lkdtm/heap: Hide allocation size from -Warray-bounds
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / ice / ice_virtchnl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15
16 #define FIELD_SELECTOR(proto_hdr_field) \
17                 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19 struct ice_vc_hdr_match_type {
20         u32 vc_hdr;     /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21         u32 ice_hdr;    /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25         {VIRTCHNL_PROTO_HDR_NONE,       ICE_FLOW_SEG_HDR_NONE},
26         {VIRTCHNL_PROTO_HDR_ETH,        ICE_FLOW_SEG_HDR_ETH},
27         {VIRTCHNL_PROTO_HDR_S_VLAN,     ICE_FLOW_SEG_HDR_VLAN},
28         {VIRTCHNL_PROTO_HDR_C_VLAN,     ICE_FLOW_SEG_HDR_VLAN},
29         {VIRTCHNL_PROTO_HDR_IPV4,       ICE_FLOW_SEG_HDR_IPV4 |
30                                         ICE_FLOW_SEG_HDR_IPV_OTHER},
31         {VIRTCHNL_PROTO_HDR_IPV6,       ICE_FLOW_SEG_HDR_IPV6 |
32                                         ICE_FLOW_SEG_HDR_IPV_OTHER},
33         {VIRTCHNL_PROTO_HDR_TCP,        ICE_FLOW_SEG_HDR_TCP},
34         {VIRTCHNL_PROTO_HDR_UDP,        ICE_FLOW_SEG_HDR_UDP},
35         {VIRTCHNL_PROTO_HDR_SCTP,       ICE_FLOW_SEG_HDR_SCTP},
36         {VIRTCHNL_PROTO_HDR_PPPOE,      ICE_FLOW_SEG_HDR_PPPOE},
37         {VIRTCHNL_PROTO_HDR_GTPU_IP,    ICE_FLOW_SEG_HDR_GTPU_IP},
38         {VIRTCHNL_PROTO_HDR_GTPU_EH,    ICE_FLOW_SEG_HDR_GTPU_EH},
39         {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40                                         ICE_FLOW_SEG_HDR_GTPU_DWN},
41         {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42                                         ICE_FLOW_SEG_HDR_GTPU_UP},
43         {VIRTCHNL_PROTO_HDR_L2TPV3,     ICE_FLOW_SEG_HDR_L2TPV3},
44         {VIRTCHNL_PROTO_HDR_ESP,        ICE_FLOW_SEG_HDR_ESP},
45         {VIRTCHNL_PROTO_HDR_AH,         ICE_FLOW_SEG_HDR_AH},
46         {VIRTCHNL_PROTO_HDR_PFCP,       ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48
49 struct ice_vc_hash_field_match_type {
50         u32 vc_hdr;             /* virtchnl headers
51                                  * (VIRTCHNL_PROTO_HDR_XXX)
52                                  */
53         u32 vc_hash_field;      /* virtchnl hash fields selector
54                                  * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55                                  */
56         u64 ice_hash_field;     /* ice hash fields
57                                  * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58                                  */
59 };
60
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69                 ICE_FLOW_HASH_ETH},
70         {VIRTCHNL_PROTO_HDR_ETH,
71                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73         {VIRTCHNL_PROTO_HDR_S_VLAN,
74                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75                 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76         {VIRTCHNL_PROTO_HDR_C_VLAN,
77                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78                 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85                 ICE_FLOW_HASH_IPV4},
86         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97                 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106                 ICE_FLOW_HASH_IPV6},
107         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118                 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121         {VIRTCHNL_PROTO_HDR_TCP,
122                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123                 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124         {VIRTCHNL_PROTO_HDR_TCP,
125                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126                 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127         {VIRTCHNL_PROTO_HDR_TCP,
128                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130                 ICE_FLOW_HASH_TCP_PORT},
131         {VIRTCHNL_PROTO_HDR_UDP,
132                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133                 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134         {VIRTCHNL_PROTO_HDR_UDP,
135                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136                 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137         {VIRTCHNL_PROTO_HDR_UDP,
138                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140                 ICE_FLOW_HASH_UDP_PORT},
141         {VIRTCHNL_PROTO_HDR_SCTP,
142                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143                 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144         {VIRTCHNL_PROTO_HDR_SCTP,
145                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146                 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147         {VIRTCHNL_PROTO_HDR_SCTP,
148                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150                 ICE_FLOW_HASH_SCTP_PORT},
151         {VIRTCHNL_PROTO_HDR_PPPOE,
152                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153                 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154         {VIRTCHNL_PROTO_HDR_GTPU_IP,
155                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156                 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157         {VIRTCHNL_PROTO_HDR_L2TPV3,
158                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159                 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160         {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161                 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162         {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163                 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164         {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165                 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178                     enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180         struct ice_hw *hw = &pf->hw;
181         struct ice_vf *vf;
182         unsigned int bkt;
183
184         mutex_lock(&pf->vfs.table_lock);
185         ice_for_each_vf(pf, bkt, vf) {
186                 /* Not all vfs are enabled so skip the ones that are not */
187                 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188                     !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189                         continue;
190
191                 /* Ignore return value on purpose - a given VF may fail, but
192                  * we need to keep going and send to all of them
193                  */
194                 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195                                       msglen, NULL);
196         }
197         mutex_unlock(&pf->vfs.table_lock);
198 }
199
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209                  int ice_link_speed, bool link_up)
210 {
211         if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212                 pfe->event_data.link_event_adv.link_status = link_up;
213                 /* Speed in Mbps */
214                 pfe->event_data.link_event_adv.link_speed =
215                         ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216         } else {
217                 pfe->event_data.link_event.link_status = link_up;
218                 /* Legacy method for virtchnl link speeds */
219                 pfe->event_data.link_event.link_speed =
220                         (enum virtchnl_link_speed)
221                         ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222         }
223 }
224
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233         struct virtchnl_pf_event pfe = { 0 };
234         struct ice_hw *hw = &vf->pf->hw;
235
236         pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237         pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239         if (ice_is_vf_link_up(vf))
240                 ice_set_pfe_link(vf, &pfe,
241                                  hw->port_info->phy.link_info.link_speed, true);
242         else
243                 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245         ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246                               VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247                               sizeof(pfe), NULL);
248 }
249
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256         struct ice_vf *vf;
257         unsigned int bkt;
258
259         mutex_lock(&pf->vfs.table_lock);
260         ice_for_each_vf(pf, bkt, vf)
261                 ice_vc_notify_vf_link_state(vf);
262         mutex_unlock(&pf->vfs.table_lock);
263 }
264
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273         struct virtchnl_pf_event pfe;
274
275         if (!ice_has_vfs(pf))
276                 return;
277
278         pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279         pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280         ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281                             (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296                       enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298         struct device *dev;
299         struct ice_pf *pf;
300         int aq_ret;
301
302         pf = vf->pf;
303         dev = ice_pf_to_dev(pf);
304
305         aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306                                        msg, msglen, NULL);
307         if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308                 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309                          vf->vf_id, aq_ret,
310                          ice_aq_str(pf->hw.mailboxq.sq_last_status));
311                 return -EIO;
312         }
313
314         return 0;
315 }
316
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326         struct virtchnl_version_info info = {
327                 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328         };
329
330         vf->vf_ver = *(struct virtchnl_version_info *)msg;
331         /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332         if (VF_IS_V10(&vf->vf_ver))
333                 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336                                      VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337                                      sizeof(struct virtchnl_version_info));
338 }
339
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351         struct ice_port_info *pi = ice_vf_get_port_info(vf);
352         u16 max_frame_size;
353
354         max_frame_size = pi->phy.link_info.max_frame_size;
355
356         if (ice_vf_is_port_vlan_ena(vf))
357                 max_frame_size -= VLAN_HLEN;
358
359         return max_frame_size;
360 }
361
362 /**
363  * ice_vc_get_vf_res_msg
364  * @vf: pointer to the VF info
365  * @msg: pointer to the msg buffer
366  *
367  * called from the VF to request its resources
368  */
369 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
370 {
371         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
372         struct virtchnl_vf_resource *vfres = NULL;
373         struct ice_hw *hw = &vf->pf->hw;
374         struct ice_vsi *vsi;
375         int len = 0;
376         int ret;
377
378         if (ice_check_vf_init(vf)) {
379                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
380                 goto err;
381         }
382
383         len = sizeof(struct virtchnl_vf_resource);
384
385         vfres = kzalloc(len, GFP_KERNEL);
386         if (!vfres) {
387                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
388                 len = 0;
389                 goto err;
390         }
391         if (VF_IS_V11(&vf->vf_ver))
392                 vf->driver_caps = *(u32 *)msg;
393         else
394                 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
395                                   VIRTCHNL_VF_OFFLOAD_RSS_REG |
396                                   VIRTCHNL_VF_OFFLOAD_VLAN;
397
398         vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
399         vsi = ice_get_vf_vsi(vf);
400         if (!vsi) {
401                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
402                 goto err;
403         }
404
405         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
406                 /* VLAN offloads based on current device configuration */
407                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN_V2;
408         } else if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
409                 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
410                  * these two conditions, which amounts to guest VLAN filtering
411                  * and offloads being based on the inner VLAN or the
412                  * inner/single VLAN respectively and don't allow VF to
413                  * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
414                  */
415                 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
416                         vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
417                 } else if (!ice_is_dvm_ena(hw) &&
418                            !ice_vf_is_port_vlan_ena(vf)) {
419                         vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
420                         /* configure backward compatible support for VFs that
421                          * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
422                          * configured in SVM, and no port VLAN is configured
423                          */
424                         ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
425                 } else if (ice_is_dvm_ena(hw)) {
426                         /* configure software offloaded VLAN support when DVM
427                          * is enabled, but no port VLAN is enabled
428                          */
429                         ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
430                 }
431         }
432
433         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
434                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
435         } else {
436                 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
437                         vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
438                 else
439                         vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
440         }
441
442         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
443                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
444
445         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
446                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
447
448         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
449                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
450
451         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
452                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
453
454         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
455                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
456
457         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
458                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
459
460         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
461                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
462
463         if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
464                 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
465
466         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
467                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
468
469         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
470                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
471
472         vfres->num_vsis = 1;
473         /* Tx and Rx queue are equal for VF */
474         vfres->num_queue_pairs = vsi->num_txq;
475         vfres->max_vectors = vf->pf->vfs.num_msix_per;
476         vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
477         vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
478         vfres->max_mtu = ice_vc_get_max_frame_size(vf);
479
480         vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
481         vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
482         vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
483         ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
484                         vf->hw_lan_addr.addr);
485
486         /* match guest capabilities */
487         vf->driver_caps = vfres->vf_cap_flags;
488
489         ice_vc_set_caps_allowlist(vf);
490         ice_vc_set_working_allowlist(vf);
491
492         set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
493
494 err:
495         /* send the response back to the VF */
496         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
497                                     (u8 *)vfres, len);
498
499         kfree(vfres);
500         return ret;
501 }
502
503 /**
504  * ice_vc_reset_vf_msg
505  * @vf: pointer to the VF info
506  *
507  * called from the VF to reset itself,
508  * unlike other virtchnl messages, PF driver
509  * doesn't send the response back to the VF
510  */
511 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
512 {
513         if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
514                 ice_reset_vf(vf, 0);
515 }
516
517 /**
518  * ice_find_vsi_from_id
519  * @pf: the PF structure to search for the VSI
520  * @id: ID of the VSI it is searching for
521  *
522  * searches for the VSI with the given ID
523  */
524 static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
525 {
526         int i;
527
528         ice_for_each_vsi(pf, i)
529                 if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
530                         return pf->vsi[i];
531
532         return NULL;
533 }
534
535 /**
536  * ice_vc_isvalid_vsi_id
537  * @vf: pointer to the VF info
538  * @vsi_id: VF relative VSI ID
539  *
540  * check for the valid VSI ID
541  */
542 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
543 {
544         struct ice_pf *pf = vf->pf;
545         struct ice_vsi *vsi;
546
547         vsi = ice_find_vsi_from_id(pf, vsi_id);
548
549         return (vsi && (vsi->vf == vf));
550 }
551
552 /**
553  * ice_vc_isvalid_q_id
554  * @vf: pointer to the VF info
555  * @vsi_id: VSI ID
556  * @qid: VSI relative queue ID
557  *
558  * check for the valid queue ID
559  */
560 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
561 {
562         struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
563         /* allocated Tx and Rx queues should be always equal for VF VSI */
564         return (vsi && (qid < vsi->alloc_txq));
565 }
566
567 /**
568  * ice_vc_isvalid_ring_len
569  * @ring_len: length of ring
570  *
571  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
572  * or zero
573  */
574 static bool ice_vc_isvalid_ring_len(u16 ring_len)
575 {
576         return ring_len == 0 ||
577                (ring_len >= ICE_MIN_NUM_DESC &&
578                 ring_len <= ICE_MAX_NUM_DESC &&
579                 !(ring_len % ICE_REQ_DESC_MULTIPLE));
580 }
581
582 /**
583  * ice_vc_validate_pattern
584  * @vf: pointer to the VF info
585  * @proto: virtchnl protocol headers
586  *
587  * validate the pattern is supported or not.
