static void rvu_reset_all_blocks(struct rvu *rvu)
536 {
537         /* Do a HW reset of all RVU blocks */
538         rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
539         rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
540         rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
541         rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
542         rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
543         rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
544         rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
545         rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
546         rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
547         rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
548         rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
549         rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
550         rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
551 }
552
553 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
554 {
555         struct rvu_pfvf *pfvf;
556         u64 cfg;
557         int lf;
558
559         for (lf = 0; lf < block->lf.max; lf++) {
560                 cfg = rvu_read64(rvu, block->addr,
561                                  block->lfcfg_reg | (lf << block->lfshift));
562                 if (!(cfg & BIT_ULL(63)))
563                         continue;
564
565                 /* Set this resource as being used */
566                 __set_bit(lf, block->lf.bmap);
567
568                 /* Get, to whom this LF is attached */
569                 pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
570                 rvu_update_rsrc_map(rvu, pfvf, block,
571                                     (cfg >> 8) & 0xFFFF, lf, true);
572
573                 /* Set start MSIX vector for this LF within this PF/VF */
574                 rvu_set_msix_offset(rvu, pfvf, block, lf);
575         }
576 }
577
578 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
579 {
580         int min_vecs;
581
582         if (!vf)
583                 goto check_pf;
584
585         if (!nvecs) {
586                 dev_warn(rvu->dev,
587                          "PF%d:VF%d is configured with zero msix vectors, %d\n",
588                          pf, vf - 1, nvecs);
589         }
590         return;
591
592 check_pf:
593         if (pf == 0)
594                 min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
595         else
596                 min_vecs = RVU_PF_INT_VEC_CNT;
597
598         if (!(nvecs < min_vecs))
599                 return;
600         dev_warn(rvu->dev,
601                  "PF%d is configured with too few vectors, %d, min is %d\n",
602                  pf, nvecs, min_vecs);
603 }
604
605 static int rvu_setup_msix_resources(struct rvu *rvu)
606 {
607         struct rvu_hwinfo *hw = rvu->hw;
608         int pf, vf, numvfs, hwvf, err;
609         int nvecs, offset, max_msix;
610         struct rvu_pfvf *pfvf;
611         u64 cfg, phy_addr;
612         dma_addr_t iova;
613
614         for (pf = 0; pf < hw->total_pfs; pf++) {
615                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
616                 /* If PF is not enabled, nothing to do */
617                 if (!((cfg >> 20) & 0x01))
618                         continue;
619
620                 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
621
622                 pfvf = &rvu->pf[pf];
623                 /* Get num of MSIX vectors attached to this PF */
624                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
625                 pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
626                 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
627
628                 /* Alloc msix bitmap for this PF */
629                 err = rvu_alloc_bitmap(&pfvf->msix);
630                 if (err)
631                         return err;
632
633                 /* Allocate memory for MSIX vector to RVU block LF mapping */
634                 pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
635                                                 sizeof(u16), GFP_KERNEL);
636                 if (!pfvf->msix_lfmap)
637                         return -ENOMEM;
638
639                 /* For PF0 (AF) firmware will set msix vector offsets for
640                  * AF, block AF and PF0_INT vectors, so jump to VFs.
641                  */
642                 if (!pf)
643                         goto setup_vfmsix;
644
645                 /* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
646                  * These are allocated on driver init and never freed,
647                  * so no need to set 'msix_lfmap' for these.
648                  */
649                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
650                 nvecs = (cfg >> 12) & 0xFF;
651                 cfg &= ~0x7FFULL;
652                 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
653                 rvu_write64(rvu, BLKADDR_RVUM,
654                             RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
655 setup_vfmsix:
656                 /* Alloc msix bitmap for VFs */
657                 for (vf = 0; vf < numvfs; vf++) {
658                         pfvf =  &rvu->hwvf[hwvf + vf];
659                         /* Get num of MSIX vectors attached to this VF */
660                         cfg = rvu_read64(rvu, BLKADDR_RVUM,
661                                          RVU_PRIV_PFX_MSIX_CFG(pf));
662                         pfvf->msix.max = (cfg & 0xFFF) + 1;
663                         rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
664
665                         /* Alloc msix bitmap for this VF */
666                         err = rvu_alloc_bitmap(&pfvf->msix);
667                         if (err)
668                                 return err;
669
670                         pfvf->msix_lfmap =
671                                 devm_kcalloc(rvu->dev, pfvf->msix.max,
672                                              sizeof(u16), GFP_KERNEL);
673                         if (!pfvf->msix_lfmap)
674                                 return -ENOMEM;
675
676                         /* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
677                          * These are allocated on driver init and never freed,
678                          * so no need to set 'msix_lfmap' for these.
679                          */
680                         cfg = rvu_read64(rvu, BLKADDR_RVUM,
681                                          RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
682                         nvecs = (cfg >> 12) & 0xFF;
683                         cfg &= ~0x7FFULL;
684                         offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
685                         rvu_write64(rvu, BLKADDR_RVUM,
686                                     RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
687                                     cfg | offset);
688                 }
689         }
690
691         /* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
692          * create an IOMMU mapping for the physical address configured by
693          * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
694          */
695         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
696         max_msix = cfg & 0xFFFFF;
697         if (rvu->fwdata && rvu->fwdata->msixtr_base)
698                 phy_addr = rvu->fwdata->msixtr_base;
699         else
700                 phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
701
702         iova = dma_map_resource(rvu->dev, phy_addr,
703                                 max_msix * PCI_MSIX_ENTRY_SIZE,
704                                 DMA_BIDIRECTIONAL, 0);
705
706         if (dma_mapping_error(rvu->dev, iova))
707                 return -ENOMEM;
708
709         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
710         rvu->msix_base_iova = iova;
711         rvu->msixtr_base_phy = phy_addr;
712
713         return 0;
714 }
715
716 static void rvu_reset_msix(struct rvu *rvu)
717 {
718         /* Restore msixtr base register */
719         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
720                     rvu->msixtr_base_phy);
721 }
722
723 static void rvu_free_hw_resources(struct rvu *rvu)
724 {
725         struct rvu_hwinfo *hw = rvu->hw;
726         struct rvu_block *block;
727         struct rvu_pfvf  *pfvf;
728         int id, max_msix;
729         u64 cfg;
730
731         rvu_npa_freemem(rvu);
732         rvu_npc_freemem(rvu);
733         rvu_nix_freemem(rvu);
734
735         /* Free block LF bitmaps */
736         for (id = 0; id < BLK_COUNT; id++) {
737                 block = &hw->block[id];
738                 kfree(block->lf.bmap);
739         }
740
741         /* Free MSIX bitmaps */
742         for (id = 0; id < hw->total_pfs; id++) {
743                 pfvf = &rvu->pf[id];
744                 kfree(pfvf->msix.bmap);
745         }
746
747         for (id = 0; id < hw->total_vfs; id++) {
748                 pfvf = &rvu->hwvf[id];
749                 kfree(pfvf->msix.bmap);
750         }
751
752         /* Unmap MSIX vector base IOVA mapping */
753         if (!rvu->msix_base_iova)
754                 return;
755         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
756         max_msix = cfg & 0xFFFFF;
757         dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
758                            max_msix * PCI_MSIX_ENTRY_SIZE,
759                            DMA_BIDIRECTIONAL, 0);
760
761         rvu_reset_msix(rvu);
762         mutex_destroy(&rvu->rsrc_lock);
763 }
764
765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767         struct rvu_hwinfo *hw = rvu->hw;
768         int pf, vf, numvfs, hwvf;
769         struct rvu_pfvf *pfvf;
770         u64 *mac;
771
772         for (pf = 0; pf < hw->total_pfs; pf++) {
773                 /* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774                 if (!pf)
775                         goto lbkvf;
776
777                 if (!is_pf_cgxmapped(rvu, pf))
778                         continue;
779                 /* Assign MAC address to PF */
780                 pfvf = &rvu->pf[pf];
781                 if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782                         mac = &rvu->fwdata->pf_macs[pf];
783                         if (*mac)
784                                 u64_to_ether_addr(*mac, pfvf->mac_addr);
785                         else
786                                 eth_random_addr(pfvf->mac_addr);
787                 } else {
788                         eth_random_addr(pfvf->mac_addr);
789                 }
790                 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791
792 lbkvf:
793                 /* Assign MAC address to VFs*/
794                 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795                 for (vf = 0; vf < numvfs; vf++, hwvf++) {
796                         pfvf = &rvu->hwvf[hwvf];
797                         if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798                                 mac = &rvu->fwdata->vf_macs[hwvf];
799                                 if (*mac)
800                                         u64_to_ether_addr(*mac, pfvf->mac_addr);
801                                 else
802                                         eth_random_addr(pfvf->mac_addr);
803                         } else {
804                                 eth_random_addr(pfvf->mac_addr);
805                         }
806                         ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807                 }
808         }
809 }
810
811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813         u64 fwdbase;
814         int err;
815
816         /* Get firmware data base address */
817         err = cgx_get_fwdata_base(&fwdbase);
818         if (err)
819                 goto fail;
820
821         BUILD_BUG_ON(offsetof(struct rvu_fwdata, cgx_fw_data) > FWDATA_CGX_LMAC_OFFSET);
822         rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
823         if (!rvu->fwdata)
824                 goto fail;
825         if (!is_rvu_fwdata_valid(rvu)) {
826                 dev_err(rvu->dev,
827                         "Mismatch in 'fwdata' struct btw kernel and firmware\n");
828                 iounmap(rvu->fwdata);
829                 rvu->fwdata = NULL;
830                 return -EINVAL;
831         }
832         return 0;
833 fail:
834         dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
835         return -EIO;
836 }
837
838 static void rvu_fwdata_exit(struct rvu *rvu)
839 {
840         if (rvu->fwdata)
841                 iounmap(rvu->fwdata);
842 }
843
844 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
845 {
846         struct rvu_hwinfo *hw = rvu->hw;
847         struct rvu_block *block;
848         int blkid;
849         u64 cfg;
850
851         /* Init NIX LF's bitmap */
852         block = &hw->block[blkaddr];
853         if (!block->implemented)
854                 return 0;
855         blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
856         cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
857         block->lf.max = cfg & 0xFFF;
858         block->addr = blkaddr;
859         block->type = BLKTYPE_NIX;
860         block->lfshift = 8;
861         block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
862         block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
863         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
864         block->lfcfg_reg = NIX_PRIV_LFX_CFG;
865         block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
866         block->lfreset_reg = NIX_AF_LF_RST;
867         block->rvu = rvu;
868         sprintf(block->name, "NIX%d", blkid);
869         rvu->nix_blkaddr[blkid] = blkaddr;
