Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44         QUEUE_MODE_STRICT_PRIORITY,
45         QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49         TX_QUEUE_PRIO_HIGH,
50         TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55                                 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57                                 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99         /* required last entry */
100         {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128                             struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147                           netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167                                    bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169                                 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171                                  struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191                         igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198         .notifier_call  = igb_notify_dca,
199         .next           = NULL,
200         .priority       = 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210                      pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static const struct pci_error_handlers igb_err_handler = {
215         .error_detected = igb_io_error_detected,
216         .slot_reset = igb_io_slot_reset,
217         .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223         .name     = igb_driver_name,
224         .id_table = igb_pci_tbl,
225         .probe    = igb_probe,
226         .remove   = igb_remove,
227 #ifdef CONFIG_PM
228         .driver.pm = &igb_pm_ops,
229 #endif
230         .shutdown = igb_shutdown,
231         .sriov_configure = igb_pci_sriov_configure,
232         .err_handler = &igb_err_handler
233 };
234
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244 struct igb_reg_info {
245         u32 ofs;
246         char *name;
247 };
248
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251         /* General Registers */
252         {E1000_CTRL, "CTRL"},
253         {E1000_STATUS, "STATUS"},
254         {E1000_CTRL_EXT, "CTRL_EXT"},
255
256         /* Interrupt Registers */
257         {E1000_ICR, "ICR"},
258
259         /* RX Registers */
260         {E1000_RCTL, "RCTL"},
261         {E1000_RDLEN(0), "RDLEN"},
262         {E1000_RDH(0), "RDH"},
263         {E1000_RDT(0), "RDT"},
264         {E1000_RXDCTL(0), "RXDCTL"},
265         {E1000_RDBAL(0), "RDBAL"},
266         {E1000_RDBAH(0), "RDBAH"},
267
268         /* TX Registers */
269         {E1000_TCTL, "TCTL"},
270         {E1000_TDBAL(0), "TDBAL"},
271         {E1000_TDBAH(0), "TDBAH"},
272         {E1000_TDLEN(0), "TDLEN"},
273         {E1000_TDH(0), "TDH"},
274         {E1000_TDT(0), "TDT"},
275         {E1000_TXDCTL(0), "TXDCTL"},
276         {E1000_TDFH, "TDFH"},
277         {E1000_TDFT, "TDFT"},
278         {E1000_TDFHS, "TDFHS"},
279         {E1000_TDFPC, "TDFPC"},
280
281         /* List Terminator */
282         {}
283 };
284
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288         int n = 0;
289         char rname[16];
290         u32 regs[8];
291
292         switch (reginfo->ofs) {
293         case E1000_RDLEN(0):
294                 for (n = 0; n < 4; n++)
295                         regs[n] = rd32(E1000_RDLEN(n));
296                 break;
297         case E1000_RDH(0):
298                 for (n = 0; n < 4; n++)
299                         regs[n] = rd32(E1000_RDH(n));
300                 break;
301         case E1000_RDT(0):
302                 for (n = 0; n < 4; n++)
303                         regs[n] = rd32(E1000_RDT(n));
304                 break;
305         case E1000_RXDCTL(0):
306                 for (n = 0; n < 4; n++)
307                         regs[n] = rd32(E1000_RXDCTL(n));
308                 break;
309         case E1000_RDBAL(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDBAL(n));
312                 break;
313         case E1000_RDBAH(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDBAH(n));
316                 break;
317         case E1000_TDBAL(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_TDBAL(n));
320                 break;
321         case E1000_TDBAH(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_TDBAH(n));
324                 break;
325         case E1000_TDLEN(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_TDLEN(n));
328                 break;
329         case E1000_TDH(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_TDH(n));
332                 break;
333         case E1000_TDT(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_TDT(n));
336                 break;
337         case E1000_TXDCTL(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TXDCTL(n));
340                 break;
341         default:
342                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343                 return;
344         }
345
346         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348                 regs[2], regs[3]);
349 }
350
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354         struct net_device *netdev = adapter->netdev;
355         struct e1000_hw *hw = &adapter->hw;
356         struct igb_reg_info *reginfo;
357         struct igb_ring *tx_ring;
358         union e1000_adv_tx_desc *tx_desc;
359         struct my_u0 { u64 a; u64 b; } *u0;
360         struct igb_ring *rx_ring;
361         union e1000_adv_rx_desc *rx_desc;
362         u32 staterr;
363         u16 i, n;
364
365         if (!netif_msg_hw(adapter))
366                 return;
367
368         /* Print netdevice Info */
369         if (netdev) {
370                 dev_info(&adapter->pdev->dev, "Net device Info\n");
371                 pr_info("Device Name     state            trans_start\n");
372                 pr_info("%-15s %016lX %016lX\n", netdev->name,
373                         netdev->state, dev_trans_start(netdev));
374         }
375
376         /* Print Registers */
377         dev_info(&adapter->pdev->dev, "Register Dump\n");
378         pr_info(" Register Name   Value\n");
379         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380              reginfo->name; reginfo++) {
381                 igb_regdump(hw, reginfo);
382         }
383
384         /* Print TX Ring Summary */
385         if (!netdev || !netif_running(netdev))
386                 goto exit;
387
388         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390         for (n = 0; n < adapter->num_tx_queues; n++) {
391                 struct igb_tx_buffer *buffer_info;
392                 tx_ring = adapter->tx_ring[n];
393                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
396                         (u64)dma_unmap_addr(buffer_info, dma),
397                         dma_unmap_len(buffer_info, len),
398                         buffer_info->next_to_watch,
399                         (u64)buffer_info->time_stamp);
400         }
401
402         /* Print TX Rings */
403         if (!netif_msg_tx_done(adapter))
404                 goto rx_ring_summary;
405
406         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408         /* Transmit Descriptor Formats
409          *
410          * Advanced Transmit Descriptor
411          *   +--------------------------------------------------------------+
412          * 0 |         Buffer Address [63:0]                                |
413          *   +--------------------------------------------------------------+
414          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415          *   +--------------------------------------------------------------+
416          *   63      46 45    40 39 38 36 35 32 31   24             15       0
417          */
418
419         for (n = 0; n < adapter->num_tx_queues; n++) {
420                 tx_ring = adapter->tx_ring[n];
421                 pr_info("------------------------------------\n");
422                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423                 pr_info("------------------------------------\n");
424                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425
426                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427                         const char *next_desc;
428                         struct igb_tx_buffer *buffer_info;
429                         tx_desc = IGB_TX_DESC(tx_ring, i);
430                         buffer_info = &tx_ring->tx_buffer_info[i];
431                         u0 = (struct my_u0 *)tx_desc;
432                         if (i == tx_ring->next_to_use &&
433                             i == tx_ring->next_to_clean)
434                                 next_desc = " NTC/U";
435                         else if (i == tx_ring->next_to_use)
436                                 next_desc = " NTU";
437                         else if (i == tx_ring->next_to_clean)
438                                 next_desc = " NTC";
439                         else
440                                 next_desc = "";
441
442                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443                                 i, le64_to_cpu(u0->a),
444                                 le64_to_cpu(u0->b),
445                                 (u64)dma_unmap_addr(buffer_info, dma),
446                                 dma_unmap_len(buffer_info, len),
447                                 buffer_info->next_to_watch,
448                                 (u64)buffer_info->time_stamp,
449                                 buffer_info->skb, next_desc);
450
451                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
452                                 print_hex_dump(KERN_INFO, "",
453                                         DUMP_PREFIX_ADDRESS,
454                                         16, 1, buffer_info->skb->data,
455                                         dma_unmap_len(buffer_info, len),
456                                         true);
457                 }
458         }
459
460         /* Print RX Rings Summary */
461 rx_ring_summary:
462         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463         pr_info("Queue [NTU] [NTC]\n");
464         for (n = 0; n < adapter->num_rx_queues; n++) {
465                 rx_ring = adapter->rx_ring[n];
466                 pr_info(" %5d %5X %5X\n",
467                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
468         }
469
470         /* Print RX Rings */
471         if (!netif_msg_rx_status(adapter))
472                 goto exit;
473
474         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476         /* Advanced Receive Descriptor (Read) Format
477          *    63                                           1        0
478          *    +-----------------------------------------------------+
479          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480          *    +----------------------------------------------+------+
481          *  8 |       Header Buffer Address [63:1]           |  DD  |
482          *    +-----------------------------------------------------+
483          *
484          *
485          * Advanced Receive Descriptor (Write-Back) Format
486          *
487          *   63       48 47    32 31  30      21 20 17 16   4 3     0
488          *   +------------------------------------------------------+
489          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490          *   | Checksum   Ident  |   |           |    | Type | Type |
491          *   +------------------------------------------------------+
492          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493          *   +------------------------------------------------------+
494          *   63       48 47    32 31            20 19               0
495          */
496
497         for (n = 0; n < adapter->num_rx_queues; n++) {
498                 rx_ring = adapter->rx_ring[n];
499                 pr_info("------------------------------------\n");
500                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501                 pr_info("------------------------------------\n");
502                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505                 for (i = 0; i < rx_ring->count; i++) {
506                         const char *next_desc;
507                         struct igb_rx_buffer *buffer_info;
508                         buffer_info = &rx_ring->rx_buffer_info[i];
509                         rx_desc = IGB_RX_DESC(rx_ring, i);
510                         u0 = (struct my_u0 *)rx_desc;
511                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513                         if (i == rx_ring->next_to_use)
514                                 next_desc = " NTU";
515                         else if (i == rx_ring->next_to_clean)
516                                 next_desc = " NTC";
517                         else
518                                 next_desc = "";
519
520                         if (staterr & E1000_RXD_STAT_DD) {
521                                 /* Descriptor Done */
522                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523                                         "RWB", i,
524                                         le64_to_cpu(u0->a),
525                                         le64_to_cpu(u0->b),
526                                         next_desc);
527                         } else {
528                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529                                         "R  ", i,
530                                         le64_to_cpu(u0->a),
531                                         le64_to_cpu(u0->b),
532                                         (u64)buffer_info->dma,
533                                         next_desc);
534
535                                 if (netif_msg_pktdata(adapter) &&
536                                     buffer_info->dma && buffer_info->page) {
537                                         print_hex_dump(KERN_INFO, "",
538                                           DUMP_PREFIX_ADDRESS,
539                                           16, 1,
540                                           page_address(buffer_info->page) +
541                                                       buffer_info->page_offset,
542                                           igb_rx_bufsz(rx_ring), true);
543                                 }
544                         }
545                 }
546         }
547
548 exit:
549         return;
550 }
551
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560         struct igb_adapter *adapter = (struct igb_adapter *)data;
561         struct e1000_hw *hw = &adapter->hw;
562         s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564         return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576         struct igb_adapter *adapter = (struct igb_adapter *)data;
577         struct e1000_hw *hw = &adapter->hw;
578         s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580         if (state)
581                 i2cctl |= E1000_I2C_DATA_OUT;
582         else
583                 i2cctl &= ~E1000_I2C_DATA_OUT;
584
585         i2cctl &= ~E1000_I2C_DATA_OE_N;
586         i2cctl |= E1000_I2C_CLK_OE_N;
587         wr32(E1000_I2CPARAMS, i2cctl);
588         wrfl();
589
590 }
591
592 /**
593  *  igb_set_i2c_clk - Sets the I2C SCL clock
594  *  @data: pointer to hardware structure
595  *  @state: state to set clock
596  *
597  *  Sets the I2C clock line to state
598  **/
599 static void igb_set_i2c_clk(void *data, int state)
600 {
601         struct igb_adapter *adapter = (struct igb_adapter *)data;
602         struct e1000_hw *hw = &adapter->hw;
603         s32 i2cctl = rd32(E1000_I2CPARAMS);
604
605         if (state) {
606                 i2cctl |= E1000_I2C_CLK_OUT;
607                 i2cctl &= ~E1000_I2C_CLK_OE_N;
608         } else {
609                 i2cctl &= ~E1000_I2C_CLK_OUT;
610                 i2cctl &= ~E1000_I2C_CLK_OE_N;
611         }
612         wr32(E1000_I2CPARAMS, i2cctl);
613         wrfl();
614 }
615
616 /**
617  *  igb_get_i2c_clk - Gets the I2C SCL clock state
618  *  @data: pointer to hardware structure
619  *
620  *  Gets the I2C clock state
621  **/
622 static int igb_get_i2c_clk(void *data)
623 {
624         struct igb_adapter *adapter = (struct igb_adapter *)data;
625         struct e1000_hw *hw = &adapter->hw;
626         s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628         return !!(i2cctl & E1000_I2C_CLK_IN);
629 }
630
631 static const struct i2c_algo_bit_data igb_i2c_algo = {
632         .setsda         = igb_set_i2c_data,
633         .setscl         = igb_set_i2c_clk,
634         .getsda         = igb_get_i2c_data,
635         .getscl         = igb_get_i2c_clk,
636         .udelay         = 5,
637         .timeout        = 20,
638 };
639
640 /**
641  *  igb_get_hw_dev - return device
642  *  @hw: pointer to hardware structure
643  *
644  *  used by hardware layer to print debugging information
645  **/
646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647 {
648         struct igb_adapter *adapter = hw->back;
649         return adapter->netdev;
650 }
651
652 /**
653  *  igb_init_module - Driver Registration Routine
654  *
655  *  igb_init_module is the first routine called when the driver is
656  *  loaded. All it does is register with the PCI subsystem.
657  **/
658 static int __init igb_init_module(void)
659 {
660         int ret;
661
662         pr_info("%s\n", igb_driver_string);
663         pr_info("%s\n", igb_copyright);
664
665 #ifdef CONFIG_IGB_DCA
666         dca_register_notify(&dca_notifier);
667 #endif
668         ret = pci_register_driver(&igb_driver);
669         return ret;
670 }
671
672 module_init(igb_init_module);
673
674 /**
675  *  igb_exit_module - Driver Exit Cleanup Routine
676  *
677  *  igb_exit_module is called just before the driver is removed
678  *  from memory.
679  **/
680 static void __exit igb_exit_module(void)
681 {
682 #ifdef CONFIG_IGB_DCA
683         dca_unregister_notify(&dca_notifier);
684 #endif
685         pci_unregister_driver(&igb_driver);
686 }
687
688 module_exit(igb_exit_module);
689
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691 /**
692  *  igb_cache_ring_register - Descriptor ring to register mapping
693  *  @adapter: board private structure to initialize
694  *
695  *  Once we know the feature-set enabled for the device, we'll cache
696  *  the register offset the descriptor ring is assigned to.
697  **/
698 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 {
700         int i = 0, j = 0;
701         u32 rbase_offset = adapter->vfs_allocated_count;
702
703         switch (adapter->hw.mac.type) {
704         case e1000_82576:
705                 /* The queues are allocated for virtualization such that VF 0
706                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707                  * In order to avoid collision we start at the first free queue
708                  * and continue consuming queues in the same sequence
709                  */
710                 if (adapter->vfs_allocated_count) {
711                         for (; i < adapter->rss_queues; i++)
712                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
713                                                                Q_IDX_82576(i);
714                 }
715                 fallthrough;
716         case e1000_82575:
717         case e1000_82580:
718         case e1000_i350:
719         case e1000_i354:
720         case e1000_i210:
721         case e1000_i211:
722         default:
723                 for (; i < adapter->num_rx_queues; i++)
724                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725                 for (; j < adapter->num_tx_queues; j++)
726                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727                 break;
728         }
729 }
730
731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735         u32 value = 0;
736
737         if (E1000_REMOVED(hw_addr))
738                 return ~value;
739
740         value = readl(&hw_addr[reg]);
741
742         /* reads should not return all F's */
743         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744                 struct net_device *netdev = igb->netdev;
745                 hw->hw_addr = NULL;
746                 netdev_err(netdev, "PCIe link lost\n");
747                 WARN(pci_device_is_present(igb->pdev),
748                      "igb: Failed to read reg 0x%x!\n", reg);
749         }
750
751         return value;
752 }
753
754 /**
755  *  igb_write_ivar - configure ivar for given MSI-X vector
756  *  @hw: pointer to the HW structure
757  *  @msix_vector: vector number we are allocating to a given ring
758  *  @index: row index of IVAR register to write within IVAR table
759  *  @offset: column offset of in IVAR, should be multiple of 8
760  *
761  *  This function is intended to handle the writing of the IVAR register
762  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763  *  each containing an cause allocation for an Rx and Tx ring, and a
764  *  variable number of rows depending on the number of queues supported.
765  **/
766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767                            int index, int offset)
768 {
769         u32 ivar = array_rd32(E1000_IVAR0, index);
770
771         /* clear any bits that are currently set */
772         ivar &= ~((u32)0xFF << offset);
773
774         /* write vector and valid bit */
775         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777         array_wr32(E1000_IVAR0, index, ivar);
778 }
779
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783         struct igb_adapter *adapter = q_vector->adapter;
784         struct e1000_hw *hw = &adapter->hw;
785         int rx_queue = IGB_N0_QUEUE;
786         int tx_queue = IGB_N0_QUEUE;
787         u32 msixbm = 0;
788
789         if (q_vector->rx.ring)
790                 rx_queue = q_vector->rx.ring->reg_idx;
791         if (q_vector->tx.ring)
792                 tx_queue = q_vector->tx.ring->reg_idx;
793
794         switch (hw->mac.type) {
795         case e1000_82575:
796                 /* The 82575 assigns vectors using a bitmask, which matches the
797                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798                  * or more queues to a vector, we write the appropriate bits
799                  * into the MSIXBM register for that vector.
800                  */
801                 if (rx_queue > IGB_N0_QUEUE)
802                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803                 if (tx_queue > IGB_N0_QUEUE)
804                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806                         msixbm |= E1000_EIMS_OTHER;
807                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808                 q_vector->eims_value = msixbm;
809                 break;
810         case e1000_82576:
811                 /* 82576 uses a table that essentially consists of 2 columns
812                  * with 8 rows.  The ordering is column-major so we use the
813                  * lower 3 bits as the row index, and the 4th bit as the
814                  * column offset.
815                  */
816                 if (rx_queue > IGB_N0_QUEUE)
817                         igb_write_ivar(hw, msix_vector,
818                                        rx_queue & 0x7,
819                                        (rx_queue & 0x8) << 1);
820                 if (tx_queue > IGB_N0_QUEUE)
821                         igb_write_ivar(hw, msix_vector,
822                                        tx_queue & 0x7,
823                                        ((tx_queue & 0x8) << 1) + 8);
824                 q_vector->eims_value = BIT(msix_vector);
825                 break;
826         case e1000_82580:
827         case e1000_i350:
828         case e1000_i354:
829         case e1000_i210:
830         case e1000_i211:
831                 /* On 82580 and newer adapters the scheme is similar to 82576
832                  * however instead of ordering column-major we have things
833                  * ordered row-major.  So we traverse the table by using
834                  * bit 0 as the column offset, and the remaining bits as the
835                  * row index.
836                  */
837                 if (rx_queue > IGB_N0_QUEUE)
838                         igb_write_ivar(hw, msix_vector,
839                                        rx_queue >> 1,
840                                        (rx_queue & 0x1) << 4);
841                 if (tx_queue > IGB_N0_QUEUE)
842                         igb_write_ivar(hw, msix_vector,
843                                        tx_queue >> 1,
844                                        ((tx_queue & 0x1) << 4) + 8);
845                 q_vector->eims_value = BIT(msix_vector);
846                 break;
847         default:
848                 BUG();
849                 break;
850         }
851
852         /* add q_vector eims value to global eims_enable_mask */
853         adapter->eims_enable_mask |= q_vector->eims_value;
854
855         /* configure q_vector to set itr on first interrupt */
856         q_vector->set_itr = 1;
857 }
858
859 /**
860  *  igb_configure_msix - Configure MSI-X hardware
861  *  @adapter: board private structure to initialize
862  *
863  *  igb_configure_msix sets up the hardware to properly
864  *  generate MSI-X interrupts.
865  **/
866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868         u32 tmp;
869         int i, vector = 0;
870         struct e1000_hw *hw = &adapter->hw;
871
872         adapter->eims_enable_mask = 0;
873
874         /* set vector for other causes, i.e. link changes */
875         switch (hw->mac.type) {
876         case e1000_82575:
877                 tmp = rd32(E1000_CTRL_EXT);
878                 /* enable MSI-X PBA support*/
879                 tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881                 /* Auto-Mask interrupts upon ICR read. */
882                 tmp |= E1000_CTRL_EXT_EIAME;
883                 tmp |= E1000_CTRL_EXT_IRCA;
884
885                 wr32(E1000_CTRL_EXT, tmp);
886
887                 /* enable msix_other interrupt */
888                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889                 adapter->eims_other = E1000_EIMS_OTHER;
890
891                 break;
892
893         case e1000_82576:
894         case e1000_82580:
895         case e1000_i350:
896         case e1000_i354:
897         case e1000_i210:
898         case e1000_i211:
899                 /* Turn on MSI-X capability first, or our settings
900                  * won't stick.  And it will take days to debug.
901                  */
902                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
904                      E1000_GPIE_NSICR);
905
906                 /* enable msix_other interrupt */
907                 adapter->eims_other = BIT(vector);
908                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910                 wr32(E1000_IVAR_MISC, tmp);
911                 break;
912         default:
913                 /* do nothing, since nothing else supports MSI-X */
914                 break;
915         } /* switch (hw->mac.type) */
916
917         adapter->eims_enable_mask |= adapter->eims_other;
918
919         for (i = 0; i < adapter->num_q_vectors; i++)
920                 igb_assign_vector(adapter->q_vector[i], vector++);
921
922         wrfl();
923 }
924
925 /**
926  *  igb_request_msix - Initialize MSI-X interrupts
927  *  @adapter: board private structure to initialize
928  *
929  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930  *  kernel.
931  **/
932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934         struct net_device *netdev = adapter->netdev;
935         int i, err = 0, vector = 0, free_vector = 0;
936
937         err = request_irq(adapter->msix_entries[vector].vector,
938                           igb_msix_other, 0, netdev->name, adapter);
939         if (err)
940                 goto err_out;
941
942         for (i = 0; i < adapter->num_q_vectors; i++) {
943                 struct igb_q_vector *q_vector = adapter->q_vector[i];
944
945                 vector++;
946
947                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
948
949                 if (q_vector->rx.ring && q_vector->tx.ring)
950                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
951                                 q_vector->rx.ring->queue_index);
952                 else if (q_vector->tx.ring)
953                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
954                                 q_vector->tx.ring->queue_index);
955                 else if (q_vector->rx.ring)
956                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
957                                 q_vector->rx.ring->queue_index);
958                 else
959                         sprintf(q_vector->name, "%s-unused", netdev->name);
960
961                 err = request_irq(adapter->msix_entries[vector].vector,
962                                   igb_msix_ring, 0, q_vector->name,
963                                   q_vector);
964                 if (err)
965                         goto err_free;
966         }
967
968         igb_configure_msix(adapter);
969         return 0;
970
971 err_free:
972         /* free already assigned IRQs */
973         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
974
975         vector--;
976         for (i = 0; i < vector; i++) {
977                 free_irq(adapter->msix_entries[free_vector++].vector,
978                          adapter->q_vector[i]);
979         }
980 err_out:
981         return err;
982 }
983
984 /**
985  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
986  *  @adapter: board private structure to initialize
987  *  @v_idx: Index of vector to be freed
988  *
989  *  This function frees the memory allocated to the q_vector.
990  **/
991 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
992 {
993         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
994
995         adapter->q_vector[v_idx] = NULL;
996
997         /* igb_get_stats64() might access the rings on this vector,
998          * we must wait a grace period before freeing it.
999          */
1000         if (q_vector)
1001                 kfree_rcu(q_vector, rcu);
1002 }
1003
1004 /**
1005  *  igb_reset_q_vector - Reset config for interrupt vector
1006  *  @adapter: board private structure to initialize
1007  *  @v_idx: Index of vector to be reset
1008  *
1009  *  If NAPI is enabled it will delete any references to the
1010  *  NAPI struct. This is preparation for igb_free_q_vector.
1011  **/
1012 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1013 {
1014         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1015
1016         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1017          * allocated. So, q_vector is NULL so we should stop here.
1018          */
1019         if (!q_vector)
1020                 return;
1021
1022         if (q_vector->tx.ring)
1023                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1024
1025         if (q_vector->rx.ring)
1026                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1027
1028         netif_napi_del(&q_vector->napi);
1029
1030 }
1031
1032 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1033 {
1034         int v_idx = adapter->num_q_vectors;
1035
1036         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1037                 pci_disable_msix(adapter->pdev);
1038         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1039                 pci_disable_msi(adapter->pdev);
1040
1041         while (v_idx--)
1042                 igb_reset_q_vector(adapter, v_idx);
1043 }
1044
1045 /**
1046  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1047  *  @adapter: board private structure to initialize
1048  *
1049  *  This function frees the memory allocated to the q_vectors.  In addition if
1050  *  NAPI is enabled it will delete any references to the NAPI struct prior
1051  *  to freeing the q_vector.
1052  **/
1053 static void igb_free_q_vectors(struct igb_adapter *adapter)
1054 {
1055         int v_idx = adapter->num_q_vectors;
1056
1057         adapter->num_tx_queues = 0;
1058         adapter->num_rx_queues = 0;
1059         adapter->num_q_vectors = 0;
1060
1061         while (v_idx--) {
1062                 igb_reset_q_vector(adapter, v_idx);
1063                 igb_free_q_vector(adapter, v_idx);
1064         }
1065 }
1066
1067 /**
1068  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1069  *  @adapter: board private structure to initialize
1070  *
1071  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1072  *  MSI-X interrupts allocated.
1073  */
1074 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1075 {
1076         igb_free_q_vectors(adapter);
1077         igb_reset_interrupt_capability(adapter);
1078 }
1079
1080 /**
1081  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1082  *  @adapter: board private structure to initialize
1083  *  @msix: boolean value of MSIX capability
1084  *
1085  *  Attempt to configure interrupts using the best available
1086  *  capabilities of the hardware and kernel.
1087  **/
1088 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1089 {
1090         int err;
1091         int numvecs, i;
1092
1093         if (!msix)
1094                 goto msi_only;
1095         adapter->flags |= IGB_FLAG_HAS_MSIX;
1096
1097         /* Number of supported queues. */
1098         adapter->num_rx_queues = adapter->rss_queues;
1099         if (adapter->vfs_allocated_count)
1100                 adapter->num_tx_queues = 1;
1101         else
1102                 adapter->num_tx_queues = adapter->rss_queues;
1103
1104         /* start with one vector for every Rx queue */
1105         numvecs = adapter->num_rx_queues;
1106
1107         /* if Tx handler is separate add 1 for every Tx queue */
1108         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1109                 numvecs += adapter->num_tx_queues;
1110
1111         /* store the number of vectors reserved for queues */
1112         adapter->num_q_vectors = numvecs;
1113
1114         /* add 1 vector for link status interrupts */
1115         numvecs++;
1116         for (i = 0; i < numvecs; i++)
1117                 adapter->msix_entries[i].entry = i;
1118
1119         err = pci_enable_msix_range(adapter->pdev,
1120                                     adapter->msix_entries,
1121                                     numvecs,
1122                                     numvecs);
1123         if (err > 0)
1124                 return;
1125
1126         igb_reset_interrupt_capability(adapter);
1127
1128         /* If we can't do MSI-X, try MSI */
1129 msi_only:
1130         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1131 #ifdef CONFIG_PCI_IOV
1132         /* disable SR-IOV for non MSI-X configurations */
1133         if (adapter->vf_data) {
1134                 struct e1000_hw *hw = &adapter->hw;
1135                 /* disable iov and allow time for transactions to clear */
1136                 pci_disable_sriov(adapter->pdev);
1137                 msleep(500);
1138
1139                 kfree(adapter->vf_mac_list);
1140                 adapter->vf_mac_list = NULL;
1141                 kfree(adapter->vf_data);
1142                 adapter->vf_data = NULL;
1143                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1144                 wrfl();
1145                 msleep(100);
1146                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1147         }
1148 #endif
1149         adapter->vfs_allocated_count = 0;
1150         adapter->rss_queues = 1;
1151         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1152         adapter->num_rx_queues = 1;
1153         adapter->num_tx_queues = 1;
1154         adapter->num_q_vectors = 1;
1155         if (!pci_enable_msi(adapter->pdev))
1156                 adapter->flags |= IGB_FLAG_HAS_MSI;
1157 }
1158
1159 static void igb_add_ring(struct igb_ring *ring,
1160                          struct igb_ring_container *head)
1161 {
1162         head->ring = ring;
1163         head->count++;
1164 }
1165
1166 /**
1167  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1168  *  @adapter: board private structure to initialize
1169  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1170  *  @v_idx: index of vector in adapter struct
1171  *  @txr_count: total number of Tx rings to allocate
1172  *  @txr_idx: index of first Tx ring to allocate
1173  *  @rxr_count: total number of Rx rings to allocate
1174  *  @rxr_idx: index of first Rx ring to allocate
1175  *
1176  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1177  **/
1178 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1179                               int v_count, int v_idx,
1180                               int txr_count, int txr_idx,
1181                               int rxr_count, int rxr_idx)
1182 {
1183         struct igb_q_vector *q_vector;
1184         struct igb_ring *ring;
1185         int ring_count;
1186         size_t size;
1187
1188         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1189         if (txr_count > 1 || rxr_count > 1)
1190                 return -ENOMEM;
1191
1192         ring_count = txr_count + rxr_count;
1193         size = struct_size(q_vector, ring, ring_count);
1194
1195         /* allocate q_vector and rings */
1196         q_vector = adapter->q_vector[v_idx];
1197         if (!q_vector) {
1198                 q_vector = kzalloc(size, GFP_KERNEL);
1199         } else if (size > ksize(q_vector)) {
1200                 kfree_rcu(q_vector, rcu);
1201                 q_vector = kzalloc(size, GFP_KERNEL);
1202         } else {
1203                 memset(q_vector, 0, size);
1204         }
1205         if (!q_vector)
1206                 return -ENOMEM;
1207
1208         /* initialize NAPI */
1209         netif_napi_add(adapter->netdev, &q_vector->napi,
1210                        igb_poll, 64);
1211
1212         /* tie q_vector and adapter together */
1213         adapter->q_vector[v_idx] = q_vector;
1214         q_vector->adapter = adapter;
1215
1216         /* initialize work limits */
1217         q_vector->tx.work_limit = adapter->tx_work_limit;
1218
1219         /* initialize ITR configuration */
1220         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1221         q_vector->itr_val = IGB_START_ITR;
1222
1223         /* initialize pointer to rings */
1224         ring = q_vector->ring;
1225
1226         /* intialize ITR */
1227         if (rxr_count) {
1228                 /* rx or rx/tx vector */
1229                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1230                         q_vector->itr_val = adapter->rx_itr_setting;
1231         } else {
1232                 /* tx only vector */
1233                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1234                         q_vector->itr_val = adapter->tx_itr_setting;
1235         }
1236
1237         if (txr_count) {
1238                 /* assign generic ring traits */
1239                 ring->dev = &adapter->pdev->dev;
1240                 ring->netdev = adapter->netdev;
1241
1242                 /* configure backlink on ring */
1243                 ring->q_vector = q_vector;
1244
1245                 /* update q_vector Tx values */
1246                 igb_add_ring(ring, &q_vector->tx);
1247
1248                 /* For 82575, context index must be unique per ring. */
1249                 if (adapter->hw.mac.type == e1000_82575)
1250                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1251
1252                 /* apply Tx specific ring traits */
1253                 ring->count = adapter->tx_ring_count;
1254                 ring->queue_index = txr_idx;
1255
1256                 ring->cbs_enable = false;
1257                 ring->idleslope = 0;
1258                 ring->sendslope = 0;
1259                 ring->hicredit = 0;
1260                 ring->locredit = 0;
1261
1262                 u64_stats_init(&ring->tx_syncp);
1263                 u64_stats_init(&ring->tx_syncp2);
1264
1265                 /* assign ring to adapter */
1266                 adapter->tx_ring[txr_idx] = ring;
1267
1268                 /* push pointer to next ring */
1269                 ring++;
1270         }
1271
1272         if (rxr_count) {
1273                 /* assign generic ring traits */
1274                 ring->dev = &adapter->pdev->dev;
1275                 ring->netdev = adapter->netdev;
1276
1277                 /* configure backlink on ring */
1278                 ring->q_vector = q_vector;
1279
1280                 /* update q_vector Rx values */
1281                 igb_add_ring(ring, &q_vector->rx);
1282
1283                 /* set flag indicating ring supports SCTP checksum offload */
1284                 if (adapter->hw.mac.type >= e1000_82576)
1285                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286
1287                 /* On i350, i354, i210, and i211, loopback VLAN packets
1288                  * have the tag byte-swapped.
1289                  */
1290                 if (adapter->hw.mac.type >= e1000_i350)
1291                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292
1293                 /* apply Rx specific ring traits */
1294                 ring->count = adapter->rx_ring_count;
1295                 ring->queue_index = rxr_idx;
1296
1297                 u64_stats_init(&ring->rx_syncp);
1298
1299                 /* assign ring to adapter */
1300                 adapter->rx_ring[rxr_idx] = ring;
1301         }
1302
1303         return 0;
1304 }
1305
1306
1307 /**
1308  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309  *  @adapter: board private structure to initialize
1310  *
1311  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1312  *  return -ENOMEM.
1313  **/
1314 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315 {
1316         int q_vectors = adapter->num_q_vectors;
1317         int rxr_remaining = adapter->num_rx_queues;
1318         int txr_remaining = adapter->num_tx_queues;
1319         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320         int err;
1321
1322         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323                 for (; rxr_remaining; v_idx++) {
1324                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325                                                  0, 0, 1, rxr_idx);
1326
1327                         if (err)
1328                                 goto err_out;
1329
1330                         /* update counts and index */
1331                         rxr_remaining--;
1332                         rxr_idx++;
1333                 }
1334         }
1335
1336         for (; v_idx < q_vectors; v_idx++) {
1337                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339
1340                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341                                          tqpv, txr_idx, rqpv, rxr_idx);
1342
1343                 if (err)
1344                         goto err_out;
1345
1346                 /* update counts and index */
1347                 rxr_remaining -= rqpv;
1348                 txr_remaining -= tqpv;
1349                 rxr_idx++;
1350                 txr_idx++;
1351         }
1352
1353         return 0;
1354
1355 err_out:
1356         adapter->num_tx_queues = 0;
1357         adapter->num_rx_queues = 0;
1358         adapter->num_q_vectors = 0;
1359
1360         while (v_idx--)
1361                 igb_free_q_vector(adapter, v_idx);
1362
1363         return -ENOMEM;
1364 }
1365
1366 /**
1367  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368  *  @adapter: board private structure to initialize
1369  *  @msix: boolean value of MSIX capability
1370  *
1371  *  This function initializes the interrupts and allocates all of the queues.
1372  **/
1373 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374 {
1375         struct pci_dev *pdev = adapter->pdev;
1376         int err;
1377
1378         igb_set_interrupt_capability(adapter, msix);
1379
1380         err = igb_alloc_q_vectors(adapter);
1381         if (err) {
1382                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383                 goto err_alloc_q_vectors;
1384         }
1385
1386         igb_cache_ring_register(adapter);
1387
1388         return 0;
1389
1390 err_alloc_q_vectors:
1391         igb_reset_interrupt_capability(adapter);
1392         return err;
1393 }
1394
1395 /**
1396  *  igb_request_irq - initialize interrupts
1397  *  @adapter: board private structure to initialize
1398  *
1399  *  Attempts to configure interrupts using the best available
1400  *  capabilities of the hardware and kernel.
1401  **/
1402 static int igb_request_irq(struct igb_adapter *adapter)
1403 {
1404         struct net_device *netdev = adapter->netdev;
1405         struct pci_dev *pdev = adapter->pdev;
1406         int err = 0;
1407
1408         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409                 err = igb_request_msix(adapter);
1410                 if (!err)
1411                         goto request_done;
1412                 /* fall back to MSI */
1413                 igb_free_all_tx_resources(adapter);
1414                 igb_free_all_rx_resources(adapter);
1415
1416                 igb_clear_interrupt_scheme(adapter);
1417                 err = igb_init_interrupt_scheme(adapter, false);
1418                 if (err)
1419                         goto request_done;
1420
1421                 igb_setup_all_tx_resources(adapter);
1422                 igb_setup_all_rx_resources(adapter);
1423                 igb_configure(adapter);
1424         }
1425
1426         igb_assign_vector(adapter->q_vector[0], 0);
1427
1428         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1430                                   netdev->name, adapter);
1431                 if (!err)
1432                         goto request_done;
1433
1434                 /* fall back to legacy interrupts */
1435                 igb_reset_interrupt_capability(adapter);
1436                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437         }
1438
1439         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440                           netdev->name, adapter);
1441
1442         if (err)
1443                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444                         err);
1445
1446 request_done:
1447         return err;
1448 }
1449
1450 static void igb_free_irq(struct igb_adapter *adapter)
1451 {
1452         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453                 int vector = 0, i;
1454
1455                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1456
1457                 for (i = 0; i < adapter->num_q_vectors; i++)
1458                         free_irq(adapter->msix_entries[vector++].vector,
1459                                  adapter->q_vector[i]);
1460         } else {
1461                 free_irq(adapter->pdev->irq, adapter);
1462         }
1463 }
1464
1465 /**
1466  *  igb_irq_disable - Mask off interrupt generation on the NIC
1467  *  @adapter: board private structure
1468  **/
1469 static void igb_irq_disable(struct igb_adapter *adapter)
1470 {
1471         struct e1000_hw *hw = &adapter->hw;
1472
1473         /* we need to be careful when disabling interrupts.  The VFs are also
1474          * mapped into these registers and so clearing the bits can cause
1475          * issues on the VF drivers so we only need to clear what we set
1476          */
1477         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478                 u32 regval = rd32(E1000_EIAM);
1479
1480                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1482                 regval = rd32(E1000_EIAC);
1483                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484         }
1485
1486         wr32(E1000_IAM, 0);
1487         wr32(E1000_IMC, ~0);
1488         wrfl();
1489         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490                 int i;
1491
1492                 for (i = 0; i < adapter->num_q_vectors; i++)
1493                         synchronize_irq(adapter->msix_entries[i].vector);
1494         } else {
1495                 synchronize_irq(adapter->pdev->irq);
1496         }
1497 }
1498
1499 /**
1500  *  igb_irq_enable - Enable default interrupt generation settings
1501  *  @adapter: board private structure
1502  **/
1503 static void igb_irq_enable(struct igb_adapter *adapter)
1504 {
1505         struct e1000_hw *hw = &adapter->hw;
1506
1507         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509                 u32 regval = rd32(E1000_EIAC);
1510
1511                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512                 regval = rd32(E1000_EIAM);
1513                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1515                 if (adapter->vfs_allocated_count) {
1516                         wr32(E1000_MBVFIMR, 0xFF);
1517                         ims |= E1000_IMS_VMMB;
1518                 }
1519                 wr32(E1000_IMS, ims);
1520         } else {
1521                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1522                                 E1000_IMS_DRSTA);
1523                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1524                                 E1000_IMS_DRSTA);
1525         }
1526 }
1527
1528 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529 {
1530         struct e1000_hw *hw = &adapter->hw;
1531         u16 pf_id = adapter->vfs_allocated_count;
1532         u16 vid = adapter->hw.mng_cookie.vlan_id;
1533         u16 old_vid = adapter->mng_vlan_id;
1534
1535         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536                 /* add VID to filter table */
1537                 igb_vfta_set(hw, vid, pf_id, true, true);
1538                 adapter->mng_vlan_id = vid;
1539         } else {
1540                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541         }
1542
1543         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544             (vid != old_vid) &&
1545             !test_bit(old_vid, adapter->active_vlans)) {
1546                 /* remove VID from filter table */
1547                 igb_vfta_set(hw, vid, pf_id, false, true);
1548         }
1549 }
1550
1551 /**
1552  *  igb_release_hw_control - release control of the h/w to f/w
1553  *  @adapter: address of board private structure
1554  *
1555  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556  *  For ASF and Pass Through versions of f/w this means that the
1557  *  driver is no longer loaded.
