Merge tag 'Wimplicit-fallthrough-clang-5.14-rc1' of git://git.kernel.org/pub/scm...
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40
41 #include "e1000.h"
42
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46         struct ich8_hsfsts {
47                 u16 flcdone:1;  /* bit 0 Flash Cycle Done */
48                 u16 flcerr:1;   /* bit 1 Flash Cycle Error */
49                 u16 dael:1;     /* bit 2 Direct Access error Log */
50                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51                 u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
52                 u16 reserved1:2;        /* bit 13:6 Reserved */
53                 u16 reserved2:6;        /* bit 13:6 Reserved */
54                 u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
55                 u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
56         } hsf_status;
57         u16 regval;
58 };
59
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63         struct ich8_hsflctl {
64                 u16 flcgo:1;    /* 0 Flash Cycle Go */
65                 u16 flcycle:2;  /* 2:1 Flash Cycle */
66                 u16 reserved:5; /* 7:3 Reserved  */
67                 u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
68                 u16 flockdn:6;  /* 15:10 Reserved */
69         } hsf_ctrl;
70         u16 regval;
71 };
72
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75         struct ich8_flracc {
76                 u32 grra:8;     /* 0:7 GbE region Read Access */
77                 u32 grwa:8;     /* 8:15 GbE region Write Access */
78                 u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
79                 u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
80         } hsf_flregacc;
81         u16 regval;
82 };
83
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86         struct ich8_pr {
87                 u32 base:13;    /* 0:12 Protected Range Base */
88                 u32 reserved1:2;        /* 13:14 Reserved */
89                 u32 rpe:1;      /* 15 Read Protection Enable */
90                 u32 limit:13;   /* 16:28 Protected Range Limit */
91                 u32 reserved2:2;        /* 29:30 Reserved */
92                 u32 wpe:1;      /* 31 Write Protection Enable */
93         } range;
94         u32 regval;
95 };
96
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101                                                 u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103                                          u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105                                          u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107                                          u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109                                            u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111                                           u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113                                             u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115                                                  u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143         return readw(hw->flash_address + reg);
144 }
145
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148         return readl(hw->flash_address + reg);
149 }
150
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153         writew(val, hw->flash_address + reg);
154 }
155
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158         writel(val, hw->flash_address + reg);
159 }
160
161 #define er16flash(reg)          __er16flash(hw, (reg))
162 #define er32flash(reg)          __er32flash(hw, (reg))
163 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
165
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178         u16 phy_reg = 0;
179         u32 phy_id = 0;
180         s32 ret_val = 0;
181         u16 retry_count;
182         u32 mac_reg = 0;
183
184         for (retry_count = 0; retry_count < 2; retry_count++) {
185                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186                 if (ret_val || (phy_reg == 0xFFFF))
187                         continue;
188                 phy_id = (u32)(phy_reg << 16);
189
190                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191                 if (ret_val || (phy_reg == 0xFFFF)) {
192                         phy_id = 0;
193                         continue;
194                 }
195                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196                 break;
197         }
198
199         if (hw->phy.id) {
200                 if (hw->phy.id == phy_id)
201                         goto out;
202         } else if (phy_id) {
203                 hw->phy.id = phy_id;
204                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205                 goto out;
206         }
207
208         /* In case the PHY needs to be in mdio slow mode,
209          * set slow mode and try to get the PHY id again.
210          */
211         if (hw->mac.type < e1000_pch_lpt) {
212                 hw->phy.ops.release(hw);
213                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214                 if (!ret_val)
215                         ret_val = e1000e_get_phy_id(hw);
216                 hw->phy.ops.acquire(hw);
217         }
218
219         if (ret_val)
220                 return false;
221 out:
222         if (hw->mac.type >= e1000_pch_lpt) {
223                 /* Only unforce SMBus if ME is not active */
224                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225                         /* Unforce SMBus mode in PHY */
226                         e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227                         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228                         e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230                         /* Unforce SMBus mode in MAC */
231                         mac_reg = er32(CTRL_EXT);
232                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233                         ew32(CTRL_EXT, mac_reg);
234                 }
235         }
236
237         return true;
238 }
239
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249         u32 mac_reg;
250
251         /* Set Phy Config Counter to 50msec */
252         mac_reg = er32(FEXTNVM3);
253         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255         ew32(FEXTNVM3, mac_reg);
256
257         /* Toggle LANPHYPC Value bit */
258         mac_reg = er32(CTRL);
259         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261         ew32(CTRL, mac_reg);
262         e1e_flush();
263         usleep_range(10, 20);
264         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265         ew32(CTRL, mac_reg);
266         e1e_flush();
267
268         if (hw->mac.type < e1000_pch_lpt) {
269                 msleep(50);
270         } else {
271                 u16 count = 20;
272
273                 do {
274                         usleep_range(5000, 6000);
275                 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277                 msleep(30);
278         }
279 }
280
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290         struct e1000_adapter *adapter = hw->adapter;
291         u32 mac_reg, fwsm = er32(FWSM);
292         s32 ret_val;
293
294         /* Gate automatic PHY configuration by hardware on managed and
295          * non-managed 82579 and newer adapters.
296          */
297         e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299         /* It is not possible to be certain of the current state of ULP
300          * so forcibly disable it.
301          */
302         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303         ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304         if (ret_val)
305                 e_warn("Failed to disable ULP\n");
306
307         ret_val = hw->phy.ops.acquire(hw);
308         if (ret_val) {
309                 e_dbg("Failed to initialize PHY flow\n");
310                 goto out;
311         }
312
313         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314          * inaccessible and resetting the PHY is not blocked, toggle the
315          * LANPHYPC Value bit to force the interconnect to PCIe mode.
316          */
317         switch (hw->mac.type) {
318         case e1000_pch_lpt:
319         case e1000_pch_spt:
320         case e1000_pch_cnp:
321         case e1000_pch_tgp:
322         case e1000_pch_adp:
323         case e1000_pch_mtp:
324                 if (e1000_phy_is_accessible_pchlan(hw))
325                         break;
326
327                 /* Before toggling LANPHYPC, see if PHY is accessible by
328                  * forcing MAC to SMBus mode first.
329                  */
330                 mac_reg = er32(CTRL_EXT);
331                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
332                 ew32(CTRL_EXT, mac_reg);
333
334                 /* Wait 50 milliseconds for MAC to finish any retries
335                  * that it might be trying to perform from previous
336                  * attempts to acknowledge any phy read requests.
337                  */
338                 msleep(50);
339
340                 fallthrough;
341         case e1000_pch2lan:
342                 if (e1000_phy_is_accessible_pchlan(hw))
343                         break;
344
345                 fallthrough;
346         case e1000_pchlan:
347                 if ((hw->mac.type == e1000_pchlan) &&
348                     (fwsm & E1000_ICH_FWSM_FW_VALID))
349                         break;
350
351                 if (hw->phy.ops.check_reset_block(hw)) {
352                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
353                         ret_val = -E1000_ERR_PHY;
354                         break;
355                 }
356
357                 /* Toggle LANPHYPC Value bit */
358                 e1000_toggle_lanphypc_pch_lpt(hw);
359                 if (hw->mac.type >= e1000_pch_lpt) {
360                         if (e1000_phy_is_accessible_pchlan(hw))
361                                 break;
362
363                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
364                          * so ensure that the MAC is also out of SMBus mode
365                          */
366                         mac_reg = er32(CTRL_EXT);
367                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
368                         ew32(CTRL_EXT, mac_reg);
369
370                         if (e1000_phy_is_accessible_pchlan(hw))
371                                 break;
372
373                         ret_val = -E1000_ERR_PHY;
374                 }
375                 break;
376         default:
377                 break;
378         }
379
380         hw->phy.ops.release(hw);
381         if (!ret_val) {
382
383                 /* Check to see if able to reset PHY.  Print error if not */
384                 if (hw->phy.ops.check_reset_block(hw)) {
385                         e_err("Reset blocked by ME\n");
386                         goto out;
387                 }
388
389                 /* Reset the PHY before any access to it.  Doing so, ensures
390                  * that the PHY is in a known good state before we read/write
391                  * PHY registers.  The generic reset is sufficient here,
392                  * because we haven't determined the PHY type yet.
393                  */
394                 ret_val = e1000e_phy_hw_reset_generic(hw);
395                 if (ret_val)
396                         goto out;
397
398                 /* On a successful reset, possibly need to wait for the PHY
399                  * to quiesce to an accessible state before returning control
400                  * to the calling function.  If the PHY does not quiesce, then
401                  * return E1000E_BLK_PHY_RESET, as this is the condition that
402                  *  the PHY is in.
403                  */
404                 ret_val = hw->phy.ops.check_reset_block(hw);
405                 if (ret_val)
406                         e_err("ME blocked access to PHY after reset\n");
407         }
408
409 out:
410         /* Ungate automatic PHY configuration on non-managed 82579 */
411         if ((hw->mac.type == e1000_pch2lan) &&
412             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
413                 usleep_range(10000, 11000);
414                 e1000_gate_hw_phy_config_ich8lan(hw, false);
415         }
416
417         return ret_val;
418 }
419
420 /**
421  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
422  *  @hw: pointer to the HW structure
423  *
424  *  Initialize family-specific PHY parameters and function pointers.
425  **/
426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
427 {
428         struct e1000_phy_info *phy = &hw->phy;
429         s32 ret_val;
430
431         phy->addr = 1;
432         phy->reset_delay_us = 100;
433
434         phy->ops.set_page = e1000_set_page_igp;
435         phy->ops.read_reg = e1000_read_phy_reg_hv;
436         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
437         phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
438         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
439         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
440         phy->ops.write_reg = e1000_write_phy_reg_hv;
441         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
442         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
443         phy->ops.power_up = e1000_power_up_phy_copper;
444         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
445         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
446
447         phy->id = e1000_phy_unknown;
448
449         ret_val = e1000_init_phy_workarounds_pchlan(hw);
450         if (ret_val)
451                 return ret_val;
452
453         if (phy->id == e1000_phy_unknown)
454                 switch (hw->mac.type) {
455                 default:
456                         ret_val = e1000e_get_phy_id(hw);
457                         if (ret_val)
458                                 return ret_val;
459                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
460                                 break;
461                         fallthrough;
462                 case e1000_pch2lan:
463                 case e1000_pch_lpt:
464                 case e1000_pch_spt:
465                 case e1000_pch_cnp:
466                 case e1000_pch_tgp:
467                 case e1000_pch_adp:
468                 case e1000_pch_mtp:
469                         /* In case the PHY needs to be in mdio slow mode,
470                          * set slow mode and try to get the PHY id again.
471                          */
472                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
473                         if (ret_val)
474                                 return ret_val;
475                         ret_val = e1000e_get_phy_id(hw);
476                         if (ret_val)
477                                 return ret_val;
478                         break;
479                 }
480         phy->type = e1000e_get_phy_type_from_id(phy->id);
481
482         switch (phy->type) {
483         case e1000_phy_82577:
484         case e1000_phy_82579:
485         case e1000_phy_i217:
486                 phy->ops.check_polarity = e1000_check_polarity_82577;
487                 phy->ops.force_speed_duplex =
488                     e1000_phy_force_speed_duplex_82577;
489                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
490                 phy->ops.get_info = e1000_get_phy_info_82577;
491                 phy->ops.commit = e1000e_phy_sw_reset;
492                 break;
493         case e1000_phy_82578:
494                 phy->ops.check_polarity = e1000_check_polarity_m88;
495                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
496                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
497                 phy->ops.get_info = e1000e_get_phy_info_m88;
498                 break;
499         default:
500                 ret_val = -E1000_ERR_PHY;
501                 break;
502         }
503
504         return ret_val;
505 }
506
507 /**
508  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
509  *  @hw: pointer to the HW structure
510  *
511  *  Initialize family-specific PHY parameters and function pointers.
512  **/
513 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
514 {
515         struct e1000_phy_info *phy = &hw->phy;
516         s32 ret_val;
517         u16 i = 0;
518
519         phy->addr = 1;
520         phy->reset_delay_us = 100;
521
522         phy->ops.power_up = e1000_power_up_phy_copper;
523         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
524
525         /* We may need to do this twice - once for IGP and if that fails,
526          * we'll set BM func pointers and try again
527          */
528         ret_val = e1000e_determine_phy_address(hw);
529         if (ret_val) {
530                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
531                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
532                 ret_val = e1000e_determine_phy_address(hw);
533                 if (ret_val) {
534                         e_dbg("Cannot determine PHY addr. Erroring out\n");
535                         return ret_val;
536                 }
537         }
538
539         phy->id = 0;
540         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
541                (i++ < 100)) {
542                 usleep_range(1000, 1100);
543                 ret_val = e1000e_get_phy_id(hw);
544                 if (ret_val)
545                         return ret_val;
546         }
547
548         /* Verify phy id */
549         switch (phy->id) {
550         case IGP03E1000_E_PHY_ID:
551                 phy->type = e1000_phy_igp_3;
552                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
553                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
554                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
555                 phy->ops.get_info = e1000e_get_phy_info_igp;
556                 phy->ops.check_polarity = e1000_check_polarity_igp;
557                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
558                 break;
559         case IFE_E_PHY_ID:
560         case IFE_PLUS_E_PHY_ID:
561         case IFE_C_E_PHY_ID:
562                 phy->type = e1000_phy_ife;
563                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
564                 phy->ops.get_info = e1000_get_phy_info_ife;
565                 phy->ops.check_polarity = e1000_check_polarity_ife;
566                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
567                 break;
568         case BME1000_E_PHY_ID:
569                 phy->type = e1000_phy_bm;
570                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
571                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
572                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
573                 phy->ops.commit = e1000e_phy_sw_reset;
574                 phy->ops.get_info = e1000e_get_phy_info_m88;
575                 phy->ops.check_polarity = e1000_check_polarity_m88;
576                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
577                 break;
578         default:
579                 return -E1000_ERR_PHY;
580         }
581
582         return 0;
583 }
584
585 /**
586  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
587  *  @hw: pointer to the HW structure
588  *
589  *  Initialize family-specific NVM parameters and function
590  *  pointers.
591  **/
592 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
593 {
594         struct e1000_nvm_info *nvm = &hw->nvm;
595         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
596         u32 gfpreg, sector_base_addr, sector_end_addr;
597         u16 i;
598         u32 nvm_size;
599
600         nvm->type = e1000_nvm_flash_sw;
601
602         if (hw->mac.type >= e1000_pch_spt) {
603                 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
604                  * STRAP register. This is because in SPT the GbE Flash region
605                  * is no longer accessed through the flash registers. Instead,
606                  * the mechanism has changed, and the Flash region access
607                  * registers are now implemented in GbE memory space.
608                  */
609                 nvm->flash_base_addr = 0;
610                 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
611                     * NVM_SIZE_MULTIPLIER;
612                 nvm->flash_bank_size = nvm_size / 2;
613                 /* Adjust to word count */
614                 nvm->flash_bank_size /= sizeof(u16);
615                 /* Set the base address for flash register access */
616                 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
617         } else {
618                 /* Can't read flash registers if register set isn't mapped. */
619                 if (!hw->flash_address) {
620                         e_dbg("ERROR: Flash registers not mapped\n");
621                         return -E1000_ERR_CONFIG;
622                 }
623
624                 gfpreg = er32flash(ICH_FLASH_GFPREG);
625
626                 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
627                  * Add 1 to sector_end_addr since this sector is included in
628                  * the overall size.
629                  */
630                 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
631                 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
632
633                 /* flash_base_addr is byte-aligned */
634                 nvm->flash_base_addr = sector_base_addr
635                     << FLASH_SECTOR_ADDR_SHIFT;
636
637                 /* find total size of the NVM, then cut in half since the total
638                  * size represents two separate NVM banks.
639                  */
640                 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
641                                         << FLASH_SECTOR_ADDR_SHIFT);
642                 nvm->flash_bank_size /= 2;
643                 /* Adjust to word count */
644                 nvm->flash_bank_size /= sizeof(u16);
645         }
646
647         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
648
649         /* Clear shadow ram */
650         for (i = 0; i < nvm->word_size; i++) {
651                 dev_spec->shadow_ram[i].modified = false;
652                 dev_spec->shadow_ram[i].value = 0xFFFF;
653         }
654
655         return 0;
656 }
657
658 /**
659  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
660  *  @hw: pointer to the HW structure
661  *
662  *  Initialize family-specific MAC parameters and function
663  *  pointers.
664  **/
665 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
666 {
667         struct e1000_mac_info *mac = &hw->mac;
668
669         /* Set media type function pointer */
670         hw->phy.media_type = e1000_media_type_copper;
671
672         /* Set mta register count */
673         mac->mta_reg_count = 32;
674         /* Set rar entry count */
675         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
676         if (mac->type == e1000_ich8lan)
677                 mac->rar_entry_count--;
678         /* FWSM register */
679         mac->has_fwsm = true;
680         /* ARC subsystem not supported */
681         mac->arc_subsystem_valid = false;
682         /* Adaptive IFS supported */
683         mac->adaptive_ifs = true;
684
685         /* LED and other operations */
686         switch (mac->type) {
687         case e1000_ich8lan:
688         case e1000_ich9lan:
689         case e1000_ich10lan:
690                 /* check management mode */
691                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
692                 /* ID LED init */
693                 mac->ops.id_led_init = e1000e_id_led_init_generic;
694                 /* blink LED */
695                 mac->ops.blink_led = e1000e_blink_led_generic;
696                 /* setup LED */
697                 mac->ops.setup_led = e1000e_setup_led_generic;
698                 /* cleanup LED */
699                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
700                 /* turn on/off LED */
701                 mac->ops.led_on = e1000_led_on_ich8lan;
702                 mac->ops.led_off = e1000_led_off_ich8lan;
703                 break;
704         case e1000_pch2lan:
705                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
706                 mac->ops.rar_set = e1000_rar_set_pch2lan;
707                 fallthrough;
708         case e1000_pch_lpt:
709         case e1000_pch_spt:
710         case e1000_pch_cnp:
711         case e1000_pch_tgp:
712         case e1000_pch_adp:
713         case e1000_pch_mtp:
714         case e1000_pchlan:
715                 /* check management mode */
716                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
717                 /* ID LED init */
718                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
719                 /* setup LED */
720                 mac->ops.setup_led = e1000_setup_led_pchlan;
721                 /* cleanup LED */
722                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
723                 /* turn on/off LED */
724                 mac->ops.led_on = e1000_led_on_pchlan;
725                 mac->ops.led_off = e1000_led_off_pchlan;
726                 break;
727         default:
728                 break;
729         }
730
731         if (mac->type >= e1000_pch_lpt) {
732                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
733                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
734                 mac->ops.setup_physical_interface =
735                     e1000_setup_copper_link_pch_lpt;
736                 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
737         }
738
739         /* Enable PCS Lock-loss workaround for ICH8 */
740         if (mac->type == e1000_ich8lan)
741                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
742
743         return 0;
744 }
745
746 /**
747  *  __e1000_access_emi_reg_locked - Read/write EMI register
748  *  @hw: pointer to the HW structure
749  *  @address: EMI address to program
750  *  @data: pointer to value to read/write from/to the EMI address
751  *  @read: boolean flag to indicate read or write
752  *
753  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
754  **/
755 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
756                                          u16 *data, bool read)
757 {
758         s32 ret_val;
759
760         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
761         if (ret_val)
762                 return ret_val;
763
764         if (read)
765                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
766         else
767                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
768
769         return ret_val;
770 }
771
772 /**
773  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
774  *  @hw: pointer to the HW structure
775  *  @addr: EMI address to program
776  *  @data: value to be read from the EMI address
777  *
778  *  Assumes the SW/FW/HW Semaphore is already acquired.
779  **/
780 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
781 {
782         return __e1000_access_emi_reg_locked(hw, addr, data, true);
783 }
784
785 /**
786  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
787  *  @hw: pointer to the HW structure
788  *  @addr: EMI address to program
789  *  @data: value to be written to the EMI address
790  *
791  *  Assumes the SW/FW/HW Semaphore is already acquired.
792  **/
793 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
794 {
795         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
796 }
797
798 /**
799  *  e1000_set_eee_pchlan - Enable/disable EEE support
800  *  @hw: pointer to the HW structure
801  *
802  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
803  *  the link and the EEE capabilities of the link partner.  The LPI Control
804  *  register bits will remain set only if/when link is up.
805  *
806  *  EEE LPI must not be asserted earlier than one second after link is up.
807  *  On 82579, EEE LPI should not be enabled until such time otherwise there
808  *  can be link issues with some switches.  Other devices can have EEE LPI
809  *  enabled immediately upon link up since they have a timer in hardware which
810  *  prevents LPI from being asserted too early.
811  **/
812 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
813 {
814         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
815         s32 ret_val;
816         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
817
818         switch (hw->phy.type) {
819         case e1000_phy_82579:
820                 lpa = I82579_EEE_LP_ABILITY;
821                 pcs_status = I82579_EEE_PCS_STATUS;
822                 adv_addr = I82579_EEE_ADVERTISEMENT;
823                 break;
824         case e1000_phy_i217:
825                 lpa = I217_EEE_LP_ABILITY;
826                 pcs_status = I217_EEE_PCS_STATUS;
827                 adv_addr = I217_EEE_ADVERTISEMENT;
828                 break;
829         default:
830                 return 0;
831         }
832
833         ret_val = hw->phy.ops.acquire(hw);
834         if (ret_val)
835                 return ret_val;
836
837         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
838         if (ret_val)
839                 goto release;
840
841         /* Clear bits that enable EEE in various speeds */
842         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
843
844         /* Enable EEE if not disabled by user */
845         if (!dev_spec->eee_disable) {
846                 /* Save off link partner's EEE ability */
847                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
848                                                     &dev_spec->eee_lp_ability);
849                 if (ret_val)
850                         goto release;
851
852                 /* Read EEE advertisement */
853                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
854                 if (ret_val)
855                         goto release;
856
857                 /* Enable EEE only for speeds in which the link partner is
858                  * EEE capable and for which we advertise EEE.
