usb: dwc3: dwc3-qcom: Fix typo in the dwc3 vbus override API
[linux-2.6-microblaze.git] / drivers / net / ethernet / marvell / octeontx2 / af / rvu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 #include "ptp.h"
22
23 #include "rvu_trace.h"
24
25 #define DRV_NAME        "rvu_af"
26 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
27
28 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
29
30 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31                                 struct rvu_block *block, int lf);
32 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
33                                   struct rvu_block *block, int lf);
34 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
35
36 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
37                          int type, int num,
38                          void (mbox_handler)(struct work_struct *),
39                          void (mbox_up_handler)(struct work_struct *));
40 enum {
41         TYPE_AFVF,
42         TYPE_AFPF,
43 };
44
45 /* Supported devices */
46 static const struct pci_device_id rvu_id_table[] = {
47         { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
48         { 0, }  /* end of table */
49 };
50
51 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
52 MODULE_DESCRIPTION(DRV_STRING);
53 MODULE_LICENSE("GPL v2");
54 MODULE_DEVICE_TABLE(pci, rvu_id_table);
55
56 static char *mkex_profile; /* MKEX profile name */
57 module_param(mkex_profile, charp, 0000);
58 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
59
60 static char *kpu_profile; /* KPU profile name */
61 module_param(kpu_profile, charp, 0000);
62 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
63
64 static void rvu_setup_hw_capabilities(struct rvu *rvu)
65 {
66         struct rvu_hwinfo *hw = rvu->hw;
67
68         hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
69         hw->cap.nix_fixed_txschq_mapping = false;
70         hw->cap.nix_shaping = true;
71         hw->cap.nix_tx_link_bp = true;
72         hw->cap.nix_rx_multicast = true;
73         hw->rvu = rvu;
74
75         if (is_rvu_96xx_B0(rvu)) {
76                 hw->cap.nix_fixed_txschq_mapping = true;
77                 hw->cap.nix_txsch_per_cgx_lmac = 4;
78                 hw->cap.nix_txsch_per_lbk_lmac = 132;
79                 hw->cap.nix_txsch_per_sdp_lmac = 76;
80                 hw->cap.nix_shaping = false;
81                 hw->cap.nix_tx_link_bp = false;
82                 if (is_rvu_96xx_A0(rvu))
83                         hw->cap.nix_rx_multicast = false;
84         }
85
86         if (!is_rvu_otx2(rvu))
87                 hw->cap.per_pf_mbox_regs = true;
88 }
89
90 /* Poll a RVU block's register 'offset', for a 'zero'
91  * or 'nonzero' at bits specified by 'mask'
92  */
93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
94 {
95         unsigned long timeout = jiffies + usecs_to_jiffies(10000);
96         void __iomem *reg;
97         u64 reg_val;
98
99         reg = rvu->afreg_base + ((block << 28) | offset);
100 again:
101         reg_val = readq(reg);
102         if (zero && !(reg_val & mask))
103                 return 0;
104         if (!zero && (reg_val & mask))
105                 return 0;
106         if (time_before(jiffies, timeout)) {
107                 usleep_range(1, 5);
108                 goto again;
109         }
110         return -EBUSY;
111 }
112
113 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
114 {
115         int id;
116
117         if (!rsrc->bmap)
118                 return -EINVAL;
119
120         id = find_first_zero_bit(rsrc->bmap, rsrc->max);
121         if (id >= rsrc->max)
122                 return -ENOSPC;
123
124         __set_bit(id, rsrc->bmap);
125
126         return id;
127 }
128
129 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
130 {
131         int start;
132
133         if (!rsrc->bmap)
134                 return -EINVAL;
135
136         start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
137         if (start >= rsrc->max)
138                 return -ENOSPC;
139
140         bitmap_set(rsrc->bmap, start, nrsrc);
141         return start;
142 }
143
144 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
145 {
146         if (!rsrc->bmap)
147                 return;
148         if (start >= rsrc->max)
149                 return;
150
151         bitmap_clear(rsrc->bmap, start, nrsrc);
152 }
153
154 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
155 {
156         int start;
157
158         if (!rsrc->bmap)
159                 return false;
160
161         start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
162         if (start >= rsrc->max)
163                 return false;
164
165         return true;
166 }
167
168 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
169 {
170         if (!rsrc->bmap)
171                 return;
172
173         __clear_bit(id, rsrc->bmap);
174 }
175
176 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
177 {
178         int used;
179
180         if (!rsrc->bmap)
181                 return 0;
182
183         used = bitmap_weight(rsrc->bmap, rsrc->max);
184         return (rsrc->max - used);
185 }
186
187 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
188 {
189         if (!rsrc->bmap)
190                 return false;
191
192         return !test_bit(id, rsrc->bmap);
193 }
194
195 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
196 {
197         rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
198                              sizeof(long), GFP_KERNEL);
199         if (!rsrc->bmap)
200                 return -ENOMEM;
201         return 0;
202 }
203
204 /* Get block LF's HW index from a PF_FUNC's block slot number */
205 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
206 {
207         u16 match = 0;
208         int lf;
209
210         mutex_lock(&rvu->rsrc_lock);
211         for (lf = 0; lf < block->lf.max; lf++) {
212                 if (block->fn_map[lf] == pcifunc) {
213                         if (slot == match) {
214                                 mutex_unlock(&rvu->rsrc_lock);
215                                 return lf;
216                         }
217                         match++;
218                 }
219         }
220         mutex_unlock(&rvu->rsrc_lock);
221         return -ENODEV;
222 }
223
224 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
225  * Some silicon variants of OcteonTX2 supports
226  * multiple blocks of same type.
227  *
228  * @pcifunc has to be zero when no LF is yet attached.
229  *
230  * For a pcifunc if LFs are attached from multiple blocks of same type, then
231  * return blkaddr of first encountered block.
232  */
233 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
234 {
235         int devnum, blkaddr = -ENODEV;
236         u64 cfg, reg;
237         bool is_pf;
238
239         switch (blktype) {
240         case BLKTYPE_NPC:
241                 blkaddr = BLKADDR_NPC;
242                 goto exit;
243         case BLKTYPE_NPA:
244                 blkaddr = BLKADDR_NPA;
245                 goto exit;
246         case BLKTYPE_NIX:
247                 /* For now assume NIX0 */
248                 if (!pcifunc) {
249                         blkaddr = BLKADDR_NIX0;
250                         goto exit;
251                 }
252                 break;
253         case BLKTYPE_SSO:
254                 blkaddr = BLKADDR_SSO;
255                 goto exit;
256         case BLKTYPE_SSOW:
257                 blkaddr = BLKADDR_SSOW;
258                 goto exit;
259         case BLKTYPE_TIM:
260                 blkaddr = BLKADDR_TIM;
261                 goto exit;
262         case BLKTYPE_CPT:
263                 /* For now assume CPT0 */
264                 if (!pcifunc) {
265                         blkaddr = BLKADDR_CPT0;
266                         goto exit;
267                 }
268                 break;
269         }
270
271         /* Check if this is a RVU PF or VF */
272         if (pcifunc & RVU_PFVF_FUNC_MASK) {
273                 is_pf = false;
274                 devnum = rvu_get_hwvf(rvu, pcifunc);
275         } else {
276                 is_pf = true;
277                 devnum = rvu_get_pf(pcifunc);
278         }
279
280         /* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
281          * 'BLKADDR_NIX1'.
282          */
283         if (blktype == BLKTYPE_NIX) {
284                 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
285                         RVU_PRIV_HWVFX_NIXX_CFG(0);
286                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
287                 if (cfg) {
288                         blkaddr = BLKADDR_NIX0;
289                         goto exit;
290                 }
291
292                 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
293                         RVU_PRIV_HWVFX_NIXX_CFG(1);
294                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
295                 if (cfg)
296                         blkaddr = BLKADDR_NIX1;
297         }
298
299         if (blktype == BLKTYPE_CPT) {
300                 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
301                         RVU_PRIV_HWVFX_CPTX_CFG(0);
302                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
303                 if (cfg) {
304                         blkaddr = BLKADDR_CPT0;
305                         goto exit;
306                 }
307
308                 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
309                         RVU_PRIV_HWVFX_CPTX_CFG(1);
310                 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
311                 if (cfg)
312                         blkaddr = BLKADDR_CPT1;
313         }
314
315 exit:
316         if (is_block_implemented(rvu->hw, blkaddr))
317                 return blkaddr;
318         return -ENODEV;
319 }
320
321 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
322                                 struct rvu_block *block, u16 pcifunc,
323                                 u16 lf, bool attach)
324 {
325         int devnum, num_lfs = 0;
326         bool is_pf;
327         u64 reg;
328
329         if (lf >= block->lf.max) {
330                 dev_err(&rvu->pdev->dev,
331                         "%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
332                         __func__, lf, block->name, block->lf.max);
333                 return;
334         }
335
336         /* Check if this is for a RVU PF or VF */
337         if (pcifunc & RVU_PFVF_FUNC_MASK) {
338                 is_pf = false;
339                 devnum = rvu_get_hwvf(rvu, pcifunc);
340         } else {
341                 is_pf = true;
342                 devnum = rvu_get_pf(pcifunc);
343         }
344
345         block->fn_map[lf] = attach ? pcifunc : 0;
346
347         switch (block->addr) {
348         case BLKADDR_NPA:
349                 pfvf->npalf = attach ? true : false;
350                 num_lfs = pfvf->npalf;
351                 break;
352         case BLKADDR_NIX0:
353         case BLKADDR_NIX1:
354                 pfvf->nixlf = attach ? true : false;
355                 num_lfs = pfvf->nixlf;
356                 break;
357         case BLKADDR_SSO:
358                 attach ? pfvf->sso++ : pfvf->sso--;
359                 num_lfs = pfvf->sso;
360                 break;
361         case BLKADDR_SSOW:
362                 attach ? pfvf->ssow++ : pfvf->ssow--;
363                 num_lfs = pfvf->ssow;
364                 break;
365         case BLKADDR_TIM:
366                 attach ? pfvf->timlfs++ : pfvf->timlfs--;
367                 num_lfs = pfvf->timlfs;
368                 break;
369         case BLKADDR_CPT0:
370                 attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
371                 num_lfs = pfvf->cptlfs;
372                 break;
373         case BLKADDR_CPT1:
374                 attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
375                 num_lfs = pfvf->cpt1_lfs;
376                 break;
377         }
378
379         reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
380         rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
381 }
382
383 inline int rvu_get_pf(u16 pcifunc)
384 {
385         return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
386 }
387
388 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
389 {
390         u64 cfg;
391
392         /* Get numVFs attached to this PF and first HWVF */
393         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
394         *numvfs = (cfg >> 12) & 0xFF;
395         *hwvf = cfg & 0xFFF;
396 }
397
398 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
399 {
400         int pf, func;
401         u64 cfg;
402
403         pf = rvu_get_pf(pcifunc);
404         func = pcifunc & RVU_PFVF_FUNC_MASK;
405
406         /* Get first HWVF attached to this PF */
407         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
408
409         return ((cfg & 0xFFF) + func - 1);
410 }
411
412 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
413 {
414         /* Check if it is a PF or VF */
415         if (pcifunc & RVU_PFVF_FUNC_MASK)
416                 return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
417         else
418                 return &rvu->pf[rvu_get_pf(pcifunc)];
419 }
420
421 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
422 {
423         int pf, vf, nvfs;
424         u64 cfg;
425
426         pf = rvu_get_pf(pcifunc);
427         if (pf >= rvu->hw->total_pfs)