1558  **/
1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1560 {
1561         struct e1000_hw *hw = &adapter->hw;
1562         u32 ctrl_ext;
1563
1564         /* Let firmware take over control of h/w */
1565         ctrl_ext = rd32(E1000_CTRL_EXT);
1566         wr32(E1000_CTRL_EXT,
1567                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569
1570 /**
1571  *  igb_get_hw_control - get control of the h/w from f/w
1572  *  @adapter: address of board private structure
1573  *
1574  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575  *  For ASF and Pass Through versions of f/w this means that
1576  *  the driver is loaded.
1577  **/
1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1579 {
1580         struct e1000_hw *hw = &adapter->hw;
1581         u32 ctrl_ext;
1582
1583         /* Let firmware know the driver has taken over */
1584         ctrl_ext = rd32(E1000_CTRL_EXT);
1585         wr32(E1000_CTRL_EXT,
1586                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587 }
1588
1589 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1590 {
1591         struct net_device *netdev = adapter->netdev;
1592         struct e1000_hw *hw = &adapter->hw;
1593
1594         WARN_ON(hw->mac.type != e1000_i210);
1595
1596         if (enable)
1597                 adapter->flags |= IGB_FLAG_FQTSS;
1598         else
1599                 adapter->flags &= ~IGB_FLAG_FQTSS;
1600
1601         if (netif_running(netdev))
1602                 schedule_work(&adapter->reset_task);
1603 }
1604
1605 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1606 {
1607         return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1608 }
1609
1610 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1611                                    enum tx_queue_prio prio)
1612 {
1613         u32 val;
1614
1615         WARN_ON(hw->mac.type != e1000_i210);
1616         WARN_ON(queue < 0 || queue > 4);
1617
1618         val = rd32(E1000_I210_TXDCTL(queue));
1619
1620         if (prio == TX_QUEUE_PRIO_HIGH)
1621                 val |= E1000_TXDCTL_PRIORITY;
1622         else
1623                 val &= ~E1000_TXDCTL_PRIORITY;
1624
1625         wr32(E1000_I210_TXDCTL(queue), val);
1626 }
1627
1628 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1629 {
1630         u32 val;
1631
1632         WARN_ON(hw->mac.type != e1000_i210);
1633         WARN_ON(queue < 0 || queue > 1);
1634
1635         val = rd32(E1000_I210_TQAVCC(queue));
1636
1637         if (mode == QUEUE_MODE_STREAM_RESERVATION)
1638                 val |= E1000_TQAVCC_QUEUEMODE;
1639         else
1640                 val &= ~E1000_TQAVCC_QUEUEMODE;
1641
1642         wr32(E1000_I210_TQAVCC(queue), val);
1643 }
1644
1645 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1646 {
1647         int i;
1648
1649         for (i = 0; i < adapter->num_tx_queues; i++) {
1650                 if (adapter->tx_ring[i]->cbs_enable)
1651                         return true;
1652         }
1653
1654         return false;
1655 }
1656
1657 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1658 {
1659         int i;
1660
1661         for (i = 0; i < adapter->num_tx_queues; i++) {
1662                 if (adapter->tx_ring[i]->launchtime_enable)
1663                         return true;
1664         }
1665
1666         return false;
1667 }
1668
1669 /**
1670  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1671  *  @adapter: pointer to adapter struct
1672  *  @queue: queue number
1673  *
1674  *  Configure CBS and Launchtime for a given hardware queue.
1675  *  Parameters are retrieved from the correct Tx ring, so
1676  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1677  *  for setting those correctly prior to this function being called.
1678  **/
1679 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1680 {
1681         struct igb_ring *ring = adapter->tx_ring[queue];
1682         struct net_device *netdev = adapter->netdev;
1683         struct e1000_hw *hw = &adapter->hw;
1684         u32 tqavcc, tqavctrl;
1685         u16 value;
1686
1687         WARN_ON(hw->mac.type != e1000_i210);
1688         WARN_ON(queue < 0 || queue > 1);
1689
1690         /* If any of the Qav features is enabled, configure queues as SR and
1691          * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1692          * as SP.
1693          */
1694         if (ring->cbs_enable || ring->launchtime_enable) {
1695                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1696                 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1697         } else {
1698                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1699                 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1700         }
1701
1702         /* If CBS is enabled, set DataTranARB and config its parameters. */
1703         if (ring->cbs_enable || queue == 0) {
1704                 /* i210 does not allow the queue 0 to be in the Strict
1705                  * Priority mode while the Qav mode is enabled, so,
1706                  * instead of disabling strict priority mode, we give
1707                  * queue 0 the maximum of credits possible.
1708                  *
1709                  * See section 8.12.19 of the i210 datasheet, "Note:
1710                  * Queue0 QueueMode must be set to 1b when
1711                  * TransmitMode is set to Qav."
1712                  */
1713                 if (queue == 0 && !ring->cbs_enable) {
1714                         /* max "linkspeed" idleslope in kbps */
1715                         ring->idleslope = 1000000;
1716                         ring->hicredit = ETH_FRAME_LEN;
1717                 }
1718
1719                 /* Always set data transfer arbitration to credit-based
1720                  * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1721                  * the queues.
1722                  */
1723                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1724                 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1725                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1726
1727                 /* According to i210 datasheet section 7.2.7.7, we should set
1728                  * the 'idleSlope' field from TQAVCC register following the
1729                  * equation:
1730                  *
1731                  * For 100 Mbps link speed:
1732                  *
1733                  *     value = BW * 0x7735 * 0.2                          (E1)
1734                  *
1735                  * For 1000Mbps link speed:
1736                  *
1737                  *     value = BW * 0x7735 * 2                            (E2)
1738                  *
1739                  * E1 and E2 can be merged into one equation as shown below.
1740                  * Note that 'link-speed' is in Mbps.
1741                  *
1742                  *     value = BW * 0x7735 * 2 * link-speed
1743                  *                           --------------               (E3)
1744                  *                                1000
1745                  *
1746                  * 'BW' is the percentage bandwidth out of full link speed
1747                  * which can be found with the following equation. Note that
1748                  * idleSlope here is the parameter from this function which
1749                  * is in kbps.
1750                  *
1751                  *     BW =     idleSlope
1752                  *          -----------------                             (E4)
1753                  *          link-speed * 1000
1754                  *
1755                  * That said, we can come up with a generic equation to
1756                  * calculate the value we should set it TQAVCC register by
1757                  * replacing 'BW' in E3 by E4. The resulting equation is:
1758                  *
1759                  * value =     idleSlope     * 0x7735 * 2 * link-speed
1760                  *         -----------------            --------------    (E5)
1761                  *         link-speed * 1000                 1000
1762                  *
1763                  * 'link-speed' is present in both sides of the fraction so
1764                  * it is canceled out. The final equation is the following:
1765                  *
1766                  *     value = idleSlope * 61034
1767                  *             -----------------                          (E6)
1768                  *                  1000000
1769                  *
1770                  * NOTE: For i210, given the above, we can see that idleslope
1771                  *       is represented in 16.38431 kbps units by the value at
1772                  *       the TQAVCC register (1Gbps / 61034), which reduces
1773                  *       the granularity for idleslope increments.
1774                  *       For instance, if you want to configure a 2576kbps
1775                  *       idleslope, the value to be written on the register
1776                  *       would have to be 157.23. If rounded down, you end
1777                  *       up with less bandwidth available than originally
1778                  *       required (~2572 kbps). If rounded up, you end up
1779                  *       with a higher bandwidth (~2589 kbps). Below the
1780                  *       approach we take is to always round up the
1781                  *       calculated value, so the resulting bandwidth might
1782                  *       be slightly higher for some configurations.
1783                  */
1784                 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1785
1786                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1787                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1788                 tqavcc |= value;
1789                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1790
1791                 wr32(E1000_I210_TQAVHC(queue),
1792                      0x80000000 + ring->hicredit * 0x7735);
1793         } else {
1794
1795                 /* Set idleSlope to zero. */
1796                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1797                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1798                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799
1800                 /* Set hiCredit to zero. */
1801                 wr32(E1000_I210_TQAVHC(queue), 0);
1802
1803                 /* If CBS is not enabled for any queues anymore, then return to
1804                  * the default state of Data Transmission Arbitration on
1805                  * TQAVCTRL.
1806                  */
1807                 if (!is_any_cbs_enabled(adapter)) {
1808                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1809                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1810                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1811                 }
1812         }
1813
1814         /* If LaunchTime is enabled, set DataTranTIM. */
1815         if (ring->launchtime_enable) {
1816                 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1817                  * for any of the SR queues, and configure fetchtime delta.
1818                  * XXX NOTE:
1819                  *     - LaunchTime will be enabled for all SR queues.
1820                  *     - A fixed offset can be added relative to the launch
1821                  *       time of all packets if configured at reg LAUNCH_OS0.
1822                  *       We are keeping it as 0 for now (default value).
1823                  */
1824                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1825                 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1826                        E1000_TQAVCTRL_FETCHTIME_DELTA;
1827                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1828         } else {
1829                 /* If Launchtime is not enabled for any SR queues anymore,
1830                  * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1831                  * effectively disabling Launchtime.
1832                  */
1833                 if (!is_any_txtime_enabled(adapter)) {
1834                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1835                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1836                         tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1837                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1838                 }
1839         }
1840
1841         /* XXX: In i210 controller the sendSlope and loCredit parameters from
1842          * CBS are not configurable by software so we don't do any 'controller
1843          * configuration' in respect to these parameters.
1844          */
1845
1846         netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1847                    ring->cbs_enable ? "enabled" : "disabled",
1848                    ring->launchtime_enable ? "enabled" : "disabled",
1849                    queue,
1850                    ring->idleslope, ring->sendslope,
1851                    ring->hicredit, ring->locredit);
1852 }
1853
1854 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1855                                   bool enable)
1856 {
1857         struct igb_ring *ring;
1858
1859         if (queue < 0 || queue > adapter->num_tx_queues)
1860                 return -EINVAL;
1861
1862         ring = adapter->tx_ring[queue];
1863         ring->launchtime_enable = enable;
1864
1865         return 0;
1866 }
1867
1868 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1869                                bool enable, int idleslope, int sendslope,
1870                                int hicredit, int locredit)
1871 {
1872         struct igb_ring *ring;
1873
1874         if (queue < 0 || queue > adapter->num_tx_queues)
1875                 return -EINVAL;
1876
1877         ring = adapter->tx_ring[queue];
1878
1879         ring->cbs_enable = enable;
1880         ring->idleslope = idleslope;
1881         ring->sendslope = sendslope;
1882         ring->hicredit = hicredit;
1883         ring->locredit = locredit;
1884
1885         return 0;
1886 }
1887
1888 /**
1889  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1890  *  @adapter: pointer to adapter struct
1891  *
1892  *  Configure TQAVCTRL register switching the controller's Tx mode
1893  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1894  *  a call to igb_config_tx_modes() per queue so any previously saved
1895  *  Tx parameters are applied.
1896  **/
1897 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1898 {
1899         struct net_device *netdev = adapter->netdev;
1900         struct e1000_hw *hw = &adapter->hw;
1901         u32 val;
1902
1903         /* Only i210 controller supports changing the transmission mode. */
1904         if (hw->mac.type != e1000_i210)
1905                 return;
1906
1907         if (is_fqtss_enabled(adapter)) {
1908                 int i, max_queue;
1909
1910                 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1911                  * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1912                  * so SP queues wait for SR ones.
1913                  */
1914                 val = rd32(E1000_I210_TQAVCTRL);
1915                 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1916                 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1917                 wr32(E1000_I210_TQAVCTRL, val);
1918
1919                 /* Configure Tx and Rx packet buffers sizes as described in
1920                  * i210 datasheet section 7.2.7.7.
1921                  */
1922                 val = rd32(E1000_TXPBS);
1923                 val &= ~I210_TXPBSIZE_MASK;
1924                 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1925                         I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1926                 wr32(E1000_TXPBS, val);
1927
1928                 val = rd32(E1000_RXPBS);
1929                 val &= ~I210_RXPBSIZE_MASK;
1930                 val |= I210_RXPBSIZE_PB_30KB;
1931                 wr32(E1000_RXPBS, val);
1932
1933                 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1934                  * register should not exceed the buffer size programmed in
1935                  * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1936                  * so according to the datasheet we should set MAX_TPKT_SIZE to
1937                  * 4kB / 64.
1938                  *
1939                  * However, when we do so, no frame from queue 2 and 3 are
1940                  * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1941                  * or _equal_ to the buffer size programmed in TXPBS. For this
1942                  * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1943                  */
1944                 val = (4096 - 1) / 64;
1945                 wr32(E1000_I210_DTXMXPKTSZ, val);
1946
1947                 /* Since FQTSS mode is enabled, apply any CBS configuration
1948                  * previously set. If no previous CBS configuration has been
1949                  * done, then the initial configuration is applied, which means
1950                  * CBS is disabled.
1951                  */
1952                 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1953                             adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1954
1955                 for (i = 0; i < max_queue; i++) {
1956                         igb_config_tx_modes(adapter, i);
1957                 }
1958         } else {
1959                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1960                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1961                 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1962
1963                 val = rd32(E1000_I210_TQAVCTRL);
1964                 /* According to Section 8.12.21, the other flags we've set when
1965                  * enabling FQTSS are not relevant when disabling FQTSS so we
1966                  * don't set they here.
1967                  */
1968                 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1969                 wr32(E1000_I210_TQAVCTRL, val);
1970         }
1971
1972         netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1973                    "enabled" : "disabled");
1974 }
1975
1976 /**
1977  *  igb_configure - configure the hardware for RX and TX
1978  *  @adapter: private board structure
1979  **/
1980 static void igb_configure(struct igb_adapter *adapter)
1981 {
1982         struct net_device *netdev = adapter->netdev;
1983         int i;
1984
1985         igb_get_hw_control(adapter);
1986         igb_set_rx_mode(netdev);
1987         igb_setup_tx_mode(adapter);
1988
1989         igb_restore_vlan(adapter);
1990
1991         igb_setup_tctl(adapter);
1992         igb_setup_mrqc(adapter);
1993         igb_setup_rctl(adapter);
1994
1995         igb_nfc_filter_restore(adapter);
1996         igb_configure_tx(adapter);
1997         igb_configure_rx(adapter);
1998
1999         igb_rx_fifo_flush_82575(&adapter->hw);
2000
2001         /* call igb_desc_unused which always leaves
2002          * at least 1 descriptor unused to make sure
2003          * next_to_use != next_to_clean
2004          */
2005         for (i = 0; i < adapter->num_rx_queues; i++) {
2006                 struct igb_ring *ring = adapter->rx_ring[i];
2007                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2008         }
2009 }
2010
2011 /**
2012  *  igb_power_up_link - Power up the phy/serdes link
2013  *  @adapter: address of board private structure
2014  **/
2015 void igb_power_up_link(struct igb_adapter *adapter)
2016 {
2017         igb_reset_phy(&adapter->hw);
2018
2019         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2020                 igb_power_up_phy_copper(&adapter->hw);
2021         else
2022                 igb_power_up_serdes_link_82575(&adapter->hw);
2023
2024         igb_setup_link(&adapter->hw);
2025 }
2026
2027 /**
2028  *  igb_power_down_link - Power down the phy/serdes link
2029  *  @adapter: address of board private structure
2030  */
2031 static void igb_power_down_link(struct igb_adapter *adapter)
2032 {
2033         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2034                 igb_power_down_phy_copper_82575(&adapter->hw);
2035         else
2036                 igb_shutdown_serdes_link_82575(&adapter->hw);
2037 }
2038
2039 /**
2040  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2041  * @adapter: address of the board private structure
2042  **/
2043 static void igb_check_swap_media(struct igb_adapter *adapter)
2044 {
2045         struct e1000_hw *hw = &adapter->hw;
2046         u32 ctrl_ext, connsw;
2047         bool swap_now = false;
2048
2049         ctrl_ext = rd32(E1000_CTRL_EXT);
2050         connsw = rd32(E1000_CONNSW);
2051
2052         /* need to live swap if current media is copper and we have fiber/serdes
2053          * to go to.
2054          */
2055
2056         if ((hw->phy.media_type == e1000_media_type_copper) &&
2057             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2058                 swap_now = true;
2059         } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2060                    !(connsw & E1000_CONNSW_SERDESD)) {
2061                 /* copper signal takes time to appear */
2062                 if (adapter->copper_tries < 4) {
2063                         adapter->copper_tries++;
2064                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2065                         wr32(E1000_CONNSW, connsw);
2066                         return;
2067                 } else {
2068                         adapter->copper_tries = 0;
2069                         if ((connsw & E1000_CONNSW_PHYSD) &&
2070                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
2071                                 swap_now = true;
2072                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2073                                 wr32(E1000_CONNSW, connsw);
2074                         }
2075                 }
2076         }
2077
2078         if (!swap_now)
2079                 return;
2080
2081         switch (hw->phy.media_type) {
2082         case e1000_media_type_copper:
2083                 netdev_info(adapter->netdev,
2084                         "MAS: changing media to fiber/serdes\n");
2085                 ctrl_ext |=
2086                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2087                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2088                 adapter->copper_tries = 0;
2089                 break;
2090         case e1000_media_type_internal_serdes:
2091         case e1000_media_type_fiber:
2092                 netdev_info(adapter->netdev,
2093                         "MAS: changing media to copper\n");
2094                 ctrl_ext &=
2095                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097                 break;
2098         default:
2099                 /* shouldn't get here during regular operation */
2100                 netdev_err(adapter->netdev,
2101                         "AMS: Invalid media type found, returning\n");
2102                 break;
2103         }
2104         wr32(E1000_CTRL_EXT, ctrl_ext);
2105 }
2106
2107 /**
2108  *  igb_up - Open the interface and prepare it to handle traffic
2109  *  @adapter: board private structure
2110  **/
2111 int igb_up(struct igb_adapter *adapter)
2112 {
2113         struct e1000_hw *hw = &adapter->hw;
2114         int i;
2115
2116         /* hardware has been reset, we need to reload some things */
2117         igb_configure(adapter);
2118
2119         clear_bit(__IGB_DOWN, &adapter->state);
2120
2121         for (i = 0; i < adapter->num_q_vectors; i++)
2122                 napi_enable(&(adapter->q_vector[i]->napi));
2123
2124         if (adapter->flags & IGB_FLAG_HAS_MSIX)
2125                 igb_configure_msix(adapter);
2126         else
2127                 igb_assign_vector(adapter->q_vector[0], 0);
2128
2129         /* Clear any pending interrupts. */
2130         rd32(E1000_TSICR);
2131         rd32(E1000_ICR);
2132         igb_irq_enable(adapter);
2133
2134         /* notify VFs that reset has been completed */
2135         if (adapter->vfs_allocated_count) {
2136                 u32 reg_data = rd32(E1000_CTRL_EXT);
2137
2138                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2139                 wr32(E1000_CTRL_EXT, reg_data);
2140         }
2141
2142         netif_tx_start_all_queues(adapter->netdev);
2143
2144         /* start the watchdog. */
2145         hw->mac.get_link_status = 1;
2146         schedule_work(&adapter->watchdog_task);
2147
2148         if ((adapter->flags & IGB_FLAG_EEE) &&
2149             (!hw->dev_spec._82575.eee_disable))
2150                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2151
2152         return 0;
2153 }
2154
2155 void igb_down(struct igb_adapter *adapter)
2156 {
2157         struct net_device *netdev = adapter->netdev;
2158         struct e1000_hw *hw = &adapter->hw;
2159         u32 tctl, rctl;
2160         int i;
2161
2162         /* signal that we're down so the interrupt handler does not
2163          * reschedule our watchdog timer
2164          */
2165         set_bit(__IGB_DOWN, &adapter->state);
2166
2167         /* disable receives in the hardware */
2168         rctl = rd32(E1000_RCTL);
2169         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2170         /* flush and sleep below */
2171
2172         igb_nfc_filter_exit(adapter);
2173
2174         netif_carrier_off(netdev);
2175         netif_tx_stop_all_queues(netdev);
2176
2177         /* disable transmits in the hardware */
2178         tctl = rd32(E1000_TCTL);
2179         tctl &= ~E1000_TCTL_EN;
2180         wr32(E1000_TCTL, tctl);
2181         /* flush both disables and wait for them to finish */
2182         wrfl();
2183         usleep_range(10000, 11000);
2184
2185         igb_irq_disable(adapter);
2186
2187         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2188
2189         for (i = 0; i < adapter->num_q_vectors; i++) {
2190                 if (adapter->q_vector[i]) {
2191                         napi_synchronize(&adapter->q_vector[i]->napi);
2192                         napi_disable(&adapter->q_vector[i]->napi);
2193                 }
2194         }
2195
2196         del_timer_sync(&adapter->watchdog_timer);
2197         del_timer_sync(&adapter->phy_info_timer);
2198
2199         /* record the stats before reset*/
2200         spin_lock(&adapter->stats64_lock);
2201         igb_update_stats(adapter);
2202         spin_unlock(&adapter->stats64_lock);
2203
2204         adapter->link_speed = 0;
2205         adapter->link_duplex = 0;
2206
2207         if (!pci_channel_offline(adapter->pdev))
2208                 igb_reset(adapter);
2209
2210         /* clear VLAN promisc flag so VFTA will be updated if necessary */
2211         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2212
2213         igb_clean_all_tx_rings(adapter);
2214         igb_clean_all_rx_rings(adapter);
2215 #ifdef CONFIG_IGB_DCA
2216
2217         /* since we reset the hardware DCA settings were cleared */
2218         igb_setup_dca(adapter);
2219 #endif
2220 }
2221
2222 void igb_reinit_locked(struct igb_adapter *adapter)
2223 {
2224         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2225                 usleep_range(1000, 2000);
2226         igb_down(adapter);
2227         igb_up(adapter);
2228         clear_bit(__IGB_RESETTING, &adapter->state);
2229 }
2230
2231 /** igb_enable_mas - Media Autosense re-enable after swap
2232  *
2233  * @adapter: adapter struct
2234  **/
2235 static void igb_enable_mas(struct igb_adapter *adapter)
2236 {
2237         struct e1000_hw *hw = &adapter->hw;
2238         u32 connsw = rd32(E1000_CONNSW);
2239
2240         /* configure for SerDes media detect */
2241         if ((hw->phy.media_type == e1000_media_type_copper) &&
2242             (!(connsw & E1000_CONNSW_SERDESD))) {
2243                 connsw |= E1000_CONNSW_ENRGSRC;
2244                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2245                 wr32(E1000_CONNSW, connsw);
2246                 wrfl();
2247         }
2248 }
2249
2250 void igb_reset(struct igb_adapter *adapter)
2251 {
2252         struct pci_dev *pdev = adapter->pdev;
2253         struct e1000_hw *hw = &adapter->hw;
2254         struct e1000_mac_info *mac = &hw->mac;
2255         struct e1000_fc_info *fc = &hw->fc;
2256         u32 pba, hwm;
2257
2258         /* Repartition Pba for greater than 9k mtu
2259          * To take effect CTRL.RST is required.
2260          */
2261         switch (mac->type) {
2262         case e1000_i350:
2263         case e1000_i354:
2264         case e1000_82580:
2265                 pba = rd32(E1000_RXPBS);
2266                 pba = igb_rxpbs_adjust_82580(pba);
2267                 break;
2268         case e1000_82576:
2269                 pba = rd32(E1000_RXPBS);
2270                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2271                 break;
2272         case e1000_82575:
2273         case e1000_i210:
2274         case e1000_i211:
2275         default:
2276                 pba = E1000_PBA_34K;
2277                 break;
2278         }
2279
2280         if (mac->type == e1000_82575) {
2281                 u32 min_rx_space, min_tx_space, needed_tx_space;
2282
2283                 /* write Rx PBA so that hardware can report correct Tx PBA */
2284                 wr32(E1000_PBA, pba);
2285
2286                 /* To maintain wire speed transmits, the Tx FIFO should be
2287                  * large enough to accommodate two full transmit packets,
2288                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2289                  * the Rx FIFO should be large enough to accommodate at least
2290                  * one full receive packet and is similarly rounded up and
2291                  * expressed in KB.
2292                  */
2293                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2294
2295                 /* The Tx FIFO also stores 16 bytes of information about the Tx
2296                  * but don't include Ethernet FCS because hardware appends it.
2297                  * We only need to round down to the nearest 512 byte block
2298                  * count since the value we care about is 2 frames, not 1.
2299                  */
2300                 min_tx_space = adapter->max_frame_size;
2301                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2302                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2303
2304                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2305                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2306
2307                 /* If current Tx allocation is less than the min Tx FIFO size,
2308                  * and the min Tx FIFO size is less than the current Rx FIFO
2309                  * allocation, take space away from current Rx allocation.
2310                  */
2311                 if (needed_tx_space < pba) {
2312                         pba -= needed_tx_space;
2313
2314                         /* if short on Rx space, Rx wins and must trump Tx
2315                          * adjustment
2316                          */
2317                         if (pba < min_rx_space)
2318                                 pba = min_rx_space;
2319                 }
2320
2321                 /* adjust PBA for jumbo frames */
2322                 wr32(E1000_PBA, pba);
2323         }
2324
2325         /* flow control settings
2326          * The high water mark must be low enough to fit one full frame
2327          * after transmitting the pause frame.  As such we must have enough
2328          * space to allow for us to complete our current transmit and then
2329          * receive the frame that is in progress from the link partner.
2330          * Set it to:
2331          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2332          */
2333         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2334
2335         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2336         fc->low_water = fc->high_water - 16;
2337         fc->pause_time = 0xFFFF;
2338         fc->send_xon = 1;
2339         fc->current_mode = fc->requested_mode;
2340
2341         /* disable receive for all VFs and wait one second */
2342         if (adapter->vfs_allocated_count) {
2343                 int i;
2344
2345                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2346                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2347
2348                 /* ping all the active vfs to let them know we are going down */
2349                 igb_ping_all_vfs(adapter);
2350
2351                 /* disable transmits and receives */
2352                 wr32(E1000_VFRE, 0);
2353                 wr32(E1000_VFTE, 0);
2354         }
2355
2356         /* Allow time for pending master requests to run */
2357         hw->mac.ops.reset_hw(hw);
2358         wr32(E1000_WUC, 0);
2359
2360         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2361                 /* need to resetup here after media swap */
2362                 adapter->ei.get_invariants(hw);
2363                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2364         }
2365         if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2366             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2367                 igb_enable_mas(adapter);
2368         }
2369         if (hw->mac.ops.init_hw(hw))
2370                 dev_err(&pdev->dev, "Hardware Error\n");
2371
2372         /* RAR registers were cleared during init_hw, clear mac table */
2373         igb_flush_mac_table(adapter);
2374         __dev_uc_unsync(adapter->netdev, NULL);
2375
2376         /* Recover default RAR entry */
2377         igb_set_default_mac_filter(adapter);
2378
2379         /* Flow control settings reset on hardware reset, so guarantee flow
2380          * control is off when forcing speed.
2381          */
2382         if (!hw->mac.autoneg)
2383                 igb_force_mac_fc(hw);
2384
2385         igb_init_dmac(adapter, pba);
2386 #ifdef CONFIG_IGB_HWMON
2387         /* Re-initialize the thermal sensor on i350 devices. */
2388         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2389                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2390                         /* If present, re-initialize the external thermal sensor
2391                          * interface.
2392                          */
2393                         if (adapter->ets)
2394                                 mac->ops.init_thermal_sensor_thresh(hw);
2395                 }
2396         }
2397 #endif
2398         /* Re-establish EEE setting */
2399         if (hw->phy.media_type == e1000_media_type_copper) {
2400                 switch (mac->type) {
2401                 case e1000_i350:
2402                 case e1000_i210:
2403                 case e1000_i211:
2404                         igb_set_eee_i350(hw, true, true);
2405                         break;
2406                 case e1000_i354:
2407                         igb_set_eee_i354(hw, true, true);
2408                         break;
2409                 default:
2410                         break;
2411                 }
2412         }
2413         if (!netif_running(adapter->netdev))
2414                 igb_power_down_link(adapter);
2415
2416         igb_update_mng_vlan(adapter);
2417
2418         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2419         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2420
2421         /* Re-enable PTP, where applicable. */
2422         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2423                 igb_ptp_reset(adapter);
2424
2425         igb_get_phy_info(hw);
2426 }
2427
2428 static netdev_features_t igb_fix_features(struct net_device *netdev,
2429         netdev_features_t features)
2430 {
2431         /* Since there is no support for separate Rx/Tx vlan accel
2432          * enable/disable make sure Tx flag is always in same state as Rx.
2433          */
2434         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2435                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2436         else
2437                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2438
2439         return features;
2440 }
2441
2442 static int igb_set_features(struct net_device *netdev,
2443         netdev_features_t features)
2444 {
2445         netdev_features_t changed = netdev->features ^ features;
2446         struct igb_adapter *adapter = netdev_priv(netdev);
2447
2448         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2449                 igb_vlan_mode(netdev, features);
2450
2451         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2452                 return 0;
2453
2454         if (!(features & NETIF_F_NTUPLE)) {
2455                 struct hlist_node *node2;
2456                 struct igb_nfc_filter *rule;
2457
2458                 spin_lock(&adapter->nfc_lock);
2459                 hlist_for_each_entry_safe(rule, node2,
2460                                           &adapter->nfc_filter_list, nfc_node) {
2461                         igb_erase_filter(adapter, rule);
2462                         hlist_del(&rule->nfc_node);
2463                         kfree(rule);
2464                 }
2465                 spin_unlock(&adapter->nfc_lock);
2466                 adapter->nfc_filter_count = 0;
2467         }
2468
2469         netdev->features = features;
2470
2471         if (netif_running(netdev))
2472                 igb_reinit_locked(adapter);
2473         else
2474                 igb_reset(adapter);
2475
2476         return 1;
2477 }
2478
2479 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2480                            struct net_device *dev,
2481                            const unsigned char *addr, u16 vid,
2482                            u16 flags,
2483                            struct netlink_ext_ack *extack)
2484 {
2485         /* guarantee we can provide a unique filter for the unicast address */
2486         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2487                 struct igb_adapter *adapter = netdev_priv(dev);
2488                 int vfn = adapter->vfs_allocated_count;
2489
2490                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2491                         return -ENOMEM;
2492         }
2493
2494         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2495 }
2496
2497 #define IGB_MAX_MAC_HDR_LEN     127
2498 #define IGB_MAX_NETWORK_HDR_LEN 511
2499
2500 static netdev_features_t
2501 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2502                    netdev_features_t features)
2503 {
2504         unsigned int network_hdr_len, mac_hdr_len;
2505
2506         /* Make certain the headers can be described by a context descriptor */
2507         mac_hdr_len = skb_network_header(skb) - skb->data;
2508         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2509                 return features & ~(NETIF_F_HW_CSUM |
2510                                     NETIF_F_SCTP_CRC |
2511                                     NETIF_F_GSO_UDP_L4 |
2512                                     NETIF_F_HW_VLAN_CTAG_TX |
2513                                     NETIF_F_TSO |
2514                                     NETIF_F_TSO6);
2515
2516         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2517         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2518                 return features & ~(NETIF_F_HW_CSUM |
2519                                     NETIF_F_SCTP_CRC |
2520                                     NETIF_F_GSO_UDP_L4 |
2521                                     NETIF_F_TSO |
2522                                     NETIF_F_TSO6);
2523
2524         /* We can only support IPV4 TSO in tunnels if we can mangle the
2525          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2526          */
2527         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2528                 features &= ~NETIF_F_TSO;
2529
2530         return features;
2531 }
2532
2533 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2534 {
2535         if (!is_fqtss_enabled(adapter)) {
2536                 enable_fqtss(adapter, true);
2537                 return;
2538         }
2539
2540         igb_config_tx_modes(adapter, queue);
2541
2542         if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2543                 enable_fqtss(adapter, false);
2544 }
2545
2546 static int igb_offload_cbs(struct igb_adapter *adapter,
2547                            struct tc_cbs_qopt_offload *qopt)
2548 {
2549         struct e1000_hw *hw = &adapter->hw;
2550         int err;
2551
2552         /* CBS offloading is only supported by i210 controller. */
2553         if (hw->mac.type != e1000_i210)
2554                 return -EOPNOTSUPP;
2555
2556         /* CBS offloading is only supported by queue 0 and queue 1. */
2557         if (qopt->queue < 0 || qopt->queue > 1)
2558                 return -EINVAL;
2559
2560         err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2561                                   qopt->idleslope, qopt->sendslope,
2562                                   qopt->hicredit, qopt->locredit);
2563         if (err)
2564                 return err;
2565
2566         igb_offload_apply(adapter, qopt->queue);
2567
2568         return 0;
2569 }
2570
2571 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2572 #define VLAN_PRIO_FULL_MASK (0x07)
2573
2574 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2575                                 struct flow_cls_offload *f,
2576                                 int traffic_class,
2577                                 struct igb_nfc_filter *input)
2578 {
2579         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2580         struct flow_dissector *dissector = rule->match.dissector;
2581         struct netlink_ext_ack *extack = f->common.extack;
2582
2583         if (dissector->used_keys &
2584             ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2585               BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2586               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2587               BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2588                 NL_SET_ERR_MSG_MOD(extack,
2589                                    "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2590                 return -EOPNOTSUPP;
2591         }
2592
2593         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2594                 struct flow_match_eth_addrs match;
2595
2596                 flow_rule_match_eth_addrs(rule, &match);
2597                 if (!is_zero_ether_addr(match.mask->dst)) {
2598                         if (!is_broadcast_ether_addr(match.mask->dst)) {
2599                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2600                                 return -EINVAL;
2601                         }
2602
2603                         input->filter.match_flags |=
2604                                 IGB_FILTER_FLAG_DST_MAC_ADDR;
2605                         ether_addr_copy(input->filter.dst_addr, match.key->dst);
2606                 }
2607
2608                 if (!is_zero_ether_addr(match.mask->src)) {
2609                         if (!is_broadcast_ether_addr(match.mask->src)) {
2610                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2611                                 return -EINVAL;
2612                         }
2613
2614                         input->filter.match_flags |=
2615                                 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2616                         ether_addr_copy(input->filter.src_addr, match.key->src);
2617                 }
2618         }
2619
2620         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2621                 struct flow_match_basic match;
2622
2623                 flow_rule_match_basic(rule, &match);
2624                 if (match.mask->n_proto) {
2625                         if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2626                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2627                                 return -EINVAL;
2628                         }
2629
2630                         input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2631                         input->filter.etype = match.key->n_proto;
2632                 }
2633         }
2634
2635         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2636                 struct flow_match_vlan match;
2637
2638                 flow_rule_match_vlan(rule, &match);
2639                 if (match.mask->vlan_priority) {
2640                         if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2641                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2642                                 return -EINVAL;
2643                         }
2644
2645                         input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2646                         input->filter.vlan_tci = match.key->vlan_priority;
2647                 }
2648         }
2649
2650         input->action = traffic_class;
2651         input->cookie = f->cookie;
2652
2653         return 0;
2654 }
2655
2656 static int igb_configure_clsflower(struct igb_adapter *adapter,
2657                                    struct flow_cls_offload *cls_flower)
2658 {
2659         struct netlink_ext_ack *extack = cls_flower->common.extack;
2660         struct igb_nfc_filter *filter, *f;
2661         int err, tc;
2662
2663         tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2664         if (tc < 0) {
2665                 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2666                 return -EINVAL;
2667         }
2668
2669         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2670         if (!filter)
2671                 return -ENOMEM;
2672
2673         err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2674         if (err < 0)
2675                 goto err_parse;
2676
2677         spin_lock(&adapter->nfc_lock);
2678
2679         hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2680                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2681                         err = -EEXIST;
2682                         NL_SET_ERR_MSG_MOD(extack,
2683                                            "This filter is already set in ethtool");
2684                         goto err_locked;
2685                 }
2686         }
2687
2688         hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2689                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690                         err = -EEXIST;
2691                         NL_SET_ERR_MSG_MOD(extack,
2692                                            "This filter is already set in cls_flower");
2693                         goto err_locked;
2694                 }
2695         }
2696
2697         err = igb_add_filter(adapter, filter);
2698         if (err < 0) {
2699                 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2700                 goto err_locked;
2701         }
2702
2703         hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2704
2705         spin_unlock(&adapter->nfc_lock);
2706
2707         return 0;
2708
2709 err_locked:
2710         spin_unlock(&adapter->nfc_lock);
2711
2712 err_parse:
2713         kfree(filter);
2714
2715         return err;
2716 }
2717
2718 static int igb_delete_clsflower(struct igb_adapter *adapter,
2719                                 struct flow_cls_offload *cls_flower)
2720 {
2721         struct igb_nfc_filter *filter;
2722         int err;
2723
2724         spin_lock(&adapter->nfc_lock);
2725
2726         hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2727                 if (filter->cookie == cls_flower->cookie)
2728                         break;
2729
2730         if (!filter) {
2731                 err = -ENOENT;
2732                 goto out;
2733         }
2734
2735         err = igb_erase_filter(adapter, filter);
2736         if (err < 0)
2737                 goto out;
2738
2739         hlist_del(&filter->nfc_node);
2740         kfree(filter);
2741
2742 out:
2743         spin_unlock(&adapter->nfc_lock);
2744
2745         return err;
2746 }
2747
2748 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2749                                    struct flow_cls_offload *cls_flower)
2750 {
2751         switch (cls_flower->command) {
2752         case FLOW_CLS_REPLACE:
2753                 return igb_configure_clsflower(adapter, cls_flower);
2754         case FLOW_CLS_DESTROY:
2755                 return igb_delete_clsflower(adapter, cls_flower);
2756         case FLOW_CLS_STATS:
2757                 return -EOPNOTSUPP;
2758         default:
2759                 return -EOPNOTSUPP;
2760         }
2761 }
2762
2763 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2764                                  void *cb_priv)
2765 {
2766         struct igb_adapter *adapter = cb_priv;
2767
2768         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2769                 return -EOPNOTSUPP;
2770
2771         switch (type) {
2772         case TC_SETUP_CLSFLOWER:
2773                 return igb_setup_tc_cls_flower(adapter, type_data);
2774
2775         default:
2776                 return -EOPNOTSUPP;
2777         }
2778 }
2779
2780 static int igb_offload_txtime(struct igb_adapter *adapter,
2781                               struct tc_etf_qopt_offload *qopt)
2782 {
2783         struct e1000_hw *hw = &adapter->hw;
2784         int err;
2785
2786         /* Launchtime offloading is only supported by i210 controller. */
2787         if (hw->mac.type != e1000_i210)
2788                 return -EOPNOTSUPP;
2789
2790         /* Launchtime offloading is only supported by queues 0 and 1. */
2791         if (qopt->queue < 0 || qopt->queue > 1)
2792                 return -EINVAL;
2793
2794         err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2795         if (err)
2796                 return err;
2797
2798         igb_offload_apply(adapter, qopt->queue);
2799
2800         return 0;
2801 }
2802
2803 static LIST_HEAD(igb_block_cb_list);
2804
2805 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2806                         void *type_data)
2807 {
2808         struct igb_adapter *adapter = netdev_priv(dev);
2809
2810         switch (type) {
2811         case TC_SETUP_QDISC_CBS:
2812                 return igb_offload_cbs(adapter, type_data);
2813         case TC_SETUP_BLOCK:
2814                 return flow_block_cb_setup_simple(type_data,
2815                                                   &igb_block_cb_list,
2816                                                   igb_setup_tc_block_cb,
2817                                                   adapter, adapter, true);
2818
2819         case TC_SETUP_QDISC_ETF:
2820                 return igb_offload_txtime(adapter, type_data);
2821
2822         default:
2823                 return -EOPNOTSUPP;
2824         }
2825 }
2826
2827 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2828 {
2829         int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2830         struct igb_adapter *adapter = netdev_priv(dev);
2831         struct bpf_prog *prog = bpf->prog, *old_prog;
2832         bool running = netif_running(dev);
2833         bool need_reset;
2834
2835         /* verify igb ring attributes are sufficient for XDP */
2836         for (i = 0; i < adapter->num_rx_queues; i++) {
2837                 struct igb_ring *ring = adapter->rx_ring[i];
2838
2839                 if (frame_size > igb_rx_bufsz(ring)) {
2840                         NL_SET_ERR_MSG_MOD(bpf->extack,
2841                                            "The RX buffer size is too small for the frame size");
2842                         netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2843                                     igb_rx_bufsz(ring), frame_size);
2844                         return -EINVAL;
2845                 }
2846         }
2847
2848         old_prog = xchg(&adapter->xdp_prog, prog);
2849         need_reset = (!!prog != !!old_prog);
2850
2851         /* device is up and bpf is added/removed, must setup the RX queues */
2852         if (need_reset && running) {
2853                 igb_close(dev);
2854         } else {
2855                 for (i = 0; i < adapter->num_rx_queues; i++)
2856                         (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2857                             adapter->xdp_prog);
2858         }
2859
2860         if (old_prog)
2861                 bpf_prog_put(old_prog);
2862
2863         /* bpf is just replaced, RXQ and MTU are already setup */
2864         if (!need_reset)
2865                 return 0;
2866
2867         if (running)
2868                 igb_open(dev);
2869
2870         return 0;
2871 }
2872
2873 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2874 {
2875         switch (xdp->command) {
2876         case XDP_SETUP_PROG:
2877                 return igb_xdp_setup(dev, xdp);
2878         default:
2879                 return -EINVAL;
2880         }
2881 }
2882
2883 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2884 {
2885         /* Force memory writes to complete before letting h/w know there
2886          * are new descriptors to fetch.
