Merge tag 'for-5.15/io_uring-vfs-2021-08-30' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11
12 #define HCLGEVF_NAME    "hclgevf"
13
14 #define HCLGEVF_RESET_MAX_FAIL_CNT      5
15
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18                                   unsigned long delay);
19
20 static struct hnae3_ae_algo ae_algovf;
21
22 static struct workqueue_struct *hclgevf_wq;
23
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28         /* required last entry */
29         {0, }
30 };
31
32 static const u8 hclgevf_hash_key[] = {
33         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43                                          HCLGEVF_CMDQ_TX_ADDR_H_REG,
44                                          HCLGEVF_CMDQ_TX_DEPTH_REG,
45                                          HCLGEVF_CMDQ_TX_TAIL_REG,
46                                          HCLGEVF_CMDQ_TX_HEAD_REG,
47                                          HCLGEVF_CMDQ_RX_ADDR_L_REG,
48                                          HCLGEVF_CMDQ_RX_ADDR_H_REG,
49                                          HCLGEVF_CMDQ_RX_DEPTH_REG,
50                                          HCLGEVF_CMDQ_RX_TAIL_REG,
51                                          HCLGEVF_CMDQ_RX_HEAD_REG,
52                                          HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53                                          HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54                                          HCLGEVF_CMDQ_INTR_EN_REG,
55                                          HCLGEVF_CMDQ_INTR_GEN_REG};
56
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58                                            HCLGEVF_RST_ING,
59                                            HCLGEVF_GRO_EN_REG};
60
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62                                          HCLGEVF_RING_RX_ADDR_H_REG,
63                                          HCLGEVF_RING_RX_BD_NUM_REG,
64                                          HCLGEVF_RING_RX_BD_LENGTH_REG,
65                                          HCLGEVF_RING_RX_MERGE_EN_REG,
66                                          HCLGEVF_RING_RX_TAIL_REG,
67                                          HCLGEVF_RING_RX_HEAD_REG,
68                                          HCLGEVF_RING_RX_FBD_NUM_REG,
69                                          HCLGEVF_RING_RX_OFFSET_REG,
70                                          HCLGEVF_RING_RX_FBD_OFFSET_REG,
71                                          HCLGEVF_RING_RX_STASH_REG,
72                                          HCLGEVF_RING_RX_BD_ERR_REG,
73                                          HCLGEVF_RING_TX_ADDR_L_REG,
74                                          HCLGEVF_RING_TX_ADDR_H_REG,
75                                          HCLGEVF_RING_TX_BD_NUM_REG,
76                                          HCLGEVF_RING_TX_PRIORITY_REG,
77                                          HCLGEVF_RING_TX_TC_REG,
78                                          HCLGEVF_RING_TX_MERGE_EN_REG,
79                                          HCLGEVF_RING_TX_TAIL_REG,
80                                          HCLGEVF_RING_TX_HEAD_REG,
81                                          HCLGEVF_RING_TX_FBD_NUM_REG,
82                                          HCLGEVF_RING_TX_OFFSET_REG,
83                                          HCLGEVF_RING_TX_EBD_NUM_REG,
84                                          HCLGEVF_RING_TX_EBD_OFFSET_REG,
85                                          HCLGEVF_RING_TX_BD_ERR_REG,
86                                          HCLGEVF_RING_EN_REG};
87
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89                                              HCLGEVF_TQP_INTR_GL0_REG,
90                                              HCLGEVF_TQP_INTR_GL1_REG,
91                                              HCLGEVF_TQP_INTR_GL2_REG,
92                                              HCLGEVF_TQP_INTR_RL_REG};
93
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96         if (!handle->client)
97                 return container_of(handle, struct hclgevf_dev, nic);
98         else if (handle->client->type == HNAE3_CLIENT_ROCE)
99                 return container_of(handle, struct hclgevf_dev, roce);
100         else
101                 return container_of(handle, struct hclgevf_dev, nic);
102 }
103
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108         struct hclgevf_desc desc;
109         struct hclgevf_tqp *tqp;
110         int status;
111         int i;
112
113         for (i = 0; i < kinfo->num_tqps; i++) {
114                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115                 hclgevf_cmd_setup_basic_desc(&desc,
116                                              HCLGEVF_OPC_QUERY_RX_STATUS,
117                                              true);
118
119                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121                 if (status) {
122                         dev_err(&hdev->pdev->dev,
123                                 "Query tqp stat fail, status = %d,queue = %d\n",
124                                 status, i);
125                         return status;
126                 }
127                 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128                         le32_to_cpu(desc.data[1]);
129
130                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131                                              true);
132
133                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135                 if (status) {
136                         dev_err(&hdev->pdev->dev,
137                                 "Query tqp stat fail, status = %d,queue = %d\n",
138                                 status, i);
139                         return status;
140                 }
141                 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142                         le32_to_cpu(desc.data[1]);
143         }
144
145         return 0;
146 }
147
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151         struct hclgevf_tqp *tqp;
152         u64 *buff = data;
153         int i;
154
155         for (i = 0; i < kinfo->num_tqps; i++) {
156                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157                 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158         }
159         for (i = 0; i < kinfo->num_tqps; i++) {
160                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161                 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162         }
163
164         return buff;
165 }
166
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170
171         return kinfo->num_tqps * 2;
172 }
173
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177         u8 *buff = data;
178         int i;
179
180         for (i = 0; i < kinfo->num_tqps; i++) {
181                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182                                                        struct hclgevf_tqp, q);
183                 snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184                          tqp->index);
185                 buff += ETH_GSTRING_LEN;
186         }
187
188         for (i = 0; i < kinfo->num_tqps; i++) {
189                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190                                                        struct hclgevf_tqp, q);
191                 snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192                          tqp->index);
193                 buff += ETH_GSTRING_LEN;
194         }
195
196         return buff;
197 }
198
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200                                  struct net_device_stats *net_stats)
201 {
202         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203         int status;
204
205         status = hclgevf_tqps_update_stats(handle);
206         if (status)
207                 dev_err(&hdev->pdev->dev,
208                         "VF update of TQPS stats fail, status = %d.\n",
209                         status);
210 }
211
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214         if (strset == ETH_SS_TEST)
215                 return -EOPNOTSUPP;
216         else if (strset == ETH_SS_STATS)
217                 return hclgevf_tqps_get_sset_count(handle, strset);
218
219         return 0;
220 }
221
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223                                 u8 *data)
224 {
225         u8 *p = (char *)data;
226
227         if (strset == ETH_SS_STATS)
228                 p = hclgevf_tqps_get_strings(handle, p);
229 }
230
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233         hclgevf_tqps_get_stats(handle, data);
234 }
235
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237                                    u8 subcode)
238 {
239         if (msg) {
240                 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241                 msg->code = code;
242                 msg->subcode = subcode;
243         }
244 }
245
246 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
247 {
248         struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
249         u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
250         struct hclge_basic_info *basic_info;
251         struct hclge_vf_to_pf_msg send_msg;
252         unsigned long caps;
253         int status;
254
255         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
256         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
257                                       sizeof(resp_msg));
258         if (status) {
259                 dev_err(&hdev->pdev->dev,
260                         "failed to get basic info from pf, ret = %d", status);
261                 return status;
262         }
263
264         basic_info = (struct hclge_basic_info *)resp_msg;
265
266         hdev->hw_tc_map = basic_info->hw_tc_map;
267         hdev->mbx_api_version = basic_info->mbx_api_version;
