b142ae6a8eeccbc5b56bdc65c65644985d4e45cb
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11
12 #define HCLGEVF_NAME    "hclgevf"
13
14 #define HCLGEVF_RESET_MAX_FAIL_CNT      5
15
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18                                   unsigned long delay);
19
20 static struct hnae3_ae_algo ae_algovf;
21
22 static struct workqueue_struct *hclgevf_wq;
23
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28         /* required last entry */
29         {0, }
30 };
31
32 static const u8 hclgevf_hash_key[] = {
33         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43                                          HCLGEVF_CMDQ_TX_ADDR_H_REG,
44                                          HCLGEVF_CMDQ_TX_DEPTH_REG,
45                                          HCLGEVF_CMDQ_TX_TAIL_REG,
46                                          HCLGEVF_CMDQ_TX_HEAD_REG,
47                                          HCLGEVF_CMDQ_RX_ADDR_L_REG,
48                                          HCLGEVF_CMDQ_RX_ADDR_H_REG,
49                                          HCLGEVF_CMDQ_RX_DEPTH_REG,
50                                          HCLGEVF_CMDQ_RX_TAIL_REG,
51                                          HCLGEVF_CMDQ_RX_HEAD_REG,
52                                          HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53                                          HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54                                          HCLGEVF_CMDQ_INTR_EN_REG,
55                                          HCLGEVF_CMDQ_INTR_GEN_REG};
56
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58                                            HCLGEVF_RST_ING,
59                                            HCLGEVF_GRO_EN_REG};
60
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62                                          HCLGEVF_RING_RX_ADDR_H_REG,
63                                          HCLGEVF_RING_RX_BD_NUM_REG,
64                                          HCLGEVF_RING_RX_BD_LENGTH_REG,
65                                          HCLGEVF_RING_RX_MERGE_EN_REG,
66                                          HCLGEVF_RING_RX_TAIL_REG,
67                                          HCLGEVF_RING_RX_HEAD_REG,
68                                          HCLGEVF_RING_RX_FBD_NUM_REG,
69                                          HCLGEVF_RING_RX_OFFSET_REG,
70                                          HCLGEVF_RING_RX_FBD_OFFSET_REG,
71                                          HCLGEVF_RING_RX_STASH_REG,
72                                          HCLGEVF_RING_RX_BD_ERR_REG,
73                                          HCLGEVF_RING_TX_ADDR_L_REG,
74                                          HCLGEVF_RING_TX_ADDR_H_REG,
75                                          HCLGEVF_RING_TX_BD_NUM_REG,
76                                          HCLGEVF_RING_TX_PRIORITY_REG,
77                                          HCLGEVF_RING_TX_TC_REG,
78                                          HCLGEVF_RING_TX_MERGE_EN_REG,
79                                          HCLGEVF_RING_TX_TAIL_REG,
80                                          HCLGEVF_RING_TX_HEAD_REG,
81                                          HCLGEVF_RING_TX_FBD_NUM_REG,
82                                          HCLGEVF_RING_TX_OFFSET_REG,
83                                          HCLGEVF_RING_TX_EBD_NUM_REG,
84                                          HCLGEVF_RING_TX_EBD_OFFSET_REG,
85                                          HCLGEVF_RING_TX_BD_ERR_REG,
86                                          HCLGEVF_RING_EN_REG};
87
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89                                              HCLGEVF_TQP_INTR_GL0_REG,
90                                              HCLGEVF_TQP_INTR_GL1_REG,
91                                              HCLGEVF_TQP_INTR_GL2_REG,
92                                              HCLGEVF_TQP_INTR_RL_REG};
93
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96         if (!handle->client)
97                 return container_of(handle, struct hclgevf_dev, nic);
98         else if (handle->client->type == HNAE3_CLIENT_ROCE)
99                 return container_of(handle, struct hclgevf_dev, roce);
100         else
101                 return container_of(handle, struct hclgevf_dev, nic);
102 }
103
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108         struct hclgevf_desc desc;
109         struct hclgevf_tqp *tqp;
110         int status;
111         int i;
112
113         for (i = 0; i < kinfo->num_tqps; i++) {
114                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115                 hclgevf_cmd_setup_basic_desc(&desc,
116                                              HCLGEVF_OPC_QUERY_RX_STATUS,
117                                              true);
118
119                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121                 if (status) {
122                         dev_err(&hdev->pdev->dev,
123                                 "Query tqp stat fail, status = %d,queue = %d\n",
124                                 status, i);
125                         return status;
126                 }
127                 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128                         le32_to_cpu(desc.data[1]);
129
130                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131                                              true);
132
133                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135                 if (status) {
136                         dev_err(&hdev->pdev->dev,
137                                 "Query tqp stat fail, status = %d,queue = %d\n",
138                                 status, i);
139                         return status;
140                 }
141                 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142                         le32_to_cpu(desc.data[1]);
143         }
144
145         return 0;
146 }
147
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151         struct hclgevf_tqp *tqp;
152         u64 *buff = data;
153         int i;
154
155         for (i = 0; i < kinfo->num_tqps; i++) {
156                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157                 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158         }
159         for (i = 0; i < kinfo->num_tqps; i++) {
160                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161                 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162         }
163
164         return buff;
165 }
166
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170
171         return kinfo->num_tqps * 2;
172 }
173
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177         u8 *buff = data;
178         int i;
179
180         for (i = 0; i < kinfo->num_tqps; i++) {
181                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182                                                        struct hclgevf_tqp, q);
183                 snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
184                          tqp->index);
185                 buff += ETH_GSTRING_LEN;
186         }
187
188         for (i = 0; i < kinfo->num_tqps; i++) {
189                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190                                                        struct hclgevf_tqp, q);
191                 snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
192                          tqp->index);
193                 buff += ETH_GSTRING_LEN;
194         }
195
196         return buff;
197 }
198
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200                                  struct net_device_stats *net_stats)
201 {
202         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203         int status;
204
205         status = hclgevf_tqps_update_stats(handle);
206         if (status)
207                 dev_err(&hdev->pdev->dev,
208                         "VF update of TQPS stats fail, status = %d.\n",
209                         status);
210 }
211
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214         if (strset == ETH_SS_TEST)
215                 return -EOPNOTSUPP;
216         else if (strset == ETH_SS_STATS)
217                 return hclgevf_tqps_get_sset_count(handle, strset);
218
219         return 0;
220 }
221
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223                                 u8 *data)
224 {
225         u8 *p = (char *)data;
226
227         if (strset == ETH_SS_STATS)
228                 p = hclgevf_tqps_get_strings(handle, p);
229 }
230
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233         hclgevf_tqps_get_stats(handle, data);
234 }
235
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237                                    u8 subcode)
238 {
239         if (msg) {
240                 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241                 msg->code = code;
242                 msg->subcode = subcode;
243         }
244 }
245
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248         struct hclge_vf_to_pf_msg send_msg;
249         u8 resp_msg;
250         int status;
251
252         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254                                       sizeof(resp_msg));
255         if (status) {
256                 dev_err(&hdev->pdev->dev,
257                         "VF request to get TC info from PF failed %d",
258                         status);
259                 return status;
260         }
261
262         hdev->hw_tc_map = resp_msg;
263
264         return 0;
265 }
266
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269         struct hnae3_handle *nic = &hdev->nic;
270         struct hclge_vf_to_pf_msg send_msg;
271         u8 resp_msg;
272         int ret;
273
274         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275                                HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277                                    sizeof(u8));
278         if (ret) {
279                 dev_err(&hdev->pdev->dev,
280                         "VF request to get port based vlan state failed %d",
281                         ret);
282                 return ret;
283         }
284
285         nic->port_base_vlan_state = resp_msg;
286
287         return 0;
288 }
289
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN       6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET       0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET    2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET       4
296
297         u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298         struct hclge_vf_to_pf_msg send_msg;
299         int status;
300
301         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303                                       HCLGEVF_TQPS_RSS_INFO_LEN);
304         if (status) {
305                 dev_err(&hdev->pdev->dev,
306                         "VF request to get tqp info from PF failed %d",
307                         status);
308                 return status;
309         }
310
311         memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312                sizeof(u16));
313         memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314                sizeof(u16));
315         memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316                sizeof(u16));
317
318         return 0;
319 }
320
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN     4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2
326
327         u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328         struct hclge_vf_to_pf_msg send_msg;
329         int ret;
330
331         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333                                    HCLGEVF_TQPS_DEPTH_INFO_LEN);
334         if (ret) {
335                 dev_err(&hdev->pdev->dev,
336                         "VF request to get tqp depth info from PF failed %d",
337                         ret);
338                 return ret;
339         }
340
341         memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342                sizeof(u16));
343         memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344                sizeof(u16));
345
346         return 0;
347 }
348
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352         struct hclge_vf_to_pf_msg send_msg;
353         u16 qid_in_pf = 0;
354         u8 resp_data[2];
355         int ret;
356
357         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358         memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360                                    sizeof(resp_data));
361         if (!ret)
362                 qid_in_pf = *(u16 *)resp_data;
363
364         return qid_in_pf;
365 }
366
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369         struct hclge_vf_to_pf_msg send_msg;
370         u8 resp_msg[2];
371         int ret;
372
373         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375                                    sizeof(resp_msg));
376         if (ret) {
377                 dev_err(&hdev->pdev->dev,
378                         "VF request to get the pf port media type failed %d",
379                         ret);
380                 return ret;
381         }
382
383         hdev->hw.mac.media_type = resp_msg[0];
384         hdev->hw.mac.module_type = resp_msg[1];
385
386         return 0;
387 }
388
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391         struct hclgevf_tqp *tqp;
392         int i;
393
394         hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395                                   sizeof(struct hclgevf_tqp), GFP_KERNEL);
396         if (!hdev->htqp)
397                 return -ENOMEM;
398
399         tqp = hdev->htqp;
400
401         for (i = 0; i < hdev->num_tqps; i++) {
402                 tqp->dev = &hdev->pdev->dev;
403                 tqp->index = i;
404
405                 tqp->q.ae_algo = &ae_algovf;
406                 tqp->q.buf_size = hdev->rx_buf_len;
407                 tqp->q.tx_desc_num = hdev->num_tx_desc;
408                 tqp->q.rx_desc_num = hdev->num_rx_desc;
409
410                 /* need an extended offset to configure queues >=
411                  * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412                  */
413                 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414                         tqp->q.io_base = hdev->hw.io_base +
415                                          HCLGEVF_TQP_REG_OFFSET +
416                                          i * HCLGEVF_TQP_REG_SIZE;
417                 else
418                         tqp->q.io_base = hdev->hw.io_base +
419                                          HCLGEVF_TQP_REG_OFFSET +
420                                          HCLGEVF_TQP_EXT_REG_OFFSET +
421                                          (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422                                          HCLGEVF_TQP_REG_SIZE;
423
424                 tqp++;
425         }
426
427         return 0;
428 }
429
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432         struct hnae3_handle *nic = &hdev->nic;
433         struct hnae3_knic_private_info *kinfo;
434         u16 new_tqps = hdev->num_tqps;
435         unsigned int i;
436
437         kinfo = &nic->kinfo;
438         kinfo->num_tc = 0;
439         kinfo->num_tx_desc = hdev->num_tx_desc;
440         kinfo->num_rx_desc = hdev->num_rx_desc;
441         kinfo->rx_buf_len = hdev->rx_buf_len;
442         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443                 if (hdev->hw_tc_map & BIT(i))
444                         kinfo->num_tc++;
445
446         kinfo->rss_size
447                 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
448         new_tqps = kinfo->rss_size * kinfo->num_tc;
449         kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
450
451         kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
452                                   sizeof(struct hnae3_queue *), GFP_KERNEL);
453         if (!kinfo->tqp)
454                 return -ENOMEM;
455
456         for (i = 0; i < kinfo->num_tqps; i++) {
457                 hdev->htqp[i].q.handle = &hdev->nic;
458                 hdev->htqp[i].q.tqp_index = i;
459                 kinfo->tqp[i] = &hdev->htqp[i].q;
460         }
461
462         /* after init the max rss_size and tqps, adjust the default tqp numbers
463          * and rss size with the actual vector numbers
464          */
465         kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
466         kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
467                                 kinfo->rss_size);
468
469         return 0;
470 }
471
472 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
473 {
474         struct hclge_vf_to_pf_msg send_msg;
475         int status;
476
477         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
478         status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
479         if (status)
480                 dev_err(&hdev->pdev->dev,
481                         "VF failed to fetch link status(%d) from PF", status);
482 }
483
484 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
485 {
486         struct hnae3_handle *rhandle = &hdev->roce;
487         struct hnae3_handle *handle = &hdev->nic;
488         struct hnae3_client *rclient;
489         struct hnae3_client *client;
490
491         if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
492                 return;
493
494         client = handle->client;
495         rclient = hdev->roce_client;
496
497         link_state =
498                 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
499
500         if (link_state != hdev->hw.mac.link) {
501                 client->ops->link_status_change(handle, !!link_state);
502                 if (rclient && rclient->ops->link_status_change)
503                         rclient->ops->link_status_change(rhandle, !!link_state);
504                 hdev->hw.mac.link = link_state;
505         }
506
507         clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
508 }
509
510 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
511 {
512 #define HCLGEVF_ADVERTISING     0
513 #define HCLGEVF_SUPPORTED       1
514
515         struct hclge_vf_to_pf_msg send_msg;
516
517         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
518         send_msg.data[0] = HCLGEVF_ADVERTISING;
519         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
520         send_msg.data[0] = HCLGEVF_SUPPORTED;
521         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
522 }
523
524 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
525 {
526         struct hnae3_handle *nic = &hdev->nic;
527         int ret;
528
529         nic->ae_algo = &ae_algovf;
530         nic->pdev = hdev->pdev;
531         nic->numa_node_mask = hdev->numa_node_mask;
532         nic->flags |= HNAE3_SUPPORT_VF;
