Merge tag 'dax-fixes-5.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / igc / igc_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14
15 #include <net/ipv6.h>
16
17 #include "igc.h"
18 #include "igc_hw.h"
19 #include "igc_tsn.h"
20 #include "igc_xdp.h"
21
22 #define DRV_SUMMARY     "Intel(R) 2.5G Ethernet Linux Driver"
23
24 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
25
26 #define IGC_XDP_PASS            0
27 #define IGC_XDP_CONSUMED        BIT(0)
28 #define IGC_XDP_TX              BIT(1)
29 #define IGC_XDP_REDIRECT        BIT(2)
30
31 static int debug = -1;
32
33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34 MODULE_DESCRIPTION(DRV_SUMMARY);
35 MODULE_LICENSE("GPL v2");
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38
39 char igc_driver_name[] = "igc";
40 static const char igc_driver_string[] = DRV_SUMMARY;
41 static const char igc_copyright[] =
42         "Copyright(c) 2018 Intel Corporation.";
43
44 static const struct igc_info *igc_info_tbl[] = {
45         [board_base] = &igc_base_info,
46 };
47
48 static const struct pci_device_id igc_pci_tbl[] = {
49         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
50         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
51         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
52         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
53         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
54         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
55         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
56         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
57         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
58         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
59         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
60         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
61         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
62         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
63         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
64         /* required last entry */
65         {0, }
66 };
67
68 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
69
70 enum latency_range {
71         lowest_latency = 0,
72         low_latency = 1,
73         bulk_latency = 2,
74         latency_invalid = 255
75 };
76
77 void igc_reset(struct igc_adapter *adapter)
78 {
79         struct net_device *dev = adapter->netdev;
80         struct igc_hw *hw = &adapter->hw;
81         struct igc_fc_info *fc = &hw->fc;
82         u32 pba, hwm;
83
84         /* Repartition PBA for greater than 9k MTU if required */
85         pba = IGC_PBA_34K;
86
87         /* flow control settings
88          * The high water mark must be low enough to fit one full frame
89          * after transmitting the pause frame.  As such we must have enough
90          * space to allow for us to complete our current transmit and then
91          * receive the frame that is in progress from the link partner.
92          * Set it to:
93          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
94          */
95         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
96
97         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
98         fc->low_water = fc->high_water - 16;
99         fc->pause_time = 0xFFFF;
100         fc->send_xon = 1;
101         fc->current_mode = fc->requested_mode;
102
103         hw->mac.ops.reset_hw(hw);
104
105         if (hw->mac.ops.init_hw(hw))
106                 netdev_err(dev, "Error on hardware initialization\n");
107
108         /* Re-establish EEE setting */
109         igc_set_eee_i225(hw, true, true, true);
110
111         if (!netif_running(adapter->netdev))
112                 igc_power_down_phy_copper_base(&adapter->hw);
113
114         /* Re-enable PTP, where applicable. */
115         igc_ptp_reset(adapter);
116
117         /* Re-enable TSN offloading, where applicable. */
118         igc_tsn_offload_apply(adapter);
119
120         igc_get_phy_info(hw);
121 }
122
123 /**
124  * igc_power_up_link - Power up the phy link
125  * @adapter: address of board private structure
126  */
127 static void igc_power_up_link(struct igc_adapter *adapter)
128 {
129         igc_reset_phy(&adapter->hw);
130
131         igc_power_up_phy_copper(&adapter->hw);
132
133         igc_setup_link(&adapter->hw);
134 }
135
136 /**
137  * igc_release_hw_control - release control of the h/w to f/w
138  * @adapter: address of board private structure
139  *
140  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
141  * For ASF and Pass Through versions of f/w this means that the
142  * driver is no longer loaded.
143  */
144 static void igc_release_hw_control(struct igc_adapter *adapter)
145 {
146         struct igc_hw *hw = &adapter->hw;
147         u32 ctrl_ext;
148
149         /* Let firmware take over control of h/w */
150         ctrl_ext = rd32(IGC_CTRL_EXT);
151         wr32(IGC_CTRL_EXT,
152              ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
153 }
154
155 /**
156  * igc_get_hw_control - get control of the h/w from f/w
157  * @adapter: address of board private structure
158  *
159  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
160  * For ASF and Pass Through versions of f/w this means that
161  * the driver is loaded.
162  */
163 static void igc_get_hw_control(struct igc_adapter *adapter)
164 {
165         struct igc_hw *hw = &adapter->hw;
166         u32 ctrl_ext;
167
168         /* Let firmware know the driver has taken over */
169         ctrl_ext = rd32(IGC_CTRL_EXT);
170         wr32(IGC_CTRL_EXT,
171              ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
172 }
173
174 /**
175  * igc_clean_tx_ring - Free Tx Buffers
176  * @tx_ring: ring to be cleaned
177  */
178 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
179 {
180         u16 i = tx_ring->next_to_clean;
181         struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
182
183         while (i != tx_ring->next_to_use) {
184                 union igc_adv_tx_desc *eop_desc, *tx_desc;
185
186                 if (tx_buffer->tx_flags & IGC_TX_FLAGS_XDP)
187                         xdp_return_frame(tx_buffer->xdpf);
188                 else
189                         dev_kfree_skb_any(tx_buffer->skb);
190
191                 /* unmap skb header data */
192                 dma_unmap_single(tx_ring->dev,
193                                  dma_unmap_addr(tx_buffer, dma),
194                                  dma_unmap_len(tx_buffer, len),
195                                  DMA_TO_DEVICE);
196
197                 /* check for eop_desc to determine the end of the packet */
198                 eop_desc = tx_buffer->next_to_watch;
199                 tx_desc = IGC_TX_DESC(tx_ring, i);
200
201                 /* unmap remaining buffers */
202                 while (tx_desc != eop_desc) {
203                         tx_buffer++;
204                         tx_desc++;
205                         i++;
206                         if (unlikely(i == tx_ring->count)) {
207                                 i = 0;
208                                 tx_buffer = tx_ring->tx_buffer_info;
209                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
210                         }
211
212                         /* unmap any remaining paged data */
213                         if (dma_unmap_len(tx_buffer, len))
214                                 dma_unmap_page(tx_ring->dev,
215                                                dma_unmap_addr(tx_buffer, dma),
216                                                dma_unmap_len(tx_buffer, len),
217                                                DMA_TO_DEVICE);
218                 }
219
220                 /* move us one more past the eop_desc for start of next pkt */
221                 tx_buffer++;
222                 i++;
223                 if (unlikely(i == tx_ring->count)) {
224                         i = 0;
225                         tx_buffer = tx_ring->tx_buffer_info;
226                 }
227         }
228
229         /* reset BQL for queue */
230         netdev_tx_reset_queue(txring_txq(tx_ring));
231
232         /* reset next_to_use and next_to_clean */
233         tx_ring->next_to_use = 0;
234         tx_ring->next_to_clean = 0;
235 }
236
237 /**
238  * igc_free_tx_resources - Free Tx Resources per Queue
239  * @tx_ring: Tx descriptor ring for a specific queue
240  *
241  * Free all transmit software resources
242  */
243 void igc_free_tx_resources(struct igc_ring *tx_ring)
244 {
245         igc_clean_tx_ring(tx_ring);
246
247         vfree(tx_ring->tx_buffer_info);
248         tx_ring->tx_buffer_info = NULL;
249
250         /* if not set, then don't free */
251         if (!tx_ring->desc)
252                 return;
253
254         dma_free_coherent(tx_ring->dev, tx_ring->size,
255                           tx_ring->desc, tx_ring->dma);
256
257         tx_ring->desc = NULL;
258 }
259
260 /**
261  * igc_free_all_tx_resources - Free Tx Resources for All Queues
262  * @adapter: board private structure
263  *
264  * Free all transmit software resources
265  */
266 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
267 {
268         int i;
269
270         for (i = 0; i < adapter->num_tx_queues; i++)
271                 igc_free_tx_resources(adapter->tx_ring[i]);
272 }
273
274 /**
275  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
276  * @adapter: board private structure
277  */
278 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
279 {
280         int i;
281
282         for (i = 0; i < adapter->num_tx_queues; i++)
283                 if (adapter->tx_ring[i])
284                         igc_clean_tx_ring(adapter->tx_ring[i]);
285 }
286
287 /**
288  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
289  * @tx_ring: tx descriptor ring (for a specific queue) to setup
290  *
291  * Return 0 on success, negative on failure
292  */
293 int igc_setup_tx_resources(struct igc_ring *tx_ring)
294 {
295         struct net_device *ndev = tx_ring->netdev;
296         struct device *dev = tx_ring->dev;
297         int size = 0;
298
299         size = sizeof(struct igc_tx_buffer) * tx_ring->count;
300         tx_ring->tx_buffer_info = vzalloc(size);
301         if (!tx_ring->tx_buffer_info)
302                 goto err;
303
304         /* round up to nearest 4K */
305         tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
306         tx_ring->size = ALIGN(tx_ring->size, 4096);
307
308         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
309                                            &tx_ring->dma, GFP_KERNEL);
310
311         if (!tx_ring->desc)
312                 goto err;
313
314         tx_ring->next_to_use = 0;
315         tx_ring->next_to_clean = 0;
316
317         return 0;
318
319 err:
320         vfree(tx_ring->tx_buffer_info);
321         netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
322         return -ENOMEM;
323 }
324
325 /**
326  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
327  * @adapter: board private structure
328  *
329  * Return 0 on success, negative on failure
330  */
331 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
332 {
333         struct net_device *dev = adapter->netdev;
334         int i, err = 0;
335
336         for (i = 0; i < adapter->num_tx_queues; i++) {
337                 err = igc_setup_tx_resources(adapter->tx_ring[i]);
338                 if (err) {
339                         netdev_err(dev, "Error on Tx queue %u setup\n", i);
340                         for (i--; i >= 0; i--)
341                                 igc_free_tx_resources(adapter->tx_ring[i]);
342                         break;
343                 }
344         }
345
346         return err;
347 }
348
349 /**
350  * igc_clean_rx_ring - Free Rx Buffers per Queue
351  * @rx_ring: ring to free buffers from
352  */
353 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
354 {
355         u16 i = rx_ring->next_to_clean;
356
357         dev_kfree_skb(rx_ring->skb);
358         rx_ring->skb = NULL;
359
360         /* Free all the Rx ring sk_buffs */
361         while (i != rx_ring->next_to_alloc) {
362                 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
363
364                 /* Invalidate cache lines that may have been written to by
365                  * device so that we avoid corrupting memory.
366                  */
367                 dma_sync_single_range_for_cpu(rx_ring->dev,
368                                               buffer_info->dma,
369                                               buffer_info->page_offset,
370                                               igc_rx_bufsz(rx_ring),
371                                               DMA_FROM_DEVICE);
372
373                 /* free resources associated with mapping */
374                 dma_unmap_page_attrs(rx_ring->dev,
375                                      buffer_info->dma,
376                                      igc_rx_pg_size(rx_ring),
377                                      DMA_FROM_DEVICE,
378                                      IGC_RX_DMA_ATTR);
379                 __page_frag_cache_drain(buffer_info->page,
380                                         buffer_info->pagecnt_bias);
381
382                 i++;
383                 if (i == rx_ring->count)
384                         i = 0;
385         }
386
387         clear_ring_uses_large_buffer(rx_ring);
388
389         rx_ring->next_to_alloc = 0;
390         rx_ring->next_to_clean = 0;
391         rx_ring->next_to_use = 0;
392 }
393
394 /**
395  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
396  * @adapter: board private structure
397  */
398 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
399 {
400         int i;
401
402         for (i = 0; i < adapter->num_rx_queues; i++)
403                 if (adapter->rx_ring[i])
404                         igc_clean_rx_ring(adapter->rx_ring[i]);
405 }
406
407 /**
408  * igc_free_rx_resources - Free Rx Resources
409  * @rx_ring: ring to clean the resources from
410  *
411  * Free all receive software resources
412  */
413 void igc_free_rx_resources(struct igc_ring *rx_ring)
414 {
415         igc_clean_rx_ring(rx_ring);
416
417         igc_xdp_unregister_rxq_info(rx_ring);
418
419         vfree(rx_ring->rx_buffer_info);
420         rx_ring->rx_buffer_info = NULL;
421
422         /* if not set, then don't free */
423         if (!rx_ring->desc)
424                 return;
425
426         dma_free_coherent(rx_ring->dev, rx_ring->size,
427                           rx_ring->desc, rx_ring->dma);
428
429         rx_ring->desc = NULL;
430 }
431
432 /**
433  * igc_free_all_rx_resources - Free Rx Resources for All Queues
434  * @adapter: board private structure
435  *
436  * Free all receive software resources
437  */
438 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
439 {
440         int i;
441
442         for (i = 0; i < adapter->num_rx_queues; i++)
443                 igc_free_rx_resources(adapter->rx_ring[i]);
444 }
445
446 /**
447  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
448  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
449  *
450  * Returns 0 on success, negative on failure
451  */
452 int igc_setup_rx_resources(struct igc_ring *rx_ring)
453 {
454         struct net_device *ndev = rx_ring->netdev;
455         struct device *dev = rx_ring->dev;
456         int size, desc_len, res;
457
458         res = igc_xdp_register_rxq_info(rx_ring);
459         if (res < 0)
460                 return res;
461
462         size = sizeof(struct igc_rx_buffer) * rx_ring->count;
463         rx_ring->rx_buffer_info = vzalloc(size);
464         if (!rx_ring->rx_buffer_info)
465                 goto err;
466
467         desc_len = sizeof(union igc_adv_rx_desc);
468
469         /* Round up to nearest 4K */
470         rx_ring->size = rx_ring->count * desc_len;
471         rx_ring->size = ALIGN(rx_ring->size, 4096);
472
473         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
474                                            &rx_ring->dma, GFP_KERNEL);
475
476         if (!rx_ring->desc)
477                 goto err;
478
479         rx_ring->next_to_alloc = 0;
480         rx_ring->next_to_clean = 0;
481         rx_ring->next_to_use = 0;
482
483         return 0;
484
485 err:
486         igc_xdp_unregister_rxq_info(rx_ring);
487         vfree(rx_ring->rx_buffer_info);
488         rx_ring->rx_buffer_info = NULL;
489         netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
490         return -ENOMEM;
491 }
492
493 /**
494  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
495  *                                (Descriptors) for all queues
496  * @adapter: board private structure
497  *
498  * Return 0 on success, negative on failure
499  */
500 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
501 {
502         struct net_device *dev = adapter->netdev;
503         int i, err = 0;
504
505         for (i = 0; i < adapter->num_rx_queues; i++) {
506                 err = igc_setup_rx_resources(adapter->rx_ring[i]);
507                 if (err) {
508                         netdev_err(dev, "Error on Rx queue %u setup\n", i);
509                         for (i--; i >= 0; i--)
510                                 igc_free_rx_resources(adapter->rx_ring[i]);
511                         break;
512                 }
513         }
514
515         return err;
516 }
517
518 static bool igc_xdp_is_enabled(struct igc_adapter *adapter)
519 {
520         return !!adapter->xdp_prog;
521 }
522
523 /**
524  * igc_configure_rx_ring - Configure a receive ring after Reset
525  * @adapter: board private structure
526  * @ring: receive ring to be configured
527  *
528  * Configure the Rx unit of the MAC after a reset.
529  */
530 static void igc_configure_rx_ring(struct igc_adapter *adapter,
531                                   struct igc_ring *ring)
532 {
533         struct igc_hw *hw = &adapter->hw;
534         union igc_adv_rx_desc *rx_desc;
535         int reg_idx = ring->reg_idx;
536         u32 srrctl = 0, rxdctl = 0;
537         u64 rdba = ring->dma;
538
539         if (igc_xdp_is_enabled(adapter))
540                 set_ring_uses_large_buffer(ring);
541
542         /* disable the queue */
543         wr32(IGC_RXDCTL(reg_idx), 0);
544
545         /* Set DMA base address registers */
546         wr32(IGC_RDBAL(reg_idx),
547              rdba & 0x00000000ffffffffULL);
548         wr32(IGC_RDBAH(reg_idx), rdba >> 32);
549         wr32(IGC_RDLEN(reg_idx),
550              ring->count * sizeof(union igc_adv_rx_desc));
551
552         /* initialize head and tail */
553         ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
554         wr32(IGC_RDH(reg_idx), 0);
555         writel(0, ring->tail);
556
557         /* reset next-to- use/clean to place SW in sync with hardware */
558         ring->next_to_clean = 0;
559         ring->next_to_use = 0;
560
561         /* set descriptor configuration */
562         srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
563         if (ring_uses_large_buffer(ring))
564                 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
565         else
566                 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
567         srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
568
569         wr32(IGC_SRRCTL(reg_idx), srrctl);
570
571         rxdctl |= IGC_RX_PTHRESH;
572         rxdctl |= IGC_RX_HTHRESH << 8;
573         rxdctl |= IGC_RX_WTHRESH << 16;
574
575         /* initialize rx_buffer_info */
576         memset(ring->rx_buffer_info, 0,
577                sizeof(struct igc_rx_buffer) * ring->count);
578
579         /* initialize Rx descriptor 0 */
580         rx_desc = IGC_RX_DESC(ring, 0);
581         rx_desc->wb.upper.length = 0;
582
583         /* enable receive descriptor fetching */
584         rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
585
586         wr32(IGC_RXDCTL(reg_idx), rxdctl);
587 }
588
589 /**
590  * igc_configure_rx - Configure receive Unit after Reset
591  * @adapter: board private structure
592  *
593  * Configure the Rx unit of the MAC after a reset.
594  */
595 static void igc_configure_rx(struct igc_adapter *adapter)
596 {
597         int i;
598
599         /* Setup the HW Rx Head and Tail Descriptor Pointers and
600          * the Base and Length of the Rx Descriptor Ring
601          */
602         for (i = 0; i < adapter->num_rx_queues; i++)
603                 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
604 }
605
606 /**
607  * igc_configure_tx_ring - Configure transmit ring after Reset
608  * @adapter: board private structure
609  * @ring: tx ring to configure
610  *
611  * Configure a transmit ring after a reset.
612  */
613 static void igc_configure_tx_ring(struct igc_adapter *adapter,
614                                   struct igc_ring *ring)
615 {
616         struct igc_hw *hw = &adapter->hw;
617         int reg_idx = ring->reg_idx;
618         u64 tdba = ring->dma;
619         u32 txdctl = 0;
620
621         /* disable the queue */
622         wr32(IGC_TXDCTL(reg_idx), 0);
623         wrfl();
624         mdelay(10);
625
626         wr32(IGC_TDLEN(reg_idx),
627              ring->count * sizeof(union igc_adv_tx_desc));
628         wr32(IGC_TDBAL(reg_idx),
629              tdba & 0x00000000ffffffffULL);
630         wr32(IGC_TDBAH(reg_idx), tdba >> 32);
631
632         ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
633         wr32(IGC_TDH(reg_idx), 0);
634         writel(0, ring->tail);
635
636         txdctl |= IGC_TX_PTHRESH;
637         txdctl |= IGC_TX_HTHRESH << 8;
638         txdctl |= IGC_TX_WTHRESH << 16;
639
640         txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
641         wr32(IGC_TXDCTL(reg_idx), txdctl);
642 }
643
644 /**
645  * igc_configure_tx - Configure transmit Unit after Reset
646  * @adapter: board private structure
647  *
648  * Configure the Tx unit of the MAC after a reset.
649  */
650 static void igc_configure_tx(struct igc_adapter *adapter)
651 {
652         int i;
653
654         for (i = 0; i < adapter->num_tx_queues; i++)
655                 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
656 }
657
658 /**
659  * igc_setup_mrqc - configure the multiple receive queue control registers
660  * @adapter: Board private structure
661  */
662 static void igc_setup_mrqc(struct igc_adapter *adapter)
663 {
664         struct igc_hw *hw = &adapter->hw;
665         u32 j, num_rx_queues;
666         u32 mrqc, rxcsum;
667         u32 rss_key[10];
668
669         netdev_rss_key_fill(rss_key, sizeof(rss_key));
670         for (j = 0; j < 10; j++)
671                 wr32(IGC_RSSRK(j), rss_key[j]);
672
673         num_rx_queues = adapter->rss_queues;
674
675         if (adapter->rss_indir_tbl_init != num_rx_queues) {
676                 for (j = 0; j < IGC_RETA_SIZE; j++)
677                         adapter->rss_indir_tbl[j] =
678                         (j * num_rx_queues) / IGC_RETA_SIZE;
679                 adapter->rss_indir_tbl_init = num_rx_queues;
680         }
681         igc_write_rss_indir_tbl(adapter);
682
683         /* Disable raw packet checksumming so that RSS hash is placed in
684          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
685          * offloads as they are enabled by default
686          */
687         rxcsum = rd32(IGC_RXCSUM);
688         rxcsum |= IGC_RXCSUM_PCSD;
689
690         /* Enable Receive Checksum Offload for SCTP */
691         rxcsum |= IGC_RXCSUM_CRCOFL;
692
693         /* Don't need to set TUOFL or IPOFL, they default to 1 */
694         wr32(IGC_RXCSUM, rxcsum);
695
696         /* Generate RSS hash based on packet types, TCP/UDP
697          * port numbers and/or IPv4/v6 src and dst addresses
698          */
699         mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
700                IGC_MRQC_RSS_FIELD_IPV4_TCP |
701                IGC_MRQC_RSS_FIELD_IPV6 |
702                IGC_MRQC_RSS_FIELD_IPV6_TCP |
703                IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
704
705         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
706                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
707         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
708                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
709
710         mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
711
712         wr32(IGC_MRQC, mrqc);
713 }
714
715 /**
716  * igc_setup_rctl - configure the receive control registers
717  * @adapter: Board private structure
718  */
719 static void igc_setup_rctl(struct igc_adapter *adapter)
720 {
721         struct igc_hw *hw = &adapter->hw;
722         u32 rctl;
723
724         rctl = rd32(IGC_RCTL);
725
726         rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
727         rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
728
729         rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
730                 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
731
732         /* enable stripping of CRC. Newer features require
733          * that the HW strips the CRC.
734          */
735         rctl |= IGC_RCTL_SECRC;
736
737         /* disable store bad packets and clear size bits. */
738         rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
739
740         /* enable LPE to allow for reception of jumbo frames */
741         rctl |= IGC_RCTL_LPE;
742
743         /* disable queue 0 to prevent tail write w/o re-config */
744         wr32(IGC_RXDCTL(0), 0);
745
746         /* This is useful for sniffing bad packets. */
747         if (adapter->netdev->features & NETIF_F_RXALL) {
748                 /* UPE and MPE will be handled by normal PROMISC logic
749                  * in set_rx_mode
750                  */
751                 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
752                          IGC_RCTL_BAM | /* RX All Bcast Pkts */
753                          IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
754
755                 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
756                           IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
757         }
758
759         wr32(IGC_RCTL, rctl);
760 }
761
762 /**
763  * igc_setup_tctl - configure the transmit control registers
764  * @adapter: Board private structure
765  */
766 static void igc_setup_tctl(struct igc_adapter *adapter)
767 {
768         struct igc_hw *hw = &adapter->hw;
769         u32 tctl;
770
771         /* disable queue 0 which icould be enabled by default */
772         wr32(IGC_TXDCTL(0), 0);
773
774         /* Program the Transmit Control Register */
775         tctl = rd32(IGC_TCTL);
776         tctl &= ~IGC_TCTL_CT;
777         tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
778                 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
779
780         /* Enable transmits */
781         tctl |= IGC_TCTL_EN;
782
783         wr32(IGC_TCTL, tctl);
784 }
785
786 /**
787  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
788  * @adapter: Pointer to adapter where the filter should be set
789  * @index: Filter index
790  * @type: MAC address filter type (source or destination)
791  * @addr: MAC address
792  * @queue: If non-negative, queue assignment feature is enabled and frames
793  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
794  *         assignment is disabled.