268         caps = basic_info->pf_caps;
269         if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
270                 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
271
272         return 0;
273 }
274
275 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
276 {
277         struct hnae3_handle *nic = &hdev->nic;
278         struct hclge_vf_to_pf_msg send_msg;
279         u8 resp_msg;
280         int ret;
281
282         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
283                                HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
284         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
285                                    sizeof(u8));
286         if (ret) {
287                 dev_err(&hdev->pdev->dev,
288                         "VF request to get port based vlan state failed %d",
289                         ret);
290                 return ret;
291         }
292
293         nic->port_base_vlan_state = resp_msg;
294
295         return 0;
296 }
297
298 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
299 {
300 #define HCLGEVF_TQPS_RSS_INFO_LEN       6
301 #define HCLGEVF_TQPS_ALLOC_OFFSET       0
302 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET    2
303 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET       4
304
305         u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
306         struct hclge_vf_to_pf_msg send_msg;
307         int status;
308
309         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
310         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
311                                       HCLGEVF_TQPS_RSS_INFO_LEN);
312         if (status) {
313                 dev_err(&hdev->pdev->dev,
314                         "VF request to get tqp info from PF failed %d",
315                         status);
316                 return status;
317         }
318
319         memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
320                sizeof(u16));
321         memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
322                sizeof(u16));
323         memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
324                sizeof(u16));
325
326         return 0;
327 }
328
329 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
330 {
331 #define HCLGEVF_TQPS_DEPTH_INFO_LEN     4
332 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0
333 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2
334
335         u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
336         struct hclge_vf_to_pf_msg send_msg;
337         int ret;
338
339         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
340         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
341                                    HCLGEVF_TQPS_DEPTH_INFO_LEN);
342         if (ret) {
343                 dev_err(&hdev->pdev->dev,
344                         "VF request to get tqp depth info from PF failed %d",
345                         ret);
346                 return ret;
347         }
348
349         memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
350                sizeof(u16));
351         memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
352                sizeof(u16));
353
354         return 0;
355 }
356
357 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
358 {
359         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
360         struct hclge_vf_to_pf_msg send_msg;
361         u16 qid_in_pf = 0;
362         u8 resp_data[2];
363         int ret;
364
365         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
366         memcpy(send_msg.data, &queue_id, sizeof(queue_id));
367         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
368                                    sizeof(resp_data));
369         if (!ret)
370                 qid_in_pf = *(u16 *)resp_data;
371
372         return qid_in_pf;
373 }
374
375 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
376 {
377         struct hclge_vf_to_pf_msg send_msg;
378         u8 resp_msg[2];
379         int ret;
380
381         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
382         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
383                                    sizeof(resp_msg));
384         if (ret) {
385                 dev_err(&hdev->pdev->dev,
386                         "VF request to get the pf port media type failed %d",
387                         ret);
388                 return ret;
389         }
390
391         hdev->hw.mac.media_type = resp_msg[0];
392         hdev->hw.mac.module_type = resp_msg[1];
393
394         return 0;
395 }
396
397 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
398 {
399         struct hclgevf_tqp *tqp;
400         int i;
401
402         hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
403                                   sizeof(struct hclgevf_tqp), GFP_KERNEL);
404         if (!hdev->htqp)
405                 return -ENOMEM;
406
407         tqp = hdev->htqp;
408
409         for (i = 0; i < hdev->num_tqps; i++) {
410                 tqp->dev = &hdev->pdev->dev;
411                 tqp->index = i;
412
413                 tqp->q.ae_algo = &ae_algovf;
414                 tqp->q.buf_size = hdev->rx_buf_len;
415                 tqp->q.tx_desc_num = hdev->num_tx_desc;
416                 tqp->q.rx_desc_num = hdev->num_rx_desc;
417
418                 /* need an extended offset to configure queues >=
419                  * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
420                  */
421                 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
422                         tqp->q.io_base = hdev->hw.io_base +
423                                          HCLGEVF_TQP_REG_OFFSET +
424                                          i * HCLGEVF_TQP_REG_SIZE;
425                 else
426                         tqp->q.io_base = hdev->hw.io_base +
427                                          HCLGEVF_TQP_REG_OFFSET +
428                                          HCLGEVF_TQP_EXT_REG_OFFSET +
429                                          (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
430                                          HCLGEVF_TQP_REG_SIZE;
431
432                 tqp++;
433         }
434
435         return 0;
436 }
437
438 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
439 {
440         struct hnae3_handle *nic = &hdev->nic;
441         struct hnae3_knic_private_info *kinfo;
442         u16 new_tqps = hdev->num_tqps;
443         unsigned int i;
444         u8 num_tc = 0;
445
446         kinfo = &nic->kinfo;
447         kinfo->num_tx_desc = hdev->num_tx_desc;
448         kinfo->num_rx_desc = hdev->num_rx_desc;
449         kinfo->rx_buf_len = hdev->rx_buf_len;
450         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
451                 if (hdev->hw_tc_map & BIT(i))
452                         num_tc++;
453
454         num_tc = num_tc ? num_tc : 1;
455         kinfo->tc_info.num_tc = num_tc;
456         kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
457         new_tqps = kinfo->rss_size * num_tc;
458         kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
459
460         kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
461                                   sizeof(struct hnae3_queue *), GFP_KERNEL);
462         if (!kinfo->tqp)
463                 return -ENOMEM;
464
465         for (i = 0; i < kinfo->num_tqps; i++) {
466                 hdev->htqp[i].q.handle = &hdev->nic;
467                 hdev->htqp[i].q.tqp_index = i;
468                 kinfo->tqp[i] = &hdev->htqp[i].q;
469         }
470
471         /* after init the max rss_size and tqps, adjust the default tqp numbers
472          * and rss size with the actual vector numbers
473          */
474         kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
475         kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
476                                 kinfo->rss_size);
477
478         return 0;
479 }
480
481 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
482 {
483         struct hclge_vf_to_pf_msg send_msg;
484         int status;
485
486         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
487         status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
488         if (status)
489                 dev_err(&hdev->pdev->dev,
490                         "VF failed to fetch link status(%d) from PF", status);
491 }
492
493 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
494 {
495         struct hnae3_handle *rhandle = &hdev->roce;
496         struct hnae3_handle *handle = &hdev->nic;
497         struct hnae3_client *rclient;
498         struct hnae3_client *client;
499
500         if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
501                 return;
502
503         client = handle->client;
504         rclient = hdev->roce_client;
505
506         link_state =
507                 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
508         if (link_state != hdev->hw.mac.link) {
509                 hdev->hw.mac.link = link_state;
510                 client->ops->link_status_change(handle, !!link_state);
511                 if (rclient && rclient->ops->link_status_change)
512                         rclient->ops->link_status_change(rhandle, !!link_state);
513         }
514
515         clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
516 }
517
518 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
519 {
520 #define HCLGEVF_ADVERTISING     0
521 #define HCLGEVF_SUPPORTED       1
522
523         struct hclge_vf_to_pf_msg send_msg;
524
525         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
526         send_msg.data[0] = HCLGEVF_ADVERTISING;
527         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
528         send_msg.data[0] = HCLGEVF_SUPPORTED;
529         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
530 }
531
532 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
533 {
534         struct hnae3_handle *nic = &hdev->nic;