588  *
589  * Return: true on success, false on error.
590  */
591 bool
592 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
593 {
594         bool is_ipv4 = false;
595         bool is_ipv6 = false;
596         bool is_udp = false;
597         u16 ptype = -1;
598         int i = 0;
599
600         while (i < proto->count &&
601                proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
602                 switch (proto->proto_hdr[i].type) {
603                 case VIRTCHNL_PROTO_HDR_ETH:
604                         ptype = ICE_PTYPE_MAC_PAY;
605                         break;
606                 case VIRTCHNL_PROTO_HDR_IPV4:
607                         ptype = ICE_PTYPE_IPV4_PAY;
608                         is_ipv4 = true;
609                         break;
610                 case VIRTCHNL_PROTO_HDR_IPV6:
611                         ptype = ICE_PTYPE_IPV6_PAY;
612                         is_ipv6 = true;
613                         break;
614                 case VIRTCHNL_PROTO_HDR_UDP:
615                         if (is_ipv4)
616                                 ptype = ICE_PTYPE_IPV4_UDP_PAY;
617                         else if (is_ipv6)
618                                 ptype = ICE_PTYPE_IPV6_UDP_PAY;
619                         is_udp = true;
620                         break;
621                 case VIRTCHNL_PROTO_HDR_TCP:
622                         if (is_ipv4)
623                                 ptype = ICE_PTYPE_IPV4_TCP_PAY;
624                         else if (is_ipv6)
625                                 ptype = ICE_PTYPE_IPV6_TCP_PAY;
626                         break;
627                 case VIRTCHNL_PROTO_HDR_SCTP:
628                         if (is_ipv4)
629                                 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
630                         else if (is_ipv6)
631                                 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
632                         break;
633                 case VIRTCHNL_PROTO_HDR_GTPU_IP:
634                 case VIRTCHNL_PROTO_HDR_GTPU_EH:
635                         if (is_ipv4)
636                                 ptype = ICE_MAC_IPV4_GTPU;
637                         else if (is_ipv6)
638                                 ptype = ICE_MAC_IPV6_GTPU;
639                         goto out;
640                 case VIRTCHNL_PROTO_HDR_L2TPV3:
641                         if (is_ipv4)
642                                 ptype = ICE_MAC_IPV4_L2TPV3;
643                         else if (is_ipv6)
644                                 ptype = ICE_MAC_IPV6_L2TPV3;
645                         goto out;
646                 case VIRTCHNL_PROTO_HDR_ESP:
647                         if (is_ipv4)
648                                 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
649                                                 ICE_MAC_IPV4_ESP;
650                         else if (is_ipv6)
651                                 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
652                                                 ICE_MAC_IPV6_ESP;
653                         goto out;
654                 case VIRTCHNL_PROTO_HDR_AH:
655                         if (is_ipv4)
656                                 ptype = ICE_MAC_IPV4_AH;
657                         else if (is_ipv6)
658                                 ptype = ICE_MAC_IPV6_AH;
659                         goto out;
660                 case VIRTCHNL_PROTO_HDR_PFCP:
661                         if (is_ipv4)
662                                 ptype = ICE_MAC_IPV4_PFCP_SESSION;
663                         else if (is_ipv6)
664                                 ptype = ICE_MAC_IPV6_PFCP_SESSION;
665                         goto out;
666                 default:
667                         break;
668                 }
669                 i++;
670         }
671
672 out:
673         return ice_hw_ptype_ena(&vf->pf->hw, ptype);
674 }
675
676 /**
677  * ice_vc_parse_rss_cfg - parses hash fields and headers from
678  * a specific virtchnl RSS cfg
679  * @hw: pointer to the hardware
680  * @rss_cfg: pointer to the virtchnl RSS cfg
681  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
682  * to configure
683  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
684  *
685  * Return true if all the protocol header and hash fields in the RSS cfg could
686  * be parsed, else return false
687  *
688  * This function parses the virtchnl RSS cfg to be the intended
689  * hash fields and the intended header for RSS configuration
690  */
691 static bool
692 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
693                      u32 *addl_hdrs, u64 *hash_flds)
694 {
695         const struct ice_vc_hash_field_match_type *hf_list;
696         const struct ice_vc_hdr_match_type *hdr_list;
697         int i, hf_list_len, hdr_list_len;
698
699         hf_list = ice_vc_hash_field_list;
700         hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
701         hdr_list = ice_vc_hdr_list;
702         hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
703
704         for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
705                 struct virtchnl_proto_hdr *proto_hdr =
706                                         &rss_cfg->proto_hdrs.proto_hdr[i];
707                 bool hdr_found = false;
708                 int j;
709
710                 /* Find matched ice headers according to virtchnl headers. */
711                 for (j = 0; j < hdr_list_len; j++) {
712                         struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
713
714                         if (proto_hdr->type == hdr_map.vc_hdr) {
715                                 *addl_hdrs |= hdr_map.ice_hdr;
716                                 hdr_found = true;
717                         }
718                 }
719
720                 if (!hdr_found)
721                         return false;
722
723                 /* Find matched ice hash fields according to
724                  * virtchnl hash fields.
725                  */
726                 for (j = 0; j < hf_list_len; j++) {
727                         struct ice_vc_hash_field_match_type hf_map = hf_list[j];
728
729                         if (proto_hdr->type == hf_map.vc_hdr &&
730                             proto_hdr->field_selector == hf_map.vc_hash_field) {
731                                 *hash_flds |= hf_map.ice_hash_field;
732                                 break;
733                         }
734                 }
735         }
736
737         return true;
738 }
739
740 /**
741  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
742  * RSS offloads
743  * @caps: VF driver negotiated capabilities
744  *
745  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
746  * else return false
747  */
748 static bool ice_vf_adv_rss_offload_ena(u32 caps)
749 {
750         return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
751 }
752
753 /**
754  * ice_vc_handle_rss_cfg
755  * @vf: pointer to the VF info
756  * @msg: pointer to the message buffer
757  * @add: add a RSS config if true, otherwise delete a RSS config
758  *
759  * This function adds/deletes a RSS config
760  */
761 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
762 {
763         u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
764         struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
765         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
766         struct device *dev = ice_pf_to_dev(vf->pf);
767         struct ice_hw *hw = &vf->pf->hw;
768         struct ice_vsi *vsi;
769
770         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
771                 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
772                         vf->vf_id);
773                 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
774                 goto error_param;
775         }
776
777         if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
778                 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
779                         vf->vf_id);
780                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
781                 goto error_param;
782         }
783
784         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
785                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
786                 goto error_param;
787         }
788
789         if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
790             rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
791             rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
792                 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
793                         vf->vf_id);
794                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
795                 goto error_param;
796         }
797
798         vsi = ice_get_vf_vsi(vf);
799         if (!vsi) {
800                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
801                 goto error_param;
802         }
803
804         if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
805                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
806                 goto error_param;
807         }
808
809         if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
810                 struct ice_vsi_ctx *ctx;
811                 u8 lut_type, hash_type;
812                 int status;
813
814                 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
815                 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
816                                 ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
817
818                 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
819                 if (!ctx) {
820                         v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
821                         goto error_param;
822                 }
823
824                 ctx->info.q_opt_rss = ((lut_type <<
825                                         ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
826                                        ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
827                                        (hash_type &
828                                         ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
829
830                 /* Preserve existing queueing option setting */
831                 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
832                                           ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
833                 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
834                 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
835
836                 ctx->info.valid_sections =
837                                 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
838
839                 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
840                 if (status) {
841                         dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
842                                 status, ice_aq_str(hw->adminq.sq_last_status));
843                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
844                 } else {
845                         vsi->info.q_opt_rss = ctx->info.q_opt_rss;
846                 }
847
848                 kfree(ctx);
849         } else {
850                 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
851                 u64 hash_flds = ICE_HASH_INVALID;
852
853                 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
854                                           &hash_flds)) {
855                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
856                         goto error_param;
857                 }
858
859                 if (add) {
860                         if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
861                                             addl_hdrs)) {
862                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
863                                 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
864                                         vsi->vsi_num, v_ret);
865                         }
866                 } else {
867                         int status;
868
869                         status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
870                                                  addl_hdrs);
871                         /* We just ignore -ENOENT, because if two configurations
872                          * share the same profile remove one of them actually
873                          * removes both, since the profile is deleted.
