Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40
41 #include "e1000.h"
42
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46         struct ich8_hsfsts {
47                 u16 flcdone:1;  /* bit 0 Flash Cycle Done */
48                 u16 flcerr:1;   /* bit 1 Flash Cycle Error */
49                 u16 dael:1;     /* bit 2 Direct Access error Log */
50                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51                 u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
52                 u16 reserved1:2;        /* bit 13:6 Reserved */
53                 u16 reserved2:6;        /* bit 13:6 Reserved */
54                 u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
55                 u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
56         } hsf_status;
57         u16 regval;
58 };
59
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63         struct ich8_hsflctl {
64                 u16 flcgo:1;    /* 0 Flash Cycle Go */
65                 u16 flcycle:2;  /* 2:1 Flash Cycle */
66                 u16 reserved:5; /* 7:3 Reserved  */
67                 u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
68                 u16 flockdn:6;  /* 15:10 Reserved */
69         } hsf_ctrl;
70         u16 regval;
71 };
72
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75         struct ich8_flracc {
76                 u32 grra:8;     /* 0:7 GbE region Read Access */
77                 u32 grwa:8;     /* 8:15 GbE region Write Access */
78                 u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
79                 u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
80         } hsf_flregacc;
81         u16 regval;
82 };
83
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86         struct ich8_pr {
87                 u32 base:13;    /* 0:12 Protected Range Base */
88                 u32 reserved1:2;        /* 13:14 Reserved */
89                 u32 rpe:1;      /* 15 Read Protection Enable */
90                 u32 limit:13;   /* 16:28 Protected Range Limit */
91                 u32 reserved2:2;        /* 29:30 Reserved */
92                 u32 wpe:1;      /* 31 Write Protection Enable */
93         } range;
94         u32 regval;
95 };
96
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101                                                 u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103                                          u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105                                          u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107                                          u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109                                            u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111                                           u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113                                             u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115                                                  u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143         return readw(hw->flash_address + reg);
144 }
145
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148         return readl(hw->flash_address + reg);
149 }
150
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153         writew(val, hw->flash_address + reg);
154 }
155
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158         writel(val, hw->flash_address + reg);
159 }
160
161 #define er16flash(reg)          __er16flash(hw, (reg))
162 #define er32flash(reg)          __er32flash(hw, (reg))
163 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
165
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178         u16 phy_reg = 0;
179         u32 phy_id = 0;
180         s32 ret_val = 0;
181         u16 retry_count;
182         u32 mac_reg = 0;
183
184         for (retry_count = 0; retry_count < 2; retry_count++) {
185                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186                 if (ret_val || (phy_reg == 0xFFFF))
187                         continue;
188                 phy_id = (u32)(phy_reg << 16);
189
190                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191                 if (ret_val || (phy_reg == 0xFFFF)) {
192                         phy_id = 0;
193                         continue;
194                 }
195                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196                 break;
197         }
198
199         if (hw->phy.id) {
200                 if (hw->phy.id == phy_id)
201                         goto out;
202         } else if (phy_id) {
203                 hw->phy.id = phy_id;
204                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205                 goto out;
206         }
207
208         /* In case the PHY needs to be in mdio slow mode,
209          * set slow mode and try to get the PHY id again.
210          */
211         if (hw->mac.type < e1000_pch_lpt) {
212                 hw->phy.ops.release(hw);
213                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214                 if (!ret_val)
215                         ret_val = e1000e_get_phy_id(hw);
216                 hw->phy.ops.acquire(hw);
217         }
218
219         if (ret_val)
220                 return false;
221 out:
222         if (hw->mac.type >= e1000_pch_lpt) {
223                 /* Only unforce SMBus if ME is not active */
224                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225                         /* Unforce SMBus mode in PHY */
226                         e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227                         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228                         e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230                         /* Unforce SMBus mode in MAC */
231                         mac_reg = er32(CTRL_EXT);
232                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233                         ew32(CTRL_EXT, mac_reg);
234                 }
235         }
236
237         return true;
238 }
239
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249         u32 mac_reg;
250
251         /* Set Phy Config Counter to 50msec */
252         mac_reg = er32(FEXTNVM3);
253         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255         ew32(FEXTNVM3, mac_reg);
256
257         /* Toggle LANPHYPC Value bit */
258         mac_reg = er32(CTRL);
259         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261         ew32(CTRL, mac_reg);
262         e1e_flush();
263         usleep_range(10, 20);
264         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265         ew32(CTRL, mac_reg);
266         e1e_flush();
267
268         if (hw->mac.type < e1000_pch_lpt) {
269                 msleep(50);
270         } else {
271                 u16 count = 20;
272
273                 do {
274                         usleep_range(5000, 6000);
275                 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277                 msleep(30);
278         }
279 }
280
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290         struct e1000_adapter *adapter = hw->adapter;
291         u32 mac_reg, fwsm = er32(FWSM);
292         s32 ret_val;
293
294         /* Gate automatic PHY configuration by hardware on managed and
295          * non-managed 82579 and newer adapters.
296          */
297         e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299         /* It is not possible to be certain of the current state of ULP
300          * so forcibly disable it.
301          */
302         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303         ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304         if (ret_val)
305                 e_warn("Failed to disable ULP\n");
306
307         ret_val = hw->phy.ops.acquire(hw);
308         if (ret_val) {
309                 e_dbg("Failed to initialize PHY flow\n");
310                 goto out;
311         }
312
313         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314          * inaccessible and resetting the PHY is not blocked, toggle the
315          * LANPHYPC Value bit to force the interconnect to PCIe mode.
316          */
317         switch (hw->mac.type) {
318         case e1000_pch_lpt:
319         case e1000_pch_spt:
320         case e1000_pch_cnp:
321         case e1000_pch_tgp:
322         case e1000_pch_adp:
323         case e1000_pch_mtp:
324         case e1000_pch_lnp:
325                 if (e1000_phy_is_accessible_pchlan(hw))
326                         break;
327
328                 /* Before toggling LANPHYPC, see if PHY is accessible by
329                  * forcing MAC to SMBus mode first.
330                  */
331                 mac_reg = er32(CTRL_EXT);
332                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
333                 ew32(CTRL_EXT, mac_reg);
334
335                 /* Wait 50 milliseconds for MAC to finish any retries
336                  * that it might be trying to perform from previous
337                  * attempts to acknowledge any phy read requests.
338                  */
339                 msleep(50);
340
341                 fallthrough;
342         case e1000_pch2lan:
343                 if (e1000_phy_is_accessible_pchlan(hw))
344                         break;
345
346                 fallthrough;
347         case e1000_pchlan:
348                 if ((hw->mac.type == e1000_pchlan) &&
349                     (fwsm & E1000_ICH_FWSM_FW_VALID))
350                         break;
351
352                 if (hw->phy.ops.check_reset_block(hw)) {
353                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
354                         ret_val = -E1000_ERR_PHY;
355                         break;
356                 }
357
358                 /* Toggle LANPHYPC Value bit */
359                 e1000_toggle_lanphypc_pch_lpt(hw);
360                 if (hw->mac.type >= e1000_pch_lpt) {
361                         if (e1000_phy_is_accessible_pchlan(hw))
362                                 break;
363
364                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
365                          * so ensure that the MAC is also out of SMBus mode
366                          */
367                         mac_reg = er32(CTRL_EXT);
368                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
369                         ew32(CTRL_EXT, mac_reg);
370
371                         if (e1000_phy_is_accessible_pchlan(hw))
372                                 break;
373
374                         ret_val = -E1000_ERR_PHY;
375                 }
376                 break;
377         default:
378                 break;
379         }
380
381         hw->phy.ops.release(hw);
382         if (!ret_val) {
383
384                 /* Check to see if able to reset PHY.  Print error if not */
385                 if (hw->phy.ops.check_reset_block(hw)) {
386                         e_err("Reset blocked by ME\n");
387                         goto out;
388                 }
389
390                 /* Reset the PHY before any access to it.  Doing so, ensures
391                  * that the PHY is in a known good state before we read/write
392                  * PHY registers.  The generic reset is sufficient here,
393                  * because we haven't determined the PHY type yet.
394                  */
395                 ret_val = e1000e_phy_hw_reset_generic(hw);
396                 if (ret_val)
397                         goto out;
398
399                 /* On a successful reset, possibly need to wait for the PHY
400                  * to quiesce to an accessible state before returning control
401                  * to the calling function.  If the PHY does not quiesce, then
402                  * return E1000E_BLK_PHY_RESET, as this is the condition that
403                  *  the PHY is in.
404                  */
405                 ret_val = hw->phy.ops.check_reset_block(hw);
406                 if (ret_val)
407                         e_err("ME blocked access to PHY after reset\n");
408         }
409
410 out:
411         /* Ungate automatic PHY configuration on non-managed 82579 */
412         if ((hw->mac.type == e1000_pch2lan) &&
413             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
414                 usleep_range(10000, 11000);
415                 e1000_gate_hw_phy_config_ich8lan(hw, false);
416         }
417
418         return ret_val;
419 }
420
421 /**
422  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
423  *  @hw: pointer to the HW structure
424  *
425  *  Initialize family-specific PHY parameters and function pointers.
426  **/
427 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
428 {
429         struct e1000_phy_info *phy = &hw->phy;
430         s32 ret_val;
431
432         phy->addr = 1;
433         phy->reset_delay_us = 100;
434
435         phy->ops.set_page = e1000_set_page_igp;
436         phy->ops.read_reg = e1000_read_phy_reg_hv;
437         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
438         phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
439         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
440         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
441         phy->ops.write_reg = e1000_write_phy_reg_hv;
442         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
443         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
444         phy->ops.power_up = e1000_power_up_phy_copper;
445         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
446         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
447
448         phy->id = e1000_phy_unknown;
449
450         ret_val = e1000_init_phy_workarounds_pchlan(hw);
451         if (ret_val)
452                 return ret_val;
453
454         if (phy->id == e1000_phy_unknown)
455                 switch (hw->mac.type) {
456                 default:
457                         ret_val = e1000e_get_phy_id(hw);
458                         if (ret_val)
459                                 return ret_val;
460                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
461                                 break;
462                         fallthrough;
463                 case e1000_pch2lan:
464                 case e1000_pch_lpt:
465                 case e1000_pch_spt:
466                 case e1000_pch_cnp:
467                 case e1000_pch_tgp:
468                 case e1000_pch_adp:
469                 case e1000_pch_mtp:
470                 case e1000_pch_lnp:
471                         /* In case the PHY needs to be in mdio slow mode,
472                          * set slow mode and try to get the PHY id again.
473                          */
474                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
475                         if (ret_val)
476                                 return ret_val;
477                         ret_val = e1000e_get_phy_id(hw);
478                         if (ret_val)
479                                 return ret_val;
480                         break;
481                 }
482         phy->type = e1000e_get_phy_type_from_id(phy->id);
483
484         switch (phy->type) {
485         case e1000_phy_82577:
486         case e1000_phy_82579:
487         case e1000_phy_i217:
488                 phy->ops.check_polarity = e1000_check_polarity_82577;
489                 phy->ops.force_speed_duplex =
490                     e1000_phy_force_speed_duplex_82577;
491                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
492                 phy->ops.get_info = e1000_get_phy_info_82577;
493                 phy->ops.commit = e1000e_phy_sw_reset;
494                 break;
495         case e1000_phy_82578:
496                 phy->ops.check_polarity = e1000_check_polarity_m88;
497                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
498                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
499                 phy->ops.get_info = e1000e_get_phy_info_m88;
500                 break;
501         default:
502                 ret_val = -E1000_ERR_PHY;
503                 break;
504         }
505
506         return ret_val;
507 }
508
509 /**
510  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
511  *  @hw: pointer to the HW structure
512  *
513  *  Initialize family-specific PHY parameters and function pointers.
514  **/
515 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
516 {
517         struct e1000_phy_info *phy = &hw->phy;
518         s32 ret_val;
519         u16 i = 0;
520
521         phy->addr = 1;
522         phy->reset_delay_us = 100;
523
524         phy->ops.power_up = e1000_power_up_phy_copper;
525         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
526
527         /* We may need to do this twice - once for IGP and if that fails,
528          * we'll set BM func pointers and try again
529          */
530         ret_val = e1000e_determine_phy_address(hw);
531         if (ret_val) {
532                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
533                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
534                 ret_val = e1000e_determine_phy_address(hw);
535                 if (ret_val) {
536                         e_dbg("Cannot determine PHY addr. Erroring out\n");
537                         return ret_val;
538                 }
539         }
540
541         phy->id = 0;
542         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
543                (i++ < 100)) {
544                 usleep_range(1000, 1100);
545                 ret_val = e1000e_get_phy_id(hw);
546                 if (ret_val)
547                         return ret_val;
548         }
549
550         /* Verify phy id */
551         switch (phy->id) {
552         case IGP03E1000_E_PHY_ID:
553                 phy->type = e1000_phy_igp_3;
554                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
555                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
556                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
557                 phy->ops.get_info = e1000e_get_phy_info_igp;
558                 phy->ops.check_polarity = e1000_check_polarity_igp;
559                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
560                 break;
561         case IFE_E_PHY_ID:
562         case IFE_PLUS_E_PHY_ID:
563         case IFE_C_E_PHY_ID:
564                 phy->type = e1000_phy_ife;
565                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
566                 phy->ops.get_info = e1000_get_phy_info_ife;
567                 phy->ops.check_polarity = e1000_check_polarity_ife;
568                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
569                 break;
570         case BME1000_E_PHY_ID:
571                 phy->type = e1000_phy_bm;
572                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
573                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
574                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
575                 phy->ops.commit = e1000e_phy_sw_reset;
576                 phy->ops.get_info = e1000e_get_phy_info_m88;
577                 phy->ops.check_polarity = e1000_check_polarity_m88;
578                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
579                 break;
580         default:
581                 return -E1000_ERR_PHY;
582         }
583
584         return 0;
585 }
586
587 /**
588  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
589  *  @hw: pointer to the HW structure
590  *
591  *  Initialize family-specific NVM parameters and function
592  *  pointers.
593  **/
594 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
595 {
596         struct e1000_nvm_info *nvm = &hw->nvm;
597         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
598         u32 gfpreg, sector_base_addr, sector_end_addr;
599         u16 i;
600         u32 nvm_size;
601
602         nvm->type = e1000_nvm_flash_sw;
603
604         if (hw->mac.type >= e1000_pch_spt) {
605                 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
606                  * STRAP register. This is because in SPT the GbE Flash region
607                  * is no longer accessed through the flash registers. Instead,
608                  * the mechanism has changed, and the Flash region access
609                  * registers are now implemented in GbE memory space.
610                  */
611                 nvm->flash_base_addr = 0;
612                 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
613                     * NVM_SIZE_MULTIPLIER;
614                 nvm->flash_bank_size = nvm_size / 2;
615                 /* Adjust to word count */
616                 nvm->flash_bank_size /= sizeof(u16);
617                 /* Set the base address for flash register access */
618                 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
619         } else {
620                 /* Can't read flash registers if register set isn't mapped. */
621                 if (!hw->flash_address) {
622                         e_dbg("ERROR: Flash registers not mapped\n");
623                         return -E1000_ERR_CONFIG;
624                 }
625
626                 gfpreg = er32flash(ICH_FLASH_GFPREG);
627
628                 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
629                  * Add 1 to sector_end_addr since this sector is included in
630                  * the overall size.
631                  */
632                 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
633                 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
634
635                 /* flash_base_addr is byte-aligned */
636                 nvm->flash_base_addr = sector_base_addr
637                     << FLASH_SECTOR_ADDR_SHIFT;
638
639                 /* find total size of the NVM, then cut in half since the total
640                  * size represents two separate NVM banks.
641                  */
642                 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
643                                         << FLASH_SECTOR_ADDR_SHIFT);
644                 nvm->flash_bank_size /= 2;
645                 /* Adjust to word count */
646                 nvm->flash_bank_size /= sizeof(u16);
647         }
648
649         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
650
651         /* Clear shadow ram */
652         for (i = 0; i < nvm->word_size; i++) {
653                 dev_spec->shadow_ram[i].modified = false;
654                 dev_spec->shadow_ram[i].value = 0xFFFF;
655         }
656
657         return 0;
658 }
659
660 /**
661  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
662  *  @hw: pointer to the HW structure
663  *
664  *  Initialize family-specific MAC parameters and function
665  *  pointers.
666  **/
667 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
668 {
669         struct e1000_mac_info *mac = &hw->mac;
670
671         /* Set media type function pointer */
672         hw->phy.media_type = e1000_media_type_copper;
673
674         /* Set mta register count */
675         mac->mta_reg_count = 32;
676         /* Set rar entry count */
677         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
678         if (mac->type == e1000_ich8lan)
679                 mac->rar_entry_count--;
680         /* FWSM register */
681         mac->has_fwsm = true;
682         /* ARC subsystem not supported */
683         mac->arc_subsystem_valid = false;
684         /* Adaptive IFS supported */
685         mac->adaptive_ifs = true;
686
687         /* LED and other operations */
688         switch (mac->type) {
689         case e1000_ich8lan:
690         case e1000_ich9lan:
691         case e1000_ich10lan:
692                 /* check management mode */
693                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
694                 /* ID LED init */
695                 mac->ops.id_led_init = e1000e_id_led_init_generic;
696                 /* blink LED */
697                 mac->ops.blink_led = e1000e_blink_led_generic;
698                 /* setup LED */
699                 mac->ops.setup_led = e1000e_setup_led_generic;
700                 /* cleanup LED */
701                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
702                 /* turn on/off LED */
703                 mac->ops.led_on = e1000_led_on_ich8lan;
704                 mac->ops.led_off = e1000_led_off_ich8lan;
705                 break;
706         case e1000_pch2lan:
707                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
708                 mac->ops.rar_set = e1000_rar_set_pch2lan;
709                 fallthrough;
710         case e1000_pch_lpt:
711         case e1000_pch_spt:
712         case e1000_pch_cnp:
713         case e1000_pch_tgp:
714         case e1000_pch_adp:
715         case e1000_pch_mtp:
716         case e1000_pch_lnp:
717         case e1000_pchlan:
718                 /* check management mode */
719                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
720                 /* ID LED init */
721                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
722                 /* setup LED */
723                 mac->ops.setup_led = e1000_setup_led_pchlan;
724                 /* cleanup LED */
725                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
726                 /* turn on/off LED */
727                 mac->ops.led_on = e1000_led_on_pchlan;
728                 mac->ops.led_off = e1000_led_off_pchlan;
729                 break;
730         default:
731                 break;
732         }
733
734         if (mac->type >= e1000_pch_lpt) {
735                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
736                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
737                 mac->ops.setup_physical_interface =
738                     e1000_setup_copper_link_pch_lpt;
739                 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
740         }
741
742         /* Enable PCS Lock-loss workaround for ICH8 */
743         if (mac->type == e1000_ich8lan)
744                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
745
746         return 0;
747 }
748
749 /**
750  *  __e1000_access_emi_reg_locked - Read/write EMI register
751  *  @hw: pointer to the HW structure
752  *  @address: EMI address to program
753  *  @data: pointer to value to read/write from/to the EMI address
754  *  @read: boolean flag to indicate read or write
755  *
756  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
757  **/
758 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
759                                          u16 *data, bool read)
760 {
761         s32 ret_val;
762
763         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
764         if (ret_val)
765                 return ret_val;
766
767         if (read)
768                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
769         else
770                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
771
772         return ret_val;
773 }
774
775 /**
776  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
777  *  @hw: pointer to the HW structure
778  *  @addr: EMI address to program
779  *  @data: value to be read from the EMI address
780  *
781  *  Assumes the SW/FW/HW Semaphore is already acquired.
782  **/
783 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
784 {
785         return __e1000_access_emi_reg_locked(hw, addr, data, true);
786 }
787
788 /**
789  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
790  *  @hw: pointer to the HW structure
791  *  @addr: EMI address to program
792  *  @data: value to be written to the EMI address
793  *
794  *  Assumes the SW/FW/HW Semaphore is already acquired.
795  **/
796 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
797 {
798         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
799 }
800
801 /**
802  *  e1000_set_eee_pchlan - Enable/disable EEE support
803  *  @hw: pointer to the HW structure
804  *
805  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
806  *  the link and the EEE capabilities of the link partner.  The LPI Control
807  *  register bits will remain set only if/when link is up.
808  *
809  *  EEE LPI must not be asserted earlier than one second after link is up.
810  *  On 82579, EEE LPI should not be enabled until such time otherwise there
811  *  can be link issues with some switches.  Other devices can have EEE LPI
812  *  enabled immediately upon link up since they have a timer in hardware which
813  *  prevents LPI from being asserted too early.
814  **/
815 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
816 {
817         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
818         s32 ret_val;
819         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
820
821         switch (hw->phy.type) {
822         case e1000_phy_82579:
823                 lpa = I82579_EEE_LP_ABILITY;
824                 pcs_status = I82579_EEE_PCS_STATUS;
825                 adv_addr = I82579_EEE_ADVERTISEMENT;
826                 break;
827         case e1000_phy_i217:
828                 lpa = I217_EEE_LP_ABILITY;
829                 pcs_status = I217_EEE_PCS_STATUS;
830                 adv_addr = I217_EEE_ADVERTISEMENT;
831                 break;
832         default:
833                 return 0;
834         }
835
836         ret_val = hw->phy.ops.acquire(hw);
837         if (ret_val)
838                 return ret_val;
839
840         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
841         if (ret_val)
842                 goto release;
843
844         /* Clear bits that enable EEE in various speeds */
845         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
846
847         /* Enable EEE if not disabled by user */
848         if (!dev_spec->eee_disable) {
849                 /* Save off link partner's EEE ability */
850                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
851                                                     &dev_spec->eee_lp_ability);
852                 if (ret_val)
853                         goto release;
854
855                 /* Read EEE advertisement */
856                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
857                 if (ret_val)
858                         goto release;
859
860                 /* Enable EEE only for speeds in which the link partner is
861                  * EEE capable and for which we advertise EEE.