533
534         ret = hclgevf_knic_setup(hdev);
535         if (ret)
536                 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
537                         ret);
538         return ret;
539 }
540
541 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
542 {
543         if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
544                 dev_warn(&hdev->pdev->dev,
545                          "vector(vector_id %d) has been freed.\n", vector_id);
546                 return;
547         }
548
549         hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
550         hdev->num_msi_left += 1;
551         hdev->num_msi_used -= 1;
552 }
553
554 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
555                               struct hnae3_vector_info *vector_info)
556 {
557         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
558         struct hnae3_vector_info *vector = vector_info;
559         int alloc = 0;
560         int i, j;
561
562         vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
563         vector_num = min(hdev->num_msi_left, vector_num);
564
565         for (j = 0; j < vector_num; j++) {
566                 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
567                         if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
568                                 vector->vector = pci_irq_vector(hdev->pdev, i);
569                                 vector->io_addr = hdev->hw.io_base +
570                                         HCLGEVF_VECTOR_REG_BASE +
571                                         (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
572                                 hdev->vector_status[i] = 0;
573                                 hdev->vector_irq[i] = vector->vector;
574
575                                 vector++;
576                                 alloc++;
577
578                                 break;
579                         }
580                 }
581         }
582         hdev->num_msi_left -= alloc;
583         hdev->num_msi_used += alloc;
584
585         return alloc;
586 }
587
588 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
589 {
590         int i;
591
592         for (i = 0; i < hdev->num_msi; i++)
593                 if (vector == hdev->vector_irq[i])
594                         return i;
595
596         return -EINVAL;
597 }
598
599 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
600                                     const u8 hfunc, const u8 *key)
601 {
602         struct hclgevf_rss_config_cmd *req;
603         unsigned int key_offset = 0;
604         struct hclgevf_desc desc;
605         int key_counts;
606         int key_size;
607         int ret;
608
609         key_counts = HCLGEVF_RSS_KEY_SIZE;
610         req = (struct hclgevf_rss_config_cmd *)desc.data;
611
612         while (key_counts) {
613                 hclgevf_cmd_setup_basic_desc(&desc,
614                                              HCLGEVF_OPC_RSS_GENERIC_CONFIG,
615                                              false);
616
617                 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
618                 req->hash_config |=
619                         (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
620
621                 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
622                 memcpy(req->hash_key,
623                        key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
624
625                 key_counts -= key_size;
626                 key_offset++;
627                 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
628                 if (ret) {
629                         dev_err(&hdev->pdev->dev,
630                                 "Configure RSS config fail, status = %d\n",
631                                 ret);
632                         return ret;
633                 }
634         }
635
636         return 0;
637 }
638
639 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
640 {
641         return HCLGEVF_RSS_KEY_SIZE;
642 }
643
644 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
645 {
646         return HCLGEVF_RSS_IND_TBL_SIZE;
647 }
648
649 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
650 {
651         const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
652         struct hclgevf_rss_indirection_table_cmd *req;
653         struct hclgevf_desc desc;
654         int status;
655         int i, j;
656
657         req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
658
659         for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
660                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
661                                              false);
662                 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
663                 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
664                 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
665                         req->rss_result[j] =
666                                 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
667
668                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
669                 if (status) {
670                         dev_err(&hdev->pdev->dev,
671                                 "VF failed(=%d) to set RSS indirection table\n",
672                                 status);
673                         return status;
674                 }
675         }
676
677         return 0;
678 }
679
680 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
681 {
682         struct hclgevf_rss_tc_mode_cmd *req;
683         u16 tc_offset[HCLGEVF_MAX_TC_NUM];
684         u16 tc_valid[HCLGEVF_MAX_TC_NUM];
685         u16 tc_size[HCLGEVF_MAX_TC_NUM];
686         struct hclgevf_desc desc;
687         u16 roundup_size;
688         unsigned int i;
689         int status;
690
691         req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
692
693         roundup_size = roundup_pow_of_two(rss_size);
694         roundup_size = ilog2(roundup_size);
695
696         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
697                 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
698                 tc_size[i] = roundup_size;
699                 tc_offset[i] = rss_size * i;
700         }
701
702         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
703         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
704                 hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
705                               (tc_valid[i] & 0x1));
706                 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
707                                 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
708                 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
709                                 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
710         }
711         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
712         if (status)
713                 dev_err(&hdev->pdev->dev,
714                         "VF failed(=%d) to set rss tc mode\n", status);
715
716         return status;
717 }
718
719 /* for revision 0x20, vf shared the same rss config with pf */
720 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
721 {
722 #define HCLGEVF_RSS_MBX_RESP_LEN        8
723         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
724         u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
725         struct hclge_vf_to_pf_msg send_msg;
726         u16 msg_num, hash_key_index;
727         u8 index;
728         int ret;
729
730         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
731         msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
732                         HCLGEVF_RSS_MBX_RESP_LEN;
733         for (index = 0; index < msg_num; index++) {
734                 send_msg.data[0] = index;
735                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
736                                            HCLGEVF_RSS_MBX_RESP_LEN);
737                 if (ret) {
738                         dev_err(&hdev->pdev->dev,
739                                 "VF get rss hash key from PF failed, ret=%d",
740                                 ret);
741                         return ret;
742                 }
743
744                 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
745                 if (index == msg_num - 1)
746                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
747                                &resp_msg[0],
748                                HCLGEVF_RSS_KEY_SIZE - hash_key_index);
749                 else
750                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
751                                &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
752         }
753
754         return 0;
755 }
756
757 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
758                            u8 *hfunc)
759 {
760         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
761         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
762         int i, ret;
763
764         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
765                 /* Get hash algorithm */
766                 if (hfunc) {
767                         switch (rss_cfg->hash_algo) {
768                         case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
769                                 *hfunc = ETH_RSS_HASH_TOP;
770                                 break;
771                         case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
772                                 *hfunc = ETH_RSS_HASH_XOR;
773                                 break;
774                         default:
775                                 *hfunc = ETH_RSS_HASH_UNKNOWN;
776                                 break;
777                         }
778                 }
779
780                 /* Get the RSS Key required by the user */
781                 if (key)
782                         memcpy(key, rss_cfg->rss_hash_key,
783                                HCLGEVF_RSS_KEY_SIZE);
784         } else {
785                 if (hfunc)
786                         *hfunc = ETH_RSS_HASH_TOP;
787                 if (key) {
788                         ret = hclgevf_get_rss_hash_key(hdev);
789                         if (ret)
790                                 return ret;
791                         memcpy(key, rss_cfg->rss_hash_key,
792                                HCLGEVF_RSS_KEY_SIZE);
793                 }
794         }
795
796         if (indir)
797                 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
798                         indir[i] = rss_cfg->rss_indirection_tbl[i];
799
800         return 0;
801 }
802
803 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
804                            const u8 *key, const u8 hfunc)
805 {
806         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
807         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
808         int ret, i;
809
810         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
811                 /* Set the RSS Hash Key if specififed by the user */
812                 if (key) {
813                         switch (hfunc) {
814                         case ETH_RSS_HASH_TOP:
815                                 rss_cfg->hash_algo =
816                                         HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
817                                 break;
818                         case ETH_RSS_HASH_XOR:
819                                 rss_cfg->hash_algo =
820                                         HCLGEVF_RSS_HASH_ALGO_SIMPLE;
821                                 break;
822                         case ETH_RSS_HASH_NO_CHANGE:
823                                 break;
824                         default:
825                                 return -EINVAL;
826                         }
827
828                         ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
829                                                        key);
830                         if (ret)
831                                 return ret;
832
833                         /* Update the shadow RSS key with user specified qids */
834                         memcpy(rss_cfg->rss_hash_key, key,
835                                HCLGEVF_RSS_KEY_SIZE);
836                 }
837         }
838
839         /* update the shadow RSS table with user specified qids */
840         for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
841                 rss_cfg->rss_indirection_tbl[i] = indir[i];
842
843         /* update the hardware */
844         return hclgevf_set_rss_indir_table(hdev);
845 }
846
847 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
848 {
849         u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
850
851         if (nfc->data & RXH_L4_B_2_3)
852                 hash_sets |= HCLGEVF_D_PORT_BIT;
853         else
854                 hash_sets &= ~HCLGEVF_D_PORT_BIT;
855
856         if (nfc->data & RXH_IP_SRC)
857                 hash_sets |= HCLGEVF_S_IP_BIT;
858         else
859                 hash_sets &= ~HCLGEVF_S_IP_BIT;
860
861         if (nfc->data & RXH_IP_DST)
862                 hash_sets |= HCLGEVF_D_IP_BIT;
863         else
864                 hash_sets &= ~HCLGEVF_D_IP_BIT;
865
866         if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
867                 hash_sets |= HCLGEVF_V_TAG_BIT;
868
869         return hash_sets;
870 }
871
872 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
873                                  struct ethtool_rxnfc *nfc)
874 {
875         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
876         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
877         struct hclgevf_rss_input_tuple_cmd *req;
878         struct hclgevf_desc desc;
879         u8 tuple_sets;
880         int ret;
881
882         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
883                 return -EOPNOTSUPP;
884
885         if (nfc->data &
886             ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
887                 return -EINVAL;
888
889         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
890         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
891
892         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
893         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
894         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
895         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
896         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
897         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
898         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
899         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
900
901         tuple_sets = hclgevf_get_rss_hash_bits(nfc);
902         switch (nfc->flow_type) {
903         case TCP_V4_FLOW:
904                 req->ipv4_tcp_en = tuple_sets;
905                 break;
906         case TCP_V6_FLOW:
907                 req->ipv6_tcp_en = tuple_sets;
908                 break;
909         case UDP_V4_FLOW:
910                 req->ipv4_udp_en = tuple_sets;
911                 break;
912         case UDP_V6_FLOW:
913                 req->ipv6_udp_en = tuple_sets;
914                 break;
915         case SCTP_V4_FLOW:
916                 req->ipv4_sctp_en = tuple_sets;
917                 break;
918         case SCTP_V6_FLOW:
919                 if ((nfc->data & RXH_L4_B_0_1) ||
920                     (nfc->data & RXH_L4_B_2_3))
921                         return -EINVAL;
922
923                 req->ipv6_sctp_en = tuple_sets;
924                 break;
925         case IPV4_FLOW:
926                 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
927                 break;
928         case IPV6_FLOW:
929                 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
930                 break;
931         default:
932                 return -EINVAL;
933         }
934
935         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
936         if (ret) {
937                 dev_err(&hdev->pdev->dev,
938                         "Set rss tuple fail, status = %d\n", ret);
939                 return ret;
940         }
941
942         rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
943         rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
944         rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
945         rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
946         rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
947         rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
948         rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
949         rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
950         return 0;
951 }
952
953 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
954                                  struct ethtool_rxnfc *nfc)
955 {
956         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
957         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
958         u8 tuple_sets;
959
960         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
961                 return -EOPNOTSUPP;
962
963         nfc->data = 0;
964
965         switch (nfc->flow_type) {
966         case TCP_V4_FLOW:
967                 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
968                 break;
969         case UDP_V4_FLOW:
970                 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
971                 break;
972         case TCP_V6_FLOW:
973                 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
974                 break;
975         case UDP_V6_FLOW:
976                 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
977                 break;
978         case SCTP_V4_FLOW:
979                 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
980                 break;
981         case SCTP_V6_FLOW:
982                 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
983                 break;
984         case IPV4_FLOW:
985         case IPV6_FLOW:
986                 tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
987                 break;
988         default:
989                 return -EINVAL;
990         }
991
992         if (!tuple_sets)
993                 return 0;
994
995         if (tuple_sets & HCLGEVF_D_PORT_BIT)
996                 nfc->data |= RXH_L4_B_2_3;
997         if (tuple_sets & HCLGEVF_S_PORT_BIT)
998                 nfc->data |= RXH_L4_B_0_1;
999         if (tuple_sets & HCLGEVF_D_IP_BIT)
1000                 nfc->data |= RXH_IP_DST;
1001         if (tuple_sets & HCLGEVF_S_IP_BIT)
1002                 nfc->data |= RXH_IP_SRC;
1003
1004         return 0;
1005 }
1006
1007 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1008                                        struct hclgevf_rss_cfg *rss_cfg)
1009 {