874                          */
875                         if (status && status != -ENOENT) {
876                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
877                                 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
878                                         vf->vf_id, status);
879                         }
880                 }
881         }
882
883 error_param:
884         return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
885 }
886
887 /**
888  * ice_vc_config_rss_key
889  * @vf: pointer to the VF info
890  * @msg: pointer to the msg buffer
891  *
892  * Configure the VF's RSS key
893  */
894 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
895 {
896         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
897         struct virtchnl_rss_key *vrk =
898                 (struct virtchnl_rss_key *)msg;
899         struct ice_vsi *vsi;
900
901         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
902                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
903                 goto error_param;
904         }
905
906         if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
907                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
908                 goto error_param;
909         }
910
911         if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
912                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
913                 goto error_param;
914         }
915
916         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
917                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
918                 goto error_param;
919         }
920
921         vsi = ice_get_vf_vsi(vf);
922         if (!vsi) {
923                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
924                 goto error_param;
925         }
926
927         if (ice_set_rss_key(vsi, vrk->key))
928                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
929 error_param:
930         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
931                                      NULL, 0);
932 }
933
934 /**
935  * ice_vc_config_rss_lut
936  * @vf: pointer to the VF info
937  * @msg: pointer to the msg buffer
938  *
939  * Configure the VF's RSS LUT
940  */
941 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
942 {
943         struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
944         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
945         struct ice_vsi *vsi;
946
947         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
948                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
949                 goto error_param;
950         }
951
952         if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
953                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
954                 goto error_param;
955         }
956
957         if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
958                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
959                 goto error_param;
960         }
961
962         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
963                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
964                 goto error_param;
965         }
966
967         vsi = ice_get_vf_vsi(vf);
968         if (!vsi) {
969                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
970                 goto error_param;
971         }
972
973         if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
974                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
975 error_param:
976         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
977                                      NULL, 0);
978 }
979
980 /**
981  * ice_vc_cfg_promiscuous_mode_msg
982  * @vf: pointer to the VF info
983  * @msg: pointer to the msg buffer
984  *
985  * called from the VF to configure VF VSIs promiscuous mode
986  */
987 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
988 {
989         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
990         bool rm_promisc, alluni = false, allmulti = false;
991         struct virtchnl_promisc_info *info =
992             (struct virtchnl_promisc_info *)msg;
993         struct ice_vsi_vlan_ops *vlan_ops;
994         int mcast_err = 0, ucast_err = 0;
995         struct ice_pf *pf = vf->pf;
996         struct ice_vsi *vsi;
997         struct device *dev;
998         int ret = 0;
999
1000         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1001                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1002                 goto error_param;
1003         }
1004
1005         if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1006                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1007                 goto error_param;
1008         }
1009
1010         vsi = ice_get_vf_vsi(vf);
1011         if (!vsi) {
1012                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1013                 goto error_param;
1014         }
1015
1016         dev = ice_pf_to_dev(pf);
1017         if (!ice_is_vf_trusted(vf)) {
1018                 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1019                         vf->vf_id);
1020                 /* Leave v_ret alone, lie to the VF on purpose. */
1021                 goto error_param;
1022         }
1023
1024         if (info->flags & FLAG_VF_UNICAST_PROMISC)
1025                 alluni = true;
1026
1027         if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1028                 allmulti = true;
1029
1030         rm_promisc = !allmulti && !alluni;
1031
1032         vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1033         if (rm_promisc)
1034                 ret = vlan_ops->ena_rx_filtering(vsi);
1035         else
1036                 ret = vlan_ops->dis_rx_filtering(vsi);
1037         if (ret) {
1038                 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1039                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1040                 goto error_param;
1041         }
1042
1043         if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1044                 bool set_dflt_vsi = alluni || allmulti;
1045
1046                 if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw))
1047                         /* only attempt to set the default forwarding VSI if
1048                          * it's not currently set
1049                          */
1050                         ret = ice_set_dflt_vsi(pf->first_sw, vsi);
1051                 else if (!set_dflt_vsi &&
1052                          ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
1053                         /* only attempt to free the default forwarding VSI if we
1054                          * are the owner
1055                          */
1056                         ret = ice_clear_dflt_vsi(pf->first_sw);
1057
1058                 if (ret) {
1059                         dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n",
1060                                 set_dflt_vsi ? "en" : "dis", vf->vf_id, ret);
1061                         v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1062                         goto error_param;
1063                 }
1064         } else {
1065                 u8 mcast_m, ucast_m;
1066
1067                 if (ice_vf_is_port_vlan_ena(vf) ||
1068                     ice_vsi_has_non_zero_vlans(vsi)) {
1069                         mcast_m = ICE_MCAST_VLAN_PROMISC_BITS;
1070                         ucast_m = ICE_UCAST_VLAN_PROMISC_BITS;
1071                 } else {
1072                         mcast_m = ICE_MCAST_PROMISC_BITS;
1073                         ucast_m = ICE_UCAST_PROMISC_BITS;
1074                 }
1075
1076                 if (alluni)
1077                         ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1078                 else
1079                         ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1080
1081                 if (allmulti)
1082                         mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1083                 else
1084                         mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1085
1086                 if (ucast_err || mcast_err)
1087                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1088         }
1089
1090         if (!mcast_err) {
1091                 if (allmulti &&
1092                     !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1093                         dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1094                                  vf->vf_id);
1095                 else if (!allmulti &&
1096                          test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1097                                             vf->vf_states))
1098                         dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1099                                  vf->vf_id);
1100         }
1101
1102         if (!ucast_err) {
1103                 if (alluni &&
1104                     !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1105                         dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1106                                  vf->vf_id);
1107                 else if (!alluni &&
1108                          test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1109                                             vf->vf_states))
1110                         dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1111                                  vf->vf_id);
1112         }
1113
1114 error_param:
1115         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1116                                      v_ret, NULL, 0);
1117 }
1118
1119 /**
1120  * ice_vc_get_stats_msg
1121  * @vf: pointer to the VF info
1122  * @msg: pointer to the msg buffer
1123  *
1124  * called from the VF to get VSI stats
1125  */
1126 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1127 {
1128         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1129         struct virtchnl_queue_select *vqs =
1130                 (struct virtchnl_queue_select *)msg;
1131         struct ice_eth_stats stats = { 0 };
1132         struct ice_vsi *vsi;
1133
1134         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1135                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1136                 goto error_param;
1137         }
1138
1139         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1140                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1141                 goto error_param;
1142         }
1143
1144         vsi = ice_get_vf_vsi(vf);
1145         if (!vsi) {
1146                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1147                 goto error_param;
1148         }
1149
1150         ice_update_eth_stats(vsi);
1151
1152         stats = vsi->eth_stats;
1153
1154 error_param:
1155         /* send the response to the VF */
1156         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1157                                      (u8 *)&stats, sizeof(stats));
1158 }
1159
1160 /**
1161  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1162  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1163  *
1164  * Return true on successful validation, else false
1165  */
1166 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1167 {
1168         if ((!vqs->rx_queues && !vqs->tx_queues) ||
1169             vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1170             vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1171                 return false;
1172
1173         return true;
1174 }
1175
1176 /**
1177  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1178  * @vsi: VSI of the VF to configure
1179  * @q_idx: VF queue index used to determine the queue in the PF's space
1180  */
1181 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1182 {
1183         struct ice_hw *hw = &vsi->back->hw;
1184         u32 pfq = vsi->txq_map[q_idx];
1185         u32 reg;
1186
1187         reg = rd32(hw, QINT_TQCTL(pfq));
1188
1189         /* MSI-X index 0 in the VF's space is always for the OICR, which means
1190          * this is most likely a poll mode VF driver, so don't enable an
1191          * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1192          */
1193         if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1194                 return;
1195
1196         wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1197 }
1198
1199 /**
1200  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1201  * @vsi: VSI of the VF to configure
1202  * @q_idx: VF queue index used to determine the queue in the PF's space
1203  */
1204 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1205 {
1206         struct ice_hw *hw = &vsi->back->hw;
1207         u32 pfq = vsi->rxq_map[q_idx];
1208         u32 reg;
1209
1210         reg = rd32(hw, QINT_RQCTL(pfq));
1211
1212         /* MSI-X index 0 in the VF's space is always for the OICR, which means
1213          * this is most likely a poll mode VF driver, so don't enable an
1214          * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1215          */
1216         if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1217                 return;
1218
1219         wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1220 }
1221
1222 /**
1223  * ice_vc_ena_qs_msg
1224  * @vf: pointer to the VF info
1225  * @msg: pointer to the msg buffer
1226  *
1227  * called from the VF to enable all or specific queue(s)
1228  */
1229 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1230 {
1231         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1232         struct virtchnl_queue_select *vqs =
1233             (struct virtchnl_queue_select *)msg;
1234         struct ice_vsi *vsi;
1235         unsigned long q_map;
1236         u16 vf_q_id;
1237
1238         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1239                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1240                 goto error_param;
1241         }
1242
1243         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1244                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1245                 goto error_param;
1246         }
1247
1248         if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1249                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1250                 goto error_param;
1251         }
1252
1253         vsi = ice_get_vf_vsi(vf);
1254         if (!vsi) {
1255                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1256                 goto error_param;
1257         }
1258
1259         /* Enable only Rx rings, Tx rings were enabled by the FW when the
1260          * Tx queue group list was configured and the context bits were
1261          * programmed using ice_vsi_cfg_txqs
1262          */
1263         q_map = vqs->rx_queues;
1264         for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1265                 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1266                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1267                         goto error_param;
1268                 }
1269
1270                 /* Skip queue if enabled */
1271                 if (test_bit(vf_q_id, vf->rxq_ena))
1272                         continue;
1273
1274                 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1275                         dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1276                                 vf_q_id, vsi->vsi_num);
1277                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1278                         goto error_param;
1279                 }
1280
1281                 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1282                 set_bit(vf_q_id, vf->rxq_ena);
1283         }
1284
1285         q_map = vqs->tx_queues;
1286         for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1287                 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1288                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1289                         goto error_param;
1290                 }
1291
1292                 /* Skip queue if enabled */
1293                 if (test_bit(vf_q_id, vf->txq_ena))
1294                         continue;
1295
1296                 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1297                 set_bit(vf_q_id, vf->txq_ena);
1298         }
1299
1300         /* Set flag to indicate that queues are enabled */
1301         if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1302                 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1303
1304 error_param:
1305         /* send the response to the VF */
1306         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1307                                      NULL, 0);
1308 }
1309
1310 /**
1311  * ice_vc_dis_qs_msg
1312  * @vf: pointer to the VF info
1313  * @msg: pointer to the msg buffer
1314  *
1315  * called from the VF to disable all or specific
1316  * queue(s)
1317  */
1318 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1319 {
1320         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1321         struct virtchnl_queue_select *vqs =
1322             (struct virtchnl_queue_select *)msg;
1323         struct ice_vsi *vsi;
1324         unsigned long q_map;
1325         u16 vf_q_id;
1326
1327         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1328             !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1329                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1330                 goto error_param;
1331         }
1332
1333         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1334                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1335                 goto error_param;
1336         }
1337
1338         if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1339                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1340                 goto error_param;
1341         }
1342
1343         vsi = ice_get_vf_vsi(vf);
1344         if (!vsi) {
1345                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1346                 goto error_param;
1347         }
1348
1349         if (vqs->tx_queues) {
1350                 q_map = vqs->tx_queues;
1351
1352                 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1353                         struct ice_tx_ring *ring = vsi->tx_rings[vf_q_id];
1354                         struct ice_txq_meta txq_meta = { 0 };
1355
1356                         if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1357                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1358                                 goto error_param;
1359                         }
1360
1361                         if (!test_bit(vf_q_id, vf->txq_ena))
1362                                 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1363                                         vf_q_id, vsi->vsi_num);
1364
1365                         ice_fill_txq_meta(vsi, ring, &txq_meta);
1366
1367                         if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id,
1368                                                  ring, &txq_meta)) {
1369                                 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1370                                         vf_q_id, vsi->vsi_num);
1371                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1372                                 goto error_param;
1373                         }
1374
1375                         /* Clear enabled queues flag */
1376                         clear_bit(vf_q_id, vf->txq_ena);
1377                 }
1378         }
1379
1380         q_map = vqs->rx_queues;
1381         /* speed up Rx queue disable by batching them if possible */
1382         if (q_map &&
1383             bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1384                 if (ice_vsi_stop_all_rx_rings(vsi)) {
1385                         dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1386                                 vsi->vsi_num);
1387                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1388                         goto error_param;
1389                 }
1390
1391                 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1392         } else if (q_map) {
1393                 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1394                         if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1395                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1396                                 goto error_param;
1397                         }
1398
1399                         /* Skip queue if not enabled */
1400                         if (!test_bit(vf_q_id, vf->rxq_ena))
1401                                 continue;
1402
1403                         if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1404                                                      true)) {
1405                                 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1406                                         vf_q_id, vsi->vsi_num);