859                  */
860                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
861                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
862
863                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
864                         e1e_rphy_locked(hw, MII_LPA, &data);
865                         if (data & LPA_100FULL)
866                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
867                         else
868                                 /* EEE is not supported in 100Half, so ignore
869                                  * partner's EEE in 100 ability if full-duplex
870                                  * is not advertised.
871                                  */
872                                 dev_spec->eee_lp_ability &=
873                                     ~I82579_EEE_100_SUPPORTED;
874                 }
875         }
876
877         if (hw->phy.type == e1000_phy_82579) {
878                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
879                                                     &data);
880                 if (ret_val)
881                         goto release;
882
883                 data &= ~I82579_LPI_100_PLL_SHUT;
884                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
885                                                      data);
886         }
887
888         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
889         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
890         if (ret_val)
891                 goto release;
892
893         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
894 release:
895         hw->phy.ops.release(hw);
896
897         return ret_val;
898 }
899
900 /**
901  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
902  *  @hw:   pointer to the HW structure
903  *  @link: link up bool flag
904  *
905  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
906  *  preventing further DMA write requests.  Workaround the issue by disabling
907  *  the de-assertion of the clock request when in 1Gpbs mode.
908  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
909  *  speeds in order to avoid Tx hangs.
910  **/
911 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
912 {
913         u32 fextnvm6 = er32(FEXTNVM6);
914         u32 status = er32(STATUS);
915         s32 ret_val = 0;
916         u16 reg;
917
918         if (link && (status & E1000_STATUS_SPEED_1000)) {
919                 ret_val = hw->phy.ops.acquire(hw);
920                 if (ret_val)
921                         return ret_val;
922
923                 ret_val =
924                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
925                                                 &reg);
926                 if (ret_val)
927                         goto release;
928
929                 ret_val =
930                     e1000e_write_kmrn_reg_locked(hw,
931                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
932                                                  reg &
933                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
934                 if (ret_val)
935                         goto release;
936
937                 usleep_range(10, 20);
938
939                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
940
941                 ret_val =
942                     e1000e_write_kmrn_reg_locked(hw,
943                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
944                                                  reg);
945 release:
946                 hw->phy.ops.release(hw);
947         } else {
948                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
949                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
950
951                 if ((hw->phy.revision > 5) || !link ||
952                     ((status & E1000_STATUS_SPEED_100) &&
953                      (status & E1000_STATUS_FD)))
954                         goto update_fextnvm6;
955
956                 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
957                 if (ret_val)
958                         return ret_val;
959
960                 /* Clear link status transmit timeout */
961                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
962
963                 if (status & E1000_STATUS_SPEED_100) {
964                         /* Set inband Tx timeout to 5x10us for 100Half */
965                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
966
967                         /* Do not extend the K1 entry latency for 100Half */
968                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
969                 } else {
970                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
971                         reg |= 50 <<
972                             I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973
974                         /* Extend the K1 entry latency for 10 Mbps */
975                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976                 }
977
978                 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
979                 if (ret_val)
980                         return ret_val;
981
982 update_fextnvm6:
983                 ew32(FEXTNVM6, fextnvm6);
984         }
985
986         return ret_val;
987 }
988
989 /**
990  *  e1000_platform_pm_pch_lpt - Set platform power management values
991  *  @hw: pointer to the HW structure
992  *  @link: bool indicating link status
993  *
994  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
995  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
996  *  when link is up (which must not exceed the maximum latency supported
997  *  by the platform), otherwise specify there is no LTR requirement.
998  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
999  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1000  *  Capability register set, on this device LTR is set by writing the
1001  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1002  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1003  *  message to the PMC.
1004  **/
1005 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1006 {
1007         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1008             link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1009         u16 lat_enc = 0;        /* latency encoded */
1010
1011         if (link) {
1012                 u16 speed, duplex, scale = 0;
1013                 u16 max_snoop, max_nosnoop;
1014                 u16 max_ltr_enc;        /* max LTR latency encoded */
1015                 u64 value;
1016                 u32 rxa;
1017
1018                 if (!hw->adapter->max_frame_size) {
1019                         e_dbg("max_frame_size not set.\n");
1020                         return -E1000_ERR_CONFIG;
1021                 }
1022
1023                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1024                 if (!speed) {
1025                         e_dbg("Speed not set.\n");
1026                         return -E1000_ERR_CONFIG;
1027                 }
1028
1029                 /* Rx Packet Buffer Allocation size (KB) */
1030                 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1031
1032                 /* Determine the maximum latency tolerated by the device.
1033                  *
1034                  * Per the PCIe spec, the tolerated latencies are encoded as
1035                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1036                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1037                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1038                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1039                  */
1040                 rxa *= 512;
1041                 value = (rxa > hw->adapter->max_frame_size) ?
1042                         (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1043                         0;
1044
1045                 while (value > PCI_LTR_VALUE_MASK) {
1046                         scale++;
1047                         value = DIV_ROUND_UP(value, BIT(5));
1048                 }
1049                 if (scale > E1000_LTRV_SCALE_MAX) {
1050                         e_dbg("Invalid LTR latency scale %d\n", scale);
1051                         return -E1000_ERR_CONFIG;
1052                 }
1053                 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1054
1055                 /* Determine the maximum latency tolerated by the platform */
1056                 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1057                                      &max_snoop);
1058                 pci_read_config_word(hw->adapter->pdev,
1059                                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1060                 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1061
1062                 if (lat_enc > max_ltr_enc)
1063                         lat_enc = max_ltr_enc;
1064         }
1065
1066         /* Set Snoop and No-Snoop latencies the same */
1067         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1068         ew32(LTRV, reg);
1069
1070         return 0;
1071 }
1072
1073 /**
1074  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1075  *  @hw: pointer to the HW structure
1076  *  @to_sx: boolean indicating a system power state transition to Sx
1077  *
1078  *  When link is down, configure ULP mode to significantly reduce the power
1079  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1080  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1081  *  system, configure the ULP mode by software.
1082  */
1083 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1084 {
1085         u32 mac_reg;
1086         s32 ret_val = 0;
1087         u16 phy_reg;
1088         u16 oem_reg = 0;
1089
1090         if ((hw->mac.type < e1000_pch_lpt) ||
1091             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1092             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1093             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1094             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1095             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1096                 return 0;
1097
1098         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1099                 /* Request ME configure ULP mode in the PHY */
1100                 mac_reg = er32(H2ME);
1101                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1102                 ew32(H2ME, mac_reg);
1103
1104                 goto out;
1105         }
1106
1107         if (!to_sx) {
1108                 int i = 0;
1109
1110                 /* Poll up to 5 seconds for Cable Disconnected indication */
1111                 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1112                         /* Bail if link is re-acquired */
1113                         if (er32(STATUS) & E1000_STATUS_LU)
1114                                 return -E1000_ERR_PHY;
1115
1116                         if (i++ == 100)
1117                                 break;
1118
1119                         msleep(50);
1120                 }
1121                 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1122                       (er32(FEXT) &
1123                        E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1124         }
1125
1126         ret_val = hw->phy.ops.acquire(hw);
1127         if (ret_val)
1128                 goto out;
1129
1130         /* Force SMBus mode in PHY */
1131         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1132         if (ret_val)
1133                 goto release;
1134         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1135         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1136
1137         /* Force SMBus mode in MAC */
1138         mac_reg = er32(CTRL_EXT);
1139         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1140         ew32(CTRL_EXT, mac_reg);
1141
1142         /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1143          * LPLU and disable Gig speed when entering ULP
1144          */
1145         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1146                 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1147                                                        &oem_reg);
1148                 if (ret_val)
1149                         goto release;
1150
1151                 phy_reg = oem_reg;
1152                 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1153
1154                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1155                                                         phy_reg);
1156
1157                 if (ret_val)
1158                         goto release;
1159         }
1160
1161         /* Set Inband ULP Exit, Reset to SMBus mode and
1162          * Disable SMBus Release on PERST# in PHY
1163          */
1164         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1165         if (ret_val)
1166                 goto release;
1167         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1168                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1169         if (to_sx) {
1170                 if (er32(WUFC) & E1000_WUFC_LNKC)
1171                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1172                 else
1173                         phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1174
1175                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1176                 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1177         } else {
1178                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1179                 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1180                 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181         }
1182         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1183
1184         /* Set Disable SMBus Release on PERST# in MAC */
1185         mac_reg = er32(FEXTNVM7);
1186         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1187         ew32(FEXTNVM7, mac_reg);
1188
1189         /* Commit ULP changes in PHY by starting auto ULP configuration */
1190         phy_reg |= I218_ULP_CONFIG1_START;
1191         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1192
1193         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1194             to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1195                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1196                                                         oem_reg);
1197                 if (ret_val)
1198                         goto release;
1199         }
1200
1201 release:
1202         hw->phy.ops.release(hw);
1203 out:
1204         if (ret_val)
1205                 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1206         else
1207                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1208
1209         return ret_val;
1210 }
1211
1212 /**
1213  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1214  *  @hw: pointer to the HW structure
1215  *  @force: boolean indicating whether or not to force disabling ULP
1216  *
1217  *  Un-configure ULP mode when link is up, the system is transitioned from
1218  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1219  *  system, poll for an indication from ME that ULP has been un-configured.
1220  *  If not on an ME enabled system, un-configure the ULP mode by software.
1221  *
1222  *  During nominal operation, this function is called when link is acquired
1223  *  to disable ULP mode (force=false); otherwise, for example when unloading
1224  *  the driver or during Sx->S0 transitions, this is called with force=true
1225  *  to forcibly disable ULP.
1226  */
1227 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1228 {
1229         s32 ret_val = 0;
1230         u32 mac_reg;
1231         u16 phy_reg;
1232         int i = 0;
1233
1234         if ((hw->mac.type < e1000_pch_lpt) ||
1235             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1236             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1237             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1238             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1239             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1240                 return 0;
1241
1242         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1243                 struct e1000_adapter *adapter = hw->adapter;
1244                 bool firmware_bug = false;
1245
1246                 if (force) {
1247                         /* Request ME un-configure ULP mode in the PHY */
1248                         mac_reg = er32(H2ME);
1249                         mac_reg &= ~E1000_H2ME_ULP;
1250                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1251                         ew32(H2ME, mac_reg);
1252                 }
1253
1254                 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1255                  * If this takes more than 1 second, show a warning indicating a
1256                  * firmware bug
1257                  */
1258                 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1259                         if (i++ == 250) {
1260                                 ret_val = -E1000_ERR_PHY;
1261                                 goto out;
1262                         }
1263                         if (i > 100 && !firmware_bug)
1264                                 firmware_bug = true;
1265
1266                         usleep_range(10000, 11000);
1267                 }
1268                 if (firmware_bug)
1269                         e_warn("ULP_CONFIG_DONE took %dmsec.  This is a firmware bug\n", i * 10);
1270                 else
1271                         e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1272
1273                 if (force) {
1274                         mac_reg = er32(H2ME);
1275                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1276                         ew32(H2ME, mac_reg);
1277                 } else {
1278                         /* Clear H2ME.ULP after ME ULP configuration */
1279                         mac_reg = er32(H2ME);
1280                         mac_reg &= ~E1000_H2ME_ULP;
1281                         ew32(H2ME, mac_reg);
1282                 }
1283
1284                 goto out;
1285         }
1286
1287         ret_val = hw->phy.ops.acquire(hw);
1288         if (ret_val)
1289                 goto out;
1290
1291         if (force)
1292                 /* Toggle LANPHYPC Value bit */
1293                 e1000_toggle_lanphypc_pch_lpt(hw);
1294
1295         /* Unforce SMBus mode in PHY */
1296         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1297         if (ret_val) {
1298                 /* The MAC might be in PCIe mode, so temporarily force to
1299                  * SMBus mode in order to access the PHY.
1300                  */
1301                 mac_reg = er32(CTRL_EXT);
1302                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1303                 ew32(CTRL_EXT, mac_reg);
1304
1305                 msleep(50);
1306
1307                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1308                                                        &phy_reg);
1309                 if (ret_val)
1310                         goto release;
1311         }
1312         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1313         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1314
1315         /* Unforce SMBus mode in MAC */
1316         mac_reg = er32(CTRL_EXT);
1317         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1318         ew32(CTRL_EXT, mac_reg);
1319
1320         /* When ULP mode was previously entered, K1 was disabled by the
1321          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1322          */
1323         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1324         if (ret_val)
1325                 goto release;
1326         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1327         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1328
1329         /* Clear ULP enabled configuration */
1330         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1331         if (ret_val)
1332                 goto release;
1333         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1334                      I218_ULP_CONFIG1_STICKY_ULP |
1335                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1336                      I218_ULP_CONFIG1_WOL_HOST |
1337                      I218_ULP_CONFIG1_INBAND_EXIT |
1338                      I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1339                      I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1340                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1341         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1342
1343         /* Commit ULP changes by starting auto ULP configuration */
1344         phy_reg |= I218_ULP_CONFIG1_START;
1345         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1346
1347         /* Clear Disable SMBus Release on PERST# in MAC */
1348         mac_reg = er32(FEXTNVM7);
1349         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1350         ew32(FEXTNVM7, mac_reg);
1351
1352 release:
1353         hw->phy.ops.release(hw);
1354         if (force) {
1355                 e1000_phy_hw_reset(hw);
1356                 msleep(50);
1357         }
1358 out:
1359         if (ret_val)
1360                 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1361         else
1362                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1363
1364         return ret_val;
1365 }
1366
1367 /**
1368  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1369  *  @hw: pointer to the HW structure
1370  *
1371  *  Checks to see of the link status of the hardware has changed.  If a
1372  *  change in link status has been detected, then we read the PHY registers
1373  *  to get the current speed/duplex if link exists.
1374  **/
1375 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1376 {
1377         struct e1000_mac_info *mac = &hw->mac;
1378         s32 ret_val, tipg_reg = 0;
1379         u16 emi_addr, emi_val = 0;
1380         bool link;
1381         u16 phy_reg;
1382
1383         /* We only want to go out to the PHY registers to see if Auto-Neg
1384          * has completed and/or if our link status has changed.  The
1385          * get_link_status flag is set upon receiving a Link Status
1386          * Change or Rx Sequence Error interrupt.
1387          */
1388         if (!mac->get_link_status)
1389                 return 0;
1390         mac->get_link_status = false;
1391
1392         /* First we want to see if the MII Status Register reports
1393          * link.  If so, then we want to get the current speed/duplex
1394          * of the PHY.
1395          */
1396         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1397         if (ret_val)
1398                 goto out;
1399
1400         if (hw->mac.type == e1000_pchlan) {
1401                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1402                 if (ret_val)
1403                         goto out;
1404         }
1405
1406         /* When connected at 10Mbps half-duplex, some parts are excessively
1407          * aggressive resulting in many collisions. To avoid this, increase
1408          * the IPG and reduce Rx latency in the PHY.
1409          */
1410         if ((hw->mac.type >= e1000_pch2lan) && link) {
1411                 u16 speed, duplex;
1412
1413                 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1414                 tipg_reg = er32(TIPG);
1415                 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1416
1417                 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1418                         tipg_reg |= 0xFF;
1419                         /* Reduce Rx latency in analog PHY */
1420                         emi_val = 0;
1421                 } else if (hw->mac.type >= e1000_pch_spt &&
1422                            duplex == FULL_DUPLEX && speed != SPEED_1000) {
1423                         tipg_reg |= 0xC;
1424                         emi_val = 1;
1425                 } else {
1426
1427                         /* Roll back the default values */
1428                         tipg_reg |= 0x08;
1429                         emi_val = 1;
1430                 }
1431
1432                 ew32(TIPG, tipg_reg);
1433
1434                 ret_val = hw->phy.ops.acquire(hw);
1435                 if (ret_val)
1436                         goto out;
1437
1438                 if (hw->mac.type == e1000_pch2lan)
1439                         emi_addr = I82579_RX_CONFIG;
1440                 else
1441                         emi_addr = I217_RX_CONFIG;
1442                 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1443
1444                 if (hw->mac.type >= e1000_pch_lpt) {
1445                         u16 phy_reg;
1446
1447                         e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1448                         phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1449                         if (speed == SPEED_100 || speed == SPEED_10)
1450                                 phy_reg |= 0x3E8;
1451                         else
1452                                 phy_reg |= 0xFA;
1453                         e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1454
1455                         if (speed == SPEED_1000) {
1456                                 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1457                                                             &phy_reg);
1458
1459                                 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1460
1461                                 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1462                                                              phy_reg);
1463                         }
1464                 }
1465                 hw->phy.ops.release(hw);
1466
1467                 if (ret_val)
1468                         goto out;
1469
1470                 if (hw->mac.type >= e1000_pch_spt) {
1471                         u16 data;
1472                         u16 ptr_gap;
1473
1474                         if (speed == SPEED_1000) {
1475                                 ret_val = hw->phy.ops.acquire(hw);
1476                                 if (ret_val)
1477                                         goto out;
1478
1479                                 ret_val = e1e_rphy_locked(hw,
1480                                                           PHY_REG(776, 20),
1481                                                           &data);
1482                                 if (ret_val) {
1483                                         hw->phy.ops.release(hw);
1484                                         goto out;
1485                                 }
1486
1487                                 ptr_gap = (data & (0x3FF << 2)) >> 2;
1488                                 if (ptr_gap < 0x18) {
1489                                         data &= ~(0x3FF << 2);
1490                                         data |= (0x18 << 2);
1491                                         ret_val =
1492                                             e1e_wphy_locked(hw,
1493                                                             PHY_REG(776, 20),
1494                                                             data);
1495                                 }
1496                                 hw->phy.ops.release(hw);
1497                                 if (ret_val)
1498                                         goto out;
1499                         } else {
1500                                 ret_val = hw->phy.ops.acquire(hw);
1501                                 if (ret_val)
1502                                         goto out;
1503
1504                                 ret_val = e1e_wphy_locked(hw,
1505                                                           PHY_REG(776, 20),
1506                                                           0xC023);
1507                                 hw->phy.ops.release(hw);
1508                                 if (ret_val)
1509                                         goto out;
1510
1511                         }
1512                 }
1513         }
1514
1515         /* I217 Packet Loss issue:
1516          * ensure that FEXTNVM4 Beacon Duration is set correctly
1517          * on power up.
1518          * Set the Beacon Duration for I217 to 8 usec
1519          */
1520         if (hw->mac.type >= e1000_pch_lpt) {
1521                 u32 mac_reg;
1522
1523                 mac_reg = er32(FEXTNVM4);
1524                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1525                 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1526                 ew32(FEXTNVM4, mac_reg);
1527         }
1528
1529         /* Work-around I218 hang issue */
1530         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1531             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1532             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1533             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1534                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1535                 if (ret_val)
1536                         goto out;
1537         }
1538         if (hw->mac.type >= e1000_pch_lpt) {
1539                 /* Set platform power management values for
1540                  * Latency Tolerance Reporting (LTR)
1541                  */
1542                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1543                 if (ret_val)
1544                         goto out;
1545         }
1546
1547         /* Clear link partner's EEE ability */
1548         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1549
1550         if (hw->mac.type >= e1000_pch_lpt) {
1551                 u32 fextnvm6 = er32(FEXTNVM6);
1552
1553                 if (hw->mac.type == e1000_pch_spt) {
1554                         /* FEXTNVM6 K1-off workaround - for SPT only */
1555                         u32 pcieanacfg = er32(PCIEANACFG);
1556
1557                         if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1558                                 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1559                         else
1560                                 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1561                 }
1562
1563                 ew32(FEXTNVM6, fextnvm6);
1564         }
1565
1566         if (!link)
1567                 goto out;
1568
1569         switch (hw->mac.type) {
1570         case e1000_pch2lan:
1571                 ret_val = e1000_k1_workaround_lv(hw);
1572                 if (ret_val)
1573                         return ret_val;
1574                 fallthrough;
1575         case e1000_pchlan:
1576                 if (hw->phy.type == e1000_phy_82578) {
1577                         ret_val = e1000_link_stall_workaround_hv(hw);
1578                         if (ret_val)
1579                                 return ret_val;
1580                 }
1581
1582                 /* Workaround for PCHx parts in half-duplex:
1583                  * Set the number of preambles removed from the packet
1584                  * when it is passed from the PHY to the MAC to prevent
1585                  * the MAC from misinterpreting the packet type.
1586                  */
1587                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1588                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1589
1590                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1591                         phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1592
1593                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1594                 break;
1595         default:
1596                 break;
1597         }
1598
1599         /* Check if there was DownShift, must be checked
1600          * immediately after link-up
1601          */
1602         e1000e_check_downshift(hw);
1603
1604         /* Enable/Disable EEE after link up */
1605         if (hw->phy.type > e1000_phy_82579) {
1606                 ret_val = e1000_set_eee_pchlan(hw);
1607                 if (ret_val)
1608                         return ret_val;
1609         }
1610
1611         /* If we are forcing speed/duplex, then we simply return since
1612          * we have already determined whether we have link or not.