870         return rvu_alloc_bitmap(&block->lf);
871 }
872
873 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
874 {
875         struct rvu_hwinfo *hw = rvu->hw;
876         struct rvu_block *block;
877         int blkid;
878         u64 cfg;
879
880         /* Init CPT LF's bitmap */
881         block = &hw->block[blkaddr];
882         if (!block->implemented)
883                 return 0;
884         blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
885         cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
886         block->lf.max = cfg & 0xFF;
887         block->addr = blkaddr;
888         block->type = BLKTYPE_CPT;
889         block->multislot = true;
890         block->lfshift = 3;
891         block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
892         block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
893         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
894         block->lfcfg_reg = CPT_PRIV_LFX_CFG;
895         block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
896         block->lfreset_reg = CPT_AF_LF_RST;
897         block->rvu = rvu;
898         sprintf(block->name, "CPT%d", blkid);
899         return rvu_alloc_bitmap(&block->lf);
900 }
901
902 static void rvu_get_lbk_bufsize(struct rvu *rvu)
903 {
904         struct pci_dev *pdev = NULL;
905         void __iomem *base;
906         u64 lbk_const;
907
908         pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
909                               PCI_DEVID_OCTEONTX2_LBK, pdev);
910         if (!pdev)
911                 return;
912
913         base = pci_ioremap_bar(pdev, 0);
914         if (!base)
915                 goto err_put;
916
917         lbk_const = readq(base + LBK_CONST);
918
919         /* cache fifo size */
920         rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
921
922         iounmap(base);
923 err_put:
924         pci_dev_put(pdev);
925 }
926
927 static int rvu_setup_hw_resources(struct rvu *rvu)
928 {
929         struct rvu_hwinfo *hw = rvu->hw;
930         struct rvu_block *block;
931         int blkid, err;
932         u64 cfg;
933
934         /* Get HW supported max RVU PF & VF count */
935         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
936         hw->total_pfs = (cfg >> 32) & 0xFF;
937         hw->total_vfs = (cfg >> 20) & 0xFFF;
938         hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
939
940         if (!is_rvu_otx2(rvu))
941                 rvu_apr_block_cn10k_init(rvu);
942
943         /* Init NPA LF's bitmap */
944         block = &hw->block[BLKADDR_NPA];
945         if (!block->implemented)
946                 goto nix;
947         cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
948         block->lf.max = (cfg >> 16) & 0xFFF;
949         block->addr = BLKADDR_NPA;
950         block->type = BLKTYPE_NPA;
951         block->lfshift = 8;
952         block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
953         block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
954         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
955         block->lfcfg_reg = NPA_PRIV_LFX_CFG;
956         block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
957         block->lfreset_reg = NPA_AF_LF_RST;
958         block->rvu = rvu;
959         sprintf(block->name, "NPA");
960         err = rvu_alloc_bitmap(&block->lf);
961         if (err) {
962                 dev_err(rvu->dev,
963                         "%s: Failed to allocate NPA LF bitmap\n", __func__);
964                 return err;
965         }
966
967 nix:
968         err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
969         if (err) {
970                 dev_err(rvu->dev,
971                         "%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
972                 return err;
973         }
974
975         err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
976         if (err) {
977                 dev_err(rvu->dev,
978                         "%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
979                 return err;
980         }
981
982         /* Init SSO group's bitmap */
983         block = &hw->block[BLKADDR_SSO];
984         if (!block->implemented)
985                 goto ssow;
986         cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
987         block->lf.max = cfg & 0xFFFF;
988         block->addr = BLKADDR_SSO;
989         block->type = BLKTYPE_SSO;
990         block->multislot = true;
991         block->lfshift = 3;
992         block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
993         block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
994         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
995         block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
996         block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
997         block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
998         block->rvu = rvu;
999         sprintf(block->name, "SSO GROUP");
1000         err = rvu_alloc_bitmap(&block->lf);
1001         if (err) {
1002                 dev_err(rvu->dev,
1003                         "%s: Failed to allocate SSO LF bitmap\n", __func__);
1004                 return err;
1005         }
1006
1007 ssow:
1008         /* Init SSO workslot's bitmap */
1009         block = &hw->block[BLKADDR_SSOW];
1010         if (!block->implemented)
1011                 goto tim;
1012         block->lf.max = (cfg >> 56) & 0xFF;
1013         block->addr = BLKADDR_SSOW;
1014         block->type = BLKTYPE_SSOW;
1015         block->multislot = true;
1016         block->lfshift = 3;
1017         block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1018         block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1019         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1020         block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1021         block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1022         block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1023         block->rvu = rvu;
1024         sprintf(block->name, "SSOWS");
1025         err = rvu_alloc_bitmap(&block->lf);
1026         if (err) {
1027                 dev_err(rvu->dev,
1028                         "%s: Failed to allocate SSOW LF bitmap\n", __func__);
1029                 return err;
1030         }
1031
1032 tim:
1033         /* Init TIM LF's bitmap */
1034         block = &hw->block[BLKADDR_TIM];
1035         if (!block->implemented)
1036                 goto cpt;
1037         cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1038         block->lf.max = cfg & 0xFFFF;
1039         block->addr = BLKADDR_TIM;
1040         block->type = BLKTYPE_TIM;
1041         block->multislot = true;
1042         block->lfshift = 3;
1043         block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1044         block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1045         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1046         block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1047         block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1048         block->lfreset_reg = TIM_AF_LF_RST;
1049         block->rvu = rvu;
1050         sprintf(block->name, "TIM");
1051         err = rvu_alloc_bitmap(&block->lf);
1052         if (err) {
1053                 dev_err(rvu->dev,
1054                         "%s: Failed to allocate TIM LF bitmap\n", __func__);
1055                 return err;
1056         }
1057
1058 cpt:
1059         err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1060         if (err) {
1061                 dev_err(rvu->dev,
1062                         "%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1063                 return err;
1064         }
1065         err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1066         if (err) {
1067                 dev_err(rvu->dev,
1068                         "%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1069                 return err;
1070         }
1071
1072         /* Allocate memory for PFVF data */
1073         rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1074                                sizeof(struct rvu_pfvf), GFP_KERNEL);
1075         if (!rvu->pf) {
1076                 dev_err(rvu->dev,
1077                         "%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1078                 return -ENOMEM;
1079         }
1080
1081         rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1082                                  sizeof(struct rvu_pfvf), GFP_KERNEL);
1083         if (!rvu->hwvf) {
1084                 dev_err(rvu->dev,
1085                         "%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1086                 return -ENOMEM;
1087         }
1088
1089         mutex_init(&rvu->rsrc_lock);
1090
1091         rvu_fwdata_init(rvu);
1092
1093         err = rvu_setup_msix_resources(rvu);
1094         if (err) {
1095                 dev_err(rvu->dev,
1096                         "%s: Failed to setup MSIX resources\n", __func__);
1097                 return err;
1098         }
1099
1100         for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1101                 block = &hw->block[blkid];
1102                 if (!block->lf.bmap)
1103                         continue;
1104
1105                 /* Allocate memory for block LF/slot to pcifunc mapping info */
1106                 block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1107                                              sizeof(u16), GFP_KERNEL);
1108                 if (!block->fn_map) {
1109                         err = -ENOMEM;
1110                         goto msix_err;
1111                 }
1112
1113                 /* Scan all blocks to check if low level firmware has
1114                  * already provisioned any of the resources to a PF/VF.
1115                  */
1116                 rvu_scan_block(rvu, block);
1117         }
1118
1119         err = rvu_set_channels_base(rvu);
1120         if (err)
1121                 goto msix_err;
1122
1123         err = rvu_npc_init(rvu);
1124         if (err) {
1125                 dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1126                 goto npc_err;
1127         }
1128
1129         err = rvu_cgx_init(rvu);
1130         if (err) {
1131                 dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1132                 goto cgx_err;
1133         }
1134
1135         err = rvu_npc_exact_init(rvu);
1136         if (err) {
1137                 dev_err(rvu->dev, "failed to initialize exact match table\n");
1138                 return err;
1139         }
1140
1141         /* Assign MACs for CGX mapped functions */
1142         rvu_setup_pfvf_macaddress(rvu);
1143
1144         err = rvu_npa_init(rvu);
1145         if (err) {
1146                 dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1147                 goto npa_err;
1148         }
1149
1150         rvu_get_lbk_bufsize(rvu);
1151
1152         err = rvu_nix_init(rvu);
1153         if (err) {
1154                 dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1155                 goto nix_err;
1156         }
1157
1158         err = rvu_sdp_init(rvu);
1159         if (err) {
1160                 dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1161                 goto nix_err;
1162         }
1163
1164         rvu_program_channels(rvu);
1165
1166         err = rvu_mcs_init(rvu);
1167         if (err) {
1168                 dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1169                 goto nix_err;
1170         }
1171
1172         err = rvu_cpt_init(rvu);
1173         if (err) {
1174                 dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1175                 goto mcs_err;
1176         }
1177
1178         return 0;
1179
1180 mcs_err:
1181         rvu_mcs_exit(rvu);
1182 nix_err:
1183         rvu_nix_freemem(rvu);
1184 npa_err:
1185         rvu_npa_freemem(rvu);
1186 cgx_err:
1187         rvu_cgx_exit(rvu);
1188 npc_err:
1189         rvu_npc_freemem(rvu);
1190         rvu_fwdata_exit(rvu);
1191 msix_err:
1192         rvu_reset_msix(rvu);
1193         return err;
1194 }
1195
1196 /* NPA and NIX admin queue APIs */
1197 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1198 {
1199         if (!aq)
1200                 return;
1201
1202         qmem_free(rvu->dev, aq->inst);
1203         qmem_free(rvu->dev, aq->res);
1204         devm_kfree(rvu->dev, aq);
1205 }
1206
1207 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1208                  int qsize, int inst_size, int res_size)
1209 {
1210         struct admin_queue *aq;
1211         int err;
1212
1213         *ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1214         if (!*ad_queue)
1215                 return -ENOMEM;
1216         aq = *ad_queue;
1217
1218         /* Alloc memory for instructions i.e AQ */
1219         err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1220         if (err) {
1221                 devm_kfree(rvu->dev, aq);
1222                 return err;
1223         }
1224
1225         /* Alloc memory for results */
1226         err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1227         if (err) {
1228                 rvu_aq_free(rvu, aq);
1229                 return err;
1230         }
1231
1232         spin_lock_init(&aq->lock);
1233         return 0;
1234 }
1235
1236 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1237                            struct ready_msg_rsp *rsp)
1238 {
1239         if (rvu->fwdata) {
1240                 rsp->rclk_freq = rvu->fwdata->rclk;
1241                 rsp->sclk_freq = rvu->fwdata->sclk;
1242         }
1243         return 0;
1244 }
1245
1246 /* Get current count of a RVU block's LF/slots
1247  * provisioned to a given RVU func.