862                  */
863                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
864                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
865
866                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
867                         e1e_rphy_locked(hw, MII_LPA, &data);
868                         if (data & LPA_100FULL)
869                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
870                         else
871                                 /* EEE is not supported in 100Half, so ignore
872                                  * partner's EEE in 100 ability if full-duplex
873                                  * is not advertised.
874                                  */
875                                 dev_spec->eee_lp_ability &=
876                                     ~I82579_EEE_100_SUPPORTED;
877                 }
878         }
879
880         if (hw->phy.type == e1000_phy_82579) {
881                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
882                                                     &data);
883                 if (ret_val)
884                         goto release;
885
886                 data &= ~I82579_LPI_100_PLL_SHUT;
887                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
888                                                      data);
889         }
890
891         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
892         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
893         if (ret_val)
894                 goto release;
895
896         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
897 release:
898         hw->phy.ops.release(hw);
899
900         return ret_val;
901 }
902
903 /**
904  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
905  *  @hw:   pointer to the HW structure
906  *  @link: link up bool flag
907  *
908  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
909  *  preventing further DMA write requests.  Workaround the issue by disabling
910  *  the de-assertion of the clock request when in 1Gpbs mode.
911  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
912  *  speeds in order to avoid Tx hangs.
913  **/
914 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
915 {
916         u32 fextnvm6 = er32(FEXTNVM6);
917         u32 status = er32(STATUS);
918         s32 ret_val = 0;
919         u16 reg;
920
921         if (link && (status & E1000_STATUS_SPEED_1000)) {
922                 ret_val = hw->phy.ops.acquire(hw);
923                 if (ret_val)
924                         return ret_val;
925
926                 ret_val =
927                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
928                                                 &reg);
929                 if (ret_val)
930                         goto release;
931
932                 ret_val =
933                     e1000e_write_kmrn_reg_locked(hw,
934                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
935                                                  reg &
936                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
937                 if (ret_val)
938                         goto release;
939
940                 usleep_range(10, 20);
941
942                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
943
944                 ret_val =
945                     e1000e_write_kmrn_reg_locked(hw,
946                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
947                                                  reg);
948 release:
949                 hw->phy.ops.release(hw);
950         } else {
951                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
952                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
953
954                 if ((hw->phy.revision > 5) || !link ||
955                     ((status & E1000_STATUS_SPEED_100) &&
956                      (status & E1000_STATUS_FD)))
957                         goto update_fextnvm6;
958
959                 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
960                 if (ret_val)
961                         return ret_val;
962
963                 /* Clear link status transmit timeout */
964                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
965
966                 if (status & E1000_STATUS_SPEED_100) {
967                         /* Set inband Tx timeout to 5x10us for 100Half */
968                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
969
970                         /* Do not extend the K1 entry latency for 100Half */
971                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
972                 } else {
973                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
974                         reg |= 50 <<
975                             I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
976
977                         /* Extend the K1 entry latency for 10 Mbps */
978                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
979                 }
980
981                 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
982                 if (ret_val)
983                         return ret_val;
984
985 update_fextnvm6:
986                 ew32(FEXTNVM6, fextnvm6);
987         }
988
989         return ret_val;
990 }
991
992 /**
993  *  e1000_platform_pm_pch_lpt - Set platform power management values
994  *  @hw: pointer to the HW structure
995  *  @link: bool indicating link status
996  *
997  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
998  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
999  *  when link is up (which must not exceed the maximum latency supported
1000  *  by the platform), otherwise specify there is no LTR requirement.
1001  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1002  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1003  *  Capability register set, on this device LTR is set by writing the
1004  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1005  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1006  *  message to the PMC.
1007  **/
1008 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1009 {
1010         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1011             link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1012         u16 max_ltr_enc_d = 0;  /* maximum LTR decoded by platform */
1013         u16 lat_enc_d = 0;      /* latency decoded */
1014         u16 lat_enc = 0;        /* latency encoded */
1015
1016         if (link) {
1017                 u16 speed, duplex, scale = 0;
1018                 u16 max_snoop, max_nosnoop;
1019                 u16 max_ltr_enc;        /* max LTR latency encoded */
1020                 u64 value;
1021                 u32 rxa;
1022
1023                 if (!hw->adapter->max_frame_size) {
1024                         e_dbg("max_frame_size not set.\n");
1025                         return -E1000_ERR_CONFIG;
1026                 }
1027
1028                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1029                 if (!speed) {
1030                         e_dbg("Speed not set.\n");
1031                         return -E1000_ERR_CONFIG;
1032                 }
1033
1034                 /* Rx Packet Buffer Allocation size (KB) */
1035                 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1036
1037                 /* Determine the maximum latency tolerated by the device.
1038                  *
1039                  * Per the PCIe spec, the tolerated latencies are encoded as
1040                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1041                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1042                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1043                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1044                  */
1045                 rxa *= 512;
1046                 value = (rxa > hw->adapter->max_frame_size) ?
1047                         (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1048                         0;
1049
1050                 while (value > PCI_LTR_VALUE_MASK) {
1051                         scale++;
1052                         value = DIV_ROUND_UP(value, BIT(5));
1053                 }
1054                 if (scale > E1000_LTRV_SCALE_MAX) {
1055                         e_dbg("Invalid LTR latency scale %d\n", scale);
1056                         return -E1000_ERR_CONFIG;
1057                 }
1058                 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1059
1060                 /* Determine the maximum latency tolerated by the platform */
1061                 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1062                                      &max_snoop);
1063                 pci_read_config_word(hw->adapter->pdev,
1064                                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1065                 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1066
1067                 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1068                              (1U << (E1000_LTRV_SCALE_FACTOR *
1069                              ((lat_enc & E1000_LTRV_SCALE_MASK)
1070                              >> E1000_LTRV_SCALE_SHIFT)));
1071
1072                 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1073                                  (1U << (E1000_LTRV_SCALE_FACTOR *
1074                                  ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1075                                  >> E1000_LTRV_SCALE_SHIFT)));
1076
1077                 if (lat_enc_d > max_ltr_enc_d)
1078                         lat_enc = max_ltr_enc;
1079         }
1080
1081         /* Set Snoop and No-Snoop latencies the same */
1082         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1083         ew32(LTRV, reg);
1084
1085         return 0;
1086 }
1087
1088 /**
1089  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1090  *  @hw: pointer to the HW structure
1091  *  @to_sx: boolean indicating a system power state transition to Sx
1092  *
1093  *  When link is down, configure ULP mode to significantly reduce the power
1094  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1095  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1096  *  system, configure the ULP mode by software.
1097  */
1098 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1099 {
1100         u32 mac_reg;
1101         s32 ret_val = 0;
1102         u16 phy_reg;
1103         u16 oem_reg = 0;
1104
1105         if ((hw->mac.type < e1000_pch_lpt) ||
1106             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1107             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1108             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1109             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1110             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1111                 return 0;
1112
1113         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1114                 /* Request ME configure ULP mode in the PHY */
1115                 mac_reg = er32(H2ME);
1116                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1117                 ew32(H2ME, mac_reg);
1118
1119                 goto out;
1120         }
1121
1122         if (!to_sx) {
1123                 int i = 0;
1124
1125                 /* Poll up to 5 seconds for Cable Disconnected indication */
1126                 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1127                         /* Bail if link is re-acquired */
1128                         if (er32(STATUS) & E1000_STATUS_LU)
1129                                 return -E1000_ERR_PHY;
1130
1131                         if (i++ == 100)
1132                                 break;
1133
1134                         msleep(50);
1135                 }
1136                 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1137                       (er32(FEXT) &
1138                        E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1139         }
1140
1141         ret_val = hw->phy.ops.acquire(hw);
1142         if (ret_val)
1143                 goto out;
1144
1145         /* Force SMBus mode in PHY */
1146         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1147         if (ret_val)
1148                 goto release;
1149         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1150         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1151
1152         /* Force SMBus mode in MAC */
1153         mac_reg = er32(CTRL_EXT);
1154         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1155         ew32(CTRL_EXT, mac_reg);
1156
1157         /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1158          * LPLU and disable Gig speed when entering ULP
1159          */
1160         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1161                 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1162                                                        &oem_reg);
1163                 if (ret_val)
1164                         goto release;
1165
1166                 phy_reg = oem_reg;
1167                 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1168
1169                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1170                                                         phy_reg);
1171
1172                 if (ret_val)
1173                         goto release;
1174         }
1175
1176         /* Set Inband ULP Exit, Reset to SMBus mode and
1177          * Disable SMBus Release on PERST# in PHY
1178          */
1179         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1180         if (ret_val)
1181                 goto release;
1182         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1183                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1184         if (to_sx) {
1185                 if (er32(WUFC) & E1000_WUFC_LNKC)
1186                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1187                 else
1188                         phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1189
1190                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1191                 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1192         } else {
1193                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1194                 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1195                 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1196         }
1197         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1198
1199         /* Set Disable SMBus Release on PERST# in MAC */
1200         mac_reg = er32(FEXTNVM7);
1201         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1202         ew32(FEXTNVM7, mac_reg);
1203
1204         /* Commit ULP changes in PHY by starting auto ULP configuration */
1205         phy_reg |= I218_ULP_CONFIG1_START;
1206         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1207
1208         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1209             to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1210                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1211                                                         oem_reg);
1212                 if (ret_val)
1213                         goto release;
1214         }
1215
1216 release:
1217         hw->phy.ops.release(hw);
1218 out:
1219         if (ret_val)
1220                 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1221         else
1222                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1223
1224         return ret_val;
1225 }
1226
1227 /**
1228  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1229  *  @hw: pointer to the HW structure
1230  *  @force: boolean indicating whether or not to force disabling ULP
1231  *
1232  *  Un-configure ULP mode when link is up, the system is transitioned from
1233  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1234  *  system, poll for an indication from ME that ULP has been un-configured.
1235  *  If not on an ME enabled system, un-configure the ULP mode by software.
1236  *
1237  *  During nominal operation, this function is called when link is acquired
1238  *  to disable ULP mode (force=false); otherwise, for example when unloading
1239  *  the driver or during Sx->S0 transitions, this is called with force=true
1240  *  to forcibly disable ULP.
1241  */
1242 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1243 {
1244         s32 ret_val = 0;
1245         u32 mac_reg;
1246         u16 phy_reg;
1247         int i = 0;
1248
1249         if ((hw->mac.type < e1000_pch_lpt) ||
1250             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1251             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1252             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1253             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1254             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1255                 return 0;
1256
1257         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1258                 struct e1000_adapter *adapter = hw->adapter;
1259                 bool firmware_bug = false;
1260
1261                 if (force) {
1262                         /* Request ME un-configure ULP mode in the PHY */
1263                         mac_reg = er32(H2ME);
1264                         mac_reg &= ~E1000_H2ME_ULP;
1265                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1266                         ew32(H2ME, mac_reg);
1267                 }
1268
1269                 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1270                  * If this takes more than 1 second, show a warning indicating a
1271                  * firmware bug
1272                  */
1273                 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1274                         if (i++ == 250) {
1275                                 ret_val = -E1000_ERR_PHY;
1276                                 goto out;
1277                         }
1278                         if (i > 100 && !firmware_bug)
1279                                 firmware_bug = true;
1280
1281                         usleep_range(10000, 11000);
1282                 }
1283                 if (firmware_bug)
1284                         e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1285                                i * 10);
1286                 else
1287                         e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1288                               i * 10);
1289
1290                 if (force) {
1291                         mac_reg = er32(H2ME);
1292                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1293                         ew32(H2ME, mac_reg);
1294                 } else {
1295                         /* Clear H2ME.ULP after ME ULP configuration */
1296                         mac_reg = er32(H2ME);
1297                         mac_reg &= ~E1000_H2ME_ULP;
1298                         ew32(H2ME, mac_reg);
1299                 }
1300
1301                 goto out;
1302         }
1303
1304         ret_val = hw->phy.ops.acquire(hw);
1305         if (ret_val)
1306                 goto out;
1307
1308         if (force)
1309                 /* Toggle LANPHYPC Value bit */
1310                 e1000_toggle_lanphypc_pch_lpt(hw);
1311
1312         /* Unforce SMBus mode in PHY */
1313         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1314         if (ret_val) {
1315                 /* The MAC might be in PCIe mode, so temporarily force to
1316                  * SMBus mode in order to access the PHY.
1317                  */
1318                 mac_reg = er32(CTRL_EXT);
1319                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1320                 ew32(CTRL_EXT, mac_reg);
1321
1322                 msleep(50);
1323
1324                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1325                                                        &phy_reg);
1326                 if (ret_val)
1327                         goto release;
1328         }
1329         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1330         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1331
1332         /* Unforce SMBus mode in MAC */
1333         mac_reg = er32(CTRL_EXT);
1334         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1335         ew32(CTRL_EXT, mac_reg);
1336
1337         /* When ULP mode was previously entered, K1 was disabled by the
1338          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1339          */
1340         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1341         if (ret_val)
1342                 goto release;
1343         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1344         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1345
1346         /* Clear ULP enabled configuration */
1347         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1348         if (ret_val)
1349                 goto release;
1350         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1351                      I218_ULP_CONFIG1_STICKY_ULP |
1352                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1353                      I218_ULP_CONFIG1_WOL_HOST |
1354                      I218_ULP_CONFIG1_INBAND_EXIT |
1355                      I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1356                      I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1357                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1358         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1359
1360         /* Commit ULP changes by starting auto ULP configuration */
1361         phy_reg |= I218_ULP_CONFIG1_START;
1362         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363
1364         /* Clear Disable SMBus Release on PERST# in MAC */
1365         mac_reg = er32(FEXTNVM7);
1366         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1367         ew32(FEXTNVM7, mac_reg);
1368
1369 release:
1370         hw->phy.ops.release(hw);
1371         if (force) {
1372                 e1000_phy_hw_reset(hw);
1373                 msleep(50);
1374         }
1375 out:
1376         if (ret_val)
1377                 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1378         else
1379                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1380
1381         return ret_val;
1382 }
1383
1384 /**
1385  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1386  *  @hw: pointer to the HW structure
1387  *
1388  *  Checks to see of the link status of the hardware has changed.  If a
1389  *  change in link status has been detected, then we read the PHY registers
1390  *  to get the current speed/duplex if link exists.
1391  **/
1392 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1393 {
1394         struct e1000_mac_info *mac = &hw->mac;
1395         s32 ret_val, tipg_reg = 0;
1396         u16 emi_addr, emi_val = 0;
1397         bool link;
1398         u16 phy_reg;
1399
1400         /* We only want to go out to the PHY registers to see if Auto-Neg
1401          * has completed and/or if our link status has changed.  The
1402          * get_link_status flag is set upon receiving a Link Status
1403          * Change or Rx Sequence Error interrupt.
1404          */
1405         if (!mac->get_link_status)
1406                 return 0;
1407         mac->get_link_status = false;
1408
1409         /* First we want to see if the MII Status Register reports
1410          * link.  If so, then we want to get the current speed/duplex
1411          * of the PHY.
1412          */
1413         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1414         if (ret_val)
1415                 goto out;
1416
1417         if (hw->mac.type == e1000_pchlan) {
1418                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1419                 if (ret_val)
1420                         goto out;
1421         }
1422
1423         /* When connected at 10Mbps half-duplex, some parts are excessively
1424          * aggressive resulting in many collisions. To avoid this, increase
1425          * the IPG and reduce Rx latency in the PHY.
1426          */
1427         if ((hw->mac.type >= e1000_pch2lan) && link) {
1428                 u16 speed, duplex;
1429
1430                 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1431                 tipg_reg = er32(TIPG);
1432                 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1433
1434                 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1435                         tipg_reg |= 0xFF;
1436                         /* Reduce Rx latency in analog PHY */
1437                         emi_val = 0;
1438                 } else if (hw->mac.type >= e1000_pch_spt &&
1439                            duplex == FULL_DUPLEX && speed != SPEED_1000) {
1440                         tipg_reg |= 0xC;
1441                         emi_val = 1;
1442                 } else {
1443
1444                         /* Roll back the default values */
1445                         tipg_reg |= 0x08;
1446                         emi_val = 1;
1447                 }
1448
1449                 ew32(TIPG, tipg_reg);
1450
1451                 ret_val = hw->phy.ops.acquire(hw);
1452                 if (ret_val)
1453                         goto out;
1454
1455                 if (hw->mac.type == e1000_pch2lan)
1456                         emi_addr = I82579_RX_CONFIG;
1457                 else
1458                         emi_addr = I217_RX_CONFIG;
1459                 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1460
1461                 if (hw->mac.type >= e1000_pch_lpt) {
1462                         u16 phy_reg;
1463
1464                         e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1465                         phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1466                         if (speed == SPEED_100 || speed == SPEED_10)
1467                                 phy_reg |= 0x3E8;
1468                         else
1469                                 phy_reg |= 0xFA;
1470                         e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1471
1472                         if (speed == SPEED_1000) {
1473                                 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1474                                                             &phy_reg);
1475
1476                                 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1477
1478                                 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1479                                                              phy_reg);
1480                         }
1481                 }
1482                 hw->phy.ops.release(hw);
1483
1484                 if (ret_val)
1485                         goto out;
1486
1487                 if (hw->mac.type >= e1000_pch_spt) {
1488                         u16 data;
1489                         u16 ptr_gap;
1490
1491                         if (speed == SPEED_1000) {
1492                                 ret_val = hw->phy.ops.acquire(hw);
1493                                 if (ret_val)
1494                                         goto out;
1495
1496                                 ret_val = e1e_rphy_locked(hw,
1497                                                           PHY_REG(776, 20),
1498                                                           &data);
1499                                 if (ret_val) {
1500                                         hw->phy.ops.release(hw);
1501                                         goto out;
1502                                 }
1503
1504                                 ptr_gap = (data & (0x3FF << 2)) >> 2;
1505                                 if (ptr_gap < 0x18) {
1506                                         data &= ~(0x3FF << 2);
1507                                         data |= (0x18 << 2);
1508                                         ret_val =
1509                                             e1e_wphy_locked(hw,
1510                                                             PHY_REG(776, 20),
1511                                                             data);
1512                                 }
1513                                 hw->phy.ops.release(hw);
1514                                 if (ret_val)
1515                                         goto out;
1516                         } else {
1517                                 ret_val = hw->phy.ops.acquire(hw);
1518                                 if (ret_val)
1519                                         goto out;
1520
1521                                 ret_val = e1e_wphy_locked(hw,
1522                                                           PHY_REG(776, 20),
1523                                                           0xC023);
1524                                 hw->phy.ops.release(hw);
1525                                 if (ret_val)
1526                                         goto out;
1527
1528                         }
1529                 }
1530         }
1531
1532         /* I217 Packet Loss issue:
1533          * ensure that FEXTNVM4 Beacon Duration is set correctly
1534          * on power up.
1535          * Set the Beacon Duration for I217 to 8 usec
1536          */
1537         if (hw->mac.type >= e1000_pch_lpt) {
1538                 u32 mac_reg;
1539
1540                 mac_reg = er32(FEXTNVM4);
1541                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1542                 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1543                 ew32(FEXTNVM4, mac_reg);
1544         }
1545
1546         /* Work-around I218 hang issue */
1547         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1548             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1549             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1550             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1551                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1552                 if (ret_val)
1553                         goto out;
1554         }
1555         if (hw->mac.type >= e1000_pch_lpt) {
1556                 /* Set platform power management values for
1557                  * Latency Tolerance Reporting (LTR)
1558                  */
1559                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1560                 if (ret_val)
1561                         goto out;
1562         }
1563
1564         /* Clear link partner's EEE ability */
1565         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1566
1567         if (hw->mac.type >= e1000_pch_lpt) {
1568                 u32 fextnvm6 = er32(FEXTNVM6);
1569
1570                 if (hw->mac.type == e1000_pch_spt) {
1571                         /* FEXTNVM6 K1-off workaround - for SPT only */
1572                         u32 pcieanacfg = er32(PCIEANACFG);
1573
1574                         if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1575                                 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1576                         else
1577                                 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1578                 }
1579
1580                 ew32(FEXTNVM6, fextnvm6);
1581         }
1582
1583         if (!link)
1584                 goto out;
1585
1586         switch (hw->mac.type) {
1587         case e1000_pch2lan:
1588                 ret_val = e1000_k1_workaround_lv(hw);
1589                 if (ret_val)
1590                         return ret_val;
1591                 fallthrough;
1592         case e1000_pchlan:
1593                 if (hw->phy.type == e1000_phy_82578) {
1594                         ret_val = e1000_link_stall_workaround_hv(hw);
1595                         if (ret_val)
1596                                 return ret_val;
1597                 }
1598
1599                 /* Workaround for PCHx parts in half-duplex:
1600                  * Set the number of preambles removed from the packet
1601                  * when it is passed from the PHY to the MAC to prevent
1602                  * the MAC from misinterpreting the packet type.
1603                  */
1604                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1605                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1606
1607                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1608                         phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1609
1610                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1611                 break;
1612         default:
1613                 break;
1614         }
1615
1616         /* Check if there was DownShift, must be checked
1617          * immediately after link-up
1618          */
1619         e1000e_check_downshift(hw);
1620
1621         /* Enable/Disable EEE after link up */
1622         if (hw->phy.type > e1000_phy_82579) {
1623                 ret_val = e1000_set_eee_pchlan(hw);
1624                 if (ret_val)
1625                         return ret_val;
1626         }
1627
1628         /* If we are forcing speed/duplex, then we simply return since
1629          * we have already determined whether we have link or not.