1613          */
1614         if (!mac->autoneg)
1615                 return -E1000_ERR_CONFIG;
1616
1617         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1618          * of MAC speed/duplex configuration.  So we only need to
1619          * configure Collision Distance in the MAC.
1620          */
1621         mac->ops.config_collision_dist(hw);
1622
1623         /* Configure Flow Control now that Auto-Neg has completed.
1624          * First, we need to restore the desired flow control
1625          * settings because we may have had to re-autoneg with a
1626          * different link partner.
1627          */
1628         ret_val = e1000e_config_fc_after_link_up(hw);
1629         if (ret_val)
1630                 e_dbg("Error configuring flow control\n");
1631
1632         return ret_val;
1633
1634 out:
1635         mac->get_link_status = true;
1636         return ret_val;
1637 }
1638
1639 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1640 {
1641         struct e1000_hw *hw = &adapter->hw;
1642         s32 rc;
1643
1644         rc = e1000_init_mac_params_ich8lan(hw);
1645         if (rc)
1646                 return rc;
1647
1648         rc = e1000_init_nvm_params_ich8lan(hw);
1649         if (rc)
1650                 return rc;
1651
1652         switch (hw->mac.type) {
1653         case e1000_ich8lan:
1654         case e1000_ich9lan:
1655         case e1000_ich10lan:
1656                 rc = e1000_init_phy_params_ich8lan(hw);
1657                 break;
1658         case e1000_pchlan:
1659         case e1000_pch2lan:
1660         case e1000_pch_lpt:
1661         case e1000_pch_spt:
1662         case e1000_pch_cnp:
1663         case e1000_pch_tgp:
1664         case e1000_pch_adp:
1665         case e1000_pch_mtp:
1666                 rc = e1000_init_phy_params_pchlan(hw);
1667                 break;
1668         default:
1669                 break;
1670         }
1671         if (rc)
1672                 return rc;
1673
1674         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1675          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1676          */
1677         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1678             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1679              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1680                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1681                 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1682
1683                 hw->mac.ops.blink_led = NULL;
1684         }
1685
1686         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1687             (adapter->hw.phy.type != e1000_phy_ife))
1688                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1689
1690         /* Enable workaround for 82579 w/ ME enabled */
1691         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1692             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1693                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1694
1695         return 0;
1696 }
1697
1698 static DEFINE_MUTEX(nvm_mutex);
1699
1700 /**
1701  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1702  *  @hw: pointer to the HW structure
1703  *
1704  *  Acquires the mutex for performing NVM operations.
1705  **/
1706 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1707 {
1708         mutex_lock(&nvm_mutex);
1709
1710         return 0;
1711 }
1712
1713 /**
1714  *  e1000_release_nvm_ich8lan - Release NVM mutex
1715  *  @hw: pointer to the HW structure
1716  *
1717  *  Releases the mutex used while performing NVM operations.
1718  **/
1719 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1720 {
1721         mutex_unlock(&nvm_mutex);
1722 }
1723
1724 /**
1725  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1726  *  @hw: pointer to the HW structure
1727  *
1728  *  Acquires the software control flag for performing PHY and select
1729  *  MAC CSR accesses.
1730  **/
1731 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1732 {
1733         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1734         s32 ret_val = 0;
1735
1736         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1737                              &hw->adapter->state)) {
1738                 e_dbg("contention for Phy access\n");
1739                 return -E1000_ERR_PHY;
1740         }
1741
1742         while (timeout) {
1743                 extcnf_ctrl = er32(EXTCNF_CTRL);
1744                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1745                         break;
1746
1747                 mdelay(1);
1748                 timeout--;
1749         }
1750
1751         if (!timeout) {
1752                 e_dbg("SW has already locked the resource.\n");
1753                 ret_val = -E1000_ERR_CONFIG;
1754                 goto out;
1755         }
1756
1757         timeout = SW_FLAG_TIMEOUT;
1758
1759         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1760         ew32(EXTCNF_CTRL, extcnf_ctrl);
1761
1762         while (timeout) {
1763                 extcnf_ctrl = er32(EXTCNF_CTRL);
1764                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1765                         break;
1766
1767                 mdelay(1);
1768                 timeout--;
1769         }
1770
1771         if (!timeout) {
1772                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1773                       er32(FWSM), extcnf_ctrl);
1774                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1775                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1776                 ret_val = -E1000_ERR_CONFIG;
1777                 goto out;
1778         }
1779
1780 out:
1781         if (ret_val)
1782                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1783
1784         return ret_val;
1785 }
1786
1787 /**
1788  *  e1000_release_swflag_ich8lan - Release software control flag
1789  *  @hw: pointer to the HW structure
1790  *
1791  *  Releases the software control flag for performing PHY and select
1792  *  MAC CSR accesses.
1793  **/
1794 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1795 {
1796         u32 extcnf_ctrl;
1797
1798         extcnf_ctrl = er32(EXTCNF_CTRL);
1799
1800         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1801                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1802                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1803         } else {
1804                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1805         }
1806
1807         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1808 }
1809
1810 /**
1811  *  e1000_check_mng_mode_ich8lan - Checks management mode
1812  *  @hw: pointer to the HW structure
1813  *
1814  *  This checks if the adapter has any manageability enabled.
1815  *  This is a function pointer entry point only called by read/write
1816  *  routines for the PHY and NVM parts.
1817  **/
1818 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1819 {
1820         u32 fwsm;
1821
1822         fwsm = er32(FWSM);
1823         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1824                 ((fwsm & E1000_FWSM_MODE_MASK) ==
1825                  (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1826 }
1827
1828 /**
1829  *  e1000_check_mng_mode_pchlan - Checks management mode
1830  *  @hw: pointer to the HW structure
1831  *
1832  *  This checks if the adapter has iAMT enabled.
1833  *  This is a function pointer entry point only called by read/write
1834  *  routines for the PHY and NVM parts.
1835  **/
1836 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1837 {
1838         u32 fwsm;
1839
1840         fwsm = er32(FWSM);
1841         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1842             (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1843 }
1844
1845 /**
1846  *  e1000_rar_set_pch2lan - Set receive address register
1847  *  @hw: pointer to the HW structure
1848  *  @addr: pointer to the receive address
1849  *  @index: receive address array register
1850  *
1851  *  Sets the receive address array register at index to the address passed
1852  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1853  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1854  *  Use SHRA[0-3] in place of those reserved for ME.
1855  **/
1856 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1857 {
1858         u32 rar_low, rar_high;
1859
1860         /* HW expects these in little endian so we reverse the byte order
1861          * from network order (big endian) to little endian
1862          */
1863         rar_low = ((u32)addr[0] |
1864                    ((u32)addr[1] << 8) |
1865                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1866
1867         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1868
1869         /* If MAC address zero, no need to set the AV bit */
1870         if (rar_low || rar_high)
1871                 rar_high |= E1000_RAH_AV;
1872
1873         if (index == 0) {
1874                 ew32(RAL(index), rar_low);
1875                 e1e_flush();
1876                 ew32(RAH(index), rar_high);
1877                 e1e_flush();
1878                 return 0;
1879         }
1880
1881         /* RAR[1-6] are owned by manageability.  Skip those and program the
1882          * next address into the SHRA register array.
1883          */
1884         if (index < (u32)(hw->mac.rar_entry_count)) {
1885                 s32 ret_val;
1886
1887                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1888                 if (ret_val)
1889                         goto out;
1890
1891                 ew32(SHRAL(index - 1), rar_low);
1892                 e1e_flush();
1893                 ew32(SHRAH(index - 1), rar_high);
1894                 e1e_flush();
1895
1896                 e1000_release_swflag_ich8lan(hw);
1897
1898                 /* verify the register updates */
1899                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1900                     (er32(SHRAH(index - 1)) == rar_high))
1901                         return 0;
1902
1903                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1904                       (index - 1), er32(FWSM));
1905         }
1906
1907 out:
1908         e_dbg("Failed to write receive address at index %d\n", index);
1909         return -E1000_ERR_CONFIG;
1910 }
1911
1912 /**
1913  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1914  *  @hw: pointer to the HW structure
1915  *
1916  *  Get the number of available receive registers that the Host can
1917  *  program. SHRA[0-10] are the shared receive address registers
1918  *  that are shared between the Host and manageability engine (ME).
1919  *  ME can reserve any number of addresses and the host needs to be
1920  *  able to tell how many available registers it has access to.
1921  **/
1922 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1923 {
1924         u32 wlock_mac;
1925         u32 num_entries;
1926
1927         wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1928         wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1929
1930         switch (wlock_mac) {
1931         case 0:
1932                 /* All SHRA[0..10] and RAR[0] available */
1933                 num_entries = hw->mac.rar_entry_count;
1934                 break;
1935         case 1:
1936                 /* Only RAR[0] available */
1937                 num_entries = 1;
1938                 break;
1939         default:
1940                 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1941                 num_entries = wlock_mac + 1;
1942                 break;
1943         }
1944
1945         return num_entries;
1946 }
1947
1948 /**
1949  *  e1000_rar_set_pch_lpt - Set receive address registers
1950  *  @hw: pointer to the HW structure
1951  *  @addr: pointer to the receive address
1952  *  @index: receive address array register
1953  *
1954  *  Sets the receive address register array at index to the address passed
1955  *  in by addr. For LPT, RAR[0] is the base address register that is to
1956  *  contain the MAC address. SHRA[0-10] are the shared receive address
1957  *  registers that are shared between the Host and manageability engine (ME).
1958  **/
1959 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1960 {
1961         u32 rar_low, rar_high;
1962         u32 wlock_mac;
1963
1964         /* HW expects these in little endian so we reverse the byte order
1965          * from network order (big endian) to little endian
1966          */
1967         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1968                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1969
1970         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1971
1972         /* If MAC address zero, no need to set the AV bit */
1973         if (rar_low || rar_high)
1974                 rar_high |= E1000_RAH_AV;
1975
1976         if (index == 0) {
1977                 ew32(RAL(index), rar_low);
1978                 e1e_flush();
1979                 ew32(RAH(index), rar_high);
1980                 e1e_flush();
1981                 return 0;
1982         }
1983
1984         /* The manageability engine (ME) can lock certain SHRAR registers that
1985          * it is using - those registers are unavailable for use.
1986          */
1987         if (index < hw->mac.rar_entry_count) {
1988                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1989                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1990
1991                 /* Check if all SHRAR registers are locked */
1992                 if (wlock_mac == 1)
1993                         goto out;
1994
1995                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1996                         s32 ret_val;
1997
1998                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1999
2000                         if (ret_val)
2001                                 goto out;
2002
2003                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2004                         e1e_flush();
2005                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2006                         e1e_flush();
2007
2008                         e1000_release_swflag_ich8lan(hw);
2009
2010                         /* verify the register updates */
2011                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2012                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2013                                 return 0;
2014                 }
2015         }
2016
2017 out:
2018         e_dbg("Failed to write receive address at index %d\n", index);
2019         return -E1000_ERR_CONFIG;
2020 }
2021
2022 /**
2023  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2024  *  @hw: pointer to the HW structure
2025  *
2026  *  Checks if firmware is blocking the reset of the PHY.
2027  *  This is a function pointer entry point only called by
2028  *  reset routines.
2029  **/
2030 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2031 {
2032         bool blocked = false;
2033         int i = 0;
2034
2035         while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2036                (i++ < 30))
2037                 usleep_range(10000, 11000);
2038         return blocked ? E1000_BLK_PHY_RESET : 0;
2039 }
2040
2041 /**
2042  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2043  *  @hw: pointer to the HW structure
2044  *
2045  *  Assumes semaphore already acquired.
2046  *
2047  **/
2048 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2049 {
2050         u16 phy_data;
2051         u32 strap = er32(STRAP);
2052         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2053             E1000_STRAP_SMT_FREQ_SHIFT;
2054         s32 ret_val;
2055
2056         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2057
2058         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2059         if (ret_val)
2060                 return ret_val;
2061
2062         phy_data &= ~HV_SMB_ADDR_MASK;
2063         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2064         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2065
2066         if (hw->phy.type == e1000_phy_i217) {
2067                 /* Restore SMBus frequency */
2068                 if (freq--) {
2069                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2070                         phy_data |= (freq & BIT(0)) <<
2071                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
2072                         phy_data |= (freq & BIT(1)) <<
2073                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2074                 } else {
2075                         e_dbg("Unsupported SMB frequency in PHY\n");
2076                 }
2077         }
2078
2079         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2080 }
2081
2082 /**
2083  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2084  *  @hw:   pointer to the HW structure
2085  *
2086  *  SW should configure the LCD from the NVM extended configuration region
2087  *  as a workaround for certain parts.
2088  **/
2089 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2090 {
2091         struct e1000_phy_info *phy = &hw->phy;
2092         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2093         s32 ret_val = 0;
2094         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2095
2096         /* Initialize the PHY from the NVM on ICH platforms.  This
2097          * is needed due to an issue where the NVM configuration is
2098          * not properly autoloaded after power transitions.
2099          * Therefore, after each PHY reset, we will load the
2100          * configuration data out of the NVM manually.
2101          */
2102         switch (hw->mac.type) {
2103         case e1000_ich8lan:
2104                 if (phy->type != e1000_phy_igp_3)
2105                         return ret_val;
2106
2107                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2108                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2109                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2110                         break;
2111                 }
2112                 fallthrough;
2113         case e1000_pchlan:
2114         case e1000_pch2lan:
2115         case e1000_pch_lpt:
2116         case e1000_pch_spt:
2117         case e1000_pch_cnp:
2118         case e1000_pch_tgp:
2119         case e1000_pch_adp:
2120         case e1000_pch_mtp:
2121                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2122                 break;
2123         default:
2124                 return ret_val;
2125         }
2126
2127         ret_val = hw->phy.ops.acquire(hw);
2128         if (ret_val)
2129                 return ret_val;
2130
2131         data = er32(FEXTNVM);
2132         if (!(data & sw_cfg_mask))
2133                 goto release;
2134
2135         /* Make sure HW does not configure LCD from PHY
2136          * extended configuration before SW configuration
2137          */
2138         data = er32(EXTCNF_CTRL);
2139         if ((hw->mac.type < e1000_pch2lan) &&
2140             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2141                 goto release;
2142
2143         cnf_size = er32(EXTCNF_SIZE);
2144         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2145         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2146         if (!cnf_size)
2147                 goto release;
2148
2149         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2150         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2151
2152         if (((hw->mac.type == e1000_pchlan) &&
2153              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2154             (hw->mac.type > e1000_pchlan)) {
2155                 /* HW configures the SMBus address and LEDs when the
2156                  * OEM and LCD Write Enable bits are set in the NVM.
2157                  * When both NVM bits are cleared, SW will configure
2158                  * them instead.
2159                  */
2160                 ret_val = e1000_write_smbus_addr(hw);
2161                 if (ret_val)
2162                         goto release;
2163
2164                 data = er32(LEDCTL);
2165                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2166                                                         (u16)data);
2167                 if (ret_val)
2168                         goto release;
2169         }
2170
2171         /* Configure LCD from extended configuration region. */
2172
2173         /* cnf_base_addr is in DWORD */
2174         word_addr = (u16)(cnf_base_addr << 1);
2175
2176         for (i = 0; i < cnf_size; i++) {
2177                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2178                 if (ret_val)
2179                         goto release;
2180
2181                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2182                                          1, &reg_addr);
2183                 if (ret_val)
2184                         goto release;
2185
2186                 /* Save off the PHY page for future writes. */
2187                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2188                         phy_page = reg_data;
2189                         continue;
2190                 }
2191
2192                 reg_addr &= PHY_REG_MASK;
2193                 reg_addr |= phy_page;
2194
2195                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2196                 if (ret_val)
2197                         goto release;
2198         }
2199
2200 release:
2201         hw->phy.ops.release(hw);
2202         return ret_val;
2203 }
2204
2205 /**
2206  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2207  *  @hw:   pointer to the HW structure
2208  *  @link: link up bool flag
2209  *
2210  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2211  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2212  *  If link is down, the function will restore the default K1 setting located
2213  *  in the NVM.
2214  **/
2215 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2216 {
2217         s32 ret_val = 0;
2218         u16 status_reg = 0;
2219         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2220
2221         if (hw->mac.type != e1000_pchlan)
2222                 return 0;
2223
2224         /* Wrap the whole flow with the sw flag */
2225         ret_val = hw->phy.ops.acquire(hw);
2226         if (ret_val)
2227                 return ret_val;
2228
2229         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2230         if (link) {
2231                 if (hw->phy.type == e1000_phy_82578) {
2232                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2233                                                   &status_reg);
2234                         if (ret_val)
2235                                 goto release;
2236
2237                         status_reg &= (BM_CS_STATUS_LINK_UP |
2238                                        BM_CS_STATUS_RESOLVED |
2239                                        BM_CS_STATUS_SPEED_MASK);
2240
2241                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2242                                            BM_CS_STATUS_RESOLVED |
2243                                            BM_CS_STATUS_SPEED_1000))
2244                                 k1_enable = false;
2245                 }
2246
2247                 if (hw->phy.type == e1000_phy_82577) {
2248                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2249                         if (ret_val)
2250                                 goto release;
2251
2252                         status_reg &= (HV_M_STATUS_LINK_UP |
2253                                        HV_M_STATUS_AUTONEG_COMPLETE |
2254                                        HV_M_STATUS_SPEED_MASK);
2255
2256                         if (status_reg == (HV_M_STATUS_LINK_UP |
2257                                            HV_M_STATUS_AUTONEG_COMPLETE |
2258                                            HV_M_STATUS_SPEED_1000))
2259                                 k1_enable = false;
2260                 }
2261
2262                 /* Link stall fix for link up */
2263                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2264                 if (ret_val)
2265                         goto release;
2266
2267         } else {
2268                 /* Link stall fix for link down */
2269                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2270                 if (ret_val)
2271                         goto release;
2272         }
2273
2274         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2275
2276 release:
2277         hw->phy.ops.release(hw);
2278
2279         return ret_val;
2280 }
2281
2282 /**
2283  *  e1000_configure_k1_ich8lan - Configure K1 power state
2284  *  @hw: pointer to the HW structure
2285  *  @k1_enable: K1 state to configure
2286  *
2287  *  Configure the K1 power state based on the provided parameter.
2288  *  Assumes semaphore already acquired.
2289  *
2290  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2291  **/
2292 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2293 {
2294         s32 ret_val;
2295         u32 ctrl_reg = 0;
2296         u32 ctrl_ext = 0;
2297         u32 reg = 0;
2298         u16 kmrn_reg = 0;
2299
2300         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2301                                               &kmrn_reg);
2302         if (ret_val)
2303                 return ret_val;
2304
2305         if (k1_enable)
2306                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2307         else
2308                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2309
2310         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2311                                                kmrn_reg);
2312         if (ret_val)
2313                 return ret_val;
2314
2315         usleep_range(20, 40);
2316         ctrl_ext = er32(CTRL_EXT);
2317         ctrl_reg = er32(CTRL);
2318
2319         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2320         reg |= E1000_CTRL_FRCSPD;
2321         ew32(CTRL, reg);
2322
2323         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2324         e1e_flush();
2325         usleep_range(20, 40);
2326         ew32(CTRL, ctrl_reg);
2327         ew32(CTRL_EXT, ctrl_ext);
2328         e1e_flush();
2329         usleep_range(20, 40);
2330
2331         return 0;
2332 }
2333
2334 /**
2335  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2336  *  @hw:       pointer to the HW structure
2337  *  @d0_state: boolean if entering d0 or d3 device state
2338  *
2339  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2340  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2341  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2342  **/
2343 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2344 {
2345         s32 ret_val = 0;
2346         u32 mac_reg;
2347         u16 oem_reg;
2348
2349         if (hw->mac.type < e1000_pchlan)
2350                 return ret_val;
2351
2352         ret_val = hw->phy.ops.acquire(hw);
2353         if (ret_val)
2354                 return ret_val;
2355
2356         if (hw->mac.type == e1000_pchlan) {
2357                 mac_reg = er32(EXTCNF_CTRL);
2358                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2359                         goto release;
2360         }
2361
2362         mac_reg = er32(FEXTNVM);
2363         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2364                 goto release;
2365
2366         mac_reg = er32(PHY_CTRL);
2367
2368         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2369         if (ret_val)
2370                 goto release;
2371
2372         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2373
2374         if (d0_state) {
2375                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2376                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2377
2378                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2379                         oem_reg |= HV_OEM_BITS_LPLU;
2380         } else {
2381                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2382                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2383                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2384
2385                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2386                                E1000_PHY_CTRL_NOND0A_LPLU))
2387                         oem_reg |= HV_OEM_BITS_LPLU;
2388         }
2389
2390         /* Set Restart auto-neg to activate the bits */
2391         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2392             !hw->phy.ops.check_reset_block(hw))
2393                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2394
2395         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2396
2397 release:
2398         hw->phy.ops.release(hw);
2399
2400         return ret_val;
2401 }
2402
2403 /**
2404  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2405  *  @hw:   pointer to the HW structure
2406  **/
2407 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2408 {
2409         s32 ret_val;
2410         u16 data;
2411
2412         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2413         if (ret_val)
2414                 return ret_val;
2415
2416         data |= HV_KMRN_MDIO_SLOW;
2417
2418         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2419
2420         return ret_val;
2421 }
2422
2423 /**
2424  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2425  *  @hw: pointer to the HW structure
2426  *
2427  *  A series of PHY workarounds to be done after every PHY reset.