2887          */
2888         wmb();
2889         writel(ring->next_to_use, ring->tail);
2890 }
2891
2892 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2893 {
2894         unsigned int r_idx = smp_processor_id();
2895
2896         if (r_idx >= adapter->num_tx_queues)
2897                 r_idx = r_idx % adapter->num_tx_queues;
2898
2899         return adapter->tx_ring[r_idx];
2900 }
2901
2902 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2903 {
2904         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2905         int cpu = smp_processor_id();
2906         struct igb_ring *tx_ring;
2907         struct netdev_queue *nq;
2908         u32 ret;
2909
2910         if (unlikely(!xdpf))
2911                 return IGB_XDP_CONSUMED;
2912
2913         /* During program transitions its possible adapter->xdp_prog is assigned
2914          * but ring has not been configured yet. In this case simply abort xmit.
2915          */
2916         tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2917         if (unlikely(!tx_ring))
2918                 return IGB_XDP_CONSUMED;
2919
2920         nq = txring_txq(tx_ring);
2921         __netif_tx_lock(nq, cpu);
2922         /* Avoid transmit queue timeout since we share it with the slow path */
2923         nq->trans_start = jiffies;
2924         ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2925         __netif_tx_unlock(nq);
2926
2927         return ret;
2928 }
2929
2930 static int igb_xdp_xmit(struct net_device *dev, int n,
2931                         struct xdp_frame **frames, u32 flags)
2932 {
2933         struct igb_adapter *adapter = netdev_priv(dev);
2934         int cpu = smp_processor_id();
2935         struct igb_ring *tx_ring;
2936         struct netdev_queue *nq;
2937         int nxmit = 0;
2938         int i;
2939
2940         if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2941                 return -ENETDOWN;
2942
2943         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2944                 return -EINVAL;
2945
2946         /* During program transitions its possible adapter->xdp_prog is assigned
2947          * but ring has not been configured yet. In this case simply abort xmit.
2948          */
2949         tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2950         if (unlikely(!tx_ring))
2951                 return -ENXIO;
2952
2953         nq = txring_txq(tx_ring);
2954         __netif_tx_lock(nq, cpu);
2955
2956         /* Avoid transmit queue timeout since we share it with the slow path */
2957         nq->trans_start = jiffies;
2958
2959         for (i = 0; i < n; i++) {
2960                 struct xdp_frame *xdpf = frames[i];
2961                 int err;
2962
2963                 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2964                 if (err != IGB_XDP_TX)
2965                         break;
2966                 nxmit++;
2967         }
2968
2969         __netif_tx_unlock(nq);
2970
2971         if (unlikely(flags & XDP_XMIT_FLUSH))
2972                 igb_xdp_ring_update_tail(tx_ring);
2973
2974         return nxmit;
2975 }
2976
2977 static const struct net_device_ops igb_netdev_ops = {
2978         .ndo_open               = igb_open,
2979         .ndo_stop               = igb_close,
2980         .ndo_start_xmit         = igb_xmit_frame,
2981         .ndo_get_stats64        = igb_get_stats64,
2982         .ndo_set_rx_mode        = igb_set_rx_mode,
2983         .ndo_set_mac_address    = igb_set_mac,
2984         .ndo_change_mtu         = igb_change_mtu,
2985         .ndo_do_ioctl           = igb_ioctl,
2986         .ndo_tx_timeout         = igb_tx_timeout,
2987         .ndo_validate_addr      = eth_validate_addr,
2988         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2989         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2990         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2991         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2992         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2993         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2994         .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
2995         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2996         .ndo_fix_features       = igb_fix_features,
2997         .ndo_set_features       = igb_set_features,
2998         .ndo_fdb_add            = igb_ndo_fdb_add,
2999         .ndo_features_check     = igb_features_check,
3000         .ndo_setup_tc           = igb_setup_tc,
3001         .ndo_bpf                = igb_xdp,
3002         .ndo_xdp_xmit           = igb_xdp_xmit,
3003 };
3004
3005 /**
3006  * igb_set_fw_version - Configure version string for ethtool
3007  * @adapter: adapter struct
3008  **/
3009 void igb_set_fw_version(struct igb_adapter *adapter)
3010 {
3011         struct e1000_hw *hw = &adapter->hw;
3012         struct e1000_fw_version fw;
3013
3014         igb_get_fw_version(hw, &fw);
3015
3016         switch (hw->mac.type) {
3017         case e1000_i210:
3018         case e1000_i211:
3019                 if (!(igb_get_flash_presence_i210(hw))) {
3020                         snprintf(adapter->fw_version,
3021                                  sizeof(adapter->fw_version),
3022                                  "%2d.%2d-%d",
3023                                  fw.invm_major, fw.invm_minor,
3024                                  fw.invm_img_type);
3025                         break;
3026                 }
3027                 fallthrough;
3028         default:
3029                 /* if option is rom valid, display its version too */
3030                 if (fw.or_valid) {
3031                         snprintf(adapter->fw_version,
3032                                  sizeof(adapter->fw_version),
3033                                  "%d.%d, 0x%08x, %d.%d.%d",
3034                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
3035                                  fw.or_major, fw.or_build, fw.or_patch);
3036                 /* no option rom */
3037                 } else if (fw.etrack_id != 0X0000) {
3038                         snprintf(adapter->fw_version,
3039                             sizeof(adapter->fw_version),
3040                             "%d.%d, 0x%08x",
3041                             fw.eep_major, fw.eep_minor, fw.etrack_id);
3042                 } else {
3043                 snprintf(adapter->fw_version,
3044                     sizeof(adapter->fw_version),
3045                     "%d.%d.%d",
3046                     fw.eep_major, fw.eep_minor, fw.eep_build);
3047                 }
3048                 break;
3049         }
3050 }
3051
3052 /**
3053  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3054  *
3055  * @adapter: adapter struct
3056  **/
3057 static void igb_init_mas(struct igb_adapter *adapter)
3058 {
3059         struct e1000_hw *hw = &adapter->hw;
3060         u16 eeprom_data;
3061
3062         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3063         switch (hw->bus.func) {
3064         case E1000_FUNC_0:
3065                 if (eeprom_data & IGB_MAS_ENABLE_0) {
3066                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3067                         netdev_info(adapter->netdev,
3068                                 "MAS: Enabling Media Autosense for port %d\n",
3069                                 hw->bus.func);
3070                 }
3071                 break;
3072         case E1000_FUNC_1:
3073                 if (eeprom_data & IGB_MAS_ENABLE_1) {
3074                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3075                         netdev_info(adapter->netdev,
3076                                 "MAS: Enabling Media Autosense for port %d\n",
3077                                 hw->bus.func);
3078                 }
3079                 break;
3080         case E1000_FUNC_2:
3081                 if (eeprom_data & IGB_MAS_ENABLE_2) {
3082                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3083                         netdev_info(adapter->netdev,
3084                                 "MAS: Enabling Media Autosense for port %d\n",
3085                                 hw->bus.func);
3086                 }
3087                 break;
3088         case E1000_FUNC_3:
3089                 if (eeprom_data & IGB_MAS_ENABLE_3) {
3090                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3091                         netdev_info(adapter->netdev,
3092                                 "MAS: Enabling Media Autosense for port %d\n",
3093                                 hw->bus.func);
3094                 }
3095                 break;
3096         default:
3097                 /* Shouldn't get here */
3098                 netdev_err(adapter->netdev,
3099                         "MAS: Invalid port configuration, returning\n");
3100                 break;
3101         }
3102 }
3103
3104 /**
3105  *  igb_init_i2c - Init I2C interface
3106  *  @adapter: pointer to adapter structure
3107  **/
3108 static s32 igb_init_i2c(struct igb_adapter *adapter)
3109 {
3110         s32 status = 0;
3111
3112         /* I2C interface supported on i350 devices */
3113         if (adapter->hw.mac.type != e1000_i350)
3114                 return 0;
3115
3116         /* Initialize the i2c bus which is controlled by the registers.
3117          * This bus will use the i2c_algo_bit structure that implements
3118          * the protocol through toggling of the 4 bits in the register.
3119          */
3120         adapter->i2c_adap.owner = THIS_MODULE;
3121         adapter->i2c_algo = igb_i2c_algo;
3122         adapter->i2c_algo.data = adapter;
3123         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3124         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3125         strlcpy(adapter->i2c_adap.name, "igb BB",
3126                 sizeof(adapter->i2c_adap.name));
3127         status = i2c_bit_add_bus(&adapter->i2c_adap);
3128         return status;
3129 }
3130
3131 /**
3132  *  igb_probe - Device Initialization Routine
3133  *  @pdev: PCI device information struct
3134  *  @ent: entry in igb_pci_tbl
3135  *
3136  *  Returns 0 on success, negative on failure
3137  *
3138  *  igb_probe initializes an adapter identified by a pci_dev structure.
3139  *  The OS initialization, configuring of the adapter private structure,
3140  *  and a hardware reset occur.
3141  **/
3142 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3143 {
3144         struct net_device *netdev;
3145         struct igb_adapter *adapter;
3146         struct e1000_hw *hw;
3147         u16 eeprom_data = 0;
3148         s32 ret_val;
3149         static int global_quad_port_a; /* global quad port a indication */
3150         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3151         int err, pci_using_dac;
3152         u8 part_str[E1000_PBANUM_LENGTH];
3153
3154         /* Catch broken hardware that put the wrong VF device ID in
3155          * the PCIe SR-IOV capability.
3156          */
3157         if (pdev->is_virtfn) {
3158                 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3159                         pci_name(pdev), pdev->vendor, pdev->device);
3160                 return -EINVAL;
3161         }
3162
3163         err = pci_enable_device_mem(pdev);
3164         if (err)
3165                 return err;
3166
3167         pci_using_dac = 0;
3168         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3169         if (!err) {
3170                 pci_using_dac = 1;
3171         } else {
3172                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3173                 if (err) {
3174                         dev_err(&pdev->dev,
3175                                 "No usable DMA configuration, aborting\n");
3176                         goto err_dma;
3177                 }
3178         }
3179
3180         err = pci_request_mem_regions(pdev, igb_driver_name);
3181         if (err)
3182                 goto err_pci_reg;
3183
3184         pci_enable_pcie_error_reporting(pdev);
3185
3186         pci_set_master(pdev);
3187         pci_save_state(pdev);
3188
3189         err = -ENOMEM;
3190         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3191                                    IGB_MAX_TX_QUEUES);
3192         if (!netdev)
3193                 goto err_alloc_etherdev;
3194
3195         SET_NETDEV_DEV(netdev, &pdev->dev);
3196
3197         pci_set_drvdata(pdev, netdev);
3198         adapter = netdev_priv(netdev);
3199         adapter->netdev = netdev;
3200         adapter->pdev = pdev;
3201         hw = &adapter->hw;
3202         hw->back = adapter;
3203         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3204
3205         err = -EIO;
3206         adapter->io_addr = pci_iomap(pdev, 0, 0);
3207         if (!adapter->io_addr)
3208                 goto err_ioremap;
3209         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3210         hw->hw_addr = adapter->io_addr;
3211
3212         netdev->netdev_ops = &igb_netdev_ops;
3213         igb_set_ethtool_ops(netdev);
3214         netdev->watchdog_timeo = 5 * HZ;
3215
3216         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3217
3218         netdev->mem_start = pci_resource_start(pdev, 0);
3219         netdev->mem_end = pci_resource_end(pdev, 0);
3220
3221         /* PCI config space info */
3222         hw->vendor_id = pdev->vendor;
3223         hw->device_id = pdev->device;
3224         hw->revision_id = pdev->revision;
3225         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3226         hw->subsystem_device_id = pdev->subsystem_device;
3227
3228         /* Copy the default MAC, PHY and NVM function pointers */
3229         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3230         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3231         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3232         /* Initialize skew-specific constants */
3233         err = ei->get_invariants(hw);
3234         if (err)
3235                 goto err_sw_init;
3236
3237         /* setup the private structure */
3238         err = igb_sw_init(adapter);
3239         if (err)
3240                 goto err_sw_init;
3241
3242         igb_get_bus_info_pcie(hw);
3243
3244         hw->phy.autoneg_wait_to_complete = false;
3245
3246         /* Copper options */
3247         if (hw->phy.media_type == e1000_media_type_copper) {
3248                 hw->phy.mdix = AUTO_ALL_MODES;
3249                 hw->phy.disable_polarity_correction = false;
3250                 hw->phy.ms_type = e1000_ms_hw_default;
3251         }
3252
3253         if (igb_check_reset_block(hw))
3254                 dev_info(&pdev->dev,
3255                         "PHY reset is blocked due to SOL/IDER session.\n");
3256
3257         /* features is initialized to 0 in allocation, it might have bits
3258          * set by igb_sw_init so we should use an or instead of an
3259          * assignment.
3260          */
3261         netdev->features |= NETIF_F_SG |
3262                             NETIF_F_TSO |
3263                             NETIF_F_TSO6 |
3264                             NETIF_F_RXHASH |
3265                             NETIF_F_RXCSUM |
3266                             NETIF_F_HW_CSUM;
3267
3268         if (hw->mac.type >= e1000_82576)
3269                 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3270
3271         if (hw->mac.type >= e1000_i350)
3272                 netdev->features |= NETIF_F_HW_TC;
3273
3274 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3275                                   NETIF_F_GSO_GRE_CSUM | \
3276                                   NETIF_F_GSO_IPXIP4 | \
3277                                   NETIF_F_GSO_IPXIP6 | \
3278                                   NETIF_F_GSO_UDP_TUNNEL | \
3279                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
3280
3281         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3282         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3283
3284         /* copy netdev features into list of user selectable features */
3285         netdev->hw_features |= netdev->features |
3286                                NETIF_F_HW_VLAN_CTAG_RX |
3287                                NETIF_F_HW_VLAN_CTAG_TX |
3288                                NETIF_F_RXALL;
3289
3290         if (hw->mac.type >= e1000_i350)
3291                 netdev->hw_features |= NETIF_F_NTUPLE;
3292
3293         if (pci_using_dac)
3294                 netdev->features |= NETIF_F_HIGHDMA;
3295
3296         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3297         netdev->mpls_features |= NETIF_F_HW_CSUM;
3298         netdev->hw_enc_features |= netdev->vlan_features;
3299
3300         /* set this bit last since it cannot be part of vlan_features */
3301         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3302                             NETIF_F_HW_VLAN_CTAG_RX |
3303                             NETIF_F_HW_VLAN_CTAG_TX;
3304
3305         netdev->priv_flags |= IFF_SUPP_NOFCS;
3306
3307         netdev->priv_flags |= IFF_UNICAST_FLT;
3308
3309         /* MTU range: 68 - 9216 */
3310         netdev->min_mtu = ETH_MIN_MTU;
3311         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3312
3313         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3314
3315         /* before reading the NVM, reset the controller to put the device in a
3316          * known good starting state
3317          */
3318         hw->mac.ops.reset_hw(hw);
3319
3320         /* make sure the NVM is good , i211/i210 parts can have special NVM
3321          * that doesn't contain a checksum
3322          */
3323         switch (hw->mac.type) {
3324         case e1000_i210:
3325         case e1000_i211:
3326                 if (igb_get_flash_presence_i210(hw)) {
3327                         if (hw->nvm.ops.validate(hw) < 0) {
3328                                 dev_err(&pdev->dev,
3329                                         "The NVM Checksum Is Not Valid\n");
3330                                 err = -EIO;
3331                                 goto err_eeprom;
3332                         }
3333                 }
3334                 break;
3335         default:
3336                 if (hw->nvm.ops.validate(hw) < 0) {
3337                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3338                         err = -EIO;
3339                         goto err_eeprom;
3340                 }
3341                 break;
3342         }
3343
3344         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3345                 /* copy the MAC address out of the NVM */
3346                 if (hw->mac.ops.read_mac_addr(hw))
3347                         dev_err(&pdev->dev, "NVM Read Error\n");
3348         }
3349
3350         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3351
3352         if (!is_valid_ether_addr(netdev->dev_addr)) {
3353                 dev_err(&pdev->dev, "Invalid MAC Address\n");
3354                 err = -EIO;
3355                 goto err_eeprom;
3356         }
3357
3358         igb_set_default_mac_filter(adapter);
3359
3360         /* get firmware version for ethtool -i */
3361         igb_set_fw_version(adapter);
3362
3363         /* configure RXPBSIZE and TXPBSIZE */
3364         if (hw->mac.type == e1000_i210) {
3365                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3366                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3367         }
3368
3369         timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3370         timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3371
3372         INIT_WORK(&adapter->reset_task, igb_reset_task);
3373         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3374
3375         /* Initialize link properties that are user-changeable */
3376         adapter->fc_autoneg = true;
3377         hw->mac.autoneg = true;
3378         hw->phy.autoneg_advertised = 0x2f;
3379
3380         hw->fc.requested_mode = e1000_fc_default;
3381         hw->fc.current_mode = e1000_fc_default;
3382
3383         igb_validate_mdi_setting(hw);
3384
3385         /* By default, support wake on port A */
3386         if (hw->bus.func == 0)
3387                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3388
3389         /* Check the NVM for wake support on non-port A ports */
3390         if (hw->mac.type >= e1000_82580)
3391                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3392                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3393                                  &eeprom_data);
3394         else if (hw->bus.func == 1)
3395                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3396
3397         if (eeprom_data & IGB_EEPROM_APME)
3398                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3399
3400         /* now that we have the eeprom settings, apply the special cases where
3401          * the eeprom may be wrong or the board simply won't support wake on
3402          * lan on a particular port
3403          */
3404         switch (pdev->device) {
3405         case E1000_DEV_ID_82575GB_QUAD_COPPER:
3406                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3407                 break;
3408         case E1000_DEV_ID_82575EB_FIBER_SERDES:
3409         case E1000_DEV_ID_82576_FIBER:
3410         case E1000_DEV_ID_82576_SERDES:
3411                 /* Wake events only supported on port A for dual fiber
3412                  * regardless of eeprom setting
3413                  */
3414                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3415                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3416                 break;
3417         case E1000_DEV_ID_82576_QUAD_COPPER:
3418         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3419                 /* if quad port adapter, disable WoL on all but port A */
3420                 if (global_quad_port_a != 0)
3421                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3422                 else
3423                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3424                 /* Reset for multiple quad port adapters */
3425                 if (++global_quad_port_a == 4)
3426                         global_quad_port_a = 0;
3427                 break;
3428         default:
3429                 /* If the device can't wake, don't set software support */
3430                 if (!device_can_wakeup(&adapter->pdev->dev))
3431                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3432         }
3433
3434         /* initialize the wol settings based on the eeprom settings */
3435         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3436                 adapter->wol |= E1000_WUFC_MAG;
3437
3438         /* Some vendors want WoL disabled by default, but still supported */
3439         if ((hw->mac.type == e1000_i350) &&
3440             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3441                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3442                 adapter->wol = 0;
3443         }
3444
3445         /* Some vendors want the ability to Use the EEPROM setting as
3446          * enable/disable only, and not for capability
3447          */
3448         if (((hw->mac.type == e1000_i350) ||
3449              (hw->mac.type == e1000_i354)) &&
3450             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3451                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3452                 adapter->wol = 0;
3453         }
3454         if (hw->mac.type == e1000_i350) {
3455                 if (((pdev->subsystem_device == 0x5001) ||
3456                      (pdev->subsystem_device == 0x5002)) &&
3457                                 (hw->bus.func == 0)) {
3458                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3459                         adapter->wol = 0;
3460                 }
3461                 if (pdev->subsystem_device == 0x1F52)
3462                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3463         }
3464
3465         device_set_wakeup_enable(&adapter->pdev->dev,
3466                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3467
3468         /* reset the hardware with the new settings */
3469         igb_reset(adapter);
3470
3471         /* Init the I2C interface */
3472         err = igb_init_i2c(adapter);
3473         if (err) {
3474                 dev_err(&pdev->dev, "failed to init i2c interface\n");
3475                 goto err_eeprom;
3476         }
3477
3478         /* let the f/w know that the h/w is now under the control of the
3479          * driver.
3480          */
3481         igb_get_hw_control(adapter);
3482
3483         strcpy(netdev->name, "eth%d");
3484         err = register_netdev(netdev);
3485         if (err)
3486                 goto err_register;
3487
3488         /* carrier off reporting is important to ethtool even BEFORE open */
3489         netif_carrier_off(netdev);
3490
3491 #ifdef CONFIG_IGB_DCA
3492         if (dca_add_requester(&pdev->dev) == 0) {
3493                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3494                 dev_info(&pdev->dev, "DCA enabled\n");
3495                 igb_setup_dca(adapter);
3496         }
3497
3498 #endif
3499 #ifdef CONFIG_IGB_HWMON
3500         /* Initialize the thermal sensor on i350 devices. */
3501         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3502                 u16 ets_word;
3503
3504                 /* Read the NVM to determine if this i350 device supports an
3505                  * external thermal sensor.
3506                  */
3507                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3508                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3509                         adapter->ets = true;
3510                 else
3511                         adapter->ets = false;
3512                 if (igb_sysfs_init(adapter))
3513                         dev_err(&pdev->dev,
3514                                 "failed to allocate sysfs resources\n");
3515         } else {
3516                 adapter->ets = false;
3517         }
3518 #endif
3519         /* Check if Media Autosense is enabled */
3520         adapter->ei = *ei;
3521         if (hw->dev_spec._82575.mas_capable)
3522                 igb_init_mas(adapter);
3523
3524         /* do hw tstamp init after resetting */
3525         igb_ptp_init(adapter);
3526
3527         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3528         /* print bus type/speed/width info, not applicable to i354 */
3529         if (hw->mac.type != e1000_i354) {
3530                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3531                          netdev->name,
3532                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3533                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3534                            "unknown"),
3535                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3536                           "Width x4" :
3537                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
3538                           "Width x2" :
3539                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
3540                           "Width x1" : "unknown"), netdev->dev_addr);
3541         }
3542
3543         if ((hw->mac.type == e1000_82576 &&
3544              rd32(E1000_EECD) & E1000_EECD_PRES) ||
3545             (hw->mac.type >= e1000_i210 ||
3546              igb_get_flash_presence_i210(hw))) {
3547                 ret_val = igb_read_part_string(hw, part_str,
3548                                                E1000_PBANUM_LENGTH);
3549         } else {
3550                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3551         }
3552
3553         if (ret_val)
3554                 strcpy(part_str, "Unknown");
3555         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3556         dev_info(&pdev->dev,
3557                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3558                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3559                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3560                 adapter->num_rx_queues, adapter->num_tx_queues);
3561         if (hw->phy.media_type == e1000_media_type_copper) {
3562                 switch (hw->mac.type) {
3563                 case e1000_i350:
3564                 case e1000_i210:
3565                 case e1000_i211:
3566                         /* Enable EEE for internal copper PHY devices */
3567                         err = igb_set_eee_i350(hw, true, true);
3568                         if ((!err) &&
3569                             (!hw->dev_spec._82575.eee_disable)) {
3570                                 adapter->eee_advert =
3571                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
3572                                 adapter->flags |= IGB_FLAG_EEE;
3573                         }
3574                         break;
3575                 case e1000_i354:
3576                         if ((rd32(E1000_CTRL_EXT) &
3577                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3578                                 err = igb_set_eee_i354(hw, true, true);
3579                                 if ((!err) &&
3580                                         (!hw->dev_spec._82575.eee_disable)) {
3581                                         adapter->eee_advert =
3582                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
3583                                         adapter->flags |= IGB_FLAG_EEE;
3584                                 }
3585                         }
3586                         break;
3587                 default:
3588                         break;
3589                 }
3590         }
3591
3592         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3593
3594         pm_runtime_put_noidle(&pdev->dev);
3595         return 0;
3596
3597 err_register:
3598         igb_release_hw_control(adapter);
3599         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3600 err_eeprom:
3601         if (!igb_check_reset_block(hw))
3602                 igb_reset_phy(hw);
3603
3604         if (hw->flash_address)
3605                 iounmap(hw->flash_address);
3606 err_sw_init:
3607         kfree(adapter->mac_table);
3608         kfree(adapter->shadow_vfta);
3609         igb_clear_interrupt_scheme(adapter);
3610 #ifdef CONFIG_PCI_IOV
3611         igb_disable_sriov(pdev);
3612 #endif
3613         pci_iounmap(pdev, adapter->io_addr);
3614 err_ioremap:
3615         free_netdev(netdev);
3616 err_alloc_etherdev:
3617         pci_release_mem_regions(pdev);
3618 err_pci_reg:
3619 err_dma:
3620         pci_disable_device(pdev);
3621         return err;
3622 }
3623
3624 #ifdef CONFIG_PCI_IOV
3625 static int igb_disable_sriov(struct pci_dev *pdev)
3626 {
3627         struct net_device *netdev = pci_get_drvdata(pdev);
3628         struct igb_adapter *adapter = netdev_priv(netdev);
3629         struct e1000_hw *hw = &adapter->hw;
3630
3631         /* reclaim resources allocated to VFs */
3632         if (adapter->vf_data) {
3633                 /* disable iov and allow time for transactions to clear */
3634                 if (pci_vfs_assigned(pdev)) {
3635                         dev_warn(&pdev->dev,
3636                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3637                         return -EPERM;
3638                 } else {
3639                         pci_disable_sriov(pdev);
3640                         msleep(500);
3641                 }
3642
3643                 kfree(adapter->vf_mac_list);
3644                 adapter->vf_mac_list = NULL;
3645                 kfree(adapter->vf_data);
3646                 adapter->vf_data = NULL;
3647                 adapter->vfs_allocated_count = 0;
3648                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3649                 wrfl();
3650                 msleep(100);
3651                 dev_info(&pdev->dev, "IOV Disabled\n");
3652
3653                 /* Re-enable DMA Coalescing flag since IOV is turned off */
3654                 adapter->flags |= IGB_FLAG_DMAC;
3655         }
3656
3657         return 0;
3658 }
3659
3660 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3661 {
3662         struct net_device *netdev = pci_get_drvdata(pdev);
3663         struct igb_adapter *adapter = netdev_priv(netdev);
3664         int old_vfs = pci_num_vf(pdev);
3665         struct vf_mac_filter *mac_list;
3666         int err = 0;
3667         int num_vf_mac_filters, i;
3668
3669         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3670                 err = -EPERM;
3671                 goto out;
3672         }
3673         if (!num_vfs)
3674                 goto out;
3675
3676         if (old_vfs) {
3677                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3678                          old_vfs, max_vfs);
3679                 adapter->vfs_allocated_count = old_vfs;
3680         } else
3681                 adapter->vfs_allocated_count = num_vfs;
3682
3683         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3684                                 sizeof(struct vf_data_storage), GFP_KERNEL);
3685
3686         /* if allocation failed then we do not support SR-IOV */
3687         if (!adapter->vf_data) {
3688                 adapter->vfs_allocated_count = 0;
3689                 err = -ENOMEM;
3690                 goto out;
3691         }
3692
3693         /* Due to the limited number of RAR entries calculate potential
3694          * number of MAC filters available for the VFs. Reserve entries
3695          * for PF default MAC, PF MAC filters and at least one RAR entry
3696          * for each VF for VF MAC.
3697          */
3698         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3699                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
3700                               adapter->vfs_allocated_count);
3701
3702         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3703                                        sizeof(struct vf_mac_filter),
3704                                        GFP_KERNEL);
3705
3706         mac_list = adapter->vf_mac_list;
3707         INIT_LIST_HEAD(&adapter->vf_macs.l);
3708
3709         if (adapter->vf_mac_list) {
3710                 /* Initialize list of VF MAC filters */
3711                 for (i = 0; i < num_vf_mac_filters; i++) {
3712                         mac_list->vf = -1;
3713                         mac_list->free = true;
3714                         list_add(&mac_list->l, &adapter->vf_macs.l);
3715                         mac_list++;
3716                 }
3717         } else {
3718                 /* If we could not allocate memory for the VF MAC filters
3719                  * we can continue without this feature but warn user.
3720                  */
3721                 dev_err(&pdev->dev,
3722                         "Unable to allocate memory for VF MAC filter list\n");
3723         }
3724
3725         /* only call pci_enable_sriov() if no VFs are allocated already */
3726         if (!old_vfs) {
3727                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3728                 if (err)
3729                         goto err_out;
3730         }
3731         dev_info(&pdev->dev, "%d VFs allocated\n",
3732                  adapter->vfs_allocated_count);
3733         for (i = 0; i < adapter->vfs_allocated_count; i++)
3734                 igb_vf_configure(adapter, i);
3735
3736         /* DMA Coalescing is not supported in IOV mode. */
3737         adapter->flags &= ~IGB_FLAG_DMAC;
3738         goto out;
3739
3740 err_out:
3741         kfree(adapter->vf_mac_list);
3742         adapter->vf_mac_list = NULL;
3743         kfree(adapter->vf_data);
3744         adapter->vf_data = NULL;
3745         adapter->vfs_allocated_count = 0;
3746 out:
3747         return err;
3748 }
3749
3750 #endif
3751 /**
3752  *  igb_remove_i2c - Cleanup  I2C interface
3753  *  @adapter: pointer to adapter structure
3754  **/
3755 static void igb_remove_i2c(struct igb_adapter *adapter)
3756 {
3757         /* free the adapter bus structure */
3758         i2c_del_adapter(&adapter->i2c_adap);
3759 }
3760
3761 /**
3762  *  igb_remove - Device Removal Routine
3763  *  @pdev: PCI device information struct
3764  *
3765  *  igb_remove is called by the PCI subsystem to alert the driver
3766  *  that it should release a PCI device.  The could be caused by a
3767  *  Hot-Plug event, or because the driver is going to be removed from
3768  *  memory.
3769  **/
3770 static void igb_remove(struct pci_dev *pdev)
3771 {
3772         struct net_device *netdev = pci_get_drvdata(pdev);
3773         struct igb_adapter *adapter = netdev_priv(netdev);
3774         struct e1000_hw *hw = &adapter->hw;
3775
3776         pm_runtime_get_noresume(&pdev->dev);
3777 #ifdef CONFIG_IGB_HWMON
3778         igb_sysfs_exit(adapter);
3779 #endif
3780         igb_remove_i2c(adapter);
3781         igb_ptp_stop(adapter);
3782         /* The watchdog timer may be rescheduled, so explicitly
3783          * disable watchdog from being rescheduled.
3784          */
3785         set_bit(__IGB_DOWN, &adapter->state);
3786         del_timer_sync(&adapter->watchdog_timer);
3787         del_timer_sync(&adapter->phy_info_timer);
3788
3789         cancel_work_sync(&adapter->reset_task);
3790         cancel_work_sync(&adapter->watchdog_task);
3791
3792 #ifdef CONFIG_IGB_DCA
3793         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3794                 dev_info(&pdev->dev, "DCA disabled\n");
3795                 dca_remove_requester(&pdev->dev);
3796                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3797                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3798         }
3799 #endif
3800
3801         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3802          * would have already happened in close and is redundant.
3803          */
3804         igb_release_hw_control(adapter);
3805
3806 #ifdef CONFIG_PCI_IOV
3807         igb_disable_sriov(pdev);
3808 #endif
3809
3810         unregister_netdev(netdev);
3811
3812         igb_clear_interrupt_scheme(adapter);
3813
3814         pci_iounmap(pdev, adapter->io_addr);
3815         if (hw->flash_address)
3816                 iounmap(hw->flash_address);
3817         pci_release_mem_regions(pdev);
3818
3819         kfree(adapter->mac_table);
3820         kfree(adapter->shadow_vfta);
3821         free_netdev(netdev);
3822
3823         pci_disable_pcie_error_reporting(pdev);
3824
3825         pci_disable_device(pdev);
3826 }
3827
3828 /**
3829  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3830  *  @adapter: board private structure to initialize
3831  *
3832  *  This function initializes the vf specific data storage and then attempts to
3833  *  allocate the VFs.  The reason for ordering it this way is because it is much
3834  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3835  *  the memory for the VFs.
3836  **/
3837 static void igb_probe_vfs(struct igb_adapter *adapter)
3838 {
3839 #ifdef CONFIG_PCI_IOV
3840         struct pci_dev *pdev = adapter->pdev;
3841         struct e1000_hw *hw = &adapter->hw;
3842
3843         /* Virtualization features not supported on i210 family. */
3844         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3845                 return;
3846
3847         /* Of the below we really only want the effect of getting
3848          * IGB_FLAG_HAS_MSIX set (if available), without which
3849          * igb_enable_sriov() has no effect.
3850          */
3851         igb_set_interrupt_capability(adapter, true);
3852         igb_reset_interrupt_capability(adapter);
3853
3854         pci_sriov_set_totalvfs(pdev, 7);
3855         igb_enable_sriov(pdev, max_vfs);
3856
3857 #endif /* CONFIG_PCI_IOV */
3858 }
3859
3860 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3861 {
3862         struct e1000_hw *hw = &adapter->hw;
3863         unsigned int max_rss_queues;
3864
3865         /* Determine the maximum number of RSS queues supported. */
3866         switch (hw->mac.type) {
3867         case e1000_i211:
3868                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3869                 break;
3870         case e1000_82575:
3871         case e1000_i210:
3872                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3873                 break;
3874         case e1000_i350:
3875                 /* I350 cannot do RSS and SR-IOV at the same time */
3876                 if (!!adapter->vfs_allocated_count) {
3877                         max_rss_queues = 1;
3878                         break;
3879                 }
3880                 fallthrough;
3881         case e1000_82576:
3882                 if (!!adapter->vfs_allocated_count) {
3883                         max_rss_queues = 2;
3884                         break;
3885                 }
3886                 fallthrough;
3887         case e1000_82580:
3888         case e1000_i354:
3889         default:
3890                 max_rss_queues = IGB_MAX_RX_QUEUES;
3891                 break;
3892         }
3893
3894         return max_rss_queues;
3895 }
3896
3897 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3898 {
3899         u32 max_rss_queues;
3900
3901         max_rss_queues = igb_get_max_rss_queues(adapter);
3902         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3903
3904         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3905 }
3906
3907 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3908                               const u32 max_rss_queues)
3909 {
3910         struct e1000_hw *hw = &adapter->hw;
3911
3912         /* Determine if we need to pair queues. */
3913         switch (hw->mac.type) {
3914         case e1000_82575:
3915         case e1000_i211:
3916                 /* Device supports enough interrupts without queue pairing. */
3917                 break;
3918         case e1000_82576:
3919         case e1000_82580:
3920         case e1000_i350:
3921         case e1000_i354:
3922         case e1000_i210:
3923         default:
3924                 /* If rss_queues > half of max_rss_queues, pair the queues in
3925                  * order to conserve interrupts due to limited supply.