795  */
796 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
797                                   enum igc_mac_filter_type type,
798                                   const u8 *addr, int queue)
799 {
800         struct net_device *dev = adapter->netdev;
801         struct igc_hw *hw = &adapter->hw;
802         u32 ral, rah;
803
804         if (WARN_ON(index >= hw->mac.rar_entry_count))
805                 return;
806
807         ral = le32_to_cpup((__le32 *)(addr));
808         rah = le16_to_cpup((__le16 *)(addr + 4));
809
810         if (type == IGC_MAC_FILTER_TYPE_SRC) {
811                 rah &= ~IGC_RAH_ASEL_MASK;
812                 rah |= IGC_RAH_ASEL_SRC_ADDR;
813         }
814
815         if (queue >= 0) {
816                 rah &= ~IGC_RAH_QSEL_MASK;
817                 rah |= (queue << IGC_RAH_QSEL_SHIFT);
818                 rah |= IGC_RAH_QSEL_ENABLE;
819         }
820
821         rah |= IGC_RAH_AV;
822
823         wr32(IGC_RAL(index), ral);
824         wr32(IGC_RAH(index), rah);
825
826         netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
827 }
828
829 /**
830  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
831  * @adapter: Pointer to adapter where the filter should be cleared
832  * @index: Filter index
833  */
834 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
835 {
836         struct net_device *dev = adapter->netdev;
837         struct igc_hw *hw = &adapter->hw;
838
839         if (WARN_ON(index >= hw->mac.rar_entry_count))
840                 return;
841
842         wr32(IGC_RAL(index), 0);
843         wr32(IGC_RAH(index), 0);
844
845         netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
846 }
847
848 /* Set default MAC address for the PF in the first RAR entry */
849 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
850 {
851         struct net_device *dev = adapter->netdev;
852         u8 *addr = adapter->hw.mac.addr;
853
854         netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
855
856         igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
857 }
858
859 /**
860  * igc_set_mac - Change the Ethernet Address of the NIC
861  * @netdev: network interface device structure
862  * @p: pointer to an address structure
863  *
864  * Returns 0 on success, negative on failure
865  */
866 static int igc_set_mac(struct net_device *netdev, void *p)
867 {
868         struct igc_adapter *adapter = netdev_priv(netdev);
869         struct igc_hw *hw = &adapter->hw;
870         struct sockaddr *addr = p;
871
872         if (!is_valid_ether_addr(addr->sa_data))
873                 return -EADDRNOTAVAIL;
874
875         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
876         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
877
878         /* set the correct pool for the new PF MAC address in entry 0 */
879         igc_set_default_mac_filter(adapter);
880
881         return 0;
882 }
883
884 /**
885  *  igc_write_mc_addr_list - write multicast addresses to MTA
886  *  @netdev: network interface device structure
887  *
888  *  Writes multicast address list to the MTA hash table.
889  *  Returns: -ENOMEM on failure
890  *           0 on no addresses written
891  *           X on writing X addresses to MTA
892  **/
893 static int igc_write_mc_addr_list(struct net_device *netdev)
894 {
895         struct igc_adapter *adapter = netdev_priv(netdev);
896         struct igc_hw *hw = &adapter->hw;
897         struct netdev_hw_addr *ha;
898         u8  *mta_list;
899         int i;
900
901         if (netdev_mc_empty(netdev)) {
902                 /* nothing to program, so clear mc list */
903                 igc_update_mc_addr_list(hw, NULL, 0);
904                 return 0;
905         }
906
907         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
908         if (!mta_list)
909                 return -ENOMEM;
910
911         /* The shared function expects a packed array of only addresses. */
912         i = 0;
913         netdev_for_each_mc_addr(ha, netdev)
914                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
915
916         igc_update_mc_addr_list(hw, mta_list, i);
917         kfree(mta_list);
918
919         return netdev_mc_count(netdev);
920 }
921
922 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
923 {
924         ktime_t cycle_time = adapter->cycle_time;
925         ktime_t base_time = adapter->base_time;
926         u32 launchtime;
927
928         /* FIXME: when using ETF together with taprio, we may have a
929          * case where 'delta' is larger than the cycle_time, this may
930          * cause problems if we don't read the current value of
931          * IGC_BASET, as the value writen into the launchtime
932          * descriptor field may be misinterpreted.
933          */
934         div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
935
936         return cpu_to_le32(launchtime);
937 }
938
939 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
940                             struct igc_tx_buffer *first,
941                             u32 vlan_macip_lens, u32 type_tucmd,
942                             u32 mss_l4len_idx)
943 {
944         struct igc_adv_tx_context_desc *context_desc;
945         u16 i = tx_ring->next_to_use;
946
947         context_desc = IGC_TX_CTXTDESC(tx_ring, i);
948
949         i++;
950         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
951
952         /* set bits to identify this as an advanced context descriptor */
953         type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
954
955         /* For i225, context index must be unique per ring. */
956         if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
957                 mss_l4len_idx |= tx_ring->reg_idx << 4;
958
959         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
960         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
961         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
962
963         /* We assume there is always a valid Tx time available. Invalid times
964          * should have been handled by the upper layers.
965          */
966         if (tx_ring->launchtime_enable) {
967                 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
968                 ktime_t txtime = first->skb->tstamp;
969
970                 skb_txtime_consumed(first->skb);
971                 context_desc->launch_time = igc_tx_launchtime(adapter,
972                                                               txtime);
973         } else {
974                 context_desc->launch_time = 0;
975         }
976 }
977
978 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
979 {
980         struct sk_buff *skb = first->skb;
981         u32 vlan_macip_lens = 0;
982         u32 type_tucmd = 0;
983
984         if (skb->ip_summed != CHECKSUM_PARTIAL) {
985 csum_failed:
986                 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
987                     !tx_ring->launchtime_enable)
988                         return;
989                 goto no_csum;
990         }
991
992         switch (skb->csum_offset) {
993         case offsetof(struct tcphdr, check):
994                 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
995                 fallthrough;
996         case offsetof(struct udphdr, check):
997                 break;
998         case offsetof(struct sctphdr, checksum):
999                 /* validate that this is actually an SCTP request */
1000                 if (skb_csum_is_sctp(skb)) {
1001                         type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1002                         break;
1003                 }
1004                 fallthrough;
1005         default:
1006                 skb_checksum_help(skb);
1007                 goto csum_failed;
1008         }
1009
1010         /* update TX checksum flag */
1011         first->tx_flags |= IGC_TX_FLAGS_CSUM;
1012         vlan_macip_lens = skb_checksum_start_offset(skb) -
1013                           skb_network_offset(skb);
1014 no_csum:
1015         vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1016         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1017
1018         igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1019 }
1020
1021 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1022 {
1023         struct net_device *netdev = tx_ring->netdev;
1024
1025         netif_stop_subqueue(netdev, tx_ring->queue_index);
1026
1027         /* memory barriier comment */
1028         smp_mb();
1029
1030         /* We need to check again in a case another CPU has just
1031          * made room available.
1032          */
1033         if (igc_desc_unused(tx_ring) < size)
1034                 return -EBUSY;
1035
1036         /* A reprieve! */
1037         netif_wake_subqueue(netdev, tx_ring->queue_index);
1038
1039         u64_stats_update_begin(&tx_ring->tx_syncp2);
1040         tx_ring->tx_stats.restart_queue2++;
1041         u64_stats_update_end(&tx_ring->tx_syncp2);
1042
1043         return 0;
1044 }
1045
1046 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1047 {
1048         if (igc_desc_unused(tx_ring) >= size)
1049                 return 0;
1050         return __igc_maybe_stop_tx(tx_ring, size);
1051 }
1052
1053 #define IGC_SET_FLAG(_input, _flag, _result) \
1054         (((_flag) <= (_result)) ?                               \
1055          ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :  \
1056          ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1057
1058 static u32 igc_tx_cmd_type(u32 tx_flags)
1059 {
1060         /* set type for advanced descriptor with frame checksum insertion */
1061         u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1062                        IGC_ADVTXD_DCMD_DEXT |
1063                        IGC_ADVTXD_DCMD_IFCS;
1064
1065         /* set segmentation bits for TSO */
1066         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1067                                  (IGC_ADVTXD_DCMD_TSE));
1068
1069         /* set timestamp bit if present */
1070         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1071                                  (IGC_ADVTXD_MAC_TSTAMP));
1072
1073         return cmd_type;
1074 }
1075
1076 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1077                                  union igc_adv_tx_desc *tx_desc,
1078                                  u32 tx_flags, unsigned int paylen)
1079 {
1080         u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1081
1082         /* insert L4 checksum */
1083         olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1084                           ((IGC_TXD_POPTS_TXSM << 8) /
1085                           IGC_TX_FLAGS_CSUM);
1086
1087         /* insert IPv4 checksum */
1088         olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1089                           (((IGC_TXD_POPTS_IXSM << 8)) /
1090                           IGC_TX_FLAGS_IPV4);
1091
1092         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1093 }
1094
1095 static int igc_tx_map(struct igc_ring *tx_ring,
1096                       struct igc_tx_buffer *first,
1097                       const u8 hdr_len)
1098 {
1099         struct sk_buff *skb = first->skb;
1100         struct igc_tx_buffer *tx_buffer;
1101         union igc_adv_tx_desc *tx_desc;
1102         u32 tx_flags = first->tx_flags;
1103         skb_frag_t *frag;
1104         u16 i = tx_ring->next_to_use;
1105         unsigned int data_len, size;
1106         dma_addr_t dma;
1107         u32 cmd_type = igc_tx_cmd_type(tx_flags);
1108
1109         tx_desc = IGC_TX_DESC(tx_ring, i);
1110
1111         igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1112
1113         size = skb_headlen(skb);
1114         data_len = skb->data_len;
1115
1116         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1117
1118         tx_buffer = first;
1119
1120         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1121                 if (dma_mapping_error(tx_ring->dev, dma))
1122                         goto dma_error;
1123
1124                 /* record length, and DMA address */
1125                 dma_unmap_len_set(tx_buffer, len, size);
1126                 dma_unmap_addr_set(tx_buffer, dma, dma);
1127
1128                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1129
1130                 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1131                         tx_desc->read.cmd_type_len =
1132                                 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1133
1134                         i++;
1135                         tx_desc++;
1136                         if (i == tx_ring->count) {
1137                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
1138                                 i = 0;
1139                         }
1140                         tx_desc->read.olinfo_status = 0;
1141
1142                         dma += IGC_MAX_DATA_PER_TXD;
1143                         size -= IGC_MAX_DATA_PER_TXD;
1144
1145                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
1146                 }
1147
1148                 if (likely(!data_len))
1149                         break;
1150
1151                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1152
1153                 i++;
1154                 tx_desc++;
1155                 if (i == tx_ring->count) {
1156                         tx_desc = IGC_TX_DESC(tx_ring, 0);
1157                         i = 0;
1158                 }
1159                 tx_desc->read.olinfo_status = 0;
1160
1161                 size = skb_frag_size(frag);
1162                 data_len -= size;
1163
1164                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1165                                        size, DMA_TO_DEVICE);
1166
1167                 tx_buffer = &tx_ring->tx_buffer_info[i];
1168         }
1169
1170         /* write last descriptor with RS and EOP bits */
1171         cmd_type |= size | IGC_TXD_DCMD;
1172         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1173
1174         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1175
1176         /* set the timestamp */
1177         first->time_stamp = jiffies;
1178
1179         skb_tx_timestamp(skb);
1180
1181         /* Force memory writes to complete before letting h/w know there
1182          * are new descriptors to fetch.  (Only applicable for weak-ordered
1183          * memory model archs, such as IA-64).
1184          *
1185          * We also need this memory barrier to make certain all of the
1186          * status bits have been updated before next_to_watch is written.
1187          */
1188         wmb();
1189
1190         /* set next_to_watch value indicating a packet is present */
1191         first->next_to_watch = tx_desc;
1192
1193         i++;
1194         if (i == tx_ring->count)
1195                 i = 0;
1196
1197         tx_ring->next_to_use = i;
1198
1199         /* Make sure there is space in the ring for the next send. */
1200         igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1201
1202         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1203                 writel(i, tx_ring->tail);
1204         }
1205
1206         return 0;
1207 dma_error:
1208         netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1209         tx_buffer = &tx_ring->tx_buffer_info[i];
1210
1211         /* clear dma mappings for failed tx_buffer_info map */
1212         while (tx_buffer != first) {
1213                 if (dma_unmap_len(tx_buffer, len))
1214                         dma_unmap_page(tx_ring->dev,
1215                                        dma_unmap_addr(tx_buffer, dma),
1216                                        dma_unmap_len(tx_buffer, len),
1217                                        DMA_TO_DEVICE);
1218                 dma_unmap_len_set(tx_buffer, len, 0);
1219
1220                 if (i-- == 0)
1221                         i += tx_ring->count;
1222                 tx_buffer = &tx_ring->tx_buffer_info[i];
1223         }
1224
1225         if (dma_unmap_len(tx_buffer, len))
1226                 dma_unmap_single(tx_ring->dev,
1227                                  dma_unmap_addr(tx_buffer, dma),
1228                                  dma_unmap_len(tx_buffer, len),
1229                                  DMA_TO_DEVICE);
1230         dma_unmap_len_set(tx_buffer, len, 0);
1231
1232         dev_kfree_skb_any(tx_buffer->skb);
1233         tx_buffer->skb = NULL;
1234
1235         tx_ring->next_to_use = i;
1236
1237         return -1;
1238 }
1239
1240 static int igc_tso(struct igc_ring *tx_ring,
1241                    struct igc_tx_buffer *first,
1242                    u8 *hdr_len)
1243 {
1244         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1245         struct sk_buff *skb = first->skb;
1246         union {
1247                 struct iphdr *v4;
1248                 struct ipv6hdr *v6;
1249                 unsigned char *hdr;
1250         } ip;
1251         union {
1252                 struct tcphdr *tcp;
1253                 struct udphdr *udp;
1254                 unsigned char *hdr;
1255         } l4;
1256         u32 paylen, l4_offset;
1257         int err;
1258
1259         if (skb->ip_summed != CHECKSUM_PARTIAL)
1260                 return 0;
1261
1262         if (!skb_is_gso(skb))
1263                 return 0;
1264
1265         err = skb_cow_head(skb, 0);
1266         if (err < 0)
1267                 return err;
1268
1269         ip.hdr = skb_network_header(skb);
1270         l4.hdr = skb_checksum_start(skb);
1271
1272         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1273         type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1274
1275         /* initialize outer IP header fields */
1276         if (ip.v4->version == 4) {
1277                 unsigned char *csum_start = skb_checksum_start(skb);
1278                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1279
1280                 /* IP header will have to cancel out any data that
1281                  * is not a part of the outer IP header
1282                  */
1283                 ip.v4->check = csum_fold(csum_partial(trans_start,
1284                                                       csum_start - trans_start,
1285                                                       0));
1286                 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1287
1288                 ip.v4->tot_len = 0;
1289                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1290                                    IGC_TX_FLAGS_CSUM |
1291                                    IGC_TX_FLAGS_IPV4;
1292         } else {
1293                 ip.v6->payload_len = 0;
1294                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1295                                    IGC_TX_FLAGS_CSUM;
1296         }
1297
1298         /* determine offset of inner transport header */
1299         l4_offset = l4.hdr - skb->data;
1300
1301         /* remove payload length from inner checksum */
1302         paylen = skb->len - l4_offset;
1303         if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1304                 /* compute length of segmentation header */
1305                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1306                 csum_replace_by_diff(&l4.tcp->check,
1307                                      (__force __wsum)htonl(paylen));
1308         } else {
1309                 /* compute length of segmentation header */
1310                 *hdr_len = sizeof(*l4.udp) + l4_offset;
1311                 csum_replace_by_diff(&l4.udp->check,
1312                                      (__force __wsum)htonl(paylen));
1313         }
1314
1315         /* update gso size and bytecount with header size */
1316         first->gso_segs = skb_shinfo(skb)->gso_segs;
1317         first->bytecount += (first->gso_segs - 1) * *hdr_len;
1318
1319         /* MSS L4LEN IDX */
1320         mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1321         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1322
1323         /* VLAN MACLEN IPLEN */
1324         vlan_macip_lens = l4.hdr - ip.hdr;
1325         vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1326         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1327
1328         igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1329                         type_tucmd, mss_l4len_idx);
1330
1331         return 1;
1332 }
1333
1334 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1335                                        struct igc_ring *tx_ring)
1336 {
1337         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1338         __be16 protocol = vlan_get_protocol(skb);
1339         struct igc_tx_buffer *first;
1340         u32 tx_flags = 0;
1341         unsigned short f;
1342         u8 hdr_len = 0;
1343         int tso = 0;
1344
1345         /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1346          *      + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1347          *      + 2 desc gap to keep tail from touching head,
1348          *      + 1 desc for context descriptor,
1349          * otherwise try next time
1350          */
1351         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1352                 count += TXD_USE_COUNT(skb_frag_size(
1353                                                 &skb_shinfo(skb)->frags[f]));
1354
1355         if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1356                 /* this is a hard error */
1357                 return NETDEV_TX_BUSY;
1358         }
1359
1360         /* record the location of the first descriptor for this packet */
1361         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1362         first->skb = skb;
1363         first->bytecount = skb->len;
1364         first->gso_segs = 1;
1365
1366         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1367                 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1368
1369                 /* FIXME: add support for retrieving timestamps from
1370                  * the other timer registers before skipping the
1371                  * timestamping request.
1372                  */
1373                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1374                     !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1375                                            &adapter->state)) {
1376                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1377                         tx_flags |= IGC_TX_FLAGS_TSTAMP;
1378
1379                         adapter->ptp_tx_skb = skb_get(skb);
1380                         adapter->ptp_tx_start = jiffies;
1381                 } else {
1382                         adapter->tx_hwtstamp_skipped++;
1383                 }
1384         }
1385
1386         /* record initial flags and protocol */
1387         first->tx_flags = tx_flags;
1388         first->protocol = protocol;
1389
1390         tso = igc_tso(tx_ring, first, &hdr_len);
1391         if (tso < 0)
1392                 goto out_drop;
1393         else if (!tso)
1394                 igc_tx_csum(tx_ring, first);
1395
1396         igc_tx_map(tx_ring, first, hdr_len);
1397
1398         return NETDEV_TX_OK;
1399
1400 out_drop:
1401         dev_kfree_skb_any(first->skb);
1402         first->skb = NULL;
1403
1404         return NETDEV_TX_OK;
1405 }
1406
1407 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1408                                                     struct sk_buff *skb)
1409 {
1410         unsigned int r_idx = skb->queue_mapping;
1411
1412         if (r_idx >= adapter->num_tx_queues)
1413                 r_idx = r_idx % adapter->num_tx_queues;
1414
1415         return adapter->tx_ring[r_idx];
1416 }
1417
1418 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1419                                   struct net_device *netdev)
1420 {
1421         struct igc_adapter *adapter = netdev_priv(netdev);
1422
1423         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1424          * in order to meet this minimum size requirement.
1425          */
1426         if (skb->len < 17) {
1427                 if (skb_padto(skb, 17))
1428                         return NETDEV_TX_OK;
1429                 skb->len = 17;
1430         }
1431
1432         return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1433 }
1434
1435 static void igc_rx_checksum(struct igc_ring *ring,
1436                             union igc_adv_rx_desc *rx_desc,
1437                             struct sk_buff *skb)
1438 {
1439         skb_checksum_none_assert(skb);
1440
1441         /* Ignore Checksum bit is set */
1442         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1443                 return;
1444
1445         /* Rx checksum disabled via ethtool */
1446         if (!(ring->netdev->features & NETIF_F_RXCSUM))
1447                 return;
1448
1449         /* TCP/UDP checksum error bit is set */
1450         if (igc_test_staterr(rx_desc,
1451                              IGC_RXDEXT_STATERR_L4E |
1452                              IGC_RXDEXT_STATERR_IPE)) {
1453                 /* work around errata with sctp packets where the TCPE aka
1454                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1455                  * packets (aka let the stack check the crc32c)
1456                  */
1457                 if (!(skb->len == 60 &&
1458                       test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1459                         u64_stats_update_begin(&ring->rx_syncp);
1460                         ring->rx_stats.csum_err++;
1461                         u64_stats_update_end(&ring->rx_syncp);
1462                 }
1463                 /* let the stack verify checksum errors */
1464                 return;
1465         }
1466         /* It must be a TCP or UDP packet with a valid checksum */
1467         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1468                                       IGC_RXD_STAT_UDPCS))
1469                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1470
1471         netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1472                    le32_to_cpu(rx_desc->wb.upper.status_error));
1473 }
1474
1475 static inline void igc_rx_hash(struct igc_ring *ring,
1476                                union igc_adv_rx_desc *rx_desc,
1477                                struct sk_buff *skb)
1478 {
1479         if (ring->netdev->features & NETIF_F_RXHASH)
1480                 skb_set_hash(skb,
1481                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1482                              PKT_HASH_TYPE_L3);
1483 }
1484
1485 /**
1486  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1487  * @rx_ring: rx descriptor ring packet is being transacted on
1488  * @rx_desc: pointer to the EOP Rx descriptor
1489  * @skb: pointer to current skb being populated
1490  *
1491  * This function checks the ring, descriptor, and packet information in order
1492  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1493  * skb.
1494  */
1495 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1496                                    union igc_adv_rx_desc *rx_desc,
1497                                    struct sk_buff *skb)
1498 {
1499         igc_rx_hash(rx_ring, rx_desc, skb);
1500
1501         igc_rx_checksum(rx_ring, rx_desc, skb);
1502
1503         skb_record_rx_queue(skb, rx_ring->queue_index);
1504
1505         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1506 }
1507
1508 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1509                                                const unsigned int size,
1510                                                int *rx_buffer_pgcnt)
1511 {
1512         struct igc_rx_buffer *rx_buffer;
1513
1514         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1515         *rx_buffer_pgcnt =
1516 #if (PAGE_SIZE < 8192)
1517                 page_count(rx_buffer->page);
1518 #else
1519                 0;
1520 #endif
1521         prefetchw(rx_buffer->page);
1522
1523         /* we are reusing so sync this buffer for CPU use */
1524         dma_sync_single_range_for_cpu(rx_ring->dev,
1525                                       rx_buffer->dma,
1526                                       rx_buffer->page_offset,
1527                                       size,
1528                                       DMA_FROM_DEVICE);
1529
1530         rx_buffer->pagecnt_bias--;
1531
1532         return rx_buffer;
1533 }
1534
1535 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1536                                unsigned int truesize)
1537 {
1538 #if (PAGE_SIZE < 8192)
1539         buffer->page_offset ^= truesize;
1540 #else
1541         buffer->page_offset += truesize;
1542 #endif
1543 }
1544
1545 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1546                                               unsigned int size)
1547 {
1548         unsigned int truesize;
1549
1550 #if (PAGE_SIZE < 8192)
1551         truesize = igc_rx_pg_size(ring) / 2;
1552 #else
1553         truesize = ring_uses_build_skb(ring) ?
1554                    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1555                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1556                    SKB_DATA_ALIGN(size);
1557 #endif
1558         return truesize;
1559 }
1560
1561 /**
1562  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1563  * @rx_ring: rx descriptor ring to transact packets on
1564  * @rx_buffer: buffer containing page to add
1565  * @skb: sk_buff to place the data into
1566  * @size: size of buffer to be added
1567  *
1568  * This function will add the data contained in rx_buffer->page to the skb.
1569  */
1570 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1571                             struct igc_rx_buffer *rx_buffer,
1572                             struct sk_buff *skb,
1573                             unsigned int size)
1574 {
1575         unsigned int truesize;
1576
1577 #if (PAGE_SIZE < 8192)
1578         truesize = igc_rx_pg_size(rx_ring) / 2;
1579 #else
1580         truesize = ring_uses_build_skb(rx_ring) ?