2428  **/
2429 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2430 {
2431         s32 ret_val = 0;
2432         u16 phy_data;
2433
2434         if (hw->mac.type != e1000_pchlan)
2435                 return 0;
2436
2437         /* Set MDIO slow mode before any other MDIO access */
2438         if (hw->phy.type == e1000_phy_82577) {
2439                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2440                 if (ret_val)
2441                         return ret_val;
2442         }
2443
2444         if (((hw->phy.type == e1000_phy_82577) &&
2445              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2446             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2447                 /* Disable generation of early preamble */
2448                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2449                 if (ret_val)
2450                         return ret_val;
2451
2452                 /* Preamble tuning for SSC */
2453                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2454                 if (ret_val)
2455                         return ret_val;
2456         }
2457
2458         if (hw->phy.type == e1000_phy_82578) {
2459                 /* Return registers to default by doing a soft reset then
2460                  * writing 0x3140 to the control register.
2461                  */
2462                 if (hw->phy.revision < 2) {
2463                         e1000e_phy_sw_reset(hw);
2464                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2465                         if (ret_val)
2466                                 return ret_val;
2467                 }
2468         }
2469
2470         /* Select page 0 */
2471         ret_val = hw->phy.ops.acquire(hw);
2472         if (ret_val)
2473                 return ret_val;
2474
2475         hw->phy.addr = 1;
2476         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2477         hw->phy.ops.release(hw);
2478         if (ret_val)
2479                 return ret_val;
2480
2481         /* Configure the K1 Si workaround during phy reset assuming there is
2482          * link so that it disables K1 if link is in 1Gbps.
2483          */
2484         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2485         if (ret_val)
2486                 return ret_val;
2487
2488         /* Workaround for link disconnects on a busy hub in half duplex */
2489         ret_val = hw->phy.ops.acquire(hw);
2490         if (ret_val)
2491                 return ret_val;
2492         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2493         if (ret_val)
2494                 goto release;
2495         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2496         if (ret_val)
2497                 goto release;
2498
2499         /* set MSE higher to enable link to stay up when noise is high */
2500         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2501 release:
2502         hw->phy.ops.release(hw);
2503
2504         return ret_val;
2505 }
2506
2507 /**
2508  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2509  *  @hw:   pointer to the HW structure
2510  **/
2511 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2512 {
2513         u32 mac_reg;
2514         u16 i, phy_reg = 0;
2515         s32 ret_val;
2516
2517         ret_val = hw->phy.ops.acquire(hw);
2518         if (ret_val)
2519                 return;
2520         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2521         if (ret_val)
2522                 goto release;
2523
2524         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2525         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2526                 mac_reg = er32(RAL(i));
2527                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2528                                            (u16)(mac_reg & 0xFFFF));
2529                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2530                                            (u16)((mac_reg >> 16) & 0xFFFF));
2531
2532                 mac_reg = er32(RAH(i));
2533                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2534                                            (u16)(mac_reg & 0xFFFF));
2535                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2536                                            (u16)((mac_reg & E1000_RAH_AV)
2537                                                  >> 16));
2538         }
2539
2540         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2541
2542 release:
2543         hw->phy.ops.release(hw);
2544 }
2545
2546 /**
2547  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2548  *  with 82579 PHY
2549  *  @hw: pointer to the HW structure
2550  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2551  **/
2552 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2553 {
2554         s32 ret_val = 0;
2555         u16 phy_reg, data;
2556         u32 mac_reg;
2557         u16 i;
2558
2559         if (hw->mac.type < e1000_pch2lan)
2560                 return 0;
2561
2562         /* disable Rx path while enabling/disabling workaround */
2563         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2564         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2565         if (ret_val)
2566                 return ret_val;
2567
2568         if (enable) {
2569                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2570                  * SHRAL/H) and initial CRC values to the MAC
2571                  */
2572                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2573                         u8 mac_addr[ETH_ALEN] = { 0 };
2574                         u32 addr_high, addr_low;
2575
2576                         addr_high = er32(RAH(i));
2577                         if (!(addr_high & E1000_RAH_AV))
2578                                 continue;
2579                         addr_low = er32(RAL(i));
2580                         mac_addr[0] = (addr_low & 0xFF);
2581                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2582                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2583                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2584                         mac_addr[4] = (addr_high & 0xFF);
2585                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2586
2587                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2588                 }
2589
2590                 /* Write Rx addresses to the PHY */
2591                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2592
2593                 /* Enable jumbo frame workaround in the MAC */
2594                 mac_reg = er32(FFLT_DBG);
2595                 mac_reg &= ~BIT(14);
2596                 mac_reg |= (7 << 15);
2597                 ew32(FFLT_DBG, mac_reg);
2598
2599                 mac_reg = er32(RCTL);
2600                 mac_reg |= E1000_RCTL_SECRC;
2601                 ew32(RCTL, mac_reg);
2602
2603                 ret_val = e1000e_read_kmrn_reg(hw,
2604                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2605                                                &data);
2606                 if (ret_val)
2607                         return ret_val;
2608                 ret_val = e1000e_write_kmrn_reg(hw,
2609                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2610                                                 data | BIT(0));
2611                 if (ret_val)
2612                         return ret_val;
2613                 ret_val = e1000e_read_kmrn_reg(hw,
2614                                                E1000_KMRNCTRLSTA_HD_CTRL,
2615                                                &data);
2616                 if (ret_val)
2617                         return ret_val;
2618                 data &= ~(0xF << 8);
2619                 data |= (0xB << 8);
2620                 ret_val = e1000e_write_kmrn_reg(hw,
2621                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2622                                                 data);
2623                 if (ret_val)
2624                         return ret_val;
2625
2626                 /* Enable jumbo frame workaround in the PHY */
2627                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2628                 data &= ~(0x7F << 5);
2629                 data |= (0x37 << 5);
2630                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2631                 if (ret_val)
2632                         return ret_val;
2633                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2634                 data &= ~BIT(13);
2635                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2636                 if (ret_val)
2637                         return ret_val;
2638                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2639                 data &= ~(0x3FF << 2);
2640                 data |= (E1000_TX_PTR_GAP << 2);
2641                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2642                 if (ret_val)
2643                         return ret_val;
2644                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2645                 if (ret_val)
2646                         return ret_val;
2647                 e1e_rphy(hw, HV_PM_CTRL, &data);
2648                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2649                 if (ret_val)
2650                         return ret_val;
2651         } else {
2652                 /* Write MAC register values back to h/w defaults */
2653                 mac_reg = er32(FFLT_DBG);
2654                 mac_reg &= ~(0xF << 14);
2655                 ew32(FFLT_DBG, mac_reg);
2656
2657                 mac_reg = er32(RCTL);
2658                 mac_reg &= ~E1000_RCTL_SECRC;
2659                 ew32(RCTL, mac_reg);
2660
2661                 ret_val = e1000e_read_kmrn_reg(hw,
2662                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2663                                                &data);
2664                 if (ret_val)
2665                         return ret_val;
2666                 ret_val = e1000e_write_kmrn_reg(hw,
2667                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2668                                                 data & ~BIT(0));
2669                 if (ret_val)
2670                         return ret_val;
2671                 ret_val = e1000e_read_kmrn_reg(hw,
2672                                                E1000_KMRNCTRLSTA_HD_CTRL,
2673                                                &data);
2674                 if (ret_val)
2675                         return ret_val;
2676                 data &= ~(0xF << 8);
2677                 data |= (0xB << 8);
2678                 ret_val = e1000e_write_kmrn_reg(hw,
2679                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2680                                                 data);
2681                 if (ret_val)
2682                         return ret_val;
2683
2684                 /* Write PHY register values back to h/w defaults */
2685                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2686                 data &= ~(0x7F << 5);
2687                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2688                 if (ret_val)
2689                         return ret_val;
2690                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2691                 data |= BIT(13);
2692                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2693                 if (ret_val)
2694                         return ret_val;
2695                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2696                 data &= ~(0x3FF << 2);
2697                 data |= (0x8 << 2);
2698                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2699                 if (ret_val)
2700                         return ret_val;
2701                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2702                 if (ret_val)
2703                         return ret_val;
2704                 e1e_rphy(hw, HV_PM_CTRL, &data);
2705                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2706                 if (ret_val)
2707                         return ret_val;
2708         }
2709
2710         /* re-enable Rx path after enabling/disabling workaround */
2711         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2712 }
2713
2714 /**
2715  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2716  *  @hw: pointer to the HW structure
2717  *
2718  *  A series of PHY workarounds to be done after every PHY reset.
2719  **/
2720 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2721 {
2722         s32 ret_val = 0;
2723
2724         if (hw->mac.type != e1000_pch2lan)
2725                 return 0;
2726
2727         /* Set MDIO slow mode before any other MDIO access */
2728         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2729         if (ret_val)
2730                 return ret_val;
2731
2732         ret_val = hw->phy.ops.acquire(hw);
2733         if (ret_val)
2734                 return ret_val;
2735         /* set MSE higher to enable link to stay up when noise is high */
2736         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2737         if (ret_val)
2738                 goto release;
2739         /* drop link after 5 times MSE threshold was reached */
2740         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2741 release:
2742         hw->phy.ops.release(hw);
2743
2744         return ret_val;
2745 }
2746
2747 /**
2748  *  e1000_k1_workaround_lv - K1 Si workaround
2749  *  @hw:   pointer to the HW structure
2750  *
2751  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2752  *  Disable K1 in 1000Mbps and 100Mbps
2753  **/
2754 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2755 {
2756         s32 ret_val = 0;
2757         u16 status_reg = 0;
2758
2759         if (hw->mac.type != e1000_pch2lan)
2760                 return 0;
2761
2762         /* Set K1 beacon duration based on 10Mbs speed */
2763         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2764         if (ret_val)
2765                 return ret_val;
2766
2767         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2768             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2769                 if (status_reg &
2770                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2771                         u16 pm_phy_reg;
2772
2773                         /* LV 1G/100 Packet drop issue wa  */
2774                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2775                         if (ret_val)
2776                                 return ret_val;
2777                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2778                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2779                         if (ret_val)
2780                                 return ret_val;
2781                 } else {
2782                         u32 mac_reg;
2783
2784                         mac_reg = er32(FEXTNVM4);
2785                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2786                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2787                         ew32(FEXTNVM4, mac_reg);
2788                 }
2789         }
2790
2791         return ret_val;
2792 }
2793
2794 /**
2795  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2796  *  @hw:   pointer to the HW structure
2797  *  @gate: boolean set to true to gate, false to ungate
2798  *
2799  *  Gate/ungate the automatic PHY configuration via hardware; perform
2800  *  the configuration via software instead.
2801  **/
2802 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2803 {
2804         u32 extcnf_ctrl;
2805
2806         if (hw->mac.type < e1000_pch2lan)
2807                 return;
2808
2809         extcnf_ctrl = er32(EXTCNF_CTRL);
2810
2811         if (gate)
2812                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2813         else
2814                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2815
2816         ew32(EXTCNF_CTRL, extcnf_ctrl);
2817 }
2818
2819 /**
2820  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2821  *  @hw: pointer to the HW structure
2822  *
2823  *  Check the appropriate indication the MAC has finished configuring the
2824  *  PHY after a software reset.
2825  **/
2826 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2827 {
2828         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2829
2830         /* Wait for basic configuration completes before proceeding */
2831         do {
2832                 data = er32(STATUS);
2833                 data &= E1000_STATUS_LAN_INIT_DONE;
2834                 usleep_range(100, 200);
2835         } while ((!data) && --loop);
2836
2837         /* If basic configuration is incomplete before the above loop
2838          * count reaches 0, loading the configuration from NVM will
2839          * leave the PHY in a bad state possibly resulting in no link.
2840          */
2841         if (loop == 0)
2842                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2843
2844         /* Clear the Init Done bit for the next init event */
2845         data = er32(STATUS);
2846         data &= ~E1000_STATUS_LAN_INIT_DONE;
2847         ew32(STATUS, data);
2848 }
2849
2850 /**
2851  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2852  *  @hw: pointer to the HW structure
2853  **/
2854 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2855 {
2856         s32 ret_val = 0;
2857         u16 reg;
2858
2859         if (hw->phy.ops.check_reset_block(hw))
2860                 return 0;
2861
2862         /* Allow time for h/w to get to quiescent state after reset */
2863         usleep_range(10000, 11000);
2864
2865         /* Perform any necessary post-reset workarounds */
2866         switch (hw->mac.type) {
2867         case e1000_pchlan:
2868                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2869                 if (ret_val)
2870                         return ret_val;
2871                 break;
2872         case e1000_pch2lan:
2873                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2874                 if (ret_val)
2875                         return ret_val;
2876                 break;
2877         default:
2878                 break;
2879         }
2880
2881         /* Clear the host wakeup bit after lcd reset */
2882         if (hw->mac.type >= e1000_pchlan) {
2883                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2884                 reg &= ~BM_WUC_HOST_WU_BIT;
2885                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2886         }
2887
2888         /* Configure the LCD with the extended configuration region in NVM */
2889         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2890         if (ret_val)
2891                 return ret_val;
2892
2893         /* Configure the LCD with the OEM bits in NVM */
2894         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2895
2896         if (hw->mac.type == e1000_pch2lan) {
2897                 /* Ungate automatic PHY configuration on non-managed 82579 */
2898                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2899                         usleep_range(10000, 11000);
2900                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2901                 }
2902
2903                 /* Set EEE LPI Update Timer to 200usec */
2904                 ret_val = hw->phy.ops.acquire(hw);
2905                 if (ret_val)
2906                         return ret_val;
2907                 ret_val = e1000_write_emi_reg_locked(hw,
2908                                                      I82579_LPI_UPDATE_TIMER,
2909                                                      0x1387);
2910                 hw->phy.ops.release(hw);
2911         }
2912
2913         return ret_val;
2914 }
2915
2916 /**
2917  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2918  *  @hw: pointer to the HW structure
2919  *
2920  *  Resets the PHY
2921  *  This is a function pointer entry point called by drivers
2922  *  or other shared routines.
2923  **/
2924 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2925 {
2926         s32 ret_val = 0;
2927
2928         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2929         if ((hw->mac.type == e1000_pch2lan) &&
2930             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2931                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2932
2933         ret_val = e1000e_phy_hw_reset_generic(hw);
2934         if (ret_val)
2935                 return ret_val;
2936
2937         return e1000_post_phy_reset_ich8lan(hw);
2938 }
2939
2940 /**
2941  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2942  *  @hw: pointer to the HW structure
2943  *  @active: true to enable LPLU, false to disable
2944  *
2945  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2946  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2947  *  the phy speed. This function will manually set the LPLU bit and restart
2948  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2949  *  since it configures the same bit.
2950  **/
2951 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2952 {
2953         s32 ret_val;
2954         u16 oem_reg;
2955
2956         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2957         if (ret_val)
2958                 return ret_val;
2959
2960         if (active)
2961                 oem_reg |= HV_OEM_BITS_LPLU;
2962         else
2963                 oem_reg &= ~HV_OEM_BITS_LPLU;
2964
2965         if (!hw->phy.ops.check_reset_block(hw))
2966                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2967
2968         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2969 }
2970
2971 /**
2972  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2973  *  @hw: pointer to the HW structure
2974  *  @active: true to enable LPLU, false to disable
2975  *
2976  *  Sets the LPLU D0 state according to the active flag.  When
2977  *  activating LPLU this function also disables smart speed
2978  *  and vice versa.  LPLU will not be activated unless the
2979  *  device autonegotiation advertisement meets standards of
2980  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2981  *  This is a function pointer entry point only called by
2982  *  PHY setup routines.
2983  **/
2984 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2985 {
2986         struct e1000_phy_info *phy = &hw->phy;
2987         u32 phy_ctrl;
2988         s32 ret_val = 0;
2989         u16 data;
2990
2991         if (phy->type == e1000_phy_ife)
2992                 return 0;
2993
2994         phy_ctrl = er32(PHY_CTRL);
2995
2996         if (active) {
2997                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2998                 ew32(PHY_CTRL, phy_ctrl);
2999
3000                 if (phy->type != e1000_phy_igp_3)
3001                         return 0;
3002
3003                 /* Call gig speed drop workaround on LPLU before accessing
3004                  * any PHY registers
3005                  */
3006                 if (hw->mac.type == e1000_ich8lan)
3007                         e1000e_gig_downshift_workaround_ich8lan(hw);
3008
3009                 /* When LPLU is enabled, we should disable SmartSpeed */
3010                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3011                 if (ret_val)
3012                         return ret_val;
3013                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3014                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3015                 if (ret_val)
3016                         return ret_val;
3017         } else {
3018                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3019                 ew32(PHY_CTRL, phy_ctrl);
3020
3021                 if (phy->type != e1000_phy_igp_3)
3022                         return 0;
3023
3024                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3025                  * during Dx states where the power conservation is most
3026                  * important.  During driver activity we should enable
3027                  * SmartSpeed, so performance is maintained.
3028                  */
3029                 if (phy->smart_speed == e1000_smart_speed_on) {
3030                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3031                                            &data);
3032                         if (ret_val)
3033                                 return ret_val;
3034
3035                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3036                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3037                                            data);
3038                         if (ret_val)
3039                                 return ret_val;
3040                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3041                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3042                                            &data);
3043                         if (ret_val)
3044                                 return ret_val;
3045
3046                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3047                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3048                                            data);
3049                         if (ret_val)
3050                                 return ret_val;
3051                 }
3052         }
3053
3054         return 0;
3055 }
3056
3057 /**
3058  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3059  *  @hw: pointer to the HW structure
3060  *  @active: true to enable LPLU, false to disable
3061  *
3062  *  Sets the LPLU D3 state according to the active flag.  When
3063  *  activating LPLU this function also disables smart speed
3064  *  and vice versa.  LPLU will not be activated unless the
3065  *  device autonegotiation advertisement meets standards of
3066  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3067  *  This is a function pointer entry point only called by
3068  *  PHY setup routines.
3069  **/
3070 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3071 {
3072         struct e1000_phy_info *phy = &hw->phy;
3073         u32 phy_ctrl;
3074         s32 ret_val = 0;
3075         u16 data;
3076
3077         phy_ctrl = er32(PHY_CTRL);
3078
3079         if (!active) {
3080                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3081                 ew32(PHY_CTRL, phy_ctrl);
3082
3083                 if (phy->type != e1000_phy_igp_3)
3084                         return 0;
3085
3086                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3087                  * during Dx states where the power conservation is most
3088                  * important.  During driver activity we should enable
3089                  * SmartSpeed, so performance is maintained.
3090                  */
3091                 if (phy->smart_speed == e1000_smart_speed_on) {
3092                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3093                                            &data);
3094                         if (ret_val)
3095                                 return ret_val;
3096
3097                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3098                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3099                                            data);
3100                         if (ret_val)
3101                                 return ret_val;
3102                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3103                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3104                                            &data);
3105                         if (ret_val)
3106                                 return ret_val;
3107
3108                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3109                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3110                                            data);
3111                         if (ret_val)
3112                                 return ret_val;
3113                 }
3114         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3115                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3116                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3117                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3118                 ew32(PHY_CTRL, phy_ctrl);
3119
3120                 if (phy->type != e1000_phy_igp_3)
3121                         return 0;
3122
3123                 /* Call gig speed drop workaround on LPLU before accessing
3124                  * any PHY registers
3125                  */
3126                 if (hw->mac.type == e1000_ich8lan)
3127                         e1000e_gig_downshift_workaround_ich8lan(hw);
3128
3129                 /* When LPLU is enabled, we should disable SmartSpeed */
3130                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3131                 if (ret_val)
3132                         return ret_val;
3133
3134                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3135                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3136         }
3137
3138         return ret_val;
3139 }
3140
3141 /**
3142  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3143  *  @hw: pointer to the HW structure
3144  *  @bank:  pointer to the variable that returns the active bank
3145  *
3146  *  Reads signature byte from the NVM using the flash access registers.
3147  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3148  **/
3149 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3150 {
3151         u32 eecd;
3152         struct e1000_nvm_info *nvm = &hw->nvm;
3153         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3154         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3155         u32 nvm_dword = 0;
3156         u8 sig_byte = 0;
3157         s32 ret_val;
3158
3159         switch (hw->mac.type) {
3160         case e1000_pch_spt:
3161         case e1000_pch_cnp:
3162         case e1000_pch_tgp:
3163         case e1000_pch_adp:
3164         case e1000_pch_mtp:
3165                 bank1_offset = nvm->flash_bank_size;
3166                 act_offset = E1000_ICH_NVM_SIG_WORD;
3167
3168                 /* set bank to 0 in case flash read fails */
3169                 *bank = 0;
3170
3171                 /* Check bank 0 */
3172                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3173                                                          &nvm_dword);
3174                 if (ret_val)
3175                         return ret_val;
3176                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3177                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3178                     E1000_ICH_NVM_SIG_VALUE) {
3179                         *bank = 0;
3180                         return 0;
3181                 }
3182
3183                 /* Check bank 1 */
3184                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3185                                                          bank1_offset,
3186                                                          &nvm_dword);
3187                 if (ret_val)
3188                         return ret_val;
3189                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3190                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3191                     E1000_ICH_NVM_SIG_VALUE) {
3192                         *bank = 1;
3193                         return 0;
3194                 }
3195
3196                 e_dbg("ERROR: No valid NVM bank present\n");
3197                 return -E1000_ERR_NVM;
3198         case e1000_ich8lan:
3199         case e1000_ich9lan:
3200                 eecd = er32(EECD);
3201                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3202                     E1000_EECD_SEC1VAL_VALID_MASK) {
3203                         if (eecd & E1000_EECD_SEC1VAL)
3204                                 *bank = 1;
3205                         else
3206                                 *bank = 0;
3207
3208                         return 0;
3209                 }
3210                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3211                 fallthrough;
3212         default:
3213                 /* set bank to 0 in case flash read fails */
3214                 *bank = 0;
3215
3216                 /* Check bank 0 */
3217                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3218                                                         &sig_byte);
3219                 if (ret_val)
3220                         return ret_val;
3221                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3222                     E1000_ICH_NVM_SIG_VALUE) {
3223                         *bank = 0;
3224                         return 0;
3225                 }
3226
3227                 /* Check bank 1 */
3228                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3229                                                         bank1_offset,
3230                                                         &sig_byte);
3231                 if (ret_val)
3232                         return ret_val;
3233                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3234                     E1000_ICH_NVM_SIG_VALUE) {
3235                         *bank = 1;
3236                         return 0;
3237                 }
3238
3239                 e_dbg("ERROR: No valid NVM bank present\n");
3240                 return -E1000_ERR_NVM;
3241         }
3242 }
3243
3244 /**
3245  *  e1000_read_nvm_spt - NVM access for SPT
3246  *  @hw: pointer to the HW structure
3247  *  @offset: The offset (in bytes) of the word(s) to read.