1407                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1408                                 goto error_param;
1409                         }
1410
1411                         /* Clear enabled queues flag */
1412                         clear_bit(vf_q_id, vf->rxq_ena);
1413                 }
1414         }
1415
1416         /* Clear enabled queues flag */
1417         if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1418                 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1419
1420 error_param:
1421         /* send the response to the VF */
1422         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1423                                      NULL, 0);
1424 }
1425
1426 /**
1427  * ice_cfg_interrupt
1428  * @vf: pointer to the VF info
1429  * @vsi: the VSI being configured
1430  * @vector_id: vector ID
1431  * @map: vector map for mapping vectors to queues
1432  * @q_vector: structure for interrupt vector
1433  * configure the IRQ to queue map
1434  */
1435 static int
1436 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1437                   struct virtchnl_vector_map *map,
1438                   struct ice_q_vector *q_vector)
1439 {
1440         u16 vsi_q_id, vsi_q_id_idx;
1441         unsigned long qmap;
1442
1443         q_vector->num_ring_rx = 0;
1444         q_vector->num_ring_tx = 0;
1445
1446         qmap = map->rxq_map;
1447         for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1448                 vsi_q_id = vsi_q_id_idx;
1449
1450                 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1451                         return VIRTCHNL_STATUS_ERR_PARAM;
1452
1453                 q_vector->num_ring_rx++;
1454                 q_vector->rx.itr_idx = map->rxitr_idx;
1455                 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1456                 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1457                                       q_vector->rx.itr_idx);
1458         }
1459
1460         qmap = map->txq_map;
1461         for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1462                 vsi_q_id = vsi_q_id_idx;
1463
1464                 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1465                         return VIRTCHNL_STATUS_ERR_PARAM;
1466
1467                 q_vector->num_ring_tx++;
1468                 q_vector->tx.itr_idx = map->txitr_idx;
1469                 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1470                 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1471                                       q_vector->tx.itr_idx);
1472         }
1473
1474         return VIRTCHNL_STATUS_SUCCESS;
1475 }
1476
1477 /**
1478  * ice_vc_cfg_irq_map_msg
1479  * @vf: pointer to the VF info
1480  * @msg: pointer to the msg buffer
1481  *
1482  * called from the VF to configure the IRQ to queue map
1483  */
1484 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1485 {
1486         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1487         u16 num_q_vectors_mapped, vsi_id, vector_id;
1488         struct virtchnl_irq_map_info *irqmap_info;
1489         struct virtchnl_vector_map *map;
1490         struct ice_pf *pf = vf->pf;
1491         struct ice_vsi *vsi;
1492         int i;
1493
1494         irqmap_info = (struct virtchnl_irq_map_info *)msg;
1495         num_q_vectors_mapped = irqmap_info->num_vectors;
1496
1497         /* Check to make sure number of VF vectors mapped is not greater than
1498          * number of VF vectors originally allocated, and check that
1499          * there is actually at least a single VF queue vector mapped
1500          */
1501         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1502             pf->vfs.num_msix_per < num_q_vectors_mapped ||
1503             !num_q_vectors_mapped) {
1504                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1505                 goto error_param;
1506         }
1507
1508         vsi = ice_get_vf_vsi(vf);
1509         if (!vsi) {
1510                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1511                 goto error_param;
1512         }
1513
1514         for (i = 0; i < num_q_vectors_mapped; i++) {
1515                 struct ice_q_vector *q_vector;
1516
1517                 map = &irqmap_info->vecmap[i];
1518
1519                 vector_id = map->vector_id;
1520                 vsi_id = map->vsi_id;
1521                 /* vector_id is always 0-based for each VF, and can never be
1522                  * larger than or equal to the max allowed interrupts per VF
1523                  */
1524                 if (!(vector_id < pf->vfs.num_msix_per) ||
1525                     !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1526                     (!vector_id && (map->rxq_map || map->txq_map))) {
1527                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1528                         goto error_param;
1529                 }
1530
1531                 /* No need to map VF miscellaneous or rogue vector */
1532                 if (!vector_id)
1533                         continue;
1534
1535                 /* Subtract non queue vector from vector_id passed by VF
1536                  * to get actual number of VSI queue vector array index
1537                  */
1538                 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1539                 if (!q_vector) {
1540                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1541                         goto error_param;
1542                 }
1543
1544                 /* lookout for the invalid queue index */
1545                 v_ret = (enum virtchnl_status_code)
1546                         ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1547                 if (v_ret)
1548                         goto error_param;
1549         }
1550
1551 error_param:
1552         /* send the response to the VF */
1553         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1554                                      NULL, 0);
1555 }
1556
1557 /**
1558  * ice_vc_cfg_qs_msg
1559  * @vf: pointer to the VF info
1560  * @msg: pointer to the msg buffer
1561  *
1562  * called from the VF to configure the Rx/Tx queues
1563  */
1564 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1565 {
1566         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1567         struct virtchnl_vsi_queue_config_info *qci =
1568             (struct virtchnl_vsi_queue_config_info *)msg;
1569         struct virtchnl_queue_pair_info *qpi;
1570         struct ice_pf *pf = vf->pf;
1571         struct ice_vsi *vsi;
1572         int i, q_idx;
1573
1574         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1575                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1576                 goto error_param;
1577         }
1578
1579         if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
1580                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1581                 goto error_param;
1582         }
1583
1584         vsi = ice_get_vf_vsi(vf);
1585         if (!vsi) {
1586                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1587                 goto error_param;
1588         }
1589
1590         if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1591             qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1592                 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1593                         vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1594                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1595                 goto error_param;
1596         }
1597
1598         for (i = 0; i < qci->num_queue_pairs; i++) {
1599                 qpi = &qci->qpair[i];
1600                 if (qpi->txq.vsi_id != qci->vsi_id ||
1601                     qpi->rxq.vsi_id != qci->vsi_id ||
1602                     qpi->rxq.queue_id != qpi->txq.queue_id ||
1603                     qpi->txq.headwb_enabled ||
1604                     !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1605                     !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1606                     !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1607                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1608                         goto error_param;
1609                 }
1610
1611                 q_idx = qpi->rxq.queue_id;
1612
1613                 /* make sure selected "q_idx" is in valid range of queues
1614                  * for selected "vsi"
1615                  */
1616                 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1617                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1618                         goto error_param;
1619                 }
1620
1621                 /* copy Tx queue info from VF into VSI */
1622                 if (qpi->txq.ring_len > 0) {
1623                         vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1624                         vsi->tx_rings[i]->count = qpi->txq.ring_len;
1625                         if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1626                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1627                                 goto error_param;
1628                         }
1629                 }
1630
1631                 /* copy Rx queue info from VF into VSI */
1632                 if (qpi->rxq.ring_len > 0) {
1633                         u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1634
1635                         vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1636                         vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1637
1638                         if (qpi->rxq.databuffer_size != 0 &&
1639                             (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1640                              qpi->rxq.databuffer_size < 1024)) {
1641                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1642                                 goto error_param;
1643                         }
1644                         vsi->rx_buf_len = qpi->rxq.databuffer_size;
1645                         vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1646                         if (qpi->rxq.max_pkt_size > max_frame_size ||
1647                             qpi->rxq.max_pkt_size < 64) {
1648                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1649                                 goto error_param;
1650                         }
1651
1652                         vsi->max_frame = qpi->rxq.max_pkt_size;
1653                         /* add space for the port VLAN since the VF driver is
1654                          * not expected to account for it in the MTU
1655                          * calculation
1656                          */
1657                         if (ice_vf_is_port_vlan_ena(vf))
1658                                 vsi->max_frame += VLAN_HLEN;
1659
1660                         if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1661                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1662                                 goto error_param;
1663                         }
1664                 }
1665         }
1666
1667 error_param:
1668         /* send the response to the VF */
1669         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
1670                                      NULL, 0);
1671 }
1672
1673 /**
1674  * ice_can_vf_change_mac
1675  * @vf: pointer to the VF info
1676  *
1677  * Return true if the VF is allowed to change its MAC filters, false otherwise
1678  */
1679 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1680 {
1681         /* If the VF MAC address has been set administratively (via the
1682          * ndo_set_vf_mac command), then deny permission to the VF to
1683          * add/delete unicast MAC addresses, unless the VF is trusted
1684          */
1685         if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1686                 return false;
1687
1688         return true;
1689 }
1690
1691 /**
1692  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1693  * @vc_ether_addr: used to extract the type
1694  */
1695 static u8
1696 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1697 {
1698         return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1699 }
1700
1701 /**
1702  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1703  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1704  */
1705 static bool
1706 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1707 {
1708         u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1709
1710         return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1711 }
1712
1713 /**
1714  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1715  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1716  *
1717  * This function should only be called when the MAC address in
1718  * virtchnl_ether_addr is a valid unicast MAC
1719  */
1720 static bool
1721 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1722 {
1723         u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1724
1725         return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1726 }
1727
1728 /**
1729  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1730  * @vf: VF to update
1731  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1732  */
1733 static void
1734 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1735 {
1736         u8 *mac_addr = vc_ether_addr->addr;
1737
1738         if (!is_valid_ether_addr(mac_addr))
1739                 return;
1740
1741         /* only allow legacy VF drivers to set the device and hardware MAC if it
1742          * is zero and allow new VF drivers to set the hardware MAC if the type
1743          * was correctly specified over VIRTCHNL
1744          */
1745         if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1746              is_zero_ether_addr(vf->hw_lan_addr.addr)) ||
1747             ice_is_vc_addr_primary(vc_ether_addr)) {
1748                 ether_addr_copy(vf->dev_lan_addr.addr, mac_addr);
1749                 ether_addr_copy(vf->hw_lan_addr.addr, mac_addr);
1750         }
1751
1752         /* hardware and device MACs are already set, but its possible that the
1753          * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1754          * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1755          * away for the legacy VF driver case as it will be updated in the
1756          * delete flow for this case
1757          */
1758         if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1759                 ether_addr_copy(vf->legacy_last_added_umac.addr,
1760                                 mac_addr);
1761                 vf->legacy_last_added_umac.time_modified = jiffies;
1762         }
1763 }
1764
1765 /**
1766  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1767  * @vf: pointer to the VF info
1768  * @vsi: pointer to the VF's VSI
1769  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1770  */
1771 static int
1772 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1773                     struct virtchnl_ether_addr *vc_ether_addr)
1774 {
1775         struct device *dev = ice_pf_to_dev(vf->pf);
1776         u8 *mac_addr = vc_ether_addr->addr;
1777         int ret;
1778
1779         /* device MAC already added */
1780         if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr))
1781                 return 0;
1782
1783         if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1784                 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1785                 return -EPERM;
1786         }
1787
1788         ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1789         if (ret == -EEXIST) {
1790                 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1791                         vf->vf_id);
1792                 /* don't return since we might need to update
1793                  * the primary MAC in ice_vfhw_mac_add() below
1794                  */
1795         } else if (ret) {
1796                 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1797                         mac_addr, vf->vf_id, ret);
1798                 return ret;
1799         } else {
1800                 vf->num_mac++;
1801         }
1802
1803         ice_vfhw_mac_add(vf, vc_ether_addr);
1804
1805         return ret;
1806 }
1807
1808 /**
1809  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1810  * @last_added_umac: structure used to check expiration
1811  */
1812 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1813 {
1814 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME    msecs_to_jiffies(3000)
1815         return time_is_before_jiffies(last_added_umac->time_modified +
1816                                       ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1817 }
1818
1819 /**
1820  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1821  * @vf: VF to update
1822  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1823  *
1824  * only update cached hardware MAC for legacy VF drivers on delete
1825  * because we cannot guarantee order/type of MAC from the VF driver
1826  */
1827 static void
1828 ice_update_legacy_cached_mac(struct ice_vf *vf,
1829                              struct virtchnl_ether_addr *vc_ether_addr)
1830 {
1831         if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1832             ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1833                 return;
1834
1835         ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr);
1836         ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr);
1837 }
1838
1839 /**
1840  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1841  * @vf: VF to update
1842  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1843  */
1844 static void
1845 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1846 {
1847         u8 *mac_addr = vc_ether_addr->addr;
1848
1849         if (!is_valid_ether_addr(mac_addr) ||
1850             !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1851                 return;
1852
1853         /* allow the device MAC to be repopulated in the add flow and don't
1854          * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant
1855          * to be persistent on VM reboot and across driver unload/load, which
1856          * won't work if we clear the hardware MAC here
1857          */
1858         eth_zero_addr(vf->dev_lan_addr.addr);
1859
1860         ice_update_legacy_cached_mac(vf, vc_ether_addr);
1861 }
1862
1863 /**
1864  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1865  * @vf: pointer to the VF info
1866  * @vsi: pointer to the VF's VSI
1867  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1868  */
1869 static int
1870 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1871                     struct virtchnl_ether_addr *vc_ether_addr)
1872 {
1873         struct device *dev = ice_pf_to_dev(vf->pf);
1874         u8 *mac_addr = vc_ether_addr->addr;
1875         int status;
1876
1877         if (!ice_can_vf_change_mac(vf) &&
1878             ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1879                 return 0;
1880
1881         status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1882         if (status == -ENOENT) {
1883                 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1884                         vf->vf_id);
1885                 return -ENOENT;
1886         } else if (status) {
1887                 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1888                         mac_addr, vf->vf_id, status);
1889                 return -EIO;
1890         }
1891
1892         ice_vfhw_mac_del(vf, vc_ether_addr);
1893
1894         vf->num_mac--;
1895
1896         return 0;
1897 }
1898
1899 /**
1900  * ice_vc_handle_mac_addr_msg
1901  * @vf: pointer to the VF info
1902  * @msg: pointer to the msg buffer
1903  * @set: true if MAC filters are being set, false otherwise
1904  *
1905  * add guest MAC address filter
1906  */
1907 static int
1908 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1909 {
1910         int (*ice_vc_cfg_mac)
1911                 (struct ice_vf *vf, struct ice_vsi *vsi,
1912                  struct virtchnl_ether_addr *virtchnl_ether_addr);
1913         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1914         struct virtchnl_ether_addr_list *al =
1915             (struct virtchnl_ether_addr_list *)msg;
1916         struct ice_pf *pf = vf->pf;
1917         enum virtchnl_ops vc_op;
1918         struct ice_vsi *vsi;
1919         int i;
1920
1921         if (set) {
1922                 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
1923                 ice_vc_cfg_mac = ice_vc_add_mac_addr;
1924         } else {
1925                 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
1926                 ice_vc_cfg_mac = ice_vc_del_mac_addr;
1927         }
1928
1929         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1930             !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
1931                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1932                 goto handle_mac_exit;
1933         }
1934
1935         /* If this VF is not privileged, then we can't add more than a
1936          * limited number of addresses. Check to make sure that the
1937          * additions do not push us over the limit.