535         int ret;
536
537         nic->ae_algo = &ae_algovf;
538         nic->pdev = hdev->pdev;
539         nic->numa_node_mask = hdev->numa_node_mask;
540         nic->flags |= HNAE3_SUPPORT_VF;
541
542         ret = hclgevf_knic_setup(hdev);
543         if (ret)
544                 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
545                         ret);
546         return ret;
547 }
548
549 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
550 {
551         if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
552                 dev_warn(&hdev->pdev->dev,
553                          "vector(vector_id %d) has been freed.\n", vector_id);
554                 return;
555         }
556
557         hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
558         hdev->num_msi_left += 1;
559         hdev->num_msi_used -= 1;
560 }
561
562 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
563                               struct hnae3_vector_info *vector_info)
564 {
565         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
566         struct hnae3_vector_info *vector = vector_info;
567         int alloc = 0;
568         int i, j;
569
570         vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
571         vector_num = min(hdev->num_msi_left, vector_num);
572
573         for (j = 0; j < vector_num; j++) {
574                 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
575                         if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
576                                 vector->vector = pci_irq_vector(hdev->pdev, i);
577                                 vector->io_addr = hdev->hw.io_base +
578                                         HCLGEVF_VECTOR_REG_BASE +
579                                         (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
580                                 hdev->vector_status[i] = 0;
581                                 hdev->vector_irq[i] = vector->vector;
582
583                                 vector++;
584                                 alloc++;
585
586                                 break;
587                         }
588                 }
589         }
590         hdev->num_msi_left -= alloc;
591         hdev->num_msi_used += alloc;
592
593         return alloc;
594 }
595
596 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
597 {
598         int i;
599
600         for (i = 0; i < hdev->num_msi; i++)
601                 if (vector == hdev->vector_irq[i])
602                         return i;
603
604         return -EINVAL;
605 }
606
607 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
608                                     const u8 hfunc, const u8 *key)
609 {
610         struct hclgevf_rss_config_cmd *req;
611         unsigned int key_offset = 0;
612         struct hclgevf_desc desc;
613         int key_counts;
614         int key_size;
615         int ret;
616
617         key_counts = HCLGEVF_RSS_KEY_SIZE;
618         req = (struct hclgevf_rss_config_cmd *)desc.data;
619
620         while (key_counts) {
621                 hclgevf_cmd_setup_basic_desc(&desc,
622                                              HCLGEVF_OPC_RSS_GENERIC_CONFIG,
623                                              false);
624
625                 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
626                 req->hash_config |=
627                         (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
628
629                 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
630                 memcpy(req->hash_key,
631                        key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
632
633                 key_counts -= key_size;
634                 key_offset++;
635                 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
636                 if (ret) {
637                         dev_err(&hdev->pdev->dev,
638                                 "Configure RSS config fail, status = %d\n",
639                                 ret);
640                         return ret;
641                 }
642         }
643
644         return 0;
645 }
646
647 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
648 {
649         return HCLGEVF_RSS_KEY_SIZE;
650 }
651
652 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
653 {
654         const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
655         struct hclgevf_rss_indirection_table_cmd *req;
656         struct hclgevf_desc desc;
657         int rss_cfg_tbl_num;
658         int status;
659         int i, j;
660
661         req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
662         rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
663                           HCLGEVF_RSS_CFG_TBL_SIZE;
664
665         for (i = 0; i < rss_cfg_tbl_num; i++) {
666                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
667                                              false);
668                 req->start_table_index =
669                         cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
670                 req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
671                 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
672                         req->rss_result[j] =
673                                 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
674
675                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
676                 if (status) {
677                         dev_err(&hdev->pdev->dev,
678                                 "VF failed(=%d) to set RSS indirection table\n",
679                                 status);
680                         return status;
681                 }
682         }
683
684         return 0;
685 }
686
687 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
688 {
689         struct hclgevf_rss_tc_mode_cmd *req;
690         u16 tc_offset[HCLGEVF_MAX_TC_NUM];
691         u16 tc_valid[HCLGEVF_MAX_TC_NUM];
692         u16 tc_size[HCLGEVF_MAX_TC_NUM];
693         struct hclgevf_desc desc;
694         u16 roundup_size;
695         unsigned int i;
696         int status;
697
698         req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
699
700         roundup_size = roundup_pow_of_two(rss_size);
701         roundup_size = ilog2(roundup_size);
702
703         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
704                 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
705                 tc_size[i] = roundup_size;
706                 tc_offset[i] = rss_size * i;
707         }
708
709         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
710         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
711                 u16 mode = 0;
712
713                 hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
714                               (tc_valid[i] & 0x1));
715                 hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
716                                 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
717                 hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
718                               tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
719                               0x1);
720                 hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
721                                 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
722
723                 req->rss_tc_mode[i] = cpu_to_le16(mode);
724         }
725         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
726         if (status)
727                 dev_err(&hdev->pdev->dev,
728                         "VF failed(=%d) to set rss tc mode\n", status);
729
730         return status;
731 }
732
733 /* for revision 0x20, vf shared the same rss config with pf */
734 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
735 {
736 #define HCLGEVF_RSS_MBX_RESP_LEN        8
737         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
738         u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
739         struct hclge_vf_to_pf_msg send_msg;
740         u16 msg_num, hash_key_index;
741         u8 index;
742         int ret;
743
744         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
745         msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
746                         HCLGEVF_RSS_MBX_RESP_LEN;
747         for (index = 0; index < msg_num; index++) {
748                 send_msg.data[0] = index;
749                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
750                                            HCLGEVF_RSS_MBX_RESP_LEN);
751                 if (ret) {
752                         dev_err(&hdev->pdev->dev,
753                                 "VF get rss hash key from PF failed, ret=%d",
754                                 ret);
755                         return ret;
756                 }
757
758                 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
759                 if (index == msg_num - 1)
760                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
761                                &resp_msg[0],
762                                HCLGEVF_RSS_KEY_SIZE - hash_key_index);
763                 else
764                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
765                                &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
766         }
767
768         return 0;
769 }
770
771 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
772                            u8 *hfunc)
773 {
774         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
775         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
776         int i, ret;
777
778         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
779                 /* Get hash algorithm */
780                 if (hfunc) {
781                         switch (rss_cfg->hash_algo) {
782                         case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