428                 return false;
429
430         if (!(pcifunc & RVU_PFVF_FUNC_MASK))
431                 return true;
432
433         /* Check if VF is within number of VFs attached to this PF */
434         vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
435         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
436         nvfs = (cfg >> 12) & 0xFF;
437         if (vf >= nvfs)
438                 return false;
439
440         return true;
441 }
442
443 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
444 {
445         struct rvu_block *block;
446
447         if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
448                 return false;
449
450         block = &hw->block[blkaddr];
451         return block->implemented;
452 }
453
454 static void rvu_check_block_implemented(struct rvu *rvu)
455 {
456         struct rvu_hwinfo *hw = rvu->hw;
457         struct rvu_block *block;
458         int blkid;
459         u64 cfg;
460
461         /* For each block check if 'implemented' bit is set */
462         for (blkid = 0; blkid < BLK_COUNT; blkid++) {
463                 block = &hw->block[blkid];
464                 cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
465                 if (cfg & BIT_ULL(11))
466                         block->implemented = true;
467         }
468 }
469
470 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
471 {
472         rvu_write64(rvu, BLKADDR_RVUM,
473                     RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
474                     RVU_BLK_RVUM_REVID);
475 }
476
477 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
478 {
479         rvu_write64(rvu, BLKADDR_RVUM,
480                     RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
481 }
482
483 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
484 {
485         int err;
486
487         if (!block->implemented)
488                 return 0;
489
490         rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
491         err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
492                            true);
493         return err;
494 }
495
496 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
497 {
498         struct rvu_block *block = &rvu->hw->block[blkaddr];
499
500         if (!block->implemented)
501                 return;
502
503         rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
504         rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
505 }
506
507 static void rvu_reset_all_blocks(struct rvu *rvu)
508 {
509         /* Do a HW reset of all RVU blocks */
510         rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
511         rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
512         rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
513         rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
514         rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
515         rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
516         rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
517         rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
518         rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
519         rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
520         rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
521         rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
522         rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
523 }
524
525 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
526 {
527         struct rvu_pfvf *pfvf;
528         u64 cfg;
529         int lf;
530
531         for (lf = 0; lf < block->lf.max; lf++) {
532                 cfg = rvu_read64(rvu, block->addr,
533                                  block->lfcfg_reg | (lf << block->lfshift));
534                 if (!(cfg & BIT_ULL(63)))
535                         continue;
536
537                 /* Set this resource as being used */
538                 __set_bit(lf, block->lf.bmap);
539
540                 /* Get, to whom this LF is attached */
541                 pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
542                 rvu_update_rsrc_map(rvu, pfvf, block,
543                                     (cfg >> 8) & 0xFFFF, lf, true);
544
545                 /* Set start MSIX vector for this LF within this PF/VF */
546                 rvu_set_msix_offset(rvu, pfvf, block, lf);
547         }
548 }
549
550 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
551 {
552         int min_vecs;
553
554         if (!vf)
555                 goto check_pf;
556
557         if (!nvecs) {
558                 dev_warn(rvu->dev,
559                          "PF%d:VF%d is configured with zero msix vectors, %d\n",
560                          pf, vf - 1, nvecs);
561         }
562         return;
563
564 check_pf:
565         if (pf == 0)
566                 min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
567         else
568                 min_vecs = RVU_PF_INT_VEC_CNT;
569
570         if (!(nvecs < min_vecs))
571                 return;
572         dev_warn(rvu->dev,
573                  "PF%d is configured with too few vectors, %d, min is %d\n",
574                  pf, nvecs, min_vecs);
575 }
576
577 static int rvu_setup_msix_resources(struct rvu *rvu)
578 {
579         struct rvu_hwinfo *hw = rvu->hw;
580         int pf, vf, numvfs, hwvf, err;
581         int nvecs, offset, max_msix;
582         struct rvu_pfvf *pfvf;
583         u64 cfg, phy_addr;
584         dma_addr_t iova;
585
586         for (pf = 0; pf < hw->total_pfs; pf++) {
587                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
588                 /* If PF is not enabled, nothing to do */
589                 if (!((cfg >> 20) & 0x01))
590                         continue;
591
592                 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
593
594                 pfvf = &rvu->pf[pf];
595                 /* Get num of MSIX vectors attached to this PF */
596                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
597                 pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
598                 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
599
600                 /* Alloc msix bitmap for this PF */
601                 err = rvu_alloc_bitmap(&pfvf->msix);
602                 if (err)
603                         return err;
604
605                 /* Allocate memory for MSIX vector to RVU block LF mapping */
606                 pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
607                                                 sizeof(u16), GFP_KERNEL);
608                 if (!pfvf->msix_lfmap)
609                         return -ENOMEM;
610
611                 /* For PF0 (AF) firmware will set msix vector offsets for
612                  * AF, block AF and PF0_INT vectors, so jump to VFs.
613                  */
614                 if (!pf)
615                         goto setup_vfmsix;
616
617                 /* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
618                  * These are allocated on driver init and never freed,
619                  * so no need to set 'msix_lfmap' for these.
620                  */
621                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
622                 nvecs = (cfg >> 12) & 0xFF;
623                 cfg &= ~0x7FFULL;
624                 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
625                 rvu_write64(rvu, BLKADDR_RVUM,
626                             RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
627 setup_vfmsix:
628                 /* Alloc msix bitmap for VFs */
629                 for (vf = 0; vf < numvfs; vf++) {
630                         pfvf =  &rvu->hwvf[hwvf + vf];
631                         /* Get num of MSIX vectors attached to this VF */
632                         cfg = rvu_read64(rvu, BLKADDR_RVUM,
633                                          RVU_PRIV_PFX_MSIX_CFG(pf));
634                         pfvf->msix.max = (cfg & 0xFFF) + 1;
635                         rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
636
637                         /* Alloc msix bitmap for this VF */
638                         err = rvu_alloc_bitmap(&pfvf->msix);
639                         if (err)
640                                 return err;
641
642                         pfvf->msix_lfmap =
643                                 devm_kcalloc(rvu->dev, pfvf->msix.max,
644                                              sizeof(u16), GFP_KERNEL);
645                         if (!pfvf->msix_lfmap)
646                                 return -ENOMEM;
647
648                         /* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
649                          * These are allocated on driver init and never freed,
650                          * so no need to set 'msix_lfmap' for these.
651                          */
652                         cfg = rvu_read64(rvu, BLKADDR_RVUM,
653                                          RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
654                         nvecs = (cfg >> 12) & 0xFF;
655                         cfg &= ~0x7FFULL;
656                         offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
657                         rvu_write64(rvu, BLKADDR_RVUM,
658                                     RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
659                                     cfg | offset);
660                 }
661         }
662
663         /* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
664          * create an IOMMU mapping for the physical address configured by
665          * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
666          */
667         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
668         max_msix = cfg & 0xFFFFF;
669         if (rvu->fwdata && rvu->fwdata->msixtr_base)
670                 phy_addr = rvu->fwdata->msixtr_base;
671         else
672                 phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
673
674         iova = dma_map_resource(rvu->dev, phy_addr,
675                                 max_msix * PCI_MSIX_ENTRY_SIZE,
676                                 DMA_BIDIRECTIONAL, 0);
677
678         if (dma_mapping_error(rvu->dev, iova))
679                 return -ENOMEM;
680
681         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
682         rvu->msix_base_iova = iova;
683         rvu->msixtr_base_phy = phy_addr;
684
685         return 0;
686 }
687
688 static void rvu_reset_msix(struct rvu *rvu)
689 {
690         /* Restore msixtr base register */
691         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
692                     rvu->msixtr_base_phy);
693 }
694
695 static void rvu_free_hw_resources(struct rvu *rvu)
696 {
697         struct rvu_hwinfo *hw = rvu->hw;
698         struct rvu_block *block;
699         struct rvu_pfvf  *pfvf;
700         int id, max_msix;
701         u64 cfg;
702
703         rvu_npa_freemem(rvu);
704         rvu_npc_freemem(rvu);
705         rvu_nix_freemem(rvu);
706
707         /* Free block LF bitmaps */
708         for (id = 0; id < BLK_COUNT; id++) {
709                 block = &hw->block[id];
710                 kfree(block->lf.bmap);
711         }
712
713         /* Free MSIX bitmaps */
714         for (id = 0; id < hw->total_pfs; id++) {
715                 pfvf = &rvu->pf[id];
716                 kfree(pfvf->msix.bmap);
717         }
718
719         for (id = 0; id < hw->total_vfs; id++) {
720                 pfvf = &rvu->hwvf[id];
721                 kfree(pfvf->msix.bmap);
722         }
723
724         /* Unmap MSIX vector base IOVA mapping */
725         if (!rvu->msix_base_iova)
726                 return;
727         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
728         max_msix = cfg & 0xFFFFF;
729         dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
730                            max_msix * PCI_MSIX_ENTRY_SIZE,
731                            DMA_BIDIRECTIONAL, 0);
732
733         rvu_reset_msix(rvu);
734         mutex_destroy(&rvu->rsrc_lock);
735 }
736
737 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
738 {
739         struct rvu_hwinfo *hw = rvu->hw;
740         int pf, vf, numvfs, hwvf;
741         struct rvu_pfvf *pfvf;
742         u64 *mac;
743
744         for (pf = 0; pf < hw->total_pfs; pf++) {
745                 /* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
746                 if (!pf)
747                         goto lbkvf;
748
749                 if (!is_pf_cgxmapped(rvu, pf))
750                         continue;
751                 /* Assign MAC address to PF */
752                 pfvf = &rvu->pf[pf];
753                 if (rvu->fwdata && pf < PF_MACNUM_MAX) {
754                         mac = &rvu->fwdata->pf_macs[pf];
755                         if (*mac)
756                                 u64_to_ether_addr(*mac, pfvf->mac_addr);
757                         else
758                                 eth_random_addr(pfvf->mac_addr);
759                 } else {
760                         eth_random_addr(pfvf->mac_addr);
761                 }
762                 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
763
764 lbkvf:
765                 /* Assign MAC address to VFs*/
766                 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
767                 for (vf = 0; vf < numvfs; vf++, hwvf++) {
768                         pfvf = &rvu->hwvf[hwvf];