1248  */
1249 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1250 {
1251         switch (blkaddr) {
1252         case BLKADDR_NPA:
1253                 return pfvf->npalf ? 1 : 0;
1254         case BLKADDR_NIX0:
1255         case BLKADDR_NIX1:
1256                 return pfvf->nixlf ? 1 : 0;
1257         case BLKADDR_SSO:
1258                 return pfvf->sso;
1259         case BLKADDR_SSOW:
1260                 return pfvf->ssow;
1261         case BLKADDR_TIM:
1262                 return pfvf->timlfs;
1263         case BLKADDR_CPT0:
1264                 return pfvf->cptlfs;
1265         case BLKADDR_CPT1:
1266                 return pfvf->cpt1_lfs;
1267         }
1268         return 0;
1269 }
1270
1271 /* Return true if LFs of block type are attached to pcifunc */
1272 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1273 {
1274         switch (blktype) {
1275         case BLKTYPE_NPA:
1276                 return pfvf->npalf ? 1 : 0;
1277         case BLKTYPE_NIX:
1278                 return pfvf->nixlf ? 1 : 0;
1279         case BLKTYPE_SSO:
1280                 return !!pfvf->sso;
1281         case BLKTYPE_SSOW:
1282                 return !!pfvf->ssow;
1283         case BLKTYPE_TIM:
1284                 return !!pfvf->timlfs;
1285         case BLKTYPE_CPT:
1286                 return pfvf->cptlfs || pfvf->cpt1_lfs;
1287         }
1288
1289         return false;
1290 }
1291
1292 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1293 {
1294         struct rvu_pfvf *pfvf;
1295
1296         if (!is_pf_func_valid(rvu, pcifunc))
1297                 return false;
1298
1299         pfvf = rvu_get_pfvf(rvu, pcifunc);
1300
1301         /* Check if this PFFUNC has a LF of type blktype attached */
1302         if (!is_blktype_attached(pfvf, blktype))
1303                 return false;
1304
1305         return true;
1306 }
1307
1308 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1309                            int pcifunc, int slot)
1310 {
1311         u64 val;
1312
1313         val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1314         rvu_write64(rvu, block->addr, block->lookup_reg, val);
1315         /* Wait for the lookup to finish */
1316         /* TODO: put some timeout here */
1317         while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1318                 ;
1319
1320         val = rvu_read64(rvu, block->addr, block->lookup_reg);
1321
1322         /* Check LF valid bit */
1323         if (!(val & (1ULL << 12)))
1324                 return -1;
1325
1326         return (val & 0xFFF);
1327 }
1328
1329 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1330                               u16 global_slot, u16 *slot_in_block)
1331 {
1332         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1333         int numlfs, total_lfs = 0, nr_blocks = 0;
1334         int i, num_blkaddr[BLK_COUNT] = { 0 };
1335         struct rvu_block *block;
1336         int blkaddr;
1337         u16 start_slot;
1338
1339         if (!is_blktype_attached(pfvf, blktype))
1340                 return -ENODEV;
1341
1342         /* Get all the block addresses from which LFs are attached to
1343          * the given pcifunc in num_blkaddr[].
1344          */
1345         for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1346                 block = &rvu->hw->block[blkaddr];
1347                 if (block->type != blktype)
1348                         continue;
1349                 if (!is_block_implemented(rvu->hw, blkaddr))
1350                         continue;
1351
1352                 numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1353                 if (numlfs) {
1354                         total_lfs += numlfs;
1355                         num_blkaddr[nr_blocks] = blkaddr;
1356                         nr_blocks++;
1357                 }
1358         }
1359
1360         if (global_slot >= total_lfs)
1361                 return -ENODEV;
1362
1363         /* Based on the given global slot number retrieve the
1364          * correct block address out of all attached block
1365          * addresses and slot number in that block.
1366          */
1367         total_lfs = 0;
1368         blkaddr = -ENODEV;
1369         for (i = 0; i < nr_blocks; i++) {
1370                 numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1371                 total_lfs += numlfs;
1372                 if (global_slot < total_lfs) {
1373                         blkaddr = num_blkaddr[i];
1374                         start_slot = total_lfs - numlfs;
1375                         *slot_in_block = global_slot - start_slot;
1376                         break;
1377                 }
1378         }
1379
1380         return blkaddr;
1381 }
1382
1383 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1384 {
1385         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1386         struct rvu_hwinfo *hw = rvu->hw;
1387         struct rvu_block *block;
1388         int slot, lf, num_lfs;
1389         int blkaddr;
1390
1391         blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1392         if (blkaddr < 0)
1393                 return;
1394
1395         if (blktype == BLKTYPE_NIX)
1396                 rvu_nix_reset_mac(pfvf, pcifunc);
1397
1398         block = &hw->block[blkaddr];
1399
1400         num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1401         if (!num_lfs)
1402                 return;
1403
1404         for (slot = 0; slot < num_lfs; slot++) {
1405                 lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1406                 if (lf < 0) /* This should never happen */
1407                         continue;
1408
1409                 /* Disable the LF */
1410                 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1411                             (lf << block->lfshift), 0x00ULL);
1412
1413                 /* Update SW maintained mapping info as well */
1414                 rvu_update_rsrc_map(rvu, pfvf, block,
1415                                     pcifunc, lf, false);
1416
1417                 /* Free the resource */
1418                 rvu_free_rsrc(&block->lf, lf);
1419
1420                 /* Clear MSIX vector offset for this LF */
1421                 rvu_clear_msix_offset(rvu, pfvf, block, lf);
1422         }
1423 }
1424
1425 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1426                             u16 pcifunc)
1427 {
1428         struct rvu_hwinfo *hw = rvu->hw;
1429         bool detach_all = true;
1430         struct rvu_block *block;
1431         int blkid;
1432
1433         mutex_lock(&rvu->rsrc_lock);
1434
1435         /* Check for partial resource detach */
1436         if (detach && detach->partial)
1437                 detach_all = false;
1438
1439         /* Check for RVU block's LFs attached to this func,
1440          * if so, detach them.
1441          */
1442         for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1443                 block = &hw->block[blkid];
1444                 if (!block->lf.bmap)
1445                         continue;
1446                 if (!detach_all && detach) {
1447                         if (blkid == BLKADDR_NPA && !detach->npalf)
1448                                 continue;
1449                         else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1450                                 continue;
1451                         else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1452                                 continue;
1453                         else if ((blkid == BLKADDR_SSO) && !detach->sso)
1454                                 continue;
1455                         else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1456                                 continue;
1457                         else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1458                                 continue;
1459                         else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1460                                 continue;
1461                         else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1462                                 continue;
1463                 }
1464                 rvu_detach_block(rvu, pcifunc, block->type);
1465         }
1466
1467         mutex_unlock(&rvu->rsrc_lock);
1468         return 0;
1469 }
1470
1471 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1472                                       struct rsrc_detach *detach,
1473                                       struct msg_rsp *rsp)
1474 {
1475         return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1476 }
1477
1478 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1479 {
1480         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1481         int blkaddr = BLKADDR_NIX0, vf;
1482         struct rvu_pfvf *pf;
1483
1484         pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1485
1486         /* All CGX mapped PFs are set with assigned NIX block during init */
1487         if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1488                 blkaddr = pf->nix_blkaddr;
1489         } else if (is_lbk_vf(rvu, pcifunc)) {
1490                 vf = pcifunc - 1;
1491                 /* Assign NIX based on VF number. All even numbered VFs get
1492                  * NIX0 and odd numbered gets NIX1
1493                  */
1494                 blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1495                 /* NIX1 is not present on all silicons */
1496                 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1497                         blkaddr = BLKADDR_NIX0;
1498         }
1499
1500         /* if SDP1 then the blkaddr is NIX1 */
1501         if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1502                 blkaddr = BLKADDR_NIX1;
1503
1504         switch (blkaddr) {
1505         case BLKADDR_NIX1:
1506                 pfvf->nix_blkaddr = BLKADDR_NIX1;
1507                 pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1508                 pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1509                 break;
1510         case BLKADDR_NIX0:
1511         default:
1512                 pfvf->nix_blkaddr = BLKADDR_NIX0;
1513                 pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1514                 pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1515                 break;
1516         }
1517
1518         return pfvf->nix_blkaddr;
1519 }
1520
1521 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1522                                   u16 pcifunc, struct rsrc_attach *attach)
1523 {
1524         int blkaddr;
1525
1526         switch (blktype) {
1527         case BLKTYPE_NIX:
1528                 blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1529                 break;
1530         case BLKTYPE_CPT:
1531                 if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1532                         return rvu_get_blkaddr(rvu, blktype, 0);
1533                 blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1534                           BLKADDR_CPT0;
1535                 if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1536                         return -ENODEV;
1537                 break;
1538         default:
1539                 return rvu_get_blkaddr(rvu, blktype, 0);
1540         }
1541
1542         if (is_block_implemented(rvu->hw, blkaddr))
1543                 return blkaddr;
1544
1545         return -ENODEV;
1546 }
1547
1548 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1549                              int num_lfs, struct rsrc_attach *attach)
1550 {
1551         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1552         struct rvu_hwinfo *hw = rvu->hw;
1553         struct rvu_block *block;
1554         int slot, lf;
1555         int blkaddr;
1556         u64 cfg;
1557
1558         if (!num_lfs)
1559                 return;
1560
1561         blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1562         if (blkaddr < 0)
1563                 return;
1564
1565         block = &hw->block[blkaddr];
1566         if (!block->lf.bmap)
1567                 return;
1568
1569         for (slot = 0; slot < num_lfs; slot++) {
1570                 /* Allocate the resource */
1571                 lf = rvu_alloc_rsrc(&block->lf);
1572                 if (lf < 0)
1573                         return;
1574
1575                 cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1576                 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1577                             (lf << block->lfshift), cfg);
1578                 rvu_update_rsrc_map(rvu, pfvf, block,
1579                                     pcifunc, lf, true);
1580
1581                 /* Set start MSIX vector for this LF within this PF/VF */
1582                 rvu_set_msix_offset(rvu, pfvf, block, lf);
1583         }
1584 }
1585
1586 static int rvu_check_rsrc_availability(struct rvu *rvu,
1587                                        struct rsrc_attach *req, u16 pcifunc)
1588 {
1589         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1590         int free_lfs, mappedlfs, blkaddr;
1591         struct rvu_hwinfo *hw = rvu->hw;
1592         struct rvu_block *block;
1593
1594         /* Only one NPA LF can be attached */
1595         if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1596                 block = &hw->block[BLKADDR_NPA];
1597                 free_lfs = rvu_rsrc_free_count(&block->lf);
1598                 if (!free_lfs)
1599                         goto fail;
1600         } else if (req->npalf) {
1601                 dev_err(&rvu->pdev->dev,
1602                         "Func 0x%x: Invalid req, already has NPA\n",
1603                          pcifunc);
1604                 return -EINVAL;
1605         }
1606
1607         /* Only one NIX LF can be attached */
1608         if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1609                 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1610                                                  pcifunc, req);
1611                 if (blkaddr < 0)
1612                         return blkaddr;
1613                 block = &hw->block[blkaddr];
1614                 free_lfs = rvu_rsrc_free_count(&block->lf);
1615                 if (!free_lfs)
1616                         goto fail;
1617         } else if (req->nixlf) {
1618                 dev_err(&rvu->pdev->dev,
1619                         "Func 0x%x: Invalid req, already has NIX\n",
1620                         pcifunc);
1621                 return -EINVAL;
1622         }
1623
1624         if (req->sso) {
1625                 block = &hw->block[BLKADDR_SSO];
1626                 /* Is request within limits ? */
1627                 if (req->sso > block->lf.max) {
1628                         dev_err(&rvu->pdev->dev,
1629                                 "Func 0x%x: Invalid SSO req, %d > max %d\n",