3248  *  @words: Size of data to read in words.
3249  *  @data: pointer to the word(s) to read at offset.
3250  *
3251  *  Reads a word(s) from the NVM
3252  **/
3253 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3254                               u16 *data)
3255 {
3256         struct e1000_nvm_info *nvm = &hw->nvm;
3257         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3258         u32 act_offset;
3259         s32 ret_val = 0;
3260         u32 bank = 0;
3261         u32 dword = 0;
3262         u16 offset_to_read;
3263         u16 i;
3264
3265         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3266             (words == 0)) {
3267                 e_dbg("nvm parameter(s) out of bounds\n");
3268                 ret_val = -E1000_ERR_NVM;
3269                 goto out;
3270         }
3271
3272         nvm->ops.acquire(hw);
3273
3274         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3275         if (ret_val) {
3276                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3277                 bank = 0;
3278         }
3279
3280         act_offset = (bank) ? nvm->flash_bank_size : 0;
3281         act_offset += offset;
3282
3283         ret_val = 0;
3284
3285         for (i = 0; i < words; i += 2) {
3286                 if (words - i == 1) {
3287                         if (dev_spec->shadow_ram[offset + i].modified) {
3288                                 data[i] =
3289                                     dev_spec->shadow_ram[offset + i].value;
3290                         } else {
3291                                 offset_to_read = act_offset + i -
3292                                     ((act_offset + i) % 2);
3293                                 ret_val =
3294                                   e1000_read_flash_dword_ich8lan(hw,
3295                                                                  offset_to_read,
3296                                                                  &dword);
3297                                 if (ret_val)
3298                                         break;
3299                                 if ((act_offset + i) % 2 == 0)
3300                                         data[i] = (u16)(dword & 0xFFFF);
3301                                 else
3302                                         data[i] = (u16)((dword >> 16) & 0xFFFF);
3303                         }
3304                 } else {
3305                         offset_to_read = act_offset + i;
3306                         if (!(dev_spec->shadow_ram[offset + i].modified) ||
3307                             !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3308                                 ret_val =
3309                                   e1000_read_flash_dword_ich8lan(hw,
3310                                                                  offset_to_read,
3311                                                                  &dword);
3312                                 if (ret_val)
3313                                         break;
3314                         }
3315                         if (dev_spec->shadow_ram[offset + i].modified)
3316                                 data[i] =
3317                                     dev_spec->shadow_ram[offset + i].value;
3318                         else
3319                                 data[i] = (u16)(dword & 0xFFFF);
3320                         if (dev_spec->shadow_ram[offset + i].modified)
3321                                 data[i + 1] =
3322                                     dev_spec->shadow_ram[offset + i + 1].value;
3323                         else
3324                                 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3325                 }
3326         }
3327
3328         nvm->ops.release(hw);
3329
3330 out:
3331         if (ret_val)
3332                 e_dbg("NVM read error: %d\n", ret_val);
3333
3334         return ret_val;
3335 }
3336
3337 /**
3338  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3339  *  @hw: pointer to the HW structure
3340  *  @offset: The offset (in bytes) of the word(s) to read.
3341  *  @words: Size of data to read in words
3342  *  @data: Pointer to the word(s) to read at offset.
3343  *
3344  *  Reads a word(s) from the NVM using the flash access registers.
3345  **/
3346 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3347                                   u16 *data)
3348 {
3349         struct e1000_nvm_info *nvm = &hw->nvm;
3350         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3351         u32 act_offset;
3352         s32 ret_val = 0;
3353         u32 bank = 0;
3354         u16 i, word;
3355
3356         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3357             (words == 0)) {
3358                 e_dbg("nvm parameter(s) out of bounds\n");
3359                 ret_val = -E1000_ERR_NVM;
3360                 goto out;
3361         }
3362
3363         nvm->ops.acquire(hw);
3364
3365         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3366         if (ret_val) {
3367                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3368                 bank = 0;
3369         }
3370
3371         act_offset = (bank) ? nvm->flash_bank_size : 0;
3372         act_offset += offset;
3373
3374         ret_val = 0;
3375         for (i = 0; i < words; i++) {
3376                 if (dev_spec->shadow_ram[offset + i].modified) {
3377                         data[i] = dev_spec->shadow_ram[offset + i].value;
3378                 } else {
3379                         ret_val = e1000_read_flash_word_ich8lan(hw,
3380                                                                 act_offset + i,
3381                                                                 &word);
3382                         if (ret_val)
3383                                 break;
3384                         data[i] = word;
3385                 }
3386         }
3387
3388         nvm->ops.release(hw);
3389
3390 out:
3391         if (ret_val)
3392                 e_dbg("NVM read error: %d\n", ret_val);
3393
3394         return ret_val;
3395 }
3396
3397 /**
3398  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3399  *  @hw: pointer to the HW structure
3400  *
3401  *  This function does initial flash setup so that a new read/write/erase cycle
3402  *  can be started.
3403  **/
3404 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3405 {
3406         union ich8_hws_flash_status hsfsts;
3407         s32 ret_val = -E1000_ERR_NVM;
3408
3409         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3410
3411         /* Check if the flash descriptor is valid */
3412         if (!hsfsts.hsf_status.fldesvalid) {
3413                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3414                 return -E1000_ERR_NVM;
3415         }
3416
3417         /* Clear FCERR and DAEL in hw status by writing 1 */
3418         hsfsts.hsf_status.flcerr = 1;
3419         hsfsts.hsf_status.dael = 1;
3420         if (hw->mac.type >= e1000_pch_spt)
3421                 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3422         else
3423                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3424
3425         /* Either we should have a hardware SPI cycle in progress
3426          * bit to check against, in order to start a new cycle or
3427          * FDONE bit should be changed in the hardware so that it
3428          * is 1 after hardware reset, which can then be used as an
3429          * indication whether a cycle is in progress or has been
3430          * completed.
3431          */
3432
3433         if (!hsfsts.hsf_status.flcinprog) {
3434                 /* There is no cycle running at present,
3435                  * so we can start a cycle.
3436                  * Begin by setting Flash Cycle Done.
3437                  */
3438                 hsfsts.hsf_status.flcdone = 1;
3439                 if (hw->mac.type >= e1000_pch_spt)
3440                         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3441                 else
3442                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3443                 ret_val = 0;
3444         } else {
3445                 s32 i;
3446
3447                 /* Otherwise poll for sometime so the current
3448                  * cycle has a chance to end before giving up.
3449                  */
3450                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3451                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3452                         if (!hsfsts.hsf_status.flcinprog) {
3453                                 ret_val = 0;
3454                                 break;
3455                         }
3456                         udelay(1);
3457                 }
3458                 if (!ret_val) {
3459                         /* Successful in waiting for previous cycle to timeout,
3460                          * now set the Flash Cycle Done.
3461                          */
3462                         hsfsts.hsf_status.flcdone = 1;
3463                         if (hw->mac.type >= e1000_pch_spt)
3464                                 ew32flash(ICH_FLASH_HSFSTS,
3465                                           hsfsts.regval & 0xFFFF);
3466                         else
3467                                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3468                 } else {
3469                         e_dbg("Flash controller busy, cannot get access\n");
3470                 }
3471         }
3472
3473         return ret_val;
3474 }
3475
3476 /**
3477  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3478  *  @hw: pointer to the HW structure
3479  *  @timeout: maximum time to wait for completion
3480  *
3481  *  This function starts a flash cycle and waits for its completion.
3482  **/
3483 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3484 {
3485         union ich8_hws_flash_ctrl hsflctl;
3486         union ich8_hws_flash_status hsfsts;
3487         u32 i = 0;
3488
3489         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3490         if (hw->mac.type >= e1000_pch_spt)
3491                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3492         else
3493                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3494         hsflctl.hsf_ctrl.flcgo = 1;
3495
3496         if (hw->mac.type >= e1000_pch_spt)
3497                 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3498         else
3499                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3500
3501         /* wait till FDONE bit is set to 1 */
3502         do {
3503                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3504                 if (hsfsts.hsf_status.flcdone)
3505                         break;
3506                 udelay(1);
3507         } while (i++ < timeout);
3508
3509         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3510                 return 0;
3511
3512         return -E1000_ERR_NVM;
3513 }
3514
3515 /**
3516  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3517  *  @hw: pointer to the HW structure
3518  *  @offset: offset to data location
3519  *  @data: pointer to the location for storing the data
3520  *
3521  *  Reads the flash dword at offset into data.  Offset is converted
3522  *  to bytes before read.
3523  **/
3524 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3525                                           u32 *data)
3526 {
3527         /* Must convert word offset into bytes. */
3528         offset <<= 1;
3529         return e1000_read_flash_data32_ich8lan(hw, offset, data);
3530 }
3531
3532 /**
3533  *  e1000_read_flash_word_ich8lan - Read word from flash
3534  *  @hw: pointer to the HW structure
3535  *  @offset: offset to data location
3536  *  @data: pointer to the location for storing the data
3537  *
3538  *  Reads the flash word at offset into data.  Offset is converted
3539  *  to bytes before read.
3540  **/
3541 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3542                                          u16 *data)
3543 {
3544         /* Must convert offset into bytes. */
3545         offset <<= 1;
3546
3547         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3548 }
3549
3550 /**
3551  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3552  *  @hw: pointer to the HW structure
3553  *  @offset: The offset of the byte to read.
3554  *  @data: Pointer to a byte to store the value read.
3555  *
3556  *  Reads a single byte from the NVM using the flash access registers.
3557  **/
3558 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3559                                          u8 *data)
3560 {
3561         s32 ret_val;
3562         u16 word = 0;
3563
3564         /* In SPT, only 32 bits access is supported,
3565          * so this function should not be called.
3566          */
3567         if (hw->mac.type >= e1000_pch_spt)
3568                 return -E1000_ERR_NVM;
3569         else
3570                 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3571
3572         if (ret_val)
3573                 return ret_val;
3574
3575         *data = (u8)word;
3576
3577         return 0;
3578 }
3579
3580 /**
3581  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3582  *  @hw: pointer to the HW structure
3583  *  @offset: The offset (in bytes) of the byte or word to read.
3584  *  @size: Size of data to read, 1=byte 2=word
3585  *  @data: Pointer to the word to store the value read.
3586  *
3587  *  Reads a byte or word from the NVM using the flash access registers.
3588  **/
3589 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3590                                          u8 size, u16 *data)
3591 {
3592         union ich8_hws_flash_status hsfsts;
3593         union ich8_hws_flash_ctrl hsflctl;
3594         u32 flash_linear_addr;
3595         u32 flash_data = 0;
3596         s32 ret_val = -E1000_ERR_NVM;
3597         u8 count = 0;
3598
3599         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3600                 return -E1000_ERR_NVM;
3601
3602         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3603                              hw->nvm.flash_base_addr);
3604
3605         do {
3606                 udelay(1);
3607                 /* Steps */
3608                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3609                 if (ret_val)
3610                         break;
3611
3612                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3613                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3614                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3615                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3616                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3617
3618                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3619
3620                 ret_val =
3621                     e1000_flash_cycle_ich8lan(hw,
3622                                               ICH_FLASH_READ_COMMAND_TIMEOUT);
3623
3624                 /* Check if FCERR is set to 1, if set to 1, clear it
3625                  * and try the whole sequence a few more times, else
3626                  * read in (shift in) the Flash Data0, the order is
3627                  * least significant byte first msb to lsb
3628                  */
3629                 if (!ret_val) {
3630                         flash_data = er32flash(ICH_FLASH_FDATA0);
3631                         if (size == 1)
3632                                 *data = (u8)(flash_data & 0x000000FF);
3633                         else if (size == 2)
3634                                 *data = (u16)(flash_data & 0x0000FFFF);
3635                         break;
3636                 } else {
3637                         /* If we've gotten here, then things are probably
3638                          * completely hosed, but if the error condition is
3639                          * detected, it won't hurt to give it another try...
3640                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3641                          */
3642                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3643                         if (hsfsts.hsf_status.flcerr) {
3644                                 /* Repeat for some time before giving up. */
3645                                 continue;
3646                         } else if (!hsfsts.hsf_status.flcdone) {
3647                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3648                                 break;
3649                         }
3650                 }
3651         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3652
3653         return ret_val;
3654 }
3655
3656 /**
3657  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3658  *  @hw: pointer to the HW structure
3659  *  @offset: The offset (in bytes) of the dword to read.
3660  *  @data: Pointer to the dword to store the value read.
3661  *
3662  *  Reads a byte or word from the NVM using the flash access registers.
3663  **/
3664
3665 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3666                                            u32 *data)
3667 {
3668         union ich8_hws_flash_status hsfsts;
3669         union ich8_hws_flash_ctrl hsflctl;
3670         u32 flash_linear_addr;
3671         s32 ret_val = -E1000_ERR_NVM;
3672         u8 count = 0;
3673
3674         if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3675                 return -E1000_ERR_NVM;
3676         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3677                              hw->nvm.flash_base_addr);
3678
3679         do {
3680                 udelay(1);
3681                 /* Steps */
3682                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3683                 if (ret_val)
3684                         break;
3685                 /* In SPT, This register is in Lan memory space, not flash.
3686                  * Therefore, only 32 bit access is supported
3687                  */
3688                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3689
3690                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3691                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3692                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3693                 /* In SPT, This register is in Lan memory space, not flash.
3694                  * Therefore, only 32 bit access is supported
3695                  */
3696                 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3697                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3698
3699                 ret_val =
3700                    e1000_flash_cycle_ich8lan(hw,
3701                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3702
3703                 /* Check if FCERR is set to 1, if set to 1, clear it
3704                  * and try the whole sequence a few more times, else
3705                  * read in (shift in) the Flash Data0, the order is
3706                  * least significant byte first msb to lsb
3707                  */
3708                 if (!ret_val) {
3709                         *data = er32flash(ICH_FLASH_FDATA0);
3710                         break;
3711                 } else {
3712                         /* If we've gotten here, then things are probably
3713                          * completely hosed, but if the error condition is
3714                          * detected, it won't hurt to give it another try...
3715                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3716                          */
3717                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3718                         if (hsfsts.hsf_status.flcerr) {
3719                                 /* Repeat for some time before giving up. */
3720                                 continue;
3721                         } else if (!hsfsts.hsf_status.flcdone) {
3722                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3723                                 break;
3724                         }
3725                 }
3726         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3727
3728         return ret_val;
3729 }
3730
3731 /**
3732  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3733  *  @hw: pointer to the HW structure
3734  *  @offset: The offset (in bytes) of the word(s) to write.
3735  *  @words: Size of data to write in words
3736  *  @data: Pointer to the word(s) to write at offset.
3737  *
3738  *  Writes a byte or word to the NVM using the flash access registers.
3739  **/
3740 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3741                                    u16 *data)
3742 {
3743         struct e1000_nvm_info *nvm = &hw->nvm;
3744         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3745         u16 i;
3746
3747         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3748             (words == 0)) {
3749                 e_dbg("nvm parameter(s) out of bounds\n");
3750                 return -E1000_ERR_NVM;
3751         }
3752
3753         nvm->ops.acquire(hw);
3754
3755         for (i = 0; i < words; i++) {
3756                 dev_spec->shadow_ram[offset + i].modified = true;
3757                 dev_spec->shadow_ram[offset + i].value = data[i];
3758         }
3759
3760         nvm->ops.release(hw);
3761
3762         return 0;
3763 }
3764
3765 /**
3766  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3767  *  @hw: pointer to the HW structure
3768  *
3769  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3770  *  which writes the checksum to the shadow ram.  The changes in the shadow
3771  *  ram are then committed to the EEPROM by processing each bank at a time
3772  *  checking for the modified bit and writing only the pending changes.
3773  *  After a successful commit, the shadow ram is cleared and is ready for
3774  *  future writes.
3775  **/
3776 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3777 {
3778         struct e1000_nvm_info *nvm = &hw->nvm;
3779         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3780         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3781         s32 ret_val;
3782         u32 dword = 0;
3783
3784         ret_val = e1000e_update_nvm_checksum_generic(hw);
3785         if (ret_val)
3786                 goto out;
3787
3788         if (nvm->type != e1000_nvm_flash_sw)
3789                 goto out;
3790
3791         nvm->ops.acquire(hw);
3792
3793         /* We're writing to the opposite bank so if we're on bank 1,
3794          * write to bank 0 etc.  We also need to erase the segment that
3795          * is going to be written
3796          */
3797         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3798         if (ret_val) {
3799                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3800                 bank = 0;
3801         }
3802
3803         if (bank == 0) {
3804                 new_bank_offset = nvm->flash_bank_size;
3805                 old_bank_offset = 0;
3806                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3807                 if (ret_val)
3808                         goto release;
3809         } else {
3810                 old_bank_offset = nvm->flash_bank_size;
3811                 new_bank_offset = 0;
3812                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3813                 if (ret_val)
3814                         goto release;
3815         }
3816         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3817                 /* Determine whether to write the value stored
3818                  * in the other NVM bank or a modified value stored
3819                  * in the shadow RAM
3820                  */
3821                 ret_val = e1000_read_flash_dword_ich8lan(hw,
3822                                                          i + old_bank_offset,
3823                                                          &dword);
3824
3825                 if (dev_spec->shadow_ram[i].modified) {
3826                         dword &= 0xffff0000;
3827                         dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3828                 }
3829                 if (dev_spec->shadow_ram[i + 1].modified) {
3830                         dword &= 0x0000ffff;
3831                         dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3832                                   << 16);
3833                 }
3834                 if (ret_val)
3835                         break;
3836
3837                 /* If the word is 0x13, then make sure the signature bits
3838                  * (15:14) are 11b until the commit has completed.
3839                  * This will allow us to write 10b which indicates the
3840                  * signature is valid.  We want to do this after the write
3841                  * has completed so that we don't mark the segment valid
3842                  * while the write is still in progress
3843                  */
3844                 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3845                         dword |= E1000_ICH_NVM_SIG_MASK << 16;
3846
3847                 /* Convert offset to bytes. */
3848                 act_offset = (i + new_bank_offset) << 1;
3849
3850                 usleep_range(100, 200);
3851
3852                 /* Write the data to the new bank. Offset in words */
3853                 act_offset = i + new_bank_offset;
3854                 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3855                                                                 dword);
3856                 if (ret_val)
3857                         break;
3858         }
3859
3860         /* Don't bother writing the segment valid bits if sector
3861          * programming failed.
3862          */
3863         if (ret_val) {
3864                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3865                 e_dbg("Flash commit failed.\n");
3866                 goto release;
3867         }
3868
3869         /* Finally validate the new segment by setting bit 15:14
3870          * to 10b in word 0x13 , this can be done without an
3871          * erase as well since these bits are 11 to start with
3872          * and we need to change bit 14 to 0b
3873          */
3874         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3875
3876         /*offset in words but we read dword */
3877         --act_offset;
3878         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3879
3880         if (ret_val)
3881                 goto release;
3882
3883         dword &= 0xBFFFFFFF;
3884         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3885
3886         if (ret_val)
3887                 goto release;
3888
3889         /* offset in words but we read dword */
3890         act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3891         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3892
3893         if (ret_val)
3894                 goto release;
3895
3896         dword &= 0x00FFFFFF;
3897         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3898
3899         if (ret_val)
3900                 goto release;
3901
3902         /* Great!  Everything worked, we can now clear the cached entries. */
3903         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3904                 dev_spec->shadow_ram[i].modified = false;
3905                 dev_spec->shadow_ram[i].value = 0xFFFF;
3906         }
3907
3908 release:
3909         nvm->ops.release(hw);
3910
3911         /* Reload the EEPROM, or else modifications will not appear
3912          * until after the next adapter reset.
3913          */
3914         if (!ret_val) {
3915                 nvm->ops.reload(hw);
3916                 usleep_range(10000, 11000);
3917         }
3918
3919 out:
3920         if (ret_val)
3921                 e_dbg("NVM update error: %d\n", ret_val);
3922
3923         return ret_val;
3924 }
3925
3926 /**
3927  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3928  *  @hw: pointer to the HW structure
3929  *
3930  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3931  *  which writes the checksum to the shadow ram.  The changes in the shadow
3932  *  ram are then committed to the EEPROM by processing each bank at a time
3933  *  checking for the modified bit and writing only the pending changes.