769                         if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
770                                 mac = &rvu->fwdata->vf_macs[hwvf];
771                                 if (*mac)
772                                         u64_to_ether_addr(*mac, pfvf->mac_addr);
773                                 else
774                                         eth_random_addr(pfvf->mac_addr);
775                         } else {
776                                 eth_random_addr(pfvf->mac_addr);
777                         }
778                         ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
779                 }
780         }
781 }
782
783 static int rvu_fwdata_init(struct rvu *rvu)
784 {
785         u64 fwdbase;
786         int err;
787
788         /* Get firmware data base address */
789         err = cgx_get_fwdata_base(&fwdbase);
790         if (err)
791                 goto fail;
792         rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
793         if (!rvu->fwdata)
794                 goto fail;
795         if (!is_rvu_fwdata_valid(rvu)) {
796                 dev_err(rvu->dev,
797                         "Mismatch in 'fwdata' struct btw kernel and firmware\n");
798                 iounmap(rvu->fwdata);
799                 rvu->fwdata = NULL;
800                 return -EINVAL;
801         }
802         return 0;
803 fail:
804         dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
805         return -EIO;
806 }
807
808 static void rvu_fwdata_exit(struct rvu *rvu)
809 {
810         if (rvu->fwdata)
811                 iounmap(rvu->fwdata);
812 }
813
814 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
815 {
816         struct rvu_hwinfo *hw = rvu->hw;
817         struct rvu_block *block;
818         int blkid;
819         u64 cfg;
820
821         /* Init NIX LF's bitmap */
822         block = &hw->block[blkaddr];
823         if (!block->implemented)
824                 return 0;
825         blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
826         cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
827         block->lf.max = cfg & 0xFFF;
828         block->addr = blkaddr;
829         block->type = BLKTYPE_NIX;
830         block->lfshift = 8;
831         block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
832         block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
833         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
834         block->lfcfg_reg = NIX_PRIV_LFX_CFG;
835         block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
836         block->lfreset_reg = NIX_AF_LF_RST;
837         sprintf(block->name, "NIX%d", blkid);
838         rvu->nix_blkaddr[blkid] = blkaddr;
839         return rvu_alloc_bitmap(&block->lf);
840 }
841
842 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
843 {
844         struct rvu_hwinfo *hw = rvu->hw;
845         struct rvu_block *block;
846         int blkid;
847         u64 cfg;
848
849         /* Init CPT LF's bitmap */
850         block = &hw->block[blkaddr];
851         if (!block->implemented)
852                 return 0;
853         blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
854         cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
855         block->lf.max = cfg & 0xFF;
856         block->addr = blkaddr;
857         block->type = BLKTYPE_CPT;
858         block->multislot = true;
859         block->lfshift = 3;
860         block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
861         block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
862         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
863         block->lfcfg_reg = CPT_PRIV_LFX_CFG;
864         block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
865         block->lfreset_reg = CPT_AF_LF_RST;
866         sprintf(block->name, "CPT%d", blkid);
867         return rvu_alloc_bitmap(&block->lf);
868 }
869
870 static void rvu_get_lbk_bufsize(struct rvu *rvu)
871 {
872         struct pci_dev *pdev = NULL;
873         void __iomem *base;
874         u64 lbk_const;
875
876         pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
877                               PCI_DEVID_OCTEONTX2_LBK, pdev);
878         if (!pdev)
879                 return;
880
881         base = pci_ioremap_bar(pdev, 0);
882         if (!base)
883                 goto err_put;
884
885         lbk_const = readq(base + LBK_CONST);
886
887         /* cache fifo size */
888         rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
889
890         iounmap(base);
891 err_put:
892         pci_dev_put(pdev);
893 }
894
895 static int rvu_setup_hw_resources(struct rvu *rvu)
896 {
897         struct rvu_hwinfo *hw = rvu->hw;
898         struct rvu_block *block;
899         int blkid, err;
900         u64 cfg;
901
902         /* Get HW supported max RVU PF & VF count */
903         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
904         hw->total_pfs = (cfg >> 32) & 0xFF;
905         hw->total_vfs = (cfg >> 20) & 0xFFF;
906         hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
907
908         /* Init NPA LF's bitmap */
909         block = &hw->block[BLKADDR_NPA];
910         if (!block->implemented)
911                 goto nix;
912         cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
913         block->lf.max = (cfg >> 16) & 0xFFF;
914         block->addr = BLKADDR_NPA;
915         block->type = BLKTYPE_NPA;
916         block->lfshift = 8;
917         block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
918         block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
919         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
920         block->lfcfg_reg = NPA_PRIV_LFX_CFG;
921         block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
922         block->lfreset_reg = NPA_AF_LF_RST;
923         sprintf(block->name, "NPA");
924         err = rvu_alloc_bitmap(&block->lf);
925         if (err)
926                 return err;
927
928 nix:
929         err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
930         if (err)
931                 return err;
932         err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
933         if (err)
934                 return err;
935
936         /* Init SSO group's bitmap */
937         block = &hw->block[BLKADDR_SSO];
938         if (!block->implemented)
939                 goto ssow;
940         cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
941         block->lf.max = cfg & 0xFFFF;
942         block->addr = BLKADDR_SSO;
943         block->type = BLKTYPE_SSO;
944         block->multislot = true;
945         block->lfshift = 3;
946         block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
947         block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
948         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
949         block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
950         block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
951         block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
952         sprintf(block->name, "SSO GROUP");
953         err = rvu_alloc_bitmap(&block->lf);
954         if (err)
955                 return err;
956
957 ssow:
958         /* Init SSO workslot's bitmap */
959         block = &hw->block[BLKADDR_SSOW];
960         if (!block->implemented)
961                 goto tim;
962         block->lf.max = (cfg >> 56) & 0xFF;
963         block->addr = BLKADDR_SSOW;
964         block->type = BLKTYPE_SSOW;
965         block->multislot = true;
966         block->lfshift = 3;
967         block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
968         block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
969         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
970         block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
971         block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
972         block->lfreset_reg = SSOW_AF_LF_HWS_RST;
973         sprintf(block->name, "SSOWS");
974         err = rvu_alloc_bitmap(&block->lf);
975         if (err)
976                 return err;
977
978 tim:
979         /* Init TIM LF's bitmap */
980         block = &hw->block[BLKADDR_TIM];
981         if (!block->implemented)
982                 goto cpt;
983         cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
984         block->lf.max = cfg & 0xFFFF;
985         block->addr = BLKADDR_TIM;
986         block->type = BLKTYPE_TIM;
987         block->multislot = true;
988         block->lfshift = 3;
989         block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
990         block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
991         block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
992         block->lfcfg_reg = TIM_PRIV_LFX_CFG;
993         block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
994         block->lfreset_reg = TIM_AF_LF_RST;
995         sprintf(block->name, "TIM");
996         err = rvu_alloc_bitmap(&block->lf);
997         if (err)
998                 return err;
999
1000 cpt:
1001         err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1002         if (err)
1003                 return err;
1004         err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1005         if (err)
1006                 return err;
1007
1008         /* Allocate memory for PFVF data */
1009         rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1010                                sizeof(struct rvu_pfvf), GFP_KERNEL);
1011         if (!rvu->pf)
1012                 return -ENOMEM;
1013
1014         rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1015                                  sizeof(struct rvu_pfvf), GFP_KERNEL);
1016         if (!rvu->hwvf)
1017                 return -ENOMEM;
1018
1019         mutex_init(&rvu->rsrc_lock);
1020
1021         rvu_fwdata_init(rvu);
1022
1023         err = rvu_setup_msix_resources(rvu);
1024         if (err)
1025                 return err;
1026
1027         for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1028                 block = &hw->block[blkid];
1029                 if (!block->lf.bmap)
1030                         continue;
1031
1032                 /* Allocate memory for block LF/slot to pcifunc mapping info */
1033                 block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1034                                              sizeof(u16), GFP_KERNEL);
1035                 if (!block->fn_map) {
1036                         err = -ENOMEM;
1037                         goto msix_err;
1038                 }
1039
1040                 /* Scan all blocks to check if low level firmware has
1041                  * already provisioned any of the resources to a PF/VF.
1042                  */
1043                 rvu_scan_block(rvu, block);
1044         }
1045
1046         err = rvu_set_channels_base(rvu);
1047         if (err)
1048                 goto msix_err;
1049
1050         err = rvu_npc_init(rvu);
1051         if (err)
1052                 goto npc_err;
1053
1054         err = rvu_cgx_init(rvu);
1055         if (err)
1056                 goto cgx_err;
1057
1058         /* Assign MACs for CGX mapped functions */
1059         rvu_setup_pfvf_macaddress(rvu);
1060
1061         err = rvu_npa_init(rvu);
1062         if (err)
1063                 goto npa_err;
1064
1065         rvu_get_lbk_bufsize(rvu);
1066
1067         err = rvu_nix_init(rvu);
1068         if (err)
1069                 goto nix_err;
1070
1071         rvu_program_channels(rvu);
1072
1073         return 0;
1074
1075 nix_err:
1076         rvu_nix_freemem(rvu);
1077 npa_err:
1078         rvu_npa_freemem(rvu);
1079 cgx_err:
1080         rvu_cgx_exit(rvu);
1081 npc_err:
1082         rvu_npc_freemem(rvu);
1083         rvu_fwdata_exit(rvu);
1084 msix_err:
1085         rvu_reset_msix(rvu);
1086         return err;
1087 }
1088
1089 /* NPA and NIX admin queue APIs */
1090 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1091 {
1092         if (!aq)
1093                 return;
1094
1095         qmem_free(rvu->dev, aq->inst);
1096         qmem_free(rvu->dev, aq->res);
1097         devm_kfree(rvu->dev, aq);
1098 }
1099
1100 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1101                  int qsize, int inst_size, int res_size)
1102 {
1103         struct admin_queue *aq;
1104         int err;
1105
1106         *ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1107         if (!*ad_queue)
1108                 return -ENOMEM;
1109         aq = *ad_queue;
1110
1111         /* Alloc memory for instructions i.e AQ */
1112         err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1113         if (err) {
1114                 devm_kfree(rvu->dev, aq);
1115                 return err;
1116         }
1117
1118         /* Alloc memory for results */
1119         err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1120         if (err) {
1121                 rvu_aq_free(rvu, aq);
1122                 return err;
1123         }
1124
1125         spin_lock_init(&aq->lock);
1126         return 0;
1127 }
1128
1129 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1130                            struct ready_msg_rsp *rsp)
1131 {
1132         if (rvu->fwdata) {
1133                 rsp->rclk_freq = rvu->fwdata->rclk;
1134                 rsp->sclk_freq = rvu->fwdata->sclk;
1135         }
1136         return 0;
1137 }
1138
1139 /* Get current count of a RVU block's LF/slots
1140  * provisioned to a given RVU func.