1010         struct hclgevf_rss_input_tuple_cmd *req;
1011         struct hclgevf_desc desc;
1012         int ret;
1013
1014         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1015
1016         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1017
1018         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1019         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1020         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1021         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1022         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1023         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1024         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1025         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1026
1027         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1028         if (ret)
1029                 dev_err(&hdev->pdev->dev,
1030                         "Configure rss input fail, status = %d\n", ret);
1031         return ret;
1032 }
1033
1034 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1035 {
1036         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1037         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1038
1039         return rss_cfg->rss_size;
1040 }
1041
1042 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1043                                        int vector_id,
1044                                        struct hnae3_ring_chain_node *ring_chain)
1045 {
1046         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1047         struct hclge_vf_to_pf_msg send_msg;
1048         struct hnae3_ring_chain_node *node;
1049         int status;
1050         int i = 0;
1051
1052         memset(&send_msg, 0, sizeof(send_msg));
1053         send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1054                 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1055         send_msg.vector_id = vector_id;
1056
1057         for (node = ring_chain; node; node = node->next) {
1058                 send_msg.param[i].ring_type =
1059                                 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1060
1061                 send_msg.param[i].tqp_index = node->tqp_index;
1062                 send_msg.param[i].int_gl_index =
1063                                         hnae3_get_field(node->int_gl_idx,
1064                                                         HNAE3_RING_GL_IDX_M,
1065                                                         HNAE3_RING_GL_IDX_S);
1066
1067                 i++;
1068                 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1069                         send_msg.ring_num = i;
1070
1071                         status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1072                                                       NULL, 0);
1073                         if (status) {
1074                                 dev_err(&hdev->pdev->dev,
1075                                         "Map TQP fail, status is %d.\n",
1076                                         status);
1077                                 return status;
1078                         }
1079                         i = 0;
1080                 }
1081         }
1082
1083         return 0;
1084 }
1085
1086 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1087                                       struct hnae3_ring_chain_node *ring_chain)
1088 {
1089         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1090         int vector_id;
1091
1092         vector_id = hclgevf_get_vector_index(hdev, vector);
1093         if (vector_id < 0) {
1094                 dev_err(&handle->pdev->dev,
1095                         "Get vector index fail. ret =%d\n", vector_id);
1096                 return vector_id;
1097         }
1098
1099         return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1100 }
1101
1102 static int hclgevf_unmap_ring_from_vector(
1103                                 struct hnae3_handle *handle,
1104                                 int vector,
1105                                 struct hnae3_ring_chain_node *ring_chain)
1106 {
1107         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1108         int ret, vector_id;
1109
1110         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1111                 return 0;
1112
1113         vector_id = hclgevf_get_vector_index(hdev, vector);
1114         if (vector_id < 0) {
1115                 dev_err(&handle->pdev->dev,
1116                         "Get vector index fail. ret =%d\n", vector_id);
1117                 return vector_id;
1118         }
1119
1120         ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1121         if (ret)
1122                 dev_err(&handle->pdev->dev,
1123                         "Unmap ring from vector fail. vector=%d, ret =%d\n",
1124                         vector_id,
1125                         ret);
1126
1127         return ret;
1128 }
1129
1130 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1131 {
1132         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1133         int vector_id;
1134
1135         vector_id = hclgevf_get_vector_index(hdev, vector);
1136         if (vector_id < 0) {
1137                 dev_err(&handle->pdev->dev,
1138                         "hclgevf_put_vector get vector index fail. ret =%d\n",
1139                         vector_id);
1140                 return vector_id;
1141         }
1142
1143         hclgevf_free_vector(hdev, vector_id);
1144
1145         return 0;
1146 }
1147
1148 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1149                                         bool en_uc_pmc, bool en_mc_pmc,
1150                                         bool en_bc_pmc)
1151 {
1152         struct hnae3_handle *handle = &hdev->nic;
1153         struct hclge_vf_to_pf_msg send_msg;
1154         int ret;
1155
1156         memset(&send_msg, 0, sizeof(send_msg));
1157         send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1158         send_msg.en_bc = en_bc_pmc ? 1 : 0;
1159         send_msg.en_uc = en_uc_pmc ? 1 : 0;
1160         send_msg.en_mc = en_mc_pmc ? 1 : 0;
1161         send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1162                                              &handle->priv_flags) ? 1 : 0;
1163
1164         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1165         if (ret)
1166                 dev_err(&hdev->pdev->dev,
1167                         "Set promisc mode fail, status is %d.\n", ret);
1168
1169         return ret;
1170 }
1171
1172 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1173                                     bool en_mc_pmc)
1174 {
1175         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1176         bool en_bc_pmc;
1177
1178         en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1179
1180         return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1181                                             en_bc_pmc);
1182 }
1183
1184 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1185 {
1186         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1187
1188         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1189         hclgevf_task_schedule(hdev, 0);
1190 }
1191
1192 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1193 {
1194         struct hnae3_handle *handle = &hdev->nic;
1195         bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1196         bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1197         int ret;
1198
1199         if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1200                 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1201                 if (!ret)
1202                         clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1203         }
1204 }
1205
1206 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1207                               int stream_id, bool enable)
1208 {
1209         struct hclgevf_cfg_com_tqp_queue_cmd *req;
1210         struct hclgevf_desc desc;
1211         int status;
1212
1213         req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1214
1215         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1216                                      false);
1217         req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1218         req->stream_id = cpu_to_le16(stream_id);
1219         if (enable)
1220                 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1221
1222         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1223         if (status)
1224                 dev_err(&hdev->pdev->dev,
1225                         "TQP enable fail, status =%d.\n", status);
1226
1227         return status;
1228 }
1229
1230 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1231 {
1232         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1233         struct hclgevf_tqp *tqp;
1234         int i;
1235
1236         for (i = 0; i < kinfo->num_tqps; i++) {
1237                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1238                 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1239         }
1240 }
1241
1242 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1243 {
1244         struct hclge_vf_to_pf_msg send_msg;
1245         u8 host_mac[ETH_ALEN];
1246         int status;
1247
1248         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1249         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1250                                       ETH_ALEN);
1251         if (status) {
1252                 dev_err(&hdev->pdev->dev,
1253                         "fail to get VF MAC from host %d", status);
1254                 return status;
1255         }
1256
1257         ether_addr_copy(p, host_mac);
1258
1259         return 0;
1260 }
1261
1262 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1263 {
1264         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1265         u8 host_mac_addr[ETH_ALEN];
1266
1267         if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1268                 return;
1269
1270         hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1271         if (hdev->has_pf_mac)
1272                 ether_addr_copy(p, host_mac_addr);
1273         else
1274                 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1275 }
1276
1277 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1278                                 bool is_first)
1279 {
1280         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1281         u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1282         struct hclge_vf_to_pf_msg send_msg;
1283         u8 *new_mac_addr = (u8 *)p;
1284         int status;
1285
1286         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1287         send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1288         ether_addr_copy(send_msg.data, new_mac_addr);
1289         if (is_first && !hdev->has_pf_mac)
1290                 eth_zero_addr(&send_msg.data[ETH_ALEN]);
1291         else
1292                 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1293         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1294         if (!status)
1295                 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1296
1297         return status;
1298 }
1299
1300 static struct hclgevf_mac_addr_node *
1301 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1302 {
1303         struct hclgevf_mac_addr_node *mac_node, *tmp;
1304
1305         list_for_each_entry_safe(mac_node, tmp, list, node)
1306                 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1307                         return mac_node;
1308
1309         return NULL;
1310 }
1311
1312 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1313                                     enum HCLGEVF_MAC_NODE_STATE state)
1314 {
1315         switch (state) {
1316         /* from set_rx_mode or tmp_add_list */
1317         case HCLGEVF_MAC_TO_ADD:
1318                 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1319                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1320                 break;
1321         /* only from set_rx_mode */
1322         case HCLGEVF_MAC_TO_DEL:
1323                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1324                         list_del(&mac_node->node);
1325                         kfree(mac_node);
1326                 } else {
1327                         mac_node->state = HCLGEVF_MAC_TO_DEL;
1328                 }
1329                 break;
1330         /* only from tmp_add_list, the mac_node->state won't be
1331          * HCLGEVF_MAC_ACTIVE
1332          */
1333         case HCLGEVF_MAC_ACTIVE:
1334                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1335                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1336                 break;
1337         }
1338 }
1339
1340 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1341                                    enum HCLGEVF_MAC_NODE_STATE state,
1342                                    enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1343                                    const unsigned char *addr)
1344 {
1345         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1346         struct hclgevf_mac_addr_node *mac_node;
1347         struct list_head *list;
1348
1349         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1350                &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1351
1352         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1353
1354         /* if the mac addr is already in the mac list, no need to add a new
1355          * one into it, just check the mac addr state, convert it to a new
1356          * new state, or just remove it, or do nothing.
1357          */
1358         mac_node = hclgevf_find_mac_node(list, addr);
1359         if (mac_node) {
1360                 hclgevf_update_mac_node(mac_node, state);
1361                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1362                 return 0;
1363         }
1364         /* if this address is never added, unnecessary to delete */
1365         if (state == HCLGEVF_MAC_TO_DEL) {
1366                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1367                 return -ENOENT;
1368         }
1369
1370         mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1371         if (!mac_node) {
1372                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1373                 return -ENOMEM;
1374         }
1375
1376         mac_node->state = state;
1377         ether_addr_copy(mac_node->mac_addr, addr);
1378         list_add_tail(&mac_node->node, list);
1379
1380         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1381         return 0;
1382 }
1383
1384 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1385                                const unsigned char *addr)
1386 {
1387         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1388                                        HCLGEVF_MAC_ADDR_UC, addr);
1389 }
1390
1391 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1392                               const unsigned char *addr)
1393 {
1394         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1395                                        HCLGEVF_MAC_ADDR_UC, addr);
1396 }
1397
1398 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1399                                const unsigned char *addr)
1400 {
1401         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1402                                        HCLGEVF_MAC_ADDR_MC, addr);
1403 }
1404
1405 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1406                               const unsigned char *addr)
1407 {
1408         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1409                                        HCLGEVF_MAC_ADDR_MC, addr);
1410 }
1411
1412 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1413                                     struct hclgevf_mac_addr_node *mac_node,
1414                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1415 {
1416         struct hclge_vf_to_pf_msg send_msg;
1417         u8 code, subcode;
1418
1419         if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1420                 code = HCLGE_MBX_SET_UNICAST;
1421                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1422                         subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1423                 else
1424                         subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1425         } else {
1426                 code = HCLGE_MBX_SET_MULTICAST;
1427                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1428                         subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1429                 else
1430                         subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1431         }
1432
1433         hclgevf_build_send_msg(&send_msg, code, subcode);
1434         ether_addr_copy(send_msg.data, mac_node->mac_addr);
1435         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1436 }
1437
1438 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1439                                     struct list_head *list,
1440                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1441 {
1442         struct hclgevf_mac_addr_node *mac_node, *tmp;
1443         int ret;
1444
1445         list_for_each_entry_safe(mac_node, tmp, list, node) {
1446                 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1447                 if  (ret) {
1448                         dev_err(&hdev->pdev->dev,
1449                                 "failed to configure mac %pM, state = %d, ret = %d\n",
1450                                 mac_node->mac_addr, mac_node->state, ret);
1451                         return;
1452                 }
1453                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1454                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1455                 } else {
1456                         list_del(&mac_node->node);
1457                         kfree(mac_node);
1458                 }
1459         }
1460 }
1461
1462 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1463                                        struct list_head *mac_list)
1464 {
1465         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1466
1467         list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1468                 /* if the mac address from tmp_add_list is not in the
1469                  * uc/mc_mac_list, it means have received a TO_DEL request
1470                  * during the time window of sending mac config request to PF
1471                  * If mac_node state is ACTIVE, then change its state to TO_DEL,
1472                  * then it will be removed at next time. If is TO_ADD, it means
1473                  * send TO_ADD request failed, so just remove the mac node.