3934  *  After a successful commit, the shadow ram is cleared and is ready for
3935  *  future writes.
3936  **/
3937 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3938 {
3939         struct e1000_nvm_info *nvm = &hw->nvm;
3940         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3941         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3942         s32 ret_val;
3943         u16 data = 0;
3944
3945         ret_val = e1000e_update_nvm_checksum_generic(hw);
3946         if (ret_val)
3947                 goto out;
3948
3949         if (nvm->type != e1000_nvm_flash_sw)
3950                 goto out;
3951
3952         nvm->ops.acquire(hw);
3953
3954         /* We're writing to the opposite bank so if we're on bank 1,
3955          * write to bank 0 etc.  We also need to erase the segment that
3956          * is going to be written
3957          */
3958         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3959         if (ret_val) {
3960                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3961                 bank = 0;
3962         }
3963
3964         if (bank == 0) {
3965                 new_bank_offset = nvm->flash_bank_size;
3966                 old_bank_offset = 0;
3967                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3968                 if (ret_val)
3969                         goto release;
3970         } else {
3971                 old_bank_offset = nvm->flash_bank_size;
3972                 new_bank_offset = 0;
3973                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3974                 if (ret_val)
3975                         goto release;
3976         }
3977         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3978                 if (dev_spec->shadow_ram[i].modified) {
3979                         data = dev_spec->shadow_ram[i].value;
3980                 } else {
3981                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
3982                                                                 old_bank_offset,
3983                                                                 &data);
3984                         if (ret_val)
3985                                 break;
3986                 }
3987
3988                 /* If the word is 0x13, then make sure the signature bits
3989                  * (15:14) are 11b until the commit has completed.
3990                  * This will allow us to write 10b which indicates the
3991                  * signature is valid.  We want to do this after the write
3992                  * has completed so that we don't mark the segment valid
3993                  * while the write is still in progress
3994                  */
3995                 if (i == E1000_ICH_NVM_SIG_WORD)
3996                         data |= E1000_ICH_NVM_SIG_MASK;
3997
3998                 /* Convert offset to bytes. */
3999                 act_offset = (i + new_bank_offset) << 1;
4000
4001                 usleep_range(100, 200);
4002                 /* Write the bytes to the new bank. */
4003                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4004                                                                act_offset,
4005                                                                (u8)data);
4006                 if (ret_val)
4007                         break;
4008
4009                 usleep_range(100, 200);
4010                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4011                                                                act_offset + 1,
4012                                                                (u8)(data >> 8));
4013                 if (ret_val)
4014                         break;
4015         }
4016
4017         /* Don't bother writing the segment valid bits if sector
4018          * programming failed.
4019          */
4020         if (ret_val) {
4021                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4022                 e_dbg("Flash commit failed.\n");
4023                 goto release;
4024         }
4025
4026         /* Finally validate the new segment by setting bit 15:14
4027          * to 10b in word 0x13 , this can be done without an
4028          * erase as well since these bits are 11 to start with
4029          * and we need to change bit 14 to 0b
4030          */
4031         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4032         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4033         if (ret_val)
4034                 goto release;
4035
4036         data &= 0xBFFF;
4037         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4038                                                        act_offset * 2 + 1,
4039                                                        (u8)(data >> 8));
4040         if (ret_val)
4041                 goto release;
4042
4043         /* And invalidate the previously valid segment by setting
4044          * its signature word (0x13) high_byte to 0b. This can be
4045          * done without an erase because flash erase sets all bits
4046          * to 1's. We can write 1's to 0's without an erase
4047          */
4048         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4049         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4050         if (ret_val)
4051                 goto release;
4052
4053         /* Great!  Everything worked, we can now clear the cached entries. */
4054         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4055                 dev_spec->shadow_ram[i].modified = false;
4056                 dev_spec->shadow_ram[i].value = 0xFFFF;
4057         }
4058
4059 release:
4060         nvm->ops.release(hw);
4061
4062         /* Reload the EEPROM, or else modifications will not appear
4063          * until after the next adapter reset.
4064          */
4065         if (!ret_val) {
4066                 nvm->ops.reload(hw);
4067                 usleep_range(10000, 11000);
4068         }
4069
4070 out:
4071         if (ret_val)
4072                 e_dbg("NVM update error: %d\n", ret_val);
4073
4074         return ret_val;
4075 }
4076
4077 /**
4078  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4079  *  @hw: pointer to the HW structure
4080  *
4081  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4082  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4083  *  calculated, in which case we need to calculate the checksum and set bit 6.
4084  **/
4085 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4086 {
4087         s32 ret_val;
4088         u16 data;
4089         u16 word;
4090         u16 valid_csum_mask;
4091
4092         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4093          * the checksum needs to be fixed.  This bit is an indication that
4094          * the NVM was prepared by OEM software and did not calculate
4095          * the checksum...a likely scenario.
4096          */
4097         switch (hw->mac.type) {
4098         case e1000_pch_lpt:
4099         case e1000_pch_spt:
4100         case e1000_pch_cnp:
4101         case e1000_pch_tgp:
4102         case e1000_pch_adp:
4103         case e1000_pch_mtp:
4104                 word = NVM_COMPAT;
4105                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4106                 break;
4107         default:
4108                 word = NVM_FUTURE_INIT_WORD1;
4109                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4110                 break;
4111         }
4112
4113         ret_val = e1000_read_nvm(hw, word, 1, &data);
4114         if (ret_val)
4115                 return ret_val;
4116
4117         if (!(data & valid_csum_mask)) {
4118                 data |= valid_csum_mask;
4119                 ret_val = e1000_write_nvm(hw, word, 1, &data);
4120                 if (ret_val)
4121                         return ret_val;
4122                 ret_val = e1000e_update_nvm_checksum(hw);
4123                 if (ret_val)
4124                         return ret_val;
4125         }
4126
4127         return e1000e_validate_nvm_checksum_generic(hw);
4128 }
4129
4130 /**
4131  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4132  *  @hw: pointer to the HW structure
4133  *
4134  *  To prevent malicious write/erase of the NVM, set it to be read-only
4135  *  so that the hardware ignores all write/erase cycles of the NVM via
4136  *  the flash control registers.  The shadow-ram copy of the NVM will
4137  *  still be updated, however any updates to this copy will not stick
4138  *  across driver reloads.
4139  **/
4140 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4141 {
4142         struct e1000_nvm_info *nvm = &hw->nvm;
4143         union ich8_flash_protected_range pr0;
4144         union ich8_hws_flash_status hsfsts;
4145         u32 gfpreg;
4146
4147         nvm->ops.acquire(hw);
4148
4149         gfpreg = er32flash(ICH_FLASH_GFPREG);
4150
4151         /* Write-protect GbE Sector of NVM */
4152         pr0.regval = er32flash(ICH_FLASH_PR0);
4153         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4154         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4155         pr0.range.wpe = true;
4156         ew32flash(ICH_FLASH_PR0, pr0.regval);
4157
4158         /* Lock down a subset of GbE Flash Control Registers, e.g.
4159          * PR0 to prevent the write-protection from being lifted.
4160          * Once FLOCKDN is set, the registers protected by it cannot
4161          * be written until FLOCKDN is cleared by a hardware reset.
4162          */
4163         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4164         hsfsts.hsf_status.flockdn = true;
4165         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4166
4167         nvm->ops.release(hw);
4168 }
4169
4170 /**
4171  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4172  *  @hw: pointer to the HW structure
4173  *  @offset: The offset (in bytes) of the byte/word to read.
4174  *  @size: Size of data to read, 1=byte 2=word
4175  *  @data: The byte(s) to write to the NVM.
4176  *
4177  *  Writes one/two bytes to the NVM using the flash access registers.
4178  **/
4179 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4180                                           u8 size, u16 data)
4181 {
4182         union ich8_hws_flash_status hsfsts;
4183         union ich8_hws_flash_ctrl hsflctl;
4184         u32 flash_linear_addr;
4185         u32 flash_data = 0;
4186         s32 ret_val;
4187         u8 count = 0;
4188
4189         if (hw->mac.type >= e1000_pch_spt) {
4190                 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4191                         return -E1000_ERR_NVM;
4192         } else {
4193                 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4194                         return -E1000_ERR_NVM;
4195         }
4196
4197         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4198                              hw->nvm.flash_base_addr);
4199
4200         do {
4201                 udelay(1);
4202                 /* Steps */
4203                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4204                 if (ret_val)
4205                         break;
4206                 /* In SPT, This register is in Lan memory space, not
4207                  * flash.  Therefore, only 32 bit access is supported
4208                  */
4209                 if (hw->mac.type >= e1000_pch_spt)
4210                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4211                 else
4212                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4213
4214                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4215                 hsflctl.hsf_ctrl.fldbcount = size - 1;
4216                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4217                 /* In SPT, This register is in Lan memory space,
4218                  * not flash.  Therefore, only 32 bit access is
4219                  * supported
4220                  */
4221                 if (hw->mac.type >= e1000_pch_spt)
4222                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4223                 else
4224                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4225
4226                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4227
4228                 if (size == 1)
4229                         flash_data = (u32)data & 0x00FF;
4230                 else
4231                         flash_data = (u32)data;
4232
4233                 ew32flash(ICH_FLASH_FDATA0, flash_data);
4234
4235                 /* check if FCERR is set to 1 , if set to 1, clear it
4236                  * and try the whole sequence a few more times else done
4237                  */
4238                 ret_val =
4239                     e1000_flash_cycle_ich8lan(hw,
4240                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4241                 if (!ret_val)
4242                         break;
4243
4244                 /* If we're here, then things are most likely
4245                  * completely hosed, but if the error condition
4246                  * is detected, it won't hurt to give it another
4247                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4248                  */
4249                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4250                 if (hsfsts.hsf_status.flcerr)
4251                         /* Repeat for some time before giving up. */
4252                         continue;
4253                 if (!hsfsts.hsf_status.flcdone) {
4254                         e_dbg("Timeout error - flash cycle did not complete.\n");
4255                         break;
4256                 }
4257         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4258
4259         return ret_val;
4260 }
4261
4262 /**
4263 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4264 *  @hw: pointer to the HW structure
4265 *  @offset: The offset (in bytes) of the dwords to read.
4266 *  @data: The 4 bytes to write to the NVM.
4267 *
4268 *  Writes one/two/four bytes to the NVM using the flash access registers.
4269 **/
4270 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4271                                             u32 data)
4272 {
4273         union ich8_hws_flash_status hsfsts;
4274         union ich8_hws_flash_ctrl hsflctl;
4275         u32 flash_linear_addr;
4276         s32 ret_val;
4277         u8 count = 0;
4278
4279         if (hw->mac.type >= e1000_pch_spt) {
4280                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4281                         return -E1000_ERR_NVM;
4282         }
4283         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4284                              hw->nvm.flash_base_addr);
4285         do {
4286                 udelay(1);
4287                 /* Steps */
4288                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4289                 if (ret_val)
4290                         break;
4291
4292                 /* In SPT, This register is in Lan memory space, not
4293                  * flash.  Therefore, only 32 bit access is supported
4294                  */
4295                 if (hw->mac.type >= e1000_pch_spt)
4296                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4297                             >> 16;
4298                 else
4299                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4300
4301                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4302                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4303
4304                 /* In SPT, This register is in Lan memory space,
4305                  * not flash.  Therefore, only 32 bit access is
4306                  * supported
4307                  */
4308                 if (hw->mac.type >= e1000_pch_spt)
4309                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4310                 else
4311                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4312
4313                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4314
4315                 ew32flash(ICH_FLASH_FDATA0, data);
4316
4317                 /* check if FCERR is set to 1 , if set to 1, clear it
4318                  * and try the whole sequence a few more times else done
4319                  */
4320                 ret_val =
4321                    e1000_flash_cycle_ich8lan(hw,
4322                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4323
4324                 if (!ret_val)
4325                         break;
4326
4327                 /* If we're here, then things are most likely
4328                  * completely hosed, but if the error condition
4329                  * is detected, it won't hurt to give it another
4330                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4331                  */
4332                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4333
4334                 if (hsfsts.hsf_status.flcerr)
4335                         /* Repeat for some time before giving up. */
4336                         continue;
4337                 if (!hsfsts.hsf_status.flcdone) {
4338                         e_dbg("Timeout error - flash cycle did not complete.\n");
4339                         break;
4340                 }
4341         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4342
4343         return ret_val;
4344 }
4345
4346 /**
4347  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4348  *  @hw: pointer to the HW structure
4349  *  @offset: The index of the byte to read.
4350  *  @data: The byte to write to the NVM.
4351  *
4352  *  Writes a single byte to the NVM using the flash access registers.
4353  **/
4354 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4355                                           u8 data)
4356 {
4357         u16 word = (u16)data;
4358
4359         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4360 }
4361
4362 /**
4363 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4364 *  @hw: pointer to the HW structure
4365 *  @offset: The offset of the word to write.
4366 *  @dword: The dword to write to the NVM.
4367 *
4368 *  Writes a single dword to the NVM using the flash access registers.
4369 *  Goes through a retry algorithm before giving up.
4370 **/
4371 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4372                                                  u32 offset, u32 dword)
4373 {
4374         s32 ret_val;
4375         u16 program_retries;
4376
4377         /* Must convert word offset into bytes. */
4378         offset <<= 1;
4379         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4380
4381         if (!ret_val)
4382                 return ret_val;
4383         for (program_retries = 0; program_retries < 100; program_retries++) {
4384                 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4385                 usleep_range(100, 200);
4386                 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4387                 if (!ret_val)
4388                         break;
4389         }
4390         if (program_retries == 100)
4391                 return -E1000_ERR_NVM;
4392
4393         return 0;
4394 }
4395
4396 /**
4397  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4398  *  @hw: pointer to the HW structure
4399  *  @offset: The offset of the byte to write.
4400  *  @byte: The byte to write to the NVM.
4401  *
4402  *  Writes a single byte to the NVM using the flash access registers.
4403  *  Goes through a retry algorithm before giving up.
4404  **/
4405 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4406                                                 u32 offset, u8 byte)
4407 {
4408         s32 ret_val;
4409         u16 program_retries;
4410
4411         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4412         if (!ret_val)
4413                 return ret_val;
4414
4415         for (program_retries = 0; program_retries < 100; program_retries++) {
4416                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4417                 usleep_range(100, 200);
4418                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4419                 if (!ret_val)
4420                         break;
4421         }
4422         if (program_retries == 100)
4423                 return -E1000_ERR_NVM;
4424
4425         return 0;
4426 }
4427
4428 /**
4429  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4430  *  @hw: pointer to the HW structure
4431  *  @bank: 0 for first bank, 1 for second bank, etc.
4432  *
4433  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4434  *  bank N is 4096 * N + flash_reg_addr.
4435  **/
4436 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4437 {
4438         struct e1000_nvm_info *nvm = &hw->nvm;
4439         union ich8_hws_flash_status hsfsts;
4440         union ich8_hws_flash_ctrl hsflctl;
4441         u32 flash_linear_addr;
4442         /* bank size is in 16bit words - adjust to bytes */
4443         u32 flash_bank_size = nvm->flash_bank_size * 2;
4444         s32 ret_val;
4445         s32 count = 0;
4446         s32 j, iteration, sector_size;
4447
4448         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4449
4450         /* Determine HW Sector size: Read BERASE bits of hw flash status
4451          * register
4452          * 00: The Hw sector is 256 bytes, hence we need to erase 16
4453          *     consecutive sectors.  The start index for the nth Hw sector
4454          *     can be calculated as = bank * 4096 + n * 256
4455          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4456          *     The start index for the nth Hw sector can be calculated
4457          *     as = bank * 4096
4458          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4459          *     (ich9 only, otherwise error condition)
4460          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4461          */
4462         switch (hsfsts.hsf_status.berasesz) {
4463         case 0:
4464                 /* Hw sector size 256 */
4465                 sector_size = ICH_FLASH_SEG_SIZE_256;
4466                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4467                 break;
4468         case 1:
4469                 sector_size = ICH_FLASH_SEG_SIZE_4K;
4470                 iteration = 1;
4471                 break;
4472         case 2:
4473                 sector_size = ICH_FLASH_SEG_SIZE_8K;
4474                 iteration = 1;
4475                 break;
4476         case 3:
4477                 sector_size = ICH_FLASH_SEG_SIZE_64K;
4478                 iteration = 1;
4479                 break;
4480         default:
4481                 return -E1000_ERR_NVM;
4482         }
4483
4484         /* Start with the base address, then add the sector offset. */
4485         flash_linear_addr = hw->nvm.flash_base_addr;
4486         flash_linear_addr += (bank) ? flash_bank_size : 0;
4487
4488         for (j = 0; j < iteration; j++) {
4489                 do {
4490                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4491
4492                         /* Steps */
4493                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4494                         if (ret_val)
4495                                 return ret_val;
4496
4497                         /* Write a value 11 (block Erase) in Flash
4498                          * Cycle field in hw flash control
4499                          */
4500                         if (hw->mac.type >= e1000_pch_spt)
4501                                 hsflctl.regval =
4502                                     er32flash(ICH_FLASH_HSFSTS) >> 16;
4503                         else
4504                                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4505
4506                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4507                         if (hw->mac.type >= e1000_pch_spt)
4508                                 ew32flash(ICH_FLASH_HSFSTS,
4509                                           hsflctl.regval << 16);
4510                         else
4511                                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4512
4513                         /* Write the last 24 bits of an index within the
4514                          * block into Flash Linear address field in Flash
4515                          * Address.
4516                          */
4517                         flash_linear_addr += (j * sector_size);
4518                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4519
4520                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4521                         if (!ret_val)
4522                                 break;
4523
4524                         /* Check if FCERR is set to 1.  If 1,
4525                          * clear it and try the whole sequence
4526                          * a few more times else Done
4527                          */
4528                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4529                         if (hsfsts.hsf_status.flcerr)
4530                                 /* repeat for some time before giving up */
4531                                 continue;
4532                         else if (!hsfsts.hsf_status.flcdone)
4533                                 return ret_val;
4534                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4535         }
4536
4537         return 0;
4538 }
4539
4540 /**
4541  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4542  *  @hw: pointer to the HW structure
4543  *  @data: Pointer to the LED settings
4544  *
4545  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4546  *  settings is all 0's or F's, set the LED default to a valid LED default
4547  *  setting.
4548  **/
4549 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4550 {
4551         s32 ret_val;
4552
4553         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4554         if (ret_val) {
4555                 e_dbg("NVM Read Error\n");
4556                 return ret_val;
4557         }
4558
4559         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4560                 *data = ID_LED_DEFAULT_ICH8LAN;
4561
4562         return 0;
4563 }
4564
4565 /**
4566  *  e1000_id_led_init_pchlan - store LED configurations
4567  *  @hw: pointer to the HW structure
4568  *
4569  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4570  *  the PHY LED configuration register.
4571  *
4572  *  PCH also does not have an "always on" or "always off" mode which
4573  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4574  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4575  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4576  *  link based on logic in e1000_led_[on|off]_pchlan().
4577  **/
4578 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4579 {
4580         struct e1000_mac_info *mac = &hw->mac;
4581         s32 ret_val;
4582         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4583         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4584         u16 data, i, temp, shift;
4585
4586         /* Get default ID LED modes */
4587         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4588         if (ret_val)
4589                 return ret_val;
4590
4591         mac->ledctl_default = er32(LEDCTL);
4592         mac->ledctl_mode1 = mac->ledctl_default;
4593         mac->ledctl_mode2 = mac->ledctl_default;
4594
4595         for (i = 0; i < 4; i++) {
4596                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4597                 shift = (i * 5);
4598                 switch (temp) {
4599                 case ID_LED_ON1_DEF2:
4600                 case ID_LED_ON1_ON2:
4601                 case ID_LED_ON1_OFF2:
4602                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4603                         mac->ledctl_mode1 |= (ledctl_on << shift);
4604                         break;
4605                 case ID_LED_OFF1_DEF2:
4606                 case ID_LED_OFF1_ON2:
4607                 case ID_LED_OFF1_OFF2:
4608                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4609                         mac->ledctl_mode1 |= (ledctl_off << shift);
4610                         break;
4611                 default:
4612                         /* Do nothing */
4613                         break;
4614                 }
4615                 switch (temp) {
4616                 case ID_LED_DEF1_ON2:
4617                 case ID_LED_ON1_ON2:
4618                 case ID_LED_OFF1_ON2:
4619                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4620                         mac->ledctl_mode2 |= (ledctl_on << shift);
4621                         break;
4622                 case ID_LED_DEF1_OFF2:
4623                 case ID_LED_ON1_OFF2:
4624                 case ID_LED_OFF1_OFF2:
4625                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4626                         mac->ledctl_mode2 |= (ledctl_off << shift);
4627                         break;
4628                 default:
4629                         /* Do nothing */
4630                         break;
4631                 }
4632         }
4633
4634         return 0;
4635 }
4636
4637 /**
4638  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4639  *  @hw: pointer to the HW structure
4640  *
4641  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4642  *  register, so the bus width is hard coded.
4643  **/
4644 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4645 {
4646         struct e1000_bus_info *bus = &hw->bus;
4647         s32 ret_val;
4648
4649         ret_val = e1000e_get_bus_info_pcie(hw);
4650
4651         /* ICH devices are "PCI Express"-ish.  They have
4652          * a configuration space, but do not contain
4653          * PCI Express Capability registers, so bus width
4654          * must be hardcoded.