1141  */
1142 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1143 {
1144         switch (blkaddr) {
1145         case BLKADDR_NPA:
1146                 return pfvf->npalf ? 1 : 0;
1147         case BLKADDR_NIX0:
1148         case BLKADDR_NIX1:
1149                 return pfvf->nixlf ? 1 : 0;
1150         case BLKADDR_SSO:
1151                 return pfvf->sso;
1152         case BLKADDR_SSOW:
1153                 return pfvf->ssow;
1154         case BLKADDR_TIM:
1155                 return pfvf->timlfs;
1156         case BLKADDR_CPT0:
1157                 return pfvf->cptlfs;
1158         case BLKADDR_CPT1:
1159                 return pfvf->cpt1_lfs;
1160         }
1161         return 0;
1162 }
1163
1164 /* Return true if LFs of block type are attached to pcifunc */
1165 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1166 {
1167         switch (blktype) {
1168         case BLKTYPE_NPA:
1169                 return pfvf->npalf ? 1 : 0;
1170         case BLKTYPE_NIX:
1171                 return pfvf->nixlf ? 1 : 0;
1172         case BLKTYPE_SSO:
1173                 return !!pfvf->sso;
1174         case BLKTYPE_SSOW:
1175                 return !!pfvf->ssow;
1176         case BLKTYPE_TIM:
1177                 return !!pfvf->timlfs;
1178         case BLKTYPE_CPT:
1179                 return pfvf->cptlfs || pfvf->cpt1_lfs;
1180         }
1181
1182         return false;
1183 }
1184
1185 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1186 {
1187         struct rvu_pfvf *pfvf;
1188
1189         if (!is_pf_func_valid(rvu, pcifunc))
1190                 return false;
1191
1192         pfvf = rvu_get_pfvf(rvu, pcifunc);
1193
1194         /* Check if this PFFUNC has a LF of type blktype attached */
1195         if (!is_blktype_attached(pfvf, blktype))
1196                 return false;
1197
1198         return true;
1199 }
1200
1201 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1202                            int pcifunc, int slot)
1203 {
1204         u64 val;
1205
1206         val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1207         rvu_write64(rvu, block->addr, block->lookup_reg, val);
1208         /* Wait for the lookup to finish */
1209         /* TODO: put some timeout here */
1210         while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1211                 ;
1212
1213         val = rvu_read64(rvu, block->addr, block->lookup_reg);
1214
1215         /* Check LF valid bit */
1216         if (!(val & (1ULL << 12)))
1217                 return -1;
1218
1219         return (val & 0xFFF);
1220 }
1221
1222 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1223 {
1224         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1225         struct rvu_hwinfo *hw = rvu->hw;
1226         struct rvu_block *block;
1227         int slot, lf, num_lfs;
1228         int blkaddr;
1229
1230         blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1231         if (blkaddr < 0)
1232                 return;
1233
1234         if (blktype == BLKTYPE_NIX)
1235                 rvu_nix_reset_mac(pfvf, pcifunc);
1236
1237         block = &hw->block[blkaddr];
1238
1239         num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1240         if (!num_lfs)
1241                 return;
1242
1243         for (slot = 0; slot < num_lfs; slot++) {
1244                 lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1245                 if (lf < 0) /* This should never happen */
1246                         continue;
1247
1248                 /* Disable the LF */
1249                 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1250                             (lf << block->lfshift), 0x00ULL);
1251
1252                 /* Update SW maintained mapping info as well */
1253                 rvu_update_rsrc_map(rvu, pfvf, block,
1254                                     pcifunc, lf, false);
1255
1256                 /* Free the resource */
1257                 rvu_free_rsrc(&block->lf, lf);
1258
1259                 /* Clear MSIX vector offset for this LF */
1260                 rvu_clear_msix_offset(rvu, pfvf, block, lf);
1261         }
1262 }
1263
1264 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1265                             u16 pcifunc)
1266 {
1267         struct rvu_hwinfo *hw = rvu->hw;
1268         bool detach_all = true;
1269         struct rvu_block *block;
1270         int blkid;
1271
1272         mutex_lock(&rvu->rsrc_lock);
1273
1274         /* Check for partial resource detach */
1275         if (detach && detach->partial)
1276                 detach_all = false;
1277
1278         /* Check for RVU block's LFs attached to this func,
1279          * if so, detach them.
1280          */
1281         for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1282                 block = &hw->block[blkid];
1283                 if (!block->lf.bmap)
1284                         continue;
1285                 if (!detach_all && detach) {
1286                         if (blkid == BLKADDR_NPA && !detach->npalf)
1287                                 continue;
1288                         else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1289                                 continue;
1290                         else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1291                                 continue;
1292                         else if ((blkid == BLKADDR_SSO) && !detach->sso)
1293                                 continue;
1294                         else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1295                                 continue;
1296                         else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1297                                 continue;
1298                         else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1299                                 continue;
1300                         else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1301                                 continue;
1302                 }
1303                 rvu_detach_block(rvu, pcifunc, block->type);
1304         }
1305
1306         mutex_unlock(&rvu->rsrc_lock);
1307         return 0;
1308 }
1309
1310 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1311                                       struct rsrc_detach *detach,
1312                                       struct msg_rsp *rsp)
1313 {
1314         return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1315 }
1316
1317 static int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1318 {
1319         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1320         int blkaddr = BLKADDR_NIX0, vf;
1321         struct rvu_pfvf *pf;
1322
1323         /* All CGX mapped PFs are set with assigned NIX block during init */
1324         if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1325                 pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1326                 blkaddr = pf->nix_blkaddr;
1327         } else if (is_afvf(pcifunc)) {
1328                 vf = pcifunc - 1;
1329                 /* Assign NIX based on VF number. All even numbered VFs get
1330                  * NIX0 and odd numbered gets NIX1
1331                  */
1332                 blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1333                 /* NIX1 is not present on all silicons */
1334                 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1335                         blkaddr = BLKADDR_NIX0;
1336         }
1337
1338         switch (blkaddr) {
1339         case BLKADDR_NIX1:
1340                 pfvf->nix_blkaddr = BLKADDR_NIX1;
1341                 pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1342                 pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1343                 break;
1344         case BLKADDR_NIX0:
1345         default:
1346                 pfvf->nix_blkaddr = BLKADDR_NIX0;
1347                 pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1348                 pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1349                 break;
1350         }
1351
1352         return pfvf->nix_blkaddr;
1353 }
1354
1355 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1356                                   u16 pcifunc, struct rsrc_attach *attach)
1357 {
1358         int blkaddr;
1359
1360         switch (blktype) {
1361         case BLKTYPE_NIX:
1362                 blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1363                 break;
1364         case BLKTYPE_CPT:
1365                 if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1366                         return rvu_get_blkaddr(rvu, blktype, 0);
1367                 blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1368                           BLKADDR_CPT0;
1369                 if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1370                         return -ENODEV;
1371                 break;
1372         default:
1373                 return rvu_get_blkaddr(rvu, blktype, 0);
1374         }
1375
1376         if (is_block_implemented(rvu->hw, blkaddr))
1377                 return blkaddr;
1378
1379         return -ENODEV;
1380 }
1381
1382 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1383                              int num_lfs, struct rsrc_attach *attach)
1384 {
1385         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1386         struct rvu_hwinfo *hw = rvu->hw;
1387         struct rvu_block *block;
1388         int slot, lf;
1389         int blkaddr;
1390         u64 cfg;
1391
1392         if (!num_lfs)
1393                 return;
1394
1395         blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1396         if (blkaddr < 0)
1397                 return;
1398
1399         block = &hw->block[blkaddr];
1400         if (!block->lf.bmap)
1401                 return;
1402
1403         for (slot = 0; slot < num_lfs; slot++) {
1404                 /* Allocate the resource */
1405                 lf = rvu_alloc_rsrc(&block->lf);
1406                 if (lf < 0)
1407                         return;
1408
1409                 cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1410                 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1411                             (lf << block->lfshift), cfg);
1412                 rvu_update_rsrc_map(rvu, pfvf, block,
1413                                     pcifunc, lf, true);
1414
1415                 /* Set start MSIX vector for this LF within this PF/VF */
1416                 rvu_set_msix_offset(rvu, pfvf, block, lf);
1417         }
1418 }
1419
1420 static int rvu_check_rsrc_availability(struct rvu *rvu,
1421                                        struct rsrc_attach *req, u16 pcifunc)
1422 {
1423         struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1424         int free_lfs, mappedlfs, blkaddr;
1425         struct rvu_hwinfo *hw = rvu->hw;
1426         struct rvu_block *block;
1427
1428         /* Only one NPA LF can be attached */
1429         if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1430                 block = &hw->block[BLKADDR_NPA];
1431                 free_lfs = rvu_rsrc_free_count(&block->lf);
1432                 if (!free_lfs)
1433                         goto fail;
1434         } else if (req->npalf) {
1435                 dev_err(&rvu->pdev->dev,
1436                         "Func 0x%x: Invalid req, already has NPA\n",
1437                          pcifunc);
1438                 return -EINVAL;
1439         }
1440
1441         /* Only one NIX LF can be attached */
1442         if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1443                 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1444                                                  pcifunc, req);
1445                 if (blkaddr < 0)
1446                         return blkaddr;
1447                 block = &hw->block[blkaddr];
1448                 free_lfs = rvu_rsrc_free_count(&block->lf);
1449                 if (!free_lfs)
1450                         goto fail;
1451         } else if (req->nixlf) {
1452                 dev_err(&rvu->pdev->dev,
1453                         "Func 0x%x: Invalid req, already has NIX\n",
1454                         pcifunc);
1455                 return -EINVAL;
1456         }
1457
1458         if (req->sso) {
1459                 block = &hw->block[BLKADDR_SSO];
1460                 /* Is request within limits ? */
1461                 if (req->sso > block->lf.max) {
1462                         dev_err(&rvu->pdev->dev,
1463                                 "Func 0x%x: Invalid SSO req, %d > max %d\n",
1464                                  pcifunc, req->sso, block->lf.max);
1465                         return -EINVAL;
1466                 }
1467                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1468                 free_lfs = rvu_rsrc_free_count(&block->lf);
1469                 /* Check if additional resources are available */
1470                 if (req->sso > mappedlfs &&
1471                     ((req->sso - mappedlfs) > free_lfs))
1472                         goto fail;
1473         }
1474
1475         if (req->ssow) {
1476                 block = &hw->block[BLKADDR_SSOW];
1477                 if (req->ssow > block->lf.max) {
1478                         dev_err(&rvu->pdev->dev,
1479                                 "Func 0x%x: Invalid SSOW req, %d > max %d\n",
1480                                  pcifunc, req->sso, block->lf.max);
1481                         return -EINVAL;
1482                 }
1483                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1484                 free_lfs = rvu_rsrc_free_count(&block->lf);
1485                 if (req->ssow > mappedlfs &&
1486                     ((req->ssow - mappedlfs) > free_lfs))
1487                         goto fail;
1488         }
1489
1490         if (req->timlfs) {
1491                 block = &hw->block[BLKADDR_TIM];
1492                 if (req->timlfs > block->lf.max) {
1493                         dev_err(&rvu->pdev->dev,
1494                                 "Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1495                                  pcifunc, req->timlfs, block->lf.max);
1496                         return -EINVAL;
1497                 }
1498                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1499                 free_lfs = rvu_rsrc_free_count(&block->lf);
1500                 if (req->timlfs > mappedlfs &&
1501                     ((req->timlfs - mappedlfs) > free_lfs))
1502                         goto fail;
1503         }
1504
1505         if (req->cptlfs) {
1506                 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1507                                                  pcifunc, req);
1508                 if (blkaddr < 0)
1509                         return blkaddr;
1510                 block = &hw->block[blkaddr];
1511                 if (req->cptlfs > block->lf.max) {
1512                         dev_err(&rvu->pdev->dev,
1513                                 "Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1514                                  pcifunc, req->cptlfs, block->lf.max);
1515                         return -EINVAL;
1516                 }
1517                 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1518                 free_lfs = rvu_rsrc_free_count(&block->lf);
1519                 if (req->cptlfs > mappedlfs &&
1520                     ((req->cptlfs - mappedlfs) > free_lfs))
1521                         goto fail;
1522         }
1523
1524         return 0;
1525
1526 fail:
1527         dev_info(rvu->dev, "Request for %s failed\n", block->name);
1528         return -ENOSPC;
1529 }
1530
1531 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1532                                        struct rsrc_attach *attach)
1533 {
1534         int blkaddr, num_lfs;
1535
1536         blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1537                                          attach->hdr.pcifunc, attach);
1538         if (blkaddr < 0)
1539                 return false;
1540
1541         num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1542                                         blkaddr);
1543         /* Requester already has LFs from given block ? */
1544         return !!num_lfs;
1545 }
1546
1547 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1548                                       struct rsrc_attach *attach,
1549                                       struct msg_rsp *rsp)
1550 {
1551         u16 pcifunc = attach->hdr.pcifunc;
1552         int err;
1553
1554         /* If first request, detach all existing attached resources */
1555         if (!attach->modify)
1556                 rvu_detach_rsrcs(rvu, NULL, pcifunc);
1557
1558         mutex_lock(&rvu->rsrc_lock);
1559
1560         /* Check if the request can be accommodated */
1561         err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1562         if (err)
1563                 goto exit;
1564
1565         /* Now attach the requested resources */
1566         if (attach->npalf)
1567                 rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1568
1569         if (attach->nixlf)
1570                 rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1571
1572         if (attach->sso) {
1573                 /* RVU func doesn't know which exact LF or slot is attached
1574                  * to it, it always sees as slot 0,1,2. So for a 'modify'
1575                  * request, simply detach all existing attached LFs/slots
1576                  * and attach a fresh.