1474                  */
1475                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1476                 if (new_node) {
1477                         hclgevf_update_mac_node(new_node, mac_node->state);
1478                         list_del(&mac_node->node);
1479                         kfree(mac_node);
1480                 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1481                         mac_node->state = HCLGEVF_MAC_TO_DEL;
1482                         list_del(&mac_node->node);
1483                         list_add_tail(&mac_node->node, mac_list);
1484                 } else {
1485                         list_del(&mac_node->node);
1486                         kfree(mac_node);
1487                 }
1488         }
1489 }
1490
1491 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1492                                        struct list_head *mac_list)
1493 {
1494         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1495
1496         list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1497                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1498                 if (new_node) {
1499                         /* If the mac addr is exist in the mac list, it means
1500                          * received a new request TO_ADD during the time window
1501                          * of sending mac addr configurrequest to PF, so just
1502                          * change the mac state to ACTIVE.
1503                          */
1504                         new_node->state = HCLGEVF_MAC_ACTIVE;
1505                         list_del(&mac_node->node);
1506                         kfree(mac_node);
1507                 } else {
1508                         list_del(&mac_node->node);
1509                         list_add_tail(&mac_node->node, mac_list);
1510                 }
1511         }
1512 }
1513
1514 static void hclgevf_clear_list(struct list_head *list)
1515 {
1516         struct hclgevf_mac_addr_node *mac_node, *tmp;
1517
1518         list_for_each_entry_safe(mac_node, tmp, list, node) {
1519                 list_del(&mac_node->node);
1520                 kfree(mac_node);
1521         }
1522 }
1523
1524 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1525                                   enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1526 {
1527         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1528         struct list_head tmp_add_list, tmp_del_list;
1529         struct list_head *list;
1530
1531         INIT_LIST_HEAD(&tmp_add_list);
1532         INIT_LIST_HEAD(&tmp_del_list);
1533
1534         /* move the mac addr to the tmp_add_list and tmp_del_list, then
1535          * we can add/delete these mac addr outside the spin lock
1536          */
1537         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1538                 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1539
1540         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1541
1542         list_for_each_entry_safe(mac_node, tmp, list, node) {
1543                 switch (mac_node->state) {
1544                 case HCLGEVF_MAC_TO_DEL:
1545                         list_del(&mac_node->node);
1546                         list_add_tail(&mac_node->node, &tmp_del_list);
1547                         break;
1548                 case HCLGEVF_MAC_TO_ADD:
1549                         new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1550                         if (!new_node)
1551                                 goto stop_traverse;
1552
1553                         ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1554                         new_node->state = mac_node->state;
1555                         list_add_tail(&new_node->node, &tmp_add_list);
1556                         break;
1557                 default:
1558                         break;
1559                 }
1560         }
1561
1562 stop_traverse:
1563         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1564
1565         /* delete first, in order to get max mac table space for adding */
1566         hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1567         hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1568
1569         /* if some mac addresses were added/deleted fail, move back to the
1570          * mac_list, and retry at next time.
1571          */
1572         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1573
1574         hclgevf_sync_from_del_list(&tmp_del_list, list);
1575         hclgevf_sync_from_add_list(&tmp_add_list, list);
1576
1577         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1578 }
1579
1580 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1581 {
1582         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1583         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1584 }
1585
1586 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1587 {
1588         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1589
1590         hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1591         hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1592
1593         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1594 }
1595
1596 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1597                                    __be16 proto, u16 vlan_id,
1598                                    bool is_kill)
1599 {
1600 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0
1601 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1
1602 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET   3
1603
1604         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1605         struct hclge_vf_to_pf_msg send_msg;
1606         int ret;
1607
1608         if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1609                 return -EINVAL;
1610
1611         if (proto != htons(ETH_P_8021Q))
1612                 return -EPROTONOSUPPORT;
1613
1614         /* When device is resetting or reset failed, firmware is unable to
1615          * handle mailbox. Just record the vlan id, and remove it after
1616          * reset finished.
1617          */
1618         if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1619              test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1620                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1621                 return -EBUSY;
1622         }
1623
1624         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1625                                HCLGE_MBX_VLAN_FILTER);
1626         send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1627         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1628                sizeof(vlan_id));
1629         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1630                sizeof(proto));
1631         /* when remove hw vlan filter failed, record the vlan id,
1632          * and try to remove it from hw later, to be consistence
1633          * with stack.
1634          */
1635         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1636         if (is_kill && ret)
1637                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1638
1639         return ret;
1640 }
1641
1642 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1643 {
1644 #define HCLGEVF_MAX_SYNC_COUNT  60
1645         struct hnae3_handle *handle = &hdev->nic;
1646         int ret, sync_cnt = 0;
1647         u16 vlan_id;
1648
1649         vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1650         while (vlan_id != VLAN_N_VID) {
1651                 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1652                                               vlan_id, true);
1653                 if (ret)
1654                         return;
1655
1656                 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1657                 sync_cnt++;
1658                 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1659                         return;
1660
1661                 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1662         }
1663 }
1664
1665 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1666 {
1667         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1668         struct hclge_vf_to_pf_msg send_msg;
1669
1670         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1671                                HCLGE_MBX_VLAN_RX_OFF_CFG);
1672         send_msg.data[0] = enable ? 1 : 0;
1673         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1674 }
1675
1676 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1677 {
1678         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1679         struct hclge_vf_to_pf_msg send_msg;
1680         int ret;
1681
1682         /* disable vf queue before send queue reset msg to PF */
1683         ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1684         if (ret)
1685                 return ret;
1686
1687         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1688         memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1689         return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1690 }
1691
1692 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1693 {
1694         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1695         struct hclge_vf_to_pf_msg send_msg;
1696
1697         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1698         memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1699         return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1700 }
1701
1702 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1703                                  enum hnae3_reset_notify_type type)
1704 {
1705         struct hnae3_client *client = hdev->nic_client;
1706         struct hnae3_handle *handle = &hdev->nic;
1707         int ret;
1708
1709         if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1710             !client)
1711                 return 0;
1712
1713         if (!client->ops->reset_notify)
1714                 return -EOPNOTSUPP;
1715
1716         ret = client->ops->reset_notify(handle, type);
1717         if (ret)
1718                 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1719                         type, ret);
1720
1721         return ret;
1722 }
1723
1724 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1725                                       enum hnae3_reset_notify_type type)
1726 {
1727         struct hnae3_client *client = hdev->roce_client;
1728         struct hnae3_handle *handle = &hdev->roce;
1729         int ret;
1730
1731         if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1732                 return 0;
1733
1734         if (!client->ops->reset_notify)
1735                 return -EOPNOTSUPP;
1736
1737         ret = client->ops->reset_notify(handle, type);
1738         if (ret)
1739                 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1740                         type, ret);
1741         return ret;
1742 }
1743
1744 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1745 {
1746 #define HCLGEVF_RESET_WAIT_US   20000
1747 #define HCLGEVF_RESET_WAIT_CNT  2000
1748 #define HCLGEVF_RESET_WAIT_TIMEOUT_US   \
1749         (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1750
1751         u32 val;
1752         int ret;
1753
1754         if (hdev->reset_type == HNAE3_VF_RESET)
1755                 ret = readl_poll_timeout(hdev->hw.io_base +
1756                                          HCLGEVF_VF_RST_ING, val,
1757                                          !(val & HCLGEVF_VF_RST_ING_BIT),
1758                                          HCLGEVF_RESET_WAIT_US,
1759                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1760         else
1761                 ret = readl_poll_timeout(hdev->hw.io_base +
1762                                          HCLGEVF_RST_ING, val,
1763                                          !(val & HCLGEVF_RST_ING_BITS),
1764                                          HCLGEVF_RESET_WAIT_US,
1765                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1766
1767         /* hardware completion status should be available by this time */
1768         if (ret) {
1769                 dev_err(&hdev->pdev->dev,
1770                         "couldn't get reset done status from h/w, timeout!\n");
1771                 return ret;
1772         }
1773
1774         /* we will wait a bit more to let reset of the stack to complete. This
1775          * might happen in case reset assertion was made by PF. Yes, this also
1776          * means we might end up waiting bit more even for VF reset.
1777          */
1778         msleep(5000);
1779
1780         return 0;
1781 }
1782
1783 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1784 {
1785         u32 reg_val;
1786
1787         reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1788         if (enable)
1789                 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1790         else
1791                 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1792
1793         hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1794                           reg_val);
1795 }
1796
1797 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1798 {
1799         int ret;
1800
1801         /* uninitialize the nic client */
1802         ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1803         if (ret)
1804                 return ret;
1805
1806         /* re-initialize the hclge device */
1807         ret = hclgevf_reset_hdev(hdev);
1808         if (ret) {
1809                 dev_err(&hdev->pdev->dev,
1810                         "hclge device re-init failed, VF is disabled!\n");
1811                 return ret;
1812         }
1813
1814         /* bring up the nic client again */
1815         ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1816         if (ret)
1817                 return ret;
1818
1819         /* clear handshake status with IMP */
1820         hclgevf_reset_handshake(hdev, false);
1821
1822         /* bring up the nic to enable TX/RX again */
1823         return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1824 }
1825
1826 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1827 {
1828 #define HCLGEVF_RESET_SYNC_TIME 100
1829
1830         if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1831                 struct hclge_vf_to_pf_msg send_msg;
1832                 int ret;
1833
1834                 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1835                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1836                 if (ret) {
1837                         dev_err(&hdev->pdev->dev,
1838                                 "failed to assert VF reset, ret = %d\n", ret);
1839                         return ret;
1840                 }
1841                 hdev->rst_stats.vf_func_rst_cnt++;
1842         }
1843
1844         set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1845         /* inform hardware that preparatory work is done */
1846         msleep(HCLGEVF_RESET_SYNC_TIME);
1847         hclgevf_reset_handshake(hdev, true);
1848         dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1849                  hdev->reset_type);
1850
1851         return 0;
1852 }
1853
1854 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1855 {
1856         dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1857                  hdev->rst_stats.vf_func_rst_cnt);
1858         dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1859                  hdev->rst_stats.flr_rst_cnt);
1860         dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1861                  hdev->rst_stats.vf_rst_cnt);
1862         dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1863                  hdev->rst_stats.rst_done_cnt);
1864         dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1865                  hdev->rst_stats.hw_rst_done_cnt);
1866         dev_info(&hdev->pdev->dev, "reset count: %u\n",
1867                  hdev->rst_stats.rst_cnt);
1868         dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1869                  hdev->rst_stats.rst_fail_cnt);
1870         dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1871                  hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1872         dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1873                  hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1874         dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1875                  hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1876         dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1877                  hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1878         dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1879 }
1880
1881 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1882 {
1883         /* recover handshake status with IMP when reset fail */
1884         hclgevf_reset_handshake(hdev, true);
1885         hdev->rst_stats.rst_fail_cnt++;
1886         dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1887                 hdev->rst_stats.rst_fail_cnt);
1888
1889         if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1890                 set_bit(hdev->reset_type, &hdev->reset_pending);
1891
1892         if (hclgevf_is_reset_pending(hdev)) {
1893                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1894                 hclgevf_reset_task_schedule(hdev);
1895         } else {
1896                 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1897                 hclgevf_dump_rst_info(hdev);
1898         }
1899 }
1900
1901 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1902 {
1903         int ret;
1904
1905         hdev->rst_stats.rst_cnt++;
1906
1907         /* perform reset of the stack & ae device for a client */
1908         ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1909         if (ret)
1910                 return ret;
1911
1912         rtnl_lock();
1913         /* bring down the nic to stop any ongoing TX/RX */