1581                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1582                    SKB_DATA_ALIGN(size);
1583 #endif
1584         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1585                         rx_buffer->page_offset, size, truesize);
1586
1587         igc_rx_buffer_flip(rx_buffer, truesize);
1588 }
1589
1590 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1591                                      struct igc_rx_buffer *rx_buffer,
1592                                      union igc_adv_rx_desc *rx_desc,
1593                                      unsigned int size)
1594 {
1595         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1596         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1597         struct sk_buff *skb;
1598
1599         /* prefetch first cache line of first page */
1600         net_prefetch(va);
1601
1602         /* build an skb around the page buffer */
1603         skb = build_skb(va - IGC_SKB_PAD, truesize);
1604         if (unlikely(!skb))
1605                 return NULL;
1606
1607         /* update pointers within the skb to store the data */
1608         skb_reserve(skb, IGC_SKB_PAD);
1609         __skb_put(skb, size);
1610
1611         igc_rx_buffer_flip(rx_buffer, truesize);
1612         return skb;
1613 }
1614
1615 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1616                                          struct igc_rx_buffer *rx_buffer,
1617                                          struct xdp_buff *xdp,
1618                                          ktime_t timestamp)
1619 {
1620         unsigned int size = xdp->data_end - xdp->data;
1621         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1622         void *va = xdp->data;
1623         unsigned int headlen;
1624         struct sk_buff *skb;
1625
1626         /* prefetch first cache line of first page */
1627         net_prefetch(va);
1628
1629         /* allocate a skb to store the frags */
1630         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1631         if (unlikely(!skb))
1632                 return NULL;
1633
1634         if (timestamp)
1635                 skb_hwtstamps(skb)->hwtstamp = timestamp;
1636
1637         /* Determine available headroom for copy */
1638         headlen = size;
1639         if (headlen > IGC_RX_HDR_LEN)
1640                 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1641
1642         /* align pull length to size of long to optimize memcpy performance */
1643         memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1644
1645         /* update all of the pointers */
1646         size -= headlen;
1647         if (size) {
1648                 skb_add_rx_frag(skb, 0, rx_buffer->page,
1649                                 (va + headlen) - page_address(rx_buffer->page),
1650                                 size, truesize);
1651                 igc_rx_buffer_flip(rx_buffer, truesize);
1652         } else {
1653                 rx_buffer->pagecnt_bias++;
1654         }
1655
1656         return skb;
1657 }
1658
1659 /**
1660  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1661  * @rx_ring: rx descriptor ring to store buffers on
1662  * @old_buff: donor buffer to have page reused
1663  *
1664  * Synchronizes page for reuse by the adapter
1665  */
1666 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1667                               struct igc_rx_buffer *old_buff)
1668 {
1669         u16 nta = rx_ring->next_to_alloc;
1670         struct igc_rx_buffer *new_buff;
1671
1672         new_buff = &rx_ring->rx_buffer_info[nta];
1673
1674         /* update, and store next to alloc */
1675         nta++;
1676         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1677
1678         /* Transfer page from old buffer to new buffer.
1679          * Move each member individually to avoid possible store
1680          * forwarding stalls.
1681          */
1682         new_buff->dma           = old_buff->dma;
1683         new_buff->page          = old_buff->page;
1684         new_buff->page_offset   = old_buff->page_offset;
1685         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1686 }
1687
1688 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1689                                   int rx_buffer_pgcnt)
1690 {
1691         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1692         struct page *page = rx_buffer->page;
1693
1694         /* avoid re-using remote and pfmemalloc pages */
1695         if (!dev_page_is_reusable(page))
1696                 return false;
1697
1698 #if (PAGE_SIZE < 8192)
1699         /* if we are only owner of page we can reuse it */
1700         if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1701                 return false;
1702 #else
1703 #define IGC_LAST_OFFSET \
1704         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1705
1706         if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1707                 return false;
1708 #endif
1709
1710         /* If we have drained the page fragment pool we need to update
1711          * the pagecnt_bias and page count so that we fully restock the
1712          * number of references the driver holds.
1713          */
1714         if (unlikely(pagecnt_bias == 1)) {
1715                 page_ref_add(page, USHRT_MAX - 1);
1716                 rx_buffer->pagecnt_bias = USHRT_MAX;
1717         }
1718
1719         return true;
1720 }
1721
1722 /**
1723  * igc_is_non_eop - process handling of non-EOP buffers
1724  * @rx_ring: Rx ring being processed
1725  * @rx_desc: Rx descriptor for current buffer
1726  *
1727  * This function updates next to clean.  If the buffer is an EOP buffer
1728  * this function exits returning false, otherwise it will place the
1729  * sk_buff in the next buffer to be chained and return true indicating
1730  * that this is in fact a non-EOP buffer.
1731  */
1732 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1733                            union igc_adv_rx_desc *rx_desc)
1734 {
1735         u32 ntc = rx_ring->next_to_clean + 1;
1736
1737         /* fetch, update, and store next to clean */
1738         ntc = (ntc < rx_ring->count) ? ntc : 0;
1739         rx_ring->next_to_clean = ntc;
1740
1741         prefetch(IGC_RX_DESC(rx_ring, ntc));
1742
1743         if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1744                 return false;
1745
1746         return true;
1747 }
1748
1749 /**
1750  * igc_cleanup_headers - Correct corrupted or empty headers
1751  * @rx_ring: rx descriptor ring packet is being transacted on
1752  * @rx_desc: pointer to the EOP Rx descriptor
1753  * @skb: pointer to current skb being fixed
1754  *
1755  * Address the case where we are pulling data in on pages only
1756  * and as such no data is present in the skb header.
1757  *
1758  * In addition if skb is not at least 60 bytes we need to pad it so that
1759  * it is large enough to qualify as a valid Ethernet frame.
1760  *
1761  * Returns true if an error was encountered and skb was freed.
1762  */
1763 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1764                                 union igc_adv_rx_desc *rx_desc,
1765                                 struct sk_buff *skb)
1766 {
1767         /* XDP packets use error pointer so abort at this point */
1768         if (IS_ERR(skb))
1769                 return true;
1770
1771         if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1772                 struct net_device *netdev = rx_ring->netdev;
1773
1774                 if (!(netdev->features & NETIF_F_RXALL)) {
1775                         dev_kfree_skb_any(skb);
1776                         return true;
1777                 }
1778         }
1779
1780         /* if eth_skb_pad returns an error the skb was freed */
1781         if (eth_skb_pad(skb))
1782                 return true;
1783
1784         return false;
1785 }
1786
1787 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1788                               struct igc_rx_buffer *rx_buffer,
1789                               int rx_buffer_pgcnt)
1790 {
1791         if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1792                 /* hand second half of page back to the ring */
1793                 igc_reuse_rx_page(rx_ring, rx_buffer);
1794         } else {
1795                 /* We are not reusing the buffer so unmap it and free
1796                  * any references we are holding to it
1797                  */
1798                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1799                                      igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1800                                      IGC_RX_DMA_ATTR);
1801                 __page_frag_cache_drain(rx_buffer->page,
1802                                         rx_buffer->pagecnt_bias);
1803         }
1804
1805         /* clear contents of rx_buffer */
1806         rx_buffer->page = NULL;
1807 }
1808
1809 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1810 {
1811         struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1812
1813         if (ring_uses_build_skb(rx_ring))
1814                 return IGC_SKB_PAD;
1815         if (igc_xdp_is_enabled(adapter))
1816                 return XDP_PACKET_HEADROOM;
1817
1818         return 0;
1819 }
1820
1821 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1822                                   struct igc_rx_buffer *bi)
1823 {
1824         struct page *page = bi->page;
1825         dma_addr_t dma;
1826
1827         /* since we are recycling buffers we should seldom need to alloc */
1828         if (likely(page))
1829                 return true;
1830
1831         /* alloc new page for storage */
1832         page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1833         if (unlikely(!page)) {
1834                 rx_ring->rx_stats.alloc_failed++;
1835                 return false;
1836         }
1837
1838         /* map page for use */
1839         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1840                                  igc_rx_pg_size(rx_ring),
1841                                  DMA_FROM_DEVICE,
1842                                  IGC_RX_DMA_ATTR);
1843
1844         /* if mapping failed free memory back to system since
1845          * there isn't much point in holding memory we can't use
1846          */
1847         if (dma_mapping_error(rx_ring->dev, dma)) {
1848                 __free_page(page);
1849
1850                 rx_ring->rx_stats.alloc_failed++;
1851                 return false;
1852         }
1853
1854         bi->dma = dma;
1855         bi->page = page;
1856         bi->page_offset = igc_rx_offset(rx_ring);
1857         page_ref_add(page, USHRT_MAX - 1);
1858         bi->pagecnt_bias = USHRT_MAX;
1859
1860         return true;
1861 }
1862
1863 /**
1864  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1865  * @rx_ring: rx descriptor ring
1866  * @cleaned_count: number of buffers to clean
1867  */
1868 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1869 {
1870         union igc_adv_rx_desc *rx_desc;
1871         u16 i = rx_ring->next_to_use;
1872         struct igc_rx_buffer *bi;
1873         u16 bufsz;
1874
1875         /* nothing to do */
1876         if (!cleaned_count)
1877                 return;
1878
1879         rx_desc = IGC_RX_DESC(rx_ring, i);
1880         bi = &rx_ring->rx_buffer_info[i];
1881         i -= rx_ring->count;
1882
1883         bufsz = igc_rx_bufsz(rx_ring);
1884
1885         do {
1886                 if (!igc_alloc_mapped_page(rx_ring, bi))
1887                         break;
1888
1889                 /* sync the buffer for use by the device */
1890                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1891                                                  bi->page_offset, bufsz,
1892                                                  DMA_FROM_DEVICE);
1893
1894                 /* Refresh the desc even if buffer_addrs didn't change
1895                  * because each write-back erases this info.
1896                  */
1897                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1898
1899                 rx_desc++;
1900                 bi++;
1901                 i++;
1902                 if (unlikely(!i)) {
1903                         rx_desc = IGC_RX_DESC(rx_ring, 0);
1904                         bi = rx_ring->rx_buffer_info;
1905                         i -= rx_ring->count;
1906                 }
1907
1908                 /* clear the length for the next_to_use descriptor */
1909                 rx_desc->wb.upper.length = 0;
1910
1911                 cleaned_count--;
1912         } while (cleaned_count);
1913
1914         i += rx_ring->count;
1915
1916         if (rx_ring->next_to_use != i) {
1917                 /* record the next descriptor to use */
1918                 rx_ring->next_to_use = i;
1919
1920                 /* update next to alloc since we have filled the ring */
1921                 rx_ring->next_to_alloc = i;
1922
1923                 /* Force memory writes to complete before letting h/w
1924                  * know there are new descriptors to fetch.  (Only
1925                  * applicable for weak-ordered memory model archs,
1926                  * such as IA-64).
1927                  */
1928                 wmb();
1929                 writel(i, rx_ring->tail);
1930         }
1931 }
1932
1933 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
1934                                   struct xdp_frame *xdpf,
1935                                   struct igc_ring *ring)
1936 {
1937         dma_addr_t dma;
1938
1939         dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
1940         if (dma_mapping_error(ring->dev, dma)) {
1941                 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1942                 return -ENOMEM;
1943         }
1944
1945         buffer->xdpf = xdpf;
1946         buffer->tx_flags = IGC_TX_FLAGS_XDP;
1947         buffer->protocol = 0;
1948         buffer->bytecount = xdpf->len;
1949         buffer->gso_segs = 1;
1950         buffer->time_stamp = jiffies;
1951         dma_unmap_len_set(buffer, len, xdpf->len);
1952         dma_unmap_addr_set(buffer, dma, dma);
1953         return 0;
1954 }
1955
1956 /* This function requires __netif_tx_lock is held by the caller. */
1957 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
1958                                       struct xdp_frame *xdpf)
1959 {
1960         struct igc_tx_buffer *buffer;
1961         union igc_adv_tx_desc *desc;
1962         u32 cmd_type, olinfo_status;
1963         int err;
1964
1965         if (!igc_desc_unused(ring))
1966                 return -EBUSY;
1967
1968         buffer = &ring->tx_buffer_info[ring->next_to_use];
1969         err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
1970         if (err)
1971                 return err;
1972
1973         cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1974                    IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1975                    buffer->bytecount;
1976         olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1977
1978         desc = IGC_TX_DESC(ring, ring->next_to_use);
1979         desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1980         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1981         desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
1982
1983         netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
1984
1985         buffer->next_to_watch = desc;
1986
1987         ring->next_to_use++;
1988         if (ring->next_to_use == ring->count)
1989                 ring->next_to_use = 0;
1990
1991         return 0;
1992 }
1993
1994 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
1995                                             int cpu)
1996 {
1997         int index = cpu;
1998
1999         if (unlikely(index < 0))
2000                 index = 0;
2001
2002         while (index >= adapter->num_tx_queues)
2003                 index -= adapter->num_tx_queues;
2004
2005         return adapter->tx_ring[index];
2006 }
2007
2008 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2009 {
2010         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2011         int cpu = smp_processor_id();
2012         struct netdev_queue *nq;
2013         struct igc_ring *ring;
2014         int res;
2015
2016         if (unlikely(!xdpf))
2017                 return -EFAULT;
2018
2019         ring = igc_xdp_get_tx_ring(adapter, cpu);
2020         nq = txring_txq(ring);
2021
2022         __netif_tx_lock(nq, cpu);
2023         res = igc_xdp_init_tx_descriptor(ring, xdpf);
2024         __netif_tx_unlock(nq);
2025         return res;
2026 }
2027
2028 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2029                                         struct xdp_buff *xdp)
2030 {
2031         struct bpf_prog *prog;
2032         int res;
2033         u32 act;
2034
2035         rcu_read_lock();
2036
2037         prog = READ_ONCE(adapter->xdp_prog);
2038         if (!prog) {
2039                 res = IGC_XDP_PASS;
2040                 goto unlock;
2041         }
2042
2043         act = bpf_prog_run_xdp(prog, xdp);
2044         switch (act) {
2045         case XDP_PASS:
2046                 res = IGC_XDP_PASS;
2047                 break;
2048         case XDP_TX:
2049                 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2050                         res = IGC_XDP_CONSUMED;
2051                 else
2052                         res = IGC_XDP_TX;
2053                 break;
2054         case XDP_REDIRECT:
2055                 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2056                         res = IGC_XDP_CONSUMED;
2057                 else
2058                         res = IGC_XDP_REDIRECT;
2059                 break;
2060         default:
2061                 bpf_warn_invalid_xdp_action(act);
2062                 fallthrough;
2063         case XDP_ABORTED:
2064                 trace_xdp_exception(adapter->netdev, prog, act);
2065                 fallthrough;
2066         case XDP_DROP:
2067                 res = IGC_XDP_CONSUMED;
2068                 break;
2069         }
2070
2071 unlock:
2072         rcu_read_unlock();
2073         return ERR_PTR(-res);
2074 }
2075
2076 /* This function assumes __netif_tx_lock is held by the caller. */
2077 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2078 {
2079         /* Once tail pointer is updated, hardware can fetch the descriptors
2080          * any time so we issue a write membar here to ensure all memory
2081          * writes are complete before the tail pointer is updated.
2082          */
2083         wmb();
2084         writel(ring->next_to_use, ring->tail);
2085 }
2086
2087 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2088 {
2089         int cpu = smp_processor_id();
2090         struct netdev_queue *nq;
2091         struct igc_ring *ring;
2092
2093         if (status & IGC_XDP_TX) {
2094                 ring = igc_xdp_get_tx_ring(adapter, cpu);
2095                 nq = txring_txq(ring);
2096
2097                 __netif_tx_lock(nq, cpu);
2098                 igc_flush_tx_descriptors(ring);
2099                 __netif_tx_unlock(nq);
2100         }
2101
2102         if (status & IGC_XDP_REDIRECT)
2103                 xdp_do_flush();
2104 }
2105
2106 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2107 {
2108         unsigned int total_bytes = 0, total_packets = 0;
2109         struct igc_adapter *adapter = q_vector->adapter;
2110         struct igc_ring *rx_ring = q_vector->rx.ring;
2111         struct sk_buff *skb = rx_ring->skb;
2112         u16 cleaned_count = igc_desc_unused(rx_ring);
2113         int xdp_status = 0, rx_buffer_pgcnt;
2114
2115         while (likely(total_packets < budget)) {
2116                 union igc_adv_rx_desc *rx_desc;
2117                 struct igc_rx_buffer *rx_buffer;
2118                 unsigned int size, truesize;
2119                 ktime_t timestamp = 0;
2120                 struct xdp_buff xdp;
2121                 int pkt_offset = 0;
2122                 void *pktbuf;
2123
2124                 /* return some buffers to hardware, one at a time is too slow */
2125                 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2126                         igc_alloc_rx_buffers(rx_ring, cleaned_count);
2127                         cleaned_count = 0;
2128                 }
2129
2130                 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2131                 size = le16_to_cpu(rx_desc->wb.upper.length);
2132                 if (!size)
2133                         break;
2134
2135                 /* This memory barrier is needed to keep us from reading
2136                  * any other fields out of the rx_desc until we know the
2137                  * descriptor has been written back
2138                  */
2139                 dma_rmb();
2140
2141                 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2142                 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2143
2144                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2145
2146                 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2147                         timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2148                                                         pktbuf);
2149                         pkt_offset = IGC_TS_HDR_LEN;
2150                         size -= IGC_TS_HDR_LEN;
2151                 }
2152
2153                 if (!skb) {
2154                         xdp.data = pktbuf + pkt_offset;
2155                         xdp.data_end = xdp.data + size;
2156                         xdp.data_hard_start = pktbuf - igc_rx_offset(rx_ring);
2157                         xdp_set_data_meta_invalid(&xdp);
2158                         xdp.frame_sz = truesize;
2159                         xdp.rxq = &rx_ring->xdp_rxq;
2160
2161                         skb = igc_xdp_run_prog(adapter, &xdp);
2162                 }
2163
2164                 if (IS_ERR(skb)) {
2165                         unsigned int xdp_res = -PTR_ERR(skb);
2166
2167                         switch (xdp_res) {
2168                         case IGC_XDP_CONSUMED:
2169                                 rx_buffer->pagecnt_bias++;
2170                                 break;
2171                         case IGC_XDP_TX:
2172                         case IGC_XDP_REDIRECT:
2173                                 igc_rx_buffer_flip(rx_buffer, truesize);
2174                                 xdp_status |= xdp_res;
2175                                 break;
2176                         }
2177
2178                         total_packets++;
2179                         total_bytes += size;
2180                 } else if (skb)
2181                         igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2182                 else if (ring_uses_build_skb(rx_ring))
2183                         skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2184                 else
2185                         skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2186                                                 timestamp);
2187
2188                 /* exit if we failed to retrieve a buffer */
2189                 if (!skb) {
2190                         rx_ring->rx_stats.alloc_failed++;
2191                         rx_buffer->pagecnt_bias++;
2192                         break;
2193                 }
2194
2195                 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2196                 cleaned_count++;
2197
2198                 /* fetch next buffer in frame if non-eop */
2199                 if (igc_is_non_eop(rx_ring, rx_desc))
2200                         continue;
2201
2202                 /* verify the packet layout is correct */
2203                 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2204                         skb = NULL;
2205                         continue;
2206                 }
2207
2208                 /* probably a little skewed due to removing CRC */
2209                 total_bytes += skb->len;
2210
2211                 /* populate checksum, VLAN, and protocol */
2212                 igc_process_skb_fields(rx_ring, rx_desc, skb);
2213
2214                 napi_gro_receive(&q_vector->napi, skb);
2215
2216                 /* reset skb pointer */
2217                 skb = NULL;
2218
2219                 /* update budget accounting */
2220                 total_packets++;
2221         }
2222
2223         if (xdp_status)
2224                 igc_finalize_xdp(adapter, xdp_status);
2225
2226         /* place incomplete frames back on ring for completion */
2227         rx_ring->skb = skb;
2228
2229         u64_stats_update_begin(&rx_ring->rx_syncp);
2230         rx_ring->rx_stats.packets += total_packets;
2231         rx_ring->rx_stats.bytes += total_bytes;
2232         u64_stats_update_end(&rx_ring->rx_syncp);
2233         q_vector->rx.total_packets += total_packets;
2234         q_vector->rx.total_bytes += total_bytes;
2235
2236         if (cleaned_count)
2237                 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2238
2239         return total_packets;
2240 }
2241
2242 /**
2243  * igc_clean_tx_irq - Reclaim resources after transmit completes
2244  * @q_vector: pointer to q_vector containing needed info
2245  * @napi_budget: Used to determine if we are in netpoll
2246  *
2247  * returns true if ring is completely cleaned
2248  */
2249 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2250 {
2251         struct igc_adapter *adapter = q_vector->adapter;
2252         unsigned int total_bytes = 0, total_packets = 0;
2253         unsigned int budget = q_vector->tx.work_limit;
2254         struct igc_ring *tx_ring = q_vector->tx.ring;
2255         unsigned int i = tx_ring->next_to_clean;
2256         struct igc_tx_buffer *tx_buffer;
2257         union igc_adv_tx_desc *tx_desc;
2258
2259         if (test_bit(__IGC_DOWN, &adapter->state))
2260                 return true;
2261
2262         tx_buffer = &tx_ring->tx_buffer_info[i];
2263         tx_desc = IGC_TX_DESC(tx_ring, i);
2264         i -= tx_ring->count;
2265
2266         do {
2267                 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2268
2269                 /* if next_to_watch is not set then there is no work pending */
2270                 if (!eop_desc)
2271                         break;
2272
2273                 /* prevent any other reads prior to eop_desc */
2274                 smp_rmb();
2275
2276                 /* if DD is not set pending work has not been completed */
2277                 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2278                         break;
2279
2280                 /* clear next_to_watch to prevent false hangs */
2281                 tx_buffer->next_to_watch = NULL;
2282
2283                 /* update the statistics for this packet */
2284                 total_bytes += tx_buffer->bytecount;
2285                 total_packets += tx_buffer->gso_segs;
2286
2287                 if (tx_buffer->tx_flags & IGC_TX_FLAGS_XDP)
2288                         xdp_return_frame(tx_buffer->xdpf);
2289                 else
2290                         napi_consume_skb(tx_buffer->skb, napi_budget);
2291
2292                 /* unmap skb header data */
2293                 dma_unmap_single(tx_ring->dev,
2294                                  dma_unmap_addr(tx_buffer, dma),
2295                                  dma_unmap_len(tx_buffer, len),
2296                                  DMA_TO_DEVICE);
2297
2298                 /* clear tx_buffer data */
2299                 dma_unmap_len_set(tx_buffer, len, 0);
2300
2301                 /* clear last DMA location and unmap remaining buffers */
2302                 while (tx_desc != eop_desc) {
2303                         tx_buffer++;
2304                         tx_desc++;
2305                         i++;
2306                         if (unlikely(!i)) {
2307                                 i -= tx_ring->count;
2308                                 tx_buffer = tx_ring->tx_buffer_info;
2309                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
2310                         }
2311
2312                         /* unmap any remaining paged data */
2313                         if (dma_unmap_len(tx_buffer, len)) {
2314                                 dma_unmap_page(tx_ring->dev,
2315                                                dma_unmap_addr(tx_buffer, dma),
2316                                                dma_unmap_len(tx_buffer, len),
2317                                                DMA_TO_DEVICE);
2318                                 dma_unmap_len_set(tx_buffer, len, 0);
2319                         }
2320                 }
2321
2322                 /* move us one more past the eop_desc for start of next pkt */
2323                 tx_buffer++;
2324                 tx_desc++;
2325                 i++;
2326                 if (unlikely(!i)) {
2327                         i -= tx_ring->count;
2328                         tx_buffer = tx_ring->tx_buffer_info;
2329                         tx_desc = IGC_TX_DESC(tx_ring, 0);
2330                 }
2331
2332                 /* issue prefetch for next Tx descriptor */
2333                 prefetch(tx_desc);
2334
2335                 /* update budget accounting */
2336                 budget--;
2337         } while (likely(budget));
2338
2339         netdev_tx_completed_queue(txring_txq(tx_ring),
2340                                   total_packets, total_bytes);
2341
2342         i += tx_ring->count;
2343         tx_ring->next_to_clean = i;
2344         u64_stats_update_begin(&tx_ring->tx_syncp);
2345         tx_ring->tx_stats.bytes += total_bytes;
2346         tx_ring->tx_stats.packets += total_packets;
2347         u64_stats_update_end(&tx_ring->tx_syncp);
2348         q_vector->tx.total_bytes += total_bytes;
2349         q_vector->tx.total_packets += total_packets;
2350
2351         if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2352                 struct igc_hw *hw = &adapter->hw;
2353
2354                 /* Detect a transmit hang in hardware, this serializes the
2355                  * check with the clearing of time_stamp and movement of i
2356                  */
2357                 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2358                 if (tx_buffer->next_to_watch &&
2359                     time_after(jiffies, tx_buffer->time_stamp +
2360                     (adapter->tx_timeout_factor * HZ)) &&
2361                     !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2362                         /* detected Tx unit hang */
2363                         netdev_err(tx_ring->netdev,
2364                                    "Detected Tx Unit Hang\n"
2365                                    "  Tx Queue             <%d>\n"
2366                                    "  TDH                  <%x>\n"
2367                                    "  TDT                  <%x>\n"
2368                                    "  next_to_use          <%x>\n"
2369                                    "  next_to_clean        <%x>\n"
2370                                    "buffer_info[next_to_clean]\n"
2371                                    "  time_stamp           <%lx>\n"
2372                                    "  next_to_watch        <%p>\n"
2373                                    "  jiffies              <%lx>\n"
2374                                    "  desc.status          <%x>\n",
2375                                    tx_ring->queue_index,
2376                                    rd32(IGC_TDH(tx_ring->reg_idx)),
2377                                    readl(tx_ring->tail),
2378                                    tx_ring->next_to_use,
2379                                    tx_ring->next_to_clean,
2380                                    tx_buffer->time_stamp,
2381                                    tx_buffer->next_to_watch,
2382                                    jiffies,
2383                                    tx_buffer->next_to_watch->wb.status);
2384                         netif_stop_subqueue(tx_ring->netdev,
2385                                             tx_ring->queue_index);
2386
2387                         /* we are about to reset, no point in enabling stuff */
2388                         return true;
2389                 }
2390         }
2391
2392 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2393         if (unlikely(total_packets &&
2394                      netif_carrier_ok(tx_ring->netdev) &&
2395                      igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2396                 /* Make sure that anybody stopping the queue after this
2397                  * sees the new next_to_clean.