783                                 *hfunc = ETH_RSS_HASH_TOP;
784                                 break;
785                         case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
786                                 *hfunc = ETH_RSS_HASH_XOR;
787                                 break;
788                         default:
789                                 *hfunc = ETH_RSS_HASH_UNKNOWN;
790                                 break;
791                         }
792                 }
793
794                 /* Get the RSS Key required by the user */
795                 if (key)
796                         memcpy(key, rss_cfg->rss_hash_key,
797                                HCLGEVF_RSS_KEY_SIZE);
798         } else {
799                 if (hfunc)
800                         *hfunc = ETH_RSS_HASH_TOP;
801                 if (key) {
802                         ret = hclgevf_get_rss_hash_key(hdev);
803                         if (ret)
804                                 return ret;
805                         memcpy(key, rss_cfg->rss_hash_key,
806                                HCLGEVF_RSS_KEY_SIZE);
807                 }
808         }
809
810         if (indir)
811                 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
812                         indir[i] = rss_cfg->rss_indirection_tbl[i];
813
814         return 0;
815 }
816
817 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
818                            const u8 *key, const u8 hfunc)
819 {
820         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
821         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
822         int ret, i;
823
824         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
825                 /* Set the RSS Hash Key if specififed by the user */
826                 if (key) {
827                         switch (hfunc) {
828                         case ETH_RSS_HASH_TOP:
829                                 rss_cfg->hash_algo =
830                                         HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
831                                 break;
832                         case ETH_RSS_HASH_XOR:
833                                 rss_cfg->hash_algo =
834                                         HCLGEVF_RSS_HASH_ALGO_SIMPLE;
835                                 break;
836                         case ETH_RSS_HASH_NO_CHANGE:
837                                 break;
838                         default:
839                                 return -EINVAL;
840                         }
841
842                         ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
843                                                        key);
844                         if (ret)
845                                 return ret;
846
847                         /* Update the shadow RSS key with user specified qids */
848                         memcpy(rss_cfg->rss_hash_key, key,
849                                HCLGEVF_RSS_KEY_SIZE);
850                 }
851         }
852
853         /* update the shadow RSS table with user specified qids */
854         for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
855                 rss_cfg->rss_indirection_tbl[i] = indir[i];
856
857         /* update the hardware */
858         return hclgevf_set_rss_indir_table(hdev);
859 }
860
861 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
862 {
863         u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
864
865         if (nfc->data & RXH_L4_B_2_3)
866                 hash_sets |= HCLGEVF_D_PORT_BIT;
867         else
868                 hash_sets &= ~HCLGEVF_D_PORT_BIT;
869
870         if (nfc->data & RXH_IP_SRC)
871                 hash_sets |= HCLGEVF_S_IP_BIT;
872         else
873                 hash_sets &= ~HCLGEVF_S_IP_BIT;
874
875         if (nfc->data & RXH_IP_DST)
876                 hash_sets |= HCLGEVF_D_IP_BIT;
877         else
878                 hash_sets &= ~HCLGEVF_D_IP_BIT;
879
880         if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
881                 hash_sets |= HCLGEVF_V_TAG_BIT;
882
883         return hash_sets;
884 }
885
886 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
887                                       struct ethtool_rxnfc *nfc,
888                                       struct hclgevf_rss_input_tuple_cmd *req)
889 {
890         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
892         u8 tuple_sets;
893
894         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
895         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
896         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
897         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
898         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
899         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
900         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
901         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
902
903         tuple_sets = hclgevf_get_rss_hash_bits(nfc);
904         switch (nfc->flow_type) {
905         case TCP_V4_FLOW:
906                 req->ipv4_tcp_en = tuple_sets;
907                 break;
908         case TCP_V6_FLOW:
909                 req->ipv6_tcp_en = tuple_sets;
910                 break;
911         case UDP_V4_FLOW:
912                 req->ipv4_udp_en = tuple_sets;
913                 break;
914         case UDP_V6_FLOW:
915                 req->ipv6_udp_en = tuple_sets;
916                 break;
917         case SCTP_V4_FLOW:
918                 req->ipv4_sctp_en = tuple_sets;
919                 break;
920         case SCTP_V6_FLOW:
921                 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
922                     (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
923                         return -EINVAL;
924
925                 req->ipv6_sctp_en = tuple_sets;
926                 break;
927         case IPV4_FLOW:
928                 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
929                 break;
930         case IPV6_FLOW:
931                 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
932                 break;
933         default:
934                 return -EINVAL;
935         }
936
937         return 0;
938 }
939
940 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
941                                  struct ethtool_rxnfc *nfc)
942 {
943         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
944         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
945         struct hclgevf_rss_input_tuple_cmd *req;
946         struct hclgevf_desc desc;
947         int ret;
948
949         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
950                 return -EOPNOTSUPP;
951
952         if (nfc->data &
953             ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
954                 return -EINVAL;
955
956         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
957         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
958
959         ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
960         if (ret) {
961                 dev_err(&hdev->pdev->dev,
962                         "failed to init rss tuple cmd, ret = %d\n", ret);
963                 return ret;
964         }
965
966         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
967         if (ret) {
968                 dev_err(&hdev->pdev->dev,
969                         "Set rss tuple fail, status = %d\n", ret);
970                 return ret;
971         }
972
973         rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
974         rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
975         rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
976         rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
977         rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
978         rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
979         rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
980         rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
981         return 0;
982 }
983
984 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
985                                               int flow_type, u8 *tuple_sets)
986 {
987         switch (flow_type) {
988         case TCP_V4_FLOW:
989                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
990                 break;
991         case UDP_V4_FLOW:
992                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
993                 break;
994         case TCP_V6_FLOW:
995                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
996                 break;
997         case UDP_V6_FLOW:
998                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
999                 break;
1000         case SCTP_V4_FLOW:
1001                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
1002                 break;
1003         case SCTP_V6_FLOW:
1004                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
1005                 break;
1006         case IPV4_FLOW:
1007         case IPV6_FLOW:
1008                 *tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
1009                 break;
1010         default:
1011                 return -EINVAL;
1012         }
1013
1014         return 0;
1015 }
1016
1017 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1018 {
1019         u64 tuple_data = 0;
1020
1021         if (tuple_sets & HCLGEVF_D_PORT_BIT)
1022                 tuple_data |= RXH_L4_B_2_3;
1023         if (tuple_sets & HCLGEVF_S_PORT_BIT)
1024                 tuple_data |= RXH_L4_B_0_1;
1025         if (tuple_sets & HCLGEVF_D_IP_BIT)
1026                 tuple_data |= RXH_IP_DST;
1027         if (tuple_sets & HCLGEVF_S_IP_BIT)
1028                 tuple_data |= RXH_IP_SRC;
1029
1030         return tuple_data;
1031 }
1032
1033 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1034                                  struct ethtool_rxnfc *nfc)