1938          */
1939         if (set && !ice_is_vf_trusted(vf) &&
1940             (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
1941                 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
1942                         vf->vf_id);
1943                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1944                 goto handle_mac_exit;
1945         }
1946
1947         vsi = ice_get_vf_vsi(vf);
1948         if (!vsi) {
1949                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1950                 goto handle_mac_exit;
1951         }
1952
1953         for (i = 0; i < al->num_elements; i++) {
1954                 u8 *mac_addr = al->list[i].addr;
1955                 int result;
1956
1957                 if (is_broadcast_ether_addr(mac_addr) ||
1958                     is_zero_ether_addr(mac_addr))
1959                         continue;
1960
1961                 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
1962                 if (result == -EEXIST || result == -ENOENT) {
1963                         continue;
1964                 } else if (result) {
1965                         v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1966                         goto handle_mac_exit;
1967                 }
1968         }
1969
1970 handle_mac_exit:
1971         /* send the response to the VF */
1972         return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
1973 }
1974
1975 /**
1976  * ice_vc_add_mac_addr_msg
1977  * @vf: pointer to the VF info
1978  * @msg: pointer to the msg buffer
1979  *
1980  * add guest MAC address filter
1981  */
1982 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
1983 {
1984         return ice_vc_handle_mac_addr_msg(vf, msg, true);
1985 }
1986
1987 /**
1988  * ice_vc_del_mac_addr_msg
1989  * @vf: pointer to the VF info
1990  * @msg: pointer to the msg buffer
1991  *
1992  * remove guest MAC address filter
1993  */
1994 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
1995 {
1996         return ice_vc_handle_mac_addr_msg(vf, msg, false);
1997 }
1998
1999 /**
2000  * ice_vc_request_qs_msg
2001  * @vf: pointer to the VF info
2002  * @msg: pointer to the msg buffer
2003  *
2004  * VFs get a default number of queues but can use this message to request a
2005  * different number. If the request is successful, PF will reset the VF and
2006  * return 0. If unsuccessful, PF will send message informing VF of number of
2007  * available queue pairs via virtchnl message response to VF.
2008  */
2009 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2010 {
2011         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2012         struct virtchnl_vf_res_request *vfres =
2013                 (struct virtchnl_vf_res_request *)msg;
2014         u16 req_queues = vfres->num_queue_pairs;
2015         struct ice_pf *pf = vf->pf;
2016         u16 max_allowed_vf_queues;
2017         u16 tx_rx_queue_left;
2018         struct device *dev;
2019         u16 cur_queues;
2020
2021         dev = ice_pf_to_dev(pf);
2022         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2023                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2024                 goto error_param;
2025         }
2026
2027         cur_queues = vf->num_vf_qs;
2028         tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2029                                  ice_get_avail_rxq_count(pf));
2030         max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2031         if (!req_queues) {
2032                 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2033                         vf->vf_id);
2034         } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2035                 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2036                         vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2037                 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2038         } else if (req_queues > cur_queues &&
2039                    req_queues - cur_queues > tx_rx_queue_left) {
2040                 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2041                          vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2042                 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2043                                                ICE_MAX_RSS_QS_PER_VF);
2044         } else {
2045                 /* request is successful, then reset VF */
2046                 vf->num_req_qs = req_queues;
2047                 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2048                 dev_info(dev, "VF %d granted request of %u queues.\n",
2049                          vf->vf_id, req_queues);
2050                 return 0;
2051         }
2052
2053 error_param:
2054         /* send the response to the VF */
2055         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2056                                      v_ret, (u8 *)vfres, sizeof(*vfres));
2057 }
2058
2059 /**
2060  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2061  * @caps: VF driver negotiated capabilities
2062  *
2063  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2064  */
2065 static bool ice_vf_vlan_offload_ena(u32 caps)
2066 {
2067         return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2068 }
2069
2070 /**
2071  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2072  * @vf: VF used to determine if VLAN promiscuous config is allowed
2073  */
2074 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2075 {
2076         if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2077              test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2078             test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2079                 return true;
2080
2081         return false;
2082 }
2083
2084 /**
2085  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2086  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2087  * @vlan: VLAN used to enable VLAN promiscuous
2088  *
2089  * This function should only be called if VLAN promiscuous mode is allowed,
2090  * which can be determined via ice_is_vlan_promisc_allowed().
2091  */
2092 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2093 {
2094         u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2095         int status;
2096
2097         status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2098                                           vlan->vid);
2099         if (status && status != -EEXIST)
2100                 return status;
2101
2102         return 0;
2103 }
2104
2105 /**
2106  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2107  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2108  * @vlan: VLAN used to disable VLAN promiscuous
2109  *
2110  * This function should only be called if VLAN promiscuous mode is allowed,
2111  * which can be determined via ice_is_vlan_promisc_allowed().
2112  */
2113 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2114 {
2115         u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2116         int status;
2117
2118         status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2119                                             vlan->vid);
2120         if (status && status != -ENOENT)
2121                 return status;
2122
2123         return 0;
2124 }
2125
2126 /**
2127  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2128  * @vf: VF to check against
2129  * @vsi: VF's VSI
2130  *
2131  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2132  * wants to, so return false.
2133  *
2134  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2135  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2136  */
2137 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2138 {
2139         if (ice_is_vf_trusted(vf))
2140                 return false;
2141
2142 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS    1
2143         return ((ice_vsi_num_non_zero_vlans(vsi) +
2144                 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2145 }
2146
2147 /**
2148  * ice_vc_process_vlan_msg
2149  * @vf: pointer to the VF info
2150  * @msg: pointer to the msg buffer
2151  * @add_v: Add VLAN if true, otherwise delete VLAN
2152  *
2153  * Process virtchnl op to add or remove programmed guest VLAN ID
2154  */
2155 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2156 {
2157         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2158         struct virtchnl_vlan_filter_list *vfl =
2159             (struct virtchnl_vlan_filter_list *)msg;
2160         struct ice_pf *pf = vf->pf;
2161         bool vlan_promisc = false;
2162         struct ice_vsi *vsi;
2163         struct device *dev;
2164         int status = 0;
2165         int i;
2166
2167         dev = ice_pf_to_dev(pf);
2168         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2169                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2170                 goto error_param;
2171         }
2172
2173         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2174                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2175                 goto error_param;
2176         }
2177
2178         if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2179                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2180                 goto error_param;
2181         }
2182
2183         for (i = 0; i < vfl->num_elements; i++) {
2184                 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2185                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2186                         dev_err(dev, "invalid VF VLAN id %d\n",
2187                                 vfl->vlan_id[i]);
2188                         goto error_param;
2189                 }
2190         }
2191
2192         vsi = ice_get_vf_vsi(vf);
2193         if (!vsi) {
2194                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2195                 goto error_param;
2196         }
2197
2198         if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2199                 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2200                          vf->vf_id);
2201                 /* There is no need to let VF know about being not trusted,
2202                  * so we can just return success message here
2203                  */
2204                 goto error_param;
2205         }
2206
2207         /* in DVM a VF can add/delete inner VLAN filters when
2208          * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2209          */
2210         if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2211                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2212                 goto error_param;
2213         }
2214
2215         /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2216          * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2217          * allow vlan_promisc = true in SVM and if no port VLAN is configured
2218          */
2219         vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2220                 !ice_is_dvm_ena(&pf->hw) &&
2221                 !ice_vf_is_port_vlan_ena(vf);
2222
2223         if (add_v) {
2224                 for (i = 0; i < vfl->num_elements; i++) {
2225                         u16 vid = vfl->vlan_id[i];
2226                         struct ice_vlan vlan;
2227
2228                         if (ice_vf_has_max_vlans(vf, vsi)) {
2229                                 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2230                                          vf->vf_id);
2231                                 /* There is no need to let VF know about being
2232                                  * not trusted, so we can just return success
2233                                  * message here as well.
2234                                  */
2235                                 goto error_param;
2236                         }
2237
2238                         /* we add VLAN 0 by default for each VF so we can enable
2239                          * Tx VLAN anti-spoof without triggering MDD events so
2240                          * we don't need to add it again here
2241                          */
2242                         if (!vid)
2243                                 continue;
2244
2245                         vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2246                         status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2247                         if (status) {
2248                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2249                                 goto error_param;
2250                         }
2251
2252                         /* Enable VLAN filtering on first non-zero VLAN */
2253                         if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2254                                 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2255                                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2256                                         dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2257                                                 vid, status);
2258                                         goto error_param;
2259                                 }
2260                         } else if (vlan_promisc) {
2261                                 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2262                                 if (status) {
2263                                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2264                                         dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2265                                                 vid, status);
2266                                 }
2267                         }
2268                 }
2269         } else {
2270                 /* In case of non_trusted VF, number of VLAN elements passed
2271                  * to PF for removal might be greater than number of VLANs
2272                  * filter programmed for that VF - So, use actual number of
2273                  * VLANS added earlier with add VLAN opcode. In order to avoid
2274                  * removing VLAN that doesn't exist, which result to sending
2275                  * erroneous failed message back to the VF
2276                  */
2277                 int num_vf_vlan;
2278
2279                 num_vf_vlan = vsi->num_vlan;
2280                 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2281                         u16 vid = vfl->vlan_id[i];
2282                         struct ice_vlan vlan;
2283
2284                         /* we add VLAN 0 by default for each VF so we can enable
2285                          * Tx VLAN anti-spoof without triggering MDD events so
2286                          * we don't want a VIRTCHNL request to remove it
2287                          */
2288                         if (!vid)
2289                                 continue;
2290
2291                         vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2292                         status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2293                         if (status) {
2294                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2295                                 goto error_param;
2296                         }
2297
2298                         /* Disable VLAN filtering when only VLAN 0 is left */
2299                         if (!ice_vsi_has_non_zero_vlans(vsi))
2300                                 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2301
2302                         if (vlan_promisc)
2303                                 ice_vf_dis_vlan_promisc(vsi, &vlan);
2304                 }
2305         }
2306
2307 error_param:
2308         /* send the response to the VF */
2309         if (add_v)
2310                 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2311                                              NULL, 0);
2312         else
2313                 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2314                                              NULL, 0);
2315 }
2316
2317 /**
2318  * ice_vc_add_vlan_msg
2319  * @vf: pointer to the VF info
2320  * @msg: pointer to the msg buffer
2321  *
2322  * Add and program guest VLAN ID
2323  */
2324 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2325 {
2326         return ice_vc_process_vlan_msg(vf, msg, true);
2327 }
2328
2329 /**
2330  * ice_vc_remove_vlan_msg
2331  * @vf: pointer to the VF info
2332  * @msg: pointer to the msg buffer
2333  *
2334  * remove programmed guest VLAN ID
2335  */
2336 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2337 {
2338         return ice_vc_process_vlan_msg(vf, msg, false);
2339 }
2340
2341 /**
2342  * ice_vc_ena_vlan_stripping
2343  * @vf: pointer to the VF info
2344  *
2345  * Enable VLAN header stripping for a given VF
2346  */
2347 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2348 {
2349         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2350         struct ice_vsi *vsi;
2351
2352         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2353                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2354                 goto error_param;
2355         }
2356
2357         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2358                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2359                 goto error_param;
2360         }
2361
2362         vsi = ice_get_vf_vsi(vf);
2363         if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2364                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2365
2366 error_param:
2367         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2368                                      v_ret, NULL, 0);
2369 }
2370
2371 /**
2372  * ice_vc_dis_vlan_stripping
2373  * @vf: pointer to the VF info
2374  *
2375  * Disable VLAN header stripping for a given VF
2376  */
2377 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2378 {
2379         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2380         struct ice_vsi *vsi;
2381
2382         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2383                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2384                 goto error_param;
2385         }
2386
2387         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2388                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2389                 goto error_param;
2390         }
2391
2392         vsi = ice_get_vf_vsi(vf);
2393         if (!vsi) {
2394                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2395                 goto error_param;
2396         }
2397
2398         if (vsi->inner_vlan_ops.dis_stripping(vsi))
2399                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2400
2401 error_param:
2402         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2403                                      v_ret, NULL, 0);
2404 }
2405
2406 /**
2407  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2408  * @vf: VF to enable/disable VLAN stripping for on initialization
2409  *
2410  * Set the default for VLAN stripping based on whether a port VLAN is configured
2411  * and the current VLAN mode of the device.
2412  */
2413 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2414 {
2415         struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2416
2417         if (!vsi)
2418                 return -EINVAL;
2419
2420         /* don't modify stripping if port VLAN is configured in SVM since the
2421          * port VLAN is based on the inner/single VLAN in SVM
2422          */
2423         if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2424                 return 0;
2425
2426         if (ice_vf_vlan_offload_ena(vf->driver_caps))
2427                 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2428         else
2429                 return vsi->inner_vlan_ops.dis_stripping(vsi);
2430 }
2431
2432 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2433 {
2434         if (vf->trusted)
2435                 return VLAN_N_VID;
2436         else
2437                 return ICE_MAX_VLAN_PER_VF;
2438 }
2439
2440 /**
2441  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2442  * @vf: VF that being checked for
2443  *
2444  * When the device is in double VLAN mode, check whether or not the outer VLAN
2445  * is allowed.