2398                  */
2399                 smp_mb();
2400                 if (__netif_subqueue_stopped(tx_ring->netdev,
2401                                              tx_ring->queue_index) &&
2402                     !(test_bit(__IGC_DOWN, &adapter->state))) {
2403                         netif_wake_subqueue(tx_ring->netdev,
2404                                             tx_ring->queue_index);
2405
2406                         u64_stats_update_begin(&tx_ring->tx_syncp);
2407                         tx_ring->tx_stats.restart_queue++;
2408                         u64_stats_update_end(&tx_ring->tx_syncp);
2409                 }
2410         }
2411
2412         return !!budget;
2413 }
2414
2415 static int igc_find_mac_filter(struct igc_adapter *adapter,
2416                                enum igc_mac_filter_type type, const u8 *addr)
2417 {
2418         struct igc_hw *hw = &adapter->hw;
2419         int max_entries = hw->mac.rar_entry_count;
2420         u32 ral, rah;
2421         int i;
2422
2423         for (i = 0; i < max_entries; i++) {
2424                 ral = rd32(IGC_RAL(i));
2425                 rah = rd32(IGC_RAH(i));
2426
2427                 if (!(rah & IGC_RAH_AV))
2428                         continue;
2429                 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2430                         continue;
2431                 if ((rah & IGC_RAH_RAH_MASK) !=
2432                     le16_to_cpup((__le16 *)(addr + 4)))
2433                         continue;
2434                 if (ral != le32_to_cpup((__le32 *)(addr)))
2435                         continue;
2436
2437                 return i;
2438         }
2439
2440         return -1;
2441 }
2442
2443 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2444 {
2445         struct igc_hw *hw = &adapter->hw;
2446         int max_entries = hw->mac.rar_entry_count;
2447         u32 rah;
2448         int i;
2449
2450         for (i = 0; i < max_entries; i++) {
2451                 rah = rd32(IGC_RAH(i));
2452
2453                 if (!(rah & IGC_RAH_AV))
2454                         return i;
2455         }
2456
2457         return -1;
2458 }
2459
2460 /**
2461  * igc_add_mac_filter() - Add MAC address filter
2462  * @adapter: Pointer to adapter where the filter should be added
2463  * @type: MAC address filter type (source or destination)
2464  * @addr: MAC address
2465  * @queue: If non-negative, queue assignment feature is enabled and frames
2466  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2467  *         assignment is disabled.
2468  *
2469  * Return: 0 in case of success, negative errno code otherwise.
2470  */
2471 static int igc_add_mac_filter(struct igc_adapter *adapter,
2472                               enum igc_mac_filter_type type, const u8 *addr,
2473                               int queue)
2474 {
2475         struct net_device *dev = adapter->netdev;
2476         int index;
2477
2478         index = igc_find_mac_filter(adapter, type, addr);
2479         if (index >= 0)
2480                 goto update_filter;
2481
2482         index = igc_get_avail_mac_filter_slot(adapter);
2483         if (index < 0)
2484                 return -ENOSPC;
2485
2486         netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2487                    index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2488                    addr, queue);
2489
2490 update_filter:
2491         igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2492         return 0;
2493 }
2494
2495 /**
2496  * igc_del_mac_filter() - Delete MAC address filter
2497  * @adapter: Pointer to adapter where the filter should be deleted from
2498  * @type: MAC address filter type (source or destination)
2499  * @addr: MAC address
2500  */
2501 static void igc_del_mac_filter(struct igc_adapter *adapter,
2502                                enum igc_mac_filter_type type, const u8 *addr)
2503 {
2504         struct net_device *dev = adapter->netdev;
2505         int index;
2506
2507         index = igc_find_mac_filter(adapter, type, addr);
2508         if (index < 0)
2509                 return;
2510
2511         if (index == 0) {
2512                 /* If this is the default filter, we don't actually delete it.
2513                  * We just reset to its default value i.e. disable queue
2514                  * assignment.
2515                  */
2516                 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2517
2518                 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2519         } else {
2520                 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2521                            index,
2522                            type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2523                            addr);
2524
2525                 igc_clear_mac_filter_hw(adapter, index);
2526         }
2527 }
2528
2529 /**
2530  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2531  * @adapter: Pointer to adapter where the filter should be added
2532  * @prio: VLAN priority value
2533  * @queue: Queue number which matching frames are assigned to
2534  *
2535  * Return: 0 in case of success, negative errno code otherwise.
2536  */
2537 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2538                                     int queue)
2539 {
2540         struct net_device *dev = adapter->netdev;
2541         struct igc_hw *hw = &adapter->hw;
2542         u32 vlanpqf;
2543
2544         vlanpqf = rd32(IGC_VLANPQF);
2545
2546         if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2547                 netdev_dbg(dev, "VLAN priority filter already in use\n");
2548                 return -EEXIST;
2549         }
2550
2551         vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2552         vlanpqf |= IGC_VLANPQF_VALID(prio);
2553
2554         wr32(IGC_VLANPQF, vlanpqf);
2555
2556         netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2557                    prio, queue);
2558         return 0;
2559 }
2560
2561 /**
2562  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2563  * @adapter: Pointer to adapter where the filter should be deleted from
2564  * @prio: VLAN priority value
2565  */
2566 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2567 {
2568         struct igc_hw *hw = &adapter->hw;
2569         u32 vlanpqf;
2570
2571         vlanpqf = rd32(IGC_VLANPQF);
2572
2573         vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2574         vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2575
2576         wr32(IGC_VLANPQF, vlanpqf);
2577
2578         netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2579                    prio);
2580 }
2581
2582 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2583 {
2584         struct igc_hw *hw = &adapter->hw;
2585         int i;
2586
2587         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2588                 u32 etqf = rd32(IGC_ETQF(i));
2589
2590                 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2591                         return i;
2592         }
2593
2594         return -1;
2595 }
2596
2597 /**
2598  * igc_add_etype_filter() - Add ethertype filter
2599  * @adapter: Pointer to adapter where the filter should be added
2600  * @etype: Ethertype value
2601  * @queue: If non-negative, queue assignment feature is enabled and frames
2602  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2603  *         assignment is disabled.
2604  *
2605  * Return: 0 in case of success, negative errno code otherwise.
2606  */
2607 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2608                                 int queue)
2609 {
2610         struct igc_hw *hw = &adapter->hw;
2611         int index;
2612         u32 etqf;
2613
2614         index = igc_get_avail_etype_filter_slot(adapter);
2615         if (index < 0)
2616                 return -ENOSPC;
2617
2618         etqf = rd32(IGC_ETQF(index));
2619
2620         etqf &= ~IGC_ETQF_ETYPE_MASK;
2621         etqf |= etype;
2622
2623         if (queue >= 0) {
2624                 etqf &= ~IGC_ETQF_QUEUE_MASK;
2625                 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2626                 etqf |= IGC_ETQF_QUEUE_ENABLE;
2627         }
2628
2629         etqf |= IGC_ETQF_FILTER_ENABLE;
2630
2631         wr32(IGC_ETQF(index), etqf);
2632
2633         netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2634                    etype, queue);
2635         return 0;
2636 }
2637
2638 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2639 {
2640         struct igc_hw *hw = &adapter->hw;
2641         int i;
2642
2643         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2644                 u32 etqf = rd32(IGC_ETQF(i));
2645
2646                 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2647                         return i;
2648         }
2649
2650         return -1;
2651 }
2652
2653 /**
2654  * igc_del_etype_filter() - Delete ethertype filter
2655  * @adapter: Pointer to adapter where the filter should be deleted from
2656  * @etype: Ethertype value
2657  */
2658 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2659 {
2660         struct igc_hw *hw = &adapter->hw;
2661         int index;
2662
2663         index = igc_find_etype_filter(adapter, etype);
2664         if (index < 0)
2665                 return;
2666
2667         wr32(IGC_ETQF(index), 0);
2668
2669         netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2670                    etype);
2671 }
2672
2673 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2674                                const struct igc_nfc_rule *rule)
2675 {
2676         int err;
2677
2678         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2679                 err = igc_add_etype_filter(adapter, rule->filter.etype,
2680                                            rule->action);
2681                 if (err)
2682                         return err;
2683         }
2684
2685         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2686                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2687                                          rule->filter.src_addr, rule->action);
2688                 if (err)
2689                         return err;
2690         }
2691
2692         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2693                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2694                                          rule->filter.dst_addr, rule->action);
2695                 if (err)
2696                         return err;
2697         }
2698
2699         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2700                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2701                            VLAN_PRIO_SHIFT;
2702
2703                 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2704                 if (err)
2705                         return err;
2706         }
2707
2708         return 0;
2709 }
2710
2711 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2712                                  const struct igc_nfc_rule *rule)
2713 {
2714         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2715                 igc_del_etype_filter(adapter, rule->filter.etype);
2716
2717         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2718                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2719                            VLAN_PRIO_SHIFT;
2720
2721                 igc_del_vlan_prio_filter(adapter, prio);
2722         }
2723
2724         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2725                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2726                                    rule->filter.src_addr);
2727
2728         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2729                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2730                                    rule->filter.dst_addr);
2731 }
2732
2733 /**
2734  * igc_get_nfc_rule() - Get NFC rule
2735  * @adapter: Pointer to adapter
2736  * @location: Rule location
2737  *
2738  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2739  *
2740  * Return: Pointer to NFC rule at @location. If not found, NULL.
2741  */
2742 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2743                                       u32 location)
2744 {
2745         struct igc_nfc_rule *rule;
2746
2747         list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2748                 if (rule->location == location)
2749                         return rule;
2750                 if (rule->location > location)
2751                         break;
2752         }
2753
2754         return NULL;
2755 }
2756
2757 /**
2758  * igc_del_nfc_rule() - Delete NFC rule
2759  * @adapter: Pointer to adapter
2760  * @rule: Pointer to rule to be deleted
2761  *
2762  * Disable NFC rule in hardware and delete it from adapter.
2763  *
2764  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2765  */
2766 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2767 {
2768         igc_disable_nfc_rule(adapter, rule);
2769
2770         list_del(&rule->list);
2771         adapter->nfc_rule_count--;
2772
2773         kfree(rule);
2774 }
2775
2776 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2777 {
2778         struct igc_nfc_rule *rule, *tmp;
2779
2780         mutex_lock(&adapter->nfc_rule_lock);
2781
2782         list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2783                 igc_del_nfc_rule(adapter, rule);
2784
2785         mutex_unlock(&adapter->nfc_rule_lock);
2786 }
2787
2788 /**
2789  * igc_add_nfc_rule() - Add NFC rule
2790  * @adapter: Pointer to adapter
2791  * @rule: Pointer to rule to be added
2792  *
2793  * Enable NFC rule in hardware and add it to adapter.
2794  *
2795  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2796  *
2797  * Return: 0 on success, negative errno on failure.
2798  */
2799 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2800 {
2801         struct igc_nfc_rule *pred, *cur;
2802         int err;
2803
2804         err = igc_enable_nfc_rule(adapter, rule);
2805         if (err)
2806                 return err;
2807
2808         pred = NULL;
2809         list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2810                 if (cur->location >= rule->location)
2811                         break;
2812                 pred = cur;
2813         }
2814
2815         list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2816         adapter->nfc_rule_count++;
2817         return 0;
2818 }
2819
2820 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2821 {
2822         struct igc_nfc_rule *rule;
2823
2824         mutex_lock(&adapter->nfc_rule_lock);
2825
2826         list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2827                 igc_enable_nfc_rule(adapter, rule);
2828
2829         mutex_unlock(&adapter->nfc_rule_lock);
2830 }
2831
2832 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2833 {
2834         struct igc_adapter *adapter = netdev_priv(netdev);
2835
2836         return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2837 }
2838
2839 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2840 {
2841         struct igc_adapter *adapter = netdev_priv(netdev);
2842
2843         igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2844         return 0;
2845 }
2846
2847 /**
2848  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2849  * @netdev: network interface device structure
2850  *
2851  * The set_rx_mode entry point is called whenever the unicast or multicast
2852  * address lists or the network interface flags are updated.  This routine is
2853  * responsible for configuring the hardware for proper unicast, multicast,
2854  * promiscuous mode, and all-multi behavior.
2855  */
2856 static void igc_set_rx_mode(struct net_device *netdev)
2857 {
2858         struct igc_adapter *adapter = netdev_priv(netdev);
2859         struct igc_hw *hw = &adapter->hw;
2860         u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2861         int count;
2862
2863         /* Check for Promiscuous and All Multicast modes */
2864         if (netdev->flags & IFF_PROMISC) {
2865                 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2866         } else {
2867                 if (netdev->flags & IFF_ALLMULTI) {
2868                         rctl |= IGC_RCTL_MPE;
2869                 } else {
2870                         /* Write addresses to the MTA, if the attempt fails
2871                          * then we should just turn on promiscuous mode so
2872                          * that we can at least receive multicast traffic
2873                          */
2874                         count = igc_write_mc_addr_list(netdev);
2875                         if (count < 0)
2876                                 rctl |= IGC_RCTL_MPE;
2877                 }
2878         }
2879
2880         /* Write addresses to available RAR registers, if there is not
2881          * sufficient space to store all the addresses then enable
2882          * unicast promiscuous mode
2883          */
2884         if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2885                 rctl |= IGC_RCTL_UPE;
2886
2887         /* update state of unicast and multicast */
2888         rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2889         wr32(IGC_RCTL, rctl);
2890
2891 #if (PAGE_SIZE < 8192)
2892         if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2893                 rlpml = IGC_MAX_FRAME_BUILD_SKB;
2894 #endif
2895         wr32(IGC_RLPML, rlpml);
2896 }
2897
2898 /**
2899  * igc_configure - configure the hardware for RX and TX
2900  * @adapter: private board structure
2901  */
2902 static void igc_configure(struct igc_adapter *adapter)
2903 {
2904         struct net_device *netdev = adapter->netdev;
2905         int i = 0;
2906
2907         igc_get_hw_control(adapter);
2908         igc_set_rx_mode(netdev);
2909
2910         igc_setup_tctl(adapter);
2911         igc_setup_mrqc(adapter);
2912         igc_setup_rctl(adapter);
2913
2914         igc_set_default_mac_filter(adapter);
2915         igc_restore_nfc_rules(adapter);
2916
2917         igc_configure_tx(adapter);
2918         igc_configure_rx(adapter);
2919
2920         igc_rx_fifo_flush_base(&adapter->hw);
2921
2922         /* call igc_desc_unused which always leaves
2923          * at least 1 descriptor unused to make sure
2924          * next_to_use != next_to_clean
2925          */
2926         for (i = 0; i < adapter->num_rx_queues; i++) {
2927                 struct igc_ring *ring = adapter->rx_ring[i];
2928
2929                 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2930         }
2931 }
2932
2933 /**
2934  * igc_write_ivar - configure ivar for given MSI-X vector
2935  * @hw: pointer to the HW structure
2936  * @msix_vector: vector number we are allocating to a given ring
2937  * @index: row index of IVAR register to write within IVAR table
2938  * @offset: column offset of in IVAR, should be multiple of 8
2939  *
2940  * The IVAR table consists of 2 columns,
2941  * each containing an cause allocation for an Rx and Tx ring, and a
2942  * variable number of rows depending on the number of queues supported.
2943  */
2944 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2945                            int index, int offset)
2946 {
2947         u32 ivar = array_rd32(IGC_IVAR0, index);
2948
2949         /* clear any bits that are currently set */
2950         ivar &= ~((u32)0xFF << offset);
2951
2952         /* write vector and valid bit */
2953         ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2954
2955         array_wr32(IGC_IVAR0, index, ivar);
2956 }
2957
2958 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2959 {
2960         struct igc_adapter *adapter = q_vector->adapter;
2961         struct igc_hw *hw = &adapter->hw;
2962         int rx_queue = IGC_N0_QUEUE;
2963         int tx_queue = IGC_N0_QUEUE;
2964
2965         if (q_vector->rx.ring)
2966                 rx_queue = q_vector->rx.ring->reg_idx;
2967         if (q_vector->tx.ring)
2968                 tx_queue = q_vector->tx.ring->reg_idx;
2969
2970         switch (hw->mac.type) {
2971         case igc_i225:
2972                 if (rx_queue > IGC_N0_QUEUE)
2973                         igc_write_ivar(hw, msix_vector,
2974                                        rx_queue >> 1,
2975                                        (rx_queue & 0x1) << 4);
2976                 if (tx_queue > IGC_N0_QUEUE)
2977                         igc_write_ivar(hw, msix_vector,
2978                                        tx_queue >> 1,
2979                                        ((tx_queue & 0x1) << 4) + 8);
2980                 q_vector->eims_value = BIT(msix_vector);
2981                 break;
2982         default:
2983                 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2984                 break;
2985         }
2986
2987         /* add q_vector eims value to global eims_enable_mask */
2988         adapter->eims_enable_mask |= q_vector->eims_value;
2989
2990         /* configure q_vector to set itr on first interrupt */
2991         q_vector->set_itr = 1;
2992 }
2993
2994 /**
2995  * igc_configure_msix - Configure MSI-X hardware
2996  * @adapter: Pointer to adapter structure
2997  *
2998  * igc_configure_msix sets up the hardware to properly
2999  * generate MSI-X interrupts.
3000  */
3001 static void igc_configure_msix(struct igc_adapter *adapter)
3002 {
3003         struct igc_hw *hw = &adapter->hw;
3004         int i, vector = 0;
3005         u32 tmp;
3006
3007         adapter->eims_enable_mask = 0;
3008
3009         /* set vector for other causes, i.e. link changes */
3010         switch (hw->mac.type) {
3011         case igc_i225:
3012                 /* Turn on MSI-X capability first, or our settings
3013                  * won't stick.  And it will take days to debug.
3014                  */
3015                 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3016                      IGC_GPIE_PBA | IGC_GPIE_EIAME |
3017                      IGC_GPIE_NSICR);
3018
3019                 /* enable msix_other interrupt */
3020                 adapter->eims_other = BIT(vector);
3021                 tmp = (vector++ | IGC_IVAR_VALID) << 8;
3022
3023                 wr32(IGC_IVAR_MISC, tmp);
3024                 break;
3025         default:
3026                 /* do nothing, since nothing else supports MSI-X */
3027                 break;
3028         } /* switch (hw->mac.type) */
3029
3030         adapter->eims_enable_mask |= adapter->eims_other;
3031
3032         for (i = 0; i < adapter->num_q_vectors; i++)
3033                 igc_assign_vector(adapter->q_vector[i], vector++);
3034
3035         wrfl();
3036 }
3037
3038 /**
3039  * igc_irq_enable - Enable default interrupt generation settings
3040  * @adapter: board private structure
3041  */
3042 static void igc_irq_enable(struct igc_adapter *adapter)
3043 {
3044         struct igc_hw *hw = &adapter->hw;
3045
3046         if (adapter->msix_entries) {
3047                 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3048                 u32 regval = rd32(IGC_EIAC);
3049
3050                 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3051                 regval = rd32(IGC_EIAM);
3052                 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3053                 wr32(IGC_EIMS, adapter->eims_enable_mask);
3054                 wr32(IGC_IMS, ims);
3055         } else {
3056                 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3057                 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3058         }
3059 }
3060
3061 /**
3062  * igc_irq_disable - Mask off interrupt generation on the NIC
3063  * @adapter: board private structure
3064  */
3065 static void igc_irq_disable(struct igc_adapter *adapter)
3066 {
3067         struct igc_hw *hw = &adapter->hw;
3068
3069         if (adapter->msix_entries) {
3070                 u32 regval = rd32(IGC_EIAM);
3071
3072                 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3073                 wr32(IGC_EIMC, adapter->eims_enable_mask);
3074                 regval = rd32(IGC_EIAC);
3075                 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3076         }
3077
3078         wr32(IGC_IAM, 0);
3079         wr32(IGC_IMC, ~0);
3080         wrfl();
3081
3082         if (adapter->msix_entries) {
3083                 int vector = 0, i;
3084
3085                 synchronize_irq(adapter->msix_entries[vector++].vector);
3086
3087                 for (i = 0; i < adapter->num_q_vectors; i++)
3088                         synchronize_irq(adapter->msix_entries[vector++].vector);
3089         } else {
3090                 synchronize_irq(adapter->pdev->irq);
3091         }
3092 }
3093
3094 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3095                               const u32 max_rss_queues)
3096 {
3097         /* Determine if we need to pair queues. */
3098         /* If rss_queues > half of max_rss_queues, pair the queues in
3099          * order to conserve interrupts due to limited supply.