1914         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1915         rtnl_unlock();
1916         if (ret)
1917                 return ret;
1918
1919         return hclgevf_reset_prepare_wait(hdev);
1920 }
1921
1922 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1923 {
1924         int ret;
1925
1926         hdev->rst_stats.hw_rst_done_cnt++;
1927         ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1928         if (ret)
1929                 return ret;
1930
1931         rtnl_lock();
1932         /* now, re-initialize the nic client and ae device */
1933         ret = hclgevf_reset_stack(hdev);
1934         rtnl_unlock();
1935         if (ret) {
1936                 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1937                 return ret;
1938         }
1939
1940         ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1941         /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1942          * times
1943          */
1944         if (ret &&
1945             hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1946                 return ret;
1947
1948         ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1949         if (ret)
1950                 return ret;
1951
1952         hdev->last_reset_time = jiffies;
1953         hdev->rst_stats.rst_done_cnt++;
1954         hdev->rst_stats.rst_fail_cnt = 0;
1955         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1956
1957         return 0;
1958 }
1959
1960 static void hclgevf_reset(struct hclgevf_dev *hdev)
1961 {
1962         if (hclgevf_reset_prepare(hdev))
1963                 goto err_reset;
1964
1965         /* check if VF could successfully fetch the hardware reset completion
1966          * status from the hardware
1967          */
1968         if (hclgevf_reset_wait(hdev)) {
1969                 /* can't do much in this situation, will disable VF */
1970                 dev_err(&hdev->pdev->dev,
1971                         "failed to fetch H/W reset completion status\n");
1972                 goto err_reset;
1973         }
1974
1975         if (hclgevf_reset_rebuild(hdev))
1976                 goto err_reset;
1977
1978         return;
1979
1980 err_reset:
1981         hclgevf_reset_err_handle(hdev);
1982 }
1983
1984 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1985                                                      unsigned long *addr)
1986 {
1987         enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1988
1989         /* return the highest priority reset level amongst all */
1990         if (test_bit(HNAE3_VF_RESET, addr)) {
1991                 rst_level = HNAE3_VF_RESET;
1992                 clear_bit(HNAE3_VF_RESET, addr);
1993                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1994                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1995         } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1996                 rst_level = HNAE3_VF_FULL_RESET;
1997                 clear_bit(HNAE3_VF_FULL_RESET, addr);
1998                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1999         } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2000                 rst_level = HNAE3_VF_PF_FUNC_RESET;
2001                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2002                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2003         } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2004                 rst_level = HNAE3_VF_FUNC_RESET;
2005                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2006         } else if (test_bit(HNAE3_FLR_RESET, addr)) {
2007                 rst_level = HNAE3_FLR_RESET;
2008                 clear_bit(HNAE3_FLR_RESET, addr);
2009         }
2010
2011         return rst_level;
2012 }
2013
2014 static void hclgevf_reset_event(struct pci_dev *pdev,
2015                                 struct hnae3_handle *handle)
2016 {
2017         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2018         struct hclgevf_dev *hdev = ae_dev->priv;
2019
2020         dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2021
2022         if (hdev->default_reset_request)
2023                 hdev->reset_level =
2024                         hclgevf_get_reset_level(hdev,
2025                                                 &hdev->default_reset_request);
2026         else
2027                 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2028
2029         /* reset of this VF requested */
2030         set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2031         hclgevf_reset_task_schedule(hdev);
2032
2033         hdev->last_reset_time = jiffies;
2034 }
2035
2036 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2037                                           enum hnae3_reset_type rst_type)
2038 {
2039         struct hclgevf_dev *hdev = ae_dev->priv;
2040
2041         set_bit(rst_type, &hdev->default_reset_request);
2042 }
2043
2044 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2045 {
2046         writel(en ? 1 : 0, vector->addr);
2047 }
2048
2049 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2050 {
2051 #define HCLGEVF_FLR_RETRY_WAIT_MS       500
2052 #define HCLGEVF_FLR_RETRY_CNT           5
2053
2054         struct hclgevf_dev *hdev = ae_dev->priv;
2055         int retry_cnt = 0;
2056         int ret;
2057
2058 retry:
2059         down(&hdev->reset_sem);
2060         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2061         hdev->reset_type = HNAE3_FLR_RESET;
2062         ret = hclgevf_reset_prepare(hdev);
2063         if (ret) {
2064                 dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2065                         ret);
2066                 if (hdev->reset_pending ||
2067                     retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2068                         dev_err(&hdev->pdev->dev,
2069                                 "reset_pending:0x%lx, retry_cnt:%d\n",
2070                                 hdev->reset_pending, retry_cnt);
2071                         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2072                         up(&hdev->reset_sem);
2073                         msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2074                         goto retry;
2075                 }
2076         }
2077
2078         /* disable misc vector before FLR done */
2079         hclgevf_enable_vector(&hdev->misc_vector, false);
2080         hdev->rst_stats.flr_rst_cnt++;
2081 }
2082
2083 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2084 {
2085         struct hclgevf_dev *hdev = ae_dev->priv;
2086         int ret;
2087
2088         hclgevf_enable_vector(&hdev->misc_vector, true);
2089
2090         ret = hclgevf_reset_rebuild(hdev);
2091         if (ret)
2092                 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2093                          ret);
2094
2095         hdev->reset_type = HNAE3_NONE_RESET;
2096         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2097         up(&hdev->reset_sem);
2098 }
2099
2100 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2101 {
2102         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2103
2104         return hdev->fw_version;
2105 }
2106
2107 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2108 {
2109         struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2110
2111         vector->vector_irq = pci_irq_vector(hdev->pdev,
2112                                             HCLGEVF_MISC_VECTOR_NUM);
2113         vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2114         /* vector status always valid for Vector 0 */
2115         hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2116         hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2117
2118         hdev->num_msi_left -= 1;
2119         hdev->num_msi_used += 1;
2120 }
2121
2122 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2123 {
2124         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2125             !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2126                               &hdev->state))
2127                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2128 }
2129
2130 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2131 {
2132         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2133             !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2134                               &hdev->state))
2135                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2136 }
2137
2138 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2139                                   unsigned long delay)
2140 {
2141         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2142             !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2143                 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2144 }
2145
2146 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2147 {
2148 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT  3
2149
2150         if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2151                 return;
2152
2153         down(&hdev->reset_sem);
2154         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2155
2156         if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2157                                &hdev->reset_state)) {
2158                 /* PF has initmated that it is about to reset the hardware.
2159                  * We now have to poll & check if hardware has actually
2160                  * completed the reset sequence. On hardware reset completion,
2161                  * VF needs to reset the client and ae device.
2162                  */
2163                 hdev->reset_attempts = 0;
2164
2165                 hdev->last_reset_time = jiffies;
2166                 while ((hdev->reset_type =
2167                         hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2168                        != HNAE3_NONE_RESET)
2169                         hclgevf_reset(hdev);
2170         } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2171                                       &hdev->reset_state)) {
2172                 /* we could be here when either of below happens:
2173                  * 1. reset was initiated due to watchdog timeout caused by
2174                  *    a. IMP was earlier reset and our TX got choked down and
2175                  *       which resulted in watchdog reacting and inducing VF
2176                  *       reset. This also means our cmdq would be unreliable.
2177                  *    b. problem in TX due to other lower layer(example link
2178                  *       layer not functioning properly etc.)
2179                  * 2. VF reset might have been initiated due to some config
2180                  *    change.
2181                  *
2182                  * NOTE: Theres no clear way to detect above cases than to react
2183                  * to the response of PF for this reset request. PF will ack the
2184                  * 1b and 2. cases but we will not get any intimation about 1a
2185                  * from PF as cmdq would be in unreliable state i.e. mailbox
2186                  * communication between PF and VF would be broken.
2187                  *
2188                  * if we are never geting into pending state it means either:
2189                  * 1. PF is not receiving our request which could be due to IMP
2190                  *    reset
2191                  * 2. PF is screwed
2192                  * We cannot do much for 2. but to check first we can try reset
2193                  * our PCIe + stack and see if it alleviates the problem.
2194                  */
2195                 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2196                         /* prepare for full reset of stack + pcie interface */
2197                         set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2198
2199                         /* "defer" schedule the reset task again */
2200                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2201                 } else {
2202                         hdev->reset_attempts++;
2203
2204                         set_bit(hdev->reset_level, &hdev->reset_pending);
2205                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2206                 }
2207                 hclgevf_reset_task_schedule(hdev);
2208         }
2209
2210         hdev->reset_type = HNAE3_NONE_RESET;
2211         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2212         up(&hdev->reset_sem);
2213 }
2214
2215 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2216 {
2217         if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2218                 return;
2219
2220         if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2221                 return;
2222
2223         hclgevf_mbx_async_handler(hdev);
2224
2225         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2226 }
2227
2228 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2229 {
2230         struct hclge_vf_to_pf_msg send_msg;
2231         int ret;
2232
2233         if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2234                 return;
2235
2236         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2237         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2238         if (ret)
2239                 dev_err(&hdev->pdev->dev,
2240                         "VF sends keep alive cmd failed(=%d)\n", ret);
2241 }
2242
2243 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2244 {
2245         unsigned long delta = round_jiffies_relative(HZ);
2246         struct hnae3_handle *handle = &hdev->nic;
2247
2248         if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2249                 return;
2250
2251         if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2252                 delta = jiffies - hdev->last_serv_processed;
2253
2254                 if (delta < round_jiffies_relative(HZ)) {
2255                         delta = round_jiffies_relative(HZ) - delta;
2256                         goto out;
2257                 }
2258         }
2259
2260         hdev->serv_processed_cnt++;
2261         if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2262                 hclgevf_keep_alive(hdev);
2263
2264         if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2265                 hdev->last_serv_processed = jiffies;
2266                 goto out;
2267         }
2268
2269         if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2270                 hclgevf_tqps_update_stats(handle);
2271
2272         /* request the link status from the PF. PF would be able to tell VF
2273          * about such updates in future so we might remove this later
2274          */
2275         hclgevf_request_link_info(hdev);
2276
2277         hclgevf_update_link_mode(hdev);
2278
2279         hclgevf_sync_vlan_filter(hdev);
2280
2281         hclgevf_sync_mac_table(hdev);
2282
2283         hclgevf_sync_promisc_mode(hdev);
2284
2285         hdev->last_serv_processed = jiffies;
2286
2287 out:
2288         hclgevf_task_schedule(hdev, delta);
2289 }
2290
2291 static void hclgevf_service_task(struct work_struct *work)
2292 {
2293         struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2294                                                 service_task.work);
2295
2296         hclgevf_reset_service_task(hdev);
2297         hclgevf_mailbox_service_task(hdev);
2298         hclgevf_periodic_service_task(hdev);
2299
2300         /* Handle reset and mbx again in case periodical task delays the
2301          * handling by calling hclgevf_task_schedule() in
2302          * hclgevf_periodic_service_task()
2303          */
2304         hclgevf_reset_service_task(hdev);
2305         hclgevf_mailbox_service_task(hdev);
2306 }
2307
2308 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2309 {
2310         hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2311 }
2312
2313 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2314                                                       u32 *clearval)
2315 {
2316         u32 val, cmdq_stat_reg, rst_ing_reg;
2317
2318         /* fetch the events from their corresponding regs */
2319         cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2320                                          HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2321
2322         if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2323                 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2324                 dev_info(&hdev->pdev->dev,
2325                          "receive reset interrupt 0x%x!\n", rst_ing_reg);
2326                 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2327                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2328                 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2329                 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2330                 hdev->rst_stats.vf_rst_cnt++;
2331                 /* set up VF hardware reset status, its PF will clear
2332                  * this status when PF has initialized done.
2333                  */
2334                 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2335                 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2336                                   val | HCLGEVF_VF_RST_ING_BIT);
2337                 return HCLGEVF_VECTOR0_EVENT_RST;
2338         }
2339
2340         /* check for vector0 mailbox(=CMDQ RX) event source */
2341         if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2342                 /* for revision 0x21, clearing interrupt is writing bit 0
2343                  * to the clear register, writing bit 1 means to keep the
2344                  * old value.
2345                  * for revision 0x20, the clear register is a read & write
2346                  * register, so we should just write 0 to the bit we are
2347                  * handling, and keep other bits as cmdq_stat_reg.