3926                  */
3927                 if (adapter->rss_queues > (max_rss_queues / 2))
3928                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3929                 else
3930                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3931                 break;
3932         }
3933 }
3934
3935 /**
3936  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3937  *  @adapter: board private structure to initialize
3938  *
3939  *  igb_sw_init initializes the Adapter private data structure.
3940  *  Fields are initialized based on PCI device information and
3941  *  OS network device settings (MTU size).
3942  **/
3943 static int igb_sw_init(struct igb_adapter *adapter)
3944 {
3945         struct e1000_hw *hw = &adapter->hw;
3946         struct net_device *netdev = adapter->netdev;
3947         struct pci_dev *pdev = adapter->pdev;
3948
3949         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3950
3951         /* set default ring sizes */
3952         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3953         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3954
3955         /* set default ITR values */
3956         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3957         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3958
3959         /* set default work limits */
3960         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3961
3962         adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3963         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3964
3965         spin_lock_init(&adapter->nfc_lock);
3966         spin_lock_init(&adapter->stats64_lock);
3967 #ifdef CONFIG_PCI_IOV
3968         switch (hw->mac.type) {
3969         case e1000_82576:
3970         case e1000_i350:
3971                 if (max_vfs > 7) {
3972                         dev_warn(&pdev->dev,
3973                                  "Maximum of 7 VFs per PF, using max\n");
3974                         max_vfs = adapter->vfs_allocated_count = 7;
3975                 } else
3976                         adapter->vfs_allocated_count = max_vfs;
3977                 if (adapter->vfs_allocated_count)
3978                         dev_warn(&pdev->dev,
3979                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3980                 break;
3981         default:
3982                 break;
3983         }
3984 #endif /* CONFIG_PCI_IOV */
3985
3986         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3987         adapter->flags |= IGB_FLAG_HAS_MSIX;
3988
3989         adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3990                                      sizeof(struct igb_mac_addr),
3991                                      GFP_KERNEL);
3992         if (!adapter->mac_table)
3993                 return -ENOMEM;
3994
3995         igb_probe_vfs(adapter);
3996
3997         igb_init_queue_configuration(adapter);
3998
3999         /* Setup and initialize a copy of the hw vlan table array */
4000         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4001                                        GFP_KERNEL);
4002         if (!adapter->shadow_vfta)
4003                 return -ENOMEM;
4004
4005         /* This call may decrease the number of queues */
4006         if (igb_init_interrupt_scheme(adapter, true)) {
4007                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4008                 return -ENOMEM;
4009         }
4010
4011         /* Explicitly disable IRQ since the NIC can be in any state. */
4012         igb_irq_disable(adapter);
4013
4014         if (hw->mac.type >= e1000_i350)
4015                 adapter->flags &= ~IGB_FLAG_DMAC;
4016
4017         set_bit(__IGB_DOWN, &adapter->state);
4018         return 0;
4019 }
4020
4021 /**
4022  *  __igb_open - Called when a network interface is made active
4023  *  @netdev: network interface device structure
4024  *  @resuming: indicates whether we are in a resume call
4025  *
4026  *  Returns 0 on success, negative value on failure
4027  *
4028  *  The open entry point is called when a network interface is made
4029  *  active by the system (IFF_UP).  At this point all resources needed
4030  *  for transmit and receive operations are allocated, the interrupt
4031  *  handler is registered with the OS, the watchdog timer is started,
4032  *  and the stack is notified that the interface is ready.
4033  **/
4034 static int __igb_open(struct net_device *netdev, bool resuming)
4035 {
4036         struct igb_adapter *adapter = netdev_priv(netdev);
4037         struct e1000_hw *hw = &adapter->hw;
4038         struct pci_dev *pdev = adapter->pdev;
4039         int err;
4040         int i;
4041
4042         /* disallow open during test */
4043         if (test_bit(__IGB_TESTING, &adapter->state)) {
4044                 WARN_ON(resuming);
4045                 return -EBUSY;
4046         }
4047
4048         if (!resuming)
4049                 pm_runtime_get_sync(&pdev->dev);
4050
4051         netif_carrier_off(netdev);
4052
4053         /* allocate transmit descriptors */
4054         err = igb_setup_all_tx_resources(adapter);
4055         if (err)
4056                 goto err_setup_tx;
4057
4058         /* allocate receive descriptors */
4059         err = igb_setup_all_rx_resources(adapter);
4060         if (err)
4061                 goto err_setup_rx;
4062
4063         igb_power_up_link(adapter);
4064
4065         /* before we allocate an interrupt, we must be ready to handle it.
4066          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4067          * as soon as we call pci_request_irq, so we have to setup our
4068          * clean_rx handler before we do so.
4069          */
4070         igb_configure(adapter);
4071
4072         err = igb_request_irq(adapter);
4073         if (err)
4074                 goto err_req_irq;
4075
4076         /* Notify the stack of the actual queue counts. */
4077         err = netif_set_real_num_tx_queues(adapter->netdev,
4078                                            adapter->num_tx_queues);
4079         if (err)
4080                 goto err_set_queues;
4081
4082         err = netif_set_real_num_rx_queues(adapter->netdev,
4083                                            adapter->num_rx_queues);
4084         if (err)
4085                 goto err_set_queues;
4086
4087         /* From here on the code is the same as igb_up() */
4088         clear_bit(__IGB_DOWN, &adapter->state);
4089
4090         for (i = 0; i < adapter->num_q_vectors; i++)
4091                 napi_enable(&(adapter->q_vector[i]->napi));
4092
4093         /* Clear any pending interrupts. */
4094         rd32(E1000_TSICR);
4095         rd32(E1000_ICR);
4096
4097         igb_irq_enable(adapter);
4098
4099         /* notify VFs that reset has been completed */
4100         if (adapter->vfs_allocated_count) {
4101                 u32 reg_data = rd32(E1000_CTRL_EXT);
4102
4103                 reg_data |= E1000_CTRL_EXT_PFRSTD;
4104                 wr32(E1000_CTRL_EXT, reg_data);
4105         }
4106
4107         netif_tx_start_all_queues(netdev);
4108
4109         if (!resuming)
4110                 pm_runtime_put(&pdev->dev);
4111
4112         /* start the watchdog. */
4113         hw->mac.get_link_status = 1;
4114         schedule_work(&adapter->watchdog_task);
4115
4116         return 0;
4117
4118 err_set_queues:
4119         igb_free_irq(adapter);
4120 err_req_irq:
4121         igb_release_hw_control(adapter);
4122         igb_power_down_link(adapter);
4123         igb_free_all_rx_resources(adapter);
4124 err_setup_rx:
4125         igb_free_all_tx_resources(adapter);
4126 err_setup_tx:
4127         igb_reset(adapter);
4128         if (!resuming)
4129                 pm_runtime_put(&pdev->dev);
4130
4131         return err;
4132 }
4133
4134 int igb_open(struct net_device *netdev)
4135 {
4136         return __igb_open(netdev, false);
4137 }
4138
4139 /**
4140  *  __igb_close - Disables a network interface
4141  *  @netdev: network interface device structure
4142  *  @suspending: indicates we are in a suspend call
4143  *
4144  *  Returns 0, this is not allowed to fail
4145  *
4146  *  The close entry point is called when an interface is de-activated
4147  *  by the OS.  The hardware is still under the driver's control, but
4148  *  needs to be disabled.  A global MAC reset is issued to stop the
4149  *  hardware, and all transmit and receive resources are freed.
4150  **/
4151 static int __igb_close(struct net_device *netdev, bool suspending)
4152 {
4153         struct igb_adapter *adapter = netdev_priv(netdev);
4154         struct pci_dev *pdev = adapter->pdev;
4155
4156         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4157
4158         if (!suspending)
4159                 pm_runtime_get_sync(&pdev->dev);
4160
4161         igb_down(adapter);
4162         igb_free_irq(adapter);
4163
4164         igb_free_all_tx_resources(adapter);
4165         igb_free_all_rx_resources(adapter);
4166
4167         if (!suspending)
4168                 pm_runtime_put_sync(&pdev->dev);
4169         return 0;
4170 }
4171
4172 int igb_close(struct net_device *netdev)
4173 {
4174         if (netif_device_present(netdev) || netdev->dismantle)
4175                 return __igb_close(netdev, false);
4176         return 0;
4177 }
4178
4179 /**
4180  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4181  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4182  *
4183  *  Return 0 on success, negative on failure
4184  **/
4185 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4186 {
4187         struct device *dev = tx_ring->dev;
4188         int size;
4189
4190         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4191
4192         tx_ring->tx_buffer_info = vmalloc(size);
4193         if (!tx_ring->tx_buffer_info)
4194                 goto err;
4195
4196         /* round up to nearest 4K */
4197         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4198         tx_ring->size = ALIGN(tx_ring->size, 4096);
4199
4200         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4201                                            &tx_ring->dma, GFP_KERNEL);
4202         if (!tx_ring->desc)
4203                 goto err;
4204
4205         tx_ring->next_to_use = 0;
4206         tx_ring->next_to_clean = 0;
4207
4208         return 0;
4209
4210 err:
4211         vfree(tx_ring->tx_buffer_info);
4212         tx_ring->tx_buffer_info = NULL;
4213         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4214         return -ENOMEM;
4215 }
4216
4217 /**
4218  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4219  *                               (Descriptors) for all queues
4220  *  @adapter: board private structure
4221  *
4222  *  Return 0 on success, negative on failure
4223  **/
4224 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4225 {
4226         struct pci_dev *pdev = adapter->pdev;
4227         int i, err = 0;
4228
4229         for (i = 0; i < adapter->num_tx_queues; i++) {
4230                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4231                 if (err) {
4232                         dev_err(&pdev->dev,
4233                                 "Allocation for Tx Queue %u failed\n", i);
4234                         for (i--; i >= 0; i--)
4235                                 igb_free_tx_resources(adapter->tx_ring[i]);
4236                         break;
4237                 }
4238         }
4239
4240         return err;
4241 }
4242
4243 /**
4244  *  igb_setup_tctl - configure the transmit control registers
4245  *  @adapter: Board private structure
4246  **/
4247 void igb_setup_tctl(struct igb_adapter *adapter)
4248 {
4249         struct e1000_hw *hw = &adapter->hw;
4250         u32 tctl;
4251
4252         /* disable queue 0 which is enabled by default on 82575 and 82576 */
4253         wr32(E1000_TXDCTL(0), 0);
4254
4255         /* Program the Transmit Control Register */
4256         tctl = rd32(E1000_TCTL);
4257         tctl &= ~E1000_TCTL_CT;
4258         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4259                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4260
4261         igb_config_collision_dist(hw);
4262
4263         /* Enable transmits */
4264         tctl |= E1000_TCTL_EN;
4265
4266         wr32(E1000_TCTL, tctl);
4267 }
4268
4269 /**
4270  *  igb_configure_tx_ring - Configure transmit ring after Reset
4271  *  @adapter: board private structure
4272  *  @ring: tx ring to configure
4273  *
4274  *  Configure a transmit ring after a reset.
4275  **/
4276 void igb_configure_tx_ring(struct igb_adapter *adapter,
4277                            struct igb_ring *ring)
4278 {
4279         struct e1000_hw *hw = &adapter->hw;
4280         u32 txdctl = 0;
4281         u64 tdba = ring->dma;
4282         int reg_idx = ring->reg_idx;
4283
4284         wr32(E1000_TDLEN(reg_idx),
4285              ring->count * sizeof(union e1000_adv_tx_desc));
4286         wr32(E1000_TDBAL(reg_idx),
4287              tdba & 0x00000000ffffffffULL);
4288         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4289
4290         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4291         wr32(E1000_TDH(reg_idx), 0);
4292         writel(0, ring->tail);
4293
4294         txdctl |= IGB_TX_PTHRESH;
4295         txdctl |= IGB_TX_HTHRESH << 8;
4296         txdctl |= IGB_TX_WTHRESH << 16;
4297
4298         /* reinitialize tx_buffer_info */
4299         memset(ring->tx_buffer_info, 0,
4300                sizeof(struct igb_tx_buffer) * ring->count);
4301
4302         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4303         wr32(E1000_TXDCTL(reg_idx), txdctl);
4304 }
4305
4306 /**
4307  *  igb_configure_tx - Configure transmit Unit after Reset
4308  *  @adapter: board private structure
4309  *
4310  *  Configure the Tx unit of the MAC after a reset.
4311  **/
4312 static void igb_configure_tx(struct igb_adapter *adapter)
4313 {
4314         struct e1000_hw *hw = &adapter->hw;
4315         int i;
4316
4317         /* disable the queues */
4318         for (i = 0; i < adapter->num_tx_queues; i++)
4319                 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4320
4321         wrfl();
4322         usleep_range(10000, 20000);
4323
4324         for (i = 0; i < adapter->num_tx_queues; i++)
4325                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4326 }
4327
4328 /**
4329  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4330  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4331  *
4332  *  Returns 0 on success, negative on failure
4333  **/
4334 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4335 {
4336         struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4337         struct device *dev = rx_ring->dev;
4338         int size;
4339
4340         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4341
4342         rx_ring->rx_buffer_info = vmalloc(size);
4343         if (!rx_ring->rx_buffer_info)
4344                 goto err;
4345
4346         /* Round up to nearest 4K */
4347         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4348         rx_ring->size = ALIGN(rx_ring->size, 4096);
4349
4350         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4351                                            &rx_ring->dma, GFP_KERNEL);
4352         if (!rx_ring->desc)
4353                 goto err;
4354
4355         rx_ring->next_to_alloc = 0;
4356         rx_ring->next_to_clean = 0;
4357         rx_ring->next_to_use = 0;
4358
4359         rx_ring->xdp_prog = adapter->xdp_prog;
4360
4361         /* XDP RX-queue info */
4362         if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4363                              rx_ring->queue_index, 0) < 0)
4364                 goto err;
4365
4366         return 0;
4367
4368 err:
4369         vfree(rx_ring->rx_buffer_info);
4370         rx_ring->rx_buffer_info = NULL;
4371         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4372         return -ENOMEM;
4373 }
4374
4375 /**
4376  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4377  *                               (Descriptors) for all queues
4378  *  @adapter: board private structure
4379  *
4380  *  Return 0 on success, negative on failure
4381  **/
4382 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4383 {
4384         struct pci_dev *pdev = adapter->pdev;
4385         int i, err = 0;
4386
4387         for (i = 0; i < adapter->num_rx_queues; i++) {
4388                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4389                 if (err) {
4390                         dev_err(&pdev->dev,
4391                                 "Allocation for Rx Queue %u failed\n", i);
4392                         for (i--; i >= 0; i--)
4393                                 igb_free_rx_resources(adapter->rx_ring[i]);
4394                         break;
4395                 }
4396         }
4397
4398         return err;
4399 }
4400
4401 /**
4402  *  igb_setup_mrqc - configure the multiple receive queue control registers
4403  *  @adapter: Board private structure
4404  **/
4405 static void igb_setup_mrqc(struct igb_adapter *adapter)
4406 {
4407         struct e1000_hw *hw = &adapter->hw;
4408         u32 mrqc, rxcsum;
4409         u32 j, num_rx_queues;
4410         u32 rss_key[10];
4411
4412         netdev_rss_key_fill(rss_key, sizeof(rss_key));
4413         for (j = 0; j < 10; j++)
4414                 wr32(E1000_RSSRK(j), rss_key[j]);
4415
4416         num_rx_queues = adapter->rss_queues;
4417
4418         switch (hw->mac.type) {
4419         case e1000_82576:
4420                 /* 82576 supports 2 RSS queues for SR-IOV */
4421                 if (adapter->vfs_allocated_count)
4422                         num_rx_queues = 2;
4423                 break;
4424         default:
4425                 break;
4426         }
4427
4428         if (adapter->rss_indir_tbl_init != num_rx_queues) {
4429                 for (j = 0; j < IGB_RETA_SIZE; j++)
4430                         adapter->rss_indir_tbl[j] =
4431                         (j * num_rx_queues) / IGB_RETA_SIZE;
4432                 adapter->rss_indir_tbl_init = num_rx_queues;
4433         }
4434         igb_write_rss_indir_tbl(adapter);
4435
4436         /* Disable raw packet checksumming so that RSS hash is placed in
4437          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4438          * offloads as they are enabled by default
4439          */
4440         rxcsum = rd32(E1000_RXCSUM);
4441         rxcsum |= E1000_RXCSUM_PCSD;
4442
4443         if (adapter->hw.mac.type >= e1000_82576)
4444                 /* Enable Receive Checksum Offload for SCTP */
4445                 rxcsum |= E1000_RXCSUM_CRCOFL;
4446
4447         /* Don't need to set TUOFL or IPOFL, they default to 1 */
4448         wr32(E1000_RXCSUM, rxcsum);
4449
4450         /* Generate RSS hash based on packet types, TCP/UDP
4451          * port numbers and/or IPv4/v6 src and dst addresses
4452          */
4453         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4454                E1000_MRQC_RSS_FIELD_IPV4_TCP |
4455                E1000_MRQC_RSS_FIELD_IPV6 |
4456                E1000_MRQC_RSS_FIELD_IPV6_TCP |
4457                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4458
4459         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4460                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4461         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4462                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4463
4464         /* If VMDq is enabled then we set the appropriate mode for that, else
4465          * we default to RSS so that an RSS hash is calculated per packet even
4466          * if we are only using one queue
4467          */
4468         if (adapter->vfs_allocated_count) {
4469                 if (hw->mac.type > e1000_82575) {
4470                         /* Set the default pool for the PF's first queue */
4471                         u32 vtctl = rd32(E1000_VT_CTL);
4472
4473                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4474                                    E1000_VT_CTL_DISABLE_DEF_POOL);
4475                         vtctl |= adapter->vfs_allocated_count <<
4476                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4477                         wr32(E1000_VT_CTL, vtctl);
4478                 }
4479                 if (adapter->rss_queues > 1)
4480                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4481                 else
4482                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
4483         } else {
4484                 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4485         }
4486         igb_vmm_control(adapter);
4487
4488         wr32(E1000_MRQC, mrqc);
4489 }
4490
4491 /**
4492  *  igb_setup_rctl - configure the receive control registers
4493  *  @adapter: Board private structure
4494  **/
4495 void igb_setup_rctl(struct igb_adapter *adapter)
4496 {
4497         struct e1000_hw *hw = &adapter->hw;
4498         u32 rctl;
4499
4500         rctl = rd32(E1000_RCTL);
4501
4502         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4503         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4504
4505         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4506                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4507
4508         /* enable stripping of CRC. It's unlikely this will break BMC
4509          * redirection as it did with e1000. Newer features require
4510          * that the HW strips the CRC.
4511          */
4512         rctl |= E1000_RCTL_SECRC;
4513
4514         /* disable store bad packets and clear size bits. */
4515         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4516
4517         /* enable LPE to allow for reception of jumbo frames */
4518         rctl |= E1000_RCTL_LPE;
4519
4520         /* disable queue 0 to prevent tail write w/o re-config */
4521         wr32(E1000_RXDCTL(0), 0);
4522
4523         /* Attention!!!  For SR-IOV PF driver operations you must enable
4524          * queue drop for all VF and PF queues to prevent head of line blocking
4525          * if an un-trusted VF does not provide descriptors to hardware.
4526          */
4527         if (adapter->vfs_allocated_count) {
4528                 /* set all queue drop enable bits */
4529                 wr32(E1000_QDE, ALL_QUEUES);
4530         }
4531
4532         /* This is useful for sniffing bad packets. */
4533         if (adapter->netdev->features & NETIF_F_RXALL) {
4534                 /* UPE and MPE will be handled by normal PROMISC logic
4535                  * in e1000e_set_rx_mode
4536                  */
4537                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4538                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
4539                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4540
4541                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4542                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4543                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4544                  * and that breaks VLANs.
4545                  */
4546         }
4547
4548         wr32(E1000_RCTL, rctl);
4549 }
4550
4551 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4552                                    int vfn)
4553 {
4554         struct e1000_hw *hw = &adapter->hw;
4555         u32 vmolr;
4556
4557         if (size > MAX_JUMBO_FRAME_SIZE)
4558                 size = MAX_JUMBO_FRAME_SIZE;
4559
4560         vmolr = rd32(E1000_VMOLR(vfn));
4561         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4562         vmolr |= size | E1000_VMOLR_LPE;
4563         wr32(E1000_VMOLR(vfn), vmolr);
4564
4565         return 0;
4566 }
4567
4568 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4569                                          int vfn, bool enable)
4570 {
4571         struct e1000_hw *hw = &adapter->hw;
4572         u32 val, reg;
4573
4574         if (hw->mac.type < e1000_82576)
4575                 return;
4576
4577         if (hw->mac.type == e1000_i350)
4578                 reg = E1000_DVMOLR(vfn);
4579         else
4580                 reg = E1000_VMOLR(vfn);
4581
4582         val = rd32(reg);
4583         if (enable)
4584                 val |= E1000_VMOLR_STRVLAN;
4585         else
4586                 val &= ~(E1000_VMOLR_STRVLAN);
4587         wr32(reg, val);
4588 }
4589
4590 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4591                                  int vfn, bool aupe)
4592 {
4593         struct e1000_hw *hw = &adapter->hw;
4594         u32 vmolr;
4595
4596         /* This register exists only on 82576 and newer so if we are older then
4597          * we should exit and do nothing
4598          */
4599         if (hw->mac.type < e1000_82576)
4600                 return;
4601
4602         vmolr = rd32(E1000_VMOLR(vfn));
4603         if (aupe)
4604                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4605         else
4606                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4607
4608         /* clear all bits that might not be set */
4609         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4610
4611         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4612                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4613         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4614          * multicast packets
4615          */
4616         if (vfn <= adapter->vfs_allocated_count)
4617                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4618
4619         wr32(E1000_VMOLR(vfn), vmolr);
4620 }
4621
4622 /**
4623  *  igb_setup_srrctl - configure the split and replication receive control
4624  *                     registers
4625  *  @adapter: Board private structure
4626  *  @ring: receive ring to be configured
4627  **/
4628 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4629 {
4630         struct e1000_hw *hw = &adapter->hw;
4631         int reg_idx = ring->reg_idx;
4632         u32 srrctl = 0;
4633
4634         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4635         if (ring_uses_large_buffer(ring))
4636                 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4637         else
4638                 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4639         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4640         if (hw->mac.type >= e1000_82580)
4641                 srrctl |= E1000_SRRCTL_TIMESTAMP;
4642         /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4643          * queues and rx flow control is disabled
4644          */
4645         if (adapter->vfs_allocated_count ||
4646             (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4647              adapter->num_rx_queues > 1))
4648                 srrctl |= E1000_SRRCTL_DROP_EN;
4649
4650         wr32(E1000_SRRCTL(reg_idx), srrctl);
4651 }
4652
4653 /**
4654  *  igb_configure_rx_ring - Configure a receive ring after Reset
4655  *  @adapter: board private structure
4656  *  @ring: receive ring to be configured
4657  *
4658  *  Configure the Rx unit of the MAC after a reset.
4659  **/
4660 void igb_configure_rx_ring(struct igb_adapter *adapter,
4661                            struct igb_ring *ring)
4662 {
4663         struct e1000_hw *hw = &adapter->hw;
4664         union e1000_adv_rx_desc *rx_desc;
4665         u64 rdba = ring->dma;
4666         int reg_idx = ring->reg_idx;
4667         u32 rxdctl = 0;
4668
4669         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4670         WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4671                                            MEM_TYPE_PAGE_SHARED, NULL));
4672
4673         /* disable the queue */
4674         wr32(E1000_RXDCTL(reg_idx), 0);
4675
4676         /* Set DMA base address registers */
4677         wr32(E1000_RDBAL(reg_idx),
4678              rdba & 0x00000000ffffffffULL);
4679         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4680         wr32(E1000_RDLEN(reg_idx),
4681              ring->count * sizeof(union e1000_adv_rx_desc));
4682
4683         /* initialize head and tail */
4684         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4685         wr32(E1000_RDH(reg_idx), 0);
4686         writel(0, ring->tail);
4687
4688         /* set descriptor configuration */
4689         igb_setup_srrctl(adapter, ring);
4690
4691         /* set filtering for VMDQ pools */
4692         igb_set_vmolr(adapter, reg_idx & 0x7, true);
4693
4694         rxdctl |= IGB_RX_PTHRESH;
4695         rxdctl |= IGB_RX_HTHRESH << 8;
4696         rxdctl |= IGB_RX_WTHRESH << 16;
4697
4698         /* initialize rx_buffer_info */
4699         memset(ring->rx_buffer_info, 0,
4700                sizeof(struct igb_rx_buffer) * ring->count);
4701
4702         /* initialize Rx descriptor 0 */
4703         rx_desc = IGB_RX_DESC(ring, 0);
4704         rx_desc->wb.upper.length = 0;
4705
4706         /* enable receive descriptor fetching */
4707         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4708         wr32(E1000_RXDCTL(reg_idx), rxdctl);
4709 }
4710
4711 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4712                                   struct igb_ring *rx_ring)
4713 {
4714         /* set build_skb and buffer size flags */
4715         clear_ring_build_skb_enabled(rx_ring);
4716         clear_ring_uses_large_buffer(rx_ring);
4717
4718         if (adapter->flags & IGB_FLAG_RX_LEGACY)
4719                 return;
4720
4721         set_ring_build_skb_enabled(rx_ring);
4722
4723 #if (PAGE_SIZE < 8192)
4724         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4725                 return;
4726
4727         set_ring_uses_large_buffer(rx_ring);
4728 #endif
4729 }
4730
4731 /**
4732  *  igb_configure_rx - Configure receive Unit after Reset
4733  *  @adapter: board private structure
4734  *
4735  *  Configure the Rx unit of the MAC after a reset.
4736  **/
4737 static void igb_configure_rx(struct igb_adapter *adapter)
4738 {
4739         int i;
4740
4741         /* set the correct pool for the PF default MAC address in entry 0 */
4742         igb_set_default_mac_filter(adapter);
4743
4744         /* Setup the HW Rx Head and Tail Descriptor Pointers and
4745          * the Base and Length of the Rx Descriptor Ring
4746          */
4747         for (i = 0; i < adapter->num_rx_queues; i++) {
4748                 struct igb_ring *rx_ring = adapter->rx_ring[i];
4749
4750                 igb_set_rx_buffer_len(adapter, rx_ring);
4751                 igb_configure_rx_ring(adapter, rx_ring);
4752         }
4753 }
4754
4755 /**
4756  *  igb_free_tx_resources - Free Tx Resources per Queue
4757  *  @tx_ring: Tx descriptor ring for a specific queue
4758  *
4759  *  Free all transmit software resources
4760  **/
4761 void igb_free_tx_resources(struct igb_ring *tx_ring)
4762 {
4763         igb_clean_tx_ring(tx_ring);
4764
4765         vfree(tx_ring->tx_buffer_info);
4766         tx_ring->tx_buffer_info = NULL;
4767
4768         /* if not set, then don't free */
4769         if (!tx_ring->desc)
4770                 return;
4771
4772         dma_free_coherent(tx_ring->dev, tx_ring->size,
4773                           tx_ring->desc, tx_ring->dma);
4774
4775         tx_ring->desc = NULL;
4776 }
4777
4778 /**
4779  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4780  *  @adapter: board private structure
4781  *
4782  *  Free all transmit software resources
4783  **/
4784 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4785 {
4786         int i;
4787
4788         for (i = 0; i < adapter->num_tx_queues; i++)
4789                 if (adapter->tx_ring[i])
4790                         igb_free_tx_resources(adapter->tx_ring[i]);
4791 }
4792
4793 /**
4794  *  igb_clean_tx_ring - Free Tx Buffers
4795  *  @tx_ring: ring to be cleaned
4796  **/
4797 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4798 {
4799         u16 i = tx_ring->next_to_clean;
4800         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4801
4802         while (i != tx_ring->next_to_use) {
4803                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4804
4805                 /* Free all the Tx ring sk_buffs */
4806                 dev_kfree_skb_any(tx_buffer->skb);
4807
4808                 /* unmap skb header data */
4809                 dma_unmap_single(tx_ring->dev,
4810                                  dma_unmap_addr(tx_buffer, dma),
4811                                  dma_unmap_len(tx_buffer, len),
4812                                  DMA_TO_DEVICE);
4813
4814                 /* check for eop_desc to determine the end of the packet */
4815                 eop_desc = tx_buffer->next_to_watch;
4816                 tx_desc = IGB_TX_DESC(tx_ring, i);
4817
4818                 /* unmap remaining buffers */
4819                 while (tx_desc != eop_desc) {
4820                         tx_buffer++;
4821                         tx_desc++;
4822                         i++;
4823                         if (unlikely(i == tx_ring->count)) {
4824                                 i = 0;
4825                                 tx_buffer = tx_ring->tx_buffer_info;
4826                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4827                         }
4828
4829                         /* unmap any remaining paged data */
4830                         if (dma_unmap_len(tx_buffer, len))
4831                                 dma_unmap_page(tx_ring->dev,
4832                                                dma_unmap_addr(tx_buffer, dma),
4833                                                dma_unmap_len(tx_buffer, len),
4834                                                DMA_TO_DEVICE);
4835                 }
4836
4837                 /* move us one more past the eop_desc for start of next pkt */
4838                 tx_buffer++;
4839                 i++;
4840                 if (unlikely(i == tx_ring->count)) {
4841                         i = 0;
4842                         tx_buffer = tx_ring->tx_buffer_info;
4843                 }
4844         }
4845
4846         /* reset BQL for queue */
4847         netdev_tx_reset_queue(txring_txq(tx_ring));
4848
4849         /* reset next_to_use and next_to_clean */
4850         tx_ring->next_to_use = 0;
4851         tx_ring->next_to_clean = 0;
4852 }
4853
4854 /**
4855  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4856  *  @adapter: board private structure
4857  **/
4858 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4859 {
4860         int i;
4861
4862         for (i = 0; i < adapter->num_tx_queues; i++)
4863                 if (adapter->tx_ring[i])
4864                         igb_clean_tx_ring(adapter->tx_ring[i]);
4865 }
4866
4867 /**
4868  *  igb_free_rx_resources - Free Rx Resources
4869  *  @rx_ring: ring to clean the resources from
4870  *
4871  *  Free all receive software resources
4872  **/
4873 void igb_free_rx_resources(struct igb_ring *rx_ring)
4874 {
4875         igb_clean_rx_ring(rx_ring);
4876
4877         rx_ring->xdp_prog = NULL;
4878         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4879         vfree(rx_ring->rx_buffer_info);
4880         rx_ring->rx_buffer_info = NULL;
4881
4882         /* if not set, then don't free */
4883         if (!rx_ring->desc)
4884                 return;
4885
4886         dma_free_coherent(rx_ring->dev, rx_ring->size,
4887                           rx_ring->desc, rx_ring->dma);
4888
4889         rx_ring->desc = NULL;
4890 }
4891
4892 /**
4893  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4894  *  @adapter: board private structure
4895  *
4896  *  Free all receive software resources
4897  **/
4898 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4899 {
4900         int i;
4901
4902         for (i = 0; i < adapter->num_rx_queues; i++)
4903                 if (adapter->rx_ring[i])
4904                         igb_free_rx_resources(adapter->rx_ring[i]);
4905 }
4906
4907 /**
4908  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4909  *  @rx_ring: ring to free buffers from
4910  **/
4911 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4912 {
4913         u16 i = rx_ring->next_to_clean;
4914
4915         dev_kfree_skb(rx_ring->skb);
4916         rx_ring->skb = NULL;
4917
4918         /* Free all the Rx ring sk_buffs */
4919         while (i != rx_ring->next_to_alloc) {
4920                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4921
4922                 /* Invalidate cache lines that may have been written to by
4923                  * device so that we avoid corrupting memory.
4924                  */
4925                 dma_sync_single_range_for_cpu(rx_ring->dev,
4926                                               buffer_info->dma,
4927                                               buffer_info->page_offset,
4928                                               igb_rx_bufsz(rx_ring),
4929                                               DMA_FROM_DEVICE);
4930
4931                 /* free resources associated with mapping */
4932                 dma_unmap_page_attrs(rx_ring->dev,
4933                                      buffer_info->dma,
4934                                      igb_rx_pg_size(rx_ring),
4935                                      DMA_FROM_DEVICE,
4936                                      IGB_RX_DMA_ATTR);
4937                 __page_frag_cache_drain(buffer_info->page,
4938                                         buffer_info->pagecnt_bias);
4939
4940                 i++;
4941                 if (i == rx_ring->count)
4942                         i = 0;
4943         }
4944
4945         rx_ring->next_to_alloc = 0;
4946         rx_ring->next_to_clean = 0;
4947         rx_ring->next_to_use = 0;
4948 }
4949
4950 /**
4951  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4952  *  @adapter: board private structure
4953  **/
4954 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4955 {
4956         int i;
4957
4958         for (i = 0; i < adapter->num_rx_queues; i++)
4959                 if (adapter->rx_ring[i])
4960                         igb_clean_rx_ring(adapter->rx_ring[i]);
4961 }
4962
4963 /**
4964  *  igb_set_mac - Change the Ethernet Address of the NIC
4965  *  @netdev: network interface device structure
4966  *  @p: pointer to an address structure
4967  *
4968  *  Returns 0 on success, negative on failure
4969  **/
4970 static int igb_set_mac(struct net_device *netdev, void *p)
4971 {
4972         struct igb_adapter *adapter = netdev_priv(netdev);
4973         struct e1000_hw *hw = &adapter->hw;
4974         struct sockaddr *addr = p;
4975
4976         if (!is_valid_ether_addr(addr->sa_data))
4977                 return -EADDRNOTAVAIL;
4978
4979         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4980         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4981
4982         /* set the correct pool for the new PF MAC address in entry 0 */
4983         igb_set_default_mac_filter(adapter);
4984
4985         return 0;
4986 }
4987
4988 /**
4989  *  igb_write_mc_addr_list - write multicast addresses to MTA
4990  *  @netdev: network interface device structure
4991  *
4992  *  Writes multicast address list to the MTA hash table.
4993  *  Returns: -ENOMEM on failure
4994  *           0 on no addresses written
4995  *           X on writing X addresses to MTA
4996  **/
4997 static int igb_write_mc_addr_list(struct net_device *netdev)
4998 {
4999         struct igb_adapter *adapter = netdev_priv(netdev);
5000         struct e1000_hw *hw = &adapter->hw;
5001         struct netdev_hw_addr *ha;
5002         u8  *mta_list;
5003         int i;
5004
5005         if (netdev_mc_empty(netdev)) {
5006                 /* nothing to program, so clear mc list */
5007                 igb_update_mc_addr_list(hw, NULL, 0);
5008                 igb_restore_vf_multicasts(adapter);
5009                 return 0;
5010         }
5011
5012         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5013         if (!mta_list)
5014                 return -ENOMEM;
5015
5016         /* The shared function expects a packed array of only addresses. */
5017         i = 0;
5018         netdev_for_each_mc_addr(ha, netdev)
5019                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5020
5021         igb_update_mc_addr_list(hw, mta_list, i);
5022         kfree(mta_list);
5023
5024         return netdev_mc_count(netdev);
5025 }
5026
5027 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5028 {
5029         struct e1000_hw *hw = &adapter->hw;
5030         u32 i, pf_id;
5031
5032         switch (hw->mac.type) {
5033         case e1000_i210:
5034         case e1000_i211:
5035         case e1000_i350:
5036                 /* VLAN filtering needed for VLAN prio filter */
5037                 if (adapter->netdev->features & NETIF_F_NTUPLE)
5038                         break;
5039                 fallthrough;
5040         case e1000_82576:
5041         case e1000_82580:
5042         case e1000_i354:
5043                 /* VLAN filtering needed for pool filtering */
5044                 if (adapter->vfs_allocated_count)
5045                         break;
5046                 fallthrough;
5047         default:
5048                 return 1;
5049         }
5050
5051         /* We are already in VLAN promisc, nothing to do */
5052         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5053                 return 0;
5054
5055         if (!adapter->vfs_allocated_count)
5056                 goto set_vfta;
5057
5058         /* Add PF to all active pools */
5059         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5060
5061         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5062                 u32 vlvf = rd32(E1000_VLVF(i));
5063
5064                 vlvf |= BIT(pf_id);
5065                 wr32(E1000_VLVF(i), vlvf);
5066         }
5067
5068 set_vfta:
5069         /* Set all bits in the VLAN filter table array */
5070         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5071                 hw->mac.ops.write_vfta(hw, i, ~0U);
5072
5073         /* Set flag so we don't redo unnecessary work */
5074         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5075
5076         return 0;
5077 }
5078
5079 #define VFTA_BLOCK_SIZE 8
5080 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5081 {
5082         struct e1000_hw *hw = &adapter->hw;
5083         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5084         u32 vid_start = vfta_offset * 32;
5085         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5086         u32 i, vid, word, bits, pf_id;
5087
5088         /* guarantee that we don't scrub out management VLAN */
5089         vid = adapter->mng_vlan_id;
5090         if (vid >= vid_start && vid < vid_end)
5091                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5092
5093         if (!adapter->vfs_allocated_count)
5094                 goto set_vfta;
5095
5096         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5097
5098         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5099                 u32 vlvf = rd32(E1000_VLVF(i));
5100
5101                 /* pull VLAN ID from VLVF */
5102                 vid = vlvf & VLAN_VID_MASK;
5103
5104                 /* only concern ourselves with a certain range */
5105                 if (vid < vid_start || vid >= vid_end)
5106                         continue;
5107
5108                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5109                         /* record VLAN ID in VFTA */
5110                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5111
5112                         /* if PF is part of this then continue */
5113                         if (test_bit(vid, adapter->active_vlans))
5114                                 continue;
5115                 }
5116
5117                 /* remove PF from the pool */
5118                 bits = ~BIT(pf_id);
5119                 bits &= rd32(E1000_VLVF(i));
5120                 wr32(E1000_VLVF(i), bits);
5121         }
5122
5123 set_vfta:
5124         /* extract values from active_vlans and write back to VFTA */
5125         for (i = VFTA_BLOCK_SIZE; i--;) {
5126                 vid = (vfta_offset + i) * 32;
5127                 word = vid / BITS_PER_LONG;
5128                 bits = vid % BITS_PER_LONG;
5129
5130                 vfta[i] |= adapter->active_vlans[word] >> bits;
5131
5132                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5133         }
5134 }
5135
5136 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5137 {
5138         u32 i;
5139
5140         /* We are not in VLAN promisc, nothing to do */
5141         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5142                 return;
5143
5144         /* Set flag so we don't redo unnecessary work */
5145         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5146
5147         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5148                 igb_scrub_vfta(adapter, i);
5149 }
5150
5151 /**
5152  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5153  *  @netdev: network interface device structure
5154  *
5155  *  The set_rx_mode entry point is called whenever the unicast or multicast
5156  *  address lists or the network interface flags are updated.  This routine is
5157  *  responsible for configuring the hardware for proper unicast, multicast,
5158  *  promiscuous mode, and all-multi behavior.