1577                  */
1578                 if (attach->modify)
1579                         rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1580                 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1581                                  attach->sso, attach);
1582         }
1583
1584         if (attach->ssow) {
1585                 if (attach->modify)
1586                         rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1587                 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1588                                  attach->ssow, attach);
1589         }
1590
1591         if (attach->timlfs) {
1592                 if (attach->modify)
1593                         rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1594                 rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1595                                  attach->timlfs, attach);
1596         }
1597
1598         if (attach->cptlfs) {
1599                 if (attach->modify &&
1600                     rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1601                         rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1602                 rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1603                                  attach->cptlfs, attach);
1604         }
1605
1606 exit:
1607         mutex_unlock(&rvu->rsrc_lock);
1608         return err;
1609 }
1610
1611 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1612                                int blkaddr, int lf)
1613 {
1614         u16 vec;
1615
1616         if (lf < 0)
1617                 return MSIX_VECTOR_INVALID;
1618
1619         for (vec = 0; vec < pfvf->msix.max; vec++) {
1620                 if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1621                         return vec;
1622         }
1623         return MSIX_VECTOR_INVALID;
1624 }
1625
1626 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1627                                 struct rvu_block *block, int lf)
1628 {
1629         u16 nvecs, vec, offset;
1630         u64 cfg;
1631
1632         cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1633                          (lf << block->lfshift));
1634         nvecs = (cfg >> 12) & 0xFF;
1635
1636         /* Check and alloc MSIX vectors, must be contiguous */
1637         if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1638                 return;
1639
1640         offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1641
1642         /* Config MSIX offset in LF */
1643         rvu_write64(rvu, block->addr, block->msixcfg_reg |
1644                     (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1645
1646         /* Update the bitmap as well */
1647         for (vec = 0; vec < nvecs; vec++)
1648                 pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1649 }
1650
1651 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1652                                   struct rvu_block *block, int lf)
1653 {
1654         u16 nvecs, vec, offset;
1655         u64 cfg;
1656
1657         cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1658                          (lf << block->lfshift));
1659         nvecs = (cfg >> 12) & 0xFF;
1660
1661         /* Clear MSIX offset in LF */
1662         rvu_write64(rvu, block->addr, block->msixcfg_reg |
1663                     (lf << block->lfshift), cfg & ~0x7FFULL);
1664
1665         offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1666
1667         /* Update the mapping */
1668         for (vec = 0; vec < nvecs; vec++)
1669                 pfvf->msix_lfmap[offset + vec] = 0;
1670
1671         /* Free the same in MSIX bitmap */
1672         rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1673 }
1674
1675 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1676                                  struct msix_offset_rsp *rsp)
1677 {
1678         struct rvu_hwinfo *hw = rvu->hw;
1679         u16 pcifunc = req->hdr.pcifunc;
1680         struct rvu_pfvf *pfvf;
1681         int lf, slot, blkaddr;
1682
1683         pfvf = rvu_get_pfvf(rvu, pcifunc);
1684         if (!pfvf->msix.bmap)
1685                 return 0;
1686
1687         /* Set MSIX offsets for each block's LFs attached to this PF/VF */
1688         lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1689         rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1690
1691         /* Get BLKADDR from which LFs are attached to pcifunc */
1692         blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1693         if (blkaddr < 0) {
1694                 rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1695         } else {
1696                 lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1697                 rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1698         }
1699
1700         rsp->sso = pfvf->sso;
1701         for (slot = 0; slot < rsp->sso; slot++) {
1702                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1703                 rsp->sso_msixoff[slot] =
1704                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1705         }
1706
1707         rsp->ssow = pfvf->ssow;
1708         for (slot = 0; slot < rsp->ssow; slot++) {
1709                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1710                 rsp->ssow_msixoff[slot] =
1711                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1712         }
1713
1714         rsp->timlfs = pfvf->timlfs;
1715         for (slot = 0; slot < rsp->timlfs; slot++) {
1716                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1717                 rsp->timlf_msixoff[slot] =
1718                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1719         }
1720
1721         rsp->cptlfs = pfvf->cptlfs;
1722         for (slot = 0; slot < rsp->cptlfs; slot++) {
1723                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1724                 rsp->cptlf_msixoff[slot] =
1725                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1726         }
1727
1728         rsp->cpt1_lfs = pfvf->cpt1_lfs;
1729         for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1730                 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1731                 rsp->cpt1_lf_msixoff[slot] =
1732                         rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1733         }
1734
1735         return 0;
1736 }
1737
1738 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1739                             struct msg_rsp *rsp)
1740 {
1741         u16 pcifunc = req->hdr.pcifunc;
1742         u16 vf, numvfs;
1743         u64 cfg;
1744
1745         vf = pcifunc & RVU_PFVF_FUNC_MASK;
1746         cfg = rvu_read64(rvu, BLKADDR_RVUM,
1747                          RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1748         numvfs = (cfg >> 12) & 0xFF;
1749
1750         if (vf && vf <= numvfs)
1751                 __rvu_flr_handler(rvu, pcifunc);
1752         else
1753                 return RVU_INVALID_VF_ID;
1754
1755         return 0;
1756 }
1757
1758 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1759                                 struct get_hw_cap_rsp *rsp)
1760 {
1761         struct rvu_hwinfo *hw = rvu->hw;
1762
1763         rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1764         rsp->nix_shaping = hw->cap.nix_shaping;
1765
1766         return 0;
1767 }
1768
1769 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
1770                                  struct msg_rsp *rsp)
1771 {
1772         struct rvu_hwinfo *hw = rvu->hw;
1773         u16 pcifunc = req->hdr.pcifunc;
1774         struct rvu_pfvf *pfvf;
1775         int blkaddr, nixlf;
1776         u16 target;
1777
1778         /* Only PF can add VF permissions */
1779         if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
1780                 return -EOPNOTSUPP;
1781
1782         target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
1783         pfvf = rvu_get_pfvf(rvu, target);
1784
1785         if (req->flags & RESET_VF_PERM) {
1786                 pfvf->flags &= RVU_CLEAR_VF_PERM;
1787         } else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
1788                  (req->flags & VF_TRUSTED)) {
1789                 change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
1790                 /* disable multicast and promisc entries */
1791                 if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
1792                         blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
1793                         if (blkaddr < 0)
1794                                 return 0;
1795                         nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
1796                                            target, 0);
1797                         if (nixlf < 0)
1798                                 return 0;
1799                         npc_enadis_default_mce_entry(rvu, target, nixlf,
1800                                                      NIXLF_ALLMULTI_ENTRY,
1801                                                      false);
1802                         npc_enadis_default_mce_entry(rvu, target, nixlf,
1803                                                      NIXLF_PROMISC_ENTRY,
1804                                                      false);
1805                 }
1806         }
1807
1808         return 0;
1809 }
1810
1811 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1812                                 struct mbox_msghdr *req)
1813 {
1814         struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1815
1816         /* Check if valid, if not reply with a invalid msg */
1817         if (req->sig != OTX2_MBOX_REQ_SIG)
1818                 goto bad_message;
1819
1820         switch (req->id) {
1821 #define M(_name, _id, _fn_name, _req_type, _rsp_type)                   \
1822         case _id: {                                                     \
1823                 struct _rsp_type *rsp;                                  \
1824                 int err;                                                \
1825                                                                         \
1826                 rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(          \
1827                         mbox, devid,                                    \
1828                         sizeof(struct _rsp_type));                      \
1829                 /* some handlers should complete even if reply */       \
1830                 /* could not be allocated */                            \
1831                 if (!rsp &&                                             \
1832                     _id != MBOX_MSG_DETACH_RESOURCES &&                 \
1833                     _id != MBOX_MSG_NIX_TXSCH_FREE &&                   \
1834                     _id != MBOX_MSG_VF_FLR)                             \
1835                         return -ENOMEM;                                 \
1836                 if (rsp) {                                              \
1837                         rsp->hdr.id = _id;                              \
1838                         rsp->hdr.sig = OTX2_MBOX_RSP_SIG;               \
1839                         rsp->hdr.pcifunc = req->pcifunc;                \
1840                         rsp->hdr.rc = 0;                                \
1841                 }                                                       \
1842                                                                         \
1843                 err = rvu_mbox_handler_ ## _fn_name(rvu,                \
1844                                                     (struct _req_type *)req, \
1845                                                     rsp);               \
1846                 if (rsp && err)                                         \
1847                         rsp->hdr.rc = err;                              \
1848                                                                         \
1849                 trace_otx2_msg_process(mbox->pdev, _id, err);           \
1850                 return rsp ? err : -ENOMEM;                             \
1851         }
1852 MBOX_MESSAGES
1853 #undef M
1854
1855 bad_message:
1856         default:
1857                 otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1858                 return -ENODEV;
1859         }
1860 }
1861
1862 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1863 {
1864         struct rvu *rvu = mwork->rvu;
1865         int offset, err, id, devid;
1866         struct otx2_mbox_dev *mdev;
1867         struct mbox_hdr *req_hdr;
1868         struct mbox_msghdr *msg;
1869         struct mbox_wq_info *mw;
1870         struct otx2_mbox *mbox;
1871
1872         switch (type) {
1873         case TYPE_AFPF:
1874                 mw = &rvu->afpf_wq_info;
1875                 break;
1876         case TYPE_AFVF:
1877                 mw = &rvu->afvf_wq_info;
1878                 break;
1879         default:
1880                 return;
1881         }
1882
1883         devid = mwork - mw->mbox_wrk;
1884         mbox = &mw->mbox;
1885         mdev = &mbox->dev[devid];
1886
1887         /* Process received mbox messages */
1888         req_hdr = mdev->mbase + mbox->rx_start;
1889         if (mw->mbox_wrk[devid].num_msgs == 0)
1890                 return;
1891
1892         offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1893
1894         for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
1895                 msg = mdev->mbase + offset;
1896
1897                 /* Set which PF/VF sent this message based on mbox IRQ */
1898                 switch (type) {
1899                 case TYPE_AFPF:
1900                         msg->pcifunc &=
1901                                 ~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1902                         msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1903                         break;
1904                 case TYPE_AFVF:
1905                         msg->pcifunc &=
1906                                 ~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1907                         msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1908                         break;
1909                 }
1910
1911                 err = rvu_process_mbox_msg(mbox, devid, msg);
1912                 if (!err) {
1913                         offset = mbox->rx_start + msg->next_msgoff;
1914                         continue;
1915                 }
1916
1917                 if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1918                         dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1919                                  err, otx2_mbox_id2name(msg->id),
1920                                  msg->id, rvu_get_pf(msg->pcifunc),
1921                                  (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1922                 else
1923                         dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1924                                  err, otx2_mbox_id2name(msg->id),
1925                                  msg->id, devid);
1926         }
1927         mw->mbox_wrk[devid].num_msgs = 0;
1928
1929         /* Send mbox responses to VF/PF */
1930         otx2_mbox_msg_send(mbox, devid);
1931 }
1932
1933 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1934 {
1935         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1936
1937         __rvu_mbox_handler(mwork, TYPE_AFPF);
1938 }
1939
1940 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1941 {
1942         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1943
1944         __rvu_mbox_handler(mwork, TYPE_AFVF);
1945 }
1946
1947 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1948 {
1949         struct rvu *rvu = mwork->rvu;
1950         struct otx2_mbox_dev *mdev;
1951         struct mbox_hdr *rsp_hdr;
1952         struct mbox_msghdr *msg;
1953         struct mbox_wq_info *mw;
1954         struct otx2_mbox *mbox;
1955         int offset, id, devid;
1956
1957         switch (type) {
1958         case TYPE_AFPF:
1959                 mw = &rvu->afpf_wq_info;
1960                 break;
1961         case TYPE_AFVF:
1962                 mw = &rvu->afvf_wq_info;
1963                 break;
1964         default:
1965                 return;
1966         }
1967
1968         devid = mwork - mw->mbox_wrk_up;
1969         mbox = &mw->mbox_up;
1970         mdev = &mbox->dev[devid];
1971
1972         rsp_hdr = mdev->mbase + mbox->rx_start;
1973         if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
1974                 dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1975                 return;
1976         }
1977
1978         offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1979
1980         for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
1981                 msg = mdev->mbase + offset;
1982
1983                 if (msg->id >= MBOX_MSG_MAX) {
1984                         dev_err(rvu->dev,
1985                                 "Mbox msg with unknown ID 0x%x\n", msg->id);
1986                         goto end;
1987                 }
1988
1989                 if (msg->sig != OTX2_MBOX_RSP_SIG) {
1990                         dev_err(rvu->dev,
1991                                 "Mbox msg with wrong signature %x, ID 0x%x\n",
1992                                 msg->sig, msg->id);
1993                         goto end;
1994                 }
1995
1996                 switch (msg->id) {
1997                 case MBOX_MSG_CGX_LINK_EVENT:
1998                         break;
1999                 default:
2000                         if (msg->rc)
2001                                 dev_err(rvu->dev,
2002                                         "Mbox msg response has err %d, ID 0x%x\n",
2003                                         msg->rc, msg->id);
2004                         break;
2005                 }
2006 end:
2007                 offset = mbox->rx_start + msg->next_msgoff;
2008                 mdev->msgs_acked++;
2009         }
2010         mw->mbox_wrk_up[devid].up_num_msgs = 0;
2011
2012         otx2_mbox_reset(mbox, devid);
2013 }
2014
2015 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2016 {
2017         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2018
2019         __rvu_mbox_up_handler(mwork, TYPE_AFPF);
2020 }
2021
2022 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2023 {
2024         struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2025
2026         __rvu_mbox_up_handler(mwork, TYPE_AFVF);
2027 }
2028
2029 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2030                                 int num, int type)
2031 {
2032         struct rvu_hwinfo *hw = rvu->hw;
2033         int region;
2034         u64 bar4;
2035
2036         /* For cn10k platform VF mailbox regions of a PF follows after the
2037          * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2038          * RVU_PF_VF_BAR4_ADDR register.