2348                  */
2349                 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2350                         *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2351                 else
2352                         *clearval = cmdq_stat_reg &
2353                                     ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2354
2355                 return HCLGEVF_VECTOR0_EVENT_MBX;
2356         }
2357
2358         /* print other vector0 event source */
2359         dev_info(&hdev->pdev->dev,
2360                  "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2361                  cmdq_stat_reg);
2362
2363         return HCLGEVF_VECTOR0_EVENT_OTHER;
2364 }
2365
2366 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2367 {
2368         enum hclgevf_evt_cause event_cause;
2369         struct hclgevf_dev *hdev = data;
2370         u32 clearval;
2371
2372         hclgevf_enable_vector(&hdev->misc_vector, false);
2373         event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2374
2375         switch (event_cause) {
2376         case HCLGEVF_VECTOR0_EVENT_RST:
2377                 hclgevf_reset_task_schedule(hdev);
2378                 break;
2379         case HCLGEVF_VECTOR0_EVENT_MBX:
2380                 hclgevf_mbx_handler(hdev);
2381                 break;
2382         default:
2383                 break;
2384         }
2385
2386         if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2387                 hclgevf_clear_event_cause(hdev, clearval);
2388                 hclgevf_enable_vector(&hdev->misc_vector, true);
2389         }
2390
2391         return IRQ_HANDLED;
2392 }
2393
2394 static int hclgevf_configure(struct hclgevf_dev *hdev)
2395 {
2396         int ret;
2397
2398         /* get current port based vlan state from PF */
2399         ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2400         if (ret)
2401                 return ret;
2402
2403         /* get queue configuration from PF */
2404         ret = hclgevf_get_queue_info(hdev);
2405         if (ret)
2406                 return ret;
2407
2408         /* get queue depth info from PF */
2409         ret = hclgevf_get_queue_depth(hdev);
2410         if (ret)
2411                 return ret;
2412
2413         ret = hclgevf_get_pf_media_type(hdev);
2414         if (ret)
2415                 return ret;
2416
2417         /* get tc configuration from PF */
2418         return hclgevf_get_tc_info(hdev);
2419 }
2420
2421 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2422 {
2423         struct pci_dev *pdev = ae_dev->pdev;
2424         struct hclgevf_dev *hdev;
2425
2426         hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2427         if (!hdev)
2428                 return -ENOMEM;
2429
2430         hdev->pdev = pdev;
2431         hdev->ae_dev = ae_dev;
2432         ae_dev->priv = hdev;
2433
2434         return 0;
2435 }
2436
2437 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2438 {
2439         struct hnae3_handle *roce = &hdev->roce;
2440         struct hnae3_handle *nic = &hdev->nic;
2441
2442         roce->rinfo.num_vectors = hdev->num_roce_msix;
2443
2444         if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2445             hdev->num_msi_left == 0)
2446                 return -EINVAL;
2447
2448         roce->rinfo.base_vector = hdev->roce_base_vector;
2449
2450         roce->rinfo.netdev = nic->kinfo.netdev;
2451         roce->rinfo.roce_io_base = hdev->hw.io_base;
2452         roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2453
2454         roce->pdev = nic->pdev;
2455         roce->ae_algo = nic->ae_algo;
2456         roce->numa_node_mask = nic->numa_node_mask;
2457
2458         return 0;
2459 }
2460
2461 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2462 {
2463         struct hclgevf_cfg_gro_status_cmd *req;
2464         struct hclgevf_desc desc;
2465         int ret;
2466
2467         if (!hnae3_dev_gro_supported(hdev))
2468                 return 0;
2469
2470         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2471                                      false);
2472         req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2473
2474         req->gro_en = en ? 1 : 0;
2475
2476         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2477         if (ret)
2478                 dev_err(&hdev->pdev->dev,
2479                         "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2480
2481         return ret;
2482 }
2483
2484 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2485 {
2486         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2487         struct hclgevf_rss_tuple_cfg *tuple_sets;
2488         u32 i;
2489
2490         rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2491         rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2492         tuple_sets = &rss_cfg->rss_tuple_sets;
2493         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2494                 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2495                 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2496                        HCLGEVF_RSS_KEY_SIZE);
2497
2498                 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2499                 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2500                 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2501                 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2502                 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2503                 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2504                 tuple_sets->ipv6_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2505                 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2506         }
2507
2508         /* Initialize RSS indirect table */
2509         for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2510                 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2511 }
2512
2513 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2514 {
2515         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2516         int ret;
2517
2518         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2519                 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2520                                                rss_cfg->rss_hash_key);
2521                 if (ret)
2522                         return ret;
2523
2524                 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2525                 if (ret)
2526                         return ret;
2527         }
2528
2529         ret = hclgevf_set_rss_indir_table(hdev);
2530         if (ret)
2531                 return ret;
2532
2533         return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2534 }
2535
2536 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2537 {
2538         return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2539                                        false);
2540 }
2541
2542 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2543 {
2544 #define HCLGEVF_FLUSH_LINK_TIMEOUT      100000
2545
2546         unsigned long last = hdev->serv_processed_cnt;
2547         int i = 0;
2548
2549         while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2550                i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2551                last == hdev->serv_processed_cnt)
2552                 usleep_range(1, 1);
2553 }
2554
2555 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2556 {
2557         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2558
2559         if (enable) {
2560                 hclgevf_task_schedule(hdev, 0);
2561         } else {
2562                 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2563
2564                 /* flush memory to make sure DOWN is seen by service task */
2565                 smp_mb__before_atomic();
2566                 hclgevf_flush_link_update(hdev);
2567         }
2568 }
2569
2570 static int hclgevf_ae_start(struct hnae3_handle *handle)
2571 {
2572         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2573
2574         hclgevf_reset_tqp_stats(handle);
2575
2576         hclgevf_request_link_info(hdev);
2577
2578         hclgevf_update_link_mode(hdev);
2579
2580         clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2581
2582         return 0;
2583 }
2584
2585 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2586 {
2587         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2588         int i;
2589
2590         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2591
2592         if (hdev->reset_type != HNAE3_VF_RESET)
2593                 for (i = 0; i < handle->kinfo.num_tqps; i++)
2594                         if (hclgevf_reset_tqp(handle, i))
2595                                 break;
2596
2597         hclgevf_reset_tqp_stats(handle);
2598         hclgevf_update_link_status(hdev, 0);
2599 }
2600
2601 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2602 {
2603 #define HCLGEVF_STATE_ALIVE     1
2604 #define HCLGEVF_STATE_NOT_ALIVE 0
2605
2606         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2607         struct hclge_vf_to_pf_msg send_msg;
2608
2609         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2610         send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2611                                 HCLGEVF_STATE_NOT_ALIVE;
2612         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2613 }
2614
2615 static int hclgevf_client_start(struct hnae3_handle *handle)
2616 {
2617         return hclgevf_set_alive(handle, true);
2618 }
2619
2620 static void hclgevf_client_stop(struct hnae3_handle *handle)
2621 {
2622         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2623         int ret;
2624
2625         ret = hclgevf_set_alive(handle, false);
2626         if (ret)
2627                 dev_warn(&hdev->pdev->dev,
2628                          "%s failed %d\n", __func__, ret);
2629 }
2630
2631 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2632 {
2633         clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2634         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2635         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2636
2637         INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2638
2639         mutex_init(&hdev->mbx_resp.mbx_mutex);
2640         sema_init(&hdev->reset_sem, 1);
2641
2642         spin_lock_init(&hdev->mac_table.mac_list_lock);
2643         INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2644         INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2645
2646         /* bring the device down */
2647         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2648 }
2649
2650 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2651 {
2652         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2653         set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2654
2655         if (hdev->service_task.work.func)
2656                 cancel_delayed_work_sync(&hdev->service_task);
2657
2658         mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2659 }
2660
2661 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2662 {
2663         struct pci_dev *pdev = hdev->pdev;
2664         int vectors;
2665         int i;
2666
2667         if (hnae3_dev_roce_supported(hdev))
2668                 vectors = pci_alloc_irq_vectors(pdev,
2669                                                 hdev->roce_base_msix_offset + 1,
2670                                                 hdev->num_msi,
2671                                                 PCI_IRQ_MSIX);
2672         else
2673                 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2674                                                 hdev->num_msi,
2675                                                 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2676
2677         if (vectors < 0) {
2678                 dev_err(&pdev->dev,
2679                         "failed(%d) to allocate MSI/MSI-X vectors\n",
2680                         vectors);
2681                 return vectors;
2682         }
2683         if (vectors < hdev->num_msi)
2684                 dev_warn(&hdev->pdev->dev,
2685                          "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2686                          hdev->num_msi, vectors);
2687
2688         hdev->num_msi = vectors;
2689         hdev->num_msi_left = vectors;
2690
2691         hdev->base_msi_vector = pdev->irq;
2692         hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2693
2694         hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2695                                            sizeof(u16), GFP_KERNEL);
2696         if (!hdev->vector_status) {
2697                 pci_free_irq_vectors(pdev);
2698                 return -ENOMEM;
2699         }
2700
2701         for (i = 0; i < hdev->num_msi; i++)
2702                 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2703
2704         hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2705                                         sizeof(int), GFP_KERNEL);
2706         if (!hdev->vector_irq) {
2707                 devm_kfree(&pdev->dev, hdev->vector_status);
2708                 pci_free_irq_vectors(pdev);
2709                 return -ENOMEM;
2710         }
2711
2712         return 0;
2713 }
2714
2715 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2716 {
2717         struct pci_dev *pdev = hdev->pdev;
2718
2719         devm_kfree(&pdev->dev, hdev->vector_status);
2720         devm_kfree(&pdev->dev, hdev->vector_irq);
2721         pci_free_irq_vectors(pdev);
2722 }
2723
2724 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2725 {
2726         int ret;
2727
2728         hclgevf_get_misc_vector(hdev);
2729
2730         snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2731                  HCLGEVF_NAME, pci_name(hdev->pdev));
2732         ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2733                           0, hdev->misc_vector.name, hdev);
2734         if (ret) {
2735                 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2736                         hdev->misc_vector.vector_irq);
2737                 return ret;
2738         }
2739
2740         hclgevf_clear_event_cause(hdev, 0);
2741
2742         /* enable misc. vector(vector 0) */
2743         hclgevf_enable_vector(&hdev->misc_vector, true);
2744
2745         return ret;
2746 }
2747
2748 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2749 {
2750         /* disable misc vector(vector 0) */
2751         hclgevf_enable_vector(&hdev->misc_vector, false);
2752         synchronize_irq(hdev->misc_vector.vector_irq);
2753         free_irq(hdev->misc_vector.vector_irq, hdev);
2754         hclgevf_free_vector(hdev, 0);
2755 }
2756
2757 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2758 {
2759         struct device *dev = &hdev->pdev->dev;
2760
2761         dev_info(dev, "VF info begin:\n");
2762
2763         dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2764         dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2765         dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2766         dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2767         dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2768         dev_info(dev, "PF media type of this VF: %u\n",
2769                  hdev->hw.mac.media_type);
2770
2771         dev_info(dev, "VF info end.\n");
2772 }
2773
2774 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2775                                             struct hnae3_client *client)
2776 {
2777         struct hclgevf_dev *hdev = ae_dev->priv;
2778         int rst_cnt = hdev->rst_stats.rst_cnt;
2779         int ret;
2780
2781         ret = client->ops->init_instance(&hdev->nic);
2782         if (ret)
2783                 return ret;
2784
2785         set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2786         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2787             rst_cnt != hdev->rst_stats.rst_cnt) {
2788                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2789
2790                 client->ops->uninit_instance(&hdev->nic, 0);
2791                 return -EBUSY;
2792         }
2793
2794         hnae3_set_client_init_flag(client, ae_dev, 1);
2795
2796         if (netif_msg_drv(&hdev->nic))
2797                 hclgevf_info_show(hdev);
2798
2799         return 0;
2800 }
2801
2802 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2803                                              struct hnae3_client *client)
2804 {
2805         struct hclgevf_dev *hdev = ae_dev->priv;
2806         int ret;
2807
2808         if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2809             !hdev->nic_client)
2810                 return 0;
2811
2812         ret = hclgevf_init_roce_base_info(hdev);
2813         if (ret)
2814                 return ret;
2815
2816         ret = client->ops->init_instance(&hdev->roce);
2817         if (ret)
2818                 return ret;
2819
2820         set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2821         hnae3_set_client_init_flag(client, ae_dev, 1);
2822
2823         return 0;
2824 }
2825
2826 static int hclgevf_init_client_instance(struct hnae3_client *client,
2827                                         struct hnae3_ae_dev *ae_dev)
2828 {
2829         struct hclgevf_dev *hdev = ae_dev->priv;
2830         int ret;
2831
2832         switch (client->type) {
2833         case HNAE3_CLIENT_KNIC:
2834                 hdev->nic_client = client;
2835                 hdev->nic.client = client;
2836
2837                 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2838                 if (ret)
2839                         goto clear_nic;
2840
2841                 ret = hclgevf_init_roce_client_instance(ae_dev,
2842                                                         hdev->roce_client);
2843                 if (ret)
2844                         goto clear_roce;
2845
2846                 break;
2847         case HNAE3_CLIENT_ROCE:
2848                 if (hnae3_dev_roce_supported(hdev)) {
2849                         hdev->roce_client = client;
2850                         hdev->roce.client = client;