1630                                  pcifunc, req->sso, block->lf.max);
1631                         return -EINVAL;
1632                 }
1633                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1634                 free_lfs = rvu_rsrc_free_count(&block->lf);
1635                 /* Check if additional resources are available */
1636                 if (req->sso > mappedlfs &&
1637                     ((req->sso - mappedlfs) > free_lfs))
1638                         goto fail;
1639         }
1640
1641         if (req->ssow) {
1642                 block = &hw->block[BLKADDR_SSOW];
1643                 if (req->ssow > block->lf.max) {
1644                         dev_err(&rvu->pdev->dev,
1645                                 "Func 0x%x: Invalid SSOW req, %d > max %d\n",
1646                                  pcifunc, req->sso, block->lf.max);
1647                         return -EINVAL;
1648                 }
1649                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1650                 free_lfs = rvu_rsrc_free_count(&block->lf);
1651                 if (req->ssow > mappedlfs &&
1652                     ((req->ssow - mappedlfs) > free_lfs))
1653                         goto fail;
1654         }
1655
1656         if (req->timlfs) {
1657                 block = &hw->block[BLKADDR_TIM];
1658                 if (req->timlfs > block->lf.max) {
1659                         dev_err(&rvu->pdev->dev,
1660                                 "Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1661                                  pcifunc, req->timlfs, block->lf.max);
1662                         return -EINVAL;
1663                 }
1664                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1665                 free_lfs = rvu_rsrc_free_count(&block->lf);
1666                 if (req->timlfs > mappedlfs &&
1667                     ((req->timlfs - mappedlfs) > free_lfs))
1668                         goto fail;
1669         }
1670
1671         if (req->cptlfs) {
1672                 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1673                                                  pcifunc, req);
1674                 if (blkaddr < 0)
1675                         return blkaddr;
1676                 block = &hw->block[blkaddr];
1677                 if (req->cptlfs > block->lf.max) {
1678                         dev_err(&rvu->pdev->dev,
1679                                 "Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1680                                  pcifunc, req->cptlfs, block->lf.max);
1681                         return -EINVAL;
1682                 }
1683                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1684                 free_lfs = rvu_rsrc_free_count(&block->lf);
1685                 if (req->cptlfs > mappedlfs &&
1686                     ((req->cptlfs - mappedlfs) > free_lfs))
1687                         goto fail;
1688         }
1689
1690         return 0;
1691
1692 fail:
1693         dev_info(rvu->dev, "Request for %s failed\n", block->name);
1694         return -ENOSPC;
1695 }
1696
1697 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1698                                        struct rsrc_attach *attach)
1699 {
1700         int blkaddr, num_lfs;
1701
1702         blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1703                                          attach->hdr.pcifunc, attach);
1704         if (blkaddr < 0)
1705                 return false;
1706
1707         num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1708                                         blkaddr);
1709         /* Requester already has LFs from given block ? */
1710         return !!num_lfs;
1711 }
1712
1713 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1714                                       struct rsrc_attach *attach,
1715                                       struct msg_rsp *rsp)
1716 {
1717         u16 pcifunc = attach->hdr.pcifunc;
1718         int err;
1719
1720         /* If first request, detach all existing attached resources */
1721         if (!attach->modify)
1722                 rvu_detach_rsrcs(rvu, NULL, pcifunc);
1723
1724         mutex_lock(&rvu->rsrc_lock);
1725
1726         /* Check if the request can be accommodated */
1727         err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1728         if (err)
1729                 goto exit;
1730
1731         /* Now attach the requested resources */
1732         if (attach->npalf)
1733                 rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1734
1735         if (attach->nixlf)
1736                 rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1737
1738         if (attach->sso) {
1739                 /* RVU func doesn't know which exact LF or slot is attached
1740                  * to it, it always sees as slot 0,1,2. So for a 'modify'
1741                  * request, simply detach all existing attached LFs/slots
1742                  * and attach a fresh.
1743                  */
1744                 if (attach->modify)
1745                         rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1746                 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1747                                  attach->sso, attach);
1748         }
1749
1750         if (attach->ssow) {
1751                 if (attach->modify)
1752                         rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1753                 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1754                                  attach->ssow, attach);
1755         }
1756
1757         if (attach->timlfs) {
1758                 if (attach->modify)
1759                         rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1760                 rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1761                                  attach->timlfs, attach);
1762         }
1763
1764         if (attach->cptlfs) {
1765                 if (attach->modify &&
1766                     rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1767                         rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1768                 rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1769                                  attach->cptlfs, attach);
1770         }
1771
1772 exit:
1773         mutex_unlock(&rvu->rsrc_lock);
1774         return err;
1775 }
1776
1777 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1778                                int blkaddr, int lf)
1779 {
1780         u16 vec;
1781
1782         if (lf < 0)
1783                 return MSIX_VECTOR_INVALID;
1784
1785         for (vec = 0; vec < pfvf->msix.max; vec++) {
1786                 if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1787                         return vec;
1788         }
1789         return MSIX_VECTOR_INVALID;
1790 }
1791
1792 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1793                                 struct rvu_block *block, int lf)
1794 {
1795         u16 nvecs, vec, offset;
1796         u64 cfg;
1797
1798         cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1799                          (lf << block->lfshift));
1800         nvecs = (cfg >> 12) & 0xFF;
1801
1802         /* Check and alloc MSIX vectors, must be contiguous */
1803         if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1804                 return;
1805
1806         offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1807
1808         /* Config MSIX offset in LF */
1809         rvu_write64(rvu, block->addr, block->msixcfg_reg |
1810                     (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1811
1812         /* Update the bitmap as well */
1813         for (vec = 0; vec < nvecs; vec++)
1814                 pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1815 }
1816
1817 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1818                                   struct rvu_block *block, int lf)
1819 {
1820         u16 nvecs, vec, offset;
1821         u64 cfg;
1822
1823         cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1824                          (lf << block->lfshift));
1825         nvecs = (cfg >> 12) & 0xFF;
1826
1827         /* Clear MSIX offset in LF */
1828         rvu_write64(rvu, block->addr, block->msixcfg_reg |
1829                     (lf << block->lfshift), cfg & ~0x7FFULL);
1830
1831         offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1832
1833         /* Update the mapping */
1834         for (vec = 0; vec < nvecs; vec++)
1835                 pfvf->msix_lfmap[offset + vec] = 0;
1836
1837         /* Free the same in MSIX bitmap */
1838         rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1839 }
1840
1841 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1842                                  struct msix_offset_rsp *rsp)
1843 {
1844         struct rvu_hwinfo *hw = rvu->hw;
1845         u16 pcifunc = req->hdr.pcifunc;
1846         struct rvu_pfvf *pfvf;
1847         int lf, slot, blkaddr;
1848
1849         pfvf = rvu_get_pfvf(rvu, pcifunc);
1850         if (!pfvf->msix.bmap)
1851                 return 0;
1852
1853         /* Set MSIX offsets for each block's LFs attached to this PF/VF */
1854         lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1855         rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1856
1857         /* Get BLKADDR from which LFs are attached to pcifunc */
1858         blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1859         if (blkaddr < 0) {
1860                 rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1861         } else {
1862                 lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1863                 rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1864         }
1865
1866         rsp->sso = pfvf->sso;
1867         for (slot = 0; slot < rsp->sso; slot++) {
1868                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1869                 rsp->sso_msixoff[slot] =
1870                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1871         }
1872
1873         rsp->ssow = pfvf->ssow;
1874         for (slot = 0; slot < rsp->ssow; slot++) {
1875                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1876                 rsp->ssow_msixoff[slot] =
1877                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1878         }
1879
1880         rsp->timlfs = pfvf->timlfs;
1881         for (slot = 0; slot < rsp->timlfs; slot++) {
1882                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1883                 rsp->timlf_msixoff[slot] =
1884                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1885         }
1886
1887         rsp->cptlfs = pfvf->cptlfs;
1888         for (slot = 0; slot < rsp->cptlfs; slot++) {
1889                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1890                 rsp->cptlf_msixoff[slot] =
1891                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1892         }
1893
1894         rsp->cpt1_lfs = pfvf->cpt1_lfs;
1895         for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1896                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1897                 rsp->cpt1_lf_msixoff[slot] =
1898                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1899         }
1900
1901         return 0;
1902 }
1903
1904 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1905                                    struct free_rsrcs_rsp *rsp)
1906 {
1907         struct rvu_hwinfo *hw = rvu->hw;
1908         struct rvu_block *block;
1909         struct nix_txsch *txsch;
1910         struct nix_hw *nix_hw;
1911
1912         mutex_lock(&rvu->rsrc_lock);
1913
1914         block = &hw->block[BLKADDR_NPA];
1915         rsp->npa = rvu_rsrc_free_count(&block->lf);
1916
1917         block = &hw->block[BLKADDR_NIX0];
1918         rsp->nix = rvu_rsrc_free_count(&block->lf);
1919
1920         block = &hw->block[BLKADDR_NIX1];
1921         rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1922
1923         block = &hw->block[BLKADDR_SSO];
1924         rsp->sso = rvu_rsrc_free_count(&block->lf);
1925
1926         block = &hw->block[BLKADDR_SSOW];
1927         rsp->ssow = rvu_rsrc_free_count(&block->lf);
1928
1929         block = &hw->block[BLKADDR_TIM];
1930         rsp->tim = rvu_rsrc_free_count(&block->lf);
1931
1932         block = &hw->block[BLKADDR_CPT0];
1933         rsp->cpt = rvu_rsrc_free_count(&block->lf);
1934
1935         block = &hw->block[BLKADDR_CPT1];
1936         rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1937
1938         if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1939                 rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1940                 rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1941                 rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1942                 rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1943                 /* NIX1 */
1944                 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1945                         goto out;
1946                 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1947                 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1948                 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1949                 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1950         } else {
1951                 nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1952                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1953                 rsp->schq[NIX_TXSCH_LVL_SMQ] =
1954                                 rvu_rsrc_free_count(&txsch->schq);
1955
1956                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1957                 rsp->schq[NIX_TXSCH_LVL_TL4] =
1958                                 rvu_rsrc_free_count(&txsch->schq);
1959
1960                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1961                 rsp->schq[NIX_TXSCH_LVL_TL3] =
1962                                 rvu_rsrc_free_count(&txsch->schq);
1963
1964                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1965                 rsp->schq[NIX_TXSCH_LVL_TL2] =
1966                                 rvu_rsrc_free_count(&txsch->schq);
1967
1968                 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1969                         goto out;
1970
1971                 nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1972                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1973                 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1974                                 rvu_rsrc_free_count(&txsch->schq);
1975
1976                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1977                 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1978                                 rvu_rsrc_free_count(&txsch->schq);