5159  **/
5160 static void igb_set_rx_mode(struct net_device *netdev)
5161 {
5162         struct igb_adapter *adapter = netdev_priv(netdev);
5163         struct e1000_hw *hw = &adapter->hw;
5164         unsigned int vfn = adapter->vfs_allocated_count;
5165         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5166         int count;
5167
5168         /* Check for Promiscuous and All Multicast modes */
5169         if (netdev->flags & IFF_PROMISC) {
5170                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5171                 vmolr |= E1000_VMOLR_MPME;
5172
5173                 /* enable use of UTA filter to force packets to default pool */
5174                 if (hw->mac.type == e1000_82576)
5175                         vmolr |= E1000_VMOLR_ROPE;
5176         } else {
5177                 if (netdev->flags & IFF_ALLMULTI) {
5178                         rctl |= E1000_RCTL_MPE;
5179                         vmolr |= E1000_VMOLR_MPME;
5180                 } else {
5181                         /* Write addresses to the MTA, if the attempt fails
5182                          * then we should just turn on promiscuous mode so
5183                          * that we can at least receive multicast traffic
5184                          */
5185                         count = igb_write_mc_addr_list(netdev);
5186                         if (count < 0) {
5187                                 rctl |= E1000_RCTL_MPE;
5188                                 vmolr |= E1000_VMOLR_MPME;
5189                         } else if (count) {
5190                                 vmolr |= E1000_VMOLR_ROMPE;
5191                         }
5192                 }
5193         }
5194
5195         /* Write addresses to available RAR registers, if there is not
5196          * sufficient space to store all the addresses then enable
5197          * unicast promiscuous mode
5198          */
5199         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5200                 rctl |= E1000_RCTL_UPE;
5201                 vmolr |= E1000_VMOLR_ROPE;
5202         }
5203
5204         /* enable VLAN filtering by default */
5205         rctl |= E1000_RCTL_VFE;
5206
5207         /* disable VLAN filtering for modes that require it */
5208         if ((netdev->flags & IFF_PROMISC) ||
5209             (netdev->features & NETIF_F_RXALL)) {
5210                 /* if we fail to set all rules then just clear VFE */
5211                 if (igb_vlan_promisc_enable(adapter))
5212                         rctl &= ~E1000_RCTL_VFE;
5213         } else {
5214                 igb_vlan_promisc_disable(adapter);
5215         }
5216
5217         /* update state of unicast, multicast, and VLAN filtering modes */
5218         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5219                                      E1000_RCTL_VFE);
5220         wr32(E1000_RCTL, rctl);
5221
5222 #if (PAGE_SIZE < 8192)
5223         if (!adapter->vfs_allocated_count) {
5224                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5225                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
5226         }
5227 #endif
5228         wr32(E1000_RLPML, rlpml);
5229
5230         /* In order to support SR-IOV and eventually VMDq it is necessary to set
5231          * the VMOLR to enable the appropriate modes.  Without this workaround
5232          * we will have issues with VLAN tag stripping not being done for frames
5233          * that are only arriving because we are the default pool
5234          */
5235         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5236                 return;
5237
5238         /* set UTA to appropriate mode */
5239         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5240
5241         vmolr |= rd32(E1000_VMOLR(vfn)) &
5242                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5243
5244         /* enable Rx jumbo frames, restrict as needed to support build_skb */
5245         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5246 #if (PAGE_SIZE < 8192)
5247         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5248                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5249         else
5250 #endif
5251                 vmolr |= MAX_JUMBO_FRAME_SIZE;
5252         vmolr |= E1000_VMOLR_LPE;
5253
5254         wr32(E1000_VMOLR(vfn), vmolr);
5255
5256         igb_restore_vf_multicasts(adapter);
5257 }
5258
5259 static void igb_check_wvbr(struct igb_adapter *adapter)
5260 {
5261         struct e1000_hw *hw = &adapter->hw;
5262         u32 wvbr = 0;
5263
5264         switch (hw->mac.type) {
5265         case e1000_82576:
5266         case e1000_i350:
5267                 wvbr = rd32(E1000_WVBR);
5268                 if (!wvbr)
5269                         return;
5270                 break;
5271         default:
5272                 break;
5273         }
5274
5275         adapter->wvbr |= wvbr;
5276 }
5277
5278 #define IGB_STAGGERED_QUEUE_OFFSET 8
5279
5280 static void igb_spoof_check(struct igb_adapter *adapter)
5281 {
5282         int j;
5283
5284         if (!adapter->wvbr)
5285                 return;
5286
5287         for (j = 0; j < adapter->vfs_allocated_count; j++) {
5288                 if (adapter->wvbr & BIT(j) ||
5289                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5290                         dev_warn(&adapter->pdev->dev,
5291                                 "Spoof event(s) detected on VF %d\n", j);
5292                         adapter->wvbr &=
5293                                 ~(BIT(j) |
5294                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5295                 }
5296         }
5297 }
5298
5299 /* Need to wait a few seconds after link up to get diagnostic information from
5300  * the phy
5301  */
5302 static void igb_update_phy_info(struct timer_list *t)
5303 {
5304         struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5305         igb_get_phy_info(&adapter->hw);
5306 }
5307
5308 /**
5309  *  igb_has_link - check shared code for link and determine up/down
5310  *  @adapter: pointer to driver private info
5311  **/
5312 bool igb_has_link(struct igb_adapter *adapter)
5313 {
5314         struct e1000_hw *hw = &adapter->hw;
5315         bool link_active = false;
5316
5317         /* get_link_status is set on LSC (link status) interrupt or
5318          * rx sequence error interrupt.  get_link_status will stay
5319          * false until the e1000_check_for_link establishes link
5320          * for copper adapters ONLY
5321          */
5322         switch (hw->phy.media_type) {
5323         case e1000_media_type_copper:
5324                 if (!hw->mac.get_link_status)
5325                         return true;
5326                 fallthrough;
5327         case e1000_media_type_internal_serdes:
5328                 hw->mac.ops.check_for_link(hw);
5329                 link_active = !hw->mac.get_link_status;
5330                 break;
5331         default:
5332         case e1000_media_type_unknown:
5333                 break;
5334         }
5335
5336         if (((hw->mac.type == e1000_i210) ||
5337              (hw->mac.type == e1000_i211)) &&
5338              (hw->phy.id == I210_I_PHY_ID)) {
5339                 if (!netif_carrier_ok(adapter->netdev)) {
5340                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5341                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5342                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5343                         adapter->link_check_timeout = jiffies;
5344                 }
5345         }
5346
5347         return link_active;
5348 }
5349
5350 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5351 {
5352         bool ret = false;
5353         u32 ctrl_ext, thstat;
5354
5355         /* check for thermal sensor event on i350 copper only */
5356         if (hw->mac.type == e1000_i350) {
5357                 thstat = rd32(E1000_THSTAT);
5358                 ctrl_ext = rd32(E1000_CTRL_EXT);
5359
5360                 if ((hw->phy.media_type == e1000_media_type_copper) &&
5361                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5362                         ret = !!(thstat & event);
5363         }
5364
5365         return ret;
5366 }
5367
5368 /**
5369  *  igb_check_lvmmc - check for malformed packets received
5370  *  and indicated in LVMMC register
5371  *  @adapter: pointer to adapter
5372  **/
5373 static void igb_check_lvmmc(struct igb_adapter *adapter)
5374 {
5375         struct e1000_hw *hw = &adapter->hw;
5376         u32 lvmmc;
5377
5378         lvmmc = rd32(E1000_LVMMC);
5379         if (lvmmc) {
5380                 if (unlikely(net_ratelimit())) {
5381                         netdev_warn(adapter->netdev,
5382                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5383                                     lvmmc);
5384                 }
5385         }
5386 }
5387
5388 /**
5389  *  igb_watchdog - Timer Call-back
5390  *  @t: pointer to timer_list containing our private info pointer
5391  **/
5392 static void igb_watchdog(struct timer_list *t)
5393 {
5394         struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5395         /* Do the rest outside of interrupt context */
5396         schedule_work(&adapter->watchdog_task);
5397 }
5398
5399 static void igb_watchdog_task(struct work_struct *work)
5400 {
5401         struct igb_adapter *adapter = container_of(work,
5402                                                    struct igb_adapter,
5403                                                    watchdog_task);
5404         struct e1000_hw *hw = &adapter->hw;
5405         struct e1000_phy_info *phy = &hw->phy;
5406         struct net_device *netdev = adapter->netdev;
5407         u32 link;
5408         int i;
5409         u32 connsw;
5410         u16 phy_data, retry_count = 20;
5411
5412         link = igb_has_link(adapter);
5413
5414         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5415                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5416                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5417                 else
5418                         link = false;
5419         }
5420
5421         /* Force link down if we have fiber to swap to */
5422         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5423                 if (hw->phy.media_type == e1000_media_type_copper) {
5424                         connsw = rd32(E1000_CONNSW);
5425                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5426                                 link = 0;
5427                 }
5428         }
5429         if (link) {
5430                 /* Perform a reset if the media type changed. */
5431                 if (hw->dev_spec._82575.media_changed) {
5432                         hw->dev_spec._82575.media_changed = false;
5433                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
5434                         igb_reset(adapter);
5435                 }
5436                 /* Cancel scheduled suspend requests. */
5437                 pm_runtime_resume(netdev->dev.parent);
5438
5439                 if (!netif_carrier_ok(netdev)) {
5440                         u32 ctrl;
5441
5442                         hw->mac.ops.get_speed_and_duplex(hw,
5443                                                          &adapter->link_speed,
5444                                                          &adapter->link_duplex);
5445
5446                         ctrl = rd32(E1000_CTRL);
5447                         /* Links status message must follow this format */
5448                         netdev_info(netdev,
5449                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5450                                netdev->name,
5451                                adapter->link_speed,
5452                                adapter->link_duplex == FULL_DUPLEX ?
5453                                "Full" : "Half",
5454                                (ctrl & E1000_CTRL_TFCE) &&
5455                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5456                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5457                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5458
5459                         /* disable EEE if enabled */
5460                         if ((adapter->flags & IGB_FLAG_EEE) &&
5461                                 (adapter->link_duplex == HALF_DUPLEX)) {
5462                                 dev_info(&adapter->pdev->dev,
5463                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5464                                 adapter->hw.dev_spec._82575.eee_disable = true;
5465                                 adapter->flags &= ~IGB_FLAG_EEE;
5466                         }
5467
5468                         /* check if SmartSpeed worked */
5469                         igb_check_downshift(hw);
5470                         if (phy->speed_downgraded)
5471                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5472
5473                         /* check for thermal sensor event */
5474                         if (igb_thermal_sensor_event(hw,
5475                             E1000_THSTAT_LINK_THROTTLE))
5476                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5477
5478                         /* adjust timeout factor according to speed/duplex */
5479                         adapter->tx_timeout_factor = 1;
5480                         switch (adapter->link_speed) {
5481                         case SPEED_10:
5482                                 adapter->tx_timeout_factor = 14;
5483                                 break;
5484                         case SPEED_100:
5485                                 /* maybe add some timeout factor ? */
5486                                 break;
5487                         }
5488
5489                         if (adapter->link_speed != SPEED_1000)
5490                                 goto no_wait;
5491
5492                         /* wait for Remote receiver status OK */
5493 retry_read_status:
5494                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5495                                               &phy_data)) {
5496                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5497                                     retry_count) {
5498                                         msleep(100);
5499                                         retry_count--;
5500                                         goto retry_read_status;
5501                                 } else if (!retry_count) {
5502                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5503                                 }
5504                         } else {
5505                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5506                         }
5507 no_wait:
5508                         netif_carrier_on(netdev);
5509
5510                         igb_ping_all_vfs(adapter);
5511                         igb_check_vf_rate_limit(adapter);
5512
5513                         /* link state has changed, schedule phy info update */
5514                         if (!test_bit(__IGB_DOWN, &adapter->state))
5515                                 mod_timer(&adapter->phy_info_timer,
5516                                           round_jiffies(jiffies + 2 * HZ));
5517                 }
5518         } else {
5519                 if (netif_carrier_ok(netdev)) {
5520                         adapter->link_speed = 0;
5521                         adapter->link_duplex = 0;
5522
5523                         /* check for thermal sensor event */
5524                         if (igb_thermal_sensor_event(hw,
5525                             E1000_THSTAT_PWR_DOWN)) {
5526                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5527                         }
5528
5529                         /* Links status message must follow this format */
5530                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
5531                                netdev->name);
5532                         netif_carrier_off(netdev);
5533
5534                         igb_ping_all_vfs(adapter);
5535
5536                         /* link state has changed, schedule phy info update */
5537                         if (!test_bit(__IGB_DOWN, &adapter->state))
5538                                 mod_timer(&adapter->phy_info_timer,
5539                                           round_jiffies(jiffies + 2 * HZ));
5540
5541                         /* link is down, time to check for alternate media */
5542                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5543                                 igb_check_swap_media(adapter);
5544                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5545                                         schedule_work(&adapter->reset_task);
5546                                         /* return immediately */
5547                                         return;
5548                                 }
5549                         }
5550                         pm_schedule_suspend(netdev->dev.parent,
5551                                             MSEC_PER_SEC * 5);
5552
5553                 /* also check for alternate media here */
5554                 } else if (!netif_carrier_ok(netdev) &&
5555                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5556                         igb_check_swap_media(adapter);
5557                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5558                                 schedule_work(&adapter->reset_task);
5559                                 /* return immediately */
5560                                 return;
5561                         }
5562                 }
5563         }
5564
5565         spin_lock(&adapter->stats64_lock);
5566         igb_update_stats(adapter);
5567         spin_unlock(&adapter->stats64_lock);
5568
5569         for (i = 0; i < adapter->num_tx_queues; i++) {
5570                 struct igb_ring *tx_ring = adapter->tx_ring[i];
5571                 if (!netif_carrier_ok(netdev)) {
5572                         /* We've lost link, so the controller stops DMA,
5573                          * but we've got queued Tx work that's never going
5574                          * to get done, so reset controller to flush Tx.
5575                          * (Do the reset outside of interrupt context).
5576                          */
5577                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5578                                 adapter->tx_timeout_count++;
5579                                 schedule_work(&adapter->reset_task);
5580                                 /* return immediately since reset is imminent */
5581                                 return;
5582                         }
5583                 }
5584
5585                 /* Force detection of hung controller every watchdog period */
5586                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5587         }
5588
5589         /* Cause software interrupt to ensure Rx ring is cleaned */
5590         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5591                 u32 eics = 0;
5592
5593                 for (i = 0; i < adapter->num_q_vectors; i++)
5594                         eics |= adapter->q_vector[i]->eims_value;
5595                 wr32(E1000_EICS, eics);
5596         } else {
5597                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5598         }
5599
5600         igb_spoof_check(adapter);
5601         igb_ptp_rx_hang(adapter);
5602         igb_ptp_tx_hang(adapter);
5603
5604         /* Check LVMMC register on i350/i354 only */
5605         if ((adapter->hw.mac.type == e1000_i350) ||
5606             (adapter->hw.mac.type == e1000_i354))
5607                 igb_check_lvmmc(adapter);
5608
5609         /* Reset the timer */
5610         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5611                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5612                         mod_timer(&adapter->watchdog_timer,
5613                                   round_jiffies(jiffies +  HZ));
5614                 else
5615                         mod_timer(&adapter->watchdog_timer,
5616                                   round_jiffies(jiffies + 2 * HZ));
5617         }
5618 }
5619
5620 enum latency_range {
5621         lowest_latency = 0,
5622         low_latency = 1,
5623         bulk_latency = 2,
5624         latency_invalid = 255
5625 };
5626
5627 /**
5628  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5629  *  @q_vector: pointer to q_vector
5630  *
5631  *  Stores a new ITR value based on strictly on packet size.  This
5632  *  algorithm is less sophisticated than that used in igb_update_itr,
5633  *  due to the difficulty of synchronizing statistics across multiple
5634  *  receive rings.  The divisors and thresholds used by this function
5635  *  were determined based on theoretical maximum wire speed and testing
5636  *  data, in order to minimize response time while increasing bulk
5637  *  throughput.
5638  *  This functionality is controlled by ethtool's coalescing settings.
5639  *  NOTE:  This function is called only when operating in a multiqueue
5640  *         receive environment.
5641  **/
5642 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5643 {
5644         int new_val = q_vector->itr_val;
5645         int avg_wire_size = 0;
5646         struct igb_adapter *adapter = q_vector->adapter;
5647         unsigned int packets;
5648
5649         /* For non-gigabit speeds, just fix the interrupt rate at 4000
5650          * ints/sec - ITR timer value of 120 ticks.
5651          */
5652         if (adapter->link_speed != SPEED_1000) {
5653                 new_val = IGB_4K_ITR;
5654                 goto set_itr_val;
5655         }
5656
5657         packets = q_vector->rx.total_packets;
5658         if (packets)
5659                 avg_wire_size = q_vector->rx.total_bytes / packets;
5660
5661         packets = q_vector->tx.total_packets;
5662         if (packets)
5663                 avg_wire_size = max_t(u32, avg_wire_size,
5664                                       q_vector->tx.total_bytes / packets);
5665
5666         /* if avg_wire_size isn't set no work was done */
5667         if (!avg_wire_size)
5668                 goto clear_counts;
5669
5670         /* Add 24 bytes to size to account for CRC, preamble, and gap */
5671         avg_wire_size += 24;
5672
5673         /* Don't starve jumbo frames */
5674         avg_wire_size = min(avg_wire_size, 3000);
5675
5676         /* Give a little boost to mid-size frames */
5677         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5678                 new_val = avg_wire_size / 3;
5679         else
5680                 new_val = avg_wire_size / 2;
5681
5682         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5683         if (new_val < IGB_20K_ITR &&
5684             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5685              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5686                 new_val = IGB_20K_ITR;
5687
5688 set_itr_val:
5689         if (new_val != q_vector->itr_val) {
5690                 q_vector->itr_val = new_val;
5691                 q_vector->set_itr = 1;
5692         }
5693 clear_counts:
5694         q_vector->rx.total_bytes = 0;
5695         q_vector->rx.total_packets = 0;
5696         q_vector->tx.total_bytes = 0;
5697         q_vector->tx.total_packets = 0;
5698 }
5699
5700 /**
5701  *  igb_update_itr - update the dynamic ITR value based on statistics
5702  *  @q_vector: pointer to q_vector
5703  *  @ring_container: ring info to update the itr for
5704  *
5705  *  Stores a new ITR value based on packets and byte
5706  *  counts during the last interrupt.  The advantage of per interrupt
5707  *  computation is faster updates and more accurate ITR for the current
5708  *  traffic pattern.  Constants in this function were computed
5709  *  based on theoretical maximum wire speed and thresholds were set based
5710  *  on testing data as well as attempting to minimize response time
5711  *  while increasing bulk throughput.
5712  *  This functionality is controlled by ethtool's coalescing settings.
5713  *  NOTE:  These calculations are only valid when operating in a single-
5714  *         queue environment.
5715  **/
5716 static void igb_update_itr(struct igb_q_vector *q_vector,
5717                            struct igb_ring_container *ring_container)
5718 {
5719         unsigned int packets = ring_container->total_packets;
5720         unsigned int bytes = ring_container->total_bytes;
5721         u8 itrval = ring_container->itr;
5722
5723         /* no packets, exit with status unchanged */
5724         if (packets == 0)
5725                 return;
5726
5727         switch (itrval) {
5728         case lowest_latency:
5729                 /* handle TSO and jumbo frames */
5730                 if (bytes/packets > 8000)
5731                         itrval = bulk_latency;
5732                 else if ((packets < 5) && (bytes > 512))
5733                         itrval = low_latency;
5734                 break;
5735         case low_latency:  /* 50 usec aka 20000 ints/s */
5736                 if (bytes > 10000) {
5737                         /* this if handles the TSO accounting */
5738                         if (bytes/packets > 8000)
5739                                 itrval = bulk_latency;
5740                         else if ((packets < 10) || ((bytes/packets) > 1200))
5741                                 itrval = bulk_latency;
5742                         else if ((packets > 35))
5743                                 itrval = lowest_latency;
5744                 } else if (bytes/packets > 2000) {
5745                         itrval = bulk_latency;
5746                 } else if (packets <= 2 && bytes < 512) {
5747                         itrval = lowest_latency;
5748                 }
5749                 break;
5750         case bulk_latency: /* 250 usec aka 4000 ints/s */
5751                 if (bytes > 25000) {
5752                         if (packets > 35)
5753                                 itrval = low_latency;
5754                 } else if (bytes < 1500) {
5755                         itrval = low_latency;
5756                 }
5757                 break;
5758         }
5759
5760         /* clear work counters since we have the values we need */
5761         ring_container->total_bytes = 0;
5762         ring_container->total_packets = 0;
5763
5764         /* write updated itr to ring container */
5765         ring_container->itr = itrval;
5766 }
5767
5768 static void igb_set_itr(struct igb_q_vector *q_vector)
5769 {
5770         struct igb_adapter *adapter = q_vector->adapter;
5771         u32 new_itr = q_vector->itr_val;
5772         u8 current_itr = 0;
5773
5774         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5775         if (adapter->link_speed != SPEED_1000) {
5776                 current_itr = 0;
5777                 new_itr = IGB_4K_ITR;
5778                 goto set_itr_now;
5779         }
5780
5781         igb_update_itr(q_vector, &q_vector->tx);
5782         igb_update_itr(q_vector, &q_vector->rx);
5783
5784         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5785
5786         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5787         if (current_itr == lowest_latency &&
5788             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5789              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5790                 current_itr = low_latency;
5791
5792         switch (current_itr) {
5793         /* counts and packets in update_itr are dependent on these numbers */
5794         case lowest_latency:
5795                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5796                 break;
5797         case low_latency:
5798                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5799                 break;
5800         case bulk_latency:
5801                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5802                 break;
5803         default:
5804                 break;
5805         }
5806
5807 set_itr_now:
5808         if (new_itr != q_vector->itr_val) {
5809                 /* this attempts to bias the interrupt rate towards Bulk
5810                  * by adding intermediate steps when interrupt rate is
5811                  * increasing
5812                  */
5813                 new_itr = new_itr > q_vector->itr_val ?
5814                           max((new_itr * q_vector->itr_val) /
5815                           (new_itr + (q_vector->itr_val >> 2)),
5816                           new_itr) : new_itr;
5817                 /* Don't write the value here; it resets the adapter's
5818                  * internal timer, and causes us to delay far longer than
5819                  * we should between interrupts.  Instead, we write the ITR
5820                  * value at the beginning of the next interrupt so the timing
5821                  * ends up being correct.
5822                  */
5823                 q_vector->itr_val = new_itr;
5824                 q_vector->set_itr = 1;
5825         }
5826 }
5827
5828 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5829                             struct igb_tx_buffer *first,
5830                             u32 vlan_macip_lens, u32 type_tucmd,
5831                             u32 mss_l4len_idx)
5832 {
5833         struct e1000_adv_tx_context_desc *context_desc;
5834         u16 i = tx_ring->next_to_use;
5835         struct timespec64 ts;
5836
5837         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5838
5839         i++;
5840         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5841
5842         /* set bits to identify this as an advanced context descriptor */
5843         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5844
5845         /* For 82575, context index must be unique per ring. */
5846         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5847                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5848
5849         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5850         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5851         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5852
5853         /* We assume there is always a valid tx time available. Invalid times
5854          * should have been handled by the upper layers.
5855          */
5856         if (tx_ring->launchtime_enable) {
5857                 ts = ktime_to_timespec64(first->skb->tstamp);
5858                 skb_txtime_consumed(first->skb);
5859                 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5860         } else {
5861                 context_desc->seqnum_seed = 0;
5862         }
5863 }
5864
5865 static int igb_tso(struct igb_ring *tx_ring,
5866                    struct igb_tx_buffer *first,
5867                    u8 *hdr_len)
5868 {
5869         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5870         struct sk_buff *skb = first->skb;
5871         union {
5872                 struct iphdr *v4;
5873                 struct ipv6hdr *v6;
5874                 unsigned char *hdr;
5875         } ip;
5876         union {
5877                 struct tcphdr *tcp;
5878                 struct udphdr *udp;
5879                 unsigned char *hdr;
5880         } l4;
5881         u32 paylen, l4_offset;
5882         int err;
5883
5884         if (skb->ip_summed != CHECKSUM_PARTIAL)
5885                 return 0;
5886
5887         if (!skb_is_gso(skb))
5888                 return 0;
5889
5890         err = skb_cow_head(skb, 0);
5891         if (err < 0)
5892                 return err;
5893
5894         ip.hdr = skb_network_header(skb);
5895         l4.hdr = skb_checksum_start(skb);
5896
5897         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5898         type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5899                       E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5900
5901         /* initialize outer IP header fields */
5902         if (ip.v4->version == 4) {
5903                 unsigned char *csum_start = skb_checksum_start(skb);
5904                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5905
5906                 /* IP header will have to cancel out any data that
5907                  * is not a part of the outer IP header
5908                  */
5909                 ip.v4->check = csum_fold(csum_partial(trans_start,
5910                                                       csum_start - trans_start,
5911                                                       0));
5912                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5913
5914                 ip.v4->tot_len = 0;
5915                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5916                                    IGB_TX_FLAGS_CSUM |
5917                                    IGB_TX_FLAGS_IPV4;
5918         } else {
5919                 ip.v6->payload_len = 0;
5920                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5921                                    IGB_TX_FLAGS_CSUM;
5922         }
5923
5924         /* determine offset of inner transport header */
5925         l4_offset = l4.hdr - skb->data;
5926
5927         /* remove payload length from inner checksum */
5928         paylen = skb->len - l4_offset;
5929         if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5930                 /* compute length of segmentation header */
5931                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5932                 csum_replace_by_diff(&l4.tcp->check,
5933                         (__force __wsum)htonl(paylen));
5934         } else {
5935                 /* compute length of segmentation header */
5936                 *hdr_len = sizeof(*l4.udp) + l4_offset;
5937                 csum_replace_by_diff(&l4.udp->check,
5938                                      (__force __wsum)htonl(paylen));
5939         }
5940
5941         /* update gso size and bytecount with header size */
5942         first->gso_segs = skb_shinfo(skb)->gso_segs;
5943         first->bytecount += (first->gso_segs - 1) * *hdr_len;
5944
5945         /* MSS L4LEN IDX */
5946         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5947         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5948
5949         /* VLAN MACLEN IPLEN */
5950         vlan_macip_lens = l4.hdr - ip.hdr;
5951         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5952         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5953
5954         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5955                         type_tucmd, mss_l4len_idx);
5956
5957         return 1;
5958 }
5959
5960 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5961 {
5962         struct sk_buff *skb = first->skb;
5963         u32 vlan_macip_lens = 0;
5964         u32 type_tucmd = 0;
5965
5966         if (skb->ip_summed != CHECKSUM_PARTIAL) {
5967 csum_failed:
5968                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5969                     !tx_ring->launchtime_enable)
5970                         return;
5971                 goto no_csum;
5972         }
5973
5974         switch (skb->csum_offset) {
5975         case offsetof(struct tcphdr, check):
5976                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5977                 fallthrough;
5978         case offsetof(struct udphdr, check):
5979                 break;
5980         case offsetof(struct sctphdr, checksum):
5981                 /* validate that this is actually an SCTP request */
5982                 if (skb_csum_is_sctp(skb)) {
5983                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5984                         break;
5985                 }
5986                 fallthrough;
5987         default:
5988                 skb_checksum_help(skb);
5989                 goto csum_failed;
5990         }
5991
5992         /* update TX checksum flag */
5993         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5994         vlan_macip_lens = skb_checksum_start_offset(skb) -
5995                           skb_network_offset(skb);
5996 no_csum:
5997         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5998         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5999
6000         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6001 }
6002
6003 #define IGB_SET_FLAG(_input, _flag, _result) \
6004         ((_flag <= _result) ? \
6005          ((u32)(_input & _flag) * (_result / _flag)) : \
6006          ((u32)(_input & _flag) / (_flag / _result)))
6007
6008 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6009 {
6010         /* set type for advanced descriptor with frame checksum insertion */
6011         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6012                        E1000_ADVTXD_DCMD_DEXT |
6013                        E1000_ADVTXD_DCMD_IFCS;
6014
6015         /* set HW vlan bit if vlan is present */
6016         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6017                                  (E1000_ADVTXD_DCMD_VLE));
6018
6019         /* set segmentation bits for TSO */
6020         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6021                                  (E1000_ADVTXD_DCMD_TSE));
6022
6023         /* set timestamp bit if present */
6024         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6025                                  (E1000_ADVTXD_MAC_TSTAMP));
6026
6027         /* insert frame checksum */
6028         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6029
6030         return cmd_type;
6031 }
6032
6033 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6034                                  union e1000_adv_tx_desc *tx_desc,
6035                                  u32 tx_flags, unsigned int paylen)
6036 {
6037         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6038
6039         /* 82575 requires a unique index per ring */
6040         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6041                 olinfo_status |= tx_ring->reg_idx << 4;
6042
6043         /* insert L4 checksum */
6044         olinfo_status |= IGB_SET_FLAG(tx_flags,
6045                                       IGB_TX_FLAGS_CSUM,
6046                                       (E1000_TXD_POPTS_TXSM << 8));
6047
6048         /* insert IPv4 checksum */
6049         olinfo_status |= IGB_SET_FLAG(tx_flags,
6050                                       IGB_TX_FLAGS_IPV4,
6051                                       (E1000_TXD_POPTS_IXSM << 8));
6052
6053         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6054 }
6055
6056 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6057 {
6058         struct net_device *netdev = tx_ring->netdev;
6059
6060         netif_stop_subqueue(netdev, tx_ring->queue_index);
6061
6062         /* Herbert's original patch had:
6063          *  smp_mb__after_netif_stop_queue();
6064          * but since that doesn't exist yet, just open code it.
6065          */
6066         smp_mb();
6067
6068         /* We need to check again in a case another CPU has just
6069          * made room available.
6070          */
6071         if (igb_desc_unused(tx_ring) < size)
6072                 return -EBUSY;
6073
6074         /* A reprieve! */
6075         netif_wake_subqueue(netdev, tx_ring->queue_index);
6076
6077         u64_stats_update_begin(&tx_ring->tx_syncp2);
6078         tx_ring->tx_stats.restart_queue2++;
6079         u64_stats_update_end(&tx_ring->tx_syncp2);
6080
6081         return 0;
6082 }
6083
6084 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6085 {
6086         if (igb_desc_unused(tx_ring) >= size)
6087                 return 0;
6088         return __igb_maybe_stop_tx(tx_ring, size);
6089 }
6090
6091 static int igb_tx_map(struct igb_ring *tx_ring,
6092                       struct igb_tx_buffer *first,
6093                       const u8 hdr_len)
6094 {
6095         struct sk_buff *skb = first->skb;
6096         struct igb_tx_buffer *tx_buffer;
6097         union e1000_adv_tx_desc *tx_desc;
6098         skb_frag_t *frag;
6099         dma_addr_t dma;
6100         unsigned int data_len, size;
6101         u32 tx_flags = first->tx_flags;
6102         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6103         u16 i = tx_ring->next_to_use;
6104
6105         tx_desc = IGB_TX_DESC(tx_ring, i);
6106
6107         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6108
6109         size = skb_headlen(skb);
6110         data_len = skb->data_len;
6111
6112         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6113
6114         tx_buffer = first;
6115
6116         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6117                 if (dma_mapping_error(tx_ring->dev, dma))
6118                         goto dma_error;
6119
6120                 /* record length, and DMA address */
6121                 dma_unmap_len_set(tx_buffer, len, size);
6122                 dma_unmap_addr_set(tx_buffer, dma, dma);
6123
6124                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6125
6126                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6127                         tx_desc->read.cmd_type_len =
6128                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6129
6130                         i++;
6131                         tx_desc++;
6132                         if (i == tx_ring->count) {
6133                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6134                                 i = 0;
6135                         }
6136                         tx_desc->read.olinfo_status = 0;
6137
6138                         dma += IGB_MAX_DATA_PER_TXD;
6139                         size -= IGB_MAX_DATA_PER_TXD;
6140
6141                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
6142                 }
6143
6144                 if (likely(!data_len))
6145                         break;
6146
6147                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6148
6149                 i++;
6150                 tx_desc++;
6151                 if (i == tx_ring->count) {
6152                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6153                         i = 0;
6154                 }
6155                 tx_desc->read.olinfo_status = 0;
6156
6157                 size = skb_frag_size(frag);
6158                 data_len -= size;
6159
6160                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6161                                        size, DMA_TO_DEVICE);
6162
6163                 tx_buffer = &tx_ring->tx_buffer_info[i];
6164         }
6165
6166         /* write last descriptor with RS and EOP bits */
6167         cmd_type |= size | IGB_TXD_DCMD;
6168         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6169
6170         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6171
6172         /* set the timestamp */
6173         first->time_stamp = jiffies;
6174
6175         skb_tx_timestamp(skb);
6176
6177         /* Force memory writes to complete before letting h/w know there
6178          * are new descriptors to fetch.  (Only applicable for weak-ordered
6179          * memory model archs, such as IA-64).
6180          *
6181          * We also need this memory barrier to make certain all of the
6182          * status bits have been updated before next_to_watch is written.
6183          */
6184         dma_wmb();
6185
6186         /* set next_to_watch value indicating a packet is present */
6187         first->next_to_watch = tx_desc;
6188
6189         i++;
6190         if (i == tx_ring->count)
6191                 i = 0;
6192
6193         tx_ring->next_to_use = i;
6194
6195         /* Make sure there is space in the ring for the next send. */
6196         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6197
6198         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6199                 writel(i, tx_ring->tail);
6200         }
6201         return 0;
6202
6203 dma_error:
6204         dev_err(tx_ring->dev, "TX DMA map failed\n");
6205         tx_buffer = &tx_ring->tx_buffer_info[i];
6206
6207         /* clear dma mappings for failed tx_buffer_info map */
6208         while (tx_buffer != first) {
6209                 if (dma_unmap_len(tx_buffer, len))
6210                         dma_unmap_page(tx_ring->dev,
6211                                        dma_unmap_addr(tx_buffer, dma),
6212                                        dma_unmap_len(tx_buffer, len),
6213                                        DMA_TO_DEVICE);
6214                 dma_unmap_len_set(tx_buffer, len, 0);
6215
6216                 if (i-- == 0)
6217                         i += tx_ring->count;
6218                 tx_buffer = &tx_ring->tx_buffer_info[i];
6219         }
6220
6221         if (dma_unmap_len(tx_buffer, len))
6222                 dma_unmap_single(tx_ring->dev,
6223                                  dma_unmap_addr(tx_buffer, dma),
6224                                  dma_unmap_len(tx_buffer, len),
6225                                  DMA_TO_DEVICE);
6226         dma_unmap_len_set(tx_buffer, len, 0);
6227
6228         dev_kfree_skb_any(tx_buffer->skb);
6229         tx_buffer->skb = NULL;
6230
6231         tx_ring->next_to_use = i;
6232
6233         return -1;
6234 }
6235
6236 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6237                       struct igb_ring *tx_ring,
6238                       struct xdp_frame *xdpf)
6239 {
6240         union e1000_adv_tx_desc *tx_desc;
6241         u32 len, cmd_type, olinfo_status;
6242         struct igb_tx_buffer *tx_buffer;
6243         dma_addr_t dma;
6244         u16 i;
6245
6246         len = xdpf->len;
6247
6248         if (unlikely(!igb_desc_unused(tx_ring)))
6249                 return IGB_XDP_CONSUMED;
6250
6251         dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6252         if (dma_mapping_error(tx_ring->dev, dma))
6253                 return IGB_XDP_CONSUMED;
6254
6255         /* record the location of the first descriptor for this packet */
6256         tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6257         tx_buffer->bytecount = len;
6258         tx_buffer->gso_segs = 1;
6259         tx_buffer->protocol = 0;
6260
6261         i = tx_ring->next_to_use;
6262         tx_desc = IGB_TX_DESC(tx_ring, i);
6263
6264         dma_unmap_len_set(tx_buffer, len, len);
6265         dma_unmap_addr_set(tx_buffer, dma, dma);
6266         tx_buffer->type = IGB_TYPE_XDP;
6267         tx_buffer->xdpf = xdpf;
6268
6269         tx_desc->read.buffer_addr = cpu_to_le64(dma);
6270
6271         /* put descriptor type bits */
6272         cmd_type = E1000_ADVTXD_DTYP_DATA |
6273                    E1000_ADVTXD_DCMD_DEXT |
6274                    E1000_ADVTXD_DCMD_IFCS;
6275         cmd_type |= len | IGB_TXD_DCMD;
6276         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6277
6278         olinfo_status = cpu_to_le32(len << E1000_ADVTXD_PAYLEN_SHIFT);
6279         /* 82575 requires a unique index per ring */
6280         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6281                 olinfo_status |= tx_ring->reg_idx << 4;
6282
6283         tx_desc->read.olinfo_status = olinfo_status;
6284
6285         netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6286
6287         /* set the timestamp */
6288         tx_buffer->time_stamp = jiffies;
6289
6290         /* Avoid any potential race with xdp_xmit and cleanup */
6291         smp_wmb();
6292
6293         /* set next_to_watch value indicating a packet is present */
6294         i++;
6295         if (i == tx_ring->count)
6296                 i = 0;
6297
6298         tx_buffer->next_to_watch = tx_desc;
6299         tx_ring->next_to_use = i;
6300
6301         /* Make sure there is space in the ring for the next send. */
6302         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6303
6304         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6305                 writel(i, tx_ring->tail);
6306
6307         return IGB_XDP_TX;
6308 }
6309
6310 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6311                                 struct igb_ring *tx_ring)
6312 {
6313         struct igb_tx_buffer *first;
6314         int tso;
6315         u32 tx_flags = 0;
6316         unsigned short f;
6317         u16 count = TXD_USE_COUNT(skb_headlen(skb));
6318         __be16 protocol = vlan_get_protocol(skb);
6319         u8 hdr_len = 0;
6320
6321         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6322          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6323          *       + 2 desc gap to keep tail from touching head,
6324          *       + 1 desc for context descriptor,
6325          * otherwise try next time
6326          */
6327         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6328                 count += TXD_USE_COUNT(skb_frag_size(
6329                                                 &skb_shinfo(skb)->frags[f]));
6330
6331         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6332                 /* this is a hard error */
6333                 return NETDEV_TX_BUSY;
6334         }
6335
6336         /* record the location of the first descriptor for this packet */
6337         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6338         first->type = IGB_TYPE_SKB;
6339         first->skb = skb;
6340         first->bytecount = skb->len;
6341         first->gso_segs = 1;
6342
6343         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6344                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6345
6346                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6347                     !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6348                                            &adapter->state)) {
6349                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6350                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
6351
6352                         adapter->ptp_tx_skb = skb_get(skb);
6353                         adapter->ptp_tx_start = jiffies;
6354                         if (adapter->hw.mac.type == e1000_82576)
6355                                 schedule_work(&adapter->ptp_tx_work);
6356                 } else {
6357                         adapter->tx_hwtstamp_skipped++;
6358                 }
6359         }
6360
6361         if (skb_vlan_tag_present(skb)) {
6362                 tx_flags |= IGB_TX_FLAGS_VLAN;
6363                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6364         }
6365
6366         /* record initial flags and protocol */
6367         first->tx_flags = tx_flags;
6368         first->protocol = protocol;
6369
6370         tso = igb_tso(tx_ring, first, &hdr_len);
6371         if (tso < 0)
6372                 goto out_drop;
6373         else if (!tso)
6374                 igb_tx_csum(tx_ring, first);
6375
6376         if (igb_tx_map(tx_ring, first, hdr_len))
6377                 goto cleanup_tx_tstamp;
6378
6379         return NETDEV_TX_OK;
6380
6381 out_drop:
6382         dev_kfree_skb_any(first->skb);
6383         first->skb = NULL;
6384 cleanup_tx_tstamp:
6385         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6386                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6387
6388                 dev_kfree_skb_any(adapter->ptp_tx_skb);
6389                 adapter->ptp_tx_skb = NULL;
6390                 if (adapter->hw.mac.type == e1000_82576)
6391                         cancel_work_sync(&adapter->ptp_tx_work);
6392                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6393         }
6394
6395         return NETDEV_TX_OK;
6396 }
6397
6398 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6399                                                     struct sk_buff *skb)
6400 {
6401         unsigned int r_idx = skb->queue_mapping;
6402
6403         if (r_idx >= adapter->num_tx_queues)
6404                 r_idx = r_idx % adapter->num_tx_queues;
6405
6406         return adapter->tx_ring[r_idx];
6407 }
6408
6409 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6410                                   struct net_device *netdev)
6411 {
6412         struct igb_adapter *adapter = netdev_priv(netdev);
6413
6414         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6415          * in order to meet this minimum size requirement.