3100          */
3101         if (adapter->rss_queues > (max_rss_queues / 2))
3102                 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3103         else
3104                 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3105 }
3106
3107 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3108 {
3109         return IGC_MAX_RX_QUEUES;
3110 }
3111
3112 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3113 {
3114         u32 max_rss_queues;
3115
3116         max_rss_queues = igc_get_max_rss_queues(adapter);
3117         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3118
3119         igc_set_flag_queue_pairs(adapter, max_rss_queues);
3120 }
3121
3122 /**
3123  * igc_reset_q_vector - Reset config for interrupt vector
3124  * @adapter: board private structure to initialize
3125  * @v_idx: Index of vector to be reset
3126  *
3127  * If NAPI is enabled it will delete any references to the
3128  * NAPI struct. This is preparation for igc_free_q_vector.
3129  */
3130 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3131 {
3132         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3133
3134         /* if we're coming from igc_set_interrupt_capability, the vectors are
3135          * not yet allocated
3136          */
3137         if (!q_vector)
3138                 return;
3139
3140         if (q_vector->tx.ring)
3141                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3142
3143         if (q_vector->rx.ring)
3144                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3145
3146         netif_napi_del(&q_vector->napi);
3147 }
3148
3149 /**
3150  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3151  * @adapter: board private structure to initialize
3152  * @v_idx: Index of vector to be freed
3153  *
3154  * This function frees the memory allocated to the q_vector.
3155  */
3156 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3157 {
3158         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3159
3160         adapter->q_vector[v_idx] = NULL;
3161
3162         /* igc_get_stats64() might access the rings on this vector,
3163          * we must wait a grace period before freeing it.
3164          */
3165         if (q_vector)
3166                 kfree_rcu(q_vector, rcu);
3167 }
3168
3169 /**
3170  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3171  * @adapter: board private structure to initialize
3172  *
3173  * This function frees the memory allocated to the q_vectors.  In addition if
3174  * NAPI is enabled it will delete any references to the NAPI struct prior
3175  * to freeing the q_vector.
3176  */
3177 static void igc_free_q_vectors(struct igc_adapter *adapter)
3178 {
3179         int v_idx = adapter->num_q_vectors;
3180
3181         adapter->num_tx_queues = 0;
3182         adapter->num_rx_queues = 0;
3183         adapter->num_q_vectors = 0;
3184
3185         while (v_idx--) {
3186                 igc_reset_q_vector(adapter, v_idx);
3187                 igc_free_q_vector(adapter, v_idx);
3188         }
3189 }
3190
3191 /**
3192  * igc_update_itr - update the dynamic ITR value based on statistics
3193  * @q_vector: pointer to q_vector
3194  * @ring_container: ring info to update the itr for
3195  *
3196  * Stores a new ITR value based on packets and byte
3197  * counts during the last interrupt.  The advantage of per interrupt
3198  * computation is faster updates and more accurate ITR for the current
3199  * traffic pattern.  Constants in this function were computed
3200  * based on theoretical maximum wire speed and thresholds were set based
3201  * on testing data as well as attempting to minimize response time
3202  * while increasing bulk throughput.
3203  * NOTE: These calculations are only valid when operating in a single-
3204  * queue environment.
3205  */
3206 static void igc_update_itr(struct igc_q_vector *q_vector,
3207                            struct igc_ring_container *ring_container)
3208 {
3209         unsigned int packets = ring_container->total_packets;
3210         unsigned int bytes = ring_container->total_bytes;
3211         u8 itrval = ring_container->itr;
3212
3213         /* no packets, exit with status unchanged */
3214         if (packets == 0)
3215                 return;
3216
3217         switch (itrval) {
3218         case lowest_latency:
3219                 /* handle TSO and jumbo frames */
3220                 if (bytes / packets > 8000)
3221                         itrval = bulk_latency;
3222                 else if ((packets < 5) && (bytes > 512))
3223                         itrval = low_latency;
3224                 break;
3225         case low_latency:  /* 50 usec aka 20000 ints/s */
3226                 if (bytes > 10000) {
3227                         /* this if handles the TSO accounting */
3228                         if (bytes / packets > 8000)
3229                                 itrval = bulk_latency;
3230                         else if ((packets < 10) || ((bytes / packets) > 1200))
3231                                 itrval = bulk_latency;
3232                         else if ((packets > 35))
3233                                 itrval = lowest_latency;
3234                 } else if (bytes / packets > 2000) {
3235                         itrval = bulk_latency;
3236                 } else if (packets <= 2 && bytes < 512) {
3237                         itrval = lowest_latency;
3238                 }
3239                 break;
3240         case bulk_latency: /* 250 usec aka 4000 ints/s */
3241                 if (bytes > 25000) {
3242                         if (packets > 35)
3243                                 itrval = low_latency;
3244                 } else if (bytes < 1500) {
3245                         itrval = low_latency;
3246                 }
3247                 break;
3248         }
3249
3250         /* clear work counters since we have the values we need */
3251         ring_container->total_bytes = 0;
3252         ring_container->total_packets = 0;
3253
3254         /* write updated itr to ring container */
3255         ring_container->itr = itrval;
3256 }
3257
3258 static void igc_set_itr(struct igc_q_vector *q_vector)
3259 {
3260         struct igc_adapter *adapter = q_vector->adapter;
3261         u32 new_itr = q_vector->itr_val;
3262         u8 current_itr = 0;
3263
3264         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3265         switch (adapter->link_speed) {
3266         case SPEED_10:
3267         case SPEED_100:
3268                 current_itr = 0;
3269                 new_itr = IGC_4K_ITR;
3270                 goto set_itr_now;
3271         default:
3272                 break;
3273         }
3274
3275         igc_update_itr(q_vector, &q_vector->tx);
3276         igc_update_itr(q_vector, &q_vector->rx);
3277
3278         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3279
3280         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3281         if (current_itr == lowest_latency &&
3282             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3283             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3284                 current_itr = low_latency;
3285
3286         switch (current_itr) {
3287         /* counts and packets in update_itr are dependent on these numbers */
3288         case lowest_latency:
3289                 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3290                 break;
3291         case low_latency:
3292                 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3293                 break;
3294         case bulk_latency:
3295                 new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3296                 break;
3297         default:
3298                 break;
3299         }
3300
3301 set_itr_now:
3302         if (new_itr != q_vector->itr_val) {
3303                 /* this attempts to bias the interrupt rate towards Bulk
3304                  * by adding intermediate steps when interrupt rate is
3305                  * increasing
3306                  */
3307                 new_itr = new_itr > q_vector->itr_val ?
3308                           max((new_itr * q_vector->itr_val) /
3309                           (new_itr + (q_vector->itr_val >> 2)),
3310                           new_itr) : new_itr;
3311                 /* Don't write the value here; it resets the adapter's
3312                  * internal timer, and causes us to delay far longer than
3313                  * we should between interrupts.  Instead, we write the ITR
3314                  * value at the beginning of the next interrupt so the timing
3315                  * ends up being correct.
3316                  */
3317                 q_vector->itr_val = new_itr;
3318                 q_vector->set_itr = 1;
3319         }
3320 }
3321
3322 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3323 {
3324         int v_idx = adapter->num_q_vectors;
3325
3326         if (adapter->msix_entries) {
3327                 pci_disable_msix(adapter->pdev);
3328                 kfree(adapter->msix_entries);
3329                 adapter->msix_entries = NULL;
3330         } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3331                 pci_disable_msi(adapter->pdev);
3332         }
3333
3334         while (v_idx--)
3335                 igc_reset_q_vector(adapter, v_idx);
3336 }
3337
3338 /**
3339  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3340  * @adapter: Pointer to adapter structure
3341  * @msix: boolean value for MSI-X capability
3342  *
3343  * Attempt to configure interrupts using the best available
3344  * capabilities of the hardware and kernel.
3345  */
3346 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3347                                          bool msix)
3348 {
3349         int numvecs, i;
3350         int err;
3351
3352         if (!msix)
3353                 goto msi_only;
3354         adapter->flags |= IGC_FLAG_HAS_MSIX;
3355
3356         /* Number of supported queues. */
3357         adapter->num_rx_queues = adapter->rss_queues;
3358
3359         adapter->num_tx_queues = adapter->rss_queues;
3360
3361         /* start with one vector for every Rx queue */
3362         numvecs = adapter->num_rx_queues;
3363
3364         /* if Tx handler is separate add 1 for every Tx queue */
3365         if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3366                 numvecs += adapter->num_tx_queues;
3367
3368         /* store the number of vectors reserved for queues */
3369         adapter->num_q_vectors = numvecs;
3370
3371         /* add 1 vector for link status interrupts */
3372         numvecs++;
3373
3374         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3375                                         GFP_KERNEL);
3376
3377         if (!adapter->msix_entries)
3378                 return;
3379
3380         /* populate entry values */
3381         for (i = 0; i < numvecs; i++)
3382                 adapter->msix_entries[i].entry = i;
3383
3384         err = pci_enable_msix_range(adapter->pdev,
3385                                     adapter->msix_entries,
3386                                     numvecs,
3387                                     numvecs);
3388         if (err > 0)
3389                 return;
3390
3391         kfree(adapter->msix_entries);
3392         adapter->msix_entries = NULL;
3393
3394         igc_reset_interrupt_capability(adapter);
3395
3396 msi_only:
3397         adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3398
3399         adapter->rss_queues = 1;
3400         adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3401         adapter->num_rx_queues = 1;
3402         adapter->num_tx_queues = 1;
3403         adapter->num_q_vectors = 1;
3404         if (!pci_enable_msi(adapter->pdev))
3405                 adapter->flags |= IGC_FLAG_HAS_MSI;
3406 }
3407
3408 /**
3409  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3410  * @q_vector: pointer to q_vector
3411  *
3412  * Stores a new ITR value based on strictly on packet size.  This
3413  * algorithm is less sophisticated than that used in igc_update_itr,
3414  * due to the difficulty of synchronizing statistics across multiple
3415  * receive rings.  The divisors and thresholds used by this function
3416  * were determined based on theoretical maximum wire speed and testing
3417  * data, in order to minimize response time while increasing bulk
3418  * throughput.
3419  * NOTE: This function is called only when operating in a multiqueue
3420  * receive environment.
3421  */
3422 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3423 {
3424         struct igc_adapter *adapter = q_vector->adapter;
3425         int new_val = q_vector->itr_val;
3426         int avg_wire_size = 0;
3427         unsigned int packets;
3428
3429         /* For non-gigabit speeds, just fix the interrupt rate at 4000
3430          * ints/sec - ITR timer value of 120 ticks.
3431          */
3432         switch (adapter->link_speed) {
3433         case SPEED_10:
3434         case SPEED_100:
3435                 new_val = IGC_4K_ITR;
3436                 goto set_itr_val;
3437         default:
3438                 break;
3439         }
3440
3441         packets = q_vector->rx.total_packets;
3442         if (packets)
3443                 avg_wire_size = q_vector->rx.total_bytes / packets;
3444
3445         packets = q_vector->tx.total_packets;
3446         if (packets)
3447                 avg_wire_size = max_t(u32, avg_wire_size,
3448                                       q_vector->tx.total_bytes / packets);
3449
3450         /* if avg_wire_size isn't set no work was done */
3451         if (!avg_wire_size)
3452                 goto clear_counts;
3453
3454         /* Add 24 bytes to size to account for CRC, preamble, and gap */
3455         avg_wire_size += 24;
3456
3457         /* Don't starve jumbo frames */
3458         avg_wire_size = min(avg_wire_size, 3000);
3459
3460         /* Give a little boost to mid-size frames */
3461         if (avg_wire_size > 300 && avg_wire_size < 1200)
3462                 new_val = avg_wire_size / 3;
3463         else
3464                 new_val = avg_wire_size / 2;
3465
3466         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3467         if (new_val < IGC_20K_ITR &&
3468             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3469             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3470                 new_val = IGC_20K_ITR;
3471
3472 set_itr_val:
3473         if (new_val != q_vector->itr_val) {
3474                 q_vector->itr_val = new_val;
3475                 q_vector->set_itr = 1;
3476         }
3477 clear_counts:
3478         q_vector->rx.total_bytes = 0;
3479         q_vector->rx.total_packets = 0;
3480         q_vector->tx.total_bytes = 0;
3481         q_vector->tx.total_packets = 0;
3482 }
3483
3484 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3485 {
3486         struct igc_adapter *adapter = q_vector->adapter;
3487         struct igc_hw *hw = &adapter->hw;
3488
3489         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3490             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3491                 if (adapter->num_q_vectors == 1)
3492                         igc_set_itr(q_vector);
3493                 else
3494                         igc_update_ring_itr(q_vector);
3495         }
3496
3497         if (!test_bit(__IGC_DOWN, &adapter->state)) {
3498                 if (adapter->msix_entries)
3499                         wr32(IGC_EIMS, q_vector->eims_value);
3500                 else
3501                         igc_irq_enable(adapter);
3502         }
3503 }
3504
3505 static void igc_add_ring(struct igc_ring *ring,
3506                          struct igc_ring_container *head)
3507 {
3508         head->ring = ring;
3509         head->count++;
3510 }
3511
3512 /**
3513  * igc_cache_ring_register - Descriptor ring to register mapping
3514  * @adapter: board private structure to initialize
3515  *
3516  * Once we know the feature-set enabled for the device, we'll cache
3517  * the register offset the descriptor ring is assigned to.
3518  */
3519 static void igc_cache_ring_register(struct igc_adapter *adapter)
3520 {
3521         int i = 0, j = 0;
3522
3523         switch (adapter->hw.mac.type) {
3524         case igc_i225:
3525         default:
3526                 for (; i < adapter->num_rx_queues; i++)
3527                         adapter->rx_ring[i]->reg_idx = i;
3528                 for (; j < adapter->num_tx_queues; j++)
3529                         adapter->tx_ring[j]->reg_idx = j;
3530                 break;
3531         }
3532 }
3533
3534 /**
3535  * igc_poll - NAPI Rx polling callback
3536  * @napi: napi polling structure
3537  * @budget: count of how many packets we should handle
3538  */
3539 static int igc_poll(struct napi_struct *napi, int budget)
3540 {
3541         struct igc_q_vector *q_vector = container_of(napi,
3542                                                      struct igc_q_vector,
3543                                                      napi);
3544         bool clean_complete = true;
3545         int work_done = 0;
3546
3547         if (q_vector->tx.ring)
3548                 clean_complete = igc_clean_tx_irq(q_vector, budget);
3549
3550         if (q_vector->rx.ring) {
3551                 int cleaned = igc_clean_rx_irq(q_vector, budget);
3552
3553                 work_done += cleaned;
3554                 if (cleaned >= budget)
3555                         clean_complete = false;
3556         }
3557
3558         /* If all work not completed, return budget and keep polling */
3559         if (!clean_complete)
3560                 return budget;
3561
3562         /* Exit the polling mode, but don't re-enable interrupts if stack might
3563          * poll us due to busy-polling
3564          */
3565         if (likely(napi_complete_done(napi, work_done)))
3566                 igc_ring_irq_enable(q_vector);
3567
3568         return min(work_done, budget - 1);
3569 }
3570
3571 /**
3572  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3573  * @adapter: board private structure to initialize
3574  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3575  * @v_idx: index of vector in adapter struct
3576  * @txr_count: total number of Tx rings to allocate
3577  * @txr_idx: index of first Tx ring to allocate
3578  * @rxr_count: total number of Rx rings to allocate
3579  * @rxr_idx: index of first Rx ring to allocate
3580  *
3581  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3582  */
3583 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3584                               unsigned int v_count, unsigned int v_idx,
3585                               unsigned int txr_count, unsigned int txr_idx,
3586                               unsigned int rxr_count, unsigned int rxr_idx)
3587 {
3588         struct igc_q_vector *q_vector;
3589         struct igc_ring *ring;
3590         int ring_count;
3591
3592         /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3593         if (txr_count > 1 || rxr_count > 1)
3594                 return -ENOMEM;
3595
3596         ring_count = txr_count + rxr_count;
3597
3598         /* allocate q_vector and rings */
3599         q_vector = adapter->q_vector[v_idx];
3600         if (!q_vector)
3601                 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3602                                    GFP_KERNEL);
3603         else
3604                 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3605         if (!q_vector)
3606                 return -ENOMEM;
3607
3608         /* initialize NAPI */
3609         netif_napi_add(adapter->netdev, &q_vector->napi,
3610                        igc_poll, 64);
3611
3612         /* tie q_vector and adapter together */
3613         adapter->q_vector[v_idx] = q_vector;
3614         q_vector->adapter = adapter;
3615
3616         /* initialize work limits */
3617         q_vector->tx.work_limit = adapter->tx_work_limit;
3618
3619         /* initialize ITR configuration */
3620         q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3621         q_vector->itr_val = IGC_START_ITR;
3622
3623         /* initialize pointer to rings */
3624         ring = q_vector->ring;
3625
3626         /* initialize ITR */
3627         if (rxr_count) {
3628                 /* rx or rx/tx vector */
3629                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3630                         q_vector->itr_val = adapter->rx_itr_setting;
3631         } else {
3632                 /* tx only vector */
3633                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3634                         q_vector->itr_val = adapter->tx_itr_setting;
3635         }
3636
3637         if (txr_count) {
3638                 /* assign generic ring traits */
3639                 ring->dev = &adapter->pdev->dev;
3640                 ring->netdev = adapter->netdev;
3641
3642                 /* configure backlink on ring */
3643                 ring->q_vector = q_vector;
3644
3645                 /* update q_vector Tx values */
3646                 igc_add_ring(ring, &q_vector->tx);
3647
3648                 /* apply Tx specific ring traits */
3649                 ring->count = adapter->tx_ring_count;
3650                 ring->queue_index = txr_idx;
3651
3652                 /* assign ring to adapter */
3653                 adapter->tx_ring[txr_idx] = ring;
3654
3655                 /* push pointer to next ring */
3656                 ring++;
3657         }
3658
3659         if (rxr_count) {
3660                 /* assign generic ring traits */
3661                 ring->dev = &adapter->pdev->dev;
3662                 ring->netdev = adapter->netdev;
3663
3664                 /* configure backlink on ring */
3665                 ring->q_vector = q_vector;
3666
3667                 /* update q_vector Rx values */
3668                 igc_add_ring(ring, &q_vector->rx);
3669
3670                 /* apply Rx specific ring traits */
3671                 ring->count = adapter->rx_ring_count;
3672                 ring->queue_index = rxr_idx;
3673
3674                 /* assign ring to adapter */
3675                 adapter->rx_ring[rxr_idx] = ring;
3676         }
3677
3678         return 0;
3679 }
3680
3681 /**
3682  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3683  * @adapter: board private structure to initialize
3684  *
3685  * We allocate one q_vector per queue interrupt.  If allocation fails we
3686  * return -ENOMEM.
3687  */
3688 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3689 {
3690         int rxr_remaining = adapter->num_rx_queues;
3691         int txr_remaining = adapter->num_tx_queues;
3692         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3693         int q_vectors = adapter->num_q_vectors;
3694         int err;
3695
3696         if (q_vectors >= (rxr_remaining + txr_remaining)) {
3697                 for (; rxr_remaining; v_idx++) {
3698                         err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3699                                                  0, 0, 1, rxr_idx);
3700
3701                         if (err)
3702                                 goto err_out;
3703
3704                         /* update counts and index */
3705                         rxr_remaining--;
3706                         rxr_idx++;
3707                 }
3708         }
3709
3710         for (; v_idx < q_vectors; v_idx++) {
3711                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3712                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3713
3714                 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3715                                          tqpv, txr_idx, rqpv, rxr_idx);
3716
3717                 if (err)
3718                         goto err_out;
3719
3720                 /* update counts and index */
3721                 rxr_remaining -= rqpv;
3722                 txr_remaining -= tqpv;
3723                 rxr_idx++;
3724                 txr_idx++;
3725         }
3726
3727         return 0;
3728
3729 err_out:
3730         adapter->num_tx_queues = 0;
3731         adapter->num_rx_queues = 0;
3732         adapter->num_q_vectors = 0;
3733
3734         while (v_idx--)
3735                 igc_free_q_vector(adapter, v_idx);
3736
3737         return -ENOMEM;
3738 }
3739
3740 /**
3741  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3742  * @adapter: Pointer to adapter structure
3743  * @msix: boolean for MSI-X capability
3744  *
3745  * This function initializes the interrupts and allocates all of the queues.
3746  */
3747 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3748 {
3749         struct net_device *dev = adapter->netdev;
3750         int err = 0;
3751
3752         igc_set_interrupt_capability(adapter, msix);
3753
3754         err = igc_alloc_q_vectors(adapter);
3755         if (err) {
3756                 netdev_err(dev, "Unable to allocate memory for vectors\n");
3757                 goto err_alloc_q_vectors;
3758         }
3759
3760         igc_cache_ring_register(adapter);
3761
3762         return 0;
3763
3764 err_alloc_q_vectors:
3765         igc_reset_interrupt_capability(adapter);
3766         return err;
3767 }
3768
3769 /**
3770  * igc_sw_init - Initialize general software structures (struct igc_adapter)
3771  * @adapter: board private structure to initialize
3772  *
3773  * igc_sw_init initializes the Adapter private data structure.
3774  * Fields are initialized based on PCI device information and
3775  * OS network device settings (MTU size).
3776  */
3777 static int igc_sw_init(struct igc_adapter *adapter)
3778 {
3779         struct net_device *netdev = adapter->netdev;
3780         struct pci_dev *pdev = adapter->pdev;
3781         struct igc_hw *hw = &adapter->hw;
3782
3783         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3784
3785         /* set default ring sizes */
3786         adapter->tx_ring_count = IGC_DEFAULT_TXD;
3787         adapter->rx_ring_count = IGC_DEFAULT_RXD;
3788
3789         /* set default ITR values */
3790         adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3791         adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3792
3793         /* set default work limits */
3794         adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3795
3796         /* adjust max frame to be at least the size of a standard frame */
3797         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3798                                 VLAN_HLEN;
3799         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3800
3801         mutex_init(&adapter->nfc_rule_lock);
3802         INIT_LIST_HEAD(&adapter->nfc_rule_list);
3803         adapter->nfc_rule_count = 0;
3804
3805         spin_lock_init(&adapter->stats64_lock);
3806         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3807         adapter->flags |= IGC_FLAG_HAS_MSIX;
3808
3809         igc_init_queue_configuration(adapter);
3810
3811         /* This call may decrease the number of queues */
3812         if (igc_init_interrupt_scheme(adapter, true)) {
3813                 netdev_err(netdev, "Unable to allocate memory for queues\n");
3814                 return -ENOMEM;
3815         }
3816
3817         /* Explicitly disable IRQ since the NIC can be in any state. */
3818         igc_irq_disable(adapter);
3819
3820         set_bit(__IGC_DOWN, &adapter->state);
3821
3822         return 0;
3823 }
3824
3825 /**
3826  * igc_up - Open the interface and prepare it to handle traffic
3827  * @adapter: board private structure
3828  */
3829 void igc_up(struct igc_adapter *adapter)
3830 {
3831         struct igc_hw *hw = &adapter->hw;
3832         int i = 0;
3833
3834         /* hardware has been reset, we need to reload some things */
3835         igc_configure(adapter);
3836
3837         clear_bit(__IGC_DOWN, &adapter->state);
3838
3839         for (i = 0; i < adapter->num_q_vectors; i++)
3840                 napi_enable(&adapter->q_vector[i]->napi);
3841
3842         if (adapter->msix_entries)
3843                 igc_configure_msix(adapter);
3844         else
3845                 igc_assign_vector(adapter->q_vector[0], 0);
3846
3847         /* Clear any pending interrupts. */
3848         rd32(IGC_ICR);
3849         igc_irq_enable(adapter);
3850
3851         netif_tx_start_all_queues(adapter->netdev);
3852
3853         /* start the watchdog. */
3854         hw->mac.get_link_status = true;
3855         schedule_work(&adapter->watchdog_task);
3856 }
3857
3858 /**
3859  * igc_update_stats - Update the board statistics counters
3860  * @adapter: board private structure
3861  */
3862 void igc_update_stats(struct igc_adapter *adapter)
3863 {
3864         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3865         struct pci_dev *pdev = adapter->pdev;
3866         struct igc_hw *hw = &adapter->hw;
3867         u64 _bytes, _packets;
3868         u64 bytes, packets;
3869         unsigned int start;
3870         u32 mpc;
3871         int i;
3872
3873         /* Prevent stats update while adapter is being reset, or if the pci
3874          * connection is down.