1979
1980                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1981                 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1982                                 rvu_rsrc_free_count(&txsch->schq);
1983
1984                 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1985                 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1986                                 rvu_rsrc_free_count(&txsch->schq);
1987         }
1988
1989         rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1990 out:
1991         rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1992         mutex_unlock(&rvu->rsrc_lock);
1993
1994         return 0;
1995 }
1996
1997 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1998                             struct msg_rsp *rsp)
1999 {
2000         u16 pcifunc = req->hdr.pcifunc;
2001         u16 vf, numvfs;
2002         u64 cfg;
2003
2004         vf = pcifunc & RVU_PFVF_FUNC_MASK;
2005         cfg = rvu_read64(rvu, BLKADDR_RVUM,
2006                          RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
2007         numvfs = (cfg >> 12) & 0xFF;
2008
2009         if (vf && vf <= numvfs)
2010                 __rvu_flr_handler(rvu, pcifunc);
2011         else
2012                 return RVU_INVALID_VF_ID;
2013
2014         return 0;
2015 }
2016
2017 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2018                                 struct get_hw_cap_rsp *rsp)
2019 {
2020         struct rvu_hwinfo *hw = rvu->hw;
2021
2022         rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2023         rsp->nix_shaping = hw->cap.nix_shaping;
2024         rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2025
2026         return 0;
2027 }
2028
2029 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2030                                  struct msg_rsp *rsp)
2031 {
2032         struct rvu_hwinfo *hw = rvu->hw;
2033         u16 pcifunc = req->hdr.pcifunc;
2034         struct rvu_pfvf *pfvf;
2035         int blkaddr, nixlf;
2036         u16 target;
2037
2038         /* Only PF can add VF permissions */
2039         if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_lbk_vf(rvu, pcifunc))
2040                 return -EOPNOTSUPP;
2041
2042         target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2043         pfvf = rvu_get_pfvf(rvu, target);
2044
2045         if (req->flags & RESET_VF_PERM) {
2046                 pfvf->flags &= RVU_CLEAR_VF_PERM;
2047         } else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2048                  (req->flags & VF_TRUSTED)) {
2049                 change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2050                 /* disable multicast and promisc entries */
2051                 if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2052                         blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2053                         if (blkaddr < 0)
2054                                 return 0;
2055                         nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2056                                            target, 0);
2057                         if (nixlf < 0)
2058                                 return 0;
2059                         npc_enadis_default_mce_entry(rvu, target, nixlf,
2060                                                      NIXLF_ALLMULTI_ENTRY,
2061                                                      false);
2062                         npc_enadis_default_mce_entry(rvu, target, nixlf,
2063                                                      NIXLF_PROMISC_ENTRY,
2064                                                      false);
2065                 }
2066         }
2067
2068         return 0;
2069 }
2070
2071 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2072                                 struct mbox_msghdr *req)
2073 {
2074         struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2075
2076         /* Check if valid, if not reply with a invalid msg */
2077         if (req->sig != OTX2_MBOX_REQ_SIG)
2078                 goto bad_message;
2079
2080         switch (req->id) {
2081 #define M(_name, _id, _fn_name, _req_type, _rsp_type)                   \
2082         case _id: {                                                     \
2083                 struct _rsp_type *rsp;                                  \
2084                 int err;                                                \
2085                                                                         \
2086                 rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(          \
2087                         mbox, devid,                                    \
2088                         sizeof(struct _rsp_type));                      \
2089                 /* some handlers should complete even if reply */       \
2090                 /* could not be allocated */                            \
2091                 if (!rsp &&                                             \
2092                     _id != MBOX_MSG_DETACH_RESOURCES &&                 \
2093                     _id != MBOX_MSG_NIX_TXSCH_FREE &&                   \
2094                     _id != MBOX_MSG_VF_FLR)                             \
2095                         return -ENOMEM;                                 \
2096                 if (rsp) {                                              \
2097                         rsp->hdr.id = _id;                              \
2098                         rsp->hdr.sig = OTX2_MBOX_RSP_SIG;               \
2099                         rsp->hdr.pcifunc = req->pcifunc;                \
2100                         rsp->hdr.rc = 0;                                \
2101                 }                                                       \
2102                                                                         \
2103                 err = rvu_mbox_handler_ ## _fn_name(rvu,                \
2104                                                     (struct _req_type *)req, \
2105                                                     rsp);               \
2106                 if (rsp && err)                                         \
2107                         rsp->hdr.rc = err;                              \
2108                                                                         \
2109                 trace_otx2_msg_process(mbox->pdev, _id, err);           \
2110                 return rsp ? err : -ENOMEM;                             \
2111         }
2112 MBOX_MESSAGES
2113 #undef M
2114
2115 bad_message:
2116         default:
2117                 otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2118                 return -ENODEV;
2119         }
2120 }
2121
2122 static void __rvu_mbox_handler(struct rvu_work *mwork, int type, bool poll)
2123 {
2124         struct rvu *rvu = mwork->rvu;
2125         int offset, err, id, devid;
2126         struct otx2_mbox_dev *mdev;
2127         struct mbox_hdr *req_hdr;
2128         struct mbox_msghdr *msg;
2129         struct mbox_wq_info *mw;
2130         struct otx2_mbox *mbox;
2131
2132         switch (type) {
2133         case TYPE_AFPF:
2134                 mw = &rvu->afpf_wq_info;
2135                 break;
2136         case TYPE_AFVF:
2137                 mw = &rvu->afvf_wq_info;
2138                 break;
2139         default:
2140                 return;
2141         }
2142
2143         devid = mwork - mw->mbox_wrk;
2144         mbox = &mw->mbox;
2145         mdev = &mbox->dev[devid];
2146
2147         /* Process received mbox messages */
2148         req_hdr = mdev->mbase + mbox->rx_start;
2149         if (mw->mbox_wrk[devid].num_msgs == 0)
2150                 return;
2151
2152         offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2153
2154         for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2155                 msg = mdev->mbase + offset;
2156
2157                 /* Set which PF/VF sent this message based on mbox IRQ */
2158                 switch (type) {
2159                 case TYPE_AFPF:
2160                         msg->pcifunc &=
2161                                 ~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2162                         msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2163                         break;
2164                 case TYPE_AFVF:
2165                         msg->pcifunc &=
2166                                 ~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2167                         msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2168                         break;
2169                 }
2170
2171                 err = rvu_process_mbox_msg(mbox, devid, msg);
2172                 if (!err) {
2173                         offset = mbox->rx_start + msg->next_msgoff;
2174                         continue;
2175                 }
2176
2177                 if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2178                         dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2179                                  err, otx2_mbox_id2name(msg->id),
2180                                  msg->id, rvu_get_pf(msg->pcifunc),
2181                                  (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2182                 else
2183                         dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2184                                  err, otx2_mbox_id2name(msg->id),
2185                                  msg->id, devid);
2186         }
2187         mw->mbox_wrk[devid].num_msgs = 0;
2188
2189         if (poll)
2190                 otx2_mbox_wait_for_zero(mbox, devid);
2191
2192         /* Send mbox responses to VF/PF */
2193         otx2_mbox_msg_send(mbox, devid);
2194 }
2195
2196 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2197 {
2198         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2199         struct rvu *rvu = mwork->rvu;
2200
2201         mutex_lock(&rvu->mbox_lock);
2202         __rvu_mbox_handler(mwork, TYPE_AFPF, true);
2203         mutex_unlock(&rvu->mbox_lock);
2204 }
2205
2206 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2207 {
2208         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2209
2210         __rvu_mbox_handler(mwork, TYPE_AFVF, false);
2211 }
2212
2213 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2214 {
2215         struct rvu *rvu = mwork->rvu;
2216         struct otx2_mbox_dev *mdev;
2217         struct mbox_hdr *rsp_hdr;
2218         struct mbox_msghdr *msg;
2219         struct mbox_wq_info *mw;
2220         struct otx2_mbox *mbox;
2221         int offset, id, devid;
2222
2223         switch (type) {
2224         case TYPE_AFPF:
2225                 mw = &rvu->afpf_wq_info;
2226                 break;
2227         case TYPE_AFVF:
2228                 mw = &rvu->afvf_wq_info;
2229                 break;
2230         default:
2231                 return;
2232         }
2233
2234         devid = mwork - mw->mbox_wrk_up;
2235         mbox = &mw->mbox_up;
2236         mdev = &mbox->dev[devid];
2237
2238         rsp_hdr = mdev->mbase + mbox->rx_start;
2239         if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2240                 dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2241                 return;
2242         }
2243
2244         offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2245
2246         for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2247                 msg = mdev->mbase + offset;
2248
2249                 if (msg->id >= MBOX_MSG_MAX) {
2250                         dev_err(rvu->dev,
2251                                 "Mbox msg with unknown ID 0x%x\n", msg->id);
2252                         goto end;
2253                 }
2254
2255                 if (msg->sig != OTX2_MBOX_RSP_SIG) {
2256                         dev_err(rvu->dev,
2257                                 "Mbox msg with wrong signature %x, ID 0x%x\n",
2258                                 msg->sig, msg->id);
2259                         goto end;
2260                 }
2261
2262                 switch (msg->id) {
2263                 case MBOX_MSG_CGX_LINK_EVENT:
2264                         break;
2265                 default:
2266                         if (msg->rc)
2267                                 dev_err(rvu->dev,
2268                                         "Mbox msg response has err %d, ID 0x%x\n",
2269                                         msg->rc, msg->id);
2270                         break;
2271                 }
2272 end:
2273                 offset = mbox->rx_start + msg->next_msgoff;
2274                 mdev->msgs_acked++;
2275         }
2276         mw->mbox_wrk_up[devid].up_num_msgs = 0;
2277
2278         otx2_mbox_reset(mbox, devid);
2279 }
2280
2281 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2282 {
2283         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2284
2285         __rvu_mbox_up_handler(mwork, TYPE_AFPF);
2286 }
2287
2288 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2289 {
2290         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2291
2292         __rvu_mbox_up_handler(mwork, TYPE_AFVF);
2293 }
2294
2295 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2296                                 int num, int type, unsigned long *pf_bmap)
2297 {
2298         struct rvu_hwinfo *hw = rvu->hw;
2299         int region;
2300         u64 bar4;
2301
2302         /* For cn10k platform VF mailbox regions of a PF follows after the
2303          * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2304          * RVU_PF_VF_BAR4_ADDR register.
2305          */
2306         if (type == TYPE_AFVF) {
2307                 for (region = 0; region < num; region++) {
2308                         if (!test_bit(region, pf_bmap))
2309                                 continue;
2310
2311                         if (hw->cap.per_pf_mbox_regs) {
2312                                 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2313                                                   RVU_AF_PFX_BAR4_ADDR(0)) +
2314                                                   MBOX_SIZE;
2315                                 bar4 += region * MBOX_SIZE;
2316                         } else {
2317                                 bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2318                                 bar4 += region * MBOX_SIZE;
2319                         }
2320                         mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2321                         if (!mbox_addr[region])
2322                                 goto error;
2323                 }
2324                 return 0;
2325         }
2326
2327         /* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2328          * PF registers. Whereas for Octeontx2 it is read from
2329          * RVU_AF_PF_BAR4_ADDR register.