6416          */
6417         if (skb_put_padto(skb, 17))
6418                 return NETDEV_TX_OK;
6419
6420         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6421 }
6422
6423 /**
6424  *  igb_tx_timeout - Respond to a Tx Hang
6425  *  @netdev: network interface device structure
6426  *  @txqueue: number of the Tx queue that hung (unused)
6427  **/
6428 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6429 {
6430         struct igb_adapter *adapter = netdev_priv(netdev);
6431         struct e1000_hw *hw = &adapter->hw;
6432
6433         /* Do the reset outside of interrupt context */
6434         adapter->tx_timeout_count++;
6435
6436         if (hw->mac.type >= e1000_82580)
6437                 hw->dev_spec._82575.global_device_reset = true;
6438
6439         schedule_work(&adapter->reset_task);
6440         wr32(E1000_EICS,
6441              (adapter->eims_enable_mask & ~adapter->eims_other));
6442 }
6443
6444 static void igb_reset_task(struct work_struct *work)
6445 {
6446         struct igb_adapter *adapter;
6447         adapter = container_of(work, struct igb_adapter, reset_task);
6448
6449         rtnl_lock();
6450         /* If we're already down or resetting, just bail */
6451         if (test_bit(__IGB_DOWN, &adapter->state) ||
6452             test_bit(__IGB_RESETTING, &adapter->state)) {
6453                 rtnl_unlock();
6454                 return;
6455         }
6456
6457         igb_dump(adapter);
6458         netdev_err(adapter->netdev, "Reset adapter\n");
6459         igb_reinit_locked(adapter);
6460         rtnl_unlock();
6461 }
6462
6463 /**
6464  *  igb_get_stats64 - Get System Network Statistics
6465  *  @netdev: network interface device structure
6466  *  @stats: rtnl_link_stats64 pointer
6467  **/
6468 static void igb_get_stats64(struct net_device *netdev,
6469                             struct rtnl_link_stats64 *stats)
6470 {
6471         struct igb_adapter *adapter = netdev_priv(netdev);
6472
6473         spin_lock(&adapter->stats64_lock);
6474         igb_update_stats(adapter);
6475         memcpy(stats, &adapter->stats64, sizeof(*stats));
6476         spin_unlock(&adapter->stats64_lock);
6477 }
6478
6479 /**
6480  *  igb_change_mtu - Change the Maximum Transfer Unit
6481  *  @netdev: network interface device structure
6482  *  @new_mtu: new value for maximum frame size
6483  *
6484  *  Returns 0 on success, negative on failure
6485  **/
6486 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6487 {
6488         struct igb_adapter *adapter = netdev_priv(netdev);
6489         int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6490
6491         if (adapter->xdp_prog) {
6492                 int i;
6493
6494                 for (i = 0; i < adapter->num_rx_queues; i++) {
6495                         struct igb_ring *ring = adapter->rx_ring[i];
6496
6497                         if (max_frame > igb_rx_bufsz(ring)) {
6498                                 netdev_warn(adapter->netdev,
6499                                             "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6500                                             max_frame);
6501                                 return -EINVAL;
6502                         }
6503                 }
6504         }
6505
6506         /* adjust max frame to be at least the size of a standard frame */
6507         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6508                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6509
6510         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6511                 usleep_range(1000, 2000);
6512
6513         /* igb_down has a dependency on max_frame_size */
6514         adapter->max_frame_size = max_frame;
6515
6516         if (netif_running(netdev))
6517                 igb_down(adapter);
6518
6519         netdev_dbg(netdev, "changing MTU from %d to %d\n",
6520                    netdev->mtu, new_mtu);
6521         netdev->mtu = new_mtu;
6522
6523         if (netif_running(netdev))
6524                 igb_up(adapter);
6525         else
6526                 igb_reset(adapter);
6527
6528         clear_bit(__IGB_RESETTING, &adapter->state);
6529
6530         return 0;
6531 }
6532
6533 /**
6534  *  igb_update_stats - Update the board statistics counters
6535  *  @adapter: board private structure
6536  **/
6537 void igb_update_stats(struct igb_adapter *adapter)
6538 {
6539         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6540         struct e1000_hw *hw = &adapter->hw;
6541         struct pci_dev *pdev = adapter->pdev;
6542         u32 reg, mpc;
6543         int i;
6544         u64 bytes, packets;
6545         unsigned int start;
6546         u64 _bytes, _packets;
6547
6548         /* Prevent stats update while adapter is being reset, or if the pci
6549          * connection is down.
6550          */
6551         if (adapter->link_speed == 0)
6552                 return;
6553         if (pci_channel_offline(pdev))
6554                 return;
6555
6556         bytes = 0;
6557         packets = 0;
6558
6559         rcu_read_lock();
6560         for (i = 0; i < adapter->num_rx_queues; i++) {
6561                 struct igb_ring *ring = adapter->rx_ring[i];
6562                 u32 rqdpc = rd32(E1000_RQDPC(i));
6563                 if (hw->mac.type >= e1000_i210)
6564                         wr32(E1000_RQDPC(i), 0);
6565
6566                 if (rqdpc) {
6567                         ring->rx_stats.drops += rqdpc;
6568                         net_stats->rx_fifo_errors += rqdpc;
6569                 }
6570
6571                 do {
6572                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6573                         _bytes = ring->rx_stats.bytes;
6574                         _packets = ring->rx_stats.packets;
6575                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6576                 bytes += _bytes;
6577                 packets += _packets;
6578         }
6579
6580         net_stats->rx_bytes = bytes;
6581         net_stats->rx_packets = packets;
6582
6583         bytes = 0;
6584         packets = 0;
6585         for (i = 0; i < adapter->num_tx_queues; i++) {
6586                 struct igb_ring *ring = adapter->tx_ring[i];
6587                 do {
6588                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6589                         _bytes = ring->tx_stats.bytes;
6590                         _packets = ring->tx_stats.packets;
6591                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6592                 bytes += _bytes;
6593                 packets += _packets;
6594         }
6595         net_stats->tx_bytes = bytes;
6596         net_stats->tx_packets = packets;
6597         rcu_read_unlock();
6598
6599         /* read stats registers */
6600         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6601         adapter->stats.gprc += rd32(E1000_GPRC);
6602         adapter->stats.gorc += rd32(E1000_GORCL);
6603         rd32(E1000_GORCH); /* clear GORCL */
6604         adapter->stats.bprc += rd32(E1000_BPRC);
6605         adapter->stats.mprc += rd32(E1000_MPRC);
6606         adapter->stats.roc += rd32(E1000_ROC);
6607
6608         adapter->stats.prc64 += rd32(E1000_PRC64);
6609         adapter->stats.prc127 += rd32(E1000_PRC127);
6610         adapter->stats.prc255 += rd32(E1000_PRC255);
6611         adapter->stats.prc511 += rd32(E1000_PRC511);
6612         adapter->stats.prc1023 += rd32(E1000_PRC1023);
6613         adapter->stats.prc1522 += rd32(E1000_PRC1522);
6614         adapter->stats.symerrs += rd32(E1000_SYMERRS);
6615         adapter->stats.sec += rd32(E1000_SEC);
6616
6617         mpc = rd32(E1000_MPC);
6618         adapter->stats.mpc += mpc;
6619         net_stats->rx_fifo_errors += mpc;
6620         adapter->stats.scc += rd32(E1000_SCC);
6621         adapter->stats.ecol += rd32(E1000_ECOL);
6622         adapter->stats.mcc += rd32(E1000_MCC);
6623         adapter->stats.latecol += rd32(E1000_LATECOL);
6624         adapter->stats.dc += rd32(E1000_DC);
6625         adapter->stats.rlec += rd32(E1000_RLEC);
6626         adapter->stats.xonrxc += rd32(E1000_XONRXC);
6627         adapter->stats.xontxc += rd32(E1000_XONTXC);
6628         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6629         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6630         adapter->stats.fcruc += rd32(E1000_FCRUC);
6631         adapter->stats.gptc += rd32(E1000_GPTC);
6632         adapter->stats.gotc += rd32(E1000_GOTCL);
6633         rd32(E1000_GOTCH); /* clear GOTCL */
6634         adapter->stats.rnbc += rd32(E1000_RNBC);
6635         adapter->stats.ruc += rd32(E1000_RUC);
6636         adapter->stats.rfc += rd32(E1000_RFC);
6637         adapter->stats.rjc += rd32(E1000_RJC);
6638         adapter->stats.tor += rd32(E1000_TORH);
6639         adapter->stats.tot += rd32(E1000_TOTH);
6640         adapter->stats.tpr += rd32(E1000_TPR);
6641
6642         adapter->stats.ptc64 += rd32(E1000_PTC64);
6643         adapter->stats.ptc127 += rd32(E1000_PTC127);
6644         adapter->stats.ptc255 += rd32(E1000_PTC255);
6645         adapter->stats.ptc511 += rd32(E1000_PTC511);
6646         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6647         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6648
6649         adapter->stats.mptc += rd32(E1000_MPTC);
6650         adapter->stats.bptc += rd32(E1000_BPTC);
6651
6652         adapter->stats.tpt += rd32(E1000_TPT);
6653         adapter->stats.colc += rd32(E1000_COLC);
6654
6655         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6656         /* read internal phy specific stats */
6657         reg = rd32(E1000_CTRL_EXT);
6658         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6659                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6660
6661                 /* this stat has invalid values on i210/i211 */
6662                 if ((hw->mac.type != e1000_i210) &&
6663                     (hw->mac.type != e1000_i211))
6664                         adapter->stats.tncrs += rd32(E1000_TNCRS);
6665         }
6666
6667         adapter->stats.tsctc += rd32(E1000_TSCTC);
6668         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6669
6670         adapter->stats.iac += rd32(E1000_IAC);
6671         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6672         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6673         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6674         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6675         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6676         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6677         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6678         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6679
6680         /* Fill out the OS statistics structure */
6681         net_stats->multicast = adapter->stats.mprc;
6682         net_stats->collisions = adapter->stats.colc;
6683
6684         /* Rx Errors */
6685
6686         /* RLEC on some newer hardware can be incorrect so build
6687          * our own version based on RUC and ROC
6688          */
6689         net_stats->rx_errors = adapter->stats.rxerrc +
6690                 adapter->stats.crcerrs + adapter->stats.algnerrc +
6691                 adapter->stats.ruc + adapter->stats.roc +
6692                 adapter->stats.cexterr;
6693         net_stats->rx_length_errors = adapter->stats.ruc +
6694                                       adapter->stats.roc;
6695         net_stats->rx_crc_errors = adapter->stats.crcerrs;
6696         net_stats->rx_frame_errors = adapter->stats.algnerrc;
6697         net_stats->rx_missed_errors = adapter->stats.mpc;
6698
6699         /* Tx Errors */
6700         net_stats->tx_errors = adapter->stats.ecol +
6701                                adapter->stats.latecol;
6702         net_stats->tx_aborted_errors = adapter->stats.ecol;
6703         net_stats->tx_window_errors = adapter->stats.latecol;
6704         net_stats->tx_carrier_errors = adapter->stats.tncrs;
6705
6706         /* Tx Dropped needs to be maintained elsewhere */
6707
6708         /* Management Stats */
6709         adapter->stats.mgptc += rd32(E1000_MGTPTC);
6710         adapter->stats.mgprc += rd32(E1000_MGTPRC);
6711         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6712
6713         /* OS2BMC Stats */
6714         reg = rd32(E1000_MANC);
6715         if (reg & E1000_MANC_EN_BMC2OS) {
6716                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6717                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6718                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6719                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6720         }
6721 }
6722
6723 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6724 {
6725         struct e1000_hw *hw = &adapter->hw;
6726         struct ptp_clock_event event;
6727         struct timespec64 ts;
6728         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6729
6730         if (tsicr & TSINTR_SYS_WRAP) {
6731                 event.type = PTP_CLOCK_PPS;
6732                 if (adapter->ptp_caps.pps)
6733                         ptp_clock_event(adapter->ptp_clock, &event);
6734                 ack |= TSINTR_SYS_WRAP;
6735         }
6736
6737         if (tsicr & E1000_TSICR_TXTS) {
6738                 /* retrieve hardware timestamp */
6739                 schedule_work(&adapter->ptp_tx_work);
6740                 ack |= E1000_TSICR_TXTS;
6741         }
6742
6743         if (tsicr & TSINTR_TT0) {
6744                 spin_lock(&adapter->tmreg_lock);
6745                 ts = timespec64_add(adapter->perout[0].start,
6746                                     adapter->perout[0].period);
6747                 /* u32 conversion of tv_sec is safe until y2106 */
6748                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6749                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6750                 tsauxc = rd32(E1000_TSAUXC);
6751                 tsauxc |= TSAUXC_EN_TT0;
6752                 wr32(E1000_TSAUXC, tsauxc);
6753                 adapter->perout[0].start = ts;
6754                 spin_unlock(&adapter->tmreg_lock);
6755                 ack |= TSINTR_TT0;
6756         }
6757
6758         if (tsicr & TSINTR_TT1) {
6759                 spin_lock(&adapter->tmreg_lock);
6760                 ts = timespec64_add(adapter->perout[1].start,
6761                                     adapter->perout[1].period);
6762                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6763                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6764                 tsauxc = rd32(E1000_TSAUXC);
6765                 tsauxc |= TSAUXC_EN_TT1;
6766                 wr32(E1000_TSAUXC, tsauxc);
6767                 adapter->perout[1].start = ts;
6768                 spin_unlock(&adapter->tmreg_lock);
6769                 ack |= TSINTR_TT1;
6770         }
6771
6772         if (tsicr & TSINTR_AUTT0) {
6773                 nsec = rd32(E1000_AUXSTMPL0);
6774                 sec  = rd32(E1000_AUXSTMPH0);
6775                 event.type = PTP_CLOCK_EXTTS;
6776                 event.index = 0;
6777                 event.timestamp = sec * 1000000000ULL + nsec;
6778                 ptp_clock_event(adapter->ptp_clock, &event);
6779                 ack |= TSINTR_AUTT0;
6780         }
6781
6782         if (tsicr & TSINTR_AUTT1) {
6783                 nsec = rd32(E1000_AUXSTMPL1);
6784                 sec  = rd32(E1000_AUXSTMPH1);
6785                 event.type = PTP_CLOCK_EXTTS;
6786                 event.index = 1;
6787                 event.timestamp = sec * 1000000000ULL + nsec;
6788                 ptp_clock_event(adapter->ptp_clock, &event);
6789                 ack |= TSINTR_AUTT1;
6790         }
6791
6792         /* acknowledge the interrupts */
6793         wr32(E1000_TSICR, ack);
6794 }
6795
6796 static irqreturn_t igb_msix_other(int irq, void *data)
6797 {
6798         struct igb_adapter *adapter = data;
6799         struct e1000_hw *hw = &adapter->hw;
6800         u32 icr = rd32(E1000_ICR);
6801         /* reading ICR causes bit 31 of EICR to be cleared */
6802
6803         if (icr & E1000_ICR_DRSTA)
6804                 schedule_work(&adapter->reset_task);
6805
6806         if (icr & E1000_ICR_DOUTSYNC) {
6807                 /* HW is reporting DMA is out of sync */
6808                 adapter->stats.doosync++;
6809                 /* The DMA Out of Sync is also indication of a spoof event
6810                  * in IOV mode. Check the Wrong VM Behavior register to
6811                  * see if it is really a spoof event.
6812                  */
6813                 igb_check_wvbr(adapter);
6814         }
6815
6816         /* Check for a mailbox event */
6817         if (icr & E1000_ICR_VMMB)
6818                 igb_msg_task(adapter);
6819
6820         if (icr & E1000_ICR_LSC) {
6821                 hw->mac.get_link_status = 1;
6822                 /* guard against interrupt when we're going down */
6823                 if (!test_bit(__IGB_DOWN, &adapter->state))
6824                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6825         }
6826
6827         if (icr & E1000_ICR_TS)
6828                 igb_tsync_interrupt(adapter);
6829
6830         wr32(E1000_EIMS, adapter->eims_other);
6831
6832         return IRQ_HANDLED;
6833 }
6834
6835 static void igb_write_itr(struct igb_q_vector *q_vector)
6836 {
6837         struct igb_adapter *adapter = q_vector->adapter;
6838         u32 itr_val = q_vector->itr_val & 0x7FFC;
6839
6840         if (!q_vector->set_itr)
6841                 return;
6842
6843         if (!itr_val)
6844                 itr_val = 0x4;
6845
6846         if (adapter->hw.mac.type == e1000_82575)
6847                 itr_val |= itr_val << 16;
6848         else
6849                 itr_val |= E1000_EITR_CNT_IGNR;
6850
6851         writel(itr_val, q_vector->itr_register);
6852         q_vector->set_itr = 0;
6853 }
6854
6855 static irqreturn_t igb_msix_ring(int irq, void *data)
6856 {
6857         struct igb_q_vector *q_vector = data;
6858
6859         /* Write the ITR value calculated from the previous interrupt. */
6860         igb_write_itr(q_vector);
6861
6862         napi_schedule(&q_vector->napi);
6863
6864         return IRQ_HANDLED;
6865 }
6866
6867 #ifdef CONFIG_IGB_DCA
6868 static void igb_update_tx_dca(struct igb_adapter *adapter,
6869                               struct igb_ring *tx_ring,
6870                               int cpu)
6871 {
6872         struct e1000_hw *hw = &adapter->hw;
6873         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6874
6875         if (hw->mac.type != e1000_82575)
6876                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6877
6878         /* We can enable relaxed ordering for reads, but not writes when
6879          * DCA is enabled.  This is due to a known issue in some chipsets
6880          * which will cause the DCA tag to be cleared.
6881          */
6882         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6883                   E1000_DCA_TXCTRL_DATA_RRO_EN |
6884                   E1000_DCA_TXCTRL_DESC_DCA_EN;
6885
6886         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6887 }
6888
6889 static void igb_update_rx_dca(struct igb_adapter *adapter,
6890                               struct igb_ring *rx_ring,
6891                               int cpu)
6892 {
6893         struct e1000_hw *hw = &adapter->hw;
6894         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6895
6896         if (hw->mac.type != e1000_82575)
6897                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6898
6899         /* We can enable relaxed ordering for reads, but not writes when
6900          * DCA is enabled.  This is due to a known issue in some chipsets
6901          * which will cause the DCA tag to be cleared.
6902          */
6903         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6904                   E1000_DCA_RXCTRL_DESC_DCA_EN;
6905
6906         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6907 }
6908
6909 static void igb_update_dca(struct igb_q_vector *q_vector)
6910 {
6911         struct igb_adapter *adapter = q_vector->adapter;
6912         int cpu = get_cpu();
6913
6914         if (q_vector->cpu == cpu)
6915                 goto out_no_update;
6916
6917         if (q_vector->tx.ring)
6918                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6919
6920         if (q_vector->rx.ring)
6921                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6922
6923         q_vector->cpu = cpu;
6924 out_no_update:
6925         put_cpu();
6926 }
6927
6928 static void igb_setup_dca(struct igb_adapter *adapter)
6929 {
6930         struct e1000_hw *hw = &adapter->hw;
6931         int i;
6932
6933         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6934                 return;
6935
6936         /* Always use CB2 mode, difference is masked in the CB driver. */
6937         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6938
6939         for (i = 0; i < adapter->num_q_vectors; i++) {
6940                 adapter->q_vector[i]->cpu = -1;
6941                 igb_update_dca(adapter->q_vector[i]);
6942         }
6943 }
6944
6945 static int __igb_notify_dca(struct device *dev, void *data)
6946 {
6947         struct net_device *netdev = dev_get_drvdata(dev);
6948         struct igb_adapter *adapter = netdev_priv(netdev);
6949         struct pci_dev *pdev = adapter->pdev;
6950         struct e1000_hw *hw = &adapter->hw;
6951         unsigned long event = *(unsigned long *)data;
6952
6953         switch (event) {
6954         case DCA_PROVIDER_ADD:
6955                 /* if already enabled, don't do it again */
6956                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6957                         break;
6958                 if (dca_add_requester(dev) == 0) {
6959                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
6960                         dev_info(&pdev->dev, "DCA enabled\n");
6961                         igb_setup_dca(adapter);
6962                         break;
6963                 }
6964                 fallthrough; /* since DCA is disabled. */
6965         case DCA_PROVIDER_REMOVE:
6966                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6967                         /* without this a class_device is left
6968                          * hanging around in the sysfs model
6969                          */
6970                         dca_remove_requester(dev);
6971                         dev_info(&pdev->dev, "DCA disabled\n");
6972                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6973                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6974                 }
6975                 break;
6976         }
6977
6978         return 0;
6979 }
6980
6981 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6982                           void *p)
6983 {
6984         int ret_val;
6985
6986         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6987                                          __igb_notify_dca);
6988
6989         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6990 }
6991 #endif /* CONFIG_IGB_DCA */
6992
6993 #ifdef CONFIG_PCI_IOV
6994 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6995 {
6996         unsigned char mac_addr[ETH_ALEN];
6997
6998         eth_zero_addr(mac_addr);
6999         igb_set_vf_mac(adapter, vf, mac_addr);
7000
7001         /* By default spoof check is enabled for all VFs */
7002         adapter->vf_data[vf].spoofchk_enabled = true;
7003
7004         /* By default VFs are not trusted */
7005         adapter->vf_data[vf].trusted = false;
7006
7007         return 0;
7008 }
7009
7010 #endif
7011 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7012 {
7013         struct e1000_hw *hw = &adapter->hw;
7014         u32 ping;
7015         int i;
7016
7017         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7018                 ping = E1000_PF_CONTROL_MSG;
7019                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7020                         ping |= E1000_VT_MSGTYPE_CTS;
7021                 igb_write_mbx(hw, &ping, 1, i);
7022         }
7023 }
7024
7025 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7026 {
7027         struct e1000_hw *hw = &adapter->hw;
7028         u32 vmolr = rd32(E1000_VMOLR(vf));
7029         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7030
7031         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7032                             IGB_VF_FLAG_MULTI_PROMISC);
7033         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7034
7035         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7036                 vmolr |= E1000_VMOLR_MPME;
7037                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7038                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7039         } else {
7040                 /* if we have hashes and we are clearing a multicast promisc
7041                  * flag we need to write the hashes to the MTA as this step
7042                  * was previously skipped
7043                  */
7044                 if (vf_data->num_vf_mc_hashes > 30) {
7045                         vmolr |= E1000_VMOLR_MPME;
7046                 } else if (vf_data->num_vf_mc_hashes) {
7047                         int j;
7048
7049                         vmolr |= E1000_VMOLR_ROMPE;
7050                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7051                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7052                 }
7053         }
7054
7055         wr32(E1000_VMOLR(vf), vmolr);
7056
7057         /* there are flags left unprocessed, likely not supported */
7058         if (*msgbuf & E1000_VT_MSGINFO_MASK)
7059                 return -EINVAL;
7060
7061         return 0;
7062 }
7063
7064 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7065                                   u32 *msgbuf, u32 vf)
7066 {
7067         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7068         u16 *hash_list = (u16 *)&msgbuf[1];
7069         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7070         int i;
7071
7072         /* salt away the number of multicast addresses assigned
7073          * to this VF for later use to restore when the PF multi cast
7074          * list changes
7075          */
7076         vf_data->num_vf_mc_hashes = n;
7077
7078         /* only up to 30 hash values supported */
7079         if (n > 30)
7080                 n = 30;
7081
7082         /* store the hashes for later use */
7083         for (i = 0; i < n; i++)
7084                 vf_data->vf_mc_hashes[i] = hash_list[i];
7085
7086         /* Flush and reset the mta with the new values */
7087         igb_set_rx_mode(adapter->netdev);
7088
7089         return 0;
7090 }
7091
7092 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7093 {
7094         struct e1000_hw *hw = &adapter->hw;
7095         struct vf_data_storage *vf_data;
7096         int i, j;
7097
7098         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7099                 u32 vmolr = rd32(E1000_VMOLR(i));
7100
7101                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7102
7103                 vf_data = &adapter->vf_data[i];
7104
7105                 if ((vf_data->num_vf_mc_hashes > 30) ||
7106                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7107                         vmolr |= E1000_VMOLR_MPME;
7108                 } else if (vf_data->num_vf_mc_hashes) {
7109                         vmolr |= E1000_VMOLR_ROMPE;
7110                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7111                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7112                 }
7113                 wr32(E1000_VMOLR(i), vmolr);
7114         }
7115 }
7116
7117 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7118 {
7119         struct e1000_hw *hw = &adapter->hw;
7120         u32 pool_mask, vlvf_mask, i;
7121
7122         /* create mask for VF and other pools */
7123         pool_mask = E1000_VLVF_POOLSEL_MASK;
7124         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7125
7126         /* drop PF from pool bits */
7127         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7128                              adapter->vfs_allocated_count);
7129
7130         /* Find the vlan filter for this id */
7131         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7132                 u32 vlvf = rd32(E1000_VLVF(i));
7133                 u32 vfta_mask, vid, vfta;
7134
7135                 /* remove the vf from the pool */
7136                 if (!(vlvf & vlvf_mask))
7137                         continue;
7138
7139                 /* clear out bit from VLVF */
7140                 vlvf ^= vlvf_mask;
7141
7142                 /* if other pools are present, just remove ourselves */
7143                 if (vlvf & pool_mask)
7144                         goto update_vlvfb;
7145
7146                 /* if PF is present, leave VFTA */
7147                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7148                         goto update_vlvf;
7149
7150                 vid = vlvf & E1000_VLVF_VLANID_MASK;
7151                 vfta_mask = BIT(vid % 32);
7152
7153                 /* clear bit from VFTA */
7154                 vfta = adapter->shadow_vfta[vid / 32];
7155                 if (vfta & vfta_mask)
7156                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7157 update_vlvf:
7158                 /* clear pool selection enable */
7159                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7160                         vlvf &= E1000_VLVF_POOLSEL_MASK;
7161                 else
7162                         vlvf = 0;
7163 update_vlvfb:
7164                 /* clear pool bits */
7165                 wr32(E1000_VLVF(i), vlvf);
7166         }
7167 }
7168
7169 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7170 {
7171         u32 vlvf;
7172         int idx;
7173
7174         /* short cut the special case */
7175         if (vlan == 0)
7176                 return 0;
7177
7178         /* Search for the VLAN id in the VLVF entries */
7179         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7180                 vlvf = rd32(E1000_VLVF(idx));
7181                 if ((vlvf & VLAN_VID_MASK) == vlan)
7182                         break;
7183         }
7184
7185         return idx;
7186 }
7187
7188 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7189 {
7190         struct e1000_hw *hw = &adapter->hw;
7191         u32 bits, pf_id;
7192         int idx;
7193
7194         idx = igb_find_vlvf_entry(hw, vid);
7195         if (!idx)
7196                 return;
7197
7198         /* See if any other pools are set for this VLAN filter
7199          * entry other than the PF.
7200          */
7201         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7202         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7203         bits &= rd32(E1000_VLVF(idx));
7204
7205         /* Disable the filter so this falls into the default pool. */
7206         if (!bits) {
7207                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7208                         wr32(E1000_VLVF(idx), BIT(pf_id));
7209                 else
7210                         wr32(E1000_VLVF(idx), 0);
7211         }
7212 }
7213
7214 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7215                            bool add, u32 vf)
7216 {
7217         int pf_id = adapter->vfs_allocated_count;
7218         struct e1000_hw *hw = &adapter->hw;
7219         int err;
7220
7221         /* If VLAN overlaps with one the PF is currently monitoring make
7222          * sure that we are able to allocate a VLVF entry.  This may be
7223          * redundant but it guarantees PF will maintain visibility to
7224          * the VLAN.
7225          */
7226         if (add && test_bit(vid, adapter->active_vlans)) {
7227                 err = igb_vfta_set(hw, vid, pf_id, true, false);
7228                 if (err)
7229                         return err;
7230         }
7231
7232         err = igb_vfta_set(hw, vid, vf, add, false);
7233
7234         if (add && !err)
7235                 return err;
7236
7237         /* If we failed to add the VF VLAN or we are removing the VF VLAN
7238          * we may need to drop the PF pool bit in order to allow us to free
7239          * up the VLVF resources.
7240          */
7241         if (test_bit(vid, adapter->active_vlans) ||
7242             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7243                 igb_update_pf_vlvf(adapter, vid);
7244
7245         return err;
7246 }
7247
7248 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7249 {
7250         struct e1000_hw *hw = &adapter->hw;
7251
7252         if (vid)
7253                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7254         else
7255                 wr32(E1000_VMVIR(vf), 0);
7256 }
7257
7258 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7259                                 u16 vlan, u8 qos)
7260 {
7261         int err;
7262
7263         err = igb_set_vf_vlan(adapter, vlan, true, vf);
7264         if (err)
7265                 return err;
7266
7267         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7268         igb_set_vmolr(adapter, vf, !vlan);
7269
7270         /* revoke access to previous VLAN */
7271         if (vlan != adapter->vf_data[vf].pf_vlan)
7272                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7273                                 false, vf);
7274
7275         adapter->vf_data[vf].pf_vlan = vlan;
7276         adapter->vf_data[vf].pf_qos = qos;
7277         igb_set_vf_vlan_strip(adapter, vf, true);
7278         dev_info(&adapter->pdev->dev,
7279                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7280         if (test_bit(__IGB_DOWN, &adapter->state)) {
7281                 dev_warn(&adapter->pdev->dev,
7282                          "The VF VLAN has been set, but the PF device is not up.\n");
7283                 dev_warn(&adapter->pdev->dev,
7284                          "Bring the PF device up before attempting to use the VF device.\n");
7285         }
7286
7287         return err;
7288 }
7289
7290 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7291 {
7292         /* Restore tagless access via VLAN 0 */
7293         igb_set_vf_vlan(adapter, 0, true, vf);
7294
7295         igb_set_vmvir(adapter, 0, vf);
7296         igb_set_vmolr(adapter, vf, true);
7297
7298         /* Remove any PF assigned VLAN */
7299         if (adapter->vf_data[vf].pf_vlan)
7300                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7301                                 false, vf);
7302
7303         adapter->vf_data[vf].pf_vlan = 0;
7304         adapter->vf_data[vf].pf_qos = 0;
7305         igb_set_vf_vlan_strip(adapter, vf, false);
7306
7307         return 0;
7308 }
7309
7310 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7311                                u16 vlan, u8 qos, __be16 vlan_proto)
7312 {
7313         struct igb_adapter *adapter = netdev_priv(netdev);
7314
7315         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7316                 return -EINVAL;
7317
7318         if (vlan_proto != htons(ETH_P_8021Q))
7319                 return -EPROTONOSUPPORT;
7320
7321         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7322                                igb_disable_port_vlan(adapter, vf);
7323 }
7324
7325 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7326 {
7327         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7328         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7329         int ret;
7330
7331         if (adapter->vf_data[vf].pf_vlan)
7332                 return -1;
7333
7334         /* VLAN 0 is a special case, don't allow it to be removed */
7335         if (!vid && !add)
7336                 return 0;
7337
7338         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7339         if (!ret)
7340                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7341         return ret;
7342 }
7343
7344 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7345 {
7346         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7347
7348         /* clear flags - except flag that indicates PF has set the MAC */
7349         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7350         vf_data->last_nack = jiffies;
7351
7352         /* reset vlans for device */
7353         igb_clear_vf_vfta(adapter, vf);
7354         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7355         igb_set_vmvir(adapter, vf_data->pf_vlan |
7356                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7357         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7358         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7359
7360         /* reset multicast table array for vf */
7361         adapter->vf_data[vf].num_vf_mc_hashes = 0;
7362
7363         /* Flush and reset the mta with the new values */
7364         igb_set_rx_mode(adapter->netdev);
7365 }
7366
7367 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7368 {
7369         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7370
7371         /* clear mac address as we were hotplug removed/added */
7372         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7373                 eth_zero_addr(vf_mac);
7374
7375         /* process remaining reset events */
7376         igb_vf_reset(adapter, vf);
7377 }
7378
7379 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7380 {
7381         struct e1000_hw *hw = &adapter->hw;
7382         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7383         u32 reg, msgbuf[3];
7384         u8 *addr = (u8 *)(&msgbuf[1]);
7385
7386         /* process all the same items cleared in a function level reset */
7387         igb_vf_reset(adapter, vf);
7388
7389         /* set vf mac address */
7390         igb_set_vf_mac(adapter, vf, vf_mac);
7391
7392         /* enable transmit and receive for vf */
7393         reg = rd32(E1000_VFTE);
7394         wr32(E1000_VFTE, reg | BIT(vf));
7395         reg = rd32(E1000_VFRE);
7396         wr32(E1000_VFRE, reg | BIT(vf));
7397
7398         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7399
7400         /* reply to reset with ack and vf mac address */
7401         if (!is_zero_ether_addr(vf_mac)) {
7402                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7403                 memcpy(addr, vf_mac, ETH_ALEN);
7404         } else {
7405                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7406         }
7407         igb_write_mbx(hw, msgbuf, 3, vf);
7408 }
7409
7410 static void igb_flush_mac_table(struct igb_adapter *adapter)
7411 {
7412         struct e1000_hw *hw = &adapter->hw;
7413         int i;
7414
7415         for (i = 0; i < hw->mac.rar_entry_count; i++) {
7416                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7417                 eth_zero_addr(adapter->mac_table[i].addr);
7418                 adapter->mac_table[i].queue = 0;
7419                 igb_rar_set_index(adapter, i);
7420         }
7421 }
7422
7423 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7424 {
7425         struct e1000_hw *hw = &adapter->hw;
7426         /* do not count rar entries reserved for VFs MAC addresses */
7427         int rar_entries = hw->mac.rar_entry_count -
7428                           adapter->vfs_allocated_count;
7429         int i, count = 0;
7430
7431         for (i = 0; i < rar_entries; i++) {
7432                 /* do not count default entries */
7433                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7434                         continue;
7435
7436                 /* do not count "in use" entries for different queues */
7437                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7438                     (adapter->mac_table[i].queue != queue))
7439                         continue;
7440
7441                 count++;
7442         }
7443
7444         return count;
7445 }
7446
7447 /* Set default MAC address for the PF in the first RAR entry */
7448 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7449 {
7450         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7451
7452         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7453         mac_table->queue = adapter->vfs_allocated_count;
7454         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7455
7456         igb_rar_set_index(adapter, 0);
7457 }
7458
7459 /* If the filter to be added and an already existing filter express
7460  * the same address and address type, it should be possible to only
7461  * override the other configurations, for example the queue to steer
7462  * traffic.
7463  */
7464 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7465                                       const u8 *addr, const u8 flags)
7466 {
7467         if (!(entry->state & IGB_MAC_STATE_IN_USE))
7468                 return true;
7469
7470         if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7471             (flags & IGB_MAC_STATE_SRC_ADDR))
7472                 return false;
7473
7474         if (!ether_addr_equal(addr, entry->addr))
7475                 return false;
7476
7477         return true;
7478 }
7479
7480 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7481  * 'flags' is used to indicate what kind of match is made, match is by
7482  * default for the destination address, if matching by source address
7483  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7484  */
7485 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7486                                     const u8 *addr, const u8 queue,
7487                                     const u8 flags)
7488 {
7489         struct e1000_hw *hw = &adapter->hw;
7490         int rar_entries = hw->mac.rar_entry_count -
7491                           adapter->vfs_allocated_count;
7492         int i;
7493
7494         if (is_zero_ether_addr(addr))
7495                 return -EINVAL;
7496
7497         /* Search for the first empty entry in the MAC table.
7498          * Do not touch entries at the end of the table reserved for the VF MAC
7499          * addresses.