3875          */
3876         if (adapter->link_speed == 0)
3877                 return;
3878         if (pci_channel_offline(pdev))
3879                 return;
3880
3881         packets = 0;
3882         bytes = 0;
3883
3884         rcu_read_lock();
3885         for (i = 0; i < adapter->num_rx_queues; i++) {
3886                 struct igc_ring *ring = adapter->rx_ring[i];
3887                 u32 rqdpc = rd32(IGC_RQDPC(i));
3888
3889                 if (hw->mac.type >= igc_i225)
3890                         wr32(IGC_RQDPC(i), 0);
3891
3892                 if (rqdpc) {
3893                         ring->rx_stats.drops += rqdpc;
3894                         net_stats->rx_fifo_errors += rqdpc;
3895                 }
3896
3897                 do {
3898                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3899                         _bytes = ring->rx_stats.bytes;
3900                         _packets = ring->rx_stats.packets;
3901                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3902                 bytes += _bytes;
3903                 packets += _packets;
3904         }
3905
3906         net_stats->rx_bytes = bytes;
3907         net_stats->rx_packets = packets;
3908
3909         packets = 0;
3910         bytes = 0;
3911         for (i = 0; i < adapter->num_tx_queues; i++) {
3912                 struct igc_ring *ring = adapter->tx_ring[i];
3913
3914                 do {
3915                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3916                         _bytes = ring->tx_stats.bytes;
3917                         _packets = ring->tx_stats.packets;
3918                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3919                 bytes += _bytes;
3920                 packets += _packets;
3921         }
3922         net_stats->tx_bytes = bytes;
3923         net_stats->tx_packets = packets;
3924         rcu_read_unlock();
3925
3926         /* read stats registers */
3927         adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3928         adapter->stats.gprc += rd32(IGC_GPRC);
3929         adapter->stats.gorc += rd32(IGC_GORCL);
3930         rd32(IGC_GORCH); /* clear GORCL */
3931         adapter->stats.bprc += rd32(IGC_BPRC);
3932         adapter->stats.mprc += rd32(IGC_MPRC);
3933         adapter->stats.roc += rd32(IGC_ROC);
3934
3935         adapter->stats.prc64 += rd32(IGC_PRC64);
3936         adapter->stats.prc127 += rd32(IGC_PRC127);
3937         adapter->stats.prc255 += rd32(IGC_PRC255);
3938         adapter->stats.prc511 += rd32(IGC_PRC511);
3939         adapter->stats.prc1023 += rd32(IGC_PRC1023);
3940         adapter->stats.prc1522 += rd32(IGC_PRC1522);
3941         adapter->stats.tlpic += rd32(IGC_TLPIC);
3942         adapter->stats.rlpic += rd32(IGC_RLPIC);
3943         adapter->stats.hgptc += rd32(IGC_HGPTC);
3944
3945         mpc = rd32(IGC_MPC);
3946         adapter->stats.mpc += mpc;
3947         net_stats->rx_fifo_errors += mpc;
3948         adapter->stats.scc += rd32(IGC_SCC);
3949         adapter->stats.ecol += rd32(IGC_ECOL);
3950         adapter->stats.mcc += rd32(IGC_MCC);
3951         adapter->stats.latecol += rd32(IGC_LATECOL);
3952         adapter->stats.dc += rd32(IGC_DC);
3953         adapter->stats.rlec += rd32(IGC_RLEC);
3954         adapter->stats.xonrxc += rd32(IGC_XONRXC);
3955         adapter->stats.xontxc += rd32(IGC_XONTXC);
3956         adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3957         adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3958         adapter->stats.fcruc += rd32(IGC_FCRUC);
3959         adapter->stats.gptc += rd32(IGC_GPTC);
3960         adapter->stats.gotc += rd32(IGC_GOTCL);
3961         rd32(IGC_GOTCH); /* clear GOTCL */
3962         adapter->stats.rnbc += rd32(IGC_RNBC);
3963         adapter->stats.ruc += rd32(IGC_RUC);
3964         adapter->stats.rfc += rd32(IGC_RFC);
3965         adapter->stats.rjc += rd32(IGC_RJC);
3966         adapter->stats.tor += rd32(IGC_TORH);
3967         adapter->stats.tot += rd32(IGC_TOTH);
3968         adapter->stats.tpr += rd32(IGC_TPR);
3969
3970         adapter->stats.ptc64 += rd32(IGC_PTC64);
3971         adapter->stats.ptc127 += rd32(IGC_PTC127);
3972         adapter->stats.ptc255 += rd32(IGC_PTC255);
3973         adapter->stats.ptc511 += rd32(IGC_PTC511);
3974         adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3975         adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3976
3977         adapter->stats.mptc += rd32(IGC_MPTC);
3978         adapter->stats.bptc += rd32(IGC_BPTC);
3979
3980         adapter->stats.tpt += rd32(IGC_TPT);
3981         adapter->stats.colc += rd32(IGC_COLC);
3982         adapter->stats.colc += rd32(IGC_RERC);
3983
3984         adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3985
3986         adapter->stats.tsctc += rd32(IGC_TSCTC);
3987
3988         adapter->stats.iac += rd32(IGC_IAC);
3989
3990         /* Fill out the OS statistics structure */
3991         net_stats->multicast = adapter->stats.mprc;
3992         net_stats->collisions = adapter->stats.colc;
3993
3994         /* Rx Errors */
3995
3996         /* RLEC on some newer hardware can be incorrect so build
3997          * our own version based on RUC and ROC
3998          */
3999         net_stats->rx_errors = adapter->stats.rxerrc +
4000                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4001                 adapter->stats.ruc + adapter->stats.roc +
4002                 adapter->stats.cexterr;
4003         net_stats->rx_length_errors = adapter->stats.ruc +
4004                                       adapter->stats.roc;
4005         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4006         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4007         net_stats->rx_missed_errors = adapter->stats.mpc;
4008
4009         /* Tx Errors */
4010         net_stats->tx_errors = adapter->stats.ecol +
4011                                adapter->stats.latecol;
4012         net_stats->tx_aborted_errors = adapter->stats.ecol;
4013         net_stats->tx_window_errors = adapter->stats.latecol;
4014         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4015
4016         /* Tx Dropped needs to be maintained elsewhere */
4017
4018         /* Management Stats */
4019         adapter->stats.mgptc += rd32(IGC_MGTPTC);
4020         adapter->stats.mgprc += rd32(IGC_MGTPRC);
4021         adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4022 }
4023
4024 /**
4025  * igc_down - Close the interface
4026  * @adapter: board private structure
4027  */
4028 void igc_down(struct igc_adapter *adapter)
4029 {
4030         struct net_device *netdev = adapter->netdev;
4031         struct igc_hw *hw = &adapter->hw;
4032         u32 tctl, rctl;
4033         int i = 0;
4034
4035         set_bit(__IGC_DOWN, &adapter->state);
4036
4037         igc_ptp_suspend(adapter);
4038
4039         /* disable receives in the hardware */
4040         rctl = rd32(IGC_RCTL);
4041         wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4042         /* flush and sleep below */
4043
4044         /* set trans_start so we don't get spurious watchdogs during reset */
4045         netif_trans_update(netdev);
4046
4047         netif_carrier_off(netdev);
4048         netif_tx_stop_all_queues(netdev);
4049
4050         /* disable transmits in the hardware */
4051         tctl = rd32(IGC_TCTL);
4052         tctl &= ~IGC_TCTL_EN;
4053         wr32(IGC_TCTL, tctl);
4054         /* flush both disables and wait for them to finish */
4055         wrfl();
4056         usleep_range(10000, 20000);
4057
4058         igc_irq_disable(adapter);
4059
4060         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4061
4062         for (i = 0; i < adapter->num_q_vectors; i++) {
4063                 if (adapter->q_vector[i]) {
4064                         napi_synchronize(&adapter->q_vector[i]->napi);
4065                         napi_disable(&adapter->q_vector[i]->napi);
4066                 }
4067         }
4068
4069         del_timer_sync(&adapter->watchdog_timer);
4070         del_timer_sync(&adapter->phy_info_timer);
4071
4072         /* record the stats before reset*/
4073         spin_lock(&adapter->stats64_lock);
4074         igc_update_stats(adapter);
4075         spin_unlock(&adapter->stats64_lock);
4076
4077         adapter->link_speed = 0;
4078         adapter->link_duplex = 0;
4079
4080         if (!pci_channel_offline(adapter->pdev))
4081                 igc_reset(adapter);
4082
4083         /* clear VLAN promisc flag so VFTA will be updated if necessary */
4084         adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4085
4086         igc_clean_all_tx_rings(adapter);
4087         igc_clean_all_rx_rings(adapter);
4088 }
4089
4090 void igc_reinit_locked(struct igc_adapter *adapter)
4091 {
4092         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4093                 usleep_range(1000, 2000);
4094         igc_down(adapter);
4095         igc_up(adapter);
4096         clear_bit(__IGC_RESETTING, &adapter->state);
4097 }
4098
4099 static void igc_reset_task(struct work_struct *work)
4100 {
4101         struct igc_adapter *adapter;
4102
4103         adapter = container_of(work, struct igc_adapter, reset_task);
4104
4105         rtnl_lock();
4106         /* If we're already down or resetting, just bail */
4107         if (test_bit(__IGC_DOWN, &adapter->state) ||
4108             test_bit(__IGC_RESETTING, &adapter->state)) {
4109                 rtnl_unlock();
4110                 return;
4111         }
4112
4113         igc_rings_dump(adapter);
4114         igc_regs_dump(adapter);
4115         netdev_err(adapter->netdev, "Reset adapter\n");
4116         igc_reinit_locked(adapter);
4117         rtnl_unlock();
4118 }
4119
4120 /**
4121  * igc_change_mtu - Change the Maximum Transfer Unit
4122  * @netdev: network interface device structure
4123  * @new_mtu: new value for maximum frame size
4124  *
4125  * Returns 0 on success, negative on failure
4126  */
4127 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4128 {
4129         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4130         struct igc_adapter *adapter = netdev_priv(netdev);
4131
4132         if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4133                 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4134                 return -EINVAL;
4135         }
4136
4137         /* adjust max frame to be at least the size of a standard frame */
4138         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4139                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4140
4141         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4142                 usleep_range(1000, 2000);
4143
4144         /* igc_down has a dependency on max_frame_size */
4145         adapter->max_frame_size = max_frame;
4146
4147         if (netif_running(netdev))
4148                 igc_down(adapter);
4149
4150         netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4151         netdev->mtu = new_mtu;
4152
4153         if (netif_running(netdev))
4154                 igc_up(adapter);
4155         else
4156                 igc_reset(adapter);
4157
4158         clear_bit(__IGC_RESETTING, &adapter->state);
4159
4160         return 0;
4161 }
4162
4163 /**
4164  * igc_get_stats64 - Get System Network Statistics
4165  * @netdev: network interface device structure
4166  * @stats: rtnl_link_stats64 pointer
4167  *
4168  * Returns the address of the device statistics structure.
4169  * The statistics are updated here and also from the timer callback.
4170  */
4171 static void igc_get_stats64(struct net_device *netdev,
4172                             struct rtnl_link_stats64 *stats)
4173 {
4174         struct igc_adapter *adapter = netdev_priv(netdev);
4175
4176         spin_lock(&adapter->stats64_lock);
4177         if (!test_bit(__IGC_RESETTING, &adapter->state))
4178                 igc_update_stats(adapter);
4179         memcpy(stats, &adapter->stats64, sizeof(*stats));
4180         spin_unlock(&adapter->stats64_lock);
4181 }
4182
4183 static netdev_features_t igc_fix_features(struct net_device *netdev,
4184                                           netdev_features_t features)
4185 {
4186         /* Since there is no support for separate Rx/Tx vlan accel
4187          * enable/disable make sure Tx flag is always in same state as Rx.
4188          */
4189         if (features & NETIF_F_HW_VLAN_CTAG_RX)
4190                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4191         else
4192                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4193
4194         return features;
4195 }
4196
4197 static int igc_set_features(struct net_device *netdev,
4198                             netdev_features_t features)
4199 {
4200         netdev_features_t changed = netdev->features ^ features;
4201         struct igc_adapter *adapter = netdev_priv(netdev);
4202
4203         /* Add VLAN support */
4204         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4205                 return 0;
4206
4207         if (!(features & NETIF_F_NTUPLE))
4208                 igc_flush_nfc_rules(adapter);
4209
4210         netdev->features = features;
4211
4212         if (netif_running(netdev))
4213                 igc_reinit_locked(adapter);
4214         else
4215                 igc_reset(adapter);
4216
4217         return 1;
4218 }
4219
4220 static netdev_features_t
4221 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4222                    netdev_features_t features)
4223 {
4224         unsigned int network_hdr_len, mac_hdr_len;
4225
4226         /* Make certain the headers can be described by a context descriptor */
4227         mac_hdr_len = skb_network_header(skb) - skb->data;
4228         if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4229                 return features & ~(NETIF_F_HW_CSUM |
4230                                     NETIF_F_SCTP_CRC |
4231                                     NETIF_F_HW_VLAN_CTAG_TX |
4232                                     NETIF_F_TSO |
4233                                     NETIF_F_TSO6);
4234
4235         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4236         if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4237                 return features & ~(NETIF_F_HW_CSUM |
4238                                     NETIF_F_SCTP_CRC |
4239                                     NETIF_F_TSO |
4240                                     NETIF_F_TSO6);
4241
4242         /* We can only support IPv4 TSO in tunnels if we can mangle the
4243          * inner IP ID field, so strip TSO if MANGLEID is not supported.
4244          */
4245         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4246                 features &= ~NETIF_F_TSO;
4247
4248         return features;
4249 }
4250
4251 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4252 {
4253         u32 ack, tsauxc, sec, nsec, tsicr;
4254         struct igc_hw *hw = &adapter->hw;
4255         struct ptp_clock_event event;
4256         struct timespec64 ts;
4257
4258         tsicr = rd32(IGC_TSICR);
4259         ack = 0;
4260
4261         if (tsicr & IGC_TSICR_SYS_WRAP) {
4262                 event.type = PTP_CLOCK_PPS;
4263                 if (adapter->ptp_caps.pps)
4264                         ptp_clock_event(adapter->ptp_clock, &event);
4265                 ack |= IGC_TSICR_SYS_WRAP;
4266         }
4267
4268         if (tsicr & IGC_TSICR_TXTS) {
4269                 /* retrieve hardware timestamp */
4270                 schedule_work(&adapter->ptp_tx_work);
4271                 ack |= IGC_TSICR_TXTS;
4272         }
4273
4274         if (tsicr & IGC_TSICR_TT0) {
4275                 spin_lock(&adapter->tmreg_lock);
4276                 ts = timespec64_add(adapter->perout[0].start,
4277                                     adapter->perout[0].period);
4278                 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4279                 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
4280                 tsauxc = rd32(IGC_TSAUXC);
4281                 tsauxc |= IGC_TSAUXC_EN_TT0;
4282                 wr32(IGC_TSAUXC, tsauxc);
4283                 adapter->perout[0].start = ts;
4284                 spin_unlock(&adapter->tmreg_lock);
4285                 ack |= IGC_TSICR_TT0;
4286         }
4287
4288         if (tsicr & IGC_TSICR_TT1) {
4289                 spin_lock(&adapter->tmreg_lock);
4290                 ts = timespec64_add(adapter->perout[1].start,
4291                                     adapter->perout[1].period);
4292                 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4293                 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
4294                 tsauxc = rd32(IGC_TSAUXC);
4295                 tsauxc |= IGC_TSAUXC_EN_TT1;
4296                 wr32(IGC_TSAUXC, tsauxc);
4297                 adapter->perout[1].start = ts;
4298                 spin_unlock(&adapter->tmreg_lock);
4299                 ack |= IGC_TSICR_TT1;
4300         }
4301
4302         if (tsicr & IGC_TSICR_AUTT0) {
4303                 nsec = rd32(IGC_AUXSTMPL0);
4304                 sec  = rd32(IGC_AUXSTMPH0);
4305                 event.type = PTP_CLOCK_EXTTS;
4306                 event.index = 0;
4307                 event.timestamp = sec * NSEC_PER_SEC + nsec;
4308                 ptp_clock_event(adapter->ptp_clock, &event);
4309                 ack |= IGC_TSICR_AUTT0;
4310         }
4311
4312         if (tsicr & IGC_TSICR_AUTT1) {
4313                 nsec = rd32(IGC_AUXSTMPL1);
4314                 sec  = rd32(IGC_AUXSTMPH1);
4315                 event.type = PTP_CLOCK_EXTTS;
4316                 event.index = 1;
4317                 event.timestamp = sec * NSEC_PER_SEC + nsec;
4318                 ptp_clock_event(adapter->ptp_clock, &event);
4319                 ack |= IGC_TSICR_AUTT1;
4320         }
4321
4322         /* acknowledge the interrupts */
4323         wr32(IGC_TSICR, ack);
4324 }
4325
4326 /**
4327  * igc_msix_other - msix other interrupt handler
4328  * @irq: interrupt number
4329  * @data: pointer to a q_vector
4330  */
4331 static irqreturn_t igc_msix_other(int irq, void *data)
4332 {
4333         struct igc_adapter *adapter = data;
4334         struct igc_hw *hw = &adapter->hw;
4335         u32 icr = rd32(IGC_ICR);
4336
4337         /* reading ICR causes bit 31 of EICR to be cleared */
4338         if (icr & IGC_ICR_DRSTA)
4339                 schedule_work(&adapter->reset_task);
4340
4341         if (icr & IGC_ICR_DOUTSYNC) {
4342                 /* HW is reporting DMA is out of sync */
4343                 adapter->stats.doosync++;
4344         }
4345
4346         if (icr & IGC_ICR_LSC) {
4347                 hw->mac.get_link_status = true;
4348                 /* guard against interrupt when we're going down */
4349                 if (!test_bit(__IGC_DOWN, &adapter->state))
4350                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4351         }
4352
4353         if (icr & IGC_ICR_TS)
4354                 igc_tsync_interrupt(adapter);
4355
4356         wr32(IGC_EIMS, adapter->eims_other);
4357
4358         return IRQ_HANDLED;
4359 }
4360
4361 static void igc_write_itr(struct igc_q_vector *q_vector)
4362 {
4363         u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4364
4365         if (!q_vector->set_itr)
4366                 return;
4367
4368         if (!itr_val)
4369                 itr_val = IGC_ITR_VAL_MASK;
4370
4371         itr_val |= IGC_EITR_CNT_IGNR;
4372
4373         writel(itr_val, q_vector->itr_register);
4374         q_vector->set_itr = 0;
4375 }
4376
4377 static irqreturn_t igc_msix_ring(int irq, void *data)
4378 {
4379         struct igc_q_vector *q_vector = data;
4380
4381         /* Write the ITR value calculated from the previous interrupt. */
4382         igc_write_itr(q_vector);
4383
4384         napi_schedule(&q_vector->napi);
4385
4386         return IRQ_HANDLED;
4387 }
4388
4389 /**
4390  * igc_request_msix - Initialize MSI-X interrupts
4391  * @adapter: Pointer to adapter structure
4392  *
4393  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4394  * kernel.
4395  */
4396 static int igc_request_msix(struct igc_adapter *adapter)
4397 {
4398         int i = 0, err = 0, vector = 0, free_vector = 0;
4399         struct net_device *netdev = adapter->netdev;
4400
4401         err = request_irq(adapter->msix_entries[vector].vector,
4402                           &igc_msix_other, 0, netdev->name, adapter);
4403         if (err)
4404                 goto err_out;
4405
4406         for (i = 0; i < adapter->num_q_vectors; i++) {
4407                 struct igc_q_vector *q_vector = adapter->q_vector[i];
4408
4409                 vector++;
4410
4411                 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4412
4413                 if (q_vector->rx.ring && q_vector->tx.ring)
4414                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4415                                 q_vector->rx.ring->queue_index);
4416                 else if (q_vector->tx.ring)
4417                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4418                                 q_vector->tx.ring->queue_index);
4419                 else if (q_vector->rx.ring)
4420                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4421                                 q_vector->rx.ring->queue_index);
4422                 else
4423                         sprintf(q_vector->name, "%s-unused", netdev->name);
4424
4425                 err = request_irq(adapter->msix_entries[vector].vector,
4426                                   igc_msix_ring, 0, q_vector->name,
4427                                   q_vector);
4428                 if (err)
4429                         goto err_free;
4430         }
4431
4432         igc_configure_msix(adapter);
4433         return 0;
4434
4435 err_free:
4436         /* free already assigned IRQs */
4437         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4438
4439         vector--;
4440         for (i = 0; i < vector; i++) {
4441                 free_irq(adapter->msix_entries[free_vector++].vector,
4442                          adapter->q_vector[i]);
4443         }
4444 err_out:
4445         return err;
4446 }
4447
4448 /**
4449  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4450  * @adapter: Pointer to adapter structure
4451  *
4452  * This function resets the device so that it has 0 rx queues, tx queues, and
4453  * MSI-X interrupts allocated.
4454  */
4455 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4456 {
4457         igc_free_q_vectors(adapter);
4458         igc_reset_interrupt_capability(adapter);
4459 }
4460
4461 /* Need to wait a few seconds after link up to get diagnostic information from
4462  * the phy
4463  */
4464 static void igc_update_phy_info(struct timer_list *t)
4465 {
4466         struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4467
4468         igc_get_phy_info(&adapter->hw);
4469 }
4470
4471 /**
4472  * igc_has_link - check shared code for link and determine up/down
4473  * @adapter: pointer to driver private info
4474  */
4475 bool igc_has_link(struct igc_adapter *adapter)
4476 {
4477         struct igc_hw *hw = &adapter->hw;
4478         bool link_active = false;
4479
4480         /* get_link_status is set on LSC (link status) interrupt or
4481          * rx sequence error interrupt.  get_link_status will stay
4482          * false until the igc_check_for_link establishes link
4483          * for copper adapters ONLY
4484          */
4485         switch (hw->phy.media_type) {
4486         case igc_media_type_copper:
4487                 if (!hw->mac.get_link_status)
4488                         return true;
4489                 hw->mac.ops.check_for_link(hw);
4490                 link_active = !hw->mac.get_link_status;
4491                 break;
4492         default:
4493         case igc_media_type_unknown:
4494                 break;
4495         }
4496
4497         if (hw->mac.type == igc_i225 &&
4498             hw->phy.id == I225_I_PHY_ID) {
4499                 if (!netif_carrier_ok(adapter->netdev)) {
4500                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4501                 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4502                         adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4503                         adapter->link_check_timeout = jiffies;
4504                 }
4505         }
4506
4507         return link_active;
4508 }
4509
4510 /**
4511  * igc_watchdog - Timer Call-back
4512  * @t: timer for the watchdog
4513  */
4514 static void igc_watchdog(struct timer_list *t)
4515 {
4516         struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4517         /* Do the rest outside of interrupt context */
4518         schedule_work(&adapter->watchdog_task);
4519 }
4520
4521 static void igc_watchdog_task(struct work_struct *work)
4522 {
4523         struct igc_adapter *adapter = container_of(work,
4524                                                    struct igc_adapter,
4525                                                    watchdog_task);
4526         struct net_device *netdev = adapter->netdev;
4527         struct igc_hw *hw = &adapter->hw;
4528         struct igc_phy_info *phy = &hw->phy;
4529         u16 phy_data, retry_count = 20;
4530         u32 link;
4531         int i;
4532
4533         link = igc_has_link(adapter);
4534
4535         if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4536                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4537                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4538                 else
4539                         link = false;
4540         }
4541
4542         if (link) {
4543                 /* Cancel scheduled suspend requests. */
4544                 pm_runtime_resume(netdev->dev.parent);
4545
4546                 if (!netif_carrier_ok(netdev)) {
4547                         u32 ctrl;
4548
4549                         hw->mac.ops.get_speed_and_duplex(hw,
4550                                                          &adapter->link_speed,
4551                                                          &adapter->link_duplex);
4552
4553                         ctrl = rd32(IGC_CTRL);
4554                         /* Link status message must follow this format */
4555                         netdev_info(netdev,
4556                                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4557                                     adapter->link_speed,
4558                                     adapter->link_duplex == FULL_DUPLEX ?