1035 {
1036         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1037         u8 tuple_sets;
1038         int ret;
1039
1040         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1041                 return -EOPNOTSUPP;
1042
1043         nfc->data = 0;
1044
1045         ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1046                                                  &tuple_sets);
1047         if (ret || !tuple_sets)
1048                 return ret;
1049
1050         nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1051
1052         return 0;
1053 }
1054
1055 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1056                                        struct hclgevf_rss_cfg *rss_cfg)
1057 {
1058         struct hclgevf_rss_input_tuple_cmd *req;
1059         struct hclgevf_desc desc;
1060         int ret;
1061
1062         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1063
1064         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1065
1066         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1067         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1068         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1069         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1070         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1071         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1072         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1073         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1074
1075         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1076         if (ret)
1077                 dev_err(&hdev->pdev->dev,
1078                         "Configure rss input fail, status = %d\n", ret);
1079         return ret;
1080 }
1081
1082 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1083 {
1084         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1085         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1086
1087         return rss_cfg->rss_size;
1088 }
1089
1090 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1091                                        int vector_id,
1092                                        struct hnae3_ring_chain_node *ring_chain)
1093 {
1094         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1095         struct hclge_vf_to_pf_msg send_msg;
1096         struct hnae3_ring_chain_node *node;
1097         int status;
1098         int i = 0;
1099
1100         memset(&send_msg, 0, sizeof(send_msg));
1101         send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1102                 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1103         send_msg.vector_id = vector_id;
1104
1105         for (node = ring_chain; node; node = node->next) {
1106                 send_msg.param[i].ring_type =
1107                                 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1108
1109                 send_msg.param[i].tqp_index = node->tqp_index;
1110                 send_msg.param[i].int_gl_index =
1111                                         hnae3_get_field(node->int_gl_idx,
1112                                                         HNAE3_RING_GL_IDX_M,
1113                                                         HNAE3_RING_GL_IDX_S);
1114
1115                 i++;
1116                 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1117                         send_msg.ring_num = i;
1118
1119                         status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1120                                                       NULL, 0);
1121                         if (status) {
1122                                 dev_err(&hdev->pdev->dev,
1123                                         "Map TQP fail, status is %d.\n",
1124                                         status);
1125                                 return status;
1126                         }
1127                         i = 0;
1128                 }
1129         }
1130
1131         return 0;
1132 }
1133
1134 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1135                                       struct hnae3_ring_chain_node *ring_chain)
1136 {
1137         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1138         int vector_id;
1139
1140         vector_id = hclgevf_get_vector_index(hdev, vector);
1141         if (vector_id < 0) {
1142                 dev_err(&handle->pdev->dev,
1143                         "Get vector index fail. ret =%d\n", vector_id);
1144                 return vector_id;
1145         }
1146
1147         return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1148 }
1149
1150 static int hclgevf_unmap_ring_from_vector(
1151                                 struct hnae3_handle *handle,
1152                                 int vector,
1153                                 struct hnae3_ring_chain_node *ring_chain)
1154 {
1155         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1156         int ret, vector_id;
1157
1158         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1159                 return 0;
1160
1161         vector_id = hclgevf_get_vector_index(hdev, vector);
1162         if (vector_id < 0) {
1163                 dev_err(&handle->pdev->dev,
1164                         "Get vector index fail. ret =%d\n", vector_id);
1165                 return vector_id;
1166         }
1167
1168         ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1169         if (ret)
1170                 dev_err(&handle->pdev->dev,
1171                         "Unmap ring from vector fail. vector=%d, ret =%d\n",
1172                         vector_id,
1173                         ret);
1174
1175         return ret;
1176 }
1177
1178 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1179 {
1180         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1181         int vector_id;
1182
1183         vector_id = hclgevf_get_vector_index(hdev, vector);
1184         if (vector_id < 0) {
1185                 dev_err(&handle->pdev->dev,
1186                         "hclgevf_put_vector get vector index fail. ret =%d\n",
1187                         vector_id);
1188                 return vector_id;
1189         }
1190
1191         hclgevf_free_vector(hdev, vector_id);
1192
1193         return 0;
1194 }
1195
1196 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1197                                         bool en_uc_pmc, bool en_mc_pmc,
1198                                         bool en_bc_pmc)
1199 {
1200         struct hnae3_handle *handle = &hdev->nic;
1201         struct hclge_vf_to_pf_msg send_msg;
1202         int ret;
1203
1204         memset(&send_msg, 0, sizeof(send_msg));
1205         send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1206         send_msg.en_bc = en_bc_pmc ? 1 : 0;
1207         send_msg.en_uc = en_uc_pmc ? 1 : 0;
1208         send_msg.en_mc = en_mc_pmc ? 1 : 0;
1209         send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1210                                              &handle->priv_flags) ? 1 : 0;
1211
1212         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1213         if (ret)
1214                 dev_err(&hdev->pdev->dev,
1215                         "Set promisc mode fail, status is %d.\n", ret);
1216
1217         return ret;
1218 }
1219
1220 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1221                                     bool en_mc_pmc)
1222 {
1223         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1224         bool en_bc_pmc;
1225
1226         en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1227
1228         return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1229                                             en_bc_pmc);
1230 }
1231
1232 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1233 {
1234         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1235
1236         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1237         hclgevf_task_schedule(hdev, 0);
1238 }
1239
1240 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1241 {
1242         struct hnae3_handle *handle = &hdev->nic;
1243         bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1244         bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1245         int ret;
1246
1247         if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1248                 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1249                 if (!ret)
1250                         clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1251         }
1252 }
1253
1254 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1255                                        u16 stream_id, bool enable)
1256 {
1257         struct hclgevf_cfg_com_tqp_queue_cmd *req;
1258         struct hclgevf_desc desc;
1259
1260         req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1261
1262         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1263                                      false);
1264         req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1265         req->stream_id = cpu_to_le16(stream_id);
1266         if (enable)
1267                 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1268
1269         return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1270 }
1271
1272 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1273 {
1274         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1275         int ret;
1276         u16 i;
1277
1278         for (i = 0; i < handle->kinfo.num_tqps; i++) {
1279                 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1280                 if (ret)
1281                         return ret;
1282         }
1283
1284         return 0;
1285 }
1286
1287 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1288 {
1289         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1290         struct hclgevf_tqp *tqp;
1291         int i;
1292
1293         for (i = 0; i < kinfo->num_tqps; i++) {