2446  */
2447 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2448 {
2449         if (ice_vf_is_port_vlan_ena(vf))
2450                 return true;
2451
2452         return false;
2453 }
2454
2455 /**
2456  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2457  * @vf: VF that capabilities are being set for
2458  * @caps: VLAN capabilities to populate
2459  *
2460  * Determine VLAN capabilities support based on whether a port VLAN is
2461  * configured. If a port VLAN is configured then the VF should use the inner
2462  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2463  * capabilies.
2464  */
2465 static void
2466 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2467 {
2468         struct virtchnl_vlan_supported_caps *supported_caps;
2469
2470         if (ice_vf_outer_vlan_not_allowed(vf)) {
2471                 /* until support for inner VLAN filtering is added when a port
2472                  * VLAN is configured, only support software offloaded inner
2473                  * VLANs when a port VLAN is confgured in DVM
2474                  */
2475                 supported_caps = &caps->filtering.filtering_support;
2476                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2477
2478                 supported_caps = &caps->offloads.stripping_support;
2479                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2480                                         VIRTCHNL_VLAN_TOGGLE |
2481                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2482                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2483
2484                 supported_caps = &caps->offloads.insertion_support;
2485                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2486                                         VIRTCHNL_VLAN_TOGGLE |
2487                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2488                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2489
2490                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2491                 caps->offloads.ethertype_match =
2492                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2493         } else {
2494                 supported_caps = &caps->filtering.filtering_support;
2495                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2496                 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2497                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2498                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2499                                         VIRTCHNL_VLAN_ETHERTYPE_AND;
2500                 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2501                                                  VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2502                                                  VIRTCHNL_VLAN_ETHERTYPE_9100;
2503
2504                 supported_caps = &caps->offloads.stripping_support;
2505                 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2506                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2507                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2508                 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2509                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2510                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2511                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2512                                         VIRTCHNL_VLAN_ETHERTYPE_XOR |
2513                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2514
2515                 supported_caps = &caps->offloads.insertion_support;
2516                 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2517                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2518                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2519                 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2520                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2521                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2522                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2523                                         VIRTCHNL_VLAN_ETHERTYPE_XOR |
2524                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2525
2526                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2527
2528                 caps->offloads.ethertype_match =
2529                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2530         }
2531
2532         caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2533 }
2534
2535 /**
2536  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2537  * @vf: VF that capabilities are being set for
2538  * @caps: VLAN capabilities to populate
2539  *
2540  * Determine VLAN capabilities support based on whether a port VLAN is
2541  * configured. If a port VLAN is configured then the VF does not have any VLAN
2542  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2543  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2544  * VLAN fitlering and offload capabilities.
2545  */
2546 static void
2547 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2548 {
2549         struct virtchnl_vlan_supported_caps *supported_caps;
2550
2551         if (ice_vf_is_port_vlan_ena(vf)) {
2552                 supported_caps = &caps->filtering.filtering_support;
2553                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2554                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2555
2556                 supported_caps = &caps->offloads.stripping_support;
2557                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2558                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2559
2560                 supported_caps = &caps->offloads.insertion_support;
2561                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2562                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2563
2564                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2565                 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2566                 caps->filtering.max_filters = 0;
2567         } else {
2568                 supported_caps = &caps->filtering.filtering_support;
2569                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2570                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2571                 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2572
2573                 supported_caps = &caps->offloads.stripping_support;
2574                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2575                                         VIRTCHNL_VLAN_TOGGLE |
2576                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2577                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2578
2579                 supported_caps = &caps->offloads.insertion_support;
2580                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2581                                         VIRTCHNL_VLAN_TOGGLE |
2582                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2583                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2584
2585                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2586                 caps->offloads.ethertype_match =
2587                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2588                 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2589         }
2590 }
2591
2592 /**
2593  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2594  * @vf: VF to determine VLAN capabilities for
2595  *
2596  * This will only be called if the VF and PF successfully negotiated
2597  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2598  *
2599  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2600  * is configured or not.
2601  */
2602 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2603 {
2604         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2605         struct virtchnl_vlan_caps *caps = NULL;
2606         int err, len = 0;
2607
2608         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2609                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2610                 goto out;
2611         }
2612
2613         caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2614         if (!caps) {
2615                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2616                 goto out;
2617         }
2618         len = sizeof(*caps);
2619
2620         if (ice_is_dvm_ena(&vf->pf->hw))
2621                 ice_vc_set_dvm_caps(vf, caps);
2622         else
2623                 ice_vc_set_svm_caps(vf, caps);
2624
2625         /* store negotiated caps to prevent invalid VF messages */
2626         memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2627
2628 out:
2629         err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2630                                     v_ret, (u8 *)caps, len);
2631         kfree(caps);
2632         return err;
2633 }
2634
2635 /**
2636  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2637  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2638  * @tpid: VLAN TPID used for validation
2639  *
2640  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2641  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2642  */
2643 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2644 {
2645         enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2646
2647         switch (tpid) {
2648         case ETH_P_8021Q:
2649                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2650                 break;
2651         case ETH_P_8021AD:
2652                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2653                 break;
2654         case ETH_P_QINQ1:
2655                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2656                 break;
2657         }
2658
2659         if (!(filtering_caps & vlan_ethertype))
2660                 return false;
2661
2662         return true;
2663 }
2664
2665 /**
2666  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2667  * @vc_vlan: virtchnl_vlan to validate
2668  *
2669  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2670  * false. Otherwise return true.
2671  */
2672 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2673 {
2674         if (!vc_vlan->tci || !vc_vlan->tpid)
2675                 return false;
2676
2677         return true;
2678 }
2679
2680 /**
2681  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2682  * @vfc: negotiated/supported VLAN filtering capabilities
2683  * @vfl: VLAN filter list from VF to validate
2684  *
2685  * Validate all of the filters in the VLAN filter list from the VF. If any of
2686  * the checks fail then return false. Otherwise return true.
2687  */
2688 static bool
2689 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2690                                  struct virtchnl_vlan_filter_list_v2 *vfl)
2691 {
2692         u16 i;
2693
2694         if (!vfl->num_elements)
2695                 return false;
2696
2697         for (i = 0; i < vfl->num_elements; i++) {
2698                 struct virtchnl_vlan_supported_caps *filtering_support =
2699                         &vfc->filtering_support;
2700                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2701                 struct virtchnl_vlan *outer = &vlan_fltr->outer;
2702                 struct virtchnl_vlan *inner = &vlan_fltr->inner;
2703
2704                 if ((ice_vc_is_valid_vlan(outer) &&
2705                      filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2706                     (ice_vc_is_valid_vlan(inner) &&
2707                      filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2708                         return false;
2709
2710                 if ((outer->tci_mask &&
2711                      !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2712                     (inner->tci_mask &&
2713                      !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2714                         return false;
2715
2716                 if (((outer->tci & VLAN_PRIO_MASK) &&
2717                      !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
2718                     ((inner->tci & VLAN_PRIO_MASK) &&
2719                      !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
2720                         return false;
2721
2722                 if ((ice_vc_is_valid_vlan(outer) &&
2723                      !ice_vc_validate_vlan_tpid(filtering_support->outer,
2724                                                 outer->tpid)) ||
2725                     (ice_vc_is_valid_vlan(inner) &&
2726                      !ice_vc_validate_vlan_tpid(filtering_support->inner,
2727                                                 inner->tpid)))
2728                         return false;
2729         }
2730
2731         return true;
2732 }
2733
2734 /**
2735  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
2736  * @vc_vlan: struct virtchnl_vlan to transform
2737  */
2738 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
2739 {
2740         struct ice_vlan vlan = { 0 };
2741
2742         vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2743         vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
2744         vlan.tpid = vc_vlan->tpid;
2745
2746         return vlan;
2747 }
2748
2749 /**
2750  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
2751  * @vsi: VF's VSI used to perform the action
2752  * @vlan_action: function to perform the action with (i.e. add/del)
2753  * @vlan: VLAN filter to perform the action with
2754  */
2755 static int
2756 ice_vc_vlan_action(struct ice_vsi *vsi,
2757                    int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
2758                    struct ice_vlan *vlan)
2759 {
2760         int err;
2761
2762         err = vlan_action(vsi, vlan);
2763         if (err)
2764                 return err;
2765
2766         return 0;
2767 }
2768
2769 /**
2770  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
2771  * @vf: VF used to delete the VLAN(s)
2772  * @vsi: VF's VSI used to delete the VLAN(s)
2773  * @vfl: virthchnl filter list used to delete the filters
2774  */
2775 static int
2776 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
2777                  struct virtchnl_vlan_filter_list_v2 *vfl)
2778 {
2779         bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
2780         int err;
2781         u16 i;
2782
2783         for (i = 0; i < vfl->num_elements; i++) {
2784                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2785                 struct virtchnl_vlan *vc_vlan;
2786
2787                 vc_vlan = &vlan_fltr->outer;
2788                 if (ice_vc_is_valid_vlan(vc_vlan)) {
2789                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2790
2791                         err = ice_vc_vlan_action(vsi,
2792                                                  vsi->outer_vlan_ops.del_vlan,
2793                                                  &vlan);
2794                         if (err)
2795                                 return err;
2796
2797                         if (vlan_promisc)
2798                                 ice_vf_dis_vlan_promisc(vsi, &vlan);
2799                 }
2800
2801                 vc_vlan = &vlan_fltr->inner;
2802                 if (ice_vc_is_valid_vlan(vc_vlan)) {
2803                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2804
2805                         err = ice_vc_vlan_action(vsi,
2806                                                  vsi->inner_vlan_ops.del_vlan,
2807                                                  &vlan);
2808                         if (err)
2809                                 return err;
2810
2811                         /* no support for VLAN promiscuous on inner VLAN unless
2812                          * we are in Single VLAN Mode (SVM)
2813                          */
2814                         if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc)
2815                                 ice_vf_dis_vlan_promisc(vsi, &vlan);
2816                 }
2817         }
2818
2819         return 0;
2820 }
2821
2822 /**
2823  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
2824  * @vf: VF the message was received from
2825  * @msg: message received from the VF
2826  */
2827 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
2828 {
2829         struct virtchnl_vlan_filter_list_v2 *vfl =
2830                 (struct virtchnl_vlan_filter_list_v2 *)msg;
2831         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2832         struct ice_vsi *vsi;
2833
2834         if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
2835                                               vfl)) {
2836                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2837                 goto out;
2838         }
2839
2840         if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
2841                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2842                 goto out;
2843         }
2844
2845         vsi = ice_get_vf_vsi(vf);
2846         if (!vsi) {
2847                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2848                 goto out;
2849         }
2850
2851         if (ice_vc_del_vlans(vf, vsi, vfl))
2852                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2853
2854 out:
2855         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
2856                                      0);
2857 }
2858
2859 /**
2860  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
2861  * @vf: VF used to add the VLAN(s)
2862  * @vsi: VF's VSI used to add the VLAN(s)
2863  * @vfl: virthchnl filter list used to add the filters
2864  */
2865 static int
2866 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
2867                  struct virtchnl_vlan_filter_list_v2 *vfl)
2868 {
2869         bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
2870         int err;
2871         u16 i;
2872
2873         for (i = 0; i < vfl->num_elements; i++) {
2874                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2875                 struct virtchnl_vlan *vc_vlan;
2876
2877                 vc_vlan = &vlan_fltr->outer;
2878                 if (ice_vc_is_valid_vlan(vc_vlan)) {
2879                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2880
2881                         err = ice_vc_vlan_action(vsi,
2882                                                  vsi->outer_vlan_ops.add_vlan,
2883                                                  &vlan);
2884                         if (err)
2885                                 return err;
2886
2887                         if (vlan_promisc) {
2888                                 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
2889                                 if (err)
2890                                         return err;
2891                         }
2892                 }
2893
2894                 vc_vlan = &vlan_fltr->inner;
2895                 if (ice_vc_is_valid_vlan(vc_vlan)) {
2896                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2897
2898                         err = ice_vc_vlan_action(vsi,
2899                                                  vsi->inner_vlan_ops.add_vlan,
2900                                                  &vlan);
2901                         if (err)
2902                                 return err;
2903
2904                         /* no support for VLAN promiscuous on inner VLAN unless
2905                          * we are in Single VLAN Mode (SVM)
2906                          */
2907                         if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) {
2908                                 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
2909                                 if (err)
2910                                         return err;
2911                         }
2912                 }
2913         }
2914
2915         return 0;
2916 }
2917
2918 /**
2919  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
2920  * @vsi: VF VSI used to get number of existing VLAN filters
2921  * @vfc: negotiated/supported VLAN filtering capabilities
2922  * @vfl: VLAN filter list from VF to validate
2923  *
2924  * Validate all of the filters in the VLAN filter list from the VF during the
2925  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
2926  * Otherwise return true.