4655          */
4656         if (bus->width == e1000_bus_width_unknown)
4657                 bus->width = e1000_bus_width_pcie_x1;
4658
4659         return ret_val;
4660 }
4661
4662 /**
4663  *  e1000_reset_hw_ich8lan - Reset the hardware
4664  *  @hw: pointer to the HW structure
4665  *
4666  *  Does a full reset of the hardware which includes a reset of the PHY and
4667  *  MAC.
4668  **/
4669 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4670 {
4671         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4672         u16 kum_cfg;
4673         u32 ctrl, reg;
4674         s32 ret_val;
4675
4676         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4677          * on the last TLP read/write transaction when MAC is reset.
4678          */
4679         ret_val = e1000e_disable_pcie_master(hw);
4680         if (ret_val)
4681                 e_dbg("PCI-E Master disable polling has failed.\n");
4682
4683         e_dbg("Masking off all interrupts\n");
4684         ew32(IMC, 0xffffffff);
4685
4686         /* Disable the Transmit and Receive units.  Then delay to allow
4687          * any pending transactions to complete before we hit the MAC
4688          * with the global reset.
4689          */
4690         ew32(RCTL, 0);
4691         ew32(TCTL, E1000_TCTL_PSP);
4692         e1e_flush();
4693
4694         usleep_range(10000, 11000);
4695
4696         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4697         if (hw->mac.type == e1000_ich8lan) {
4698                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4699                 ew32(PBA, E1000_PBA_8K);
4700                 /* Set Packet Buffer Size to 16k. */
4701                 ew32(PBS, E1000_PBS_16K);
4702         }
4703
4704         if (hw->mac.type == e1000_pchlan) {
4705                 /* Save the NVM K1 bit setting */
4706                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4707                 if (ret_val)
4708                         return ret_val;
4709
4710                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4711                         dev_spec->nvm_k1_enabled = true;
4712                 else
4713                         dev_spec->nvm_k1_enabled = false;
4714         }
4715
4716         ctrl = er32(CTRL);
4717
4718         if (!hw->phy.ops.check_reset_block(hw)) {
4719                 /* Full-chip reset requires MAC and PHY reset at the same
4720                  * time to make sure the interface between MAC and the
4721                  * external PHY is reset.
4722                  */
4723                 ctrl |= E1000_CTRL_PHY_RST;
4724
4725                 /* Gate automatic PHY configuration by hardware on
4726                  * non-managed 82579
4727                  */
4728                 if ((hw->mac.type == e1000_pch2lan) &&
4729                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4730                         e1000_gate_hw_phy_config_ich8lan(hw, true);
4731         }
4732         ret_val = e1000_acquire_swflag_ich8lan(hw);
4733         e_dbg("Issuing a global reset to ich8lan\n");
4734         ew32(CTRL, (ctrl | E1000_CTRL_RST));
4735         /* cannot issue a flush here because it hangs the hardware */
4736         msleep(20);
4737
4738         /* Set Phy Config Counter to 50msec */
4739         if (hw->mac.type == e1000_pch2lan) {
4740                 reg = er32(FEXTNVM3);
4741                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4742                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4743                 ew32(FEXTNVM3, reg);
4744         }
4745
4746         if (!ret_val)
4747                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4748
4749         if (ctrl & E1000_CTRL_PHY_RST) {
4750                 ret_val = hw->phy.ops.get_cfg_done(hw);
4751                 if (ret_val)
4752                         return ret_val;
4753
4754                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4755                 if (ret_val)
4756                         return ret_val;
4757         }
4758
4759         /* For PCH, this write will make sure that any noise
4760          * will be detected as a CRC error and be dropped rather than show up
4761          * as a bad packet to the DMA engine.
4762          */
4763         if (hw->mac.type == e1000_pchlan)
4764                 ew32(CRC_OFFSET, 0x65656565);
4765
4766         ew32(IMC, 0xffffffff);
4767         er32(ICR);
4768
4769         reg = er32(KABGTXD);
4770         reg |= E1000_KABGTXD_BGSQLBIAS;
4771         ew32(KABGTXD, reg);
4772
4773         return 0;
4774 }
4775
4776 /**
4777  *  e1000_init_hw_ich8lan - Initialize the hardware
4778  *  @hw: pointer to the HW structure
4779  *
4780  *  Prepares the hardware for transmit and receive by doing the following:
4781  *   - initialize hardware bits
4782  *   - initialize LED identification
4783  *   - setup receive address registers
4784  *   - setup flow control
4785  *   - setup transmit descriptors
4786  *   - clear statistics
4787  **/
4788 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4789 {
4790         struct e1000_mac_info *mac = &hw->mac;
4791         u32 ctrl_ext, txdctl, snoop;
4792         s32 ret_val;
4793         u16 i;
4794
4795         e1000_initialize_hw_bits_ich8lan(hw);
4796
4797         /* Initialize identification LED */
4798         ret_val = mac->ops.id_led_init(hw);
4799         /* An error is not fatal and we should not stop init due to this */
4800         if (ret_val)
4801                 e_dbg("Error initializing identification LED\n");
4802
4803         /* Setup the receive address. */
4804         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4805
4806         /* Zero out the Multicast HASH table */
4807         e_dbg("Zeroing the MTA\n");
4808         for (i = 0; i < mac->mta_reg_count; i++)
4809                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4810
4811         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4812          * the ME.  Disable wakeup by clearing the host wakeup bit.
4813          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4814          */
4815         if (hw->phy.type == e1000_phy_82578) {
4816                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4817                 i &= ~BM_WUC_HOST_WU_BIT;
4818                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4819                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4820                 if (ret_val)
4821                         return ret_val;
4822         }
4823
4824         /* Setup link and flow control */
4825         ret_val = mac->ops.setup_link(hw);
4826
4827         /* Set the transmit descriptor write-back policy for both queues */
4828         txdctl = er32(TXDCTL(0));
4829         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4830                   E1000_TXDCTL_FULL_TX_DESC_WB);
4831         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4832                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4833         ew32(TXDCTL(0), txdctl);
4834         txdctl = er32(TXDCTL(1));
4835         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4836                   E1000_TXDCTL_FULL_TX_DESC_WB);
4837         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4838                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4839         ew32(TXDCTL(1), txdctl);
4840
4841         /* ICH8 has opposite polarity of no_snoop bits.
4842          * By default, we should use snoop behavior.
4843          */
4844         if (mac->type == e1000_ich8lan)
4845                 snoop = PCIE_ICH8_SNOOP_ALL;
4846         else
4847                 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4848         e1000e_set_pcie_no_snoop(hw, snoop);
4849
4850         ctrl_ext = er32(CTRL_EXT);
4851         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4852         ew32(CTRL_EXT, ctrl_ext);
4853
4854         /* Clear all of the statistics registers (clear on read).  It is
4855          * important that we do this after we have tried to establish link
4856          * because the symbol error count will increment wildly if there
4857          * is no link.
4858          */
4859         e1000_clear_hw_cntrs_ich8lan(hw);
4860
4861         return ret_val;
4862 }
4863
4864 /**
4865  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4866  *  @hw: pointer to the HW structure
4867  *
4868  *  Sets/Clears required hardware bits necessary for correctly setting up the
4869  *  hardware for transmit and receive.
4870  **/
4871 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4872 {
4873         u32 reg;
4874
4875         /* Extended Device Control */
4876         reg = er32(CTRL_EXT);
4877         reg |= BIT(22);
4878         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4879         if (hw->mac.type >= e1000_pchlan)
4880                 reg |= E1000_CTRL_EXT_PHYPDEN;
4881         ew32(CTRL_EXT, reg);
4882
4883         /* Transmit Descriptor Control 0 */
4884         reg = er32(TXDCTL(0));
4885         reg |= BIT(22);
4886         ew32(TXDCTL(0), reg);
4887
4888         /* Transmit Descriptor Control 1 */
4889         reg = er32(TXDCTL(1));
4890         reg |= BIT(22);
4891         ew32(TXDCTL(1), reg);
4892
4893         /* Transmit Arbitration Control 0 */
4894         reg = er32(TARC(0));
4895         if (hw->mac.type == e1000_ich8lan)
4896                 reg |= BIT(28) | BIT(29);
4897         reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4898         ew32(TARC(0), reg);
4899
4900         /* Transmit Arbitration Control 1 */
4901         reg = er32(TARC(1));
4902         if (er32(TCTL) & E1000_TCTL_MULR)
4903                 reg &= ~BIT(28);
4904         else
4905                 reg |= BIT(28);
4906         reg |= BIT(24) | BIT(26) | BIT(30);
4907         ew32(TARC(1), reg);
4908
4909         /* Device Status */
4910         if (hw->mac.type == e1000_ich8lan) {
4911                 reg = er32(STATUS);
4912                 reg &= ~BIT(31);
4913                 ew32(STATUS, reg);
4914         }
4915
4916         /* work-around descriptor data corruption issue during nfs v2 udp
4917          * traffic, just disable the nfs filtering capability
4918          */
4919         reg = er32(RFCTL);
4920         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4921
4922         /* Disable IPv6 extension header parsing because some malformed
4923          * IPv6 headers can hang the Rx.
4924          */
4925         if (hw->mac.type == e1000_ich8lan)
4926                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4927         ew32(RFCTL, reg);
4928
4929         /* Enable ECC on Lynxpoint */
4930         if (hw->mac.type >= e1000_pch_lpt) {
4931                 reg = er32(PBECCSTS);
4932                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4933                 ew32(PBECCSTS, reg);
4934
4935                 reg = er32(CTRL);
4936                 reg |= E1000_CTRL_MEHE;
4937                 ew32(CTRL, reg);
4938         }
4939 }
4940
4941 /**
4942  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4943  *  @hw: pointer to the HW structure
4944  *
4945  *  Determines which flow control settings to use, then configures flow
4946  *  control.  Calls the appropriate media-specific link configuration
4947  *  function.  Assuming the adapter has a valid link partner, a valid link
4948  *  should be established.  Assumes the hardware has previously been reset
4949  *  and the transmitter and receiver are not enabled.
4950  **/
4951 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4952 {
4953         s32 ret_val;
4954
4955         if (hw->phy.ops.check_reset_block(hw))
4956                 return 0;
4957
4958         /* ICH parts do not have a word in the NVM to determine
4959          * the default flow control setting, so we explicitly
4960          * set it to full.
4961          */
4962         if (hw->fc.requested_mode == e1000_fc_default) {
4963                 /* Workaround h/w hang when Tx flow control enabled */
4964                 if (hw->mac.type == e1000_pchlan)
4965                         hw->fc.requested_mode = e1000_fc_rx_pause;
4966                 else
4967                         hw->fc.requested_mode = e1000_fc_full;
4968         }
4969
4970         /* Save off the requested flow control mode for use later.  Depending
4971          * on the link partner's capabilities, we may or may not use this mode.
4972          */
4973         hw->fc.current_mode = hw->fc.requested_mode;
4974
4975         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4976
4977         /* Continue to configure the copper link. */
4978         ret_val = hw->mac.ops.setup_physical_interface(hw);
4979         if (ret_val)
4980                 return ret_val;
4981
4982         ew32(FCTTV, hw->fc.pause_time);
4983         if ((hw->phy.type == e1000_phy_82578) ||
4984             (hw->phy.type == e1000_phy_82579) ||
4985             (hw->phy.type == e1000_phy_i217) ||
4986             (hw->phy.type == e1000_phy_82577)) {
4987                 ew32(FCRTV_PCH, hw->fc.refresh_time);
4988
4989                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4990                                    hw->fc.pause_time);
4991                 if (ret_val)
4992                         return ret_val;
4993         }
4994
4995         return e1000e_set_fc_watermarks(hw);
4996 }
4997
4998 /**
4999  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5000  *  @hw: pointer to the HW structure
5001  *
5002  *  Configures the kumeran interface to the PHY to wait the appropriate time
5003  *  when polling the PHY, then call the generic setup_copper_link to finish
5004  *  configuring the copper link.
5005  **/
5006 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5007 {
5008         u32 ctrl;
5009         s32 ret_val;
5010         u16 reg_data;
5011
5012         ctrl = er32(CTRL);
5013         ctrl |= E1000_CTRL_SLU;
5014         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5015         ew32(CTRL, ctrl);
5016
5017         /* Set the mac to wait the maximum time between each iteration
5018          * and increase the max iterations when polling the phy;
5019          * this fixes erroneous timeouts at 10Mbps.
5020          */
5021         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5022         if (ret_val)
5023                 return ret_val;
5024         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5025                                        &reg_data);
5026         if (ret_val)
5027                 return ret_val;
5028         reg_data |= 0x3F;
5029         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5030                                         reg_data);
5031         if (ret_val)
5032                 return ret_val;
5033
5034         switch (hw->phy.type) {
5035         case e1000_phy_igp_3:
5036                 ret_val = e1000e_copper_link_setup_igp(hw);
5037                 if (ret_val)
5038                         return ret_val;
5039                 break;
5040         case e1000_phy_bm:
5041         case e1000_phy_82578:
5042                 ret_val = e1000e_copper_link_setup_m88(hw);
5043                 if (ret_val)
5044                         return ret_val;
5045                 break;
5046         case e1000_phy_82577:
5047         case e1000_phy_82579:
5048                 ret_val = e1000_copper_link_setup_82577(hw);
5049                 if (ret_val)
5050                         return ret_val;
5051                 break;
5052         case e1000_phy_ife:
5053                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5054                 if (ret_val)
5055                         return ret_val;
5056
5057                 reg_data &= ~IFE_PMC_AUTO_MDIX;
5058
5059                 switch (hw->phy.mdix) {
5060                 case 1:
5061                         reg_data &= ~IFE_PMC_FORCE_MDIX;
5062                         break;
5063                 case 2:
5064                         reg_data |= IFE_PMC_FORCE_MDIX;
5065                         break;
5066                 case 0:
5067                 default:
5068                         reg_data |= IFE_PMC_AUTO_MDIX;
5069                         break;
5070                 }
5071                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5072                 if (ret_val)
5073                         return ret_val;
5074                 break;
5075         default:
5076                 break;
5077         }
5078
5079         return e1000e_setup_copper_link(hw);
5080 }
5081
5082 /**
5083  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5084  *  @hw: pointer to the HW structure
5085  *
5086  *  Calls the PHY specific link setup function and then calls the
5087  *  generic setup_copper_link to finish configuring the link for
5088  *  Lynxpoint PCH devices
5089  **/
5090 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5091 {
5092         u32 ctrl;
5093         s32 ret_val;
5094
5095         ctrl = er32(CTRL);
5096         ctrl |= E1000_CTRL_SLU;
5097         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5098         ew32(CTRL, ctrl);
5099
5100         ret_val = e1000_copper_link_setup_82577(hw);
5101         if (ret_val)
5102                 return ret_val;
5103
5104         return e1000e_setup_copper_link(hw);
5105 }
5106
5107 /**
5108  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5109  *  @hw: pointer to the HW structure
5110  *  @speed: pointer to store current link speed
5111  *  @duplex: pointer to store the current link duplex
5112  *
5113  *  Calls the generic get_speed_and_duplex to retrieve the current link
5114  *  information and then calls the Kumeran lock loss workaround for links at
5115  *  gigabit speeds.
5116  **/
5117 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5118                                           u16 *duplex)
5119 {
5120         s32 ret_val;
5121
5122         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5123         if (ret_val)
5124                 return ret_val;
5125
5126         if ((hw->mac.type == e1000_ich8lan) &&
5127             (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5128                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5129         }
5130
5131         return ret_val;
5132 }
5133
5134 /**
5135  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5136  *  @hw: pointer to the HW structure
5137  *
5138  *  Work-around for 82566 Kumeran PCS lock loss:
5139  *  On link status change (i.e. PCI reset, speed change) and link is up and
5140  *  speed is gigabit-
5141  *    0) if workaround is optionally disabled do nothing
5142  *    1) wait 1ms for Kumeran link to come up
5143  *    2) check Kumeran Diagnostic register PCS lock loss bit
5144  *    3) if not set the link is locked (all is good), otherwise...
5145  *    4) reset the PHY
5146  *    5) repeat up to 10 times
5147  *  Note: this is only called for IGP3 copper when speed is 1gb.
5148  **/
5149 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5150 {
5151         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5152         u32 phy_ctrl;
5153         s32 ret_val;
5154         u16 i, data;
5155         bool link;
5156
5157         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5158                 return 0;
5159
5160         /* Make sure link is up before proceeding.  If not just return.
5161          * Attempting this while link is negotiating fouled up link
5162          * stability
5163          */
5164         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5165         if (!link)
5166                 return 0;
5167
5168         for (i = 0; i < 10; i++) {
5169                 /* read once to clear */
5170                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5171                 if (ret_val)
5172                         return ret_val;
5173                 /* and again to get new status */
5174                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5175                 if (ret_val)
5176                         return ret_val;
5177
5178                 /* check for PCS lock */
5179                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5180                         return 0;
5181
5182                 /* Issue PHY reset */
5183                 e1000_phy_hw_reset(hw);
5184                 mdelay(5);
5185         }
5186         /* Disable GigE link negotiation */
5187         phy_ctrl = er32(PHY_CTRL);
5188         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5189                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5190         ew32(PHY_CTRL, phy_ctrl);
5191
5192         /* Call gig speed drop workaround on Gig disable before accessing
5193          * any PHY registers
5194          */
5195         e1000e_gig_downshift_workaround_ich8lan(hw);
5196
5197         /* unable to acquire PCS lock */
5198         return -E1000_ERR_PHY;
5199 }
5200
5201 /**
5202  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5203  *  @hw: pointer to the HW structure
5204  *  @state: boolean value used to set the current Kumeran workaround state
5205  *
5206  *  If ICH8, set the current Kumeran workaround state (enabled - true
5207  *  /disabled - false).
5208  **/
5209 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5210                                                   bool state)
5211 {
5212         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5213
5214         if (hw->mac.type != e1000_ich8lan) {
5215                 e_dbg("Workaround applies to ICH8 only.\n");
5216                 return;
5217         }
5218
5219         dev_spec->kmrn_lock_loss_workaround_enabled = state;
5220 }
5221
5222 /**
5223  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5224  *  @hw: pointer to the HW structure
5225  *
5226  *  Workaround for 82566 power-down on D3 entry:
5227  *    1) disable gigabit link
5228  *    2) write VR power-down enable
5229  *    3) read it back
5230  *  Continue if successful, else issue LCD reset and repeat
5231  **/
5232 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5233 {
5234         u32 reg;
5235         u16 data;
5236         u8 retry = 0;
5237
5238         if (hw->phy.type != e1000_phy_igp_3)
5239                 return;
5240
5241         /* Try the workaround twice (if needed) */
5242         do {
5243                 /* Disable link */
5244                 reg = er32(PHY_CTRL);
5245                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5246                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5247                 ew32(PHY_CTRL, reg);
5248
5249                 /* Call gig speed drop workaround on Gig disable before
5250                  * accessing any PHY registers
5251                  */
5252                 if (hw->mac.type == e1000_ich8lan)
5253                         e1000e_gig_downshift_workaround_ich8lan(hw);
5254
5255                 /* Write VR power-down enable */
5256                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5257                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5258                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5259
5260                 /* Read it back and test */
5261                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5262                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5263                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5264                         break;
5265
5266                 /* Issue PHY reset and repeat at most one more time */
5267                 reg = er32(CTRL);
5268                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5269                 retry++;
5270         } while (retry);
5271 }
5272
5273 /**
5274  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5275  *  @hw: pointer to the HW structure
5276  *
5277  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5278  *  LPLU, Gig disable, MDIC PHY reset):
5279  *    1) Set Kumeran Near-end loopback
5280  *    2) Clear Kumeran Near-end loopback
5281  *  Should only be called for ICH8[m] devices with any 1G Phy.
5282  **/
5283 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5284 {
5285         s32 ret_val;
5286         u16 reg_data;
5287
5288         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5289                 return;
5290
5291         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5292                                        &reg_data);
5293         if (ret_val)
5294                 return;
5295         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5296         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5297                                         reg_data);
5298         if (ret_val)
5299                 return;
5300         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5301         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5302 }
5303
5304 /**
5305  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5306  *  @hw: pointer to the HW structure
5307  *
5308  *  During S0 to Sx transition, it is possible the link remains at gig
5309  *  instead of negotiating to a lower speed.  Before going to Sx, set
5310  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5311  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5312  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5313  *  needs to be written.
5314  *  Parts that support (and are linked to a partner which support) EEE in
5315  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5316  *  than 10Mbps w/o EEE.
5317  **/
5318 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5319 {
5320         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5321         u32 phy_ctrl;
5322         s32 ret_val;
5323
5324         phy_ctrl = er32(PHY_CTRL);
5325         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5326
5327         if (hw->phy.type == e1000_phy_i217) {
5328                 u16 phy_reg, device_id = hw->adapter->pdev->device;
5329
5330                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5331                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5332                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5333                     (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5334                     (hw->mac.type >= e1000_pch_spt)) {
5335                         u32 fextnvm6 = er32(FEXTNVM6);
5336
5337                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5338                 }
5339
5340                 ret_val = hw->phy.ops.acquire(hw);
5341                 if (ret_val)
5342                         goto out;
5343
5344                 if (!dev_spec->eee_disable) {
5345                         u16 eee_advert;
5346
5347                         ret_val =
5348                             e1000_read_emi_reg_locked(hw,
5349                                                       I217_EEE_ADVERTISEMENT,
5350                                                       &eee_advert);
5351                         if (ret_val)
5352                                 goto release;
5353
5354                         /* Disable LPLU if both link partners support 100BaseT
5355                          * EEE and 100Full is advertised on both ends of the
5356                          * link, and enable Auto Enable LPI since there will
5357                          * be no driver to enable LPI while in Sx.