2039          */
2040         if (type == TYPE_AFVF) {
2041                 for (region = 0; region < num; region++) {
2042                         if (hw->cap.per_pf_mbox_regs) {
2043                                 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2044                                                   RVU_AF_PFX_BAR4_ADDR(0)) +
2045                                                   MBOX_SIZE;
2046                                 bar4 += region * MBOX_SIZE;
2047                         } else {
2048                                 bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2049                                 bar4 += region * MBOX_SIZE;
2050                         }
2051                         mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2052                         if (!mbox_addr[region])
2053                                 goto error;
2054                 }
2055                 return 0;
2056         }
2057
2058         /* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2059          * PF registers. Whereas for Octeontx2 it is read from
2060          * RVU_AF_PF_BAR4_ADDR register.
2061          */
2062         for (region = 0; region < num; region++) {
2063                 if (hw->cap.per_pf_mbox_regs) {
2064                         bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2065                                           RVU_AF_PFX_BAR4_ADDR(region));
2066                 } else {
2067                         bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2068                                           RVU_AF_PF_BAR4_ADDR);
2069                         bar4 += region * MBOX_SIZE;
2070                 }
2071                 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2072                 if (!mbox_addr[region])
2073                         goto error;
2074         }
2075         return 0;
2076
2077 error:
2078         while (region--)
2079                 iounmap((void __iomem *)mbox_addr[region]);
2080         return -ENOMEM;
2081 }
2082
2083 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2084                          int type, int num,
2085                          void (mbox_handler)(struct work_struct *),
2086                          void (mbox_up_handler)(struct work_struct *))
2087 {
2088         int err = -EINVAL, i, dir, dir_up;
2089         void __iomem *reg_base;
2090         struct rvu_work *mwork;
2091         void **mbox_regions;
2092         const char *name;
2093
2094         mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2095         if (!mbox_regions)
2096                 return -ENOMEM;
2097
2098         switch (type) {
2099         case TYPE_AFPF:
2100                 name = "rvu_afpf_mailbox";
2101                 dir = MBOX_DIR_AFPF;
2102                 dir_up = MBOX_DIR_AFPF_UP;
2103                 reg_base = rvu->afreg_base;
2104                 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2105                 if (err)
2106                         goto free_regions;
2107                 break;
2108         case TYPE_AFVF:
2109                 name = "rvu_afvf_mailbox";
2110                 dir = MBOX_DIR_PFVF;
2111                 dir_up = MBOX_DIR_PFVF_UP;
2112                 reg_base = rvu->pfreg_base;
2113                 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2114                 if (err)
2115                         goto free_regions;
2116                 break;
2117         default:
2118                 return err;
2119         }
2120
2121         mw->mbox_wq = alloc_workqueue(name,
2122                                       WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2123                                       num);
2124         if (!mw->mbox_wq) {
2125                 err = -ENOMEM;
2126                 goto unmap_regions;
2127         }
2128
2129         mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2130                                     sizeof(struct rvu_work), GFP_KERNEL);
2131         if (!mw->mbox_wrk) {
2132                 err = -ENOMEM;
2133                 goto exit;
2134         }
2135
2136         mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2137                                        sizeof(struct rvu_work), GFP_KERNEL);
2138         if (!mw->mbox_wrk_up) {
2139                 err = -ENOMEM;
2140                 goto exit;
2141         }
2142
2143         err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2144                                      reg_base, dir, num);
2145         if (err)
2146                 goto exit;
2147
2148         err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2149                                      reg_base, dir_up, num);
2150         if (err)
2151                 goto exit;
2152
2153         for (i = 0; i < num; i++) {
2154                 mwork = &mw->mbox_wrk[i];
2155                 mwork->rvu = rvu;
2156                 INIT_WORK(&mwork->work, mbox_handler);
2157
2158                 mwork = &mw->mbox_wrk_up[i];
2159                 mwork->rvu = rvu;
2160                 INIT_WORK(&mwork->work, mbox_up_handler);
2161         }
2162         kfree(mbox_regions);
2163         return 0;
2164
2165 exit:
2166         destroy_workqueue(mw->mbox_wq);
2167 unmap_regions:
2168         while (num--)
2169                 iounmap((void __iomem *)mbox_regions[num]);
2170 free_regions:
2171         kfree(mbox_regions);
2172         return err;
2173 }
2174
2175 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2176 {
2177         struct otx2_mbox *mbox = &mw->mbox;
2178         struct otx2_mbox_dev *mdev;
2179         int devid;
2180
2181         if (mw->mbox_wq) {
2182                 flush_workqueue(mw->mbox_wq);
2183                 destroy_workqueue(mw->mbox_wq);
2184                 mw->mbox_wq = NULL;
2185         }
2186
2187         for (devid = 0; devid < mbox->ndevs; devid++) {
2188                 mdev = &mbox->dev[devid];
2189                 if (mdev->hwbase)
2190                         iounmap((void __iomem *)mdev->hwbase);
2191         }
2192
2193         otx2_mbox_destroy(&mw->mbox);
2194         otx2_mbox_destroy(&mw->mbox_up);
2195 }
2196
2197 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2198                            int mdevs, u64 intr)
2199 {
2200         struct otx2_mbox_dev *mdev;
2201         struct otx2_mbox *mbox;
2202         struct mbox_hdr *hdr;
2203         int i;
2204
2205         for (i = first; i < mdevs; i++) {
2206                 /* start from 0 */
2207                 if (!(intr & BIT_ULL(i - first)))
2208                         continue;
2209
2210                 mbox = &mw->mbox;
2211                 mdev = &mbox->dev[i];
2212                 hdr = mdev->mbase + mbox->rx_start;
2213
2214                 /*The hdr->num_msgs is set to zero immediately in the interrupt
2215                  * handler to  ensure that it holds a correct value next time
2216                  * when the interrupt handler is called.
2217                  * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2218                  * pf>mbox.up_num_msgs holds the data for use in
2219                  * pfaf_mbox_up_handler.