1294                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1295                 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1296         }
1297 }
1298
1299 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1300 {
1301         struct hclge_vf_to_pf_msg send_msg;
1302         u8 host_mac[ETH_ALEN];
1303         int status;
1304
1305         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1306         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1307                                       ETH_ALEN);
1308         if (status) {
1309                 dev_err(&hdev->pdev->dev,
1310                         "fail to get VF MAC from host %d", status);
1311                 return status;
1312         }
1313
1314         ether_addr_copy(p, host_mac);
1315
1316         return 0;
1317 }
1318
1319 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1320 {
1321         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1322         u8 host_mac_addr[ETH_ALEN];
1323
1324         if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1325                 return;
1326
1327         hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1328         if (hdev->has_pf_mac)
1329                 ether_addr_copy(p, host_mac_addr);
1330         else
1331                 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1332 }
1333
1334 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1335                                 bool is_first)
1336 {
1337         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1338         u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1339         struct hclge_vf_to_pf_msg send_msg;
1340         u8 *new_mac_addr = (u8 *)p;
1341         int status;
1342
1343         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1344         send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1345         ether_addr_copy(send_msg.data, new_mac_addr);
1346         if (is_first && !hdev->has_pf_mac)
1347                 eth_zero_addr(&send_msg.data[ETH_ALEN]);
1348         else
1349                 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1350         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1351         if (!status)
1352                 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1353
1354         return status;
1355 }
1356
1357 static struct hclgevf_mac_addr_node *
1358 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1359 {
1360         struct hclgevf_mac_addr_node *mac_node, *tmp;
1361
1362         list_for_each_entry_safe(mac_node, tmp, list, node)
1363                 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1364                         return mac_node;
1365
1366         return NULL;
1367 }
1368
1369 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1370                                     enum HCLGEVF_MAC_NODE_STATE state)
1371 {
1372         switch (state) {
1373         /* from set_rx_mode or tmp_add_list */
1374         case HCLGEVF_MAC_TO_ADD:
1375                 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1376                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1377                 break;
1378         /* only from set_rx_mode */
1379         case HCLGEVF_MAC_TO_DEL:
1380                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1381                         list_del(&mac_node->node);
1382                         kfree(mac_node);
1383                 } else {
1384                         mac_node->state = HCLGEVF_MAC_TO_DEL;
1385                 }
1386                 break;
1387         /* only from tmp_add_list, the mac_node->state won't be
1388          * HCLGEVF_MAC_ACTIVE
1389          */
1390         case HCLGEVF_MAC_ACTIVE:
1391                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1392                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1393                 break;
1394         }
1395 }
1396
1397 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1398                                    enum HCLGEVF_MAC_NODE_STATE state,
1399                                    enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1400                                    const unsigned char *addr)
1401 {
1402         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1403         struct hclgevf_mac_addr_node *mac_node;
1404         struct list_head *list;
1405
1406         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1407                &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1408
1409         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1410
1411         /* if the mac addr is already in the mac list, no need to add a new
1412          * one into it, just check the mac addr state, convert it to a new
1413          * new state, or just remove it, or do nothing.
1414          */
1415         mac_node = hclgevf_find_mac_node(list, addr);
1416         if (mac_node) {
1417                 hclgevf_update_mac_node(mac_node, state);
1418                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1419                 return 0;
1420         }
1421         /* if this address is never added, unnecessary to delete */
1422         if (state == HCLGEVF_MAC_TO_DEL) {
1423                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1424                 return -ENOENT;
1425         }
1426
1427         mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1428         if (!mac_node) {
1429                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1430                 return -ENOMEM;
1431         }
1432
1433         mac_node->state = state;
1434         ether_addr_copy(mac_node->mac_addr, addr);
1435         list_add_tail(&mac_node->node, list);
1436
1437         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1438         return 0;
1439 }
1440
1441 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1442                                const unsigned char *addr)
1443 {
1444         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1445                                        HCLGEVF_MAC_ADDR_UC, addr);
1446 }
1447
1448 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1449                               const unsigned char *addr)
1450 {
1451         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1452                                        HCLGEVF_MAC_ADDR_UC, addr);
1453 }
1454
1455 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1456                                const unsigned char *addr)
1457 {
1458         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1459                                        HCLGEVF_MAC_ADDR_MC, addr);
1460 }
1461
1462 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1463                               const unsigned char *addr)
1464 {
1465         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1466                                        HCLGEVF_MAC_ADDR_MC, addr);
1467 }
1468
1469 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1470                                     struct hclgevf_mac_addr_node *mac_node,
1471                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1472 {
1473         struct hclge_vf_to_pf_msg send_msg;
1474         u8 code, subcode;
1475
1476         if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1477                 code = HCLGE_MBX_SET_UNICAST;
1478                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1479                         subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1480                 else
1481                         subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1482         } else {
1483                 code = HCLGE_MBX_SET_MULTICAST;
1484                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1485                         subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1486                 else
1487                         subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1488         }
1489
1490         hclgevf_build_send_msg(&send_msg, code, subcode);
1491         ether_addr_copy(send_msg.data, mac_node->mac_addr);
1492         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1493 }
1494
1495 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1496                                     struct list_head *list,
1497                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1498 {
1499         struct hclgevf_mac_addr_node *mac_node, *tmp;
1500         int ret;
1501
1502         list_for_each_entry_safe(mac_node, tmp, list, node) {
1503                 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1504                 if  (ret) {
1505                         dev_err(&hdev->pdev->dev,
1506                                 "failed to configure mac %pM, state = %d, ret = %d\n",
1507                                 mac_node->mac_addr, mac_node->state, ret);
1508                         return;
1509                 }
1510                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1511                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1512                 } else {
1513                         list_del(&mac_node->node);
1514                         kfree(mac_node);
1515                 }
1516         }
1517 }
1518
1519 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1520                                        struct list_head *mac_list)
1521 {
1522         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1523
1524         list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1525                 /* if the mac address from tmp_add_list is not in the
1526                  * uc/mc_mac_list, it means have received a TO_DEL request
1527                  * during the time window of sending mac config request to PF
1528                  * If mac_node state is ACTIVE, then change its state to TO_DEL,
1529                  * then it will be removed at next time. If is TO_ADD, it means
1530                  * send TO_ADD request failed, so just remove the mac node.