2927  */
2928 static bool
2929 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
2930                                      struct virtchnl_vlan_filtering_caps *vfc,
2931                                      struct virtchnl_vlan_filter_list_v2 *vfl)
2932 {
2933         u16 num_requested_filters = vsi->num_vlan + vfl->num_elements;
2934
2935         if (num_requested_filters > vfc->max_filters)
2936                 return false;
2937
2938         return ice_vc_validate_vlan_filter_list(vfc, vfl);
2939 }
2940
2941 /**
2942  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
2943  * @vf: VF the message was received from
2944  * @msg: message received from the VF
2945  */
2946 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
2947 {
2948         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2949         struct virtchnl_vlan_filter_list_v2 *vfl =
2950                 (struct virtchnl_vlan_filter_list_v2 *)msg;
2951         struct ice_vsi *vsi;
2952
2953         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2954                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2955                 goto out;
2956         }
2957
2958         if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
2959                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2960                 goto out;
2961         }
2962
2963         vsi = ice_get_vf_vsi(vf);
2964         if (!vsi) {
2965                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2966                 goto out;
2967         }
2968
2969         if (!ice_vc_validate_add_vlan_filter_list(vsi,
2970                                                   &vf->vlan_v2_caps.filtering,
2971                                                   vfl)) {
2972                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2973                 goto out;
2974         }
2975
2976         if (ice_vc_add_vlans(vf, vsi, vfl))
2977                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2978
2979 out:
2980         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
2981                                      0);
2982 }
2983
2984 /**
2985  * ice_vc_valid_vlan_setting - validate VLAN setting
2986  * @negotiated_settings: negotiated VLAN settings during VF init
2987  * @ethertype_setting: ethertype(s) requested for the VLAN setting
2988  */
2989 static bool
2990 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
2991 {
2992         if (ethertype_setting && !(negotiated_settings & ethertype_setting))
2993                 return false;
2994
2995         /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
2996          * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
2997          */
2998         if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
2999             hweight32(ethertype_setting) > 1)
3000                 return false;
3001
3002         /* ability to modify the VLAN setting was not negotiated */
3003         if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3004                 return false;
3005
3006         return true;
3007 }
3008
3009 /**
3010  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3011  * @caps: negotiated VLAN settings during VF init
3012  * @msg: message to validate
3013  *
3014  * Used to validate any VLAN virtchnl message sent as a
3015  * virtchnl_vlan_setting structure. Validates the message against the
3016  * negotiated/supported caps during VF driver init.
3017  */
3018 static bool
3019 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3020                               struct virtchnl_vlan_setting *msg)
3021 {
3022         if ((!msg->outer_ethertype_setting &&
3023              !msg->inner_ethertype_setting) ||
3024             (!caps->outer && !caps->inner))
3025                 return false;
3026
3027         if (msg->outer_ethertype_setting &&
3028             !ice_vc_valid_vlan_setting(caps->outer,
3029                                        msg->outer_ethertype_setting))
3030                 return false;
3031
3032         if (msg->inner_ethertype_setting &&
3033             !ice_vc_valid_vlan_setting(caps->inner,
3034                                        msg->inner_ethertype_setting))
3035                 return false;
3036
3037         return true;
3038 }
3039
3040 /**
3041  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3042  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3043  * @tpid: VLAN TPID to populate
3044  */
3045 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3046 {
3047         switch (ethertype_setting) {
3048         case VIRTCHNL_VLAN_ETHERTYPE_8100:
3049                 *tpid = ETH_P_8021Q;
3050                 break;
3051         case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3052                 *tpid = ETH_P_8021AD;
3053                 break;
3054         case VIRTCHNL_VLAN_ETHERTYPE_9100:
3055                 *tpid = ETH_P_QINQ1;
3056                 break;
3057         default:
3058                 *tpid = 0;
3059                 return -EINVAL;
3060         }
3061
3062         return 0;
3063 }
3064
3065 /**
3066  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3067  * @vsi: VF's VSI used to enable the VLAN offload
3068  * @ena_offload: function used to enable the VLAN offload
3069  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3070  */
3071 static int
3072 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3073                         int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3074                         u32 ethertype_setting)
3075 {
3076         u16 tpid;
3077         int err;
3078
3079         err = ice_vc_get_tpid(ethertype_setting, &tpid);
3080         if (err)
3081                 return err;
3082
3083         err = ena_offload(vsi, tpid);
3084         if (err)
3085                 return err;
3086
3087         return 0;
3088 }
3089
3090 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX  3
3091 #define ICE_L2TSEL_BIT_OFFSET           23
3092 enum ice_l2tsel {
3093         ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3094         ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3095 };
3096
3097 /**
3098  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3099  * @vsi: VSI used to update l2tsel on
3100  * @l2tsel: l2tsel setting requested
3101  *
3102  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3103  * This will modify which descriptor field the first offloaded VLAN will be
3104  * stripped into.
3105  */
3106 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3107 {
3108         struct ice_hw *hw = &vsi->back->hw;
3109         u32 l2tsel_bit;
3110         int i;
3111
3112         if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3113                 l2tsel_bit = 0;
3114         else
3115                 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3116
3117         for (i = 0; i < vsi->alloc_rxq; i++) {
3118                 u16 pfq = vsi->rxq_map[i];
3119                 u32 qrx_context_offset;
3120                 u32 regval;
3121
3122                 qrx_context_offset =
3123                         QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3124
3125                 regval = rd32(hw, qrx_context_offset);
3126                 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3127                 regval |= l2tsel_bit;
3128                 wr32(hw, qrx_context_offset, regval);
3129         }
3130 }
3131
3132 /**
3133  * ice_vc_ena_vlan_stripping_v2_msg
3134  * @vf: VF the message was received from
3135  * @msg: message received from the VF
3136  *
3137  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3138  */
3139 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3140 {
3141         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3142         struct virtchnl_vlan_supported_caps *stripping_support;
3143         struct virtchnl_vlan_setting *strip_msg =
3144                 (struct virtchnl_vlan_setting *)msg;
3145         u32 ethertype_setting;
3146         struct ice_vsi *vsi;
3147
3148         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3149                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3150                 goto out;
3151         }
3152
3153         if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3154                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3155                 goto out;
3156         }
3157
3158         vsi = ice_get_vf_vsi(vf);
3159         if (!vsi) {
3160                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3161                 goto out;
3162         }
3163
3164         stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3165         if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3166                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3167                 goto out;
3168         }
3169
3170         ethertype_setting = strip_msg->outer_ethertype_setting;
3171         if (ethertype_setting) {
3172                 if (ice_vc_ena_vlan_offload(vsi,
3173                                             vsi->outer_vlan_ops.ena_stripping,
3174                                             ethertype_setting)) {
3175                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3176                         goto out;
3177                 } else {
3178                         enum ice_l2tsel l2tsel =
3179                                 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3180
3181                         /* PF tells the VF that the outer VLAN tag is always
3182                          * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3183                          * inner is always extracted to
3184                          * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3185                          * support outer stripping so the first tag always ends
3186                          * up in L2TAG2_2ND and the second/inner tag, if
3187                          * enabled, is extracted in L2TAG1.
3188                          */
3189                         ice_vsi_update_l2tsel(vsi, l2tsel);
3190                 }
3191         }
3192
3193         ethertype_setting = strip_msg->inner_ethertype_setting;
3194         if (ethertype_setting &&
3195             ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3196                                     ethertype_setting)) {
3197                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3198                 goto out;
3199         }
3200
3201 out:
3202         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3203                                      v_ret, NULL, 0);
3204 }
3205
3206 /**
3207  * ice_vc_dis_vlan_stripping_v2_msg
3208  * @vf: VF the message was received from
3209  * @msg: message received from the VF
3210  *
3211  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3212  */
3213 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3214 {
3215         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3216         struct virtchnl_vlan_supported_caps *stripping_support;
3217         struct virtchnl_vlan_setting *strip_msg =
3218                 (struct virtchnl_vlan_setting *)msg;
3219         u32 ethertype_setting;
3220         struct ice_vsi *vsi;
3221
3222         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3223                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3224                 goto out;
3225         }
3226
3227         if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3228                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3229                 goto out;
3230         }
3231
3232         vsi = ice_get_vf_vsi(vf);
3233         if (!vsi) {
3234                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3235                 goto out;
3236         }
3237
3238         stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3239         if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3240                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3241                 goto out;
3242         }
3243
3244         ethertype_setting = strip_msg->outer_ethertype_setting;
3245         if (ethertype_setting) {
3246                 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3247                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3248                         goto out;
3249                 } else {
3250                         enum ice_l2tsel l2tsel =
3251                                 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3252
3253                         /* PF tells the VF that the outer VLAN tag is always
3254                          * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3255                          * inner is always extracted to
3256                          * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3257                          * support inner stripping while outer stripping is
3258                          * disabled so that the first and only tag is extracted
3259                          * in L2TAG1.
3260                          */
3261                         ice_vsi_update_l2tsel(vsi, l2tsel);
3262                 }
3263         }
3264
3265         ethertype_setting = strip_msg->inner_ethertype_setting;
3266         if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3267                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3268                 goto out;
3269         }
3270
3271 out:
3272         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3273                                      v_ret, NULL, 0);
3274 }
3275
3276 /**
3277  * ice_vc_ena_vlan_insertion_v2_msg
3278  * @vf: VF the message was received from
3279  * @msg: message received from the VF
3280  *
3281  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3282  */
3283 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3284 {
3285         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3286         struct virtchnl_vlan_supported_caps *insertion_support;
3287         struct virtchnl_vlan_setting *insertion_msg =
3288                 (struct virtchnl_vlan_setting *)msg;
3289         u32 ethertype_setting;
3290         struct ice_vsi *vsi;
3291
3292         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3293                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3294                 goto out;
3295         }
3296
3297         if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3298                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3299                 goto out;
3300         }
3301
3302         vsi = ice_get_vf_vsi(vf);
3303         if (!vsi) {
3304                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3305                 goto out;
3306         }
3307
3308         insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3309         if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3310                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3311                 goto out;
3312         }
3313
3314         ethertype_setting = insertion_msg->outer_ethertype_setting;
3315         if (ethertype_setting &&
3316             ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3317                                     ethertype_setting)) {
3318                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3319                 goto out;
3320         }
3321
3322         ethertype_setting = insertion_msg->inner_ethertype_setting;
3323         if (ethertype_setting &&
3324             ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3325                                     ethertype_setting)) {
3326                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3327                 goto out;
3328         }
3329
3330 out:
3331         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3332                                      v_ret, NULL, 0);
3333 }
3334
3335 /**
3336  * ice_vc_dis_vlan_insertion_v2_msg
3337  * @vf: VF the message was received from
3338  * @msg: message received from the VF
3339  *
3340  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3341  */
3342 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3343 {
3344         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3345         struct virtchnl_vlan_supported_caps *insertion_support;
3346         struct virtchnl_vlan_setting *insertion_msg =
3347                 (struct virtchnl_vlan_setting *)msg;
3348         u32 ethertype_setting;
3349         struct ice_vsi *vsi;
3350
3351         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3352                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3353                 goto out;
3354         }
3355
3356         if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3357                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3358                 goto out;
3359         }
3360
3361         vsi = ice_get_vf_vsi(vf);
3362         if (!vsi) {
3363                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3364                 goto out;
3365         }
3366
3367         insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3368         if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3369                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3370                 goto out;
3371         }
3372
3373         ethertype_setting = insertion_msg->outer_ethertype_setting;
3374         if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3375                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3376                 goto out;
3377         }
3378
3379         ethertype_setting = insertion_msg->inner_ethertype_setting;
3380         if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3381                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3382                 goto out;
3383         }
3384
3385 out:
3386         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3387                                      v_ret, NULL, 0);
3388 }
3389
3390 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3391         .get_ver_msg = ice_vc_get_ver_msg,
3392         .get_vf_res_msg = ice_vc_get_vf_res_msg,
3393         .reset_vf = ice_vc_reset_vf_msg,
3394         .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3395         .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3396         .cfg_qs_msg = ice_vc_cfg_qs_msg,
3397         .ena_qs_msg = ice_vc_ena_qs_msg,
3398         .dis_qs_msg = ice_vc_dis_qs_msg,
3399         .request_qs_msg = ice_vc_request_qs_msg,
3400         .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3401         .config_rss_key = ice_vc_config_rss_key,
3402         .config_rss_lut = ice_vc_config_rss_lut,
3403         .get_stats_msg = ice_vc_get_stats_msg,
3404         .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3405         .add_vlan_msg = ice_vc_add_vlan_msg,
3406         .remove_vlan_msg = ice_vc_remove_vlan_msg,
3407         .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3408         .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3409         .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3410         .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3411         .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3412         .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3413         .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3414         .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3415         .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3416         .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3417         .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3418         .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3419 };
3420
3421 /**
3422  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3423  * @vf: the VF to switch ops
3424  */
3425 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3426 {
3427         vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3428 }
3429
3430 /**
3431  * ice_vc_repr_add_mac
3432  * @vf: pointer to VF
3433  * @msg: virtchannel message
3434  *
3435  * When port representors are created, we do not add MAC rule
3436  * to firmware, we store it so that PF could report same
3437  * MAC as VF.