1630          */
1631         if (!mac->autoneg)
1632                 return -E1000_ERR_CONFIG;
1633
1634         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1635          * of MAC speed/duplex configuration.  So we only need to
1636          * configure Collision Distance in the MAC.
1637          */
1638         mac->ops.config_collision_dist(hw);
1639
1640         /* Configure Flow Control now that Auto-Neg has completed.
1641          * First, we need to restore the desired flow control
1642          * settings because we may have had to re-autoneg with a
1643          * different link partner.
1644          */
1645         ret_val = e1000e_config_fc_after_link_up(hw);
1646         if (ret_val)
1647                 e_dbg("Error configuring flow control\n");
1648
1649         return ret_val;
1650
1651 out:
1652         mac->get_link_status = true;
1653         return ret_val;
1654 }
1655
1656 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1657 {
1658         struct e1000_hw *hw = &adapter->hw;
1659         s32 rc;
1660
1661         rc = e1000_init_mac_params_ich8lan(hw);
1662         if (rc)
1663                 return rc;
1664
1665         rc = e1000_init_nvm_params_ich8lan(hw);
1666         if (rc)
1667                 return rc;
1668
1669         switch (hw->mac.type) {
1670         case e1000_ich8lan:
1671         case e1000_ich9lan:
1672         case e1000_ich10lan:
1673                 rc = e1000_init_phy_params_ich8lan(hw);
1674                 break;
1675         case e1000_pchlan:
1676         case e1000_pch2lan:
1677         case e1000_pch_lpt:
1678         case e1000_pch_spt:
1679         case e1000_pch_cnp:
1680         case e1000_pch_tgp:
1681         case e1000_pch_adp:
1682         case e1000_pch_mtp:
1683         case e1000_pch_lnp:
1684                 rc = e1000_init_phy_params_pchlan(hw);
1685                 break;
1686         default:
1687                 break;
1688         }
1689         if (rc)
1690                 return rc;
1691
1692         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1693          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1694          */
1695         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1696             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1697              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1698                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1699                 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1700
1701                 hw->mac.ops.blink_led = NULL;
1702         }
1703
1704         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1705             (adapter->hw.phy.type != e1000_phy_ife))
1706                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1707
1708         /* Enable workaround for 82579 w/ ME enabled */
1709         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1710             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1711                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1712
1713         return 0;
1714 }
1715
1716 static DEFINE_MUTEX(nvm_mutex);
1717
1718 /**
1719  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1720  *  @hw: pointer to the HW structure
1721  *
1722  *  Acquires the mutex for performing NVM operations.
1723  **/
1724 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1725 {
1726         mutex_lock(&nvm_mutex);
1727
1728         return 0;
1729 }
1730
1731 /**
1732  *  e1000_release_nvm_ich8lan - Release NVM mutex
1733  *  @hw: pointer to the HW structure
1734  *
1735  *  Releases the mutex used while performing NVM operations.
1736  **/
1737 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1738 {
1739         mutex_unlock(&nvm_mutex);
1740 }
1741
1742 /**
1743  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1744  *  @hw: pointer to the HW structure
1745  *
1746  *  Acquires the software control flag for performing PHY and select
1747  *  MAC CSR accesses.
1748  **/
1749 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1750 {
1751         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1752         s32 ret_val = 0;
1753
1754         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1755                              &hw->adapter->state)) {
1756                 e_dbg("contention for Phy access\n");
1757                 return -E1000_ERR_PHY;
1758         }
1759
1760         while (timeout) {
1761                 extcnf_ctrl = er32(EXTCNF_CTRL);
1762                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1763                         break;
1764
1765                 mdelay(1);
1766                 timeout--;
1767         }
1768
1769         if (!timeout) {
1770                 e_dbg("SW has already locked the resource.\n");
1771                 ret_val = -E1000_ERR_CONFIG;
1772                 goto out;
1773         }
1774
1775         timeout = SW_FLAG_TIMEOUT;
1776
1777         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1778         ew32(EXTCNF_CTRL, extcnf_ctrl);
1779
1780         while (timeout) {
1781                 extcnf_ctrl = er32(EXTCNF_CTRL);
1782                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1783                         break;
1784
1785                 mdelay(1);
1786                 timeout--;
1787         }
1788
1789         if (!timeout) {
1790                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1791                       er32(FWSM), extcnf_ctrl);
1792                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1793                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1794                 ret_val = -E1000_ERR_CONFIG;
1795                 goto out;
1796         }
1797
1798 out:
1799         if (ret_val)
1800                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1801
1802         return ret_val;
1803 }
1804
1805 /**
1806  *  e1000_release_swflag_ich8lan - Release software control flag
1807  *  @hw: pointer to the HW structure
1808  *
1809  *  Releases the software control flag for performing PHY and select
1810  *  MAC CSR accesses.
1811  **/
1812 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1813 {
1814         u32 extcnf_ctrl;
1815
1816         extcnf_ctrl = er32(EXTCNF_CTRL);
1817
1818         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1819                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1820                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1821         } else {
1822                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1823         }
1824
1825         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1826 }
1827
1828 /**
1829  *  e1000_check_mng_mode_ich8lan - Checks management mode
1830  *  @hw: pointer to the HW structure
1831  *
1832  *  This checks if the adapter has any manageability enabled.
1833  *  This is a function pointer entry point only called by read/write
1834  *  routines for the PHY and NVM parts.
1835  **/
1836 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1837 {
1838         u32 fwsm;
1839
1840         fwsm = er32(FWSM);
1841         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1842                 ((fwsm & E1000_FWSM_MODE_MASK) ==
1843                  (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1844 }
1845
1846 /**
1847  *  e1000_check_mng_mode_pchlan - Checks management mode
1848  *  @hw: pointer to the HW structure
1849  *
1850  *  This checks if the adapter has iAMT enabled.
1851  *  This is a function pointer entry point only called by read/write
1852  *  routines for the PHY and NVM parts.
1853  **/
1854 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1855 {
1856         u32 fwsm;
1857
1858         fwsm = er32(FWSM);
1859         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1860             (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1861 }
1862
1863 /**
1864  *  e1000_rar_set_pch2lan - Set receive address register
1865  *  @hw: pointer to the HW structure
1866  *  @addr: pointer to the receive address
1867  *  @index: receive address array register
1868  *
1869  *  Sets the receive address array register at index to the address passed
1870  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1871  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1872  *  Use SHRA[0-3] in place of those reserved for ME.
1873  **/
1874 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1875 {
1876         u32 rar_low, rar_high;
1877
1878         /* HW expects these in little endian so we reverse the byte order
1879          * from network order (big endian) to little endian
1880          */
1881         rar_low = ((u32)addr[0] |
1882                    ((u32)addr[1] << 8) |
1883                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1884
1885         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1886
1887         /* If MAC address zero, no need to set the AV bit */
1888         if (rar_low || rar_high)
1889                 rar_high |= E1000_RAH_AV;
1890
1891         if (index == 0) {
1892                 ew32(RAL(index), rar_low);
1893                 e1e_flush();
1894                 ew32(RAH(index), rar_high);
1895                 e1e_flush();
1896                 return 0;
1897         }
1898
1899         /* RAR[1-6] are owned by manageability.  Skip those and program the
1900          * next address into the SHRA register array.
1901          */
1902         if (index < (u32)(hw->mac.rar_entry_count)) {
1903                 s32 ret_val;
1904
1905                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1906                 if (ret_val)
1907                         goto out;
1908
1909                 ew32(SHRAL(index - 1), rar_low);
1910                 e1e_flush();
1911                 ew32(SHRAH(index - 1), rar_high);
1912                 e1e_flush();
1913
1914                 e1000_release_swflag_ich8lan(hw);
1915
1916                 /* verify the register updates */
1917                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1918                     (er32(SHRAH(index - 1)) == rar_high))
1919                         return 0;
1920
1921                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1922                       (index - 1), er32(FWSM));
1923         }
1924
1925 out:
1926         e_dbg("Failed to write receive address at index %d\n", index);
1927         return -E1000_ERR_CONFIG;
1928 }
1929
1930 /**
1931  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1932  *  @hw: pointer to the HW structure
1933  *
1934  *  Get the number of available receive registers that the Host can
1935  *  program. SHRA[0-10] are the shared receive address registers
1936  *  that are shared between the Host and manageability engine (ME).
1937  *  ME can reserve any number of addresses and the host needs to be
1938  *  able to tell how many available registers it has access to.
1939  **/
1940 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1941 {
1942         u32 wlock_mac;
1943         u32 num_entries;
1944
1945         wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1946         wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1947
1948         switch (wlock_mac) {
1949         case 0:
1950                 /* All SHRA[0..10] and RAR[0] available */
1951                 num_entries = hw->mac.rar_entry_count;
1952                 break;
1953         case 1:
1954                 /* Only RAR[0] available */
1955                 num_entries = 1;
1956                 break;
1957         default:
1958                 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1959                 num_entries = wlock_mac + 1;
1960                 break;
1961         }
1962
1963         return num_entries;
1964 }
1965
1966 /**
1967  *  e1000_rar_set_pch_lpt - Set receive address registers
1968  *  @hw: pointer to the HW structure
1969  *  @addr: pointer to the receive address
1970  *  @index: receive address array register
1971  *
1972  *  Sets the receive address register array at index to the address passed
1973  *  in by addr. For LPT, RAR[0] is the base address register that is to
1974  *  contain the MAC address. SHRA[0-10] are the shared receive address
1975  *  registers that are shared between the Host and manageability engine (ME).
1976  **/
1977 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1978 {
1979         u32 rar_low, rar_high;
1980         u32 wlock_mac;
1981
1982         /* HW expects these in little endian so we reverse the byte order
1983          * from network order (big endian) to little endian
1984          */
1985         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1986                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1987
1988         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1989
1990         /* If MAC address zero, no need to set the AV bit */
1991         if (rar_low || rar_high)
1992                 rar_high |= E1000_RAH_AV;
1993
1994         if (index == 0) {
1995                 ew32(RAL(index), rar_low);
1996                 e1e_flush();
1997                 ew32(RAH(index), rar_high);
1998                 e1e_flush();
1999                 return 0;
2000         }
2001
2002         /* The manageability engine (ME) can lock certain SHRAR registers that
2003          * it is using - those registers are unavailable for use.
2004          */
2005         if (index < hw->mac.rar_entry_count) {
2006                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2007                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2008
2009                 /* Check if all SHRAR registers are locked */
2010                 if (wlock_mac == 1)
2011                         goto out;
2012
2013                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2014                         s32 ret_val;
2015
2016                         ret_val = e1000_acquire_swflag_ich8lan(hw);
2017
2018                         if (ret_val)
2019                                 goto out;
2020
2021                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2022                         e1e_flush();
2023                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2024                         e1e_flush();
2025
2026                         e1000_release_swflag_ich8lan(hw);
2027
2028                         /* verify the register updates */
2029                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2030                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2031                                 return 0;
2032                 }
2033         }
2034
2035 out:
2036         e_dbg("Failed to write receive address at index %d\n", index);
2037         return -E1000_ERR_CONFIG;
2038 }
2039
2040 /**
2041  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2042  *  @hw: pointer to the HW structure
2043  *
2044  *  Checks if firmware is blocking the reset of the PHY.
2045  *  This is a function pointer entry point only called by
2046  *  reset routines.
2047  **/
2048 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2049 {
2050         bool blocked = false;
2051         int i = 0;
2052
2053         while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2054                (i++ < 30))
2055                 usleep_range(10000, 11000);
2056         return blocked ? E1000_BLK_PHY_RESET : 0;
2057 }
2058
2059 /**
2060  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2061  *  @hw: pointer to the HW structure
2062  *
2063  *  Assumes semaphore already acquired.
2064  *
2065  **/
2066 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2067 {
2068         u16 phy_data;
2069         u32 strap = er32(STRAP);
2070         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2071             E1000_STRAP_SMT_FREQ_SHIFT;
2072         s32 ret_val;
2073
2074         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2075
2076         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2077         if (ret_val)
2078                 return ret_val;
2079
2080         phy_data &= ~HV_SMB_ADDR_MASK;
2081         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2082         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2083
2084         if (hw->phy.type == e1000_phy_i217) {
2085                 /* Restore SMBus frequency */
2086                 if (freq--) {
2087                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2088                         phy_data |= (freq & BIT(0)) <<
2089                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
2090                         phy_data |= (freq & BIT(1)) <<
2091                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2092                 } else {
2093                         e_dbg("Unsupported SMB frequency in PHY\n");
2094                 }
2095         }
2096
2097         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2098 }
2099
2100 /**
2101  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2102  *  @hw:   pointer to the HW structure
2103  *
2104  *  SW should configure the LCD from the NVM extended configuration region
2105  *  as a workaround for certain parts.
2106  **/
2107 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2108 {
2109         struct e1000_phy_info *phy = &hw->phy;
2110         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2111         s32 ret_val = 0;
2112         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2113
2114         /* Initialize the PHY from the NVM on ICH platforms.  This
2115          * is needed due to an issue where the NVM configuration is
2116          * not properly autoloaded after power transitions.
2117          * Therefore, after each PHY reset, we will load the
2118          * configuration data out of the NVM manually.
2119          */
2120         switch (hw->mac.type) {
2121         case e1000_ich8lan:
2122                 if (phy->type != e1000_phy_igp_3)
2123                         return ret_val;
2124
2125                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2126                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2127                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2128                         break;
2129                 }
2130                 fallthrough;
2131         case e1000_pchlan:
2132         case e1000_pch2lan:
2133         case e1000_pch_lpt:
2134         case e1000_pch_spt:
2135         case e1000_pch_cnp:
2136         case e1000_pch_tgp:
2137         case e1000_pch_adp:
2138         case e1000_pch_mtp:
2139         case e1000_pch_lnp:
2140                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2141                 break;
2142         default:
2143                 return ret_val;
2144         }
2145
2146         ret_val = hw->phy.ops.acquire(hw);
2147         if (ret_val)
2148                 return ret_val;
2149
2150         data = er32(FEXTNVM);
2151         if (!(data & sw_cfg_mask))
2152                 goto release;
2153
2154         /* Make sure HW does not configure LCD from PHY
2155          * extended configuration before SW configuration
2156          */
2157         data = er32(EXTCNF_CTRL);
2158         if ((hw->mac.type < e1000_pch2lan) &&
2159             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2160                 goto release;
2161
2162         cnf_size = er32(EXTCNF_SIZE);
2163         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2164         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2165         if (!cnf_size)
2166                 goto release;
2167
2168         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2169         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2170
2171         if (((hw->mac.type == e1000_pchlan) &&
2172              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2173             (hw->mac.type > e1000_pchlan)) {
2174                 /* HW configures the SMBus address and LEDs when the
2175                  * OEM and LCD Write Enable bits are set in the NVM.
2176                  * When both NVM bits are cleared, SW will configure
2177                  * them instead.
2178                  */
2179                 ret_val = e1000_write_smbus_addr(hw);
2180                 if (ret_val)
2181                         goto release;
2182
2183                 data = er32(LEDCTL);
2184                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2185                                                         (u16)data);
2186                 if (ret_val)
2187                         goto release;
2188         }
2189
2190         /* Configure LCD from extended configuration region. */
2191
2192         /* cnf_base_addr is in DWORD */
2193         word_addr = (u16)(cnf_base_addr << 1);
2194
2195         for (i = 0; i < cnf_size; i++) {
2196                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2197                 if (ret_val)
2198                         goto release;
2199
2200                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2201                                          1, &reg_addr);
2202                 if (ret_val)
2203                         goto release;
2204
2205                 /* Save off the PHY page for future writes. */
2206                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2207                         phy_page = reg_data;
2208                         continue;
2209                 }
2210
2211                 reg_addr &= PHY_REG_MASK;
2212                 reg_addr |= phy_page;
2213
2214                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2215                 if (ret_val)
2216                         goto release;
2217         }
2218
2219 release:
2220         hw->phy.ops.release(hw);
2221         return ret_val;
2222 }
2223
2224 /**
2225  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2226  *  @hw:   pointer to the HW structure
2227  *  @link: link up bool flag
2228  *
2229  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2230  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2231  *  If link is down, the function will restore the default K1 setting located
2232  *  in the NVM.
2233  **/
2234 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2235 {
2236         s32 ret_val = 0;
2237         u16 status_reg = 0;
2238         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2239
2240         if (hw->mac.type != e1000_pchlan)
2241                 return 0;
2242
2243         /* Wrap the whole flow with the sw flag */
2244         ret_val = hw->phy.ops.acquire(hw);
2245         if (ret_val)
2246                 return ret_val;
2247
2248         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2249         if (link) {
2250                 if (hw->phy.type == e1000_phy_82578) {
2251                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2252                                                   &status_reg);
2253                         if (ret_val)
2254                                 goto release;
2255
2256                         status_reg &= (BM_CS_STATUS_LINK_UP |
2257                                        BM_CS_STATUS_RESOLVED |
2258                                        BM_CS_STATUS_SPEED_MASK);
2259
2260                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2261                                            BM_CS_STATUS_RESOLVED |
2262                                            BM_CS_STATUS_SPEED_1000))
2263                                 k1_enable = false;
2264                 }
2265
2266                 if (hw->phy.type == e1000_phy_82577) {
2267                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2268                         if (ret_val)
2269                                 goto release;
2270
2271                         status_reg &= (HV_M_STATUS_LINK_UP |
2272                                        HV_M_STATUS_AUTONEG_COMPLETE |
2273                                        HV_M_STATUS_SPEED_MASK);
2274
2275                         if (status_reg == (HV_M_STATUS_LINK_UP |
2276                                            HV_M_STATUS_AUTONEG_COMPLETE |
2277                                            HV_M_STATUS_SPEED_1000))
2278                                 k1_enable = false;
2279                 }
2280
2281                 /* Link stall fix for link up */
2282                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2283                 if (ret_val)
2284                         goto release;
2285
2286         } else {
2287                 /* Link stall fix for link down */
2288                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2289                 if (ret_val)
2290                         goto release;
2291         }
2292
2293         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2294
2295 release:
2296         hw->phy.ops.release(hw);
2297
2298         return ret_val;
2299 }
2300
2301 /**
2302  *  e1000_configure_k1_ich8lan - Configure K1 power state
2303  *  @hw: pointer to the HW structure
2304  *  @k1_enable: K1 state to configure
2305  *
2306  *  Configure the K1 power state based on the provided parameter.
2307  *  Assumes semaphore already acquired.
2308  *
2309  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2310  **/
2311 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2312 {
2313         s32 ret_val;
2314         u32 ctrl_reg = 0;
2315         u32 ctrl_ext = 0;
2316         u32 reg = 0;
2317         u16 kmrn_reg = 0;
2318
2319         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2320                                               &kmrn_reg);
2321         if (ret_val)
2322                 return ret_val;
2323
2324         if (k1_enable)
2325                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2326         else
2327                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2328
2329         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2330                                                kmrn_reg);
2331         if (ret_val)
2332                 return ret_val;
2333
2334         usleep_range(20, 40);
2335         ctrl_ext = er32(CTRL_EXT);
2336         ctrl_reg = er32(CTRL);
2337
2338         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2339         reg |= E1000_CTRL_FRCSPD;
2340         ew32(CTRL, reg);
2341
2342         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2343         e1e_flush();
2344         usleep_range(20, 40);
2345         ew32(CTRL, ctrl_reg);
2346         ew32(CTRL_EXT, ctrl_ext);
2347         e1e_flush();
2348         usleep_range(20, 40);
2349
2350         return 0;
2351 }
2352
2353 /**
2354  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2355  *  @hw:       pointer to the HW structure
2356  *  @d0_state: boolean if entering d0 or d3 device state
2357  *
2358  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2359  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2360  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2361  **/
2362 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2363 {
2364         s32 ret_val = 0;
2365         u32 mac_reg;
2366         u16 oem_reg;
2367
2368         if (hw->mac.type < e1000_pchlan)
2369                 return ret_val;
2370
2371         ret_val = hw->phy.ops.acquire(hw);
2372         if (ret_val)
2373                 return ret_val;
2374
2375         if (hw->mac.type == e1000_pchlan) {
2376                 mac_reg = er32(EXTCNF_CTRL);
2377                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2378                         goto release;
2379         }
2380
2381         mac_reg = er32(FEXTNVM);
2382         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2383                 goto release;
2384
2385         mac_reg = er32(PHY_CTRL);
2386
2387         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2388         if (ret_val)
2389                 goto release;
2390
2391         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2392
2393         if (d0_state) {
2394                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2395                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2396
2397                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2398                         oem_reg |= HV_OEM_BITS_LPLU;
2399         } else {
2400                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2401                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2402                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2403
2404                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2405                                E1000_PHY_CTRL_NOND0A_LPLU))
2406                         oem_reg |= HV_OEM_BITS_LPLU;
2407         }
2408
2409         /* Set Restart auto-neg to activate the bits */
2410         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2411             !hw->phy.ops.check_reset_block(hw))
2412                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2413
2414         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2415
2416 release:
2417         hw->phy.ops.release(hw);
2418
2419         return ret_val;
2420 }
2421
2422 /**
2423  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2424  *  @hw:   pointer to the HW structure
2425  **/
2426 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2427 {
2428         s32 ret_val;
2429         u16 data;
2430
2431         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2432         if (ret_val)
2433                 return ret_val;
2434
2435         data |= HV_KMRN_MDIO_SLOW;
2436
2437         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2438
2439         return ret_val;
2440 }
2441
2442 /**
2443  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2444  *  @hw: pointer to the HW structure
2445  *
2446  *  A series of PHY workarounds to be done after every PHY reset.