1531                  */
1532                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1533                 if (new_node) {
1534                         hclgevf_update_mac_node(new_node, mac_node->state);
1535                         list_del(&mac_node->node);
1536                         kfree(mac_node);
1537                 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1538                         mac_node->state = HCLGEVF_MAC_TO_DEL;
1539                         list_move_tail(&mac_node->node, mac_list);
1540                 } else {
1541                         list_del(&mac_node->node);
1542                         kfree(mac_node);
1543                 }
1544         }
1545 }
1546
1547 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1548                                        struct list_head *mac_list)
1549 {
1550         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1551
1552         list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1553                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1554                 if (new_node) {
1555                         /* If the mac addr is exist in the mac list, it means
1556                          * received a new request TO_ADD during the time window
1557                          * of sending mac addr configurrequest to PF, so just
1558                          * change the mac state to ACTIVE.
1559                          */
1560                         new_node->state = HCLGEVF_MAC_ACTIVE;
1561                         list_del(&mac_node->node);
1562                         kfree(mac_node);
1563                 } else {
1564                         list_move_tail(&mac_node->node, mac_list);
1565                 }
1566         }
1567 }
1568
1569 static void hclgevf_clear_list(struct list_head *list)
1570 {
1571         struct hclgevf_mac_addr_node *mac_node, *tmp;
1572
1573         list_for_each_entry_safe(mac_node, tmp, list, node) {
1574                 list_del(&mac_node->node);
1575                 kfree(mac_node);
1576         }
1577 }
1578
1579 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1580                                   enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1581 {
1582         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1583         struct list_head tmp_add_list, tmp_del_list;
1584         struct list_head *list;
1585
1586         INIT_LIST_HEAD(&tmp_add_list);
1587         INIT_LIST_HEAD(&tmp_del_list);
1588
1589         /* move the mac addr to the tmp_add_list and tmp_del_list, then
1590          * we can add/delete these mac addr outside the spin lock
1591          */
1592         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1593                 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1594
1595         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1596
1597         list_for_each_entry_safe(mac_node, tmp, list, node) {
1598                 switch (mac_node->state) {
1599                 case HCLGEVF_MAC_TO_DEL:
1600                         list_move_tail(&mac_node->node, &tmp_del_list);
1601                         break;
1602                 case HCLGEVF_MAC_TO_ADD:
1603                         new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1604                         if (!new_node)
1605                                 goto stop_traverse;
1606
1607                         ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1608                         new_node->state = mac_node->state;
1609                         list_add_tail(&new_node->node, &tmp_add_list);
1610                         break;
1611                 default:
1612                         break;
1613                 }
1614         }
1615
1616 stop_traverse:
1617         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1618
1619         /* delete first, in order to get max mac table space for adding */
1620         hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1621         hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1622
1623         /* if some mac addresses were added/deleted fail, move back to the
1624          * mac_list, and retry at next time.
1625          */
1626         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1627
1628         hclgevf_sync_from_del_list(&tmp_del_list, list);
1629         hclgevf_sync_from_add_list(&tmp_add_list, list);
1630
1631         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1632 }
1633
1634 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1635 {
1636         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1637         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1638 }
1639
1640 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1641 {
1642         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1643
1644         hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1645         hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1646
1647         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1648 }
1649
1650 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1651 {
1652         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1653         struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1654         struct hclge_vf_to_pf_msg send_msg;
1655
1656         if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1657                 return -EOPNOTSUPP;
1658
1659         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1660                                HCLGE_MBX_ENABLE_VLAN_FILTER);
1661         send_msg.data[0] = enable ? 1 : 0;
1662
1663         return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1664 }
1665
1666 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1667                                    __be16 proto, u16 vlan_id,
1668                                    bool is_kill)
1669 {
1670 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0
1671 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1
1672 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET   3
1673
1674         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1675         struct hclge_vf_to_pf_msg send_msg;
1676         int ret;
1677
1678         if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1679                 return -EINVAL;
1680
1681         if (proto != htons(ETH_P_8021Q))
1682                 return -EPROTONOSUPPORT;
1683
1684         /* When device is resetting or reset failed, firmware is unable to
1685          * handle mailbox. Just record the vlan id, and remove it after
1686          * reset finished.
1687          */
1688         if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1689              test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1690                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1691                 return -EBUSY;
1692         }
1693
1694         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1695                                HCLGE_MBX_VLAN_FILTER);
1696         send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1697         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1698                sizeof(vlan_id));
1699         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1700                sizeof(proto));
1701         /* when remove hw vlan filter failed, record the vlan id,
1702          * and try to remove it from hw later, to be consistence
1703          * with stack.