7500          */
7501         for (i = 0; i < rar_entries; i++) {
7502                 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7503                                                addr, flags))
7504                         continue;
7505
7506                 ether_addr_copy(adapter->mac_table[i].addr, addr);
7507                 adapter->mac_table[i].queue = queue;
7508                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7509
7510                 igb_rar_set_index(adapter, i);
7511                 return i;
7512         }
7513
7514         return -ENOSPC;
7515 }
7516
7517 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7518                               const u8 queue)
7519 {
7520         return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7521 }
7522
7523 /* Remove a MAC filter for 'addr' directing matching traffic to
7524  * 'queue', 'flags' is used to indicate what kind of match need to be
7525  * removed, match is by default for the destination address, if
7526  * matching by source address is to be removed the flag
7527  * IGB_MAC_STATE_SRC_ADDR can be used.
7528  */
7529 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7530                                     const u8 *addr, const u8 queue,
7531                                     const u8 flags)
7532 {
7533         struct e1000_hw *hw = &adapter->hw;
7534         int rar_entries = hw->mac.rar_entry_count -
7535                           adapter->vfs_allocated_count;
7536         int i;
7537
7538         if (is_zero_ether_addr(addr))
7539                 return -EINVAL;
7540
7541         /* Search for matching entry in the MAC table based on given address
7542          * and queue. Do not touch entries at the end of the table reserved
7543          * for the VF MAC addresses.
7544          */
7545         for (i = 0; i < rar_entries; i++) {
7546                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7547                         continue;
7548                 if ((adapter->mac_table[i].state & flags) != flags)
7549                         continue;
7550                 if (adapter->mac_table[i].queue != queue)
7551                         continue;
7552                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7553                         continue;
7554
7555                 /* When a filter for the default address is "deleted",
7556                  * we return it to its initial configuration
7557                  */
7558                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7559                         adapter->mac_table[i].state =
7560                                 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7561                         adapter->mac_table[i].queue =
7562                                 adapter->vfs_allocated_count;
7563                 } else {
7564                         adapter->mac_table[i].state = 0;
7565                         adapter->mac_table[i].queue = 0;
7566                         eth_zero_addr(adapter->mac_table[i].addr);
7567                 }
7568
7569                 igb_rar_set_index(adapter, i);
7570                 return 0;
7571         }
7572
7573         return -ENOENT;
7574 }
7575
7576 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7577                               const u8 queue)
7578 {
7579         return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7580 }
7581
7582 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7583                                 const u8 *addr, u8 queue, u8 flags)
7584 {
7585         struct e1000_hw *hw = &adapter->hw;
7586
7587         /* In theory, this should be supported on 82575 as well, but
7588          * that part wasn't easily accessible during development.
7589          */
7590         if (hw->mac.type != e1000_i210)
7591                 return -EOPNOTSUPP;
7592
7593         return igb_add_mac_filter_flags(adapter, addr, queue,
7594                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7595 }
7596
7597 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7598                                 const u8 *addr, u8 queue, u8 flags)
7599 {
7600         return igb_del_mac_filter_flags(adapter, addr, queue,
7601                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7602 }
7603
7604 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7605 {
7606         struct igb_adapter *adapter = netdev_priv(netdev);
7607         int ret;
7608
7609         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7610
7611         return min_t(int, ret, 0);
7612 }
7613
7614 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7615 {
7616         struct igb_adapter *adapter = netdev_priv(netdev);
7617
7618         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7619
7620         return 0;
7621 }
7622
7623 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7624                                  const u32 info, const u8 *addr)
7625 {
7626         struct pci_dev *pdev = adapter->pdev;
7627         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7628         struct list_head *pos;
7629         struct vf_mac_filter *entry = NULL;
7630         int ret = 0;
7631
7632         switch (info) {
7633         case E1000_VF_MAC_FILTER_CLR:
7634                 /* remove all unicast MAC filters related to the current VF */
7635                 list_for_each(pos, &adapter->vf_macs.l) {
7636                         entry = list_entry(pos, struct vf_mac_filter, l);
7637                         if (entry->vf == vf) {
7638                                 entry->vf = -1;
7639                                 entry->free = true;
7640                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7641                         }
7642                 }
7643                 break;
7644         case E1000_VF_MAC_FILTER_ADD:
7645                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7646                     !vf_data->trusted) {
7647                         dev_warn(&pdev->dev,
7648                                  "VF %d requested MAC filter but is administratively denied\n",
7649                                  vf);
7650                         return -EINVAL;
7651                 }
7652                 if (!is_valid_ether_addr(addr)) {
7653                         dev_warn(&pdev->dev,
7654                                  "VF %d attempted to set invalid MAC filter\n",
7655                                  vf);
7656                         return -EINVAL;
7657                 }
7658
7659                 /* try to find empty slot in the list */
7660                 list_for_each(pos, &adapter->vf_macs.l) {
7661                         entry = list_entry(pos, struct vf_mac_filter, l);
7662                         if (entry->free)
7663                                 break;
7664                 }
7665
7666                 if (entry && entry->free) {
7667                         entry->free = false;
7668                         entry->vf = vf;
7669                         ether_addr_copy(entry->vf_mac, addr);
7670
7671                         ret = igb_add_mac_filter(adapter, addr, vf);
7672                         ret = min_t(int, ret, 0);
7673                 } else {
7674                         ret = -ENOSPC;
7675                 }
7676
7677                 if (ret == -ENOSPC)
7678                         dev_warn(&pdev->dev,
7679                                  "VF %d has requested MAC filter but there is no space for it\n",
7680                                  vf);
7681                 break;
7682         default:
7683                 ret = -EINVAL;
7684                 break;
7685         }
7686
7687         return ret;
7688 }
7689
7690 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7691 {
7692         struct pci_dev *pdev = adapter->pdev;
7693         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7694         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7695
7696         /* The VF MAC Address is stored in a packed array of bytes
7697          * starting at the second 32 bit word of the msg array
7698          */
7699         unsigned char *addr = (unsigned char *)&msg[1];
7700         int ret = 0;
7701
7702         if (!info) {
7703                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7704                     !vf_data->trusted) {
7705                         dev_warn(&pdev->dev,
7706                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7707                                  vf);
7708                         return -EINVAL;
7709                 }
7710
7711                 if (!is_valid_ether_addr(addr)) {
7712                         dev_warn(&pdev->dev,
7713                                  "VF %d attempted to set invalid MAC\n",
7714                                  vf);
7715                         return -EINVAL;
7716                 }
7717
7718                 ret = igb_set_vf_mac(adapter, vf, addr);
7719         } else {
7720                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7721         }
7722
7723         return ret;
7724 }
7725
7726 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7727 {
7728         struct e1000_hw *hw = &adapter->hw;
7729         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7730         u32 msg = E1000_VT_MSGTYPE_NACK;
7731
7732         /* if device isn't clear to send it shouldn't be reading either */
7733         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7734             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7735                 igb_write_mbx(hw, &msg, 1, vf);
7736                 vf_data->last_nack = jiffies;
7737         }
7738 }
7739
7740 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7741 {
7742         struct pci_dev *pdev = adapter->pdev;
7743         u32 msgbuf[E1000_VFMAILBOX_SIZE];
7744         struct e1000_hw *hw = &adapter->hw;
7745         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7746         s32 retval;
7747
7748         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7749
7750         if (retval) {
7751                 /* if receive failed revoke VF CTS stats and restart init */
7752                 dev_err(&pdev->dev, "Error receiving message from VF\n");
7753                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7754                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7755                         goto unlock;
7756                 goto out;
7757         }
7758
7759         /* this is a message we already processed, do nothing */
7760         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7761                 goto unlock;
7762
7763         /* until the vf completes a reset it should not be
7764          * allowed to start any configuration.
7765          */
7766         if (msgbuf[0] == E1000_VF_RESET) {
7767                 /* unlocks mailbox */
7768                 igb_vf_reset_msg(adapter, vf);
7769                 return;
7770         }
7771
7772         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7773                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7774                         goto unlock;
7775                 retval = -1;
7776                 goto out;
7777         }
7778
7779         switch ((msgbuf[0] & 0xFFFF)) {
7780         case E1000_VF_SET_MAC_ADDR:
7781                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7782                 break;
7783         case E1000_VF_SET_PROMISC:
7784                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7785                 break;
7786         case E1000_VF_SET_MULTICAST:
7787                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7788                 break;
7789         case E1000_VF_SET_LPE:
7790                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7791                 break;
7792         case E1000_VF_SET_VLAN:
7793                 retval = -1;
7794                 if (vf_data->pf_vlan)
7795                         dev_warn(&pdev->dev,
7796                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7797                                  vf);
7798                 else
7799                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7800                 break;
7801         default:
7802                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7803                 retval = -1;
7804                 break;
7805         }
7806
7807         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7808 out:
7809         /* notify the VF of the results of what it sent us */
7810         if (retval)
7811                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7812         else
7813                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7814
7815         /* unlocks mailbox */
7816         igb_write_mbx(hw, msgbuf, 1, vf);
7817         return;
7818
7819 unlock:
7820         igb_unlock_mbx(hw, vf);
7821 }
7822
7823 static void igb_msg_task(struct igb_adapter *adapter)
7824 {
7825         struct e1000_hw *hw = &adapter->hw;
7826         u32 vf;
7827
7828         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7829                 /* process any reset requests */
7830                 if (!igb_check_for_rst(hw, vf))
7831                         igb_vf_reset_event(adapter, vf);
7832
7833                 /* process any messages pending */
7834                 if (!igb_check_for_msg(hw, vf))
7835                         igb_rcv_msg_from_vf(adapter, vf);
7836
7837                 /* process any acks */
7838                 if (!igb_check_for_ack(hw, vf))
7839                         igb_rcv_ack_from_vf(adapter, vf);
7840         }
7841 }
7842
7843 /**
7844  *  igb_set_uta - Set unicast filter table address
7845  *  @adapter: board private structure
7846  *  @set: boolean indicating if we are setting or clearing bits
7847  *
7848  *  The unicast table address is a register array of 32-bit registers.
7849  *  The table is meant to be used in a way similar to how the MTA is used
7850  *  however due to certain limitations in the hardware it is necessary to
7851  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7852  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7853  **/
7854 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7855 {
7856         struct e1000_hw *hw = &adapter->hw;
7857         u32 uta = set ? ~0 : 0;
7858         int i;
7859
7860         /* we only need to do this if VMDq is enabled */
7861         if (!adapter->vfs_allocated_count)
7862                 return;
7863
7864         for (i = hw->mac.uta_reg_count; i--;)
7865                 array_wr32(E1000_UTA, i, uta);
7866 }
7867
7868 /**
7869  *  igb_intr_msi - Interrupt Handler
7870  *  @irq: interrupt number
7871  *  @data: pointer to a network interface device structure
7872  **/
7873 static irqreturn_t igb_intr_msi(int irq, void *data)
7874 {
7875         struct igb_adapter *adapter = data;
7876         struct igb_q_vector *q_vector = adapter->q_vector[0];
7877         struct e1000_hw *hw = &adapter->hw;
7878         /* read ICR disables interrupts using IAM */
7879         u32 icr = rd32(E1000_ICR);
7880
7881         igb_write_itr(q_vector);
7882
7883         if (icr & E1000_ICR_DRSTA)
7884                 schedule_work(&adapter->reset_task);
7885
7886         if (icr & E1000_ICR_DOUTSYNC) {
7887                 /* HW is reporting DMA is out of sync */
7888                 adapter->stats.doosync++;
7889         }
7890
7891         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7892                 hw->mac.get_link_status = 1;
7893                 if (!test_bit(__IGB_DOWN, &adapter->state))
7894                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7895         }
7896
7897         if (icr & E1000_ICR_TS)
7898                 igb_tsync_interrupt(adapter);
7899
7900         napi_schedule(&q_vector->napi);
7901
7902         return IRQ_HANDLED;
7903 }
7904
7905 /**
7906  *  igb_intr - Legacy Interrupt Handler
7907  *  @irq: interrupt number
7908  *  @data: pointer to a network interface device structure
7909  **/
7910 static irqreturn_t igb_intr(int irq, void *data)
7911 {
7912         struct igb_adapter *adapter = data;
7913         struct igb_q_vector *q_vector = adapter->q_vector[0];
7914         struct e1000_hw *hw = &adapter->hw;
7915         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7916          * need for the IMC write
7917          */
7918         u32 icr = rd32(E1000_ICR);
7919
7920         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7921          * not set, then the adapter didn't send an interrupt
7922          */
7923         if (!(icr & E1000_ICR_INT_ASSERTED))
7924                 return IRQ_NONE;
7925
7926         igb_write_itr(q_vector);
7927
7928         if (icr & E1000_ICR_DRSTA)
7929                 schedule_work(&adapter->reset_task);
7930
7931         if (icr & E1000_ICR_DOUTSYNC) {
7932                 /* HW is reporting DMA is out of sync */
7933                 adapter->stats.doosync++;
7934         }
7935
7936         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7937                 hw->mac.get_link_status = 1;
7938                 /* guard against interrupt when we're going down */
7939                 if (!test_bit(__IGB_DOWN, &adapter->state))
7940                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7941         }
7942
7943         if (icr & E1000_ICR_TS)
7944                 igb_tsync_interrupt(adapter);
7945
7946         napi_schedule(&q_vector->napi);
7947
7948         return IRQ_HANDLED;
7949 }
7950
7951 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7952 {
7953         struct igb_adapter *adapter = q_vector->adapter;
7954         struct e1000_hw *hw = &adapter->hw;
7955
7956         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7957             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7958                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7959                         igb_set_itr(q_vector);
7960                 else
7961                         igb_update_ring_itr(q_vector);
7962         }
7963
7964         if (!test_bit(__IGB_DOWN, &adapter->state)) {
7965                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7966                         wr32(E1000_EIMS, q_vector->eims_value);
7967                 else
7968                         igb_irq_enable(adapter);
7969         }
7970 }
7971
7972 /**
7973  *  igb_poll - NAPI Rx polling callback
7974  *  @napi: napi polling structure
7975  *  @budget: count of how many packets we should handle
7976  **/
7977 static int igb_poll(struct napi_struct *napi, int budget)
7978 {
7979         struct igb_q_vector *q_vector = container_of(napi,
7980                                                      struct igb_q_vector,
7981                                                      napi);
7982         bool clean_complete = true;
7983         int work_done = 0;
7984
7985 #ifdef CONFIG_IGB_DCA
7986         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7987                 igb_update_dca(q_vector);
7988 #endif
7989         if (q_vector->tx.ring)
7990                 clean_complete = igb_clean_tx_irq(q_vector, budget);
7991
7992         if (q_vector->rx.ring) {
7993                 int cleaned = igb_clean_rx_irq(q_vector, budget);
7994
7995                 work_done += cleaned;
7996                 if (cleaned >= budget)
7997                         clean_complete = false;
7998         }
7999
8000         /* If all work not completed, return budget and keep polling */
8001         if (!clean_complete)
8002                 return budget;
8003
8004         /* Exit the polling mode, but don't re-enable interrupts if stack might
8005          * poll us due to busy-polling
8006          */
8007         if (likely(napi_complete_done(napi, work_done)))
8008                 igb_ring_irq_enable(q_vector);
8009
8010         return min(work_done, budget - 1);
8011 }
8012
8013 /**
8014  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8015  *  @q_vector: pointer to q_vector containing needed info
8016  *  @napi_budget: Used to determine if we are in netpoll
8017  *
8018  *  returns true if ring is completely cleaned
8019  **/
8020 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8021 {
8022         struct igb_adapter *adapter = q_vector->adapter;
8023         struct igb_ring *tx_ring = q_vector->tx.ring;
8024         struct igb_tx_buffer *tx_buffer;
8025         union e1000_adv_tx_desc *tx_desc;
8026         unsigned int total_bytes = 0, total_packets = 0;
8027         unsigned int budget = q_vector->tx.work_limit;
8028         unsigned int i = tx_ring->next_to_clean;
8029
8030         if (test_bit(__IGB_DOWN, &adapter->state))
8031                 return true;
8032
8033         tx_buffer = &tx_ring->tx_buffer_info[i];
8034         tx_desc = IGB_TX_DESC(tx_ring, i);
8035         i -= tx_ring->count;
8036
8037         do {
8038                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8039
8040                 /* if next_to_watch is not set then there is no work pending */
8041                 if (!eop_desc)
8042                         break;
8043
8044                 /* prevent any other reads prior to eop_desc */
8045                 smp_rmb();
8046
8047                 /* if DD is not set pending work has not been completed */
8048                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8049                         break;
8050
8051                 /* clear next_to_watch to prevent false hangs */
8052                 tx_buffer->next_to_watch = NULL;
8053
8054                 /* update the statistics for this packet */
8055                 total_bytes += tx_buffer->bytecount;
8056                 total_packets += tx_buffer->gso_segs;
8057
8058                 /* free the skb */
8059                 if (tx_buffer->type == IGB_TYPE_SKB)
8060                         napi_consume_skb(tx_buffer->skb, napi_budget);
8061                 else
8062                         xdp_return_frame(tx_buffer->xdpf);
8063
8064                 /* unmap skb header data */
8065                 dma_unmap_single(tx_ring->dev,
8066                                  dma_unmap_addr(tx_buffer, dma),
8067                                  dma_unmap_len(tx_buffer, len),
8068                                  DMA_TO_DEVICE);
8069
8070                 /* clear tx_buffer data */
8071                 dma_unmap_len_set(tx_buffer, len, 0);
8072
8073                 /* clear last DMA location and unmap remaining buffers */
8074                 while (tx_desc != eop_desc) {
8075                         tx_buffer++;
8076                         tx_desc++;
8077                         i++;
8078                         if (unlikely(!i)) {
8079                                 i -= tx_ring->count;
8080                                 tx_buffer = tx_ring->tx_buffer_info;
8081                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
8082                         }
8083
8084                         /* unmap any remaining paged data */
8085                         if (dma_unmap_len(tx_buffer, len)) {
8086                                 dma_unmap_page(tx_ring->dev,
8087                                                dma_unmap_addr(tx_buffer, dma),
8088                                                dma_unmap_len(tx_buffer, len),
8089                                                DMA_TO_DEVICE);
8090                                 dma_unmap_len_set(tx_buffer, len, 0);
8091                         }
8092                 }
8093
8094                 /* move us one more past the eop_desc for start of next pkt */
8095                 tx_buffer++;
8096                 tx_desc++;
8097                 i++;
8098                 if (unlikely(!i)) {
8099                         i -= tx_ring->count;
8100                         tx_buffer = tx_ring->tx_buffer_info;
8101                         tx_desc = IGB_TX_DESC(tx_ring, 0);
8102                 }
8103
8104                 /* issue prefetch for next Tx descriptor */
8105                 prefetch(tx_desc);
8106
8107                 /* update budget accounting */
8108                 budget--;
8109         } while (likely(budget));
8110
8111         netdev_tx_completed_queue(txring_txq(tx_ring),
8112                                   total_packets, total_bytes);
8113         i += tx_ring->count;
8114         tx_ring->next_to_clean = i;
8115         u64_stats_update_begin(&tx_ring->tx_syncp);
8116         tx_ring->tx_stats.bytes += total_bytes;
8117         tx_ring->tx_stats.packets += total_packets;
8118         u64_stats_update_end(&tx_ring->tx_syncp);
8119         q_vector->tx.total_bytes += total_bytes;
8120         q_vector->tx.total_packets += total_packets;
8121
8122         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8123                 struct e1000_hw *hw = &adapter->hw;
8124
8125                 /* Detect a transmit hang in hardware, this serializes the
8126                  * check with the clearing of time_stamp and movement of i
8127                  */
8128                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8129                 if (tx_buffer->next_to_watch &&
8130                     time_after(jiffies, tx_buffer->time_stamp +
8131                                (adapter->tx_timeout_factor * HZ)) &&
8132                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8133
8134                         /* detected Tx unit hang */
8135                         dev_err(tx_ring->dev,
8136                                 "Detected Tx Unit Hang\n"
8137                                 "  Tx Queue             <%d>\n"
8138                                 "  TDH                  <%x>\n"
8139                                 "  TDT                  <%x>\n"
8140                                 "  next_to_use          <%x>\n"
8141                                 "  next_to_clean        <%x>\n"
8142                                 "buffer_info[next_to_clean]\n"
8143                                 "  time_stamp           <%lx>\n"
8144                                 "  next_to_watch        <%p>\n"
8145                                 "  jiffies              <%lx>\n"
8146                                 "  desc.status          <%x>\n",
8147                                 tx_ring->queue_index,
8148                                 rd32(E1000_TDH(tx_ring->reg_idx)),
8149                                 readl(tx_ring->tail),
8150                                 tx_ring->next_to_use,
8151                                 tx_ring->next_to_clean,
8152                                 tx_buffer->time_stamp,
8153                                 tx_buffer->next_to_watch,
8154                                 jiffies,
8155                                 tx_buffer->next_to_watch->wb.status);
8156                         netif_stop_subqueue(tx_ring->netdev,
8157                                             tx_ring->queue_index);
8158
8159                         /* we are about to reset, no point in enabling stuff */
8160                         return true;
8161                 }
8162         }
8163
8164 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8165         if (unlikely(total_packets &&
8166             netif_carrier_ok(tx_ring->netdev) &&
8167             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8168                 /* Make sure that anybody stopping the queue after this
8169                  * sees the new next_to_clean.
8170                  */
8171                 smp_mb();
8172                 if (__netif_subqueue_stopped(tx_ring->netdev,
8173                                              tx_ring->queue_index) &&
8174                     !(test_bit(__IGB_DOWN, &adapter->state))) {
8175                         netif_wake_subqueue(tx_ring->netdev,
8176                                             tx_ring->queue_index);
8177
8178                         u64_stats_update_begin(&tx_ring->tx_syncp);
8179                         tx_ring->tx_stats.restart_queue++;
8180                         u64_stats_update_end(&tx_ring->tx_syncp);
8181                 }
8182         }
8183
8184         return !!budget;
8185 }
8186
8187 /**
8188  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8189  *  @rx_ring: rx descriptor ring to store buffers on
8190  *  @old_buff: donor buffer to have page reused
8191  *
8192  *  Synchronizes page for reuse by the adapter
8193  **/
8194 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8195                               struct igb_rx_buffer *old_buff)
8196 {
8197         struct igb_rx_buffer *new_buff;
8198         u16 nta = rx_ring->next_to_alloc;
8199
8200         new_buff = &rx_ring->rx_buffer_info[nta];
8201
8202         /* update, and store next to alloc */
8203         nta++;
8204         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8205
8206         /* Transfer page from old buffer to new buffer.
8207          * Move each member individually to avoid possible store
8208          * forwarding stalls.
8209          */
8210         new_buff->dma           = old_buff->dma;
8211         new_buff->page          = old_buff->page;
8212         new_buff->page_offset   = old_buff->page_offset;
8213         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
8214 }
8215
8216 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8217                                   int rx_buf_pgcnt)
8218 {
8219         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8220         struct page *page = rx_buffer->page;
8221
8222         /* avoid re-using remote and pfmemalloc pages */
8223         if (!dev_page_is_reusable(page))
8224                 return false;
8225
8226 #if (PAGE_SIZE < 8192)
8227         /* if we are only owner of page we can reuse it */
8228         if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8229                 return false;
8230 #else
8231 #define IGB_LAST_OFFSET \
8232         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8233
8234         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8235                 return false;
8236 #endif
8237
8238         /* If we have drained the page fragment pool we need to update
8239          * the pagecnt_bias and page count so that we fully restock the
8240          * number of references the driver holds.
8241          */
8242         if (unlikely(pagecnt_bias == 1)) {
8243                 page_ref_add(page, USHRT_MAX - 1);
8244                 rx_buffer->pagecnt_bias = USHRT_MAX;
8245         }
8246
8247         return true;
8248 }
8249
8250 /**
8251  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8252  *  @rx_ring: rx descriptor ring to transact packets on
8253  *  @rx_buffer: buffer containing page to add
8254  *  @skb: sk_buff to place the data into
8255  *  @size: size of buffer to be added
8256  *
8257  *  This function will add the data contained in rx_buffer->page to the skb.
8258  **/
8259 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8260                             struct igb_rx_buffer *rx_buffer,
8261                             struct sk_buff *skb,
8262                             unsigned int size)
8263 {
8264 #if (PAGE_SIZE < 8192)
8265         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8266 #else
8267         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8268                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8269                                 SKB_DATA_ALIGN(size);
8270 #endif
8271         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8272                         rx_buffer->page_offset, size, truesize);
8273 #if (PAGE_SIZE < 8192)
8274         rx_buffer->page_offset ^= truesize;
8275 #else
8276         rx_buffer->page_offset += truesize;
8277 #endif
8278 }
8279
8280 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8281                                          struct igb_rx_buffer *rx_buffer,
8282                                          struct xdp_buff *xdp,
8283                                          ktime_t timestamp)
8284 {
8285 #if (PAGE_SIZE < 8192)
8286         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8287 #else
8288         unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8289                                                xdp->data_hard_start);
8290 #endif
8291         unsigned int size = xdp->data_end - xdp->data;
8292         unsigned int headlen;
8293         struct sk_buff *skb;
8294
8295         /* prefetch first cache line of first page */
8296         net_prefetch(xdp->data);
8297
8298         /* allocate a skb to store the frags */
8299         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8300         if (unlikely(!skb))
8301                 return NULL;
8302
8303         if (timestamp)
8304                 skb_hwtstamps(skb)->hwtstamp = timestamp;
8305
8306         /* Determine available headroom for copy */
8307         headlen = size;
8308         if (headlen > IGB_RX_HDR_LEN)
8309                 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8310
8311         /* align pull length to size of long to optimize memcpy performance */
8312         memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8313
8314         /* update all of the pointers */
8315         size -= headlen;
8316         if (size) {
8317                 skb_add_rx_frag(skb, 0, rx_buffer->page,
8318                                 (xdp->data + headlen) - page_address(rx_buffer->page),
8319                                 size, truesize);
8320 #if (PAGE_SIZE < 8192)
8321                 rx_buffer->page_offset ^= truesize;
8322 #else
8323                 rx_buffer->page_offset += truesize;
8324 #endif
8325         } else {
8326                 rx_buffer->pagecnt_bias++;
8327         }
8328
8329         return skb;
8330 }
8331
8332 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8333                                      struct igb_rx_buffer *rx_buffer,
8334                                      struct xdp_buff *xdp,
8335                                      ktime_t timestamp)
8336 {
8337 #if (PAGE_SIZE < 8192)
8338         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8339 #else
8340         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8341                                 SKB_DATA_ALIGN(xdp->data_end -
8342                                                xdp->data_hard_start);
8343 #endif
8344         unsigned int metasize = xdp->data - xdp->data_meta;
8345         struct sk_buff *skb;
8346
8347         /* prefetch first cache line of first page */
8348         net_prefetch(xdp->data_meta);
8349
8350         /* build an skb around the page buffer */
8351         skb = build_skb(xdp->data_hard_start, truesize);
8352         if (unlikely(!skb))
8353                 return NULL;
8354
8355         /* update pointers within the skb to store the data */
8356         skb_reserve(skb, xdp->data - xdp->data_hard_start);
8357         __skb_put(skb, xdp->data_end - xdp->data);
8358
8359         if (metasize)
8360                 skb_metadata_set(skb, metasize);
8361
8362         if (timestamp)
8363                 skb_hwtstamps(skb)->hwtstamp = timestamp;
8364
8365         /* update buffer offset */
8366 #if (PAGE_SIZE < 8192)
8367         rx_buffer->page_offset ^= truesize;
8368 #else
8369         rx_buffer->page_offset += truesize;
8370 #endif
8371
8372         return skb;
8373 }
8374
8375 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8376                                    struct igb_ring *rx_ring,
8377                                    struct xdp_buff *xdp)
8378 {
8379         int err, result = IGB_XDP_PASS;
8380         struct bpf_prog *xdp_prog;
8381         u32 act;
8382
8383         rcu_read_lock();
8384         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8385
8386         if (!xdp_prog)
8387                 goto xdp_out;
8388
8389         prefetchw(xdp->data_hard_start); /* xdp_frame write */
8390
8391         act = bpf_prog_run_xdp(xdp_prog, xdp);
8392         switch (act) {
8393         case XDP_PASS:
8394                 break;
8395         case XDP_TX:
8396                 result = igb_xdp_xmit_back(adapter, xdp);
8397                 if (result == IGB_XDP_CONSUMED)
8398                         goto out_failure;
8399                 break;
8400         case XDP_REDIRECT:
8401                 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8402                 if (err)
8403                         goto out_failure;
8404                 result = IGB_XDP_REDIR;
8405                 break;
8406         default:
8407                 bpf_warn_invalid_xdp_action(act);
8408                 fallthrough;
8409         case XDP_ABORTED:
8410 out_failure:
8411                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8412                 fallthrough;
8413         case XDP_DROP:
8414                 result = IGB_XDP_CONSUMED;
8415                 break;
8416         }
8417 xdp_out:
8418         rcu_read_unlock();
8419         return ERR_PTR(-result);
8420 }
8421
8422 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8423                                           unsigned int size)
8424 {
8425         unsigned int truesize;
8426
8427 #if (PAGE_SIZE < 8192)
8428         truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8429 #else
8430         truesize = ring_uses_build_skb(rx_ring) ?
8431                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8432                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8433                 SKB_DATA_ALIGN(size);
8434 #endif
8435         return truesize;
8436 }
8437
8438 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8439                                struct igb_rx_buffer *rx_buffer,
8440                                unsigned int size)
8441 {
8442         unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8443 #if (PAGE_SIZE < 8192)
8444         rx_buffer->page_offset ^= truesize;
8445 #else
8446         rx_buffer->page_offset += truesize;
8447 #endif
8448 }
8449
8450 static inline void igb_rx_checksum(struct igb_ring *ring,
8451                                    union e1000_adv_rx_desc *rx_desc,
8452                                    struct sk_buff *skb)
8453 {
8454         skb_checksum_none_assert(skb);
8455
8456         /* Ignore Checksum bit is set */
8457         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8458                 return;
8459
8460         /* Rx checksum disabled via ethtool */
8461         if (!(ring->netdev->features & NETIF_F_RXCSUM))
8462                 return;
8463
8464         /* TCP/UDP checksum error bit is set */
8465         if (igb_test_staterr(rx_desc,
8466                              E1000_RXDEXT_STATERR_TCPE |
8467                              E1000_RXDEXT_STATERR_IPE)) {
8468                 /* work around errata with sctp packets where the TCPE aka
8469                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8470                  * packets, (aka let the stack check the crc32c)
8471                  */
8472                 if (!((skb->len == 60) &&
8473                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8474                         u64_stats_update_begin(&ring->rx_syncp);
8475                         ring->rx_stats.csum_err++;
8476                         u64_stats_update_end(&ring->rx_syncp);
8477                 }
8478                 /* let the stack verify checksum errors */
8479                 return;
8480         }
8481         /* It must be a TCP or UDP packet with a valid checksum */
8482         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8483                                       E1000_RXD_STAT_UDPCS))
8484                 skb->ip_summed = CHECKSUM_UNNECESSARY;
8485
8486         dev_dbg(ring->dev, "cksum success: bits %08X\n",
8487                 le32_to_cpu(rx_desc->wb.upper.status_error));
8488 }
8489
8490 static inline void igb_rx_hash(struct igb_ring *ring,
8491                                union e1000_adv_rx_desc *rx_desc,
8492                                struct sk_buff *skb)
8493 {
8494         if (ring->netdev->features & NETIF_F_RXHASH)
8495                 skb_set_hash(skb,
8496                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8497                              PKT_HASH_TYPE_L3);
8498 }
8499
8500 /**
8501  *  igb_is_non_eop - process handling of non-EOP buffers
8502  *  @rx_ring: Rx ring being processed
8503  *  @rx_desc: Rx descriptor for current buffer
8504  *
8505  *  This function updates next to clean.  If the buffer is an EOP buffer
8506  *  this function exits returning false, otherwise it will place the
8507  *  sk_buff in the next buffer to be chained and return true indicating
8508  *  that this is in fact a non-EOP buffer.
8509  **/
8510 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8511                            union e1000_adv_rx_desc *rx_desc)
8512 {
8513         u32 ntc = rx_ring->next_to_clean + 1;
8514
8515         /* fetch, update, and store next to clean */
8516         ntc = (ntc < rx_ring->count) ? ntc : 0;
8517         rx_ring->next_to_clean = ntc;
8518
8519         prefetch(IGB_RX_DESC(rx_ring, ntc));
8520
8521         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8522                 return false;
8523
8524         return true;
8525 }
8526
8527 /**
8528  *  igb_cleanup_headers - Correct corrupted or empty headers
8529  *  @rx_ring: rx descriptor ring packet is being transacted on
8530  *  @rx_desc: pointer to the EOP Rx descriptor
8531  *  @skb: pointer to current skb being fixed
8532  *
8533  *  Address the case where we are pulling data in on pages only
8534  *  and as such no data is present in the skb header.
8535  *
8536  *  In addition if skb is not at least 60 bytes we need to pad it so that
8537  *  it is large enough to qualify as a valid Ethernet frame.
8538  *
8539  *  Returns true if an error was encountered and skb was freed.
8540  **/
8541 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8542                                 union e1000_adv_rx_desc *rx_desc,
8543                                 struct sk_buff *skb)
8544 {
8545         /* XDP packets use error pointer so abort at this point */
8546         if (IS_ERR(skb))
8547                 return true;
8548
8549         if (unlikely((igb_test_staterr(rx_desc,
8550                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8551                 struct net_device *netdev = rx_ring->netdev;
8552                 if (!(netdev->features & NETIF_F_RXALL)) {
8553                         dev_kfree_skb_any(skb);
8554                         return true;
8555                 }
8556         }
8557
8558         /* if eth_skb_pad returns an error the skb was freed */
8559         if (eth_skb_pad(skb))
8560                 return true;
8561
8562         return false;
8563 }
8564
8565 /**
8566  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8567  *  @rx_ring: rx descriptor ring packet is being transacted on
8568  *  @rx_desc: pointer to the EOP Rx descriptor
8569  *  @skb: pointer to current skb being populated
8570  *
8571  *  This function checks the ring, descriptor, and packet information in
8572  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8573  *  other fields within the skb.
8574  **/
8575 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8576                                    union e1000_adv_rx_desc *rx_desc,
8577                                    struct sk_buff *skb)
8578 {
8579         struct net_device *dev = rx_ring->netdev;
8580
8581         igb_rx_hash(rx_ring, rx_desc, skb);
8582
8583         igb_rx_checksum(rx_ring, rx_desc, skb);
8584
8585         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8586             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8587                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8588
8589         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8590             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8591                 u16 vid;
8592
8593                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8594                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8595                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8596                 else
8597                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8598
8599                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8600         }
8601
8602         skb_record_rx_queue(skb, rx_ring->queue_index);
8603
8604         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8605 }
8606
8607 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8608 {
8609         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8610 }
8611
8612 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8613                                                const unsigned int size, int *rx_buf_pgcnt)
8614 {
8615         struct igb_rx_buffer *rx_buffer;
8616
8617         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8618         *rx_buf_pgcnt =
8619 #if (PAGE_SIZE < 8192)
8620                 page_count(rx_buffer->page);
8621 #else
8622                 0;
8623 #endif
8624         prefetchw(rx_buffer->page);
8625
8626         /* we are reusing so sync this buffer for CPU use */
8627         dma_sync_single_range_for_cpu(rx_ring->dev,
8628                                       rx_buffer->dma,
8629                                       rx_buffer->page_offset,
8630                                       size,
8631                                       DMA_FROM_DEVICE);
8632
8633         rx_buffer->pagecnt_bias--;
8634
8635         return rx_buffer;
8636 }
8637
8638 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8639                               struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8640 {
8641         if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8642                 /* hand second half of page back to the ring */
8643                 igb_reuse_rx_page(rx_ring, rx_buffer);
8644         } else {
8645                 /* We are not reusing the buffer so unmap it and free
8646                  * any references we are holding to it
8647                  */
8648                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8649                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8650                                      IGB_RX_DMA_ATTR);
8651                 __page_frag_cache_drain(rx_buffer->page,
8652                                         rx_buffer->pagecnt_bias);
8653         }
8654
8655         /* clear contents of rx_buffer */
8656         rx_buffer->page = NULL;
8657 }
8658
8659 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8660 {
8661         struct igb_adapter *adapter = q_vector->adapter;
8662         struct igb_ring *rx_ring = q_vector->rx.ring;
8663         struct sk_buff *skb = rx_ring->skb;
8664         unsigned int total_bytes = 0, total_packets = 0;
8665         u16 cleaned_count = igb_desc_unused(rx_ring);
8666         unsigned int xdp_xmit = 0;
8667         struct xdp_buff xdp;
8668         u32 frame_sz = 0;
8669         int rx_buf_pgcnt;
8670
8671         /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8672 #if (PAGE_SIZE < 8192)
8673         frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8674 #endif
8675         xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8676
8677         while (likely(total_packets < budget)) {
8678                 union e1000_adv_rx_desc *rx_desc;
8679                 struct igb_rx_buffer *rx_buffer;
8680                 ktime_t timestamp = 0;
8681                 int pkt_offset = 0;
8682                 unsigned int size;
8683                 void *pktbuf;
8684
8685                 /* return some buffers to hardware, one at a time is too slow */
8686                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8687                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
8688                         cleaned_count = 0;
8689                 }
8690
8691                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8692                 size = le16_to_cpu(rx_desc->wb.upper.length);
8693                 if (!size)
8694                         break;
8695
8696                 /* This memory barrier is needed to keep us from reading
8697                  * any other fields out of the rx_desc until we know the
8698                  * descriptor has been written back
8699                  */
8700                 dma_rmb();
8701
8702                 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8703                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8704
8705                 /* pull rx packet timestamp if available and valid */
8706                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8707                         int ts_hdr_len;
8708
8709                         ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8710                                                          pktbuf, &timestamp);
8711
8712                         pkt_offset += ts_hdr_len;
8713                         size -= ts_hdr_len;
8714                 }
8715
8716                 /* retrieve a buffer from the ring */
8717                 if (!skb) {
8718                         unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8719                         unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8720
8721                         xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8722 #if (PAGE_SIZE > 4096)
8723                         /* At larger PAGE_SIZE, frame_sz depend on len size */
8724                         xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8725 #endif
8726                         skb = igb_run_xdp(adapter, rx_ring, &xdp);
8727                 }
8728
8729                 if (IS_ERR(skb)) {
8730                         unsigned int xdp_res = -PTR_ERR(skb);
8731
8732                         if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8733                                 xdp_xmit |= xdp_res;
8734                                 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8735                         } else {
8736                                 rx_buffer->pagecnt_bias++;
8737                         }
8738                         total_packets++;
8739                         total_bytes += size;
8740                 } else if (skb)
8741                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8742                 else if (ring_uses_build_skb(rx_ring))
8743                         skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8744                                             timestamp);
8745                 else
8746                         skb = igb_construct_skb(rx_ring, rx_buffer,
8747                                                 &xdp, timestamp);
8748
8749                 /* exit if we failed to retrieve a buffer */
8750                 if (!skb) {
8751                         rx_ring->rx_stats.alloc_failed++;
8752                         rx_buffer->pagecnt_bias++;
8753                         break;
8754                 }
8755
8756                 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8757                 cleaned_count++;
8758
8759                 /* fetch next buffer in frame if non-eop */
8760                 if (igb_is_non_eop(rx_ring, rx_desc))
8761                         continue;
8762
8763                 /* verify the packet layout is correct */
8764                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8765                         skb = NULL;
8766                         continue;
8767                 }
8768
8769                 /* probably a little skewed due to removing CRC */
8770                 total_bytes += skb->len;
8771
8772                 /* populate checksum, timestamp, VLAN, and protocol */
8773                 igb_process_skb_fields(rx_ring, rx_desc, skb);
8774
8775                 napi_gro_receive(&q_vector->napi, skb);
8776
8777                 /* reset skb pointer */
8778                 skb = NULL;
8779
8780                 /* update budget accounting */
8781                 total_packets++;
8782         }
8783
8784         /* place incomplete frames back on ring for completion */
8785         rx_ring->skb = skb;
8786
8787         if (xdp_xmit & IGB_XDP_REDIR)
8788                 xdp_do_flush();
8789
8790         if (xdp_xmit & IGB_XDP_TX) {
8791                 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8792
8793                 igb_xdp_ring_update_tail(tx_ring);
8794         }
8795
8796         u64_stats_update_begin(&rx_ring->rx_syncp);
8797         rx_ring->rx_stats.packets += total_packets;
8798         rx_ring->rx_stats.bytes += total_bytes;
8799         u64_stats_update_end(&rx_ring->rx_syncp);
8800         q_vector->rx.total_packets += total_packets;
8801         q_vector->rx.total_bytes += total_bytes;
8802
8803         if (cleaned_count)
8804                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8805
8806         return total_packets;
8807 }
8808
8809 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8810                                   struct igb_rx_buffer *bi)
8811 {
8812         struct page *page = bi->page;
8813         dma_addr_t dma;
8814
8815         /* since we are recycling buffers we should seldom need to alloc */
8816         if (likely(page))
8817                 return true;
8818
8819         /* alloc new page for storage */
8820         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8821         if (unlikely(!page)) {
8822                 rx_ring->rx_stats.alloc_failed++;
8823                 return false;
8824         }
8825
8826         /* map page for use */
8827         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8828                                  igb_rx_pg_size(rx_ring),
8829                                  DMA_FROM_DEVICE,
8830                                  IGB_RX_DMA_ATTR);
8831
8832         /* if mapping failed free memory back to system since
8833          * there isn't much point in holding memory we can't use
8834          */
8835         if (dma_mapping_error(rx_ring->dev, dma)) {
8836                 __free_pages(page, igb_rx_pg_order(rx_ring));
8837
8838                 rx_ring->rx_stats.alloc_failed++;
8839                 return false;
8840         }
8841
8842         bi->dma = dma;
8843         bi->page = page;
8844         bi->page_offset = igb_rx_offset(rx_ring);
8845         page_ref_add(page, USHRT_MAX - 1);
8846         bi->pagecnt_bias = USHRT_MAX;
8847
8848         return true;
8849 }
8850
8851 /**
8852  *  igb_alloc_rx_buffers - Replace used receive buffers
8853  *  @rx_ring: rx descriptor ring to allocate new receive buffers
8854  *  @cleaned_count: count of buffers to allocate
8855  **/
8856 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8857 {
8858         union e1000_adv_rx_desc *rx_desc;
8859         struct igb_rx_buffer *bi;
8860         u16 i = rx_ring->next_to_use;
8861         u16 bufsz;
8862
8863         /* nothing to do */
8864         if (!cleaned_count)
8865                 return;
8866
8867         rx_desc = IGB_RX_DESC(rx_ring, i);
8868         bi = &rx_ring->rx_buffer_info[i];
8869         i -= rx_ring->count;
8870
8871         bufsz = igb_rx_bufsz(rx_ring);
8872
8873         do {
8874                 if (!igb_alloc_mapped_page(rx_ring, bi))
8875                         break;
8876
8877                 /* sync the buffer for use by the device */
8878                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8879                                                  bi->page_offset, bufsz,
8880                                                  DMA_FROM_DEVICE);
8881
8882                 /* Refresh the desc even if buffer_addrs didn't change
8883                  * because each write-back erases this info.