5358                          */
5359                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5360                             (dev_spec->eee_lp_ability &
5361                              I82579_EEE_100_SUPPORTED) &&
5362                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5363                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5364                                               E1000_PHY_CTRL_NOND0A_LPLU);
5365
5366                                 /* Set Auto Enable LPI after link up */
5367                                 e1e_rphy_locked(hw,
5368                                                 I217_LPI_GPIO_CTRL, &phy_reg);
5369                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5370                                 e1e_wphy_locked(hw,
5371                                                 I217_LPI_GPIO_CTRL, phy_reg);
5372                         }
5373                 }
5374
5375                 /* For i217 Intel Rapid Start Technology support,
5376                  * when the system is going into Sx and no manageability engine
5377                  * is present, the driver must configure proxy to reset only on
5378                  * power good.  LPI (Low Power Idle) state must also reset only
5379                  * on power good, as well as the MTA (Multicast table array).
5380                  * The SMBus release must also be disabled on LCD reset.
5381                  */
5382                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5383                         /* Enable proxy to reset only on power good. */
5384                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5385                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5386                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5387
5388                         /* Set bit enable LPI (EEE) to reset only on
5389                          * power good.
5390                          */
5391                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5392                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5393                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5394
5395                         /* Disable the SMB release on LCD reset. */
5396                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5397                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5398                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5399                 }
5400
5401                 /* Enable MTA to reset for Intel Rapid Start Technology
5402                  * Support
5403                  */
5404                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5405                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5406                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5407
5408 release:
5409                 hw->phy.ops.release(hw);
5410         }
5411 out:
5412         ew32(PHY_CTRL, phy_ctrl);
5413
5414         if (hw->mac.type == e1000_ich8lan)
5415                 e1000e_gig_downshift_workaround_ich8lan(hw);
5416
5417         if (hw->mac.type >= e1000_pchlan) {
5418                 e1000_oem_bits_config_ich8lan(hw, false);
5419
5420                 /* Reset PHY to activate OEM bits on 82577/8 */
5421                 if (hw->mac.type == e1000_pchlan)
5422                         e1000e_phy_hw_reset_generic(hw);
5423
5424                 ret_val = hw->phy.ops.acquire(hw);
5425                 if (ret_val)
5426                         return;
5427                 e1000_write_smbus_addr(hw);
5428                 hw->phy.ops.release(hw);
5429         }
5430 }
5431
5432 /**
5433  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5434  *  @hw: pointer to the HW structure
5435  *
5436  *  During Sx to S0 transitions on non-managed devices or managed devices
5437  *  on which PHY resets are not blocked, if the PHY registers cannot be
5438  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5439  *  the PHY.
5440  *  On i217, setup Intel Rapid Start Technology.
5441  **/
5442 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5443 {
5444         s32 ret_val;
5445
5446         if (hw->mac.type < e1000_pch2lan)
5447                 return;
5448
5449         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5450         if (ret_val) {
5451                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5452                 return;
5453         }
5454
5455         /* For i217 Intel Rapid Start Technology support when the system
5456          * is transitioning from Sx and no manageability engine is present
5457          * configure SMBus to restore on reset, disable proxy, and enable
5458          * the reset on MTA (Multicast table array).
5459          */
5460         if (hw->phy.type == e1000_phy_i217) {
5461                 u16 phy_reg;
5462
5463                 ret_val = hw->phy.ops.acquire(hw);
5464                 if (ret_val) {
5465                         e_dbg("Failed to setup iRST\n");
5466                         return;
5467                 }
5468
5469                 /* Clear Auto Enable LPI after link up */
5470                 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5471                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5472                 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5473
5474                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5475                         /* Restore clear on SMB if no manageability engine
5476                          * is present
5477                          */
5478                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5479                         if (ret_val)
5480                                 goto release;
5481                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5482                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5483
5484                         /* Disable Proxy */
5485                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5486                 }
5487                 /* Enable reset on MTA */
5488                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5489                 if (ret_val)
5490                         goto release;
5491                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5492                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5493 release:
5494                 if (ret_val)
5495                         e_dbg("Error %d in resume workarounds\n", ret_val);
5496                 hw->phy.ops.release(hw);
5497         }
5498 }
5499
5500 /**
5501  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5502  *  @hw: pointer to the HW structure
5503  *
5504  *  Return the LED back to the default configuration.
5505  **/
5506 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5507 {
5508         if (hw->phy.type == e1000_phy_ife)
5509                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5510
5511         ew32(LEDCTL, hw->mac.ledctl_default);
5512         return 0;
5513 }
5514
5515 /**
5516  *  e1000_led_on_ich8lan - Turn LEDs on
5517  *  @hw: pointer to the HW structure
5518  *
5519  *  Turn on the LEDs.
5520  **/
5521 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5522 {
5523         if (hw->phy.type == e1000_phy_ife)
5524                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5525                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5526
5527         ew32(LEDCTL, hw->mac.ledctl_mode2);
5528         return 0;
5529 }
5530
5531 /**
5532  *  e1000_led_off_ich8lan - Turn LEDs off
5533  *  @hw: pointer to the HW structure
5534  *
5535  *  Turn off the LEDs.
5536  **/
5537 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5538 {
5539         if (hw->phy.type == e1000_phy_ife)
5540                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5541                                 (IFE_PSCL_PROBE_MODE |
5542                                  IFE_PSCL_PROBE_LEDS_OFF));
5543
5544         ew32(LEDCTL, hw->mac.ledctl_mode1);
5545         return 0;
5546 }
5547
5548 /**
5549  *  e1000_setup_led_pchlan - Configures SW controllable LED
5550  *  @hw: pointer to the HW structure
5551  *
5552  *  This prepares the SW controllable LED for use.
5553  **/
5554 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5555 {
5556         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5557 }
5558
5559 /**
5560  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5561  *  @hw: pointer to the HW structure
5562  *
5563  *  Return the LED back to the default configuration.
5564  **/
5565 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5566 {
5567         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5568 }
5569
5570 /**
5571  *  e1000_led_on_pchlan - Turn LEDs on
5572  *  @hw: pointer to the HW structure
5573  *
5574  *  Turn on the LEDs.
5575  **/
5576 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5577 {
5578         u16 data = (u16)hw->mac.ledctl_mode2;
5579         u32 i, led;
5580
5581         /* If no link, then turn LED on by setting the invert bit
5582          * for each LED that's mode is "link_up" in ledctl_mode2.
5583          */
5584         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5585                 for (i = 0; i < 3; i++) {
5586                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5587                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5588                             E1000_LEDCTL_MODE_LINK_UP)
5589                                 continue;
5590                         if (led & E1000_PHY_LED0_IVRT)
5591                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5592                         else
5593                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5594                 }
5595         }
5596
5597         return e1e_wphy(hw, HV_LED_CONFIG, data);
5598 }
5599
5600 /**
5601  *  e1000_led_off_pchlan - Turn LEDs off
5602  *  @hw: pointer to the HW structure
5603  *
5604  *  Turn off the LEDs.
5605  **/
5606 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5607 {
5608         u16 data = (u16)hw->mac.ledctl_mode1;
5609         u32 i, led;
5610
5611         /* If no link, then turn LED off by clearing the invert bit
5612          * for each LED that's mode is "link_up" in ledctl_mode1.
5613          */
5614         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5615                 for (i = 0; i < 3; i++) {
5616                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5617                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5618                             E1000_LEDCTL_MODE_LINK_UP)
5619                                 continue;
5620                         if (led & E1000_PHY_LED0_IVRT)
5621                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5622                         else
5623                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5624                 }
5625         }
5626
5627         return e1e_wphy(hw, HV_LED_CONFIG, data);
5628 }
5629
5630 /**
5631  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5632  *  @hw: pointer to the HW structure
5633  *
5634  *  Read appropriate register for the config done bit for completion status
5635  *  and configure the PHY through s/w for EEPROM-less parts.
5636  *
5637  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5638  *  config done bit, so only an error is logged and continues.  If we were
5639  *  to return with error, EEPROM-less silicon would not be able to be reset
5640  *  or change link.
5641  **/
5642 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5643 {
5644         s32 ret_val = 0;
5645         u32 bank = 0;
5646         u32 status;
5647
5648         e1000e_get_cfg_done_generic(hw);
5649
5650         /* Wait for indication from h/w that it has completed basic config */
5651         if (hw->mac.type >= e1000_ich10lan) {
5652                 e1000_lan_init_done_ich8lan(hw);
5653         } else {
5654                 ret_val = e1000e_get_auto_rd_done(hw);
5655                 if (ret_val) {
5656                         /* When auto config read does not complete, do not
5657                          * return with an error. This can happen in situations
5658                          * where there is no eeprom and prevents getting link.
5659                          */
5660                         e_dbg("Auto Read Done did not complete\n");
5661                         ret_val = 0;
5662                 }
5663         }
5664
5665         /* Clear PHY Reset Asserted bit */
5666         status = er32(STATUS);
5667         if (status & E1000_STATUS_PHYRA)
5668                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5669         else
5670                 e_dbg("PHY Reset Asserted not set - needs delay\n");
5671
5672         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5673         if (hw->mac.type <= e1000_ich9lan) {
5674                 if (!(er32(EECD) & E1000_EECD_PRES) &&
5675                     (hw->phy.type == e1000_phy_igp_3)) {
5676                         e1000e_phy_init_script_igp3(hw);
5677                 }
5678         } else {
5679                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5680                         /* Maybe we should do a basic PHY config */
5681                         e_dbg("EEPROM not present\n");
5682                         ret_val = -E1000_ERR_CONFIG;
5683                 }
5684         }
5685
5686         return ret_val;
5687 }
5688
5689 /**
5690  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5691  * @hw: pointer to the HW structure
5692  *
5693  * In the case of a PHY power down to save power, or to turn off link during a
5694  * driver unload, or wake on lan is not enabled, remove the link.
5695  **/
5696 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5697 {
5698         /* If the management interface is not enabled, then power down */
5699         if (!(hw->mac.ops.check_mng_mode(hw) ||
5700               hw->phy.ops.check_reset_block(hw)))
5701                 e1000_power_down_phy_copper(hw);
5702 }
5703
5704 /**
5705  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5706  *  @hw: pointer to the HW structure
5707  *
5708  *  Clears hardware counters specific to the silicon family and calls
5709  *  clear_hw_cntrs_generic to clear all general purpose counters.
5710  **/
5711 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5712 {
5713         u16 phy_data;
5714         s32 ret_val;
5715
5716         e1000e_clear_hw_cntrs_base(hw);
5717
5718         er32(ALGNERRC);
5719         er32(RXERRC);
5720         er32(TNCRS);
5721         er32(CEXTERR);
5722         er32(TSCTC);
5723         er32(TSCTFC);
5724
5725         er32(MGTPRC);
5726         er32(MGTPDC);
5727         er32(MGTPTC);
5728
5729         er32(IAC);
5730         er32(ICRXOC);
5731
5732         /* Clear PHY statistics registers */
5733         if ((hw->phy.type == e1000_phy_82578) ||
5734             (hw->phy.type == e1000_phy_82579) ||
5735             (hw->phy.type == e1000_phy_i217) ||
5736             (hw->phy.type == e1000_phy_82577)) {
5737                 ret_val = hw->phy.ops.acquire(hw);
5738                 if (ret_val)
5739                         return;
5740                 ret_val = hw->phy.ops.set_page(hw,
5741                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
5742                 if (ret_val)
5743                         goto release;
5744                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5745                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5746                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5747                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5748                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5749                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5750                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5751                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5752                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5753                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5754                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5755                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5756                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5757                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5758 release:
5759                 hw->phy.ops.release(hw);
5760         }
5761 }
5762
5763 static const struct e1000_mac_operations ich8_mac_ops = {
5764         /* check_mng_mode dependent on mac type */
5765         .check_for_link         = e1000_check_for_copper_link_ich8lan,
5766         /* cleanup_led dependent on mac type */
5767         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5768         .get_bus_info           = e1000_get_bus_info_ich8lan,
5769         .set_lan_id             = e1000_set_lan_id_single_port,
5770         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5771         /* led_on dependent on mac type */
5772         /* led_off dependent on mac type */
5773         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5774         .reset_hw               = e1000_reset_hw_ich8lan,
5775         .init_hw                = e1000_init_hw_ich8lan,
5776         .setup_link             = e1000_setup_link_ich8lan,
5777         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5778         /* id_led_init dependent on mac type */
5779         .config_collision_dist  = e1000e_config_collision_dist_generic,
5780         .rar_set                = e1000e_rar_set_generic,
5781         .rar_get_count          = e1000e_rar_get_count_generic,
5782 };
5783
5784 static const struct e1000_phy_operations ich8_phy_ops = {
5785         .acquire                = e1000_acquire_swflag_ich8lan,
5786         .check_reset_block      = e1000_check_reset_block_ich8lan,
5787         .commit                 = NULL,
5788         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5789         .get_cable_length       = e1000e_get_cable_length_igp_2,
5790         .read_reg               = e1000e_read_phy_reg_igp,
5791         .release                = e1000_release_swflag_ich8lan,
5792         .reset                  = e1000_phy_hw_reset_ich8lan,
5793         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5794         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5795         .write_reg              = e1000e_write_phy_reg_igp,
5796 };
5797
5798 static const struct e1000_nvm_operations ich8_nvm_ops = {
5799         .acquire                = e1000_acquire_nvm_ich8lan,
5800         .read                   = e1000_read_nvm_ich8lan,
5801         .release                = e1000_release_nvm_ich8lan,
5802         .reload                 = e1000e_reload_nvm_generic,
5803         .update                 = e1000_update_nvm_checksum_ich8lan,
5804         .valid_led_default      = e1000_valid_led_default_ich8lan,
5805         .validate               = e1000_validate_nvm_checksum_ich8lan,
5806         .write                  = e1000_write_nvm_ich8lan,
5807 };
5808
5809 static const struct e1000_nvm_operations spt_nvm_ops = {
5810         .acquire                = e1000_acquire_nvm_ich8lan,
5811         .release                = e1000_release_nvm_ich8lan,
5812         .read                   = e1000_read_nvm_spt,
5813         .update                 = e1000_update_nvm_checksum_spt,
5814         .reload                 = e1000e_reload_nvm_generic,
5815         .valid_led_default      = e1000_valid_led_default_ich8lan,
5816         .validate               = e1000_validate_nvm_checksum_ich8lan,
5817         .write                  = e1000_write_nvm_ich8lan,
5818 };
5819
5820 const struct e1000_info e1000_ich8_info = {
5821         .mac                    = e1000_ich8lan,
5822         .flags                  = FLAG_HAS_WOL
5823                                   | FLAG_IS_ICH
5824                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5825                                   | FLAG_HAS_AMT
5826                                   | FLAG_HAS_FLASH
5827                                   | FLAG_APME_IN_WUC,
5828         .pba                    = 8,
5829         .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5830         .get_variants           = e1000_get_variants_ich8lan,
5831         .mac_ops                = &ich8_mac_ops,
5832         .phy_ops                = &ich8_phy_ops,
5833         .nvm_ops                = &ich8_nvm_ops,
5834 };
5835
5836 const struct e1000_info e1000_ich9_info = {
5837         .mac                    = e1000_ich9lan,
5838         .flags                  = FLAG_HAS_JUMBO_FRAMES
5839                                   | FLAG_IS_ICH
5840                                   | FLAG_HAS_WOL
5841                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5842                                   | FLAG_HAS_AMT
5843                                   | FLAG_HAS_FLASH
5844                                   | FLAG_APME_IN_WUC,
5845         .pba                    = 18,
5846         .max_hw_frame_size      = DEFAULT_JUMBO,
5847         .get_variants           = e1000_get_variants_ich8lan,
5848         .mac_ops                = &ich8_mac_ops,
5849         .phy_ops                = &ich8_phy_ops,
5850         .nvm_ops                = &ich8_nvm_ops,
5851 };
5852
5853 const struct e1000_info e1000_ich10_info = {
5854         .mac                    = e1000_ich10lan,
5855         .flags                  = FLAG_HAS_JUMBO_FRAMES
5856                                   | FLAG_IS_ICH
5857                                   | FLAG_HAS_WOL
5858                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5859                                   | FLAG_HAS_AMT
5860                                   | FLAG_HAS_FLASH
5861                                   | FLAG_APME_IN_WUC,
5862         .pba                    = 18,
5863         .max_hw_frame_size      = DEFAULT_JUMBO,
5864         .get_variants           = e1000_get_variants_ich8lan,
5865         .mac_ops                = &ich8_mac_ops,
5866         .phy_ops                = &ich8_phy_ops,
5867         .nvm_ops                = &ich8_nvm_ops,
5868 };
5869
5870 const struct e1000_info e1000_pch_info = {
5871         .mac                    = e1000_pchlan,
5872         .flags                  = FLAG_IS_ICH
5873                                   | FLAG_HAS_WOL
5874                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5875                                   | FLAG_HAS_AMT
5876                                   | FLAG_HAS_FLASH
5877                                   | FLAG_HAS_JUMBO_FRAMES
5878                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5879                                   | FLAG_APME_IN_WUC,
5880         .flags2                 = FLAG2_HAS_PHY_STATS,
5881         .pba                    = 26,
5882         .max_hw_frame_size      = 4096,
5883         .get_variants           = e1000_get_variants_ich8lan,
5884         .mac_ops                = &ich8_mac_ops,
5885         .phy_ops                = &ich8_phy_ops,
5886         .nvm_ops                = &ich8_nvm_ops,
5887 };
5888
5889 const struct e1000_info e1000_pch2_info = {
5890         .mac                    = e1000_pch2lan,
5891         .flags                  = FLAG_IS_ICH
5892                                   | FLAG_HAS_WOL
5893                                   | FLAG_HAS_HW_TIMESTAMP
5894                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5895                                   | FLAG_HAS_AMT
5896                                   | FLAG_HAS_FLASH
5897                                   | FLAG_HAS_JUMBO_FRAMES
5898                                   | FLAG_APME_IN_WUC,
5899         .flags2                 = FLAG2_HAS_PHY_STATS
5900                                   | FLAG2_HAS_EEE
5901                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5902         .pba                    = 26,
5903         .max_hw_frame_size      = 9022,
5904         .get_variants           = e1000_get_variants_ich8lan,
5905         .mac_ops                = &ich8_mac_ops,
5906         .phy_ops                = &ich8_phy_ops,
5907         .nvm_ops                = &ich8_nvm_ops,
5908 };
5909
5910 const struct e1000_info e1000_pch_lpt_info = {
5911         .mac                    = e1000_pch_lpt,
5912         .flags                  = FLAG_IS_ICH
5913                                   | FLAG_HAS_WOL
5914                                   | FLAG_HAS_HW_TIMESTAMP
5915                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5916                                   | FLAG_HAS_AMT
5917                                   | FLAG_HAS_FLASH
5918                                   | FLAG_HAS_JUMBO_FRAMES
5919                                   | FLAG_APME_IN_WUC,
5920         .flags2                 = FLAG2_HAS_PHY_STATS
5921                                   | FLAG2_HAS_EEE
5922                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5923         .pba                    = 26,
5924         .max_hw_frame_size      = 9022,
5925         .get_variants           = e1000_get_variants_ich8lan,
5926         .mac_ops                = &ich8_mac_ops,
5927         .phy_ops                = &ich8_phy_ops,
5928         .nvm_ops                = &ich8_nvm_ops,
5929 };
5930
5931 const struct e1000_info e1000_pch_spt_info = {
5932         .mac                    = e1000_pch_spt,
5933         .flags                  = FLAG_IS_ICH
5934                                   | FLAG_HAS_WOL
5935                                   | FLAG_HAS_HW_TIMESTAMP
5936                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5937                                   | FLAG_HAS_AMT
5938                                   | FLAG_HAS_FLASH
5939                                   | FLAG_HAS_JUMBO_FRAMES
5940                                   | FLAG_APME_IN_WUC,
5941         .flags2                 = FLAG2_HAS_PHY_STATS
5942                                   | FLAG2_HAS_EEE,
5943         .pba                    = 26,
5944         .max_hw_frame_size      = 9022,
5945         .get_variants           = e1000_get_variants_ich8lan,
5946         .mac_ops                = &ich8_mac_ops,
5947         .phy_ops                = &ich8_phy_ops,
5948         .nvm_ops                = &spt_nvm_ops,
5949 };
5950
5951 const struct e1000_info e1000_pch_cnp_info = {
5952         .mac                    = e1000_pch_cnp,
5953         .flags                  = FLAG_IS_ICH
5954                                   | FLAG_HAS_WOL
5955                                   | FLAG_HAS_HW_TIMESTAMP
5956                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5957                                   | FLAG_HAS_AMT
5958                                   | FLAG_HAS_FLASH
5959                                   | FLAG_HAS_JUMBO_FRAMES
5960                                   | FLAG_APME_IN_WUC,
5961         .flags2                 = FLAG2_HAS_PHY_STATS
5962                                   | FLAG2_HAS_EEE,
5963         .pba                    = 26,
5964         .max_hw_frame_size      = 9022,
5965         .get_variants           = e1000_get_variants_ich8lan,
5966         .mac_ops                = &ich8_mac_ops,
5967         .phy_ops                = &ich8_phy_ops,
5968         .nvm_ops                = &spt_nvm_ops,
5969 };