2447  **/
2448 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2449 {
2450         s32 ret_val = 0;
2451         u16 phy_data;
2452
2453         if (hw->mac.type != e1000_pchlan)
2454                 return 0;
2455
2456         /* Set MDIO slow mode before any other MDIO access */
2457         if (hw->phy.type == e1000_phy_82577) {
2458                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2459                 if (ret_val)
2460                         return ret_val;
2461         }
2462
2463         if (((hw->phy.type == e1000_phy_82577) &&
2464              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2465             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2466                 /* Disable generation of early preamble */
2467                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2468                 if (ret_val)
2469                         return ret_val;
2470
2471                 /* Preamble tuning for SSC */
2472                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2473                 if (ret_val)
2474                         return ret_val;
2475         }
2476
2477         if (hw->phy.type == e1000_phy_82578) {
2478                 /* Return registers to default by doing a soft reset then
2479                  * writing 0x3140 to the control register.
2480                  */
2481                 if (hw->phy.revision < 2) {
2482                         e1000e_phy_sw_reset(hw);
2483                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2484                         if (ret_val)
2485                                 return ret_val;
2486                 }
2487         }
2488
2489         /* Select page 0 */
2490         ret_val = hw->phy.ops.acquire(hw);
2491         if (ret_val)
2492                 return ret_val;
2493
2494         hw->phy.addr = 1;
2495         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2496         hw->phy.ops.release(hw);
2497         if (ret_val)
2498                 return ret_val;
2499
2500         /* Configure the K1 Si workaround during phy reset assuming there is
2501          * link so that it disables K1 if link is in 1Gbps.
2502          */
2503         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2504         if (ret_val)
2505                 return ret_val;
2506
2507         /* Workaround for link disconnects on a busy hub in half duplex */
2508         ret_val = hw->phy.ops.acquire(hw);
2509         if (ret_val)
2510                 return ret_val;
2511         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2512         if (ret_val)
2513                 goto release;
2514         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2515         if (ret_val)
2516                 goto release;
2517
2518         /* set MSE higher to enable link to stay up when noise is high */
2519         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2520 release:
2521         hw->phy.ops.release(hw);
2522
2523         return ret_val;
2524 }
2525
2526 /**
2527  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2528  *  @hw:   pointer to the HW structure
2529  **/
2530 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2531 {
2532         u32 mac_reg;
2533         u16 i, phy_reg = 0;
2534         s32 ret_val;
2535
2536         ret_val = hw->phy.ops.acquire(hw);
2537         if (ret_val)
2538                 return;
2539         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2540         if (ret_val)
2541                 goto release;
2542
2543         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2544         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2545                 mac_reg = er32(RAL(i));
2546                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2547                                            (u16)(mac_reg & 0xFFFF));
2548                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2549                                            (u16)((mac_reg >> 16) & 0xFFFF));
2550
2551                 mac_reg = er32(RAH(i));
2552                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2553                                            (u16)(mac_reg & 0xFFFF));
2554                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2555                                            (u16)((mac_reg & E1000_RAH_AV)
2556                                                  >> 16));
2557         }
2558
2559         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2560
2561 release:
2562         hw->phy.ops.release(hw);
2563 }
2564
2565 /**
2566  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2567  *  with 82579 PHY
2568  *  @hw: pointer to the HW structure
2569  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2570  **/
2571 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2572 {
2573         s32 ret_val = 0;
2574         u16 phy_reg, data;
2575         u32 mac_reg;
2576         u16 i;
2577
2578         if (hw->mac.type < e1000_pch2lan)
2579                 return 0;
2580
2581         /* disable Rx path while enabling/disabling workaround */
2582         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2583         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2584         if (ret_val)
2585                 return ret_val;
2586
2587         if (enable) {
2588                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2589                  * SHRAL/H) and initial CRC values to the MAC
2590                  */
2591                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2592                         u8 mac_addr[ETH_ALEN] = { 0 };
2593                         u32 addr_high, addr_low;
2594
2595                         addr_high = er32(RAH(i));
2596                         if (!(addr_high & E1000_RAH_AV))
2597                                 continue;
2598                         addr_low = er32(RAL(i));
2599                         mac_addr[0] = (addr_low & 0xFF);
2600                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2601                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2602                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2603                         mac_addr[4] = (addr_high & 0xFF);
2604                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2605
2606                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2607                 }
2608
2609                 /* Write Rx addresses to the PHY */
2610                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2611
2612                 /* Enable jumbo frame workaround in the MAC */
2613                 mac_reg = er32(FFLT_DBG);
2614                 mac_reg &= ~BIT(14);
2615                 mac_reg |= (7 << 15);
2616                 ew32(FFLT_DBG, mac_reg);
2617
2618                 mac_reg = er32(RCTL);
2619                 mac_reg |= E1000_RCTL_SECRC;
2620                 ew32(RCTL, mac_reg);
2621
2622                 ret_val = e1000e_read_kmrn_reg(hw,
2623                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2624                                                &data);
2625                 if (ret_val)
2626                         return ret_val;
2627                 ret_val = e1000e_write_kmrn_reg(hw,
2628                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2629                                                 data | BIT(0));
2630                 if (ret_val)
2631                         return ret_val;
2632                 ret_val = e1000e_read_kmrn_reg(hw,
2633                                                E1000_KMRNCTRLSTA_HD_CTRL,
2634                                                &data);
2635                 if (ret_val)
2636                         return ret_val;
2637                 data &= ~(0xF << 8);
2638                 data |= (0xB << 8);
2639                 ret_val = e1000e_write_kmrn_reg(hw,
2640                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2641                                                 data);
2642                 if (ret_val)
2643                         return ret_val;
2644
2645                 /* Enable jumbo frame workaround in the PHY */
2646                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2647                 data &= ~(0x7F << 5);
2648                 data |= (0x37 << 5);
2649                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2650                 if (ret_val)
2651                         return ret_val;
2652                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2653                 data &= ~BIT(13);
2654                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2655                 if (ret_val)
2656                         return ret_val;
2657                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2658                 data &= ~(0x3FF << 2);
2659                 data |= (E1000_TX_PTR_GAP << 2);
2660                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2661                 if (ret_val)
2662                         return ret_val;
2663                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2664                 if (ret_val)
2665                         return ret_val;
2666                 e1e_rphy(hw, HV_PM_CTRL, &data);
2667                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2668                 if (ret_val)
2669                         return ret_val;
2670         } else {
2671                 /* Write MAC register values back to h/w defaults */
2672                 mac_reg = er32(FFLT_DBG);
2673                 mac_reg &= ~(0xF << 14);
2674                 ew32(FFLT_DBG, mac_reg);
2675
2676                 mac_reg = er32(RCTL);
2677                 mac_reg &= ~E1000_RCTL_SECRC;
2678                 ew32(RCTL, mac_reg);
2679
2680                 ret_val = e1000e_read_kmrn_reg(hw,
2681                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2682                                                &data);
2683                 if (ret_val)
2684                         return ret_val;
2685                 ret_val = e1000e_write_kmrn_reg(hw,
2686                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2687                                                 data & ~BIT(0));
2688                 if (ret_val)
2689                         return ret_val;
2690                 ret_val = e1000e_read_kmrn_reg(hw,
2691                                                E1000_KMRNCTRLSTA_HD_CTRL,
2692                                                &data);
2693                 if (ret_val)
2694                         return ret_val;
2695                 data &= ~(0xF << 8);
2696                 data |= (0xB << 8);
2697                 ret_val = e1000e_write_kmrn_reg(hw,
2698                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2699                                                 data);
2700                 if (ret_val)
2701                         return ret_val;
2702
2703                 /* Write PHY register values back to h/w defaults */
2704                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2705                 data &= ~(0x7F << 5);
2706                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2707                 if (ret_val)
2708                         return ret_val;
2709                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2710                 data |= BIT(13);
2711                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2712                 if (ret_val)
2713                         return ret_val;
2714                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2715                 data &= ~(0x3FF << 2);
2716                 data |= (0x8 << 2);
2717                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2718                 if (ret_val)
2719                         return ret_val;
2720                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2721                 if (ret_val)
2722                         return ret_val;
2723                 e1e_rphy(hw, HV_PM_CTRL, &data);
2724                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2725                 if (ret_val)
2726                         return ret_val;
2727         }
2728
2729         /* re-enable Rx path after enabling/disabling workaround */
2730         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2731 }
2732
2733 /**
2734  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2735  *  @hw: pointer to the HW structure
2736  *
2737  *  A series of PHY workarounds to be done after every PHY reset.
2738  **/
2739 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2740 {
2741         s32 ret_val = 0;
2742
2743         if (hw->mac.type != e1000_pch2lan)
2744                 return 0;
2745
2746         /* Set MDIO slow mode before any other MDIO access */
2747         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2748         if (ret_val)
2749                 return ret_val;
2750
2751         ret_val = hw->phy.ops.acquire(hw);
2752         if (ret_val)
2753                 return ret_val;
2754         /* set MSE higher to enable link to stay up when noise is high */
2755         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2756         if (ret_val)
2757                 goto release;
2758         /* drop link after 5 times MSE threshold was reached */
2759         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2760 release:
2761         hw->phy.ops.release(hw);
2762
2763         return ret_val;
2764 }
2765
2766 /**
2767  *  e1000_k1_workaround_lv - K1 Si workaround
2768  *  @hw:   pointer to the HW structure
2769  *
2770  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2771  *  Disable K1 in 1000Mbps and 100Mbps
2772  **/
2773 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2774 {
2775         s32 ret_val = 0;
2776         u16 status_reg = 0;
2777
2778         if (hw->mac.type != e1000_pch2lan)
2779                 return 0;
2780
2781         /* Set K1 beacon duration based on 10Mbs speed */
2782         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2783         if (ret_val)
2784                 return ret_val;
2785
2786         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2787             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2788                 if (status_reg &
2789                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2790                         u16 pm_phy_reg;
2791
2792                         /* LV 1G/100 Packet drop issue wa  */
2793                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2794                         if (ret_val)
2795                                 return ret_val;
2796                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2797                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2798                         if (ret_val)
2799                                 return ret_val;
2800                 } else {
2801                         u32 mac_reg;
2802
2803                         mac_reg = er32(FEXTNVM4);
2804                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2805                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2806                         ew32(FEXTNVM4, mac_reg);
2807                 }
2808         }
2809
2810         return ret_val;
2811 }
2812
2813 /**
2814  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2815  *  @hw:   pointer to the HW structure
2816  *  @gate: boolean set to true to gate, false to ungate
2817  *
2818  *  Gate/ungate the automatic PHY configuration via hardware; perform
2819  *  the configuration via software instead.
2820  **/
2821 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2822 {
2823         u32 extcnf_ctrl;
2824
2825         if (hw->mac.type < e1000_pch2lan)
2826                 return;
2827
2828         extcnf_ctrl = er32(EXTCNF_CTRL);
2829
2830         if (gate)
2831                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2832         else
2833                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2834
2835         ew32(EXTCNF_CTRL, extcnf_ctrl);
2836 }
2837
2838 /**
2839  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2840  *  @hw: pointer to the HW structure
2841  *
2842  *  Check the appropriate indication the MAC has finished configuring the
2843  *  PHY after a software reset.
2844  **/
2845 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2846 {
2847         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2848
2849         /* Wait for basic configuration completes before proceeding */
2850         do {
2851                 data = er32(STATUS);
2852                 data &= E1000_STATUS_LAN_INIT_DONE;
2853                 usleep_range(100, 200);
2854         } while ((!data) && --loop);
2855
2856         /* If basic configuration is incomplete before the above loop
2857          * count reaches 0, loading the configuration from NVM will
2858          * leave the PHY in a bad state possibly resulting in no link.
2859          */
2860         if (loop == 0)
2861                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2862
2863         /* Clear the Init Done bit for the next init event */
2864         data = er32(STATUS);
2865         data &= ~E1000_STATUS_LAN_INIT_DONE;
2866         ew32(STATUS, data);
2867 }
2868
2869 /**
2870  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2871  *  @hw: pointer to the HW structure
2872  **/
2873 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2874 {
2875         s32 ret_val = 0;
2876         u16 reg;
2877
2878         if (hw->phy.ops.check_reset_block(hw))
2879                 return 0;
2880
2881         /* Allow time for h/w to get to quiescent state after reset */
2882         usleep_range(10000, 11000);
2883
2884         /* Perform any necessary post-reset workarounds */
2885         switch (hw->mac.type) {
2886         case e1000_pchlan:
2887                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2888                 if (ret_val)
2889                         return ret_val;
2890                 break;
2891         case e1000_pch2lan:
2892                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2893                 if (ret_val)
2894                         return ret_val;
2895                 break;
2896         default:
2897                 break;
2898         }
2899
2900         /* Clear the host wakeup bit after lcd reset */
2901         if (hw->mac.type >= e1000_pchlan) {
2902                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2903                 reg &= ~BM_WUC_HOST_WU_BIT;
2904                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2905         }
2906
2907         /* Configure the LCD with the extended configuration region in NVM */
2908         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2909         if (ret_val)
2910                 return ret_val;
2911
2912         /* Configure the LCD with the OEM bits in NVM */
2913         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2914
2915         if (hw->mac.type == e1000_pch2lan) {
2916                 /* Ungate automatic PHY configuration on non-managed 82579 */
2917                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2918                         usleep_range(10000, 11000);
2919                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2920                 }
2921
2922                 /* Set EEE LPI Update Timer to 200usec */
2923                 ret_val = hw->phy.ops.acquire(hw);
2924                 if (ret_val)
2925                         return ret_val;
2926                 ret_val = e1000_write_emi_reg_locked(hw,
2927                                                      I82579_LPI_UPDATE_TIMER,
2928                                                      0x1387);
2929                 hw->phy.ops.release(hw);
2930         }
2931
2932         return ret_val;
2933 }
2934
2935 /**
2936  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2937  *  @hw: pointer to the HW structure
2938  *
2939  *  Resets the PHY
2940  *  This is a function pointer entry point called by drivers
2941  *  or other shared routines.
2942  **/
2943 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2944 {
2945         s32 ret_val = 0;
2946
2947         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2948         if ((hw->mac.type == e1000_pch2lan) &&
2949             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2950                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2951
2952         ret_val = e1000e_phy_hw_reset_generic(hw);
2953         if (ret_val)
2954                 return ret_val;
2955
2956         return e1000_post_phy_reset_ich8lan(hw);
2957 }
2958
2959 /**
2960  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2961  *  @hw: pointer to the HW structure
2962  *  @active: true to enable LPLU, false to disable
2963  *
2964  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2965  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2966  *  the phy speed. This function will manually set the LPLU bit and restart
2967  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2968  *  since it configures the same bit.
2969  **/
2970 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2971 {
2972         s32 ret_val;
2973         u16 oem_reg;
2974
2975         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2976         if (ret_val)
2977                 return ret_val;
2978
2979         if (active)
2980                 oem_reg |= HV_OEM_BITS_LPLU;
2981         else
2982                 oem_reg &= ~HV_OEM_BITS_LPLU;
2983
2984         if (!hw->phy.ops.check_reset_block(hw))
2985                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2986
2987         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2988 }
2989
2990 /**
2991  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2992  *  @hw: pointer to the HW structure
2993  *  @active: true to enable LPLU, false to disable
2994  *
2995  *  Sets the LPLU D0 state according to the active flag.  When
2996  *  activating LPLU this function also disables smart speed
2997  *  and vice versa.  LPLU will not be activated unless the
2998  *  device autonegotiation advertisement meets standards of
2999  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3000  *  This is a function pointer entry point only called by
3001  *  PHY setup routines.
3002  **/
3003 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3004 {
3005         struct e1000_phy_info *phy = &hw->phy;
3006         u32 phy_ctrl;
3007         s32 ret_val = 0;
3008         u16 data;
3009
3010         if (phy->type == e1000_phy_ife)
3011                 return 0;
3012
3013         phy_ctrl = er32(PHY_CTRL);
3014
3015         if (active) {
3016                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3017                 ew32(PHY_CTRL, phy_ctrl);
3018
3019                 if (phy->type != e1000_phy_igp_3)
3020                         return 0;
3021
3022                 /* Call gig speed drop workaround on LPLU before accessing
3023                  * any PHY registers
3024                  */
3025                 if (hw->mac.type == e1000_ich8lan)
3026                         e1000e_gig_downshift_workaround_ich8lan(hw);
3027
3028                 /* When LPLU is enabled, we should disable SmartSpeed */
3029                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3030                 if (ret_val)
3031                         return ret_val;
3032                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3033                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3034                 if (ret_val)
3035                         return ret_val;
3036         } else {
3037                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3038                 ew32(PHY_CTRL, phy_ctrl);
3039
3040                 if (phy->type != e1000_phy_igp_3)
3041                         return 0;
3042
3043                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3044                  * during Dx states where the power conservation is most
3045                  * important.  During driver activity we should enable
3046                  * SmartSpeed, so performance is maintained.
3047                  */
3048                 if (phy->smart_speed == e1000_smart_speed_on) {
3049                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3050                                            &data);
3051                         if (ret_val)
3052                                 return ret_val;
3053
3054                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3055                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3056                                            data);
3057                         if (ret_val)
3058                                 return ret_val;
3059                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3060                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3061                                            &data);
3062                         if (ret_val)
3063                                 return ret_val;
3064
3065                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3066                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067                                            data);
3068                         if (ret_val)
3069                                 return ret_val;
3070                 }
3071         }
3072
3073         return 0;
3074 }
3075
3076 /**
3077  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3078  *  @hw: pointer to the HW structure
3079  *  @active: true to enable LPLU, false to disable
3080  *
3081  *  Sets the LPLU D3 state according to the active flag.  When
3082  *  activating LPLU this function also disables smart speed
3083  *  and vice versa.  LPLU will not be activated unless the
3084  *  device autonegotiation advertisement meets standards of
3085  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3086  *  This is a function pointer entry point only called by
3087  *  PHY setup routines.
3088  **/
3089 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3090 {
3091         struct e1000_phy_info *phy = &hw->phy;
3092         u32 phy_ctrl;
3093         s32 ret_val = 0;
3094         u16 data;
3095
3096         phy_ctrl = er32(PHY_CTRL);
3097
3098         if (!active) {
3099                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3100                 ew32(PHY_CTRL, phy_ctrl);
3101
3102                 if (phy->type != e1000_phy_igp_3)
3103                         return 0;
3104
3105                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3106                  * during Dx states where the power conservation is most
3107                  * important.  During driver activity we should enable
3108                  * SmartSpeed, so performance is maintained.
3109                  */
3110                 if (phy->smart_speed == e1000_smart_speed_on) {
3111                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3112                                            &data);
3113                         if (ret_val)
3114                                 return ret_val;
3115
3116                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3117                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3118                                            data);
3119                         if (ret_val)
3120                                 return ret_val;
3121                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3122                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3123                                            &data);
3124                         if (ret_val)
3125                                 return ret_val;
3126
3127                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3128                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3129                                            data);
3130                         if (ret_val)
3131                                 return ret_val;
3132                 }
3133         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3134                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3135                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3136                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3137                 ew32(PHY_CTRL, phy_ctrl);
3138
3139                 if (phy->type != e1000_phy_igp_3)
3140                         return 0;
3141
3142                 /* Call gig speed drop workaround on LPLU before accessing
3143                  * any PHY registers
3144                  */
3145                 if (hw->mac.type == e1000_ich8lan)
3146                         e1000e_gig_downshift_workaround_ich8lan(hw);
3147
3148                 /* When LPLU is enabled, we should disable SmartSpeed */
3149                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3150                 if (ret_val)
3151                         return ret_val;
3152
3153                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3154                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3155         }
3156
3157         return ret_val;
3158 }
3159
3160 /**
3161  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3162  *  @hw: pointer to the HW structure
3163  *  @bank:  pointer to the variable that returns the active bank
3164  *
3165  *  Reads signature byte from the NVM using the flash access registers.