3438  */
3439 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3440 {
3441         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3442         struct virtchnl_ether_addr_list *al =
3443             (struct virtchnl_ether_addr_list *)msg;
3444         struct ice_vsi *vsi;
3445         struct ice_pf *pf;
3446         int i;
3447
3448         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3449             !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3450                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3451                 goto handle_mac_exit;
3452         }
3453
3454         pf = vf->pf;
3455
3456         vsi = ice_get_vf_vsi(vf);
3457         if (!vsi) {
3458                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3459                 goto handle_mac_exit;
3460         }
3461
3462         for (i = 0; i < al->num_elements; i++) {
3463                 u8 *mac_addr = al->list[i].addr;
3464                 int result;
3465
3466                 if (!is_unicast_ether_addr(mac_addr) ||
3467                     ether_addr_equal(mac_addr, vf->hw_lan_addr.addr))
3468                         continue;
3469
3470                 if (vf->pf_set_mac) {
3471                         dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3472                         v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3473                         goto handle_mac_exit;
3474                 }
3475
3476                 result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr);
3477                 if (result) {
3478                         dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n",
3479                                 mac_addr, vf->vf_id, result);
3480                         goto handle_mac_exit;
3481                 }
3482
3483                 ice_vfhw_mac_add(vf, &al->list[i]);
3484                 vf->num_mac++;
3485                 break;
3486         }
3487
3488 handle_mac_exit:
3489         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3490                                      v_ret, NULL, 0);
3491 }
3492
3493 /**
3494  * ice_vc_repr_del_mac - response with success for deleting MAC
3495  * @vf: pointer to VF
3496  * @msg: virtchannel message
3497  *
3498  * Respond with success to not break normal VF flow.
3499  * For legacy VF driver try to update cached MAC address.
3500  */
3501 static int
3502 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3503 {
3504         struct virtchnl_ether_addr_list *al =
3505                 (struct virtchnl_ether_addr_list *)msg;
3506
3507         ice_update_legacy_cached_mac(vf, &al->list[0]);
3508
3509         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3510                                      VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3511 }
3512
3513 static int ice_vc_repr_add_vlan(struct ice_vf *vf, u8 __always_unused *msg)
3514 {
3515         dev_dbg(ice_pf_to_dev(vf->pf),
3516                 "Can't add VLAN in switchdev mode for VF %d\n", vf->vf_id);
3517         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN,
3518                                      VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3519 }
3520
3521 static int ice_vc_repr_del_vlan(struct ice_vf *vf, u8 __always_unused *msg)
3522 {
3523         dev_dbg(ice_pf_to_dev(vf->pf),
3524                 "Can't delete VLAN in switchdev mode for VF %d\n", vf->vf_id);
3525         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN,
3526                                      VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3527 }
3528
3529 static int ice_vc_repr_ena_vlan_stripping(struct ice_vf *vf)
3530 {
3531         dev_dbg(ice_pf_to_dev(vf->pf),
3532                 "Can't enable VLAN stripping in switchdev mode for VF %d\n",
3533                 vf->vf_id);
3534         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
3535                                      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3536                                      NULL, 0);
3537 }
3538
3539 static int ice_vc_repr_dis_vlan_stripping(struct ice_vf *vf)
3540 {
3541         dev_dbg(ice_pf_to_dev(vf->pf),
3542                 "Can't disable VLAN stripping in switchdev mode for VF %d\n",
3543                 vf->vf_id);
3544         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
3545                                      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3546                                      NULL, 0);
3547 }
3548
3549 static int
3550 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3551 {
3552         dev_dbg(ice_pf_to_dev(vf->pf),
3553                 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3554                 vf->vf_id);
3555         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3556                                      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3557                                      NULL, 0);
3558 }
3559
3560 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3561         .get_ver_msg = ice_vc_get_ver_msg,
3562         .get_vf_res_msg = ice_vc_get_vf_res_msg,
3563         .reset_vf = ice_vc_reset_vf_msg,
3564         .add_mac_addr_msg = ice_vc_repr_add_mac,
3565         .del_mac_addr_msg = ice_vc_repr_del_mac,
3566         .cfg_qs_msg = ice_vc_cfg_qs_msg,
3567         .ena_qs_msg = ice_vc_ena_qs_msg,
3568         .dis_qs_msg = ice_vc_dis_qs_msg,
3569         .request_qs_msg = ice_vc_request_qs_msg,
3570         .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3571         .config_rss_key = ice_vc_config_rss_key,
3572         .config_rss_lut = ice_vc_config_rss_lut,
3573         .get_stats_msg = ice_vc_get_stats_msg,
3574         .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3575         .add_vlan_msg = ice_vc_repr_add_vlan,
3576         .remove_vlan_msg = ice_vc_repr_del_vlan,
3577         .ena_vlan_stripping = ice_vc_repr_ena_vlan_stripping,
3578         .dis_vlan_stripping = ice_vc_repr_dis_vlan_stripping,
3579         .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3580         .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3581         .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3582         .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3583         .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3584         .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3585         .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3586         .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3587         .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3588         .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3589 };
3590
3591 /**
3592  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3593  * @vf: the VF to switch ops
3594  */
3595 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3596 {
3597         vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3598 }
3599
3600 /**
3601  * ice_vc_process_vf_msg - Process request from VF
3602  * @pf: pointer to the PF structure
3603  * @event: pointer to the AQ event
3604  *
3605  * called from the common asq/arq handler to
3606  * process request from VF
3607  */
3608 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
3609 {
3610         u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3611         s16 vf_id = le16_to_cpu(event->desc.retval);
3612         const struct ice_virtchnl_ops *ops;
3613         u16 msglen = event->msg_len;
3614         u8 *msg = event->msg_buf;
3615         struct ice_vf *vf = NULL;
3616         struct device *dev;
3617         int err = 0;
3618
3619         dev = ice_pf_to_dev(pf);
3620
3621         vf = ice_get_vf_by_id(pf, vf_id);
3622         if (!vf) {
3623                 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3624                         vf_id, v_opcode, msglen);
3625                 return;
3626         }
3627
3628         /* Check if VF is disabled. */
3629         if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3630                 err = -EPERM;
3631                 goto error_handler;
3632         }
3633
3634         ops = vf->virtchnl_ops;
3635
3636         /* Perform basic checks on the msg */
3637         err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3638         if (err) {
3639                 if (err == VIRTCHNL_STATUS_ERR_PARAM)
3640                         err = -EPERM;
3641                 else
3642                         err = -EINVAL;
3643         }
3644
3645         if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3646                 ice_vc_send_msg_to_vf(vf, v_opcode,
3647                                       VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3648                                       0);
3649                 ice_put_vf(vf);
3650                 return;
3651         }
3652
3653 error_handler:
3654         if (err) {
3655                 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3656                                       NULL, 0);
3657                 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3658                         vf_id, v_opcode, msglen, err);
3659                 ice_put_vf(vf);
3660                 return;
3661         }
3662
3663         /* VF is being configured in another context that triggers a VFR, so no
3664          * need to process this message
3665          */
3666         if (!mutex_trylock(&vf->cfg_lock)) {
3667                 dev_info(dev, "VF %u is being configured in another context that will trigger a VFR, so there is no need to handle this message\n",
3668                          vf->vf_id);
3669                 ice_put_vf(vf);
3670                 return;
3671         }
3672
3673         switch (v_opcode) {
3674         case VIRTCHNL_OP_VERSION:
3675                 err = ops->get_ver_msg(vf, msg);
3676                 break;
3677         case VIRTCHNL_OP_GET_VF_RESOURCES:
3678                 err = ops->get_vf_res_msg(vf, msg);
3679                 if (ice_vf_init_vlan_stripping(vf))
3680                         dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
3681                                 vf->vf_id);
3682                 ice_vc_notify_vf_link_state(vf);
3683                 break;
3684         case VIRTCHNL_OP_RESET_VF:
3685                 ops->reset_vf(vf);
3686                 break;
3687         case VIRTCHNL_OP_ADD_ETH_ADDR:
3688                 err = ops->add_mac_addr_msg(vf, msg);
3689                 break;
3690         case VIRTCHNL_OP_DEL_ETH_ADDR:
3691                 err = ops->del_mac_addr_msg(vf, msg);
3692                 break;
3693         case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3694                 err = ops->cfg_qs_msg(vf, msg);
3695                 break;
3696         case VIRTCHNL_OP_ENABLE_QUEUES:
3697                 err = ops->ena_qs_msg(vf, msg);
3698                 ice_vc_notify_vf_link_state(vf);
3699                 break;
3700         case VIRTCHNL_OP_DISABLE_QUEUES:
3701                 err = ops->dis_qs_msg(vf, msg);
3702                 break;
3703         case VIRTCHNL_OP_REQUEST_QUEUES:
3704                 err = ops->request_qs_msg(vf, msg);
3705                 break;
3706         case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3707                 err = ops->cfg_irq_map_msg(vf, msg);
3708                 break;
3709         case VIRTCHNL_OP_CONFIG_RSS_KEY:
3710                 err = ops->config_rss_key(vf, msg);
3711                 break;
3712         case VIRTCHNL_OP_CONFIG_RSS_LUT:
3713                 err = ops->config_rss_lut(vf, msg);
3714                 break;
3715         case VIRTCHNL_OP_GET_STATS:
3716                 err = ops->get_stats_msg(vf, msg);
3717                 break;
3718         case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
3719                 err = ops->cfg_promiscuous_mode_msg(vf, msg);
3720                 break;
3721         case VIRTCHNL_OP_ADD_VLAN:
3722                 err = ops->add_vlan_msg(vf, msg);
3723                 break;
3724         case VIRTCHNL_OP_DEL_VLAN:
3725                 err = ops->remove_vlan_msg(vf, msg);
3726                 break;
3727         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
3728                 err = ops->ena_vlan_stripping(vf);
3729                 break;
3730         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
3731                 err = ops->dis_vlan_stripping(vf);
3732                 break;
3733         case VIRTCHNL_OP_ADD_FDIR_FILTER:
3734                 err = ops->add_fdir_fltr_msg(vf, msg);
3735                 break;
3736         case VIRTCHNL_OP_DEL_FDIR_FILTER:
3737                 err = ops->del_fdir_fltr_msg(vf, msg);
3738                 break;
3739         case VIRTCHNL_OP_ADD_RSS_CFG:
3740                 err = ops->handle_rss_cfg_msg(vf, msg, true);
3741                 break;
3742         case VIRTCHNL_OP_DEL_RSS_CFG:
3743                 err = ops->handle_rss_cfg_msg(vf, msg, false);
3744                 break;
3745         case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
3746                 err = ops->get_offload_vlan_v2_caps(vf);
3747                 break;
3748         case VIRTCHNL_OP_ADD_VLAN_V2:
3749                 err = ops->add_vlan_v2_msg(vf, msg);
3750                 break;
3751         case VIRTCHNL_OP_DEL_VLAN_V2:
3752                 err = ops->remove_vlan_v2_msg(vf, msg);
3753                 break;
3754         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
3755                 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
3756                 break;
3757         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
3758                 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
3759                 break;
3760         case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
3761                 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
3762                 break;
3763         case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
3764                 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
3765                 break;
3766         case VIRTCHNL_OP_UNKNOWN:
3767         default:
3768                 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
3769                         vf_id);
3770                 err = ice_vc_send_msg_to_vf(vf, v_opcode,
3771                                             VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3772                                             NULL, 0);
3773                 break;
3774         }
3775         if (err) {
3776                 /* Helper function cares less about error return values here
3777                  * as it is busy with pending work.
3778                  */
3779                 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
3780                          vf_id, v_opcode, err);
3781         }
3782
3783         mutex_unlock(&vf->cfg_lock);
3784         ice_put_vf(vf);
3785 }