4559                                     "Full" : "Half",
4560                                     (ctrl & IGC_CTRL_TFCE) &&
4561                                     (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4562                                     (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4563                                     (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4564
4565                         /* disable EEE if enabled */
4566                         if ((adapter->flags & IGC_FLAG_EEE) &&
4567                             adapter->link_duplex == HALF_DUPLEX) {
4568                                 netdev_info(netdev,
4569                                             "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4570                                 adapter->hw.dev_spec._base.eee_enable = false;
4571                                 adapter->flags &= ~IGC_FLAG_EEE;
4572                         }
4573
4574                         /* check if SmartSpeed worked */
4575                         igc_check_downshift(hw);
4576                         if (phy->speed_downgraded)
4577                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4578
4579                         /* adjust timeout factor according to speed/duplex */
4580                         adapter->tx_timeout_factor = 1;
4581                         switch (adapter->link_speed) {
4582                         case SPEED_10:
4583                                 adapter->tx_timeout_factor = 14;
4584                                 break;
4585                         case SPEED_100:
4586                                 /* maybe add some timeout factor ? */
4587                                 break;
4588                         }
4589
4590                         if (adapter->link_speed != SPEED_1000)
4591                                 goto no_wait;
4592
4593                         /* wait for Remote receiver status OK */
4594 retry_read_status:
4595                         if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4596                                               &phy_data)) {
4597                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4598                                     retry_count) {
4599                                         msleep(100);
4600                                         retry_count--;
4601                                         goto retry_read_status;
4602                                 } else if (!retry_count) {
4603                                         netdev_err(netdev, "exceed max 2 second\n");
4604                                 }
4605                         } else {
4606                                 netdev_err(netdev, "read 1000Base-T Status Reg\n");
4607                         }
4608 no_wait:
4609                         netif_carrier_on(netdev);
4610
4611                         /* link state has changed, schedule phy info update */
4612                         if (!test_bit(__IGC_DOWN, &adapter->state))
4613                                 mod_timer(&adapter->phy_info_timer,
4614                                           round_jiffies(jiffies + 2 * HZ));
4615                 }
4616         } else {
4617                 if (netif_carrier_ok(netdev)) {
4618                         adapter->link_speed = 0;
4619                         adapter->link_duplex = 0;
4620
4621                         /* Links status message must follow this format */
4622                         netdev_info(netdev, "NIC Link is Down\n");
4623                         netif_carrier_off(netdev);
4624
4625                         /* link state has changed, schedule phy info update */
4626                         if (!test_bit(__IGC_DOWN, &adapter->state))
4627                                 mod_timer(&adapter->phy_info_timer,
4628                                           round_jiffies(jiffies + 2 * HZ));
4629
4630                         /* link is down, time to check for alternate media */
4631                         if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4632                                 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4633                                         schedule_work(&adapter->reset_task);
4634                                         /* return immediately */
4635                                         return;
4636                                 }
4637                         }
4638                         pm_schedule_suspend(netdev->dev.parent,
4639                                             MSEC_PER_SEC * 5);
4640
4641                 /* also check for alternate media here */
4642                 } else if (!netif_carrier_ok(netdev) &&
4643                            (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4644                         if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4645                                 schedule_work(&adapter->reset_task);
4646                                 /* return immediately */
4647                                 return;
4648                         }
4649                 }
4650         }
4651
4652         spin_lock(&adapter->stats64_lock);
4653         igc_update_stats(adapter);
4654         spin_unlock(&adapter->stats64_lock);
4655
4656         for (i = 0; i < adapter->num_tx_queues; i++) {
4657                 struct igc_ring *tx_ring = adapter->tx_ring[i];
4658
4659                 if (!netif_carrier_ok(netdev)) {
4660                         /* We've lost link, so the controller stops DMA,
4661                          * but we've got queued Tx work that's never going
4662                          * to get done, so reset controller to flush Tx.
4663                          * (Do the reset outside of interrupt context).
4664                          */
4665                         if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4666                                 adapter->tx_timeout_count++;
4667                                 schedule_work(&adapter->reset_task);
4668                                 /* return immediately since reset is imminent */
4669                                 return;
4670                         }
4671                 }
4672
4673                 /* Force detection of hung controller every watchdog period */
4674                 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4675         }
4676
4677         /* Cause software interrupt to ensure Rx ring is cleaned */
4678         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4679                 u32 eics = 0;
4680
4681                 for (i = 0; i < adapter->num_q_vectors; i++)
4682                         eics |= adapter->q_vector[i]->eims_value;
4683                 wr32(IGC_EICS, eics);
4684         } else {
4685                 wr32(IGC_ICS, IGC_ICS_RXDMT0);
4686         }
4687
4688         igc_ptp_tx_hang(adapter);
4689
4690         /* Reset the timer */
4691         if (!test_bit(__IGC_DOWN, &adapter->state)) {
4692                 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4693                         mod_timer(&adapter->watchdog_timer,
4694                                   round_jiffies(jiffies +  HZ));
4695                 else
4696                         mod_timer(&adapter->watchdog_timer,
4697                                   round_jiffies(jiffies + 2 * HZ));
4698         }
4699 }
4700
4701 /**
4702  * igc_intr_msi - Interrupt Handler
4703  * @irq: interrupt number
4704  * @data: pointer to a network interface device structure
4705  */
4706 static irqreturn_t igc_intr_msi(int irq, void *data)
4707 {
4708         struct igc_adapter *adapter = data;
4709         struct igc_q_vector *q_vector = adapter->q_vector[0];
4710         struct igc_hw *hw = &adapter->hw;
4711         /* read ICR disables interrupts using IAM */
4712         u32 icr = rd32(IGC_ICR);
4713
4714         igc_write_itr(q_vector);
4715
4716         if (icr & IGC_ICR_DRSTA)
4717                 schedule_work(&adapter->reset_task);
4718
4719         if (icr & IGC_ICR_DOUTSYNC) {
4720                 /* HW is reporting DMA is out of sync */
4721                 adapter->stats.doosync++;
4722         }
4723
4724         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4725                 hw->mac.get_link_status = true;
4726                 if (!test_bit(__IGC_DOWN, &adapter->state))
4727                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4728         }
4729
4730         napi_schedule(&q_vector->napi);
4731
4732         return IRQ_HANDLED;
4733 }
4734
4735 /**
4736  * igc_intr - Legacy Interrupt Handler
4737  * @irq: interrupt number
4738  * @data: pointer to a network interface device structure
4739  */
4740 static irqreturn_t igc_intr(int irq, void *data)
4741 {
4742         struct igc_adapter *adapter = data;
4743         struct igc_q_vector *q_vector = adapter->q_vector[0];
4744         struct igc_hw *hw = &adapter->hw;
4745         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4746          * need for the IMC write
4747          */
4748         u32 icr = rd32(IGC_ICR);
4749
4750         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4751          * not set, then the adapter didn't send an interrupt
4752          */
4753         if (!(icr & IGC_ICR_INT_ASSERTED))
4754                 return IRQ_NONE;
4755
4756         igc_write_itr(q_vector);
4757
4758         if (icr & IGC_ICR_DRSTA)
4759                 schedule_work(&adapter->reset_task);
4760
4761         if (icr & IGC_ICR_DOUTSYNC) {
4762                 /* HW is reporting DMA is out of sync */
4763                 adapter->stats.doosync++;
4764         }
4765
4766         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4767                 hw->mac.get_link_status = true;
4768                 /* guard against interrupt when we're going down */
4769                 if (!test_bit(__IGC_DOWN, &adapter->state))
4770                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4771         }
4772
4773         napi_schedule(&q_vector->napi);
4774
4775         return IRQ_HANDLED;
4776 }
4777
4778 static void igc_free_irq(struct igc_adapter *adapter)
4779 {
4780         if (adapter->msix_entries) {
4781                 int vector = 0, i;
4782
4783                 free_irq(adapter->msix_entries[vector++].vector, adapter);
4784
4785                 for (i = 0; i < adapter->num_q_vectors; i++)
4786                         free_irq(adapter->msix_entries[vector++].vector,
4787                                  adapter->q_vector[i]);
4788         } else {
4789                 free_irq(adapter->pdev->irq, adapter);
4790         }
4791 }
4792
4793 /**
4794  * igc_request_irq - initialize interrupts
4795  * @adapter: Pointer to adapter structure
4796  *
4797  * Attempts to configure interrupts using the best available
4798  * capabilities of the hardware and kernel.
4799  */
4800 static int igc_request_irq(struct igc_adapter *adapter)
4801 {
4802         struct net_device *netdev = adapter->netdev;
4803         struct pci_dev *pdev = adapter->pdev;
4804         int err = 0;
4805
4806         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4807                 err = igc_request_msix(adapter);
4808                 if (!err)
4809                         goto request_done;
4810                 /* fall back to MSI */
4811                 igc_free_all_tx_resources(adapter);
4812                 igc_free_all_rx_resources(adapter);
4813
4814                 igc_clear_interrupt_scheme(adapter);
4815                 err = igc_init_interrupt_scheme(adapter, false);
4816                 if (err)
4817                         goto request_done;
4818                 igc_setup_all_tx_resources(adapter);
4819                 igc_setup_all_rx_resources(adapter);
4820                 igc_configure(adapter);
4821         }
4822
4823         igc_assign_vector(adapter->q_vector[0], 0);
4824
4825         if (adapter->flags & IGC_FLAG_HAS_MSI) {
4826                 err = request_irq(pdev->irq, &igc_intr_msi, 0,
4827                                   netdev->name, adapter);
4828                 if (!err)
4829                         goto request_done;
4830
4831                 /* fall back to legacy interrupts */
4832                 igc_reset_interrupt_capability(adapter);
4833                 adapter->flags &= ~IGC_FLAG_HAS_MSI;
4834         }
4835
4836         err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4837                           netdev->name, adapter);
4838
4839         if (err)
4840                 netdev_err(netdev, "Error %d getting interrupt\n", err);
4841
4842 request_done:
4843         return err;
4844 }
4845
4846 /**
4847  * __igc_open - Called when a network interface is made active
4848  * @netdev: network interface device structure
4849  * @resuming: boolean indicating if the device is resuming
4850  *
4851  * Returns 0 on success, negative value on failure
4852  *
4853  * The open entry point is called when a network interface is made
4854  * active by the system (IFF_UP).  At this point all resources needed
4855  * for transmit and receive operations are allocated, the interrupt
4856  * handler is registered with the OS, the watchdog timer is started,
4857  * and the stack is notified that the interface is ready.
4858  */
4859 static int __igc_open(struct net_device *netdev, bool resuming)
4860 {
4861         struct igc_adapter *adapter = netdev_priv(netdev);
4862         struct pci_dev *pdev = adapter->pdev;
4863         struct igc_hw *hw = &adapter->hw;
4864         int err = 0;
4865         int i = 0;
4866
4867         /* disallow open during test */
4868
4869         if (test_bit(__IGC_TESTING, &adapter->state)) {
4870                 WARN_ON(resuming);
4871                 return -EBUSY;
4872         }
4873
4874         if (!resuming)
4875                 pm_runtime_get_sync(&pdev->dev);
4876
4877         netif_carrier_off(netdev);
4878
4879         /* allocate transmit descriptors */
4880         err = igc_setup_all_tx_resources(adapter);
4881         if (err)
4882                 goto err_setup_tx;
4883
4884         /* allocate receive descriptors */
4885         err = igc_setup_all_rx_resources(adapter);
4886         if (err)
4887                 goto err_setup_rx;
4888
4889         igc_power_up_link(adapter);
4890
4891         igc_configure(adapter);
4892
4893         err = igc_request_irq(adapter);
4894         if (err)
4895                 goto err_req_irq;
4896
4897         /* Notify the stack of the actual queue counts. */
4898         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4899         if (err)
4900                 goto err_set_queues;
4901
4902         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4903         if (err)
4904                 goto err_set_queues;
4905
4906         clear_bit(__IGC_DOWN, &adapter->state);
4907
4908         for (i = 0; i < adapter->num_q_vectors; i++)
4909                 napi_enable(&adapter->q_vector[i]->napi);
4910
4911         /* Clear any pending interrupts. */
4912         rd32(IGC_ICR);
4913         igc_irq_enable(adapter);
4914
4915         if (!resuming)
4916                 pm_runtime_put(&pdev->dev);
4917
4918         netif_tx_start_all_queues(netdev);
4919
4920         /* start the watchdog. */
4921         hw->mac.get_link_status = true;
4922         schedule_work(&adapter->watchdog_task);
4923
4924         return IGC_SUCCESS;
4925
4926 err_set_queues:
4927         igc_free_irq(adapter);
4928 err_req_irq:
4929         igc_release_hw_control(adapter);
4930         igc_power_down_phy_copper_base(&adapter->hw);
4931         igc_free_all_rx_resources(adapter);
4932 err_setup_rx:
4933         igc_free_all_tx_resources(adapter);
4934 err_setup_tx:
4935         igc_reset(adapter);
4936         if (!resuming)
4937                 pm_runtime_put(&pdev->dev);
4938
4939         return err;
4940 }
4941
4942 int igc_open(struct net_device *netdev)
4943 {
4944         return __igc_open(netdev, false);
4945 }
4946
4947 /**
4948  * __igc_close - Disables a network interface
4949  * @netdev: network interface device structure
4950  * @suspending: boolean indicating the device is suspending
4951  *
4952  * Returns 0, this is not allowed to fail
4953  *
4954  * The close entry point is called when an interface is de-activated
4955  * by the OS.  The hardware is still under the driver's control, but
4956  * needs to be disabled.  A global MAC reset is issued to stop the
4957  * hardware, and all transmit and receive resources are freed.
4958  */
4959 static int __igc_close(struct net_device *netdev, bool suspending)
4960 {
4961         struct igc_adapter *adapter = netdev_priv(netdev);
4962         struct pci_dev *pdev = adapter->pdev;
4963
4964         WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4965
4966         if (!suspending)
4967                 pm_runtime_get_sync(&pdev->dev);
4968
4969         igc_down(adapter);
4970
4971         igc_release_hw_control(adapter);
4972
4973         igc_free_irq(adapter);
4974
4975         igc_free_all_tx_resources(adapter);
4976         igc_free_all_rx_resources(adapter);
4977
4978         if (!suspending)
4979                 pm_runtime_put_sync(&pdev->dev);
4980
4981         return 0;
4982 }
4983
4984 int igc_close(struct net_device *netdev)
4985 {
4986         if (netif_device_present(netdev) || netdev->dismantle)
4987                 return __igc_close(netdev, false);
4988         return 0;
4989 }
4990
4991 /**
4992  * igc_ioctl - Access the hwtstamp interface
4993  * @netdev: network interface device structure
4994  * @ifr: interface request data
4995  * @cmd: ioctl command
4996  **/
4997 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4998 {
4999         switch (cmd) {
5000         case SIOCGHWTSTAMP:
5001                 return igc_ptp_get_ts_config(netdev, ifr);
5002         case SIOCSHWTSTAMP:
5003                 return igc_ptp_set_ts_config(netdev, ifr);
5004         default:
5005                 return -EOPNOTSUPP;
5006         }
5007 }
5008
5009 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5010                                       bool enable)
5011 {
5012         struct igc_ring *ring;
5013         int i;
5014
5015         if (queue < 0 || queue >= adapter->num_tx_queues)
5016                 return -EINVAL;
5017
5018         ring = adapter->tx_ring[queue];
5019         ring->launchtime_enable = enable;
5020
5021         if (adapter->base_time)
5022                 return 0;
5023
5024         adapter->cycle_time = NSEC_PER_SEC;
5025
5026         for (i = 0; i < adapter->num_tx_queues; i++) {
5027                 ring = adapter->tx_ring[i];
5028                 ring->start_time = 0;
5029                 ring->end_time = NSEC_PER_SEC;
5030         }
5031
5032         return 0;
5033 }
5034
5035 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5036 {
5037         struct timespec64 b;
5038
5039         b = ktime_to_timespec64(base_time);
5040
5041         return timespec64_compare(now, &b) > 0;
5042 }
5043
5044 static bool validate_schedule(struct igc_adapter *adapter,
5045                               const struct tc_taprio_qopt_offload *qopt)
5046 {
5047         int queue_uses[IGC_MAX_TX_QUEUES] = { };
5048         struct timespec64 now;
5049         size_t n;
5050
5051         if (qopt->cycle_time_extension)
5052                 return false;
5053
5054         igc_ptp_read(adapter, &now);
5055
5056         /* If we program the controller's BASET registers with a time
5057          * in the future, it will hold all the packets until that
5058          * time, causing a lot of TX Hangs, so to avoid that, we
5059          * reject schedules that would start in the future.
5060          */
5061         if (!is_base_time_past(qopt->base_time, &now))
5062                 return false;
5063
5064         for (n = 0; n < qopt->num_entries; n++) {
5065                 const struct tc_taprio_sched_entry *e;
5066                 int i;
5067
5068                 e = &qopt->entries[n];
5069
5070                 /* i225 only supports "global" frame preemption
5071                  * settings.
5072                  */
5073                 if (e->command != TC_TAPRIO_CMD_SET_GATES)
5074                         return false;
5075
5076                 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5077                         if (e->gate_mask & BIT(i))
5078                                 queue_uses[i]++;
5079
5080                         if (queue_uses[i] > 1)
5081                                 return false;
5082                 }
5083         }
5084
5085         return true;
5086 }
5087
5088 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5089                                      struct tc_etf_qopt_offload *qopt)
5090 {
5091         struct igc_hw *hw = &adapter->hw;
5092         int err;
5093
5094         if (hw->mac.type != igc_i225)
5095                 return -EOPNOTSUPP;
5096
5097         err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5098         if (err)
5099                 return err;
5100
5101         return igc_tsn_offload_apply(adapter);
5102 }
5103
5104 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5105                                  struct tc_taprio_qopt_offload *qopt)
5106 {
5107         u32 start_time = 0, end_time = 0;
5108         size_t n;
5109
5110         if (!qopt->enable) {
5111                 adapter->base_time = 0;
5112                 return 0;
5113         }
5114
5115         if (adapter->base_time)
5116                 return -EALREADY;
5117
5118         if (!validate_schedule(adapter, qopt))
5119                 return -EINVAL;
5120
5121         adapter->cycle_time = qopt->cycle_time;
5122         adapter->base_time = qopt->base_time;
5123
5124         /* FIXME: be a little smarter about cases when the gate for a
5125          * queue stays open for more than one entry.
5126          */
5127         for (n = 0; n < qopt->num_entries; n++) {
5128                 struct tc_taprio_sched_entry *e = &qopt->entries[n];
5129                 int i;
5130
5131                 end_time += e->interval;
5132
5133                 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5134                         struct igc_ring *ring = adapter->tx_ring[i];
5135
5136                         if (!(e->gate_mask & BIT(i)))
5137                                 continue;
5138
5139                         ring->start_time = start_time;
5140                         ring->end_time = end_time;
5141                 }
5142
5143                 start_time += e->interval;
5144         }
5145
5146         return 0;
5147 }
5148
5149 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5150                                          struct tc_taprio_qopt_offload *qopt)
5151 {
5152         struct igc_hw *hw = &adapter->hw;
5153         int err;
5154
5155         if (hw->mac.type != igc_i225)
5156                 return -EOPNOTSUPP;
5157
5158         err = igc_save_qbv_schedule(adapter, qopt);
5159         if (err)
5160                 return err;
5161
5162         return igc_tsn_offload_apply(adapter);
5163 }
5164
5165 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5166                         void *type_data)
5167 {
5168         struct igc_adapter *adapter = netdev_priv(dev);
5169
5170         switch (type) {
5171         case TC_SETUP_QDISC_TAPRIO:
5172                 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5173
5174         case TC_SETUP_QDISC_ETF:
5175                 return igc_tsn_enable_launchtime(adapter, type_data);
5176
5177         default:
5178                 return -EOPNOTSUPP;
5179         }
5180 }
5181
5182 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5183 {
5184         struct igc_adapter *adapter = netdev_priv(dev);
5185
5186         switch (bpf->command) {
5187         case XDP_SETUP_PROG:
5188                 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
5189         default:
5190                 return -EOPNOTSUPP;
5191         }
5192 }
5193
5194 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
5195                         struct xdp_frame **frames, u32 flags)
5196 {
5197         struct igc_adapter *adapter = netdev_priv(dev);
5198         int cpu = smp_processor_id();
5199         struct netdev_queue *nq;
5200         struct igc_ring *ring;
5201         int i, drops;
5202
5203         if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
5204                 return -ENETDOWN;
5205
5206         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
5207                 return -EINVAL;
5208
5209         ring = igc_xdp_get_tx_ring(adapter, cpu);
5210         nq = txring_txq(ring);
5211
5212         __netif_tx_lock(nq, cpu);
5213
5214         drops = 0;
5215         for (i = 0; i < num_frames; i++) {
5216                 int err;
5217                 struct xdp_frame *xdpf = frames[i];
5218
5219                 err = igc_xdp_init_tx_descriptor(ring, xdpf);
5220                 if (err) {
5221                         xdp_return_frame_rx_napi(xdpf);
5222                         drops++;
5223                 }
5224         }
5225
5226         if (flags & XDP_XMIT_FLUSH)
5227                 igc_flush_tx_descriptors(ring);
5228
5229         __netif_tx_unlock(nq);
5230
5231         return num_frames - drops;
5232 }
5233
5234 static const struct net_device_ops igc_netdev_ops = {
5235         .ndo_open               = igc_open,
5236         .ndo_stop               = igc_close,
5237         .ndo_start_xmit         = igc_xmit_frame,
5238         .ndo_set_rx_mode        = igc_set_rx_mode,
5239         .ndo_set_mac_address    = igc_set_mac,
5240         .ndo_change_mtu         = igc_change_mtu,
5241         .ndo_get_stats64        = igc_get_stats64,
5242         .ndo_fix_features       = igc_fix_features,
5243         .ndo_set_features       = igc_set_features,
5244         .ndo_features_check     = igc_features_check,
5245         .ndo_do_ioctl           = igc_ioctl,
5246         .ndo_setup_tc           = igc_setup_tc,
5247         .ndo_bpf                = igc_bpf,
5248         .ndo_xdp_xmit           = igc_xdp_xmit,
5249 };
5250
5251 /* PCIe configuration access */
5252 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5253 {
5254         struct igc_adapter *adapter = hw->back;
5255
5256         pci_read_config_word(adapter->pdev, reg, value);
5257 }
5258
5259 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5260 {
5261         struct igc_adapter *adapter = hw->back;
5262
5263         pci_write_config_word(adapter->pdev, reg, *value);
5264 }
5265
5266 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5267 {
5268         struct igc_adapter *adapter = hw->back;
5269
5270         if (!pci_is_pcie(adapter->pdev))
5271                 return -IGC_ERR_CONFIG;
5272
5273         pcie_capability_read_word(adapter->pdev, reg, value);
5274
5275         return IGC_SUCCESS;
5276 }
5277
5278 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5279 {
5280         struct igc_adapter *adapter = hw->back;
5281
5282         if (!pci_is_pcie(adapter->pdev))
5283                 return -IGC_ERR_CONFIG;
5284
5285         pcie_capability_write_word(adapter->pdev, reg, *value);
5286
5287         return IGC_SUCCESS;
5288 }
5289
5290 u32 igc_rd32(struct igc_hw *hw, u32 reg)
5291 {
5292         struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
5293         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
5294         u32 value = 0;
5295
5296         value = readl(&hw_addr[reg]);
5297
5298         /* reads should not return all F's */
5299         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
5300                 struct net_device *netdev = igc->netdev;
5301
5302                 hw->hw_addr = NULL;
5303                 netif_device_detach(netdev);
5304                 netdev_err(netdev, "PCIe link lost, device now detached\n");
5305                 WARN(pci_device_is_present(igc->pdev),
5306                      "igc: Failed to read reg 0x%x!\n", reg);
5307         }
5308
5309         return value;
5310 }
5311
5312 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
5313 {
5314         struct igc_mac_info *mac = &adapter->hw.mac;
5315
5316         mac->autoneg = false;
5317
5318         /* Make sure dplx is at most 1 bit and lsb of speed is not set
5319          * for the switch() below to work
5320          */
5321         if ((spd & 1) || (dplx & ~1))
5322                 goto err_inval;
5323
5324         switch (spd + dplx) {
5325         case SPEED_10 + DUPLEX_HALF:
5326                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5327                 break;
5328         case SPEED_10 + DUPLEX_FULL:
5329                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5330                 break;
5331         case SPEED_100 + DUPLEX_HALF:
5332                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5333                 break;
5334         case SPEED_100 + DUPLEX_FULL:
5335                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5336                 break;
5337         case SPEED_1000 + DUPLEX_FULL:
5338                 mac->autoneg = true;
5339                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5340                 break;
5341         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5342                 goto err_inval;
5343         case SPEED_2500 + DUPLEX_FULL:
5344                 mac->autoneg = true;
5345                 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
5346                 break;
5347         case SPEED_2500 + DUPLEX_HALF: /* not supported */
5348         default:
5349                 goto err_inval;
5350         }
5351
5352         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5353         adapter->hw.phy.mdix = AUTO_ALL_MODES;
5354
5355         return 0;
5356
5357 err_inval:
5358         netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5359         return -EINVAL;
5360 }
5361
5362 /**
5363  * igc_probe - Device Initialization Routine
5364  * @pdev: PCI device information struct
5365  * @ent: entry in igc_pci_tbl
5366  *
5367  * Returns 0 on success, negative on failure
5368  *
5369  * igc_probe initializes an adapter identified by a pci_dev structure.