3166  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3167  **/
3168 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3169 {
3170         u32 eecd;
3171         struct e1000_nvm_info *nvm = &hw->nvm;
3172         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3173         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3174         u32 nvm_dword = 0;
3175         u8 sig_byte = 0;
3176         s32 ret_val;
3177
3178         switch (hw->mac.type) {
3179         case e1000_pch_spt:
3180         case e1000_pch_cnp:
3181         case e1000_pch_tgp:
3182         case e1000_pch_adp:
3183         case e1000_pch_mtp:
3184         case e1000_pch_lnp:
3185                 bank1_offset = nvm->flash_bank_size;
3186                 act_offset = E1000_ICH_NVM_SIG_WORD;
3187
3188                 /* set bank to 0 in case flash read fails */
3189                 *bank = 0;
3190
3191                 /* Check bank 0 */
3192                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3193                                                          &nvm_dword);
3194                 if (ret_val)
3195                         return ret_val;
3196                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3197                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3198                     E1000_ICH_NVM_SIG_VALUE) {
3199                         *bank = 0;
3200                         return 0;
3201                 }
3202
3203                 /* Check bank 1 */
3204                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3205                                                          bank1_offset,
3206                                                          &nvm_dword);
3207                 if (ret_val)
3208                         return ret_val;
3209                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3210                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3211                     E1000_ICH_NVM_SIG_VALUE) {
3212                         *bank = 1;
3213                         return 0;
3214                 }
3215
3216                 e_dbg("ERROR: No valid NVM bank present\n");
3217                 return -E1000_ERR_NVM;
3218         case e1000_ich8lan:
3219         case e1000_ich9lan:
3220                 eecd = er32(EECD);
3221                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3222                     E1000_EECD_SEC1VAL_VALID_MASK) {
3223                         if (eecd & E1000_EECD_SEC1VAL)
3224                                 *bank = 1;
3225                         else
3226                                 *bank = 0;
3227
3228                         return 0;
3229                 }
3230                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3231                 fallthrough;
3232         default:
3233                 /* set bank to 0 in case flash read fails */
3234                 *bank = 0;
3235
3236                 /* Check bank 0 */
3237                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3238                                                         &sig_byte);
3239                 if (ret_val)
3240                         return ret_val;
3241                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3242                     E1000_ICH_NVM_SIG_VALUE) {
3243                         *bank = 0;
3244                         return 0;
3245                 }
3246
3247                 /* Check bank 1 */
3248                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3249                                                         bank1_offset,
3250                                                         &sig_byte);
3251                 if (ret_val)
3252                         return ret_val;
3253                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3254                     E1000_ICH_NVM_SIG_VALUE) {
3255                         *bank = 1;
3256                         return 0;
3257                 }
3258
3259                 e_dbg("ERROR: No valid NVM bank present\n");
3260                 return -E1000_ERR_NVM;
3261         }
3262 }
3263
3264 /**
3265  *  e1000_read_nvm_spt - NVM access for SPT
3266  *  @hw: pointer to the HW structure
3267  *  @offset: The offset (in bytes) of the word(s) to read.
3268  *  @words: Size of data to read in words.
3269  *  @data: pointer to the word(s) to read at offset.
3270  *
3271  *  Reads a word(s) from the NVM
3272  **/
3273 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3274                               u16 *data)
3275 {
3276         struct e1000_nvm_info *nvm = &hw->nvm;
3277         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3278         u32 act_offset;
3279         s32 ret_val = 0;
3280         u32 bank = 0;
3281         u32 dword = 0;
3282         u16 offset_to_read;
3283         u16 i;
3284
3285         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3286             (words == 0)) {
3287                 e_dbg("nvm parameter(s) out of bounds\n");
3288                 ret_val = -E1000_ERR_NVM;
3289                 goto out;
3290         }
3291
3292         nvm->ops.acquire(hw);
3293
3294         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3295         if (ret_val) {
3296                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3297                 bank = 0;
3298         }
3299
3300         act_offset = (bank) ? nvm->flash_bank_size : 0;
3301         act_offset += offset;
3302
3303         ret_val = 0;
3304
3305         for (i = 0; i < words; i += 2) {
3306                 if (words - i == 1) {
3307                         if (dev_spec->shadow_ram[offset + i].modified) {
3308                                 data[i] =
3309                                     dev_spec->shadow_ram[offset + i].value;
3310                         } else {
3311                                 offset_to_read = act_offset + i -
3312                                     ((act_offset + i) % 2);
3313                                 ret_val =
3314                                   e1000_read_flash_dword_ich8lan(hw,
3315                                                                  offset_to_read,
3316                                                                  &dword);
3317                                 if (ret_val)
3318                                         break;
3319                                 if ((act_offset + i) % 2 == 0)
3320                                         data[i] = (u16)(dword & 0xFFFF);
3321                                 else
3322                                         data[i] = (u16)((dword >> 16) & 0xFFFF);
3323                         }
3324                 } else {
3325                         offset_to_read = act_offset + i;
3326                         if (!(dev_spec->shadow_ram[offset + i].modified) ||
3327                             !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3328                                 ret_val =
3329                                   e1000_read_flash_dword_ich8lan(hw,
3330                                                                  offset_to_read,
3331                                                                  &dword);
3332                                 if (ret_val)
3333                                         break;
3334                         }
3335                         if (dev_spec->shadow_ram[offset + i].modified)
3336                                 data[i] =
3337                                     dev_spec->shadow_ram[offset + i].value;
3338                         else
3339                                 data[i] = (u16)(dword & 0xFFFF);
3340                         if (dev_spec->shadow_ram[offset + i].modified)
3341                                 data[i + 1] =
3342                                     dev_spec->shadow_ram[offset + i + 1].value;
3343                         else
3344                                 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3345                 }
3346         }
3347
3348         nvm->ops.release(hw);
3349
3350 out:
3351         if (ret_val)
3352                 e_dbg("NVM read error: %d\n", ret_val);
3353
3354         return ret_val;
3355 }
3356
3357 /**
3358  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3359  *  @hw: pointer to the HW structure
3360  *  @offset: The offset (in bytes) of the word(s) to read.
3361  *  @words: Size of data to read in words
3362  *  @data: Pointer to the word(s) to read at offset.
3363  *
3364  *  Reads a word(s) from the NVM using the flash access registers.
3365  **/
3366 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3367                                   u16 *data)
3368 {
3369         struct e1000_nvm_info *nvm = &hw->nvm;
3370         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3371         u32 act_offset;
3372         s32 ret_val = 0;
3373         u32 bank = 0;
3374         u16 i, word;
3375
3376         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3377             (words == 0)) {
3378                 e_dbg("nvm parameter(s) out of bounds\n");
3379                 ret_val = -E1000_ERR_NVM;
3380                 goto out;
3381         }
3382
3383         nvm->ops.acquire(hw);
3384
3385         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3386         if (ret_val) {
3387                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3388                 bank = 0;
3389         }
3390
3391         act_offset = (bank) ? nvm->flash_bank_size : 0;
3392         act_offset += offset;
3393
3394         ret_val = 0;
3395         for (i = 0; i < words; i++) {
3396                 if (dev_spec->shadow_ram[offset + i].modified) {
3397                         data[i] = dev_spec->shadow_ram[offset + i].value;
3398                 } else {
3399                         ret_val = e1000_read_flash_word_ich8lan(hw,
3400                                                                 act_offset + i,
3401                                                                 &word);
3402                         if (ret_val)
3403                                 break;
3404                         data[i] = word;
3405                 }
3406         }
3407
3408         nvm->ops.release(hw);
3409
3410 out:
3411         if (ret_val)
3412                 e_dbg("NVM read error: %d\n", ret_val);
3413
3414         return ret_val;
3415 }
3416
3417 /**
3418  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3419  *  @hw: pointer to the HW structure
3420  *
3421  *  This function does initial flash setup so that a new read/write/erase cycle
3422  *  can be started.
3423  **/
3424 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3425 {
3426         union ich8_hws_flash_status hsfsts;
3427         s32 ret_val = -E1000_ERR_NVM;
3428
3429         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3430
3431         /* Check if the flash descriptor is valid */
3432         if (!hsfsts.hsf_status.fldesvalid) {
3433                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3434                 return -E1000_ERR_NVM;
3435         }
3436
3437         /* Clear FCERR and DAEL in hw status by writing 1 */
3438         hsfsts.hsf_status.flcerr = 1;
3439         hsfsts.hsf_status.dael = 1;
3440         if (hw->mac.type >= e1000_pch_spt)
3441                 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3442         else
3443                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3444
3445         /* Either we should have a hardware SPI cycle in progress
3446          * bit to check against, in order to start a new cycle or
3447          * FDONE bit should be changed in the hardware so that it
3448          * is 1 after hardware reset, which can then be used as an
3449          * indication whether a cycle is in progress or has been
3450          * completed.
3451          */
3452
3453         if (!hsfsts.hsf_status.flcinprog) {
3454                 /* There is no cycle running at present,
3455                  * so we can start a cycle.
3456                  * Begin by setting Flash Cycle Done.
3457                  */
3458                 hsfsts.hsf_status.flcdone = 1;
3459                 if (hw->mac.type >= e1000_pch_spt)
3460                         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3461                 else
3462                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3463                 ret_val = 0;
3464         } else {
3465                 s32 i;
3466
3467                 /* Otherwise poll for sometime so the current
3468                  * cycle has a chance to end before giving up.
3469                  */
3470                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3471                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3472                         if (!hsfsts.hsf_status.flcinprog) {
3473                                 ret_val = 0;
3474                                 break;
3475                         }
3476                         udelay(1);
3477                 }
3478                 if (!ret_val) {
3479                         /* Successful in waiting for previous cycle to timeout,
3480                          * now set the Flash Cycle Done.
3481                          */
3482                         hsfsts.hsf_status.flcdone = 1;
3483                         if (hw->mac.type >= e1000_pch_spt)
3484                                 ew32flash(ICH_FLASH_HSFSTS,
3485                                           hsfsts.regval & 0xFFFF);
3486                         else
3487                                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3488                 } else {
3489                         e_dbg("Flash controller busy, cannot get access\n");
3490                 }
3491         }
3492
3493         return ret_val;
3494 }
3495
3496 /**
3497  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3498  *  @hw: pointer to the HW structure
3499  *  @timeout: maximum time to wait for completion
3500  *
3501  *  This function starts a flash cycle and waits for its completion.
3502  **/
3503 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3504 {
3505         union ich8_hws_flash_ctrl hsflctl;
3506         union ich8_hws_flash_status hsfsts;
3507         u32 i = 0;
3508
3509         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3510         if (hw->mac.type >= e1000_pch_spt)
3511                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3512         else
3513                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3514         hsflctl.hsf_ctrl.flcgo = 1;
3515
3516         if (hw->mac.type >= e1000_pch_spt)
3517                 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3518         else
3519                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3520
3521         /* wait till FDONE bit is set to 1 */
3522         do {
3523                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3524                 if (hsfsts.hsf_status.flcdone)
3525                         break;
3526                 udelay(1);
3527         } while (i++ < timeout);
3528
3529         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3530                 return 0;
3531
3532         return -E1000_ERR_NVM;
3533 }
3534
3535 /**
3536  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3537  *  @hw: pointer to the HW structure
3538  *  @offset: offset to data location
3539  *  @data: pointer to the location for storing the data
3540  *
3541  *  Reads the flash dword at offset into data.  Offset is converted
3542  *  to bytes before read.
3543  **/
3544 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3545                                           u32 *data)
3546 {
3547         /* Must convert word offset into bytes. */
3548         offset <<= 1;
3549         return e1000_read_flash_data32_ich8lan(hw, offset, data);
3550 }
3551
3552 /**
3553  *  e1000_read_flash_word_ich8lan - Read word from flash
3554  *  @hw: pointer to the HW structure
3555  *  @offset: offset to data location
3556  *  @data: pointer to the location for storing the data
3557  *
3558  *  Reads the flash word at offset into data.  Offset is converted
3559  *  to bytes before read.
3560  **/
3561 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3562                                          u16 *data)
3563 {
3564         /* Must convert offset into bytes. */
3565         offset <<= 1;
3566
3567         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3568 }
3569
3570 /**
3571  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3572  *  @hw: pointer to the HW structure
3573  *  @offset: The offset of the byte to read.
3574  *  @data: Pointer to a byte to store the value read.
3575  *
3576  *  Reads a single byte from the NVM using the flash access registers.
3577  **/
3578 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3579                                          u8 *data)
3580 {
3581         s32 ret_val;
3582         u16 word = 0;
3583
3584         /* In SPT, only 32 bits access is supported,
3585          * so this function should not be called.
3586          */
3587         if (hw->mac.type >= e1000_pch_spt)
3588                 return -E1000_ERR_NVM;
3589         else
3590                 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3591
3592         if (ret_val)
3593                 return ret_val;
3594
3595         *data = (u8)word;
3596
3597         return 0;
3598 }
3599
3600 /**
3601  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3602  *  @hw: pointer to the HW structure
3603  *  @offset: The offset (in bytes) of the byte or word to read.
3604  *  @size: Size of data to read, 1=byte 2=word
3605  *  @data: Pointer to the word to store the value read.
3606  *
3607  *  Reads a byte or word from the NVM using the flash access registers.
3608  **/
3609 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3610                                          u8 size, u16 *data)
3611 {
3612         union ich8_hws_flash_status hsfsts;
3613         union ich8_hws_flash_ctrl hsflctl;
3614         u32 flash_linear_addr;
3615         u32 flash_data = 0;
3616         s32 ret_val = -E1000_ERR_NVM;
3617         u8 count = 0;
3618
3619         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3620                 return -E1000_ERR_NVM;
3621
3622         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3623                              hw->nvm.flash_base_addr);
3624
3625         do {
3626                 udelay(1);
3627                 /* Steps */
3628                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3629                 if (ret_val)
3630                         break;
3631
3632                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3633                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3634                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3635                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3636                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3637
3638                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3639
3640                 ret_val =
3641                     e1000_flash_cycle_ich8lan(hw,
3642                                               ICH_FLASH_READ_COMMAND_TIMEOUT);
3643
3644                 /* Check if FCERR is set to 1, if set to 1, clear it
3645                  * and try the whole sequence a few more times, else
3646                  * read in (shift in) the Flash Data0, the order is
3647                  * least significant byte first msb to lsb
3648                  */
3649                 if (!ret_val) {
3650                         flash_data = er32flash(ICH_FLASH_FDATA0);
3651                         if (size == 1)
3652                                 *data = (u8)(flash_data & 0x000000FF);
3653                         else if (size == 2)
3654                                 *data = (u16)(flash_data & 0x0000FFFF);
3655                         break;
3656                 } else {
3657                         /* If we've gotten here, then things are probably
3658                          * completely hosed, but if the error condition is
3659                          * detected, it won't hurt to give it another try...
3660                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3661                          */
3662                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3663                         if (hsfsts.hsf_status.flcerr) {
3664                                 /* Repeat for some time before giving up. */
3665                                 continue;
3666                         } else if (!hsfsts.hsf_status.flcdone) {
3667                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3668                                 break;
3669                         }
3670                 }
3671         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3672
3673         return ret_val;
3674 }
3675
3676 /**
3677  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3678  *  @hw: pointer to the HW structure
3679  *  @offset: The offset (in bytes) of the dword to read.
3680  *  @data: Pointer to the dword to store the value read.
3681  *
3682  *  Reads a byte or word from the NVM using the flash access registers.
3683  **/
3684
3685 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3686                                            u32 *data)
3687 {
3688         union ich8_hws_flash_status hsfsts;
3689         union ich8_hws_flash_ctrl hsflctl;
3690         u32 flash_linear_addr;
3691         s32 ret_val = -E1000_ERR_NVM;
3692         u8 count = 0;
3693
3694         if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3695                 return -E1000_ERR_NVM;
3696         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3697                              hw->nvm.flash_base_addr);
3698
3699         do {
3700                 udelay(1);
3701                 /* Steps */
3702                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3703                 if (ret_val)
3704                         break;
3705                 /* In SPT, This register is in Lan memory space, not flash.
3706                  * Therefore, only 32 bit access is supported
3707                  */
3708                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3709
3710                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3711                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3712                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3713                 /* In SPT, This register is in Lan memory space, not flash.
3714                  * Therefore, only 32 bit access is supported
3715                  */
3716                 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3717                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3718
3719                 ret_val =
3720                    e1000_flash_cycle_ich8lan(hw,
3721                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3722
3723                 /* Check if FCERR is set to 1, if set to 1, clear it
3724                  * and try the whole sequence a few more times, else
3725                  * read in (shift in) the Flash Data0, the order is
3726                  * least significant byte first msb to lsb
3727                  */
3728                 if (!ret_val) {
3729                         *data = er32flash(ICH_FLASH_FDATA0);
3730                         break;
3731                 } else {
3732                         /* If we've gotten here, then things are probably
3733                          * completely hosed, but if the error condition is
3734                          * detected, it won't hurt to give it another try...
3735                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3736                          */
3737                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3738                         if (hsfsts.hsf_status.flcerr) {
3739                                 /* Repeat for some time before giving up. */
3740                                 continue;
3741                         } else if (!hsfsts.hsf_status.flcdone) {
3742                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3743                                 break;
3744                         }
3745                 }
3746         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3747
3748         return ret_val;
3749 }
3750
3751 /**
3752  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3753  *  @hw: pointer to the HW structure
3754  *  @offset: The offset (in bytes) of the word(s) to write.
3755  *  @words: Size of data to write in words
3756  *  @data: Pointer to the word(s) to write at offset.
3757  *
3758  *  Writes a byte or word to the NVM using the flash access registers.
3759  **/
3760 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3761                                    u16 *data)
3762 {
3763         struct e1000_nvm_info *nvm = &hw->nvm;
3764         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3765         u16 i;
3766
3767         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3768             (words == 0)) {
3769                 e_dbg("nvm parameter(s) out of bounds\n");
3770                 return -E1000_ERR_NVM;
3771         }
3772
3773         nvm->ops.acquire(hw);
3774
3775         for (i = 0; i < words; i++) {
3776                 dev_spec->shadow_ram[offset + i].modified = true;
3777                 dev_spec->shadow_ram[offset + i].value = data[i];
3778         }
3779
3780         nvm->ops.release(hw);
3781
3782         return 0;
3783 }
3784
3785 /**
3786  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3787  *  @hw: pointer to the HW structure
3788  *
3789  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3790  *  which writes the checksum to the shadow ram.  The changes in the shadow
3791  *  ram are then committed to the EEPROM by processing each bank at a time
3792  *  checking for the modified bit and writing only the pending changes.
3793  *  After a successful commit, the shadow ram is cleared and is ready for
3794  *  future writes.
3795  **/
3796 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3797 {
3798         struct e1000_nvm_info *nvm = &hw->nvm;
3799         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3800         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3801         s32 ret_val;
3802         u32 dword = 0;
3803
3804         ret_val = e1000e_update_nvm_checksum_generic(hw);
3805         if (ret_val)
3806                 goto out;
3807
3808         if (nvm->type != e1000_nvm_flash_sw)
3809                 goto out;
3810
3811         nvm->ops.acquire(hw);
3812
3813         /* We're writing to the opposite bank so if we're on bank 1,
3814          * write to bank 0 etc.  We also need to erase the segment that
3815          * is going to be written
3816          */
3817         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3818         if (ret_val) {
3819                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3820                 bank = 0;
3821         }
3822
3823         if (bank == 0) {
3824                 new_bank_offset = nvm->flash_bank_size;
3825                 old_bank_offset = 0;
3826                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3827                 if (ret_val)
3828                         goto release;
3829         } else {
3830                 old_bank_offset = nvm->flash_bank_size;
3831                 new_bank_offset = 0;
3832                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3833                 if (ret_val)
3834                         goto release;
3835         }
3836         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3837                 /* Determine whether to write the value stored
3838                  * in the other NVM bank or a modified value stored
3839                  * in the shadow RAM
3840                  */
3841                 ret_val = e1000_read_flash_dword_ich8lan(hw,
3842                                                          i + old_bank_offset,
3843                                                          &dword);
3844
3845                 if (dev_spec->shadow_ram[i].modified) {
3846                         dword &= 0xffff0000;
3847                         dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3848                 }
3849                 if (dev_spec->shadow_ram[i + 1].modified) {
3850                         dword &= 0x0000ffff;
3851                         dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3852                                   << 16);
3853                 }
3854                 if (ret_val)
3855                         break;
3856
3857                 /* If the word is 0x13, then make sure the signature bits
3858                  * (15:14) are 11b until the commit has completed.
3859                  * This will allow us to write 10b which indicates the
3860                  * signature is valid.  We want to do this after the write
3861                  * has completed so that we don't mark the segment valid
3862                  * while the write is still in progress
3863                  */
3864                 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3865                         dword |= E1000_ICH_NVM_SIG_MASK << 16;
3866
3867                 /* Convert offset to bytes. */
3868                 act_offset = (i + new_bank_offset) << 1;
3869
3870                 usleep_range(100, 200);
3871
3872                 /* Write the data to the new bank. Offset in words */
3873                 act_offset = i + new_bank_offset;
3874                 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3875                                                                 dword);
3876                 if (ret_val)
3877                         break;
3878         }
3879
3880         /* Don't bother writing the segment valid bits if sector
3881          * programming failed.
3882          */
3883         if (ret_val) {
3884                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3885                 e_dbg("Flash commit failed.\n");
3886                 goto release;
3887         }
3888
3889         /* Finally validate the new segment by setting bit 15:14
3890          * to 10b in word 0x13 , this can be done without an
3891          * erase as well since these bits are 11 to start with
3892          * and we need to change bit 14 to 0b
3893          */
3894         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3895
3896         /*offset in words but we read dword */
3897         --act_offset;
3898         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3899
3900         if (ret_val)
3901                 goto release;
3902
3903         dword &= 0xBFFFFFFF;
3904         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3905
3906         if (ret_val)
3907                 goto release;
3908
3909         /* offset in words but we read dword */
3910         act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3911         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3912
3913         if (ret_val)
3914                 goto release;
3915
3916         dword &= 0x00FFFFFF;
3917         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3918
3919         if (ret_val)
3920                 goto release;
3921
3922         /* Great!  Everything worked, we can now clear the cached entries. */
3923         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3924                 dev_spec->shadow_ram[i].modified = false;
3925                 dev_spec->shadow_ram[i].value = 0xFFFF;
3926         }
3927
3928 release:
3929         nvm->ops.release(hw);
3930
3931         /* Reload the EEPROM, or else modifications will not appear
3932          * until after the next adapter reset.
3933          */
3934         if (!ret_val) {
3935                 nvm->ops.reload(hw);
3936                 usleep_range(10000, 11000);
3937         }
3938
3939 out:
3940         if (ret_val)
3941                 e_dbg("NVM update error: %d\n", ret_val);
3942
3943         return ret_val;
3944 }
3945
3946 /**
3947  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3948  *  @hw: pointer to the HW structure
3949  *
3950  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3951  *  which writes the checksum to the shadow ram.  The changes in the shadow
3952  *  ram are then committed to the EEPROM by processing each bank at a time
3953  *  checking for the modified bit and writing only the pending changes.