2330          */
2331         for (region = 0; region < num; region++) {
2332                 if (!test_bit(region, pf_bmap))
2333                         continue;
2334
2335                 if (hw->cap.per_pf_mbox_regs) {
2336                         bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2337                                           RVU_AF_PFX_BAR4_ADDR(region));
2338                 } else {
2339                         bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2340                                           RVU_AF_PF_BAR4_ADDR);
2341                         bar4 += region * MBOX_SIZE;
2342                 }
2343                 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2344                 if (!mbox_addr[region])
2345                         goto error;
2346         }
2347         return 0;
2348
2349 error:
2350         while (region--)
2351                 iounmap((void __iomem *)mbox_addr[region]);
2352         return -ENOMEM;
2353 }
2354
2355 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2356                          int type, int num,
2357                          void (mbox_handler)(struct work_struct *),
2358                          void (mbox_up_handler)(struct work_struct *))
2359 {
2360         int err = -EINVAL, i, dir, dir_up;
2361         void __iomem *reg_base;
2362         struct rvu_work *mwork;
2363         unsigned long *pf_bmap;
2364         void **mbox_regions;
2365         const char *name;
2366         u64 cfg;
2367
2368         pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
2369         if (!pf_bmap)
2370                 return -ENOMEM;
2371
2372         /* RVU VFs */
2373         if (type == TYPE_AFVF)
2374                 bitmap_set(pf_bmap, 0, num);
2375
2376         if (type == TYPE_AFPF) {
2377                 /* Mark enabled PFs in bitmap */
2378                 for (i = 0; i < num; i++) {
2379                         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2380                         if (cfg & BIT_ULL(20))
2381                                 set_bit(i, pf_bmap);
2382                 }
2383         }
2384
2385         mutex_init(&rvu->mbox_lock);
2386
2387         mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2388         if (!mbox_regions) {
2389                 err = -ENOMEM;
2390                 goto free_bitmap;
2391         }
2392
2393         switch (type) {
2394         case TYPE_AFPF:
2395                 name = "rvu_afpf_mailbox";
2396                 dir = MBOX_DIR_AFPF;
2397                 dir_up = MBOX_DIR_AFPF_UP;
2398                 reg_base = rvu->afreg_base;
2399                 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
2400                 if (err)
2401                         goto free_regions;
2402                 break;
2403         case TYPE_AFVF:
2404                 name = "rvu_afvf_mailbox";
2405                 dir = MBOX_DIR_PFVF;
2406                 dir_up = MBOX_DIR_PFVF_UP;
2407                 reg_base = rvu->pfreg_base;
2408                 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
2409                 if (err)
2410                         goto free_regions;
2411                 break;
2412         default:
2413                 goto free_regions;
2414         }
2415
2416         mw->mbox_wq = alloc_workqueue(name,
2417                                       WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2418                                       num);
2419         if (!mw->mbox_wq) {
2420                 err = -ENOMEM;
2421                 goto unmap_regions;
2422         }
2423
2424         mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2425                                     sizeof(struct rvu_work), GFP_KERNEL);
2426         if (!mw->mbox_wrk) {
2427                 err = -ENOMEM;
2428                 goto exit;
2429         }
2430
2431         mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2432                                        sizeof(struct rvu_work), GFP_KERNEL);
2433         if (!mw->mbox_wrk_up) {
2434                 err = -ENOMEM;
2435                 goto exit;
2436         }
2437
2438         err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2439                                      reg_base, dir, num, pf_bmap);
2440         if (err)
2441                 goto exit;
2442
2443         err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2444                                      reg_base, dir_up, num, pf_bmap);
2445         if (err)
2446                 goto exit;
2447
2448         for (i = 0; i < num; i++) {
2449                 if (!test_bit(i, pf_bmap))
2450                         continue;
2451
2452                 mwork = &mw->mbox_wrk[i];
2453                 mwork->rvu = rvu;
2454                 INIT_WORK(&mwork->work, mbox_handler);
2455
2456                 mwork = &mw->mbox_wrk_up[i];
2457                 mwork->rvu = rvu;
2458                 INIT_WORK(&mwork->work, mbox_up_handler);
2459         }
2460         goto free_regions;
2461
2462 exit:
2463         destroy_workqueue(mw->mbox_wq);
2464 unmap_regions:
2465         while (num--)
2466                 iounmap((void __iomem *)mbox_regions[num]);
2467 free_regions:
2468         kfree(mbox_regions);
2469 free_bitmap:
2470         bitmap_free(pf_bmap);
2471         return err;
2472 }
2473
2474 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2475 {
2476         struct otx2_mbox *mbox = &mw->mbox;
2477         struct otx2_mbox_dev *mdev;
2478         int devid;
2479
2480         if (mw->mbox_wq) {
2481                 destroy_workqueue(mw->mbox_wq);
2482                 mw->mbox_wq = NULL;
2483         }
2484
2485         for (devid = 0; devid < mbox->ndevs; devid++) {
2486                 mdev = &mbox->dev[devid];
2487                 if (mdev->hwbase)
2488                         iounmap((void __iomem *)mdev->hwbase);
2489         }
2490
2491         otx2_mbox_destroy(&mw->mbox);
2492         otx2_mbox_destroy(&mw->mbox_up);
2493 }
2494
2495 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2496                            int mdevs, u64 intr)
2497 {
2498         struct otx2_mbox_dev *mdev;
2499         struct otx2_mbox *mbox;
2500         struct mbox_hdr *hdr;
2501         int i;
2502
2503         for (i = first; i < mdevs; i++) {
2504                 /* start from 0 */
2505                 if (!(intr & BIT_ULL(i - first)))
2506                         continue;
2507
2508                 mbox = &mw->mbox;
2509                 mdev = &mbox->dev[i];
2510                 hdr = mdev->mbase + mbox->rx_start;
2511
2512                 /*The hdr->num_msgs is set to zero immediately in the interrupt
2513                  * handler to  ensure that it holds a correct value next time
2514                  * when the interrupt handler is called.
2515                  * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2516                  * pf>mbox.up_num_msgs holds the data for use in
2517                  * pfaf_mbox_up_handler.
2518                  */
2519
2520                 if (hdr->num_msgs) {
2521                         mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2522                         hdr->num_msgs = 0;
2523                         queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2524                 }
2525                 mbox = &mw->mbox_up;
2526                 mdev = &mbox->dev[i];
2527                 hdr = mdev->mbase + mbox->rx_start;
2528                 if (hdr->num_msgs) {
2529                         mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2530                         hdr->num_msgs = 0;
2531                         queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2532                 }
2533         }
2534 }
2535
2536 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2537 {
2538         struct rvu *rvu = (struct rvu *)rvu_irq;
2539         int vfs = rvu->vfs;
2540         u64 intr;
2541
2542         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2543         /* Clear interrupts */
2544         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2545         if (intr)
2546                 trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2547
2548         /* Sync with mbox memory region */
2549         rmb();
2550
2551         rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2552
2553         /* Handle VF interrupts */
2554         if (vfs > 64) {
2555                 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2556                 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2557
2558                 rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2559                 vfs -= 64;
2560         }
2561
2562         intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2563         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2564         if (intr)
2565                 trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2566
2567         rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2568
2569         return IRQ_HANDLED;
2570 }
2571
2572 static void rvu_enable_mbox_intr(struct rvu *rvu)
2573 {
2574         struct rvu_hwinfo *hw = rvu->hw;
2575
2576         /* Clear spurious irqs, if any */
2577         rvu_write64(rvu, BLKADDR_RVUM,
2578                     RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2579
2580         /* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2581         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2582                     INTR_MASK(hw->total_pfs) & ~1ULL);
2583 }
2584
2585 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2586 {
2587         struct rvu_block *block;
2588         int slot, lf, num_lfs;
2589         int err;
2590
2591         block = &rvu->hw->block[blkaddr];
2592         num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2593                                         block->addr);
2594         if (!num_lfs)
2595                 return;
2596         for (slot = 0; slot < num_lfs; slot++) {
2597                 lf = rvu_get_lf(rvu, block, pcifunc, slot);
2598                 if (lf < 0)
2599                         continue;
2600
2601                 /* Cleanup LF and reset it */
2602                 if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2603                         rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2604                 else if (block->addr == BLKADDR_NPA)
2605                         rvu_npa_lf_teardown(rvu, pcifunc, lf);
2606                 else if ((block->addr == BLKADDR_CPT0) ||
2607                          (block->addr == BLKADDR_CPT1))
2608                         rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2609                                             slot);
2610
2611                 err = rvu_lf_reset(rvu, block, lf);
2612                 if (err) {
2613                         dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2614                                 block->addr, lf);
2615                 }
2616         }
2617 }
2618
2619 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2620 {
2621         if (rvu_npc_exact_has_match_table(rvu))
2622                 rvu_npc_exact_reset(rvu, pcifunc);
2623
2624         mutex_lock(&rvu->flr_lock);
2625         /* Reset order should reflect inter-block dependencies:
2626          * 1. Reset any packet/work sources (NIX, CPT, TIM)
2627          * 2. Flush and reset SSO/SSOW
2628          * 3. Cleanup pools (NPA)
2629          */
2630
2631         /* Free allocated BPIDs */
2632         rvu_nix_flr_free_bpids(rvu, pcifunc);
2633
2634         /* Free multicast/mirror node associated with the 'pcifunc' */
2635         rvu_nix_mcast_flr_free_entries(rvu, pcifunc);
2636
2637         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2638         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2639         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2640         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2641         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2642         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2643         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2644         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2645         rvu_reset_lmt_map_tbl(rvu, pcifunc);
2646         rvu_detach_rsrcs(rvu, NULL, pcifunc);
2647         /* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2648          * entries, check and free the MCAM entries explicitly to avoid leak.
2649          * Since LF is detached use LF number as -1.