2220                  */
2221
2222                 if (hdr->num_msgs) {
2223                         mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2224                         hdr->num_msgs = 0;
2225                         queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2226                 }
2227                 mbox = &mw->mbox_up;
2228                 mdev = &mbox->dev[i];
2229                 hdr = mdev->mbase + mbox->rx_start;
2230                 if (hdr->num_msgs) {
2231                         mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2232                         hdr->num_msgs = 0;
2233                         queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2234                 }
2235         }
2236 }
2237
2238 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2239 {
2240         struct rvu *rvu = (struct rvu *)rvu_irq;
2241         int vfs = rvu->vfs;
2242         u64 intr;
2243
2244         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2245         /* Clear interrupts */
2246         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2247         if (intr)
2248                 trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2249
2250         /* Sync with mbox memory region */
2251         rmb();
2252
2253         rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2254
2255         /* Handle VF interrupts */
2256         if (vfs > 64) {
2257                 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2258                 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2259
2260                 rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2261                 vfs -= 64;
2262         }
2263
2264         intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2265         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2266         if (intr)
2267                 trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2268
2269         rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2270
2271         return IRQ_HANDLED;
2272 }
2273
2274 static void rvu_enable_mbox_intr(struct rvu *rvu)
2275 {
2276         struct rvu_hwinfo *hw = rvu->hw;
2277
2278         /* Clear spurious irqs, if any */
2279         rvu_write64(rvu, BLKADDR_RVUM,
2280                     RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2281
2282         /* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2283         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2284                     INTR_MASK(hw->total_pfs) & ~1ULL);
2285 }
2286
2287 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2288 {
2289         struct rvu_block *block;
2290         int slot, lf, num_lfs;
2291         int err;
2292
2293         block = &rvu->hw->block[blkaddr];
2294         num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2295                                         block->addr);
2296         if (!num_lfs)
2297                 return;
2298         for (slot = 0; slot < num_lfs; slot++) {
2299                 lf = rvu_get_lf(rvu, block, pcifunc, slot);
2300                 if (lf < 0)
2301                         continue;
2302
2303                 /* Cleanup LF and reset it */
2304                 if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2305                         rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2306                 else if (block->addr == BLKADDR_NPA)
2307                         rvu_npa_lf_teardown(rvu, pcifunc, lf);
2308                 else if ((block->addr == BLKADDR_CPT0) ||
2309                          (block->addr == BLKADDR_CPT1))
2310                         rvu_cpt_lf_teardown(rvu, pcifunc, lf, slot);
2311
2312                 err = rvu_lf_reset(rvu, block, lf);
2313                 if (err) {
2314                         dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2315                                 block->addr, lf);
2316                 }
2317         }
2318 }
2319
2320 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2321 {
2322         mutex_lock(&rvu->flr_lock);
2323         /* Reset order should reflect inter-block dependencies:
2324          * 1. Reset any packet/work sources (NIX, CPT, TIM)
2325          * 2. Flush and reset SSO/SSOW
2326          * 3. Cleanup pools (NPA)
2327          */
2328         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2329         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2330         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2331         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2332         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2333         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2334         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2335         rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2336         rvu_detach_rsrcs(rvu, NULL, pcifunc);
2337         mutex_unlock(&rvu->flr_lock);
2338 }
2339
2340 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2341 {
2342         int reg = 0;
2343
2344         /* pcifunc = 0(PF0) | (vf + 1) */
2345         __rvu_flr_handler(rvu, vf + 1);
2346
2347         if (vf >= 64) {
2348                 reg = 1;
2349                 vf = vf - 64;
2350         }
2351
2352         /* Signal FLR finish and enable IRQ */
2353         rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2354         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2355 }
2356
2357 static void rvu_flr_handler(struct work_struct *work)
2358 {
2359         struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2360         struct rvu *rvu = flrwork->rvu;
2361         u16 pcifunc, numvfs, vf;
2362         u64 cfg;
2363         int pf;
2364
2365         pf = flrwork - rvu->flr_wrk;
2366         if (pf >= rvu->hw->total_pfs) {
2367                 rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2368                 return;
2369         }
2370
2371         cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2372         numvfs = (cfg >> 12) & 0xFF;
2373         pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2374
2375         for (vf = 0; vf < numvfs; vf++)
2376                 __rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2377
2378         __rvu_flr_handler(rvu, pcifunc);
2379
2380         /* Signal FLR finish */
2381         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2382
2383         /* Enable interrupt */
2384         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2385 }
2386
2387 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2388 {
2389         int dev, vf, reg = 0;
2390         u64 intr;
2391
2392         if (start_vf >= 64)
2393                 reg = 1;
2394
2395         intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2396         if (!intr)
2397                 return;
2398
2399         for (vf = 0; vf < numvfs; vf++) {
2400                 if (!(intr & BIT_ULL(vf)))
2401                         continue;
2402                 dev = vf + start_vf + rvu->hw->total_pfs;
2403                 queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2404                 /* Clear and disable the interrupt */
2405                 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2406                 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2407         }
2408 }
2409
2410 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2411 {
2412         struct rvu *rvu = (struct rvu *)rvu_irq;
2413         u64 intr;
2414         u8  pf;
2415
2416         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2417         if (!intr)
2418                 goto afvf_flr;
2419
2420         for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2421                 if (intr & (1ULL << pf)) {
2422                         /* PF is already dead do only AF related operations */
2423                         queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2424                         /* clear interrupt */
2425                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2426                                     BIT_ULL(pf));
2427                         /* Disable the interrupt */
2428                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2429                                     BIT_ULL(pf));
2430                 }
2431         }
2432
2433 afvf_flr:
2434         rvu_afvf_queue_flr_work(rvu, 0, 64);
2435         if (rvu->vfs > 64)
2436                 rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2437
2438         return IRQ_HANDLED;
2439 }
2440
2441 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2442 {
2443         int vf;
2444
2445         /* Nothing to be done here other than clearing the
2446          * TRPEND bit.
2447          */
2448         for (vf = 0; vf < 64; vf++) {
2449                 if (intr & (1ULL << vf)) {
2450                         /* clear the trpend due to ME(master enable) */
2451                         rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2452                         /* clear interrupt */
2453                         rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2454                 }
2455         }
2456 }
2457
2458 /* Handles ME interrupts from VFs of AF */
2459 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2460 {
2461         struct rvu *rvu = (struct rvu *)rvu_irq;
2462         int vfset;
2463         u64 intr;
2464
2465         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2466
2467         for (vfset = 0; vfset <= 1; vfset++) {
2468                 intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2469                 if (intr)
2470                         rvu_me_handle_vfset(rvu, vfset, intr);
2471         }
2472
2473         return IRQ_HANDLED;
2474 }
2475
2476 /* Handles ME interrupts from PFs */
2477 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2478 {
2479         struct rvu *rvu = (struct rvu *)rvu_irq;
2480         u64 intr;
2481         u8  pf;
2482
2483         intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2484
2485         /* Nothing to be done here other than clearing the
2486          * TRPEND bit.
2487          */
2488         for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2489                 if (intr & (1ULL << pf)) {
2490                         /* clear the trpend due to ME(master enable) */
2491                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2492                                     BIT_ULL(pf));
2493                         /* clear interrupt */
2494                         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2495                                     BIT_ULL(pf));
2496                 }
2497         }
2498
2499         return IRQ_HANDLED;
2500 }
2501
2502 static void rvu_unregister_interrupts(struct rvu *rvu)
2503 {
2504         int irq;
2505
2506         /* Disable the Mbox interrupt */
2507         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2508                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2509
2510         /* Disable the PF FLR interrupt */
2511         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2512                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2513
2514         /* Disable the PF ME interrupt */
2515         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2516                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2517
2518         for (irq = 0; irq < rvu->num_vec; irq++) {
2519                 if (rvu->irq_allocated[irq]) {
2520                         free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2521                         rvu->irq_allocated[irq] = false;
2522                 }
2523         }
2524
2525         pci_free_irq_vectors(rvu->pdev);
2526         rvu->num_vec = 0;
2527 }
2528
2529 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2530 {
2531         struct rvu_pfvf *pfvf = &rvu->pf[0];
2532         int offset;
2533
2534         pfvf = &rvu->pf[0];
2535         offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2536
2537         /* Make sure there are enough MSIX vectors configured so that
2538          * VF interrupts can be handled. Offset equal to zero means
2539          * that PF vectors are not configured and overlapping AF vectors.
2540          */
2541         return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2542                offset;
2543 }
2544
2545 static int rvu_register_interrupts(struct rvu *rvu)
2546 {
2547         int ret, offset, pf_vec_start;
2548
2549         rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2550
2551         rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2552                                            NAME_SIZE, GFP_KERNEL);
2553         if (!rvu->irq_name)
2554                 return -ENOMEM;
2555
2556         rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2557                                           sizeof(bool), GFP_KERNEL);
2558         if (!rvu->irq_allocated)
2559                 return -ENOMEM;
2560
2561         /* Enable MSI-X */
2562         ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2563                                     rvu->num_vec, PCI_IRQ_MSIX);
2564         if (ret < 0) {
2565                 dev_err(rvu->dev,
2566                         "RVUAF: Request for %d msix vectors failed, ret %d\n",
2567                         rvu->num_vec, ret);
2568                 return ret;
2569         }
2570
2571         /* Register mailbox interrupt handler */
2572         sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2573         ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2574                           rvu_mbox_intr_handler, 0,
2575                           &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2576         if (ret) {
2577                 dev_err(rvu->dev,
2578                         "RVUAF: IRQ registration failed for mbox irq\n");
2579                 goto fail;
2580         }
2581
2582         rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2583
2584         /* Enable mailbox interrupts from all PFs */
2585         rvu_enable_mbox_intr(rvu);
2586
2587         /* Register FLR interrupt handler */
2588         sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2589                 "RVUAF FLR");
2590         ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2591                           rvu_flr_intr_handler, 0,
2592                           &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2593                           rvu);
2594         if (ret) {
2595                 dev_err(rvu->dev,
2596                         "RVUAF: IRQ registration failed for FLR\n");
2597                 goto fail;
2598         }
2599         rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2600
2601         /* Enable FLR interrupt for all PFs*/
2602         rvu_write64(rvu, BLKADDR_RVUM,
2603                     RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2604
2605         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2606                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2607
2608         /* Register ME interrupt handler */
2609         sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2610                 "RVUAF ME");
2611         ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2612                           rvu_me_pf_intr_handler, 0,
2613                           &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2614                           rvu);
2615         if (ret) {
2616                 dev_err(rvu->dev,
2617                         "RVUAF: IRQ registration failed for ME\n");
2618         }
2619         rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2620
2621         /* Clear TRPEND bit for all PF */
2622         rvu_write64(rvu, BLKADDR_RVUM,
2623                     RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2624         /* Enable ME interrupt for all PFs*/
2625         rvu_write64(rvu, BLKADDR_RVUM,
2626                     RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2627
2628         rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2629                     INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2630
2631         if (!rvu_afvf_msix_vectors_num_ok(rvu))
2632                 return 0;
2633
2634         /* Get PF MSIX vectors offset. */
2635         pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2636                                   RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2637
2638         /* Register MBOX0 interrupt. */
2639         offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2640         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2641         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2642                           rvu_mbox_intr_handler, 0,
2643                           &rvu->irq_name[offset * NAME_SIZE],
2644                           rvu);
2645         if (ret)
2646                 dev_err(rvu->dev,
2647                         "RVUAF: IRQ registration failed for Mbox0\n");
2648
2649         rvu->irq_allocated[offset] = true;
2650
2651         /* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2652          * simply increment current offset by 1.