3954  *  After a successful commit, the shadow ram is cleared and is ready for
3955  *  future writes.
3956  **/
3957 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3958 {
3959         struct e1000_nvm_info *nvm = &hw->nvm;
3960         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3961         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3962         s32 ret_val;
3963         u16 data = 0;
3964
3965         ret_val = e1000e_update_nvm_checksum_generic(hw);
3966         if (ret_val)
3967                 goto out;
3968
3969         if (nvm->type != e1000_nvm_flash_sw)
3970                 goto out;
3971
3972         nvm->ops.acquire(hw);
3973
3974         /* We're writing to the opposite bank so if we're on bank 1,
3975          * write to bank 0 etc.  We also need to erase the segment that
3976          * is going to be written
3977          */
3978         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3979         if (ret_val) {
3980                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3981                 bank = 0;
3982         }
3983
3984         if (bank == 0) {
3985                 new_bank_offset = nvm->flash_bank_size;
3986                 old_bank_offset = 0;
3987                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3988                 if (ret_val)
3989                         goto release;
3990         } else {
3991                 old_bank_offset = nvm->flash_bank_size;
3992                 new_bank_offset = 0;
3993                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3994                 if (ret_val)
3995                         goto release;
3996         }
3997         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3998                 if (dev_spec->shadow_ram[i].modified) {
3999                         data = dev_spec->shadow_ram[i].value;
4000                 } else {
4001                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
4002                                                                 old_bank_offset,
4003                                                                 &data);
4004                         if (ret_val)
4005                                 break;
4006                 }
4007
4008                 /* If the word is 0x13, then make sure the signature bits
4009                  * (15:14) are 11b until the commit has completed.
4010                  * This will allow us to write 10b which indicates the
4011                  * signature is valid.  We want to do this after the write
4012                  * has completed so that we don't mark the segment valid
4013                  * while the write is still in progress
4014                  */
4015                 if (i == E1000_ICH_NVM_SIG_WORD)
4016                         data |= E1000_ICH_NVM_SIG_MASK;
4017
4018                 /* Convert offset to bytes. */
4019                 act_offset = (i + new_bank_offset) << 1;
4020
4021                 usleep_range(100, 200);
4022                 /* Write the bytes to the new bank. */
4023                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4024                                                                act_offset,
4025                                                                (u8)data);
4026                 if (ret_val)
4027                         break;
4028
4029                 usleep_range(100, 200);
4030                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4031                                                                act_offset + 1,
4032                                                                (u8)(data >> 8));
4033                 if (ret_val)
4034                         break;
4035         }
4036
4037         /* Don't bother writing the segment valid bits if sector
4038          * programming failed.
4039          */
4040         if (ret_val) {
4041                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4042                 e_dbg("Flash commit failed.\n");
4043                 goto release;
4044         }
4045
4046         /* Finally validate the new segment by setting bit 15:14
4047          * to 10b in word 0x13 , this can be done without an
4048          * erase as well since these bits are 11 to start with
4049          * and we need to change bit 14 to 0b
4050          */
4051         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4052         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4053         if (ret_val)
4054                 goto release;
4055
4056         data &= 0xBFFF;
4057         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4058                                                        act_offset * 2 + 1,
4059                                                        (u8)(data >> 8));
4060         if (ret_val)
4061                 goto release;
4062
4063         /* And invalidate the previously valid segment by setting
4064          * its signature word (0x13) high_byte to 0b. This can be
4065          * done without an erase because flash erase sets all bits
4066          * to 1's. We can write 1's to 0's without an erase
4067          */
4068         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4069         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4070         if (ret_val)
4071                 goto release;
4072
4073         /* Great!  Everything worked, we can now clear the cached entries. */
4074         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4075                 dev_spec->shadow_ram[i].modified = false;
4076                 dev_spec->shadow_ram[i].value = 0xFFFF;
4077         }
4078
4079 release:
4080         nvm->ops.release(hw);
4081
4082         /* Reload the EEPROM, or else modifications will not appear
4083          * until after the next adapter reset.
4084          */
4085         if (!ret_val) {
4086                 nvm->ops.reload(hw);
4087                 usleep_range(10000, 11000);
4088         }
4089
4090 out:
4091         if (ret_val)
4092                 e_dbg("NVM update error: %d\n", ret_val);
4093
4094         return ret_val;
4095 }
4096
4097 /**
4098  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4099  *  @hw: pointer to the HW structure
4100  *
4101  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4102  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4103  *  calculated, in which case we need to calculate the checksum and set bit 6.
4104  **/
4105 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4106 {
4107         s32 ret_val;
4108         u16 data;
4109         u16 word;
4110         u16 valid_csum_mask;
4111
4112         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4113          * the checksum needs to be fixed.  This bit is an indication that
4114          * the NVM was prepared by OEM software and did not calculate
4115          * the checksum...a likely scenario.
4116          */
4117         switch (hw->mac.type) {
4118         case e1000_pch_lpt:
4119         case e1000_pch_spt:
4120         case e1000_pch_cnp:
4121         case e1000_pch_tgp:
4122         case e1000_pch_adp:
4123         case e1000_pch_mtp:
4124         case e1000_pch_lnp:
4125                 word = NVM_COMPAT;
4126                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4127                 break;
4128         default:
4129                 word = NVM_FUTURE_INIT_WORD1;
4130                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4131                 break;
4132         }
4133
4134         ret_val = e1000_read_nvm(hw, word, 1, &data);
4135         if (ret_val)
4136                 return ret_val;
4137
4138         if (!(data & valid_csum_mask)) {
4139                 e_dbg("NVM Checksum Invalid\n");
4140
4141                 if (hw->mac.type < e1000_pch_cnp) {
4142                         data |= valid_csum_mask;
4143                         ret_val = e1000_write_nvm(hw, word, 1, &data);
4144                         if (ret_val)
4145                                 return ret_val;
4146                         ret_val = e1000e_update_nvm_checksum(hw);
4147                         if (ret_val)
4148                                 return ret_val;
4149                 }
4150         }
4151
4152         return e1000e_validate_nvm_checksum_generic(hw);
4153 }
4154
4155 /**
4156  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4157  *  @hw: pointer to the HW structure
4158  *
4159  *  To prevent malicious write/erase of the NVM, set it to be read-only
4160  *  so that the hardware ignores all write/erase cycles of the NVM via
4161  *  the flash control registers.  The shadow-ram copy of the NVM will
4162  *  still be updated, however any updates to this copy will not stick
4163  *  across driver reloads.
4164  **/
4165 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4166 {
4167         struct e1000_nvm_info *nvm = &hw->nvm;
4168         union ich8_flash_protected_range pr0;
4169         union ich8_hws_flash_status hsfsts;
4170         u32 gfpreg;
4171
4172         nvm->ops.acquire(hw);
4173
4174         gfpreg = er32flash(ICH_FLASH_GFPREG);
4175
4176         /* Write-protect GbE Sector of NVM */
4177         pr0.regval = er32flash(ICH_FLASH_PR0);
4178         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4179         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4180         pr0.range.wpe = true;
4181         ew32flash(ICH_FLASH_PR0, pr0.regval);
4182
4183         /* Lock down a subset of GbE Flash Control Registers, e.g.
4184          * PR0 to prevent the write-protection from being lifted.
4185          * Once FLOCKDN is set, the registers protected by it cannot
4186          * be written until FLOCKDN is cleared by a hardware reset.
4187          */
4188         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4189         hsfsts.hsf_status.flockdn = true;
4190         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4191
4192         nvm->ops.release(hw);
4193 }
4194
4195 /**
4196  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4197  *  @hw: pointer to the HW structure
4198  *  @offset: The offset (in bytes) of the byte/word to read.
4199  *  @size: Size of data to read, 1=byte 2=word
4200  *  @data: The byte(s) to write to the NVM.
4201  *
4202  *  Writes one/two bytes to the NVM using the flash access registers.
4203  **/
4204 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4205                                           u8 size, u16 data)
4206 {
4207         union ich8_hws_flash_status hsfsts;
4208         union ich8_hws_flash_ctrl hsflctl;
4209         u32 flash_linear_addr;
4210         u32 flash_data = 0;
4211         s32 ret_val;
4212         u8 count = 0;
4213
4214         if (hw->mac.type >= e1000_pch_spt) {
4215                 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4216                         return -E1000_ERR_NVM;
4217         } else {
4218                 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4219                         return -E1000_ERR_NVM;
4220         }
4221
4222         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4223                              hw->nvm.flash_base_addr);
4224
4225         do {
4226                 udelay(1);
4227                 /* Steps */
4228                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4229                 if (ret_val)
4230                         break;
4231                 /* In SPT, This register is in Lan memory space, not
4232                  * flash.  Therefore, only 32 bit access is supported
4233                  */
4234                 if (hw->mac.type >= e1000_pch_spt)
4235                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4236                 else
4237                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4238
4239                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4240                 hsflctl.hsf_ctrl.fldbcount = size - 1;
4241                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4242                 /* In SPT, This register is in Lan memory space,
4243                  * not flash.  Therefore, only 32 bit access is
4244                  * supported
4245                  */
4246                 if (hw->mac.type >= e1000_pch_spt)
4247                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4248                 else
4249                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4250
4251                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4252
4253                 if (size == 1)
4254                         flash_data = (u32)data & 0x00FF;
4255                 else
4256                         flash_data = (u32)data;
4257
4258                 ew32flash(ICH_FLASH_FDATA0, flash_data);
4259
4260                 /* check if FCERR is set to 1 , if set to 1, clear it
4261                  * and try the whole sequence a few more times else done
4262                  */
4263                 ret_val =
4264                     e1000_flash_cycle_ich8lan(hw,
4265                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4266                 if (!ret_val)
4267                         break;
4268
4269                 /* If we're here, then things are most likely
4270                  * completely hosed, but if the error condition
4271                  * is detected, it won't hurt to give it another
4272                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4273                  */
4274                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4275                 if (hsfsts.hsf_status.flcerr)
4276                         /* Repeat for some time before giving up. */
4277                         continue;
4278                 if (!hsfsts.hsf_status.flcdone) {
4279                         e_dbg("Timeout error - flash cycle did not complete.\n");
4280                         break;
4281                 }
4282         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4283
4284         return ret_val;
4285 }
4286
4287 /**
4288 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4289 *  @hw: pointer to the HW structure
4290 *  @offset: The offset (in bytes) of the dwords to read.
4291 *  @data: The 4 bytes to write to the NVM.
4292 *
4293 *  Writes one/two/four bytes to the NVM using the flash access registers.
4294 **/
4295 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4296                                             u32 data)
4297 {
4298         union ich8_hws_flash_status hsfsts;
4299         union ich8_hws_flash_ctrl hsflctl;
4300         u32 flash_linear_addr;
4301         s32 ret_val;
4302         u8 count = 0;
4303
4304         if (hw->mac.type >= e1000_pch_spt) {
4305                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4306                         return -E1000_ERR_NVM;
4307         }
4308         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4309                              hw->nvm.flash_base_addr);
4310         do {
4311                 udelay(1);
4312                 /* Steps */
4313                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4314                 if (ret_val)
4315                         break;
4316
4317                 /* In SPT, This register is in Lan memory space, not
4318                  * flash.  Therefore, only 32 bit access is supported
4319                  */
4320                 if (hw->mac.type >= e1000_pch_spt)
4321                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4322                             >> 16;
4323                 else
4324                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4325
4326                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4327                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4328
4329                 /* In SPT, This register is in Lan memory space,
4330                  * not flash.  Therefore, only 32 bit access is
4331                  * supported
4332                  */
4333                 if (hw->mac.type >= e1000_pch_spt)
4334                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4335                 else
4336                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4337
4338                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4339
4340                 ew32flash(ICH_FLASH_FDATA0, data);
4341
4342                 /* check if FCERR is set to 1 , if set to 1, clear it
4343                  * and try the whole sequence a few more times else done
4344                  */
4345                 ret_val =
4346                    e1000_flash_cycle_ich8lan(hw,
4347                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4348
4349                 if (!ret_val)
4350                         break;
4351
4352                 /* If we're here, then things are most likely
4353                  * completely hosed, but if the error condition
4354                  * is detected, it won't hurt to give it another
4355                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4356                  */
4357                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4358
4359                 if (hsfsts.hsf_status.flcerr)
4360                         /* Repeat for some time before giving up. */
4361                         continue;
4362                 if (!hsfsts.hsf_status.flcdone) {
4363                         e_dbg("Timeout error - flash cycle did not complete.\n");
4364                         break;
4365                 }
4366         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4367
4368         return ret_val;
4369 }
4370
4371 /**
4372  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4373  *  @hw: pointer to the HW structure
4374  *  @offset: The index of the byte to read.
4375  *  @data: The byte to write to the NVM.
4376  *
4377  *  Writes a single byte to the NVM using the flash access registers.
4378  **/
4379 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4380                                           u8 data)
4381 {
4382         u16 word = (u16)data;
4383
4384         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4385 }
4386
4387 /**
4388 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4389 *  @hw: pointer to the HW structure
4390 *  @offset: The offset of the word to write.
4391 *  @dword: The dword to write to the NVM.
4392 *
4393 *  Writes a single dword to the NVM using the flash access registers.
4394 *  Goes through a retry algorithm before giving up.
4395 **/
4396 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4397                                                  u32 offset, u32 dword)
4398 {
4399         s32 ret_val;
4400         u16 program_retries;
4401
4402         /* Must convert word offset into bytes. */
4403         offset <<= 1;
4404         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4405
4406         if (!ret_val)
4407                 return ret_val;
4408         for (program_retries = 0; program_retries < 100; program_retries++) {
4409                 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4410                 usleep_range(100, 200);
4411                 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4412                 if (!ret_val)
4413                         break;
4414         }
4415         if (program_retries == 100)
4416                 return -E1000_ERR_NVM;
4417
4418         return 0;
4419 }
4420
4421 /**
4422  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4423  *  @hw: pointer to the HW structure
4424  *  @offset: The offset of the byte to write.
4425  *  @byte: The byte to write to the NVM.
4426  *
4427  *  Writes a single byte to the NVM using the flash access registers.
4428  *  Goes through a retry algorithm before giving up.
4429  **/
4430 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4431                                                 u32 offset, u8 byte)
4432 {
4433         s32 ret_val;
4434         u16 program_retries;
4435
4436         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4437         if (!ret_val)
4438                 return ret_val;
4439
4440         for (program_retries = 0; program_retries < 100; program_retries++) {
4441                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4442                 usleep_range(100, 200);
4443                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4444                 if (!ret_val)
4445                         break;
4446         }
4447         if (program_retries == 100)
4448                 return -E1000_ERR_NVM;
4449
4450         return 0;
4451 }
4452
4453 /**
4454  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4455  *  @hw: pointer to the HW structure
4456  *  @bank: 0 for first bank, 1 for second bank, etc.
4457  *
4458  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4459  *  bank N is 4096 * N + flash_reg_addr.
4460  **/
4461 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4462 {
4463         struct e1000_nvm_info *nvm = &hw->nvm;
4464         union ich8_hws_flash_status hsfsts;
4465         union ich8_hws_flash_ctrl hsflctl;
4466         u32 flash_linear_addr;
4467         /* bank size is in 16bit words - adjust to bytes */
4468         u32 flash_bank_size = nvm->flash_bank_size * 2;
4469         s32 ret_val;
4470         s32 count = 0;
4471         s32 j, iteration, sector_size;
4472
4473         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4474
4475         /* Determine HW Sector size: Read BERASE bits of hw flash status
4476          * register
4477          * 00: The Hw sector is 256 bytes, hence we need to erase 16
4478          *     consecutive sectors.  The start index for the nth Hw sector
4479          *     can be calculated as = bank * 4096 + n * 256
4480          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4481          *     The start index for the nth Hw sector can be calculated
4482          *     as = bank * 4096
4483          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4484          *     (ich9 only, otherwise error condition)
4485          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4486          */
4487         switch (hsfsts.hsf_status.berasesz) {
4488         case 0:
4489                 /* Hw sector size 256 */
4490                 sector_size = ICH_FLASH_SEG_SIZE_256;
4491                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4492                 break;
4493         case 1:
4494                 sector_size = ICH_FLASH_SEG_SIZE_4K;
4495                 iteration = 1;
4496                 break;
4497         case 2:
4498                 sector_size = ICH_FLASH_SEG_SIZE_8K;
4499                 iteration = 1;
4500                 break;
4501         case 3:
4502                 sector_size = ICH_FLASH_SEG_SIZE_64K;
4503                 iteration = 1;
4504                 break;
4505         default:
4506                 return -E1000_ERR_NVM;
4507         }
4508
4509         /* Start with the base address, then add the sector offset. */
4510         flash_linear_addr = hw->nvm.flash_base_addr;
4511         flash_linear_addr += (bank) ? flash_bank_size : 0;
4512
4513         for (j = 0; j < iteration; j++) {
4514                 do {
4515                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4516
4517                         /* Steps */
4518                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4519                         if (ret_val)
4520                                 return ret_val;
4521
4522                         /* Write a value 11 (block Erase) in Flash
4523                          * Cycle field in hw flash control
4524                          */
4525                         if (hw->mac.type >= e1000_pch_spt)
4526                                 hsflctl.regval =
4527                                     er32flash(ICH_FLASH_HSFSTS) >> 16;
4528                         else
4529                                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4530
4531                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4532                         if (hw->mac.type >= e1000_pch_spt)
4533                                 ew32flash(ICH_FLASH_HSFSTS,
4534                                           hsflctl.regval << 16);
4535                         else
4536                                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4537
4538                         /* Write the last 24 bits of an index within the
4539                          * block into Flash Linear address field in Flash
4540                          * Address.
4541                          */
4542                         flash_linear_addr += (j * sector_size);
4543                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4544
4545                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4546                         if (!ret_val)
4547                                 break;
4548
4549                         /* Check if FCERR is set to 1.  If 1,
4550                          * clear it and try the whole sequence
4551                          * a few more times else Done
4552                          */
4553                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4554                         if (hsfsts.hsf_status.flcerr)
4555                                 /* repeat for some time before giving up */
4556                                 continue;
4557                         else if (!hsfsts.hsf_status.flcdone)
4558                                 return ret_val;
4559                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4560         }
4561
4562         return 0;
4563 }
4564
4565 /**
4566  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4567  *  @hw: pointer to the HW structure
4568  *  @data: Pointer to the LED settings
4569  *
4570  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4571  *  settings is all 0's or F's, set the LED default to a valid LED default
4572  *  setting.
4573  **/
4574 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4575 {
4576         s32 ret_val;
4577
4578         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4579         if (ret_val) {
4580                 e_dbg("NVM Read Error\n");
4581                 return ret_val;
4582         }
4583
4584         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4585                 *data = ID_LED_DEFAULT_ICH8LAN;
4586
4587         return 0;
4588 }
4589
4590 /**
4591  *  e1000_id_led_init_pchlan - store LED configurations
4592  *  @hw: pointer to the HW structure
4593  *
4594  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4595  *  the PHY LED configuration register.
4596  *
4597  *  PCH also does not have an "always on" or "always off" mode which
4598  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4599  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4600  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4601  *  link based on logic in e1000_led_[on|off]_pchlan().
4602  **/
4603 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4604 {
4605         struct e1000_mac_info *mac = &hw->mac;
4606         s32 ret_val;
4607         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4608         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4609         u16 data, i, temp, shift;
4610
4611         /* Get default ID LED modes */
4612         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4613         if (ret_val)
4614                 return ret_val;
4615
4616         mac->ledctl_default = er32(LEDCTL);
4617         mac->ledctl_mode1 = mac->ledctl_default;
4618         mac->ledctl_mode2 = mac->ledctl_default;
4619
4620         for (i = 0; i < 4; i++) {
4621                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4622                 shift = (i * 5);
4623                 switch (temp) {
4624                 case ID_LED_ON1_DEF2:
4625                 case ID_LED_ON1_ON2:
4626                 case ID_LED_ON1_OFF2:
4627                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4628                         mac->ledctl_mode1 |= (ledctl_on << shift);
4629                         break;
4630                 case ID_LED_OFF1_DEF2:
4631                 case ID_LED_OFF1_ON2:
4632                 case ID_LED_OFF1_OFF2:
4633                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4634                         mac->ledctl_mode1 |= (ledctl_off << shift);
4635                         break;
4636                 default:
4637                         /* Do nothing */
4638                         break;
4639                 }
4640                 switch (temp) {
4641                 case ID_LED_DEF1_ON2:
4642                 case ID_LED_ON1_ON2:
4643                 case ID_LED_OFF1_ON2:
4644                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4645                         mac->ledctl_mode2 |= (ledctl_on << shift);
4646                         break;
4647                 case ID_LED_DEF1_OFF2:
4648                 case ID_LED_ON1_OFF2:
4649                 case ID_LED_OFF1_OFF2:
4650                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4651                         mac->ledctl_mode2 |= (ledctl_off << shift);
4652                         break;
4653                 default:
4654                         /* Do nothing */
4655                         break;
4656                 }
4657         }
4658
4659         return 0;
4660 }
4661
4662 /**
4663  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4664  *  @hw: pointer to the HW structure
4665  *
4666  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4667  *  register, so the bus width is hard coded.
4668  **/
4669 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4670 {
4671         struct e1000_bus_info *bus = &hw->bus;
4672         s32 ret_val;
4673
4674         ret_val = e1000e_get_bus_info_pcie(hw);
4675
4676         /* ICH devices are "PCI Express"-ish.  They have
4677          * a configuration space, but do not contain
4678          * PCI Express Capability registers, so bus width
4679          * must be hardcoded.