2650          */
2651         rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2652         rvu_mac_reset(rvu, pcifunc);
2653
2654         if (rvu->mcs_blk_cnt)
2655                 rvu_mcs_flr_handler(rvu, pcifunc);
2656
2657         mutex_unlock(&rvu->flr_lock);
2658 }
2659
2660 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2661 {
2662         int reg = 0;
2663
2664         /* pcifunc = 0(PF0) | (vf + 1) */
2665         __rvu_flr_handler(rvu, vf + 1);
2666
2667         if (vf >= 64) {
2668                 reg = 1;
2669                 vf = vf - 64;
2670         }
2671
2672         /* Signal FLR finish and enable IRQ */
2673         rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2674         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2675 }
2676
2677 static void rvu_flr_handler(struct work_struct *work)
2678 {
2679         struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2680         struct rvu *rvu = flrwork->rvu;
2681         u16 pcifunc, numvfs, vf;
2682         u64 cfg;
2683         int pf;
2684
2685         pf = flrwork - rvu->flr_wrk;
2686         if (pf >= rvu->hw->total_pfs) {
2687                 rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2688                 return;
2689         }
2690
2691         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2692         numvfs = (cfg >> 12) & 0xFF;
2693         pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2694
2695         for (vf = 0; vf < numvfs; vf++)
2696                 __rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2697
2698         __rvu_flr_handler(rvu, pcifunc);
2699
2700         /* Signal FLR finish */
2701         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2702
2703         /* Enable interrupt */
2704         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2705 }
2706
2707 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2708 {
2709         int dev, vf, reg = 0;
2710         u64 intr;
2711
2712         if (start_vf >= 64)
2713                 reg = 1;
2714
2715         intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2716         if (!intr)
2717                 return;
2718
2719         for (vf = 0; vf < numvfs; vf++) {
2720                 if (!(intr & BIT_ULL(vf)))
2721                         continue;
2722                 /* Clear and disable the interrupt */
2723                 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2724                 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2725
2726                 dev = vf + start_vf + rvu->hw->total_pfs;
2727                 queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2728         }
2729 }
2730
2731 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2732 {
2733         struct rvu *rvu = (struct rvu *)rvu_irq;
2734         u64 intr;
2735         u8  pf;
2736
2737         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2738         if (!intr)
2739                 goto afvf_flr;
2740
2741         for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2742                 if (intr & (1ULL << pf)) {
2743                         /* clear interrupt */
2744                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2745                                     BIT_ULL(pf));
2746                         /* Disable the interrupt */
2747                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2748                                     BIT_ULL(pf));
2749                         /* PF is already dead do only AF related operations */
2750                         queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2751                 }
2752         }
2753
2754 afvf_flr:
2755         rvu_afvf_queue_flr_work(rvu, 0, 64);
2756         if (rvu->vfs > 64)
2757                 rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2758
2759         return IRQ_HANDLED;
2760 }
2761
2762 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2763 {
2764         int vf;
2765
2766         /* Nothing to be done here other than clearing the
2767          * TRPEND bit.
2768          */
2769         for (vf = 0; vf < 64; vf++) {
2770                 if (intr & (1ULL << vf)) {
2771                         /* clear the trpend due to ME(master enable) */
2772                         rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2773                         /* clear interrupt */
2774                         rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2775                 }
2776         }
2777 }
2778
2779 /* Handles ME interrupts from VFs of AF */
2780 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2781 {
2782         struct rvu *rvu = (struct rvu *)rvu_irq;
2783         int vfset;
2784         u64 intr;
2785
2786         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2787
2788         for (vfset = 0; vfset <= 1; vfset++) {
2789                 intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2790                 if (intr)
2791                         rvu_me_handle_vfset(rvu, vfset, intr);
2792         }
2793
2794         return IRQ_HANDLED;
2795 }
2796
2797 /* Handles ME interrupts from PFs */
2798 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2799 {
2800         struct rvu *rvu = (struct rvu *)rvu_irq;
2801         u64 intr;
2802         u8  pf;
2803
2804         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2805
2806         /* Nothing to be done here other than clearing the
2807          * TRPEND bit.
2808          */
2809         for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2810                 if (intr & (1ULL << pf)) {
2811                         /* clear the trpend due to ME(master enable) */
2812                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2813                                     BIT_ULL(pf));
2814                         /* clear interrupt */
2815                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2816                                     BIT_ULL(pf));
2817                 }
2818         }
2819
2820         return IRQ_HANDLED;
2821 }
2822
2823 static void rvu_unregister_interrupts(struct rvu *rvu)
2824 {
2825         int irq;
2826
2827         rvu_cpt_unregister_interrupts(rvu);
2828
2829         /* Disable the Mbox interrupt */
2830         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2831                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2832
2833         /* Disable the PF FLR interrupt */
2834         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2835                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2836
2837         /* Disable the PF ME interrupt */
2838         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2839                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2840
2841         for (irq = 0; irq < rvu->num_vec; irq++) {
2842                 if (rvu->irq_allocated[irq]) {
2843                         free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2844                         rvu->irq_allocated[irq] = false;
2845                 }
2846         }
2847
2848         pci_free_irq_vectors(rvu->pdev);
2849         rvu->num_vec = 0;
2850 }
2851
2852 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2853 {
2854         struct rvu_pfvf *pfvf = &rvu->pf[0];
2855         int offset;
2856
2857         pfvf = &rvu->pf[0];
2858         offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2859
2860         /* Make sure there are enough MSIX vectors configured so that
2861          * VF interrupts can be handled. Offset equal to zero means
2862          * that PF vectors are not configured and overlapping AF vectors.
2863          */
2864         return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2865                offset;
2866 }
2867
2868 static int rvu_register_interrupts(struct rvu *rvu)
2869 {
2870         int ret, offset, pf_vec_start;
2871
2872         rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2873
2874         rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2875                                            NAME_SIZE, GFP_KERNEL);
2876         if (!rvu->irq_name)
2877                 return -ENOMEM;
2878
2879         rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2880                                           sizeof(bool), GFP_KERNEL);
2881         if (!rvu->irq_allocated)
2882                 return -ENOMEM;
2883
2884         /* Enable MSI-X */
2885         ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2886                                     rvu->num_vec, PCI_IRQ_MSIX);
2887         if (ret < 0) {
2888                 dev_err(rvu->dev,
2889                         "RVUAF: Request for %d msix vectors failed, ret %d\n",
2890                         rvu->num_vec, ret);
2891                 return ret;
2892         }
2893
2894         /* Register mailbox interrupt handler */
2895         sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2896         ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2897                           rvu_mbox_intr_handler, 0,
2898                           &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2899         if (ret) {
2900                 dev_err(rvu->dev,
2901                         "RVUAF: IRQ registration failed for mbox irq\n");
2902                 goto fail;
2903         }
2904
2905         rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2906
2907         /* Enable mailbox interrupts from all PFs */
2908         rvu_enable_mbox_intr(rvu);
2909
2910         /* Register FLR interrupt handler */
2911         sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2912                 "RVUAF FLR");
2913         ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2914                           rvu_flr_intr_handler, 0,
2915                           &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2916                           rvu);
2917         if (ret) {
2918                 dev_err(rvu->dev,
2919                         "RVUAF: IRQ registration failed for FLR\n");
2920                 goto fail;
2921         }
2922         rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2923
2924         /* Enable FLR interrupt for all PFs*/
2925         rvu_write64(rvu, BLKADDR_RVUM,
2926                     RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2927
2928         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2929                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2930
2931         /* Register ME interrupt handler */
2932         sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2933                 "RVUAF ME");
2934         ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2935                           rvu_me_pf_intr_handler, 0,
2936                           &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2937                           rvu);
2938         if (ret) {
2939                 dev_err(rvu->dev,
2940                         "RVUAF: IRQ registration failed for ME\n");
2941         }
2942         rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2943
2944         /* Clear TRPEND bit for all PF */
2945         rvu_write64(rvu, BLKADDR_RVUM,
2946                     RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2947         /* Enable ME interrupt for all PFs*/
2948         rvu_write64(rvu, BLKADDR_RVUM,
2949                     RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2950
2951         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2952                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2953
2954         if (!rvu_afvf_msix_vectors_num_ok(rvu))
2955                 return 0;
2956
2957         /* Get PF MSIX vectors offset. */
2958         pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2959                                   RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2960
2961         /* Register MBOX0 interrupt. */
2962         offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2963         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2964         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2965                           rvu_mbox_intr_handler, 0,
2966                           &rvu->irq_name[offset * NAME_SIZE],
2967                           rvu);
2968         if (ret)
2969                 dev_err(rvu->dev,
2970                         "RVUAF: IRQ registration failed for Mbox0\n");
2971
2972         rvu->irq_allocated[offset] = true;
2973
2974         /* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2975          * simply increment current offset by 1.
2976          */
2977         offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2978         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2979         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2980                           rvu_mbox_intr_handler, 0,
2981                           &rvu->irq_name[offset * NAME_SIZE],
2982                           rvu);
2983         if (ret)
2984                 dev_err(rvu->dev,
2985                         "RVUAF: IRQ registration failed for Mbox1\n");
2986
2987         rvu->irq_allocated[offset] = true;
2988
2989         /* Register FLR interrupt handler for AF's VFs */
2990         offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2991         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2992         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2993                           rvu_flr_intr_handler, 0,
2994                           &rvu->irq_name[offset * NAME_SIZE], rvu);
2995         if (ret) {
2996                 dev_err(rvu->dev,
2997                         "RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2998                 goto fail;
2999         }
3000         rvu->irq_allocated[offset] = true;
3001
3002         offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
3003         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
3004         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3005                           rvu_flr_intr_handler, 0,
3006                           &rvu->irq_name[offset * NAME_SIZE], rvu);
3007         if (ret) {
3008                 dev_err(rvu->dev,
3009                         "RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
3010                 goto fail;
3011         }
3012         rvu->irq_allocated[offset] = true;
3013
3014         /* Register ME interrupt handler for AF's VFs */
3015         offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
3016         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
3017         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3018                           rvu_me_vf_intr_handler, 0,
3019                           &rvu->irq_name[offset * NAME_SIZE], rvu);
3020         if (ret) {
3021                 dev_err(rvu->dev,
3022                         "RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3023                 goto fail;
3024         }
3025         rvu->irq_allocated[offset] = true;
3026
3027         offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3028         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
3029         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3030                           rvu_me_vf_intr_handler, 0,
3031                           &rvu->irq_name[offset * NAME_SIZE], rvu);
3032         if (ret) {
3033                 dev_err(rvu->dev,
3034                         "RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3035                 goto fail;
3036         }
3037         rvu->irq_allocated[offset] = true;
3038
3039         ret = rvu_cpt_register_interrupts(rvu);
3040         if (ret)
3041                 goto fail;
3042
3043         return 0;
3044
3045 fail:
3046         rvu_unregister_interrupts(rvu);
3047         return ret;
3048 }
3049
3050 static void rvu_flr_wq_destroy(struct rvu *rvu)
3051 {
3052         if (rvu->flr_wq) {
3053                 destroy_workqueue(rvu->flr_wq);
3054                 rvu->flr_wq = NULL;
3055         }
3056 }
3057
3058 static int rvu_flr_init(struct rvu *rvu)
3059 {
3060         int dev, num_devs;
3061         u64 cfg;
3062         int pf;
3063
3064         /* Enable FLR for all PFs*/
3065         for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3066                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3067                 rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3068                             cfg | BIT_ULL(22));
3069         }
3070
3071         rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3072                                               WQ_HIGHPRI | WQ_MEM_RECLAIM);
3073         if (!rvu->flr_wq)
3074                 return -ENOMEM;
3075
3076         num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3077         rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3078                                     sizeof(struct rvu_work), GFP_KERNEL);
3079         if (!rvu->flr_wrk) {
3080                 destroy_workqueue(rvu->flr_wq);
3081                 return -ENOMEM;
3082         }
3083
3084         for (dev = 0; dev < num_devs; dev++) {
3085                 rvu->flr_wrk[dev].rvu = rvu;
3086                 INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3087         }
3088
3089         mutex_init(&rvu->flr_lock);
3090
3091         return 0;
3092 }
3093
3094 static void rvu_disable_afvf_intr(struct rvu *rvu)
3095 {
3096         int vfs = rvu->vfs;
3097
3098         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3099         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3100         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3101         if (vfs <= 64)
3102                 return;
3103
3104         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3105                       INTR_MASK(vfs - 64));
3106         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3107         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3108 }
3109
3110 static void rvu_enable_afvf_intr(struct rvu *rvu)
3111 {
3112         int vfs = rvu->vfs;
3113
3114         /* Clear any pending interrupts and enable AF VF interrupts for
3115          * the first 64 VFs.