2653          */
2654         offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2655         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2656         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2657                           rvu_mbox_intr_handler, 0,
2658                           &rvu->irq_name[offset * NAME_SIZE],
2659                           rvu);
2660         if (ret)
2661                 dev_err(rvu->dev,
2662                         "RVUAF: IRQ registration failed for Mbox1\n");
2663
2664         rvu->irq_allocated[offset] = true;
2665
2666         /* Register FLR interrupt handler for AF's VFs */
2667         offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2668         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2669         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2670                           rvu_flr_intr_handler, 0,
2671                           &rvu->irq_name[offset * NAME_SIZE], rvu);
2672         if (ret) {
2673                 dev_err(rvu->dev,
2674                         "RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2675                 goto fail;
2676         }
2677         rvu->irq_allocated[offset] = true;
2678
2679         offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2680         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2681         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2682                           rvu_flr_intr_handler, 0,
2683                           &rvu->irq_name[offset * NAME_SIZE], rvu);
2684         if (ret) {
2685                 dev_err(rvu->dev,
2686                         "RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2687                 goto fail;
2688         }
2689         rvu->irq_allocated[offset] = true;
2690
2691         /* Register ME interrupt handler for AF's VFs */
2692         offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2693         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2694         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2695                           rvu_me_vf_intr_handler, 0,
2696                           &rvu->irq_name[offset * NAME_SIZE], rvu);
2697         if (ret) {
2698                 dev_err(rvu->dev,
2699                         "RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2700                 goto fail;
2701         }
2702         rvu->irq_allocated[offset] = true;
2703
2704         offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2705         sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2706         ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2707                           rvu_me_vf_intr_handler, 0,
2708                           &rvu->irq_name[offset * NAME_SIZE], rvu);
2709         if (ret) {
2710                 dev_err(rvu->dev,
2711                         "RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2712                 goto fail;
2713         }
2714         rvu->irq_allocated[offset] = true;
2715         return 0;
2716
2717 fail:
2718         rvu_unregister_interrupts(rvu);
2719         return ret;
2720 }
2721
2722 static void rvu_flr_wq_destroy(struct rvu *rvu)
2723 {
2724         if (rvu->flr_wq) {
2725                 flush_workqueue(rvu->flr_wq);
2726                 destroy_workqueue(rvu->flr_wq);
2727                 rvu->flr_wq = NULL;
2728         }
2729 }
2730
2731 static int rvu_flr_init(struct rvu *rvu)
2732 {
2733         int dev, num_devs;
2734         u64 cfg;
2735         int pf;
2736
2737         /* Enable FLR for all PFs*/
2738         for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2739                 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2740                 rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2741                             cfg | BIT_ULL(22));
2742         }
2743
2744         rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2745                                       WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2746                                        1);
2747         if (!rvu->flr_wq)
2748                 return -ENOMEM;
2749
2750         num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2751         rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2752                                     sizeof(struct rvu_work), GFP_KERNEL);
2753         if (!rvu->flr_wrk) {
2754                 destroy_workqueue(rvu->flr_wq);
2755                 return -ENOMEM;
2756         }
2757
2758         for (dev = 0; dev < num_devs; dev++) {
2759                 rvu->flr_wrk[dev].rvu = rvu;
2760                 INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2761         }
2762
2763         mutex_init(&rvu->flr_lock);
2764
2765         return 0;
2766 }
2767
2768 static void rvu_disable_afvf_intr(struct rvu *rvu)
2769 {
2770         int vfs = rvu->vfs;
2771
2772         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2773         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2774         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2775         if (vfs <= 64)
2776                 return;
2777
2778         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2779                       INTR_MASK(vfs - 64));
2780         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2781         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2782 }
2783
2784 static void rvu_enable_afvf_intr(struct rvu *rvu)
2785 {
2786         int vfs = rvu->vfs;
2787
2788         /* Clear any pending interrupts and enable AF VF interrupts for
2789          * the first 64 VFs.
2790          */
2791         /* Mbox */
2792         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2793         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2794
2795         /* FLR */
2796         rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2797         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2798         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2799
2800         /* Same for remaining VFs, if any. */
2801         if (vfs <= 64)
2802                 return;
2803
2804         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2805         rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2806                       INTR_MASK(vfs - 64));
2807
2808         rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2809         rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2810         rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2811 }
2812
2813 int rvu_get_num_lbk_chans(void)
2814 {
2815         struct pci_dev *pdev;
2816         void __iomem *base;
2817         int ret = -EIO;
2818
2819         pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2820                               NULL);
2821         if (!pdev)
2822                 goto err;
2823
2824         base = pci_ioremap_bar(pdev, 0);
2825         if (!base)
2826                 goto err_put;
2827
2828         /* Read number of available LBK channels from LBK(0)_CONST register. */
2829         ret = (readq(base + 0x10) >> 32) & 0xffff;
2830         iounmap(base);
2831 err_put:
2832         pci_dev_put(pdev);
2833 err:
2834         return ret;
2835 }
2836
2837 static int rvu_enable_sriov(struct rvu *rvu)
2838 {
2839         struct pci_dev *pdev = rvu->pdev;
2840         int err, chans, vfs;
2841
2842         if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2843                 dev_warn(&pdev->dev,
2844                          "Skipping SRIOV enablement since not enough IRQs are available\n");
2845                 return 0;
2846         }
2847
2848         chans = rvu_get_num_lbk_chans();
2849         if (chans < 0)
2850                 return chans;
2851
2852         vfs = pci_sriov_get_totalvfs(pdev);
2853
2854         /* Limit VFs in case we have more VFs than LBK channels available. */
2855         if (vfs > chans)
2856                 vfs = chans;
2857
2858         if (!vfs)
2859                 return 0;
2860
2861         /* Save VFs number for reference in VF interrupts handlers.
2862          * Since interrupts might start arriving during SRIOV enablement
2863          * ordinary API cannot be used to get number of enabled VFs.
2864          */
2865         rvu->vfs = vfs;
2866
2867         err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2868                             rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2869         if (err)
2870                 return err;
2871
2872         rvu_enable_afvf_intr(rvu);
2873         /* Make sure IRQs are enabled before SRIOV. */
2874         mb();
2875
2876         err = pci_enable_sriov(pdev, vfs);
2877         if (err) {
2878                 rvu_disable_afvf_intr(rvu);
2879                 rvu_mbox_destroy(&rvu->afvf_wq_info);
2880                 return err;
2881         }
2882
2883         return 0;
2884 }
2885
2886 static void rvu_disable_sriov(struct rvu *rvu)
2887 {
2888         rvu_disable_afvf_intr(rvu);
2889         rvu_mbox_destroy(&rvu->afvf_wq_info);
2890         pci_disable_sriov(rvu->pdev);
2891 }
2892
2893 static void rvu_update_module_params(struct rvu *rvu)
2894 {
2895         const char *default_pfl_name = "default";
2896
2897         strscpy(rvu->mkex_pfl_name,
2898                 mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
2899         strscpy(rvu->kpu_pfl_name,
2900                 kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
2901 }
2902
2903 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2904 {
2905         struct device *dev = &pdev->dev;
2906         struct rvu *rvu;
2907         int    err;
2908
2909         rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2910         if (!rvu)
2911                 return -ENOMEM;
2912
2913         rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2914         if (!rvu->hw) {
2915                 devm_kfree(dev, rvu);
2916                 return -ENOMEM;
2917         }
2918
2919         pci_set_drvdata(pdev, rvu);
2920         rvu->pdev = pdev;
2921         rvu->dev = &pdev->dev;
2922
2923         err = pci_enable_device(pdev);
2924         if (err) {
2925                 dev_err(dev, "Failed to enable PCI device\n");
2926                 goto err_freemem;
2927         }
2928
2929         err = pci_request_regions(pdev, DRV_NAME);
2930         if (err) {
2931                 dev_err(dev, "PCI request regions failed 0x%x\n", err);
2932                 goto err_disable_device;
2933         }
2934
2935         err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
2936         if (err) {
2937                 dev_err(dev, "DMA mask config failed, abort\n");
2938                 goto err_release_regions;
2939         }
2940
2941         pci_set_master(pdev);
2942
2943         rvu->ptp = ptp_get();
2944         if (IS_ERR(rvu->ptp)) {
2945                 err = PTR_ERR(rvu->ptp);
2946                 if (err == -EPROBE_DEFER)
2947                         goto err_release_regions;
2948                 rvu->ptp = NULL;
2949         }
2950
2951         /* Map Admin function CSRs */
2952         rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2953         rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2954         if (!rvu->afreg_base || !rvu->pfreg_base) {
2955                 dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2956                 err = -ENOMEM;
2957                 goto err_put_ptp;
2958         }
2959
2960         /* Store module params in rvu structure */
2961         rvu_update_module_params(rvu);
2962
2963         /* Check which blocks the HW supports */
2964         rvu_check_block_implemented(rvu);
2965
2966         rvu_reset_all_blocks(rvu);
2967
2968         rvu_setup_hw_capabilities(rvu);
2969
2970         err = rvu_setup_hw_resources(rvu);
2971         if (err)
2972                 goto err_put_ptp;
2973
2974         /* Init mailbox btw AF and PFs */
2975         err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2976                             rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2977                             rvu_afpf_mbox_up_handler);
2978         if (err)
2979                 goto err_hwsetup;
2980
2981         err = rvu_flr_init(rvu);
2982         if (err)
2983                 goto err_mbox;
2984
2985         err = rvu_register_interrupts(rvu);
2986         if (err)
2987                 goto err_flr;
2988
2989         err = rvu_register_dl(rvu);
2990         if (err)
2991                 goto err_irq;
2992
2993         rvu_setup_rvum_blk_revid(rvu);
2994
2995         /* Enable AF's VFs (if any) */
2996         err = rvu_enable_sriov(rvu);
2997         if (err)
2998                 goto err_dl;
2999
3000         /* Initialize debugfs */
3001         rvu_dbg_init(rvu);
3002
3003         return 0;
3004 err_dl:
3005         rvu_unregister_dl(rvu);
3006 err_irq:
3007         rvu_unregister_interrupts(rvu);
3008 err_flr:
3009         rvu_flr_wq_destroy(rvu);
3010 err_mbox:
3011         rvu_mbox_destroy(&rvu->afpf_wq_info);
3012 err_hwsetup:
3013         rvu_cgx_exit(rvu);
3014         rvu_fwdata_exit(rvu);
3015         rvu_reset_all_blocks(rvu);
3016         rvu_free_hw_resources(rvu);
3017         rvu_clear_rvum_blk_revid(rvu);
3018 err_put_ptp:
3019         ptp_put(rvu->ptp);
3020 err_release_regions:
3021         pci_release_regions(pdev);
3022 err_disable_device:
3023         pci_disable_device(pdev);
3024 err_freemem:
3025         pci_set_drvdata(pdev, NULL);
3026         devm_kfree(&pdev->dev, rvu->hw);
3027         devm_kfree(dev, rvu);
3028         return err;
3029 }
3030
3031 static void rvu_remove(struct pci_dev *pdev)
3032 {
3033         struct rvu *rvu = pci_get_drvdata(pdev);
3034
3035         rvu_dbg_exit(rvu);
3036         rvu_unregister_dl(rvu);
3037         rvu_unregister_interrupts(rvu);
3038         rvu_flr_wq_destroy(rvu);
3039         rvu_cgx_exit(rvu);
3040         rvu_fwdata_exit(rvu);
3041         rvu_mbox_destroy(&rvu->afpf_wq_info);
3042         rvu_disable_sriov(rvu);
3043         rvu_reset_all_blocks(rvu);
3044         rvu_free_hw_resources(rvu);
3045         rvu_clear_rvum_blk_revid(rvu);
3046         ptp_put(rvu->ptp);
3047         pci_release_regions(pdev);
3048         pci_disable_device(pdev);
3049         pci_set_drvdata(pdev, NULL);
3050
3051         devm_kfree(&pdev->dev, rvu->hw);
3052         devm_kfree(&pdev->dev, rvu);
3053 }
3054
3055 static struct pci_driver rvu_driver = {
3056         .name = DRV_NAME,
3057         .id_table = rvu_id_table,
3058         .probe = rvu_probe,
3059         .remove = rvu_remove,
3060 };
3061
3062 static int __init rvu_init_module(void)
3063 {
3064         int err;
3065
3066         pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3067
3068         err = pci_register_driver(&cgx_driver);
3069         if (err < 0)
3070                 return err;
3071
3072         err = pci_register_driver(&ptp_driver);
3073         if (err < 0)
3074                 goto ptp_err;
3075
3076         err =  pci_register_driver(&rvu_driver);
3077         if (err < 0)
3078                 goto rvu_err;
3079
3080         return 0;
3081 rvu_err:
3082         pci_unregister_driver(&ptp_driver);
3083 ptp_err:
3084         pci_unregister_driver(&cgx_driver);
3085
3086         return err;
3087 }
3088
3089 static void __exit rvu_cleanup_module(void)
3090 {
3091         pci_unregister_driver(&rvu_driver);
3092         pci_unregister_driver(&ptp_driver);
3093         pci_unregister_driver(&cgx_driver);
3094 }
3095
3096 module_init(rvu_init_module);
3097 module_exit(rvu_cleanup_module);