4680          */
4681         if (bus->width == e1000_bus_width_unknown)
4682                 bus->width = e1000_bus_width_pcie_x1;
4683
4684         return ret_val;
4685 }
4686
4687 /**
4688  *  e1000_reset_hw_ich8lan - Reset the hardware
4689  *  @hw: pointer to the HW structure
4690  *
4691  *  Does a full reset of the hardware which includes a reset of the PHY and
4692  *  MAC.
4693  **/
4694 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4695 {
4696         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4697         u16 kum_cfg;
4698         u32 ctrl, reg;
4699         s32 ret_val;
4700
4701         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4702          * on the last TLP read/write transaction when MAC is reset.
4703          */
4704         ret_val = e1000e_disable_pcie_master(hw);
4705         if (ret_val)
4706                 e_dbg("PCI-E Master disable polling has failed.\n");
4707
4708         e_dbg("Masking off all interrupts\n");
4709         ew32(IMC, 0xffffffff);
4710
4711         /* Disable the Transmit and Receive units.  Then delay to allow
4712          * any pending transactions to complete before we hit the MAC
4713          * with the global reset.
4714          */
4715         ew32(RCTL, 0);
4716         ew32(TCTL, E1000_TCTL_PSP);
4717         e1e_flush();
4718
4719         usleep_range(10000, 11000);
4720
4721         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4722         if (hw->mac.type == e1000_ich8lan) {
4723                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4724                 ew32(PBA, E1000_PBA_8K);
4725                 /* Set Packet Buffer Size to 16k. */
4726                 ew32(PBS, E1000_PBS_16K);
4727         }
4728
4729         if (hw->mac.type == e1000_pchlan) {
4730                 /* Save the NVM K1 bit setting */
4731                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4732                 if (ret_val)
4733                         return ret_val;
4734
4735                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4736                         dev_spec->nvm_k1_enabled = true;
4737                 else
4738                         dev_spec->nvm_k1_enabled = false;
4739         }
4740
4741         ctrl = er32(CTRL);
4742
4743         if (!hw->phy.ops.check_reset_block(hw)) {
4744                 /* Full-chip reset requires MAC and PHY reset at the same
4745                  * time to make sure the interface between MAC and the
4746                  * external PHY is reset.
4747                  */
4748                 ctrl |= E1000_CTRL_PHY_RST;
4749
4750                 /* Gate automatic PHY configuration by hardware on
4751                  * non-managed 82579
4752                  */
4753                 if ((hw->mac.type == e1000_pch2lan) &&
4754                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4755                         e1000_gate_hw_phy_config_ich8lan(hw, true);
4756         }
4757         ret_val = e1000_acquire_swflag_ich8lan(hw);
4758         e_dbg("Issuing a global reset to ich8lan\n");
4759         ew32(CTRL, (ctrl | E1000_CTRL_RST));
4760         /* cannot issue a flush here because it hangs the hardware */
4761         msleep(20);
4762
4763         /* Set Phy Config Counter to 50msec */
4764         if (hw->mac.type == e1000_pch2lan) {
4765                 reg = er32(FEXTNVM3);
4766                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4767                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4768                 ew32(FEXTNVM3, reg);
4769         }
4770
4771         if (!ret_val)
4772                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4773
4774         if (ctrl & E1000_CTRL_PHY_RST) {
4775                 ret_val = hw->phy.ops.get_cfg_done(hw);
4776                 if (ret_val)
4777                         return ret_val;
4778
4779                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4780                 if (ret_val)
4781                         return ret_val;
4782         }
4783
4784         /* For PCH, this write will make sure that any noise
4785          * will be detected as a CRC error and be dropped rather than show up
4786          * as a bad packet to the DMA engine.
4787          */
4788         if (hw->mac.type == e1000_pchlan)
4789                 ew32(CRC_OFFSET, 0x65656565);
4790
4791         ew32(IMC, 0xffffffff);
4792         er32(ICR);
4793
4794         reg = er32(KABGTXD);
4795         reg |= E1000_KABGTXD_BGSQLBIAS;
4796         ew32(KABGTXD, reg);
4797
4798         return 0;
4799 }
4800
4801 /**
4802  *  e1000_init_hw_ich8lan - Initialize the hardware
4803  *  @hw: pointer to the HW structure
4804  *
4805  *  Prepares the hardware for transmit and receive by doing the following:
4806  *   - initialize hardware bits
4807  *   - initialize LED identification
4808  *   - setup receive address registers
4809  *   - setup flow control
4810  *   - setup transmit descriptors
4811  *   - clear statistics
4812  **/
4813 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4814 {
4815         struct e1000_mac_info *mac = &hw->mac;
4816         u32 ctrl_ext, txdctl, snoop;
4817         s32 ret_val;
4818         u16 i;
4819
4820         e1000_initialize_hw_bits_ich8lan(hw);
4821
4822         /* Initialize identification LED */
4823         ret_val = mac->ops.id_led_init(hw);
4824         /* An error is not fatal and we should not stop init due to this */
4825         if (ret_val)
4826                 e_dbg("Error initializing identification LED\n");
4827
4828         /* Setup the receive address. */
4829         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4830
4831         /* Zero out the Multicast HASH table */
4832         e_dbg("Zeroing the MTA\n");
4833         for (i = 0; i < mac->mta_reg_count; i++)
4834                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4835
4836         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4837          * the ME.  Disable wakeup by clearing the host wakeup bit.
4838          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4839          */
4840         if (hw->phy.type == e1000_phy_82578) {
4841                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4842                 i &= ~BM_WUC_HOST_WU_BIT;
4843                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4844                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4845                 if (ret_val)
4846                         return ret_val;
4847         }
4848
4849         /* Setup link and flow control */
4850         ret_val = mac->ops.setup_link(hw);
4851
4852         /* Set the transmit descriptor write-back policy for both queues */
4853         txdctl = er32(TXDCTL(0));
4854         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4855                   E1000_TXDCTL_FULL_TX_DESC_WB);
4856         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4857                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4858         ew32(TXDCTL(0), txdctl);
4859         txdctl = er32(TXDCTL(1));
4860         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4861                   E1000_TXDCTL_FULL_TX_DESC_WB);
4862         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4863                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4864         ew32(TXDCTL(1), txdctl);
4865
4866         /* ICH8 has opposite polarity of no_snoop bits.
4867          * By default, we should use snoop behavior.
4868          */
4869         if (mac->type == e1000_ich8lan)
4870                 snoop = PCIE_ICH8_SNOOP_ALL;
4871         else
4872                 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4873         e1000e_set_pcie_no_snoop(hw, snoop);
4874
4875         ctrl_ext = er32(CTRL_EXT);
4876         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4877         ew32(CTRL_EXT, ctrl_ext);
4878
4879         /* Clear all of the statistics registers (clear on read).  It is
4880          * important that we do this after we have tried to establish link
4881          * because the symbol error count will increment wildly if there
4882          * is no link.
4883          */
4884         e1000_clear_hw_cntrs_ich8lan(hw);
4885
4886         return ret_val;
4887 }
4888
4889 /**
4890  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4891  *  @hw: pointer to the HW structure
4892  *
4893  *  Sets/Clears required hardware bits necessary for correctly setting up the
4894  *  hardware for transmit and receive.
4895  **/
4896 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4897 {
4898         u32 reg;
4899
4900         /* Extended Device Control */
4901         reg = er32(CTRL_EXT);
4902         reg |= BIT(22);
4903         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4904         if (hw->mac.type >= e1000_pchlan)
4905                 reg |= E1000_CTRL_EXT_PHYPDEN;
4906         ew32(CTRL_EXT, reg);
4907
4908         /* Transmit Descriptor Control 0 */
4909         reg = er32(TXDCTL(0));
4910         reg |= BIT(22);
4911         ew32(TXDCTL(0), reg);
4912
4913         /* Transmit Descriptor Control 1 */
4914         reg = er32(TXDCTL(1));
4915         reg |= BIT(22);
4916         ew32(TXDCTL(1), reg);
4917
4918         /* Transmit Arbitration Control 0 */
4919         reg = er32(TARC(0));
4920         if (hw->mac.type == e1000_ich8lan)
4921                 reg |= BIT(28) | BIT(29);
4922         reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4923         ew32(TARC(0), reg);
4924
4925         /* Transmit Arbitration Control 1 */
4926         reg = er32(TARC(1));
4927         if (er32(TCTL) & E1000_TCTL_MULR)
4928                 reg &= ~BIT(28);
4929         else
4930                 reg |= BIT(28);
4931         reg |= BIT(24) | BIT(26) | BIT(30);
4932         ew32(TARC(1), reg);
4933
4934         /* Device Status */
4935         if (hw->mac.type == e1000_ich8lan) {
4936                 reg = er32(STATUS);
4937                 reg &= ~BIT(31);
4938                 ew32(STATUS, reg);
4939         }
4940
4941         /* work-around descriptor data corruption issue during nfs v2 udp
4942          * traffic, just disable the nfs filtering capability
4943          */
4944         reg = er32(RFCTL);
4945         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4946
4947         /* Disable IPv6 extension header parsing because some malformed
4948          * IPv6 headers can hang the Rx.
4949          */
4950         if (hw->mac.type == e1000_ich8lan)
4951                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4952         ew32(RFCTL, reg);
4953
4954         /* Enable ECC on Lynxpoint */
4955         if (hw->mac.type >= e1000_pch_lpt) {
4956                 reg = er32(PBECCSTS);
4957                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4958                 ew32(PBECCSTS, reg);
4959
4960                 reg = er32(CTRL);
4961                 reg |= E1000_CTRL_MEHE;
4962                 ew32(CTRL, reg);
4963         }
4964 }
4965
4966 /**
4967  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4968  *  @hw: pointer to the HW structure
4969  *
4970  *  Determines which flow control settings to use, then configures flow
4971  *  control.  Calls the appropriate media-specific link configuration
4972  *  function.  Assuming the adapter has a valid link partner, a valid link
4973  *  should be established.  Assumes the hardware has previously been reset
4974  *  and the transmitter and receiver are not enabled.
4975  **/
4976 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4977 {
4978         s32 ret_val;
4979
4980         if (hw->phy.ops.check_reset_block(hw))
4981                 return 0;
4982
4983         /* ICH parts do not have a word in the NVM to determine
4984          * the default flow control setting, so we explicitly
4985          * set it to full.
4986          */
4987         if (hw->fc.requested_mode == e1000_fc_default) {
4988                 /* Workaround h/w hang when Tx flow control enabled */
4989                 if (hw->mac.type == e1000_pchlan)
4990                         hw->fc.requested_mode = e1000_fc_rx_pause;
4991                 else
4992                         hw->fc.requested_mode = e1000_fc_full;
4993         }
4994
4995         /* Save off the requested flow control mode for use later.  Depending
4996          * on the link partner's capabilities, we may or may not use this mode.
4997          */
4998         hw->fc.current_mode = hw->fc.requested_mode;
4999
5000         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5001
5002         /* Continue to configure the copper link. */
5003         ret_val = hw->mac.ops.setup_physical_interface(hw);
5004         if (ret_val)
5005                 return ret_val;
5006
5007         ew32(FCTTV, hw->fc.pause_time);
5008         if ((hw->phy.type == e1000_phy_82578) ||
5009             (hw->phy.type == e1000_phy_82579) ||
5010             (hw->phy.type == e1000_phy_i217) ||
5011             (hw->phy.type == e1000_phy_82577)) {
5012                 ew32(FCRTV_PCH, hw->fc.refresh_time);
5013
5014                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5015                                    hw->fc.pause_time);
5016                 if (ret_val)
5017                         return ret_val;
5018         }
5019
5020         return e1000e_set_fc_watermarks(hw);
5021 }
5022
5023 /**
5024  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5025  *  @hw: pointer to the HW structure
5026  *
5027  *  Configures the kumeran interface to the PHY to wait the appropriate time
5028  *  when polling the PHY, then call the generic setup_copper_link to finish
5029  *  configuring the copper link.
5030  **/
5031 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5032 {
5033         u32 ctrl;
5034         s32 ret_val;
5035         u16 reg_data;
5036
5037         ctrl = er32(CTRL);
5038         ctrl |= E1000_CTRL_SLU;
5039         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5040         ew32(CTRL, ctrl);
5041
5042         /* Set the mac to wait the maximum time between each iteration
5043          * and increase the max iterations when polling the phy;
5044          * this fixes erroneous timeouts at 10Mbps.
5045          */
5046         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5047         if (ret_val)
5048                 return ret_val;
5049         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5050                                        &reg_data);
5051         if (ret_val)
5052                 return ret_val;
5053         reg_data |= 0x3F;
5054         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5055                                         reg_data);
5056         if (ret_val)
5057                 return ret_val;
5058
5059         switch (hw->phy.type) {
5060         case e1000_phy_igp_3:
5061                 ret_val = e1000e_copper_link_setup_igp(hw);
5062                 if (ret_val)
5063                         return ret_val;
5064                 break;
5065         case e1000_phy_bm:
5066         case e1000_phy_82578:
5067                 ret_val = e1000e_copper_link_setup_m88(hw);
5068                 if (ret_val)
5069                         return ret_val;
5070                 break;
5071         case e1000_phy_82577:
5072         case e1000_phy_82579:
5073                 ret_val = e1000_copper_link_setup_82577(hw);
5074                 if (ret_val)
5075                         return ret_val;
5076                 break;
5077         case e1000_phy_ife:
5078                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5079                 if (ret_val)
5080                         return ret_val;
5081
5082                 reg_data &= ~IFE_PMC_AUTO_MDIX;
5083
5084                 switch (hw->phy.mdix) {
5085                 case 1:
5086                         reg_data &= ~IFE_PMC_FORCE_MDIX;
5087                         break;
5088                 case 2:
5089                         reg_data |= IFE_PMC_FORCE_MDIX;
5090                         break;
5091                 case 0:
5092                 default:
5093                         reg_data |= IFE_PMC_AUTO_MDIX;
5094                         break;
5095                 }
5096                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5097                 if (ret_val)
5098                         return ret_val;
5099                 break;
5100         default:
5101                 break;
5102         }
5103
5104         return e1000e_setup_copper_link(hw);
5105 }
5106
5107 /**
5108  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5109  *  @hw: pointer to the HW structure
5110  *
5111  *  Calls the PHY specific link setup function and then calls the
5112  *  generic setup_copper_link to finish configuring the link for
5113  *  Lynxpoint PCH devices
5114  **/
5115 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5116 {
5117         u32 ctrl;
5118         s32 ret_val;
5119
5120         ctrl = er32(CTRL);
5121         ctrl |= E1000_CTRL_SLU;
5122         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5123         ew32(CTRL, ctrl);
5124
5125         ret_val = e1000_copper_link_setup_82577(hw);
5126         if (ret_val)
5127                 return ret_val;
5128
5129         return e1000e_setup_copper_link(hw);
5130 }
5131
5132 /**
5133  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5134  *  @hw: pointer to the HW structure
5135  *  @speed: pointer to store current link speed
5136  *  @duplex: pointer to store the current link duplex
5137  *
5138  *  Calls the generic get_speed_and_duplex to retrieve the current link
5139  *  information and then calls the Kumeran lock loss workaround for links at
5140  *  gigabit speeds.
5141  **/
5142 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5143                                           u16 *duplex)
5144 {
5145         s32 ret_val;
5146
5147         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5148         if (ret_val)
5149                 return ret_val;
5150
5151         if ((hw->mac.type == e1000_ich8lan) &&
5152             (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5153                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5154         }
5155
5156         return ret_val;
5157 }
5158
5159 /**
5160  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5161  *  @hw: pointer to the HW structure
5162  *
5163  *  Work-around for 82566 Kumeran PCS lock loss:
5164  *  On link status change (i.e. PCI reset, speed change) and link is up and
5165  *  speed is gigabit-
5166  *    0) if workaround is optionally disabled do nothing
5167  *    1) wait 1ms for Kumeran link to come up
5168  *    2) check Kumeran Diagnostic register PCS lock loss bit
5169  *    3) if not set the link is locked (all is good), otherwise...
5170  *    4) reset the PHY
5171  *    5) repeat up to 10 times
5172  *  Note: this is only called for IGP3 copper when speed is 1gb.
5173  **/
5174 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5175 {
5176         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5177         u32 phy_ctrl;
5178         s32 ret_val;
5179         u16 i, data;
5180         bool link;
5181
5182         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5183                 return 0;
5184
5185         /* Make sure link is up before proceeding.  If not just return.
5186          * Attempting this while link is negotiating fouled up link
5187          * stability
5188          */
5189         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5190         if (!link)
5191                 return 0;
5192
5193         for (i = 0; i < 10; i++) {
5194                 /* read once to clear */
5195                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5196                 if (ret_val)
5197                         return ret_val;
5198                 /* and again to get new status */
5199                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5200                 if (ret_val)
5201                         return ret_val;
5202
5203                 /* check for PCS lock */
5204                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5205                         return 0;
5206
5207                 /* Issue PHY reset */
5208                 e1000_phy_hw_reset(hw);
5209                 mdelay(5);
5210         }
5211         /* Disable GigE link negotiation */
5212         phy_ctrl = er32(PHY_CTRL);
5213         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5214                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5215         ew32(PHY_CTRL, phy_ctrl);
5216
5217         /* Call gig speed drop workaround on Gig disable before accessing
5218          * any PHY registers
5219          */
5220         e1000e_gig_downshift_workaround_ich8lan(hw);
5221
5222         /* unable to acquire PCS lock */
5223         return -E1000_ERR_PHY;
5224 }
5225
5226 /**
5227  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5228  *  @hw: pointer to the HW structure
5229  *  @state: boolean value used to set the current Kumeran workaround state
5230  *
5231  *  If ICH8, set the current Kumeran workaround state (enabled - true
5232  *  /disabled - false).
5233  **/
5234 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5235                                                   bool state)
5236 {
5237         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5238
5239         if (hw->mac.type != e1000_ich8lan) {
5240                 e_dbg("Workaround applies to ICH8 only.\n");
5241                 return;
5242         }
5243
5244         dev_spec->kmrn_lock_loss_workaround_enabled = state;
5245 }
5246
5247 /**
5248  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5249  *  @hw: pointer to the HW structure
5250  *
5251  *  Workaround for 82566 power-down on D3 entry:
5252  *    1) disable gigabit link
5253  *    2) write VR power-down enable
5254  *    3) read it back
5255  *  Continue if successful, else issue LCD reset and repeat
5256  **/
5257 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5258 {
5259         u32 reg;
5260         u16 data;
5261         u8 retry = 0;
5262
5263         if (hw->phy.type != e1000_phy_igp_3)
5264                 return;
5265
5266         /* Try the workaround twice (if needed) */
5267         do {
5268                 /* Disable link */
5269                 reg = er32(PHY_CTRL);
5270                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5271                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5272                 ew32(PHY_CTRL, reg);
5273
5274                 /* Call gig speed drop workaround on Gig disable before
5275                  * accessing any PHY registers
5276                  */
5277                 if (hw->mac.type == e1000_ich8lan)
5278                         e1000e_gig_downshift_workaround_ich8lan(hw);
5279
5280                 /* Write VR power-down enable */
5281                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5282                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5283                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5284
5285                 /* Read it back and test */
5286                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5287                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5288                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5289                         break;
5290
5291                 /* Issue PHY reset and repeat at most one more time */
5292                 reg = er32(CTRL);
5293                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5294                 retry++;
5295         } while (retry);
5296 }
5297
5298 /**
5299  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5300  *  @hw: pointer to the HW structure
5301  *
5302  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5303  *  LPLU, Gig disable, MDIC PHY reset):
5304  *    1) Set Kumeran Near-end loopback
5305  *    2) Clear Kumeran Near-end loopback
5306  *  Should only be called for ICH8[m] devices with any 1G Phy.
5307  **/
5308 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5309 {
5310         s32 ret_val;
5311         u16 reg_data;
5312
5313         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5314                 return;
5315
5316         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5317                                        &reg_data);
5318         if (ret_val)
5319                 return;
5320         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5321         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5322                                         reg_data);
5323         if (ret_val)
5324                 return;
5325         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5326         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5327 }
5328
5329 /**
5330  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5331  *  @hw: pointer to the HW structure
5332  *
5333  *  During S0 to Sx transition, it is possible the link remains at gig
5334  *  instead of negotiating to a lower speed.  Before going to Sx, set
5335  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5336  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5337  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5338  *  needs to be written.
5339  *  Parts that support (and are linked to a partner which support) EEE in
5340  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5341  *  than 10Mbps w/o EEE.
5342  **/
5343 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5344 {
5345         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5346         u32 phy_ctrl;
5347         s32 ret_val;
5348
5349         phy_ctrl = er32(PHY_CTRL);
5350         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5351
5352         if (hw->phy.type == e1000_phy_i217) {
5353                 u16 phy_reg, device_id = hw->adapter->pdev->device;
5354
5355                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5356                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5357                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5358                     (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5359                     (hw->mac.type >= e1000_pch_spt)) {
5360                         u32 fextnvm6 = er32(FEXTNVM6);
5361
5362                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5363                 }
5364
5365                 ret_val = hw->phy.ops.acquire(hw);
5366                 if (ret_val)
5367                         goto out;
5368
5369                 if (!dev_spec->eee_disable) {
5370                         u16 eee_advert;
5371
5372                         ret_val =
5373                             e1000_read_emi_reg_locked(hw,
5374                                                       I217_EEE_ADVERTISEMENT,
5375                                                       &eee_advert);
5376                         if (ret_val)
5377                                 goto release;
5378
5379                         /* Disable LPLU if both link partners support 100BaseT
5380                          * EEE and 100Full is advertised on both ends of the
5381                          * link, and enable Auto Enable LPI since there will
5382                          * be no driver to enable LPI while in Sx.