2851                 }
2852
2853                 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2854                 if (ret)
2855                         goto clear_roce;
2856
2857                 break;
2858         default:
2859                 return -EINVAL;
2860         }
2861
2862         return 0;
2863
2864 clear_nic:
2865         hdev->nic_client = NULL;
2866         hdev->nic.client = NULL;
2867         return ret;
2868 clear_roce:
2869         hdev->roce_client = NULL;
2870         hdev->roce.client = NULL;
2871         return ret;
2872 }
2873
2874 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2875                                            struct hnae3_ae_dev *ae_dev)
2876 {
2877         struct hclgevf_dev *hdev = ae_dev->priv;
2878
2879         /* un-init roce, if it exists */
2880         if (hdev->roce_client) {
2881                 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2882                 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2883                 hdev->roce_client = NULL;
2884                 hdev->roce.client = NULL;
2885         }
2886
2887         /* un-init nic/unic, if this was not called by roce client */
2888         if (client->ops->uninit_instance && hdev->nic_client &&
2889             client->type != HNAE3_CLIENT_ROCE) {
2890                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2891
2892                 client->ops->uninit_instance(&hdev->nic, 0);
2893                 hdev->nic_client = NULL;
2894                 hdev->nic.client = NULL;
2895         }
2896 }
2897
2898 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2899 {
2900 #define HCLGEVF_MEM_BAR         4
2901
2902         struct pci_dev *pdev = hdev->pdev;
2903         struct hclgevf_hw *hw = &hdev->hw;
2904
2905         /* for device does not have device memory, return directly */
2906         if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2907                 return 0;
2908
2909         hw->mem_base = devm_ioremap_wc(&pdev->dev,
2910                                        pci_resource_start(pdev,
2911                                                           HCLGEVF_MEM_BAR),
2912                                        pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2913         if (!hw->mem_base) {
2914                 dev_err(&pdev->dev, "failed to map device memory\n");
2915                 return -EFAULT;
2916         }
2917
2918         return 0;
2919 }
2920
2921 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2922 {
2923         struct pci_dev *pdev = hdev->pdev;
2924         struct hclgevf_hw *hw;
2925         int ret;
2926
2927         ret = pci_enable_device(pdev);
2928         if (ret) {
2929                 dev_err(&pdev->dev, "failed to enable PCI device\n");
2930                 return ret;
2931         }
2932
2933         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2934         if (ret) {
2935                 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2936                 goto err_disable_device;
2937         }
2938
2939         ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2940         if (ret) {
2941                 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2942                 goto err_disable_device;
2943         }
2944
2945         pci_set_master(pdev);
2946         hw = &hdev->hw;
2947         hw->hdev = hdev;
2948         hw->io_base = pci_iomap(pdev, 2, 0);
2949         if (!hw->io_base) {
2950                 dev_err(&pdev->dev, "can't map configuration register space\n");
2951                 ret = -ENOMEM;
2952                 goto err_clr_master;
2953         }
2954
2955         ret = hclgevf_dev_mem_map(hdev);
2956         if (ret)
2957                 goto err_unmap_io_base;
2958
2959         return 0;
2960
2961 err_unmap_io_base:
2962         pci_iounmap(pdev, hdev->hw.io_base);
2963 err_clr_master:
2964         pci_clear_master(pdev);
2965         pci_release_regions(pdev);
2966 err_disable_device:
2967         pci_disable_device(pdev);
2968
2969         return ret;
2970 }
2971
2972 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2973 {
2974         struct pci_dev *pdev = hdev->pdev;
2975
2976         if (hdev->hw.mem_base)
2977                 devm_iounmap(&pdev->dev, hdev->hw.mem_base);
2978
2979         pci_iounmap(pdev, hdev->hw.io_base);
2980         pci_clear_master(pdev);
2981         pci_release_regions(pdev);
2982         pci_disable_device(pdev);
2983 }
2984
2985 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2986 {
2987         struct hclgevf_query_res_cmd *req;
2988         struct hclgevf_desc desc;
2989         int ret;
2990
2991         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2992         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2993         if (ret) {
2994                 dev_err(&hdev->pdev->dev,
2995                         "query vf resource failed, ret = %d.\n", ret);
2996                 return ret;
2997         }
2998
2999         req = (struct hclgevf_query_res_cmd *)desc.data;
3000
3001         if (hnae3_dev_roce_supported(hdev)) {
3002                 hdev->roce_base_msix_offset =
3003                 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3004                                 HCLGEVF_MSIX_OFT_ROCEE_M,
3005                                 HCLGEVF_MSIX_OFT_ROCEE_S);
3006                 hdev->num_roce_msix =
3007                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3008                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3009
3010                 /* nic's msix numbers is always equals to the roce's. */
3011                 hdev->num_nic_msix = hdev->num_roce_msix;
3012
3013                 /* VF should have NIC vectors and Roce vectors, NIC vectors
3014                  * are queued before Roce vectors. The offset is fixed to 64.
3015                  */
3016                 hdev->num_msi = hdev->num_roce_msix +
3017                                 hdev->roce_base_msix_offset;
3018         } else {
3019                 hdev->num_msi =
3020                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3021                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3022
3023                 hdev->num_nic_msix = hdev->num_msi;
3024         }
3025
3026         if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3027                 dev_err(&hdev->pdev->dev,
3028                         "Just %u msi resources, not enough for vf(min:2).\n",
3029                         hdev->num_nic_msix);
3030                 return -EINVAL;
3031         }
3032
3033         return 0;
3034 }
3035
3036 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3037 {
3038 #define HCLGEVF_MAX_NON_TSO_BD_NUM                      8U
3039
3040         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3041
3042         ae_dev->dev_specs.max_non_tso_bd_num =
3043                                         HCLGEVF_MAX_NON_TSO_BD_NUM;
3044         ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3045         ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3046         ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3047 }
3048
3049 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3050                                     struct hclgevf_desc *desc)
3051 {
3052         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3053         struct hclgevf_dev_specs_0_cmd *req0;
3054         struct hclgevf_dev_specs_1_cmd *req1;
3055
3056         req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3057         req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3058
3059         ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3060         ae_dev->dev_specs.rss_ind_tbl_size =
3061                                         le16_to_cpu(req0->rss_ind_tbl_size);
3062         ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3063         ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3064         ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3065 }
3066
3067 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3068 {
3069         struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3070
3071         if (!dev_specs->max_non_tso_bd_num)
3072                 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3073         if (!dev_specs->rss_ind_tbl_size)
3074                 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3075         if (!dev_specs->rss_key_size)
3076                 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3077         if (!dev_specs->max_int_gl)
3078                 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3079 }
3080
3081 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3082 {
3083         struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3084         int ret;
3085         int i;
3086
3087         /* set default specifications as devices lower than version V3 do not
3088          * support querying specifications from firmware.
3089          */
3090         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3091                 hclgevf_set_default_dev_specs(hdev);
3092                 return 0;
3093         }
3094
3095         for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3096                 hclgevf_cmd_setup_basic_desc(&desc[i],
3097                                              HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3098                 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3099         }
3100         hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3101                                      true);
3102
3103         ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3104         if (ret)
3105                 return ret;
3106
3107         hclgevf_parse_dev_specs(hdev, desc);
3108         hclgevf_check_dev_specs(hdev);
3109
3110         return 0;
3111 }
3112
3113 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3114 {
3115         struct pci_dev *pdev = hdev->pdev;
3116         int ret = 0;
3117
3118         if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3119             test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3120                 hclgevf_misc_irq_uninit(hdev);
3121                 hclgevf_uninit_msi(hdev);
3122                 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3123         }
3124
3125         if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3126                 pci_set_master(pdev);
3127                 ret = hclgevf_init_msi(hdev);
3128                 if (ret) {
3129                         dev_err(&pdev->dev,
3130                                 "failed(%d) to init MSI/MSI-X\n", ret);
3131                         return ret;
3132                 }
3133
3134                 ret = hclgevf_misc_irq_init(hdev);
3135                 if (ret) {
3136                         hclgevf_uninit_msi(hdev);
3137                         dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3138                                 ret);
3139                         return ret;
3140                 }
3141
3142                 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3143         }
3144
3145         return ret;
3146 }
3147
3148 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3149 {
3150         struct hclge_vf_to_pf_msg send_msg;
3151
3152         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3153                                HCLGE_MBX_VPORT_LIST_CLEAR);
3154         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3155 }
3156
3157 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3158 {
3159         struct pci_dev *pdev = hdev->pdev;
3160         int ret;
3161
3162         ret = hclgevf_pci_reset(hdev);
3163         if (ret) {
3164                 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3165                 return ret;
3166         }
3167
3168         ret = hclgevf_cmd_init(hdev);
3169         if (ret) {
3170                 dev_err(&pdev->dev, "cmd failed %d\n", ret);
3171                 return ret;
3172         }
3173
3174         ret = hclgevf_rss_init_hw(hdev);
3175         if (ret) {
3176                 dev_err(&hdev->pdev->dev,
3177                         "failed(%d) to initialize RSS\n", ret);
3178                 return ret;
3179         }
3180
3181         ret = hclgevf_config_gro(hdev, true);
3182         if (ret)
3183                 return ret;
3184
3185         ret = hclgevf_init_vlan_config(hdev);
3186         if (ret) {
3187                 dev_err(&hdev->pdev->dev,
3188                         "failed(%d) to initialize VLAN config\n", ret);
3189                 return ret;
3190         }
3191
3192         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3193
3194         dev_info(&hdev->pdev->dev, "Reset done\n");
3195
3196         return 0;
3197 }
3198
3199 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3200 {
3201         struct pci_dev *pdev = hdev->pdev;
3202         int ret;
3203
3204         ret = hclgevf_pci_init(hdev);
3205         if (ret)
3206                 return ret;
3207
3208         ret = hclgevf_cmd_queue_init(hdev);
3209         if (ret)
3210                 goto err_cmd_queue_init;
3211
3212         ret = hclgevf_cmd_init(hdev);
3213         if (ret)
3214                 goto err_cmd_init;
3215
3216         /* Get vf resource */
3217         ret = hclgevf_query_vf_resource(hdev);
3218         if (ret)
3219                 goto err_cmd_init;
3220
3221         ret = hclgevf_query_dev_specs(hdev);
3222         if (ret) {
3223                 dev_err(&pdev->dev,
3224                         "failed to query dev specifications, ret = %d\n", ret);
3225                 goto err_cmd_init;
3226         }
3227
3228         ret = hclgevf_init_msi(hdev);
3229         if (ret) {
3230                 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3231                 goto err_cmd_init;
3232         }
3233
3234         hclgevf_state_init(hdev);
3235         hdev->reset_level = HNAE3_VF_FUNC_RESET;
3236         hdev->reset_type = HNAE3_NONE_RESET;
3237
3238         ret = hclgevf_misc_irq_init(hdev);
3239         if (ret)
3240                 goto err_misc_irq_init;
3241
3242         set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3243
3244         ret = hclgevf_configure(hdev);
3245         if (ret) {
3246                 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3247                 goto err_config;
3248         }
3249
3250         ret = hclgevf_alloc_tqps(hdev);
3251         if (ret) {
3252                 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3253                 goto err_config;
3254         }
3255
3256         ret = hclgevf_set_handle_info(hdev);
3257         if (ret)
3258                 goto err_config;
3259
3260         ret = hclgevf_config_gro(hdev, true);
3261         if (ret)
3262                 goto err_config;
3263
3264         /* Initialize RSS for this VF */
3265         hclgevf_rss_init_cfg(hdev);
3266         ret = hclgevf_rss_init_hw(hdev);
3267         if (ret) {
3268                 dev_err(&hdev->pdev->dev,
3269                         "failed(%d) to initialize RSS\n", ret);
3270                 goto err_config;
3271         }
3272
3273         /* ensure vf tbl list as empty before init*/
3274         ret = hclgevf_clear_vport_list(hdev);
3275         if (ret) {
3276                 dev_err(&pdev->dev,
3277                         "failed to clear tbl list configuration, ret = %d.\n",
3278                         ret);
3279                 goto err_config;
3280         }
3281
3282         ret = hclgevf_init_vlan_config(hdev);
3283         if (ret) {
3284                 dev_err(&hdev->pdev->dev,
3285                         "failed(%d) to initialize VLAN config\n", ret);
3286                 goto err_config;
3287         }
3288
3289         hdev->last_reset_time = jiffies;
3290         dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3291                  HCLGEVF_DRIVER_NAME);
3292
3293         hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3294
3295         return 0;
3296
3297 err_config:
3298         hclgevf_misc_irq_uninit(hdev);
3299 err_misc_irq_init:
3300         hclgevf_state_uninit(hdev);
3301         hclgevf_uninit_msi(hdev);
3302 err_cmd_init:
3303         hclgevf_cmd_uninit(hdev);
3304 err_cmd_queue_init:
3305         hclgevf_pci_uninit(hdev);
3306         clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3307         return ret;
3308 }
3309
3310 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3311 {
3312         struct hclge_vf_to_pf_msg send_msg;
3313
3314         hclgevf_state_uninit(hdev);
3315
3316         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3317         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3318
3319         if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3320                 hclgevf_misc_irq_uninit(hdev);
3321                 hclgevf_uninit_msi(hdev);
3322         }
3323
3324         hclgevf_cmd_uninit(hdev);
3325         hclgevf_pci_uninit(hdev);
3326         hclgevf_uninit_mac_list(hdev);
3327 }
3328
3329 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3330 {
3331         struct pci_dev *pdev = ae_dev->pdev;
3332         int ret;
3333
3334         ret = hclgevf_alloc_hdev(ae_dev);
3335         if (ret) {
3336                 dev_err(&pdev->dev, "hclge device allocation failed\n");
3337                 return ret;
3338         }
3339
3340         ret = hclgevf_init_hdev(ae_dev->priv);
3341         if (ret) {
3342                 dev_err(&pdev->dev, "hclge device initialization failed\n");
3343                 return ret;
3344         }
3345
3346         return 0;
3347 }
3348
3349 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3350 {
3351         struct hclgevf_dev *hdev = ae_dev->priv;
3352
3353         hclgevf_uninit_hdev(hdev);
3354         ae_dev->priv = NULL;
3355 }
3356
3357 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3358 {
3359         struct hnae3_handle *nic = &hdev->nic;
3360         struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3361
3362         return min_t(u32, hdev->rss_size_max,
3363                      hdev->num_tqps / kinfo->num_tc);
3364 }
3365
3366 /**
3367  * hclgevf_get_channels - Get the current channels enabled and max supported.