8884                  */
8885                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8886
8887                 rx_desc++;
8888                 bi++;
8889                 i++;
8890                 if (unlikely(!i)) {
8891                         rx_desc = IGB_RX_DESC(rx_ring, 0);
8892                         bi = rx_ring->rx_buffer_info;
8893                         i -= rx_ring->count;
8894                 }
8895
8896                 /* clear the length for the next_to_use descriptor */
8897                 rx_desc->wb.upper.length = 0;
8898
8899                 cleaned_count--;
8900         } while (cleaned_count);
8901
8902         i += rx_ring->count;
8903
8904         if (rx_ring->next_to_use != i) {
8905                 /* record the next descriptor to use */
8906                 rx_ring->next_to_use = i;
8907
8908                 /* update next to alloc since we have filled the ring */
8909                 rx_ring->next_to_alloc = i;
8910
8911                 /* Force memory writes to complete before letting h/w
8912                  * know there are new descriptors to fetch.  (Only
8913                  * applicable for weak-ordered memory model archs,
8914                  * such as IA-64).
8915                  */
8916                 dma_wmb();
8917                 writel(i, rx_ring->tail);
8918         }
8919 }
8920
8921 /**
8922  * igb_mii_ioctl -
8923  * @netdev: pointer to netdev struct
8924  * @ifr: interface structure
8925  * @cmd: ioctl command to execute
8926  **/
8927 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8928 {
8929         struct igb_adapter *adapter = netdev_priv(netdev);
8930         struct mii_ioctl_data *data = if_mii(ifr);
8931
8932         if (adapter->hw.phy.media_type != e1000_media_type_copper)
8933                 return -EOPNOTSUPP;
8934
8935         switch (cmd) {
8936         case SIOCGMIIPHY:
8937                 data->phy_id = adapter->hw.phy.addr;
8938                 break;
8939         case SIOCGMIIREG:
8940                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8941                                      &data->val_out))
8942                         return -EIO;
8943                 break;
8944         case SIOCSMIIREG:
8945         default:
8946                 return -EOPNOTSUPP;
8947         }
8948         return 0;
8949 }
8950
8951 /**
8952  * igb_ioctl -
8953  * @netdev: pointer to netdev struct
8954  * @ifr: interface structure
8955  * @cmd: ioctl command to execute
8956  **/
8957 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8958 {
8959         switch (cmd) {
8960         case SIOCGMIIPHY:
8961         case SIOCGMIIREG:
8962         case SIOCSMIIREG:
8963                 return igb_mii_ioctl(netdev, ifr, cmd);
8964         case SIOCGHWTSTAMP:
8965                 return igb_ptp_get_ts_config(netdev, ifr);
8966         case SIOCSHWTSTAMP:
8967                 return igb_ptp_set_ts_config(netdev, ifr);
8968         default:
8969                 return -EOPNOTSUPP;
8970         }
8971 }
8972
8973 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8974 {
8975         struct igb_adapter *adapter = hw->back;
8976
8977         pci_read_config_word(adapter->pdev, reg, value);
8978 }
8979
8980 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8981 {
8982         struct igb_adapter *adapter = hw->back;
8983
8984         pci_write_config_word(adapter->pdev, reg, *value);
8985 }
8986
8987 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8988 {
8989         struct igb_adapter *adapter = hw->back;
8990
8991         if (pcie_capability_read_word(adapter->pdev, reg, value))
8992                 return -E1000_ERR_CONFIG;
8993
8994         return 0;
8995 }
8996
8997 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8998 {
8999         struct igb_adapter *adapter = hw->back;
9000
9001         if (pcie_capability_write_word(adapter->pdev, reg, *value))
9002                 return -E1000_ERR_CONFIG;
9003
9004         return 0;
9005 }
9006
9007 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9008 {
9009         struct igb_adapter *adapter = netdev_priv(netdev);
9010         struct e1000_hw *hw = &adapter->hw;
9011         u32 ctrl, rctl;
9012         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9013
9014         if (enable) {
9015                 /* enable VLAN tag insert/strip */
9016                 ctrl = rd32(E1000_CTRL);
9017                 ctrl |= E1000_CTRL_VME;
9018                 wr32(E1000_CTRL, ctrl);
9019
9020                 /* Disable CFI check */
9021                 rctl = rd32(E1000_RCTL);
9022                 rctl &= ~E1000_RCTL_CFIEN;
9023                 wr32(E1000_RCTL, rctl);
9024         } else {
9025                 /* disable VLAN tag insert/strip */
9026                 ctrl = rd32(E1000_CTRL);
9027                 ctrl &= ~E1000_CTRL_VME;
9028                 wr32(E1000_CTRL, ctrl);
9029         }
9030
9031         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9032 }
9033
9034 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9035                                __be16 proto, u16 vid)
9036 {
9037         struct igb_adapter *adapter = netdev_priv(netdev);
9038         struct e1000_hw *hw = &adapter->hw;
9039         int pf_id = adapter->vfs_allocated_count;
9040
9041         /* add the filter since PF can receive vlans w/o entry in vlvf */
9042         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9043                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9044
9045         set_bit(vid, adapter->active_vlans);
9046
9047         return 0;
9048 }
9049
9050 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9051                                 __be16 proto, u16 vid)
9052 {
9053         struct igb_adapter *adapter = netdev_priv(netdev);
9054         int pf_id = adapter->vfs_allocated_count;
9055         struct e1000_hw *hw = &adapter->hw;
9056
9057         /* remove VID from filter table */
9058         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9059                 igb_vfta_set(hw, vid, pf_id, false, true);
9060
9061         clear_bit(vid, adapter->active_vlans);
9062
9063         return 0;
9064 }
9065
9066 static void igb_restore_vlan(struct igb_adapter *adapter)
9067 {
9068         u16 vid = 1;
9069
9070         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9071         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9072
9073         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9074                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9075 }
9076
9077 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9078 {
9079         struct pci_dev *pdev = adapter->pdev;
9080         struct e1000_mac_info *mac = &adapter->hw.mac;
9081
9082         mac->autoneg = 0;
9083
9084         /* Make sure dplx is at most 1 bit and lsb of speed is not set
9085          * for the switch() below to work
9086          */
9087         if ((spd & 1) || (dplx & ~1))
9088                 goto err_inval;
9089
9090         /* Fiber NIC's only allow 1000 gbps Full duplex
9091          * and 100Mbps Full duplex for 100baseFx sfp
9092          */
9093         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9094                 switch (spd + dplx) {
9095                 case SPEED_10 + DUPLEX_HALF:
9096                 case SPEED_10 + DUPLEX_FULL:
9097                 case SPEED_100 + DUPLEX_HALF:
9098                         goto err_inval;
9099                 default:
9100                         break;
9101                 }
9102         }
9103
9104         switch (spd + dplx) {
9105         case SPEED_10 + DUPLEX_HALF:
9106                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9107                 break;
9108         case SPEED_10 + DUPLEX_FULL:
9109                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9110                 break;
9111         case SPEED_100 + DUPLEX_HALF:
9112                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9113                 break;
9114         case SPEED_100 + DUPLEX_FULL:
9115                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9116                 break;
9117         case SPEED_1000 + DUPLEX_FULL:
9118                 mac->autoneg = 1;
9119                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9120                 break;
9121         case SPEED_1000 + DUPLEX_HALF: /* not supported */
9122         default:
9123                 goto err_inval;
9124         }
9125
9126         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9127         adapter->hw.phy.mdix = AUTO_ALL_MODES;
9128
9129         return 0;
9130
9131 err_inval:
9132         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9133         return -EINVAL;
9134 }
9135
9136 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9137                           bool runtime)
9138 {
9139         struct net_device *netdev = pci_get_drvdata(pdev);
9140         struct igb_adapter *adapter = netdev_priv(netdev);
9141         struct e1000_hw *hw = &adapter->hw;
9142         u32 ctrl, rctl, status;
9143         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9144         bool wake;
9145
9146         rtnl_lock();
9147         netif_device_detach(netdev);
9148
9149         if (netif_running(netdev))
9150                 __igb_close(netdev, true);
9151
9152         igb_ptp_suspend(adapter);
9153
9154         igb_clear_interrupt_scheme(adapter);
9155         rtnl_unlock();
9156
9157         status = rd32(E1000_STATUS);
9158         if (status & E1000_STATUS_LU)
9159                 wufc &= ~E1000_WUFC_LNKC;
9160
9161         if (wufc) {
9162                 igb_setup_rctl(adapter);
9163                 igb_set_rx_mode(netdev);
9164
9165                 /* turn on all-multi mode if wake on multicast is enabled */
9166                 if (wufc & E1000_WUFC_MC) {
9167                         rctl = rd32(E1000_RCTL);
9168                         rctl |= E1000_RCTL_MPE;
9169                         wr32(E1000_RCTL, rctl);
9170                 }
9171
9172                 ctrl = rd32(E1000_CTRL);
9173                 ctrl |= E1000_CTRL_ADVD3WUC;
9174                 wr32(E1000_CTRL, ctrl);
9175
9176                 /* Allow time for pending master requests to run */
9177                 igb_disable_pcie_master(hw);
9178
9179                 wr32(E1000_WUC, E1000_WUC_PME_EN);
9180                 wr32(E1000_WUFC, wufc);
9181         } else {
9182                 wr32(E1000_WUC, 0);
9183                 wr32(E1000_WUFC, 0);
9184         }
9185
9186         wake = wufc || adapter->en_mng_pt;
9187         if (!wake)
9188                 igb_power_down_link(adapter);
9189         else
9190                 igb_power_up_link(adapter);
9191
9192         if (enable_wake)
9193                 *enable_wake = wake;
9194
9195         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
9196          * would have already happened in close and is redundant.
9197          */
9198         igb_release_hw_control(adapter);
9199
9200         pci_disable_device(pdev);
9201
9202         return 0;
9203 }
9204
9205 static void igb_deliver_wake_packet(struct net_device *netdev)
9206 {
9207         struct igb_adapter *adapter = netdev_priv(netdev);
9208         struct e1000_hw *hw = &adapter->hw;
9209         struct sk_buff *skb;
9210         u32 wupl;
9211
9212         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9213
9214         /* WUPM stores only the first 128 bytes of the wake packet.
9215          * Read the packet only if we have the whole thing.
9216          */
9217         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9218                 return;
9219
9220         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9221         if (!skb)
9222                 return;
9223
9224         skb_put(skb, wupl);
9225
9226         /* Ensure reads are 32-bit aligned */
9227         wupl = roundup(wupl, 4);
9228
9229         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9230
9231         skb->protocol = eth_type_trans(skb, netdev);
9232         netif_rx(skb);
9233 }
9234
9235 static int __maybe_unused igb_suspend(struct device *dev)
9236 {
9237         return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9238 }
9239
9240 static int __maybe_unused igb_resume(struct device *dev)
9241 {
9242         struct pci_dev *pdev = to_pci_dev(dev);
9243         struct net_device *netdev = pci_get_drvdata(pdev);
9244         struct igb_adapter *adapter = netdev_priv(netdev);
9245         struct e1000_hw *hw = &adapter->hw;
9246         u32 err, val;
9247
9248         pci_set_power_state(pdev, PCI_D0);
9249         pci_restore_state(pdev);
9250         pci_save_state(pdev);
9251
9252         if (!pci_device_is_present(pdev))
9253                 return -ENODEV;
9254         err = pci_enable_device_mem(pdev);
9255         if (err) {
9256                 dev_err(&pdev->dev,
9257                         "igb: Cannot enable PCI device from suspend\n");
9258                 return err;
9259         }
9260         pci_set_master(pdev);
9261
9262         pci_enable_wake(pdev, PCI_D3hot, 0);
9263         pci_enable_wake(pdev, PCI_D3cold, 0);
9264
9265         if (igb_init_interrupt_scheme(adapter, true)) {
9266                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9267                 return -ENOMEM;
9268         }
9269
9270         igb_reset(adapter);
9271
9272         /* let the f/w know that the h/w is now under the control of the
9273          * driver.
9274          */
9275         igb_get_hw_control(adapter);
9276
9277         val = rd32(E1000_WUS);
9278         if (val & WAKE_PKT_WUS)
9279                 igb_deliver_wake_packet(netdev);
9280
9281         wr32(E1000_WUS, ~0);
9282
9283         rtnl_lock();
9284         if (!err && netif_running(netdev))
9285                 err = __igb_open(netdev, true);
9286
9287         if (!err)
9288                 netif_device_attach(netdev);
9289         rtnl_unlock();
9290
9291         return err;
9292 }
9293
9294 static int __maybe_unused igb_runtime_idle(struct device *dev)
9295 {
9296         struct net_device *netdev = dev_get_drvdata(dev);
9297         struct igb_adapter *adapter = netdev_priv(netdev);
9298
9299         if (!igb_has_link(adapter))
9300                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9301
9302         return -EBUSY;
9303 }
9304
9305 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9306 {
9307         return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9308 }
9309
9310 static int __maybe_unused igb_runtime_resume(struct device *dev)
9311 {
9312         return igb_resume(dev);
9313 }
9314
9315 static void igb_shutdown(struct pci_dev *pdev)
9316 {
9317         bool wake;
9318
9319         __igb_shutdown(pdev, &wake, 0);
9320
9321         if (system_state == SYSTEM_POWER_OFF) {
9322                 pci_wake_from_d3(pdev, wake);
9323                 pci_set_power_state(pdev, PCI_D3hot);
9324         }
9325 }
9326
9327 #ifdef CONFIG_PCI_IOV
9328 static int igb_sriov_reinit(struct pci_dev *dev)
9329 {
9330         struct net_device *netdev = pci_get_drvdata(dev);
9331         struct igb_adapter *adapter = netdev_priv(netdev);
9332         struct pci_dev *pdev = adapter->pdev;
9333
9334         rtnl_lock();
9335
9336         if (netif_running(netdev))
9337                 igb_close(netdev);
9338         else
9339                 igb_reset(adapter);
9340
9341         igb_clear_interrupt_scheme(adapter);
9342
9343         igb_init_queue_configuration(adapter);
9344
9345         if (igb_init_interrupt_scheme(adapter, true)) {
9346                 rtnl_unlock();
9347                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9348                 return -ENOMEM;
9349         }
9350
9351         if (netif_running(netdev))
9352                 igb_open(netdev);
9353
9354         rtnl_unlock();
9355
9356         return 0;
9357 }
9358
9359 static int igb_pci_disable_sriov(struct pci_dev *dev)
9360 {
9361         int err = igb_disable_sriov(dev);
9362
9363         if (!err)
9364                 err = igb_sriov_reinit(dev);
9365
9366         return err;
9367 }
9368
9369 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9370 {
9371         int err = igb_enable_sriov(dev, num_vfs);
9372
9373         if (err)
9374                 goto out;
9375
9376         err = igb_sriov_reinit(dev);
9377         if (!err)
9378                 return num_vfs;
9379
9380 out:
9381         return err;
9382 }
9383
9384 #endif
9385 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9386 {
9387 #ifdef CONFIG_PCI_IOV
9388         if (num_vfs == 0)
9389                 return igb_pci_disable_sriov(dev);
9390         else
9391                 return igb_pci_enable_sriov(dev, num_vfs);
9392 #endif
9393         return 0;
9394 }
9395
9396 /**
9397  *  igb_io_error_detected - called when PCI error is detected
9398  *  @pdev: Pointer to PCI device
9399  *  @state: The current pci connection state
9400  *
9401  *  This function is called after a PCI bus error affecting
9402  *  this device has been detected.
9403  **/
9404 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9405                                               pci_channel_state_t state)
9406 {
9407         struct net_device *netdev = pci_get_drvdata(pdev);
9408         struct igb_adapter *adapter = netdev_priv(netdev);
9409
9410         netif_device_detach(netdev);
9411
9412         if (state == pci_channel_io_perm_failure)
9413                 return PCI_ERS_RESULT_DISCONNECT;
9414
9415         if (netif_running(netdev))
9416                 igb_down(adapter);
9417         pci_disable_device(pdev);
9418
9419         /* Request a slot slot reset. */
9420         return PCI_ERS_RESULT_NEED_RESET;
9421 }
9422
9423 /**
9424  *  igb_io_slot_reset - called after the pci bus has been reset.
9425  *  @pdev: Pointer to PCI device
9426  *
9427  *  Restart the card from scratch, as if from a cold-boot. Implementation
9428  *  resembles the first-half of the igb_resume routine.
9429  **/
9430 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9431 {
9432         struct net_device *netdev = pci_get_drvdata(pdev);
9433         struct igb_adapter *adapter = netdev_priv(netdev);
9434         struct e1000_hw *hw = &adapter->hw;
9435         pci_ers_result_t result;
9436
9437         if (pci_enable_device_mem(pdev)) {
9438                 dev_err(&pdev->dev,
9439                         "Cannot re-enable PCI device after reset.\n");
9440                 result = PCI_ERS_RESULT_DISCONNECT;
9441         } else {
9442                 pci_set_master(pdev);
9443                 pci_restore_state(pdev);
9444                 pci_save_state(pdev);
9445
9446                 pci_enable_wake(pdev, PCI_D3hot, 0);
9447                 pci_enable_wake(pdev, PCI_D3cold, 0);
9448
9449                 /* In case of PCI error, adapter lose its HW address
9450                  * so we should re-assign it here.
9451                  */
9452                 hw->hw_addr = adapter->io_addr;
9453
9454                 igb_reset(adapter);
9455                 wr32(E1000_WUS, ~0);
9456                 result = PCI_ERS_RESULT_RECOVERED;
9457         }
9458
9459         return result;
9460 }
9461
9462 /**
9463  *  igb_io_resume - called when traffic can start flowing again.
9464  *  @pdev: Pointer to PCI device
9465  *
9466  *  This callback is called when the error recovery driver tells us that
9467  *  its OK to resume normal operation. Implementation resembles the
9468  *  second-half of the igb_resume routine.
9469  */
9470 static void igb_io_resume(struct pci_dev *pdev)
9471 {
9472         struct net_device *netdev = pci_get_drvdata(pdev);
9473         struct igb_adapter *adapter = netdev_priv(netdev);
9474
9475         if (netif_running(netdev)) {
9476                 if (igb_up(adapter)) {
9477                         dev_err(&pdev->dev, "igb_up failed after reset\n");
9478                         return;
9479                 }
9480         }
9481
9482         netif_device_attach(netdev);
9483
9484         /* let the f/w know that the h/w is now under the control of the
9485          * driver.
9486          */
9487         igb_get_hw_control(adapter);
9488 }
9489
9490 /**
9491  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9492  *  @adapter: Pointer to adapter structure
9493  *  @index: Index of the RAR entry which need to be synced with MAC table
9494  **/
9495 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9496 {
9497         struct e1000_hw *hw = &adapter->hw;
9498         u32 rar_low, rar_high;
9499         u8 *addr = adapter->mac_table[index].addr;
9500
9501         /* HW expects these to be in network order when they are plugged
9502          * into the registers which are little endian.  In order to guarantee
9503          * that ordering we need to do an leXX_to_cpup here in order to be
9504          * ready for the byteswap that occurs with writel
9505          */
9506         rar_low = le32_to_cpup((__le32 *)(addr));
9507         rar_high = le16_to_cpup((__le16 *)(addr + 4));
9508
9509         /* Indicate to hardware the Address is Valid. */
9510         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9511                 if (is_valid_ether_addr(addr))
9512                         rar_high |= E1000_RAH_AV;
9513
9514                 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9515                         rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9516
9517                 switch (hw->mac.type) {
9518                 case e1000_82575:
9519                 case e1000_i210:
9520                         if (adapter->mac_table[index].state &
9521                             IGB_MAC_STATE_QUEUE_STEERING)
9522                                 rar_high |= E1000_RAH_QSEL_ENABLE;
9523
9524                         rar_high |= E1000_RAH_POOL_1 *
9525                                     adapter->mac_table[index].queue;
9526                         break;
9527                 default:
9528                         rar_high |= E1000_RAH_POOL_1 <<
9529                                     adapter->mac_table[index].queue;
9530                         break;
9531                 }
9532         }
9533
9534         wr32(E1000_RAL(index), rar_low);
9535         wrfl();
9536         wr32(E1000_RAH(index), rar_high);
9537         wrfl();
9538 }
9539
9540 static int igb_set_vf_mac(struct igb_adapter *adapter,
9541                           int vf, unsigned char *mac_addr)
9542 {
9543         struct e1000_hw *hw = &adapter->hw;
9544         /* VF MAC addresses start at end of receive addresses and moves
9545          * towards the first, as a result a collision should not be possible
9546          */
9547         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9548         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9549
9550         ether_addr_copy(vf_mac_addr, mac_addr);
9551         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9552         adapter->mac_table[rar_entry].queue = vf;
9553         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9554         igb_rar_set_index(adapter, rar_entry);
9555
9556         return 0;
9557 }
9558
9559 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9560 {
9561         struct igb_adapter *adapter = netdev_priv(netdev);
9562
9563         if (vf >= adapter->vfs_allocated_count)
9564                 return -EINVAL;
9565
9566         /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9567          * flag and allows to overwrite the MAC via VF netdev.  This
9568          * is necessary to allow libvirt a way to restore the original
9569          * MAC after unbinding vfio-pci and reloading igbvf after shutting
9570          * down a VM.
9571          */
9572         if (is_zero_ether_addr(mac)) {
9573                 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9574                 dev_info(&adapter->pdev->dev,
9575                          "remove administratively set MAC on VF %d\n",
9576                          vf);
9577         } else if (is_valid_ether_addr(mac)) {
9578                 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9579                 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9580                          mac, vf);
9581                 dev_info(&adapter->pdev->dev,
9582                          "Reload the VF driver to make this change effective.");
9583                 /* Generate additional warning if PF is down */
9584                 if (test_bit(__IGB_DOWN, &adapter->state)) {
9585                         dev_warn(&adapter->pdev->dev,
9586                                  "The VF MAC address has been set, but the PF device is not up.\n");
9587                         dev_warn(&adapter->pdev->dev,
9588                                  "Bring the PF device up before attempting to use the VF device.\n");
9589                 }
9590         } else {
9591                 return -EINVAL;
9592         }
9593         return igb_set_vf_mac(adapter, vf, mac);
9594 }
9595
9596 static int igb_link_mbps(int internal_link_speed)
9597 {
9598         switch (internal_link_speed) {
9599         case SPEED_100:
9600                 return 100;
9601         case SPEED_1000:
9602                 return 1000;
9603         default:
9604                 return 0;
9605         }
9606 }
9607
9608 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9609                                   int link_speed)
9610 {
9611         int rf_dec, rf_int;
9612         u32 bcnrc_val;
9613
9614         if (tx_rate != 0) {
9615                 /* Calculate the rate factor values to set */
9616                 rf_int = link_speed / tx_rate;
9617                 rf_dec = (link_speed - (rf_int * tx_rate));
9618                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9619                          tx_rate;
9620
9621                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9622                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9623                               E1000_RTTBCNRC_RF_INT_MASK);
9624                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9625         } else {
9626                 bcnrc_val = 0;
9627         }
9628
9629         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9630         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9631          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9632          */
9633         wr32(E1000_RTTBCNRM, 0x14);
9634         wr32(E1000_RTTBCNRC, bcnrc_val);
9635 }
9636
9637 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9638 {
9639         int actual_link_speed, i;
9640         bool reset_rate = false;
9641
9642         /* VF TX rate limit was not set or not supported */
9643         if ((adapter->vf_rate_link_speed == 0) ||
9644             (adapter->hw.mac.type != e1000_82576))
9645                 return;
9646
9647         actual_link_speed = igb_link_mbps(adapter->link_speed);
9648         if (actual_link_speed != adapter->vf_rate_link_speed) {
9649                 reset_rate = true;
9650                 adapter->vf_rate_link_speed = 0;
9651                 dev_info(&adapter->pdev->dev,
9652                          "Link speed has been changed. VF Transmit rate is disabled\n");
9653         }
9654
9655         for (i = 0; i < adapter->vfs_allocated_count; i++) {
9656                 if (reset_rate)
9657                         adapter->vf_data[i].tx_rate = 0;
9658
9659                 igb_set_vf_rate_limit(&adapter->hw, i,
9660                                       adapter->vf_data[i].tx_rate,
9661                                       actual_link_speed);
9662         }
9663 }
9664
9665 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9666                              int min_tx_rate, int max_tx_rate)
9667 {
9668         struct igb_adapter *adapter = netdev_priv(netdev);
9669         struct e1000_hw *hw = &adapter->hw;
9670         int actual_link_speed;
9671
9672         if (hw->mac.type != e1000_82576)
9673                 return -EOPNOTSUPP;
9674
9675         if (min_tx_rate)
9676                 return -EINVAL;
9677
9678         actual_link_speed = igb_link_mbps(adapter->link_speed);
9679         if ((vf >= adapter->vfs_allocated_count) ||
9680             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9681             (max_tx_rate < 0) ||
9682             (max_tx_rate > actual_link_speed))
9683                 return -EINVAL;
9684
9685         adapter->vf_rate_link_speed = actual_link_speed;
9686         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9687         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9688
9689         return 0;
9690 }
9691
9692 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9693                                    bool setting)
9694 {
9695         struct igb_adapter *adapter = netdev_priv(netdev);
9696         struct e1000_hw *hw = &adapter->hw;
9697         u32 reg_val, reg_offset;
9698
9699         if (!adapter->vfs_allocated_count)
9700                 return -EOPNOTSUPP;
9701
9702         if (vf >= adapter->vfs_allocated_count)
9703                 return -EINVAL;
9704
9705         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9706         reg_val = rd32(reg_offset);
9707         if (setting)
9708                 reg_val |= (BIT(vf) |
9709                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9710         else
9711                 reg_val &= ~(BIT(vf) |
9712                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9713         wr32(reg_offset, reg_val);
9714
9715         adapter->vf_data[vf].spoofchk_enabled = setting;
9716         return 0;
9717 }
9718
9719 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9720 {
9721         struct igb_adapter *adapter = netdev_priv(netdev);
9722
9723         if (vf >= adapter->vfs_allocated_count)
9724                 return -EINVAL;
9725         if (adapter->vf_data[vf].trusted == setting)
9726                 return 0;
9727
9728         adapter->vf_data[vf].trusted = setting;
9729
9730         dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9731                  vf, setting ? "" : "not ");
9732         return 0;
9733 }
9734
9735 static int igb_ndo_get_vf_config(struct net_device *netdev,
9736                                  int vf, struct ifla_vf_info *ivi)
9737 {
9738         struct igb_adapter *adapter = netdev_priv(netdev);
9739         if (vf >= adapter->vfs_allocated_count)
9740                 return -EINVAL;
9741         ivi->vf = vf;
9742         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9743         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9744         ivi->min_tx_rate = 0;
9745         ivi->vlan = adapter->vf_data[vf].pf_vlan;
9746         ivi->qos = adapter->vf_data[vf].pf_qos;
9747         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9748         ivi->trusted = adapter->vf_data[vf].trusted;
9749         return 0;
9750 }
9751
9752 static void igb_vmm_control(struct igb_adapter *adapter)
9753 {
9754         struct e1000_hw *hw = &adapter->hw;
9755         u32 reg;
9756
9757         switch (hw->mac.type) {
9758         case e1000_82575:
9759         case e1000_i210:
9760         case e1000_i211:
9761         case e1000_i354:
9762         default:
9763                 /* replication is not supported for 82575 */
9764                 return;
9765         case e1000_82576:
9766                 /* notify HW that the MAC is adding vlan tags */
9767                 reg = rd32(E1000_DTXCTL);
9768                 reg |= E1000_DTXCTL_VLAN_ADDED;
9769                 wr32(E1000_DTXCTL, reg);
9770                 fallthrough;
9771         case e1000_82580:
9772                 /* enable replication vlan tag stripping */
9773                 reg = rd32(E1000_RPLOLR);
9774                 reg |= E1000_RPLOLR_STRVLAN;
9775                 wr32(E1000_RPLOLR, reg);
9776                 fallthrough;
9777         case e1000_i350:
9778                 /* none of the above registers are supported by i350 */
9779                 break;
9780         }
9781
9782         if (adapter->vfs_allocated_count) {
9783                 igb_vmdq_set_loopback_pf(hw, true);
9784                 igb_vmdq_set_replication_pf(hw, true);
9785                 igb_vmdq_set_anti_spoofing_pf(hw, true,
9786                                               adapter->vfs_allocated_count);
9787         } else {
9788                 igb_vmdq_set_loopback_pf(hw, false);
9789                 igb_vmdq_set_replication_pf(hw, false);
9790         }
9791 }
9792
9793 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9794 {
9795         struct e1000_hw *hw = &adapter->hw;
9796         u32 dmac_thr;
9797         u16 hwm;
9798
9799         if (hw->mac.type > e1000_82580) {
9800                 if (adapter->flags & IGB_FLAG_DMAC) {
9801                         u32 reg;
9802
9803                         /* force threshold to 0. */
9804                         wr32(E1000_DMCTXTH, 0);
9805
9806                         /* DMA Coalescing high water mark needs to be greater
9807                          * than the Rx threshold. Set hwm to PBA - max frame
9808                          * size in 16B units, capping it at PBA - 6KB.
9809                          */
9810                         hwm = 64 * (pba - 6);
9811                         reg = rd32(E1000_FCRTC);
9812                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9813                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9814                                 & E1000_FCRTC_RTH_COAL_MASK);
9815                         wr32(E1000_FCRTC, reg);
9816
9817                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9818                          * frame size, capping it at PBA - 10KB.
9819                          */
9820                         dmac_thr = pba - 10;
9821                         reg = rd32(E1000_DMACR);
9822                         reg &= ~E1000_DMACR_DMACTHR_MASK;
9823                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9824                                 & E1000_DMACR_DMACTHR_MASK);
9825
9826                         /* transition to L0x or L1 if available..*/
9827                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9828
9829                         /* watchdog timer= +-1000 usec in 32usec intervals */
9830                         reg |= (1000 >> 5);
9831
9832                         /* Disable BMC-to-OS Watchdog Enable */
9833                         if (hw->mac.type != e1000_i354)
9834                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9835
9836                         wr32(E1000_DMACR, reg);
9837
9838                         /* no lower threshold to disable
9839                          * coalescing(smart fifb)-UTRESH=0
9840                          */
9841                         wr32(E1000_DMCRTRH, 0);
9842
9843                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9844
9845                         wr32(E1000_DMCTLX, reg);
9846
9847                         /* free space in tx packet buffer to wake from
9848                          * DMA coal
9849                          */
9850                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9851                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9852
9853                         /* make low power state decision controlled
9854                          * by DMA coal
9855                          */
9856                         reg = rd32(E1000_PCIEMISC);
9857                         reg &= ~E1000_PCIEMISC_LX_DECISION;
9858                         wr32(E1000_PCIEMISC, reg);
9859                 } /* endif adapter->dmac is not disabled */
9860         } else if (hw->mac.type == e1000_82580) {
9861                 u32 reg = rd32(E1000_PCIEMISC);
9862
9863                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9864                 wr32(E1000_DMACR, 0);
9865         }
9866 }
9867
9868 /**
9869  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9870  *  @hw: pointer to hardware structure
9871  *  @byte_offset: byte offset to read
9872  *  @dev_addr: device address
9873  *  @data: value read
9874  *
9875  *  Performs byte read operation over I2C interface at
9876  *  a specified device address.
9877  **/
9878 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9879                       u8 dev_addr, u8 *data)
9880 {
9881         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9882         struct i2c_client *this_client = adapter->i2c_client;
9883         s32 status;
9884         u16 swfw_mask = 0;
9885
9886         if (!this_client)
9887                 return E1000_ERR_I2C;
9888
9889         swfw_mask = E1000_SWFW_PHY0_SM;
9890
9891         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9892                 return E1000_ERR_SWFW_SYNC;
9893
9894         status = i2c_smbus_read_byte_data(this_client, byte_offset);
9895         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9896
9897         if (status < 0)
9898                 return E1000_ERR_I2C;
9899         else {
9900                 *data = status;
9901                 return 0;
9902         }
9903 }
9904
9905 /**
9906  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9907  *  @hw: pointer to hardware structure
9908  *  @byte_offset: byte offset to write
9909  *  @dev_addr: device address
9910  *  @data: value to write
9911  *
9912  *  Performs byte write operation over I2C interface at
9913  *  a specified device address.
9914  **/
9915 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9916                        u8 dev_addr, u8 data)
9917 {
9918         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9919         struct i2c_client *this_client = adapter->i2c_client;
9920         s32 status;
9921         u16 swfw_mask = E1000_SWFW_PHY0_SM;
9922
9923         if (!this_client)
9924                 return E1000_ERR_I2C;
9925
9926         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9927                 return E1000_ERR_SWFW_SYNC;
9928         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9929         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9930
9931         if (status)
9932                 return E1000_ERR_I2C;
9933         else
9934                 return 0;
9935
9936 }
9937
9938 int igb_reinit_queues(struct igb_adapter *adapter)
9939 {
9940         struct net_device *netdev = adapter->netdev;
9941         struct pci_dev *pdev = adapter->pdev;
9942         int err = 0;
9943
9944         if (netif_running(netdev))
9945                 igb_close(netdev);
9946
9947         igb_reset_interrupt_capability(adapter);
9948
9949         if (igb_init_interrupt_scheme(adapter, true)) {
9950                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9951                 return -ENOMEM;
9952         }
9953
9954         if (netif_running(netdev))
9955                 err = igb_open(netdev);
9956
9957         return err;
9958 }
9959
9960 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9961 {
9962         struct igb_nfc_filter *rule;
9963
9964         spin_lock(&adapter->nfc_lock);
9965
9966         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9967                 igb_erase_filter(adapter, rule);
9968
9969         hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9970                 igb_erase_filter(adapter, rule);
9971
9972         spin_unlock(&adapter->nfc_lock);
9973 }
9974
9975 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9976 {
9977         struct igb_nfc_filter *rule;
9978
9979         spin_lock(&adapter->nfc_lock);
9980
9981         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9982                 igb_add_filter(adapter, rule);
9983
9984         spin_unlock(&adapter->nfc_lock);
9985 }
9986 /* igb_main.c */