5383                          */
5384                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5385                             (dev_spec->eee_lp_ability &
5386                              I82579_EEE_100_SUPPORTED) &&
5387                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5388                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5389                                               E1000_PHY_CTRL_NOND0A_LPLU);
5390
5391                                 /* Set Auto Enable LPI after link up */
5392                                 e1e_rphy_locked(hw,
5393                                                 I217_LPI_GPIO_CTRL, &phy_reg);
5394                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5395                                 e1e_wphy_locked(hw,
5396                                                 I217_LPI_GPIO_CTRL, phy_reg);
5397                         }
5398                 }
5399
5400                 /* For i217 Intel Rapid Start Technology support,
5401                  * when the system is going into Sx and no manageability engine
5402                  * is present, the driver must configure proxy to reset only on
5403                  * power good.  LPI (Low Power Idle) state must also reset only
5404                  * on power good, as well as the MTA (Multicast table array).
5405                  * The SMBus release must also be disabled on LCD reset.
5406                  */
5407                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5408                         /* Enable proxy to reset only on power good. */
5409                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5410                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5411                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5412
5413                         /* Set bit enable LPI (EEE) to reset only on
5414                          * power good.
5415                          */
5416                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5417                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5418                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5419
5420                         /* Disable the SMB release on LCD reset. */
5421                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5422                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5423                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5424                 }
5425
5426                 /* Enable MTA to reset for Intel Rapid Start Technology
5427                  * Support
5428                  */
5429                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5430                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5431                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5432
5433 release:
5434                 hw->phy.ops.release(hw);
5435         }
5436 out:
5437         ew32(PHY_CTRL, phy_ctrl);
5438
5439         if (hw->mac.type == e1000_ich8lan)
5440                 e1000e_gig_downshift_workaround_ich8lan(hw);
5441
5442         if (hw->mac.type >= e1000_pchlan) {
5443                 e1000_oem_bits_config_ich8lan(hw, false);
5444
5445                 /* Reset PHY to activate OEM bits on 82577/8 */
5446                 if (hw->mac.type == e1000_pchlan)
5447                         e1000e_phy_hw_reset_generic(hw);
5448
5449                 ret_val = hw->phy.ops.acquire(hw);
5450                 if (ret_val)
5451                         return;
5452                 e1000_write_smbus_addr(hw);
5453                 hw->phy.ops.release(hw);
5454         }
5455 }
5456
5457 /**
5458  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5459  *  @hw: pointer to the HW structure
5460  *
5461  *  During Sx to S0 transitions on non-managed devices or managed devices
5462  *  on which PHY resets are not blocked, if the PHY registers cannot be
5463  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5464  *  the PHY.
5465  *  On i217, setup Intel Rapid Start Technology.
5466  **/
5467 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5468 {
5469         s32 ret_val;
5470
5471         if (hw->mac.type < e1000_pch2lan)
5472                 return;
5473
5474         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5475         if (ret_val) {
5476                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5477                 return;
5478         }
5479
5480         /* For i217 Intel Rapid Start Technology support when the system
5481          * is transitioning from Sx and no manageability engine is present
5482          * configure SMBus to restore on reset, disable proxy, and enable
5483          * the reset on MTA (Multicast table array).
5484          */
5485         if (hw->phy.type == e1000_phy_i217) {
5486                 u16 phy_reg;
5487
5488                 ret_val = hw->phy.ops.acquire(hw);
5489                 if (ret_val) {
5490                         e_dbg("Failed to setup iRST\n");
5491                         return;
5492                 }
5493
5494                 /* Clear Auto Enable LPI after link up */
5495                 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5496                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5497                 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5498
5499                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5500                         /* Restore clear on SMB if no manageability engine
5501                          * is present
5502                          */
5503                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5504                         if (ret_val)
5505                                 goto release;
5506                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5507                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5508
5509                         /* Disable Proxy */
5510                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5511                 }
5512                 /* Enable reset on MTA */
5513                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5514                 if (ret_val)
5515                         goto release;
5516                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5517                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5518 release:
5519                 if (ret_val)
5520                         e_dbg("Error %d in resume workarounds\n", ret_val);
5521                 hw->phy.ops.release(hw);
5522         }
5523 }
5524
5525 /**
5526  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5527  *  @hw: pointer to the HW structure
5528  *
5529  *  Return the LED back to the default configuration.
5530  **/
5531 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5532 {
5533         if (hw->phy.type == e1000_phy_ife)
5534                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5535
5536         ew32(LEDCTL, hw->mac.ledctl_default);
5537         return 0;
5538 }
5539
5540 /**
5541  *  e1000_led_on_ich8lan - Turn LEDs on
5542  *  @hw: pointer to the HW structure
5543  *
5544  *  Turn on the LEDs.
5545  **/
5546 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5547 {
5548         if (hw->phy.type == e1000_phy_ife)
5549                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5550                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5551
5552         ew32(LEDCTL, hw->mac.ledctl_mode2);
5553         return 0;
5554 }
5555
5556 /**
5557  *  e1000_led_off_ich8lan - Turn LEDs off
5558  *  @hw: pointer to the HW structure
5559  *
5560  *  Turn off the LEDs.
5561  **/
5562 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5563 {
5564         if (hw->phy.type == e1000_phy_ife)
5565                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5566                                 (IFE_PSCL_PROBE_MODE |
5567                                  IFE_PSCL_PROBE_LEDS_OFF));
5568
5569         ew32(LEDCTL, hw->mac.ledctl_mode1);
5570         return 0;
5571 }
5572
5573 /**
5574  *  e1000_setup_led_pchlan - Configures SW controllable LED
5575  *  @hw: pointer to the HW structure
5576  *
5577  *  This prepares the SW controllable LED for use.
5578  **/
5579 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5580 {
5581         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5582 }
5583
5584 /**
5585  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5586  *  @hw: pointer to the HW structure
5587  *
5588  *  Return the LED back to the default configuration.
5589  **/
5590 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5591 {
5592         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5593 }
5594
5595 /**
5596  *  e1000_led_on_pchlan - Turn LEDs on
5597  *  @hw: pointer to the HW structure
5598  *
5599  *  Turn on the LEDs.
5600  **/
5601 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5602 {
5603         u16 data = (u16)hw->mac.ledctl_mode2;
5604         u32 i, led;
5605
5606         /* If no link, then turn LED on by setting the invert bit
5607          * for each LED that's mode is "link_up" in ledctl_mode2.
5608          */
5609         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5610                 for (i = 0; i < 3; i++) {
5611                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5612                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5613                             E1000_LEDCTL_MODE_LINK_UP)
5614                                 continue;
5615                         if (led & E1000_PHY_LED0_IVRT)
5616                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5617                         else
5618                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5619                 }
5620         }
5621
5622         return e1e_wphy(hw, HV_LED_CONFIG, data);
5623 }
5624
5625 /**
5626  *  e1000_led_off_pchlan - Turn LEDs off
5627  *  @hw: pointer to the HW structure
5628  *
5629  *  Turn off the LEDs.
5630  **/
5631 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5632 {
5633         u16 data = (u16)hw->mac.ledctl_mode1;
5634         u32 i, led;
5635
5636         /* If no link, then turn LED off by clearing the invert bit
5637          * for each LED that's mode is "link_up" in ledctl_mode1.
5638          */
5639         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5640                 for (i = 0; i < 3; i++) {
5641                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5642                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5643                             E1000_LEDCTL_MODE_LINK_UP)
5644                                 continue;
5645                         if (led & E1000_PHY_LED0_IVRT)
5646                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5647                         else
5648                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5649                 }
5650         }
5651
5652         return e1e_wphy(hw, HV_LED_CONFIG, data);
5653 }
5654
5655 /**
5656  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5657  *  @hw: pointer to the HW structure
5658  *
5659  *  Read appropriate register for the config done bit for completion status
5660  *  and configure the PHY through s/w for EEPROM-less parts.
5661  *
5662  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5663  *  config done bit, so only an error is logged and continues.  If we were
5664  *  to return with error, EEPROM-less silicon would not be able to be reset
5665  *  or change link.
5666  **/
5667 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5668 {
5669         s32 ret_val = 0;
5670         u32 bank = 0;
5671         u32 status;
5672
5673         e1000e_get_cfg_done_generic(hw);
5674
5675         /* Wait for indication from h/w that it has completed basic config */
5676         if (hw->mac.type >= e1000_ich10lan) {
5677                 e1000_lan_init_done_ich8lan(hw);
5678         } else {
5679                 ret_val = e1000e_get_auto_rd_done(hw);
5680                 if (ret_val) {
5681                         /* When auto config read does not complete, do not
5682                          * return with an error. This can happen in situations
5683                          * where there is no eeprom and prevents getting link.
5684                          */
5685                         e_dbg("Auto Read Done did not complete\n");
5686                         ret_val = 0;
5687                 }
5688         }
5689
5690         /* Clear PHY Reset Asserted bit */
5691         status = er32(STATUS);
5692         if (status & E1000_STATUS_PHYRA)
5693                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5694         else
5695                 e_dbg("PHY Reset Asserted not set - needs delay\n");
5696
5697         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5698         if (hw->mac.type <= e1000_ich9lan) {
5699                 if (!(er32(EECD) & E1000_EECD_PRES) &&
5700                     (hw->phy.type == e1000_phy_igp_3)) {
5701                         e1000e_phy_init_script_igp3(hw);
5702                 }
5703         } else {
5704                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5705                         /* Maybe we should do a basic PHY config */
5706                         e_dbg("EEPROM not present\n");
5707                         ret_val = -E1000_ERR_CONFIG;
5708                 }
5709         }
5710
5711         return ret_val;
5712 }
5713
5714 /**
5715  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5716  * @hw: pointer to the HW structure
5717  *
5718  * In the case of a PHY power down to save power, or to turn off link during a
5719  * driver unload, or wake on lan is not enabled, remove the link.
5720  **/
5721 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5722 {
5723         /* If the management interface is not enabled, then power down */
5724         if (!(hw->mac.ops.check_mng_mode(hw) ||
5725               hw->phy.ops.check_reset_block(hw)))
5726                 e1000_power_down_phy_copper(hw);
5727 }
5728
5729 /**
5730  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5731  *  @hw: pointer to the HW structure
5732  *
5733  *  Clears hardware counters specific to the silicon family and calls
5734  *  clear_hw_cntrs_generic to clear all general purpose counters.
5735  **/
5736 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5737 {
5738         u16 phy_data;
5739         s32 ret_val;
5740
5741         e1000e_clear_hw_cntrs_base(hw);
5742
5743         er32(ALGNERRC);
5744         er32(RXERRC);
5745         er32(TNCRS);
5746         er32(CEXTERR);
5747         er32(TSCTC);
5748         er32(TSCTFC);
5749
5750         er32(MGTPRC);
5751         er32(MGTPDC);
5752         er32(MGTPTC);
5753
5754         er32(IAC);
5755         er32(ICRXOC);
5756
5757         /* Clear PHY statistics registers */
5758         if ((hw->phy.type == e1000_phy_82578) ||
5759             (hw->phy.type == e1000_phy_82579) ||
5760             (hw->phy.type == e1000_phy_i217) ||
5761             (hw->phy.type == e1000_phy_82577)) {
5762                 ret_val = hw->phy.ops.acquire(hw);
5763                 if (ret_val)
5764                         return;
5765                 ret_val = hw->phy.ops.set_page(hw,
5766                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
5767                 if (ret_val)
5768                         goto release;
5769                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5770                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5771                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5772                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5773                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5774                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5775                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5776                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5777                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5778                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5779                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5780                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5781                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5782                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5783 release:
5784                 hw->phy.ops.release(hw);
5785         }
5786 }
5787
5788 static const struct e1000_mac_operations ich8_mac_ops = {
5789         /* check_mng_mode dependent on mac type */
5790         .check_for_link         = e1000_check_for_copper_link_ich8lan,
5791         /* cleanup_led dependent on mac type */
5792         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5793         .get_bus_info           = e1000_get_bus_info_ich8lan,
5794         .set_lan_id             = e1000_set_lan_id_single_port,
5795         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5796         /* led_on dependent on mac type */
5797         /* led_off dependent on mac type */
5798         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5799         .reset_hw               = e1000_reset_hw_ich8lan,
5800         .init_hw                = e1000_init_hw_ich8lan,
5801         .setup_link             = e1000_setup_link_ich8lan,
5802         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5803         /* id_led_init dependent on mac type */
5804         .config_collision_dist  = e1000e_config_collision_dist_generic,
5805         .rar_set                = e1000e_rar_set_generic,
5806         .rar_get_count          = e1000e_rar_get_count_generic,
5807 };
5808
5809 static const struct e1000_phy_operations ich8_phy_ops = {
5810         .acquire                = e1000_acquire_swflag_ich8lan,
5811         .check_reset_block      = e1000_check_reset_block_ich8lan,
5812         .commit                 = NULL,
5813         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5814         .get_cable_length       = e1000e_get_cable_length_igp_2,
5815         .read_reg               = e1000e_read_phy_reg_igp,
5816         .release                = e1000_release_swflag_ich8lan,
5817         .reset                  = e1000_phy_hw_reset_ich8lan,
5818         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5819         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5820         .write_reg              = e1000e_write_phy_reg_igp,
5821 };
5822
5823 static const struct e1000_nvm_operations ich8_nvm_ops = {
5824         .acquire                = e1000_acquire_nvm_ich8lan,
5825         .read                   = e1000_read_nvm_ich8lan,
5826         .release                = e1000_release_nvm_ich8lan,
5827         .reload                 = e1000e_reload_nvm_generic,
5828         .update                 = e1000_update_nvm_checksum_ich8lan,
5829         .valid_led_default      = e1000_valid_led_default_ich8lan,
5830         .validate               = e1000_validate_nvm_checksum_ich8lan,
5831         .write                  = e1000_write_nvm_ich8lan,
5832 };
5833
5834 static const struct e1000_nvm_operations spt_nvm_ops = {
5835         .acquire                = e1000_acquire_nvm_ich8lan,
5836         .release                = e1000_release_nvm_ich8lan,
5837         .read                   = e1000_read_nvm_spt,
5838         .update                 = e1000_update_nvm_checksum_spt,
5839         .reload                 = e1000e_reload_nvm_generic,
5840         .valid_led_default      = e1000_valid_led_default_ich8lan,
5841         .validate               = e1000_validate_nvm_checksum_ich8lan,
5842         .write                  = e1000_write_nvm_ich8lan,
5843 };
5844
5845 const struct e1000_info e1000_ich8_info = {
5846         .mac                    = e1000_ich8lan,
5847         .flags                  = FLAG_HAS_WOL
5848                                   | FLAG_IS_ICH
5849                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5850                                   | FLAG_HAS_AMT
5851                                   | FLAG_HAS_FLASH
5852                                   | FLAG_APME_IN_WUC,
5853         .pba                    = 8,
5854         .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5855         .get_variants           = e1000_get_variants_ich8lan,
5856         .mac_ops                = &ich8_mac_ops,
5857         .phy_ops                = &ich8_phy_ops,
5858         .nvm_ops                = &ich8_nvm_ops,
5859 };
5860
5861 const struct e1000_info e1000_ich9_info = {
5862         .mac                    = e1000_ich9lan,
5863         .flags                  = FLAG_HAS_JUMBO_FRAMES
5864                                   | FLAG_IS_ICH
5865                                   | FLAG_HAS_WOL
5866                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5867                                   | FLAG_HAS_AMT
5868                                   | FLAG_HAS_FLASH
5869                                   | FLAG_APME_IN_WUC,
5870         .pba                    = 18,
5871         .max_hw_frame_size      = DEFAULT_JUMBO,
5872         .get_variants           = e1000_get_variants_ich8lan,
5873         .mac_ops                = &ich8_mac_ops,
5874         .phy_ops                = &ich8_phy_ops,
5875         .nvm_ops                = &ich8_nvm_ops,
5876 };
5877
5878 const struct e1000_info e1000_ich10_info = {
5879         .mac                    = e1000_ich10lan,
5880         .flags                  = FLAG_HAS_JUMBO_FRAMES
5881                                   | FLAG_IS_ICH
5882                                   | FLAG_HAS_WOL
5883                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5884                                   | FLAG_HAS_AMT
5885                                   | FLAG_HAS_FLASH
5886                                   | FLAG_APME_IN_WUC,
5887         .pba                    = 18,
5888         .max_hw_frame_size      = DEFAULT_JUMBO,
5889         .get_variants           = e1000_get_variants_ich8lan,
5890         .mac_ops                = &ich8_mac_ops,
5891         .phy_ops                = &ich8_phy_ops,
5892         .nvm_ops                = &ich8_nvm_ops,
5893 };
5894
5895 const struct e1000_info e1000_pch_info = {
5896         .mac                    = e1000_pchlan,
5897         .flags                  = FLAG_IS_ICH
5898                                   | FLAG_HAS_WOL
5899                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5900                                   | FLAG_HAS_AMT
5901                                   | FLAG_HAS_FLASH
5902                                   | FLAG_HAS_JUMBO_FRAMES
5903                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5904                                   | FLAG_APME_IN_WUC,
5905         .flags2                 = FLAG2_HAS_PHY_STATS,
5906         .pba                    = 26,
5907         .max_hw_frame_size      = 4096,
5908         .get_variants           = e1000_get_variants_ich8lan,
5909         .mac_ops                = &ich8_mac_ops,
5910         .phy_ops                = &ich8_phy_ops,
5911         .nvm_ops                = &ich8_nvm_ops,
5912 };
5913
5914 const struct e1000_info e1000_pch2_info = {
5915         .mac                    = e1000_pch2lan,
5916         .flags                  = FLAG_IS_ICH
5917                                   | FLAG_HAS_WOL
5918                                   | FLAG_HAS_HW_TIMESTAMP
5919                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5920                                   | FLAG_HAS_AMT
5921                                   | FLAG_HAS_FLASH
5922                                   | FLAG_HAS_JUMBO_FRAMES
5923                                   | FLAG_APME_IN_WUC,
5924         .flags2                 = FLAG2_HAS_PHY_STATS
5925                                   | FLAG2_HAS_EEE
5926                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5927         .pba                    = 26,
5928         .max_hw_frame_size      = 9022,
5929         .get_variants           = e1000_get_variants_ich8lan,
5930         .mac_ops                = &ich8_mac_ops,
5931         .phy_ops                = &ich8_phy_ops,
5932         .nvm_ops                = &ich8_nvm_ops,
5933 };
5934
5935 const struct e1000_info e1000_pch_lpt_info = {
5936         .mac                    = e1000_pch_lpt,
5937         .flags                  = FLAG_IS_ICH
5938                                   | FLAG_HAS_WOL
5939                                   | FLAG_HAS_HW_TIMESTAMP
5940                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5941                                   | FLAG_HAS_AMT
5942                                   | FLAG_HAS_FLASH
5943                                   | FLAG_HAS_JUMBO_FRAMES
5944                                   | FLAG_APME_IN_WUC,
5945         .flags2                 = FLAG2_HAS_PHY_STATS
5946                                   | FLAG2_HAS_EEE
5947                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5948         .pba                    = 26,
5949         .max_hw_frame_size      = 9022,
5950         .get_variants           = e1000_get_variants_ich8lan,
5951         .mac_ops                = &ich8_mac_ops,
5952         .phy_ops                = &ich8_phy_ops,
5953         .nvm_ops                = &ich8_nvm_ops,
5954 };
5955
5956 const struct e1000_info e1000_pch_spt_info = {
5957         .mac                    = e1000_pch_spt,
5958         .flags                  = FLAG_IS_ICH
5959                                   | FLAG_HAS_WOL
5960                                   | FLAG_HAS_HW_TIMESTAMP
5961                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5962                                   | FLAG_HAS_AMT
5963                                   | FLAG_HAS_FLASH
5964                                   | FLAG_HAS_JUMBO_FRAMES
5965                                   | FLAG_APME_IN_WUC,
5966         .flags2                 = FLAG2_HAS_PHY_STATS
5967                                   | FLAG2_HAS_EEE,
5968         .pba                    = 26,
5969         .max_hw_frame_size      = 9022,
5970         .get_variants           = e1000_get_variants_ich8lan,
5971         .mac_ops                = &ich8_mac_ops,
5972         .phy_ops                = &ich8_phy_ops,
5973         .nvm_ops                = &spt_nvm_ops,
5974 };
5975
5976 const struct e1000_info e1000_pch_cnp_info = {
5977         .mac                    = e1000_pch_cnp,
5978         .flags                  = FLAG_IS_ICH
5979                                   | FLAG_HAS_WOL
5980                                   | FLAG_HAS_HW_TIMESTAMP
5981                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5982                                   | FLAG_HAS_AMT
5983                                   | FLAG_HAS_FLASH
5984                                   | FLAG_HAS_JUMBO_FRAMES
5985                                   | FLAG_APME_IN_WUC,
5986         .flags2                 = FLAG2_HAS_PHY_STATS
5987                                   | FLAG2_HAS_EEE,
5988         .pba                    = 26,
5989         .max_hw_frame_size      = 9022,
5990         .get_variants           = e1000_get_variants_ich8lan,
5991         .mac_ops                = &ich8_mac_ops,
5992         .phy_ops                = &ich8_phy_ops,
5993         .nvm_ops                = &spt_nvm_ops,
5994 };