3368  * @handle: hardware information for network interface
3369  * @ch: ethtool channels structure
3370  *
3371  * We don't support separate tx and rx queues as channels. The other count
3372  * represents how many queues are being used for control. max_combined counts
3373  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3374  * q_vectors since we support a lot more queue pairs than q_vectors.
3375  **/
3376 static void hclgevf_get_channels(struct hnae3_handle *handle,
3377                                  struct ethtool_channels *ch)
3378 {
3379         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3380
3381         ch->max_combined = hclgevf_get_max_channels(hdev);
3382         ch->other_count = 0;
3383         ch->max_other = 0;
3384         ch->combined_count = handle->kinfo.rss_size;
3385 }
3386
3387 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3388                                           u16 *alloc_tqps, u16 *max_rss_size)
3389 {
3390         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3391
3392         *alloc_tqps = hdev->num_tqps;
3393         *max_rss_size = hdev->rss_size_max;
3394 }
3395
3396 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3397                                     u32 new_tqps_num)
3398 {
3399         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3400         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3401         u16 max_rss_size;
3402
3403         kinfo->req_rss_size = new_tqps_num;
3404
3405         max_rss_size = min_t(u16, hdev->rss_size_max,
3406                              hdev->num_tqps / kinfo->num_tc);
3407
3408         /* Use the user's configuration when it is not larger than
3409          * max_rss_size, otherwise, use the maximum specification value.
3410          */
3411         if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3412             kinfo->req_rss_size <= max_rss_size)
3413                 kinfo->rss_size = kinfo->req_rss_size;
3414         else if (kinfo->rss_size > max_rss_size ||
3415                  (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3416                 kinfo->rss_size = max_rss_size;
3417
3418         kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
3419 }
3420
3421 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3422                                 bool rxfh_configured)
3423 {
3424         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3425         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3426         u16 cur_rss_size = kinfo->rss_size;
3427         u16 cur_tqps = kinfo->num_tqps;
3428         u32 *rss_indir;
3429         unsigned int i;
3430         int ret;
3431
3432         hclgevf_update_rss_size(handle, new_tqps_num);
3433
3434         ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3435         if (ret)
3436                 return ret;
3437
3438         /* RSS indirection table has been configuared by user */
3439         if (rxfh_configured)
3440                 goto out;
3441
3442         /* Reinitializes the rss indirect table according to the new RSS size */
3443         rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
3444         if (!rss_indir)
3445                 return -ENOMEM;
3446
3447         for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
3448                 rss_indir[i] = i % kinfo->rss_size;
3449
3450         hdev->rss_cfg.rss_size = kinfo->rss_size;
3451
3452         ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3453         if (ret)
3454                 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3455                         ret);
3456
3457         kfree(rss_indir);
3458
3459 out:
3460         if (!ret)
3461                 dev_info(&hdev->pdev->dev,
3462                          "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3463                          cur_rss_size, kinfo->rss_size,
3464                          cur_tqps, kinfo->rss_size * kinfo->num_tc);
3465
3466         return ret;
3467 }
3468
3469 static int hclgevf_get_status(struct hnae3_handle *handle)
3470 {
3471         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3472
3473         return hdev->hw.mac.link;
3474 }
3475
3476 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3477                                             u8 *auto_neg, u32 *speed,
3478                                             u8 *duplex)
3479 {
3480         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3481
3482         if (speed)
3483                 *speed = hdev->hw.mac.speed;
3484         if (duplex)
3485                 *duplex = hdev->hw.mac.duplex;
3486         if (auto_neg)
3487                 *auto_neg = AUTONEG_DISABLE;
3488 }
3489
3490 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3491                                  u8 duplex)
3492 {
3493         hdev->hw.mac.speed = speed;
3494         hdev->hw.mac.duplex = duplex;
3495 }
3496
3497 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3498 {
3499         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3500
3501         return hclgevf_config_gro(hdev, enable);
3502 }
3503
3504 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3505                                    u8 *module_type)
3506 {
3507         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3508
3509         if (media_type)
3510                 *media_type = hdev->hw.mac.media_type;
3511
3512         if (module_type)
3513                 *module_type = hdev->hw.mac.module_type;
3514 }
3515
3516 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3517 {
3518         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3519
3520         return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3521 }
3522
3523 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3524 {
3525         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3526
3527         return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3528 }
3529
3530 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3531 {
3532         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3533
3534         return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3535 }
3536
3537 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3538 {
3539         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3540
3541         return hdev->rst_stats.hw_rst_done_cnt;
3542 }
3543
3544 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3545                                   unsigned long *supported,
3546                                   unsigned long *advertising)
3547 {
3548         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3549
3550         *supported = hdev->hw.mac.supported;
3551         *advertising = hdev->hw.mac.advertising;
3552 }
3553
3554 #define MAX_SEPARATE_NUM        4
3555 #define SEPARATOR_VALUE         0xFFFFFFFF
3556 #define REG_NUM_PER_LINE        4
3557 #define REG_LEN_PER_LINE        (REG_NUM_PER_LINE * sizeof(u32))
3558
3559 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3560 {
3561         int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3562         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3563
3564         cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3565         common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3566         ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3567         tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3568
3569         return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3570                 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3571 }
3572
3573 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3574                              void *data)
3575 {
3576         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3577         int i, j, reg_um, separator_num;
3578         u32 *reg = data;
3579
3580         *version = hdev->fw_version;
3581
3582         /* fetching per-VF registers values from VF PCIe register space */
3583         reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3584         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3585         for (i = 0; i < reg_um; i++)
3586                 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3587         for (i = 0; i < separator_num; i++)
3588                 *reg++ = SEPARATOR_VALUE;
3589
3590         reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3591         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3592         for (i = 0; i < reg_um; i++)
3593                 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3594         for (i = 0; i < separator_num; i++)
3595                 *reg++ = SEPARATOR_VALUE;
3596
3597         reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3598         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3599         for (j = 0; j < hdev->num_tqps; j++) {
3600                 for (i = 0; i < reg_um; i++)
3601                         *reg++ = hclgevf_read_dev(&hdev->hw,
3602                                                   ring_reg_addr_list[i] +
3603                                                   0x200 * j);
3604                 for (i = 0; i < separator_num; i++)
3605                         *reg++ = SEPARATOR_VALUE;
3606         }
3607
3608         reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3609         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3610         for (j = 0; j < hdev->num_msi_used - 1; j++) {
3611                 for (i = 0; i < reg_um; i++)
3612                         *reg++ = hclgevf_read_dev(&hdev->hw,
3613                                                   tqp_intr_reg_addr_list[i] +
3614                                                   4 * j);
3615                 for (i = 0; i < separator_num; i++)
3616                         *reg++ = SEPARATOR_VALUE;
3617         }
3618 }
3619
3620 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3621                                         u8 *port_base_vlan_info, u8 data_size)
3622 {
3623         struct hnae3_handle *nic = &hdev->nic;
3624         struct hclge_vf_to_pf_msg send_msg;
3625         int ret;
3626
3627         rtnl_lock();
3628
3629         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3630             test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3631                 dev_warn(&hdev->pdev->dev,
3632                          "is resetting when updating port based vlan info\n");
3633                 rtnl_unlock();
3634                 return;
3635         }
3636
3637         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3638         if (ret) {
3639                 rtnl_unlock();
3640                 return;
3641         }
3642
3643         /* send msg to PF and wait update port based vlan info */
3644         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3645                                HCLGE_MBX_PORT_BASE_VLAN_CFG);
3646         memcpy(send_msg.data, port_base_vlan_info, data_size);
3647         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3648         if (!ret) {
3649                 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3650                         nic->port_base_vlan_state = state;
3651                 else
3652                         nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3653         }
3654
3655         hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3656         rtnl_unlock();
3657 }
3658
3659 static const struct hnae3_ae_ops hclgevf_ops = {
3660         .init_ae_dev = hclgevf_init_ae_dev,
3661         .uninit_ae_dev = hclgevf_uninit_ae_dev,
3662         .flr_prepare = hclgevf_flr_prepare,
3663         .flr_done = hclgevf_flr_done,
3664         .init_client_instance = hclgevf_init_client_instance,
3665         .uninit_client_instance = hclgevf_uninit_client_instance,
3666         .start = hclgevf_ae_start,
3667         .stop = hclgevf_ae_stop,
3668         .client_start = hclgevf_client_start,
3669         .client_stop = hclgevf_client_stop,
3670         .map_ring_to_vector = hclgevf_map_ring_to_vector,
3671         .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3672         .get_vector = hclgevf_get_vector,
3673         .put_vector = hclgevf_put_vector,
3674         .reset_queue = hclgevf_reset_tqp,
3675         .get_mac_addr = hclgevf_get_mac_addr,
3676         .set_mac_addr = hclgevf_set_mac_addr,
3677         .add_uc_addr = hclgevf_add_uc_addr,
3678         .rm_uc_addr = hclgevf_rm_uc_addr,
3679         .add_mc_addr = hclgevf_add_mc_addr,
3680         .rm_mc_addr = hclgevf_rm_mc_addr,
3681         .get_stats = hclgevf_get_stats,
3682         .update_stats = hclgevf_update_stats,
3683         .get_strings = hclgevf_get_strings,
3684         .get_sset_count = hclgevf_get_sset_count,
3685         .get_rss_key_size = hclgevf_get_rss_key_size,
3686         .get_rss_indir_size = hclgevf_get_rss_indir_size,
3687         .get_rss = hclgevf_get_rss,
3688         .set_rss = hclgevf_set_rss,
3689         .get_rss_tuple = hclgevf_get_rss_tuple,
3690         .set_rss_tuple = hclgevf_set_rss_tuple,
3691         .get_tc_size = hclgevf_get_tc_size,
3692         .get_fw_version = hclgevf_get_fw_version,
3693         .set_vlan_filter = hclgevf_set_vlan_filter,
3694         .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3695         .reset_event = hclgevf_reset_event,
3696         .set_default_reset_request = hclgevf_set_def_reset_request,
3697         .set_channels = hclgevf_set_channels,
3698         .get_channels = hclgevf_get_channels,
3699         .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3700         .get_regs_len = hclgevf_get_regs_len,
3701         .get_regs = hclgevf_get_regs,
3702         .get_status = hclgevf_get_status,
3703         .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3704         .get_media_type = hclgevf_get_media_type,
3705         .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3706         .ae_dev_resetting = hclgevf_ae_dev_resetting,
3707         .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3708         .set_gro_en = hclgevf_gro_en,
3709         .set_mtu = hclgevf_set_mtu,
3710         .get_global_queue_id = hclgevf_get_qid_global,
3711         .set_timer_task = hclgevf_set_timer_task,
3712         .get_link_mode = hclgevf_get_link_mode,
3713         .set_promisc_mode = hclgevf_set_promisc_mode,
3714         .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3715         .get_cmdq_stat = hclgevf_get_cmdq_stat,
3716 };
3717
3718 static struct hnae3_ae_algo ae_algovf = {
3719         .ops = &hclgevf_ops,
3720         .pdev_id_table = ae_algovf_pci_tbl,
3721 };
3722
3723 static int hclgevf_init(void)
3724 {
3725         pr_info("%s is initializing\n", HCLGEVF_NAME);
3726
3727         hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3728         if (!hclgevf_wq) {
3729                 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3730                 return -ENOMEM;
3731         }
3732
3733         hnae3_register_ae_algo(&ae_algovf);
3734
3735         return 0;
3736 }
3737
3738 static void hclgevf_exit(void)
3739 {
3740         hnae3_unregister_ae_algo(&ae_algovf);
3741         destroy_workqueue(hclgevf_wq);
3742 }
3743 module_init(hclgevf_init);
3744 module_exit(hclgevf_exit);
3745
3746 MODULE_LICENSE("GPL");
3747 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3748 MODULE_DESCRIPTION("HCLGEVF Driver");
3749 MODULE_VERSION(HCLGEVF_MOD_VERSION);