5370  * The OS initialization, configuring the adapter private structure,
5371  * and a hardware reset occur.
5372  */
5373 static int igc_probe(struct pci_dev *pdev,
5374                      const struct pci_device_id *ent)
5375 {
5376         struct igc_adapter *adapter;
5377         struct net_device *netdev;
5378         struct igc_hw *hw;
5379         const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5380         int err, pci_using_dac;
5381
5382         err = pci_enable_device_mem(pdev);
5383         if (err)
5384                 return err;
5385
5386         pci_using_dac = 0;
5387         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5388         if (!err) {
5389                 pci_using_dac = 1;
5390         } else {
5391                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5392                 if (err) {
5393                         dev_err(&pdev->dev,
5394                                 "No usable DMA configuration, aborting\n");
5395                         goto err_dma;
5396                 }
5397         }
5398
5399         err = pci_request_mem_regions(pdev, igc_driver_name);
5400         if (err)
5401                 goto err_pci_reg;
5402
5403         pci_enable_pcie_error_reporting(pdev);
5404
5405         pci_set_master(pdev);
5406
5407         err = -ENOMEM;
5408         netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5409                                    IGC_MAX_TX_QUEUES);
5410
5411         if (!netdev)
5412                 goto err_alloc_etherdev;
5413
5414         SET_NETDEV_DEV(netdev, &pdev->dev);
5415
5416         pci_set_drvdata(pdev, netdev);
5417         adapter = netdev_priv(netdev);
5418         adapter->netdev = netdev;
5419         adapter->pdev = pdev;
5420         hw = &adapter->hw;
5421         hw->back = adapter;
5422         adapter->port_num = hw->bus.func;
5423         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5424
5425         err = pci_save_state(pdev);
5426         if (err)
5427                 goto err_ioremap;
5428
5429         err = -EIO;
5430         adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5431                                    pci_resource_len(pdev, 0));
5432         if (!adapter->io_addr)
5433                 goto err_ioremap;
5434
5435         /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5436         hw->hw_addr = adapter->io_addr;
5437
5438         netdev->netdev_ops = &igc_netdev_ops;
5439         igc_ethtool_set_ops(netdev);
5440         netdev->watchdog_timeo = 5 * HZ;
5441
5442         netdev->mem_start = pci_resource_start(pdev, 0);
5443         netdev->mem_end = pci_resource_end(pdev, 0);
5444
5445         /* PCI config space info */
5446         hw->vendor_id = pdev->vendor;
5447         hw->device_id = pdev->device;
5448         hw->revision_id = pdev->revision;
5449         hw->subsystem_vendor_id = pdev->subsystem_vendor;
5450         hw->subsystem_device_id = pdev->subsystem_device;
5451
5452         /* Copy the default MAC and PHY function pointers */
5453         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5454         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5455
5456         /* Initialize skew-specific constants */
5457         err = ei->get_invariants(hw);
5458         if (err)
5459                 goto err_sw_init;
5460
5461         /* Add supported features to the features list*/
5462         netdev->features |= NETIF_F_SG;
5463         netdev->features |= NETIF_F_TSO;
5464         netdev->features |= NETIF_F_TSO6;
5465         netdev->features |= NETIF_F_TSO_ECN;
5466         netdev->features |= NETIF_F_RXCSUM;
5467         netdev->features |= NETIF_F_HW_CSUM;
5468         netdev->features |= NETIF_F_SCTP_CRC;
5469         netdev->features |= NETIF_F_HW_TC;
5470
5471 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5472                                   NETIF_F_GSO_GRE_CSUM | \
5473                                   NETIF_F_GSO_IPXIP4 | \
5474                                   NETIF_F_GSO_IPXIP6 | \
5475                                   NETIF_F_GSO_UDP_TUNNEL | \
5476                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
5477
5478         netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5479         netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5480
5481         /* setup the private structure */
5482         err = igc_sw_init(adapter);
5483         if (err)
5484                 goto err_sw_init;
5485
5486         /* copy netdev features into list of user selectable features */
5487         netdev->hw_features |= NETIF_F_NTUPLE;
5488         netdev->hw_features |= netdev->features;
5489
5490         if (pci_using_dac)
5491                 netdev->features |= NETIF_F_HIGHDMA;
5492
5493         /* MTU range: 68 - 9216 */
5494         netdev->min_mtu = ETH_MIN_MTU;
5495         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5496
5497         /* before reading the NVM, reset the controller to put the device in a
5498          * known good starting state
5499          */
5500         hw->mac.ops.reset_hw(hw);
5501
5502         if (igc_get_flash_presence_i225(hw)) {
5503                 if (hw->nvm.ops.validate(hw) < 0) {
5504                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5505                         err = -EIO;
5506                         goto err_eeprom;
5507                 }
5508         }
5509
5510         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5511                 /* copy the MAC address out of the NVM */
5512                 if (hw->mac.ops.read_mac_addr(hw))
5513                         dev_err(&pdev->dev, "NVM Read Error\n");
5514         }
5515
5516         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5517
5518         if (!is_valid_ether_addr(netdev->dev_addr)) {
5519                 dev_err(&pdev->dev, "Invalid MAC Address\n");
5520                 err = -EIO;
5521                 goto err_eeprom;
5522         }
5523
5524         /* configure RXPBSIZE and TXPBSIZE */
5525         wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5526         wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5527
5528         timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5529         timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5530
5531         INIT_WORK(&adapter->reset_task, igc_reset_task);
5532         INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5533
5534         /* Initialize link properties that are user-changeable */
5535         adapter->fc_autoneg = true;
5536         hw->mac.autoneg = true;
5537         hw->phy.autoneg_advertised = 0xaf;
5538
5539         hw->fc.requested_mode = igc_fc_default;
5540         hw->fc.current_mode = igc_fc_default;
5541
5542         /* By default, support wake on port A */
5543         adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5544
5545         /* initialize the wol settings based on the eeprom settings */
5546         if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5547                 adapter->wol |= IGC_WUFC_MAG;
5548
5549         device_set_wakeup_enable(&adapter->pdev->dev,
5550                                  adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5551
5552         igc_ptp_init(adapter);
5553
5554         /* reset the hardware with the new settings */
5555         igc_reset(adapter);
5556
5557         /* let the f/w know that the h/w is now under the control of the
5558          * driver.
5559          */
5560         igc_get_hw_control(adapter);
5561
5562         strncpy(netdev->name, "eth%d", IFNAMSIZ);
5563         err = register_netdev(netdev);
5564         if (err)
5565                 goto err_register;
5566
5567          /* carrier off reporting is important to ethtool even BEFORE open */
5568         netif_carrier_off(netdev);
5569
5570         /* Check if Media Autosense is enabled */
5571         adapter->ei = *ei;
5572
5573         /* print pcie link status and MAC address */
5574         pcie_print_link_status(pdev);
5575         netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5576
5577         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5578         /* Disable EEE for internal PHY devices */
5579         hw->dev_spec._base.eee_enable = false;
5580         adapter->flags &= ~IGC_FLAG_EEE;
5581         igc_set_eee_i225(hw, false, false, false);
5582
5583         pm_runtime_put_noidle(&pdev->dev);
5584
5585         return 0;
5586
5587 err_register:
5588         igc_release_hw_control(adapter);
5589 err_eeprom:
5590         if (!igc_check_reset_block(hw))
5591                 igc_reset_phy(hw);
5592 err_sw_init:
5593         igc_clear_interrupt_scheme(adapter);
5594         iounmap(adapter->io_addr);
5595 err_ioremap:
5596         free_netdev(netdev);
5597 err_alloc_etherdev:
5598         pci_release_mem_regions(pdev);
5599 err_pci_reg:
5600 err_dma:
5601         pci_disable_device(pdev);
5602         return err;
5603 }
5604
5605 /**
5606  * igc_remove - Device Removal Routine
5607  * @pdev: PCI device information struct
5608  *
5609  * igc_remove is called by the PCI subsystem to alert the driver
5610  * that it should release a PCI device.  This could be caused by a
5611  * Hot-Plug event, or because the driver is going to be removed from
5612  * memory.
5613  */
5614 static void igc_remove(struct pci_dev *pdev)
5615 {
5616         struct net_device *netdev = pci_get_drvdata(pdev);
5617         struct igc_adapter *adapter = netdev_priv(netdev);
5618
5619         pm_runtime_get_noresume(&pdev->dev);
5620
5621         igc_flush_nfc_rules(adapter);
5622
5623         igc_ptp_stop(adapter);
5624
5625         set_bit(__IGC_DOWN, &adapter->state);
5626
5627         del_timer_sync(&adapter->watchdog_timer);
5628         del_timer_sync(&adapter->phy_info_timer);
5629
5630         cancel_work_sync(&adapter->reset_task);
5631         cancel_work_sync(&adapter->watchdog_task);
5632
5633         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5634          * would have already happened in close and is redundant.
5635          */
5636         igc_release_hw_control(adapter);
5637         unregister_netdev(netdev);
5638
5639         igc_clear_interrupt_scheme(adapter);
5640         pci_iounmap(pdev, adapter->io_addr);
5641         pci_release_mem_regions(pdev);
5642
5643         free_netdev(netdev);
5644
5645         pci_disable_pcie_error_reporting(pdev);
5646
5647         pci_disable_device(pdev);
5648 }
5649
5650 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5651                           bool runtime)
5652 {
5653         struct net_device *netdev = pci_get_drvdata(pdev);
5654         struct igc_adapter *adapter = netdev_priv(netdev);
5655         u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5656         struct igc_hw *hw = &adapter->hw;
5657         u32 ctrl, rctl, status;
5658         bool wake;
5659
5660         rtnl_lock();
5661         netif_device_detach(netdev);
5662
5663         if (netif_running(netdev))
5664                 __igc_close(netdev, true);
5665
5666         igc_ptp_suspend(adapter);
5667
5668         igc_clear_interrupt_scheme(adapter);
5669         rtnl_unlock();
5670
5671         status = rd32(IGC_STATUS);
5672         if (status & IGC_STATUS_LU)
5673                 wufc &= ~IGC_WUFC_LNKC;
5674
5675         if (wufc) {
5676                 igc_setup_rctl(adapter);
5677                 igc_set_rx_mode(netdev);
5678
5679                 /* turn on all-multi mode if wake on multicast is enabled */
5680                 if (wufc & IGC_WUFC_MC) {
5681                         rctl = rd32(IGC_RCTL);
5682                         rctl |= IGC_RCTL_MPE;
5683                         wr32(IGC_RCTL, rctl);
5684                 }
5685
5686                 ctrl = rd32(IGC_CTRL);
5687                 ctrl |= IGC_CTRL_ADVD3WUC;
5688                 wr32(IGC_CTRL, ctrl);
5689
5690                 /* Allow time for pending master requests to run */
5691                 igc_disable_pcie_master(hw);
5692
5693                 wr32(IGC_WUC, IGC_WUC_PME_EN);
5694                 wr32(IGC_WUFC, wufc);
5695         } else {
5696                 wr32(IGC_WUC, 0);
5697                 wr32(IGC_WUFC, 0);
5698         }
5699
5700         wake = wufc || adapter->en_mng_pt;
5701         if (!wake)
5702                 igc_power_down_phy_copper_base(&adapter->hw);
5703         else
5704                 igc_power_up_link(adapter);
5705
5706         if (enable_wake)
5707                 *enable_wake = wake;
5708
5709         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5710          * would have already happened in close and is redundant.
5711          */
5712         igc_release_hw_control(adapter);
5713
5714         pci_disable_device(pdev);
5715
5716         return 0;
5717 }
5718
5719 #ifdef CONFIG_PM
5720 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5721 {
5722         return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5723 }
5724
5725 static void igc_deliver_wake_packet(struct net_device *netdev)
5726 {
5727         struct igc_adapter *adapter = netdev_priv(netdev);
5728         struct igc_hw *hw = &adapter->hw;
5729         struct sk_buff *skb;
5730         u32 wupl;
5731
5732         wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5733
5734         /* WUPM stores only the first 128 bytes of the wake packet.
5735          * Read the packet only if we have the whole thing.
5736          */
5737         if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5738                 return;
5739
5740         skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5741         if (!skb)
5742                 return;
5743
5744         skb_put(skb, wupl);
5745
5746         /* Ensure reads are 32-bit aligned */
5747         wupl = roundup(wupl, 4);
5748
5749         memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5750
5751         skb->protocol = eth_type_trans(skb, netdev);
5752         netif_rx(skb);
5753 }
5754
5755 static int __maybe_unused igc_resume(struct device *dev)
5756 {
5757         struct pci_dev *pdev = to_pci_dev(dev);
5758         struct net_device *netdev = pci_get_drvdata(pdev);
5759         struct igc_adapter *adapter = netdev_priv(netdev);
5760         struct igc_hw *hw = &adapter->hw;
5761         u32 err, val;
5762
5763         pci_set_power_state(pdev, PCI_D0);
5764         pci_restore_state(pdev);
5765         pci_save_state(pdev);
5766
5767         if (!pci_device_is_present(pdev))
5768                 return -ENODEV;
5769         err = pci_enable_device_mem(pdev);
5770         if (err) {
5771                 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5772                 return err;
5773         }
5774         pci_set_master(pdev);
5775
5776         pci_enable_wake(pdev, PCI_D3hot, 0);
5777         pci_enable_wake(pdev, PCI_D3cold, 0);
5778
5779         if (igc_init_interrupt_scheme(adapter, true)) {
5780                 netdev_err(netdev, "Unable to allocate memory for queues\n");
5781                 return -ENOMEM;
5782         }
5783
5784         igc_reset(adapter);
5785
5786         /* let the f/w know that the h/w is now under the control of the
5787          * driver.
5788          */
5789         igc_get_hw_control(adapter);
5790
5791         val = rd32(IGC_WUS);
5792         if (val & WAKE_PKT_WUS)
5793                 igc_deliver_wake_packet(netdev);
5794
5795         wr32(IGC_WUS, ~0);
5796
5797         rtnl_lock();
5798         if (!err && netif_running(netdev))
5799                 err = __igc_open(netdev, true);
5800
5801         if (!err)
5802                 netif_device_attach(netdev);
5803         rtnl_unlock();
5804
5805         return err;
5806 }
5807
5808 static int __maybe_unused igc_runtime_resume(struct device *dev)
5809 {
5810         return igc_resume(dev);
5811 }
5812
5813 static int __maybe_unused igc_suspend(struct device *dev)
5814 {
5815         return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5816 }
5817
5818 static int __maybe_unused igc_runtime_idle(struct device *dev)
5819 {
5820         struct net_device *netdev = dev_get_drvdata(dev);
5821         struct igc_adapter *adapter = netdev_priv(netdev);
5822
5823         if (!igc_has_link(adapter))
5824                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5825
5826         return -EBUSY;
5827 }
5828 #endif /* CONFIG_PM */
5829
5830 static void igc_shutdown(struct pci_dev *pdev)
5831 {
5832         bool wake;
5833
5834         __igc_shutdown(pdev, &wake, 0);
5835
5836         if (system_state == SYSTEM_POWER_OFF) {
5837                 pci_wake_from_d3(pdev, wake);
5838                 pci_set_power_state(pdev, PCI_D3hot);
5839         }
5840 }
5841
5842 /**
5843  *  igc_io_error_detected - called when PCI error is detected
5844  *  @pdev: Pointer to PCI device
5845  *  @state: The current PCI connection state
5846  *
5847  *  This function is called after a PCI bus error affecting
5848  *  this device has been detected.
5849  **/
5850 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5851                                               pci_channel_state_t state)
5852 {
5853         struct net_device *netdev = pci_get_drvdata(pdev);
5854         struct igc_adapter *adapter = netdev_priv(netdev);
5855
5856         netif_device_detach(netdev);
5857
5858         if (state == pci_channel_io_perm_failure)
5859                 return PCI_ERS_RESULT_DISCONNECT;
5860
5861         if (netif_running(netdev))
5862                 igc_down(adapter);
5863         pci_disable_device(pdev);
5864
5865         /* Request a slot reset. */
5866         return PCI_ERS_RESULT_NEED_RESET;
5867 }
5868
5869 /**
5870  *  igc_io_slot_reset - called after the PCI bus has been reset.
5871  *  @pdev: Pointer to PCI device
5872  *
5873  *  Restart the card from scratch, as if from a cold-boot. Implementation
5874  *  resembles the first-half of the igc_resume routine.
5875  **/
5876 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5877 {
5878         struct net_device *netdev = pci_get_drvdata(pdev);
5879         struct igc_adapter *adapter = netdev_priv(netdev);
5880         struct igc_hw *hw = &adapter->hw;
5881         pci_ers_result_t result;
5882
5883         if (pci_enable_device_mem(pdev)) {
5884                 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5885                 result = PCI_ERS_RESULT_DISCONNECT;
5886         } else {
5887                 pci_set_master(pdev);
5888                 pci_restore_state(pdev);
5889                 pci_save_state(pdev);
5890
5891                 pci_enable_wake(pdev, PCI_D3hot, 0);
5892                 pci_enable_wake(pdev, PCI_D3cold, 0);
5893
5894                 /* In case of PCI error, adapter loses its HW address
5895                  * so we should re-assign it here.
5896                  */
5897                 hw->hw_addr = adapter->io_addr;
5898
5899                 igc_reset(adapter);
5900                 wr32(IGC_WUS, ~0);
5901                 result = PCI_ERS_RESULT_RECOVERED;
5902         }
5903
5904         return result;
5905 }
5906
5907 /**
5908  *  igc_io_resume - called when traffic can start to flow again.
5909  *  @pdev: Pointer to PCI device
5910  *
5911  *  This callback is called when the error recovery driver tells us that
5912  *  its OK to resume normal operation. Implementation resembles the
5913  *  second-half of the igc_resume routine.
5914  */
5915 static void igc_io_resume(struct pci_dev *pdev)
5916 {
5917         struct net_device *netdev = pci_get_drvdata(pdev);
5918         struct igc_adapter *adapter = netdev_priv(netdev);
5919
5920         rtnl_lock();
5921         if (netif_running(netdev)) {
5922                 if (igc_open(netdev)) {
5923                         netdev_err(netdev, "igc_open failed after reset\n");
5924                         return;
5925                 }
5926         }
5927
5928         netif_device_attach(netdev);
5929
5930         /* let the f/w know that the h/w is now under the control of the
5931          * driver.
5932          */
5933         igc_get_hw_control(adapter);
5934         rtnl_unlock();
5935 }
5936
5937 static const struct pci_error_handlers igc_err_handler = {
5938         .error_detected = igc_io_error_detected,
5939         .slot_reset = igc_io_slot_reset,
5940         .resume = igc_io_resume,
5941 };
5942
5943 #ifdef CONFIG_PM
5944 static const struct dev_pm_ops igc_pm_ops = {
5945         SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5946         SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5947                            igc_runtime_idle)
5948 };
5949 #endif
5950
5951 static struct pci_driver igc_driver = {
5952         .name     = igc_driver_name,
5953         .id_table = igc_pci_tbl,
5954         .probe    = igc_probe,
5955         .remove   = igc_remove,
5956 #ifdef CONFIG_PM
5957         .driver.pm = &igc_pm_ops,
5958 #endif
5959         .shutdown = igc_shutdown,
5960         .err_handler = &igc_err_handler,
5961 };
5962
5963 /**
5964  * igc_reinit_queues - return error
5965  * @adapter: pointer to adapter structure
5966  */
5967 int igc_reinit_queues(struct igc_adapter *adapter)
5968 {
5969         struct net_device *netdev = adapter->netdev;
5970         int err = 0;
5971
5972         if (netif_running(netdev))
5973                 igc_close(netdev);
5974
5975         igc_reset_interrupt_capability(adapter);
5976
5977         if (igc_init_interrupt_scheme(adapter, true)) {
5978                 netdev_err(netdev, "Unable to allocate memory for queues\n");
5979                 return -ENOMEM;
5980         }
5981
5982         if (netif_running(netdev))
5983                 err = igc_open(netdev);
5984
5985         return err;
5986 }
5987
5988 /**
5989  * igc_get_hw_dev - return device
5990  * @hw: pointer to hardware structure
5991  *
5992  * used by hardware layer to print debugging information
5993  */
5994 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5995 {
5996         struct igc_adapter *adapter = hw->back;
5997
5998         return adapter->netdev;
5999 }
6000
6001 /**
6002  * igc_init_module - Driver Registration Routine
6003  *
6004  * igc_init_module is the first routine called when the driver is
6005  * loaded. All it does is register with the PCI subsystem.
6006  */
6007 static int __init igc_init_module(void)
6008 {
6009         int ret;
6010
6011         pr_info("%s\n", igc_driver_string);
6012         pr_info("%s\n", igc_copyright);
6013
6014         ret = pci_register_driver(&igc_driver);
6015         return ret;
6016 }
6017
6018 module_init(igc_init_module);
6019
6020 /**
6021  * igc_exit_module - Driver Exit Cleanup Routine
6022  *
6023  * igc_exit_module is called just before the driver is removed
6024  * from memory.
6025  */
6026 static void __exit igc_exit_module(void)
6027 {
6028         pci_unregister_driver(&igc_driver);
6029 }
6030
6031 module_exit(igc_exit_module);
6032 /* igc_main.c */