3116          */
3117         /* Mbox */
3118         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3119         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3120
3121         /* FLR */
3122         rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3123         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3124         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3125
3126         /* Same for remaining VFs, if any. */
3127         if (vfs <= 64)
3128                 return;
3129
3130         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3131         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3132                       INTR_MASK(vfs - 64));
3133
3134         rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3135         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3136         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3137 }
3138
3139 int rvu_get_num_lbk_chans(void)
3140 {
3141         struct pci_dev *pdev;
3142         void __iomem *base;
3143         int ret = -EIO;
3144
3145         pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3146                               NULL);
3147         if (!pdev)
3148                 goto err;
3149
3150         base = pci_ioremap_bar(pdev, 0);
3151         if (!base)
3152                 goto err_put;
3153
3154         /* Read number of available LBK channels from LBK(0)_CONST register. */
3155         ret = (readq(base + 0x10) >> 32) & 0xffff;
3156         iounmap(base);
3157 err_put:
3158         pci_dev_put(pdev);
3159 err:
3160         return ret;
3161 }
3162
3163 static int rvu_enable_sriov(struct rvu *rvu)
3164 {
3165         struct pci_dev *pdev = rvu->pdev;
3166         int err, chans, vfs;
3167         int pos = 0;
3168
3169         if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3170                 dev_warn(&pdev->dev,
3171                          "Skipping SRIOV enablement since not enough IRQs are available\n");
3172                 return 0;
3173         }
3174
3175         /* Get RVU VFs device id */
3176         pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3177         if (!pos)
3178                 return 0;
3179         pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &rvu->vf_devid);
3180
3181         chans = rvu_get_num_lbk_chans();
3182         if (chans < 0)
3183                 return chans;
3184
3185         vfs = pci_sriov_get_totalvfs(pdev);
3186
3187         /* Limit VFs in case we have more VFs than LBK channels available. */
3188         if (vfs > chans)
3189                 vfs = chans;
3190
3191         if (!vfs)
3192                 return 0;
3193
3194         /* LBK channel number 63 is used for switching packets between
3195          * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3196          */
3197         if (vfs > 62)
3198                 vfs = 62;
3199
3200         /* Save VFs number for reference in VF interrupts handlers.
3201          * Since interrupts might start arriving during SRIOV enablement
3202          * ordinary API cannot be used to get number of enabled VFs.
3203          */
3204         rvu->vfs = vfs;
3205
3206         err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3207                             rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3208         if (err)
3209                 return err;
3210
3211         rvu_enable_afvf_intr(rvu);
3212         /* Make sure IRQs are enabled before SRIOV. */
3213         mb();
3214
3215         err = pci_enable_sriov(pdev, vfs);
3216         if (err) {
3217                 rvu_disable_afvf_intr(rvu);
3218                 rvu_mbox_destroy(&rvu->afvf_wq_info);
3219                 return err;
3220         }
3221
3222         return 0;
3223 }
3224
3225 static void rvu_disable_sriov(struct rvu *rvu)
3226 {
3227         rvu_disable_afvf_intr(rvu);
3228         rvu_mbox_destroy(&rvu->afvf_wq_info);
3229         pci_disable_sriov(rvu->pdev);
3230 }
3231
3232 static void rvu_update_module_params(struct rvu *rvu)
3233 {
3234         const char *default_pfl_name = "default";
3235
3236         strscpy(rvu->mkex_pfl_name,
3237                 mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3238         strscpy(rvu->kpu_pfl_name,
3239                 kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3240 }
3241
3242 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3243 {
3244         struct device *dev = &pdev->dev;
3245         struct rvu *rvu;
3246         int    err;
3247
3248         rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3249         if (!rvu)
3250                 return -ENOMEM;
3251
3252         rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3253         if (!rvu->hw) {
3254                 devm_kfree(dev, rvu);
3255                 return -ENOMEM;
3256         }
3257
3258         pci_set_drvdata(pdev, rvu);
3259         rvu->pdev = pdev;
3260         rvu->dev = &pdev->dev;
3261
3262         err = pci_enable_device(pdev);
3263         if (err) {
3264                 dev_err(dev, "Failed to enable PCI device\n");
3265                 goto err_freemem;
3266         }
3267
3268         err = pci_request_regions(pdev, DRV_NAME);
3269         if (err) {
3270                 dev_err(dev, "PCI request regions failed 0x%x\n", err);
3271                 goto err_disable_device;
3272         }
3273
3274         err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3275         if (err) {
3276                 dev_err(dev, "DMA mask config failed, abort\n");
3277                 goto err_release_regions;
3278         }
3279
3280         pci_set_master(pdev);
3281
3282         rvu->ptp = ptp_get();
3283         if (IS_ERR(rvu->ptp)) {
3284                 err = PTR_ERR(rvu->ptp);
3285                 if (err)
3286                         goto err_release_regions;
3287                 rvu->ptp = NULL;
3288         }
3289
3290         /* Map Admin function CSRs */
3291         rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3292         rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3293         if (!rvu->afreg_base || !rvu->pfreg_base) {
3294                 dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3295                 err = -ENOMEM;
3296                 goto err_put_ptp;
3297         }
3298
3299         /* Store module params in rvu structure */
3300         rvu_update_module_params(rvu);
3301
3302         /* Check which blocks the HW supports */
3303         rvu_check_block_implemented(rvu);
3304
3305         rvu_reset_all_blocks(rvu);
3306
3307         rvu_setup_hw_capabilities(rvu);
3308
3309         err = rvu_setup_hw_resources(rvu);
3310         if (err)
3311                 goto err_put_ptp;
3312
3313         /* Init mailbox btw AF and PFs */
3314         err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3315                             rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3316                             rvu_afpf_mbox_up_handler);
3317         if (err) {
3318                 dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3319                 goto err_hwsetup;
3320         }
3321
3322         err = rvu_flr_init(rvu);
3323         if (err) {
3324                 dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3325                 goto err_mbox;
3326         }
3327
3328         err = rvu_register_interrupts(rvu);
3329         if (err) {
3330                 dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3331                 goto err_flr;
3332         }
3333
3334         err = rvu_register_dl(rvu);
3335         if (err) {
3336                 dev_err(dev, "%s: Failed to register devlink\n", __func__);
3337                 goto err_irq;
3338         }
3339
3340         rvu_setup_rvum_blk_revid(rvu);
3341
3342         /* Enable AF's VFs (if any) */
3343         err = rvu_enable_sriov(rvu);
3344         if (err) {
3345                 dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3346                 goto err_dl;
3347         }
3348
3349         /* Initialize debugfs */
3350         rvu_dbg_init(rvu);
3351
3352         mutex_init(&rvu->rswitch.switch_lock);
3353
3354         if (rvu->fwdata)
3355                 ptp_start(rvu, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3356                           rvu->fwdata->ptp_ext_tstamp);
3357
3358         return 0;
3359 err_dl:
3360         rvu_unregister_dl(rvu);
3361 err_irq:
3362         rvu_unregister_interrupts(rvu);
3363 err_flr:
3364         rvu_flr_wq_destroy(rvu);
3365 err_mbox:
3366         rvu_mbox_destroy(&rvu->afpf_wq_info);
3367 err_hwsetup:
3368         rvu_cgx_exit(rvu);
3369         rvu_fwdata_exit(rvu);
3370         rvu_mcs_exit(rvu);
3371         rvu_reset_all_blocks(rvu);
3372         rvu_free_hw_resources(rvu);
3373         rvu_clear_rvum_blk_revid(rvu);
3374 err_put_ptp:
3375         ptp_put(rvu->ptp);
3376 err_release_regions:
3377         pci_release_regions(pdev);
3378 err_disable_device:
3379         pci_disable_device(pdev);
3380 err_freemem:
3381         pci_set_drvdata(pdev, NULL);
3382         devm_kfree(&pdev->dev, rvu->hw);
3383         devm_kfree(dev, rvu);
3384         return err;
3385 }
3386
3387 static void rvu_remove(struct pci_dev *pdev)
3388 {
3389         struct rvu *rvu = pci_get_drvdata(pdev);
3390
3391         rvu_dbg_exit(rvu);
3392         rvu_unregister_dl(rvu);
3393         rvu_unregister_interrupts(rvu);
3394         rvu_flr_wq_destroy(rvu);
3395         rvu_cgx_exit(rvu);
3396         rvu_fwdata_exit(rvu);
3397         rvu_mcs_exit(rvu);
3398         rvu_mbox_destroy(&rvu->afpf_wq_info);
3399         rvu_disable_sriov(rvu);
3400         rvu_reset_all_blocks(rvu);
3401         rvu_free_hw_resources(rvu);
3402         rvu_clear_rvum_blk_revid(rvu);
3403         ptp_put(rvu->ptp);
3404         pci_release_regions(pdev);
3405         pci_disable_device(pdev);
3406         pci_set_drvdata(pdev, NULL);
3407
3408         devm_kfree(&pdev->dev, rvu->hw);
3409         devm_kfree(&pdev->dev, rvu);
3410 }
3411
3412 static struct pci_driver rvu_driver = {
3413         .name = DRV_NAME,
3414         .id_table = rvu_id_table,
3415         .probe = rvu_probe,
3416         .remove = rvu_remove,
3417 };
3418
3419 static int __init rvu_init_module(void)
3420 {
3421         int err;
3422
3423         pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3424
3425         err = pci_register_driver(&cgx_driver);
3426         if (err < 0)
3427                 return err;
3428
3429         err = pci_register_driver(&ptp_driver);
3430         if (err < 0)
3431                 goto ptp_err;
3432
3433         err = pci_register_driver(&mcs_driver);
3434         if (err < 0)
3435                 goto mcs_err;
3436
3437         err =  pci_register_driver(&rvu_driver);
3438         if (err < 0)
3439                 goto rvu_err;
3440
3441         return 0;
3442 rvu_err:
3443         pci_unregister_driver(&mcs_driver);
3444 mcs_err:
3445         pci_unregister_driver(&ptp_driver);
3446 ptp_err:
3447         pci_unregister_driver(&cgx_driver);
3448
3449         return err;
3450 }
3451
3452 static void __exit rvu_cleanup_module(void)
3453 {
3454         pci_unregister_driver(&rvu_driver);
3455         pci_unregister_driver(&mcs_driver);
3456         pci_unregister_driver(&ptp_driver);
3457         pci_unregister_driver(&cgx_driver);
3458 }
3459
3460 module_init(rvu_init_module);
3461 module_exit(rvu_cleanup_module);