1704          */
1705         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1706         if (is_kill && ret)
1707                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1708
1709         return ret;
1710 }
1711
1712 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1713 {
1714 #define HCLGEVF_MAX_SYNC_COUNT  60
1715         struct hnae3_handle *handle = &hdev->nic;
1716         int ret, sync_cnt = 0;
1717         u16 vlan_id;
1718
1719         vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1720         while (vlan_id != VLAN_N_VID) {
1721                 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1722                                               vlan_id, true);
1723                 if (ret)
1724                         return;
1725
1726                 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1727                 sync_cnt++;
1728                 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1729                         return;
1730
1731                 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1732         }
1733 }
1734
1735 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1736 {
1737         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1738         struct hclge_vf_to_pf_msg send_msg;
1739
1740         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1741                                HCLGE_MBX_VLAN_RX_OFF_CFG);
1742         send_msg.data[0] = enable ? 1 : 0;
1743         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1744 }
1745
1746 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1747 {
1748 #define HCLGEVF_RESET_ALL_QUEUE_DONE    1U
1749         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1750         struct hclge_vf_to_pf_msg send_msg;
1751         u8 return_status = 0;
1752         int ret;
1753         u16 i;
1754
1755         /* disable vf queue before send queue reset msg to PF */
1756         ret = hclgevf_tqp_enable(handle, false);
1757         if (ret) {
1758                 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1759                         ret);
1760                 return ret;
1761         }
1762
1763         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1764
1765         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1766                                    sizeof(return_status));
1767         if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1768                 return ret;
1769
1770         for (i = 1; i < handle->kinfo.num_tqps; i++) {
1771                 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1772                 memcpy(send_msg.data, &i, sizeof(i));
1773                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1774                 if (ret)
1775                         return ret;
1776         }
1777
1778         return 0;
1779 }
1780
1781 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1782 {
1783         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1784         struct hclge_vf_to_pf_msg send_msg;
1785
1786         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1787         memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1788         return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1789 }
1790
1791 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1792                                  enum hnae3_reset_notify_type type)
1793 {
1794         struct hnae3_client *client = hdev->nic_client;
1795         struct hnae3_handle *handle = &hdev->nic;
1796         int ret;
1797
1798         if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1799             !client)
1800                 return 0;
1801
1802         if (!client->ops->reset_notify)
1803                 return -EOPNOTSUPP;
1804
1805         ret = client->ops->reset_notify(handle, type);
1806         if (ret)
1807                 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1808                         type, ret);
1809
1810         return ret;
1811 }
1812
1813 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1814                                       enum hnae3_reset_notify_type type)
1815 {
1816         struct hnae3_client *client = hdev->roce_client;
1817         struct hnae3_handle *handle = &hdev->roce;
1818         int ret;
1819
1820         if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1821                 return 0;
1822
1823         if (!client->ops->reset_notify)
1824                 return -EOPNOTSUPP;
1825
1826         ret = client->ops->reset_notify(handle, type);
1827         if (ret)
1828                 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1829                         type, ret);
1830         return ret;
1831 }
1832
1833 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1834 {
1835 #define HCLGEVF_RESET_WAIT_US   20000
1836 #define HCLGEVF_RESET_WAIT_CNT  2000
1837 #define HCLGEVF_RESET_WAIT_TIMEOUT_US   \
1838         (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1839
1840         u32 val;
1841         int ret;
1842
1843         if (hdev->reset_type == HNAE3_VF_RESET)
1844                 ret = readl_poll_timeout(hdev->hw.io_base +
1845                                          HCLGEVF_VF_RST_ING, val,
1846                                          !(val & HCLGEVF_VF_RST_ING_BIT),
1847                                          HCLGEVF_RESET_WAIT_US,
1848                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1849         else
1850                 ret = readl_poll_timeout(hdev->hw.io_base +
1851                                          HCLGEVF_RST_ING, val,
1852                                          !(val & HCLGEVF_RST_ING_BITS),
1853                                          HCLGEVF_RESET_WAIT_US,
1854                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1855
1856         /* hardware completion status should be available by this time */
1857         if (ret) {
1858                 dev_err(&hdev->pdev->dev,
1859                         "couldn't get reset done status from h/w, timeout!\n");
1860                 return ret;
1861         }
1862
1863         /* we will wait a bit more to let reset of the stack to complete. This
1864          * might happen in case reset assertion was made by PF. Yes, this also
1865          * means we might end up waiting bit more even for VF reset.
1866          */
1867         msleep(5000);
1868
1869         return 0;
1870 }
1871
1872 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1873 {
1874         u32 reg_val;
1875
1876         reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1877         if (enable)
1878                 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1879         else
1880                 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1881
1882         hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1883                           reg_val);
1884 }
1885
1886 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1887 {
1888         int ret;
1889
1890         /* uninitialize the nic client */
1891         ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1892         if (ret)
1893                 return ret;
1894
1895         /* re-initialize the hclge device */
1896         ret = hclgevf_reset_hdev(hdev);
1897         if (ret) {
1898                 dev_err(&hdev->pdev->dev,
1899                         "hclge device re-init failed, VF is disabled!\n");
1900                 return ret;
1901         }
1902
1903         /* bring up the nic client again */
1904         ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1905         if (ret)
1906                 return ret;
1907
1908         /* clear handshake status with IMP */
1909         hclgevf_reset_handshake(hdev, false);
1910
1911         /* bring up the nic to enable TX/RX again */
1912         return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1913 }
1914
1915 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1916 {
1917 #define HCLGEVF_RESET_SYNC_TIME 100
1918
1919         if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1920                 struct hclge_vf_to_pf_msg send_msg;
1921                 int ret;
1922
1923                 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1924                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1925                 if (ret) {
1926                         dev_err(&hdev->pdev->dev,
1927                                 "failed to assert VF reset, ret = %d\n", ret);
1928                         return ret;
1929                 }
1930                 hdev->rst_stats.vf_func_rst_cnt++;
1931         }
1932
1933         set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1934         /* inform hardware that preparatory work is done */
1935         msleep(HCLGEVF_RESET_SYNC_TIME);
1936         hclgevf_reset_handshake(hdev, true);
1937         dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1938                  hdev->reset_type);
1939
1940         return 0;
1941 }
1942
1943 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1944 {
1945         dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1946                  hdev->rst_stats.vf_func_rst_cnt);
1947         dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1948                  hdev->rst_stats.flr_rst_cnt);
1949         dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1950                  hdev->rst_stats.vf_rst_cnt);
1951         dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1952                  hdev->rst_stats.rst_done_cnt);
1953         dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1954                  hdev->rst_stats.hw_rst_done_cnt);
1955         dev_info(&hdev->pdev->dev, "reset count: %u\n",
1956                  hdev->rst_stats.rst_cnt);
1957         dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1958                  hdev->rst_stats.rst_fail_cnt);
1959         dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1960                  hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1961         dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1962                  hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1963         dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1964                  hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1965         dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1966                  hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1967         dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1968 }
1969
1970 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1971 {
1972         /* recover handshake status with IMP when reset fail */
1973         hclgevf_reset_handshake(hdev, true);
1974         hdev->rst_stats.rst_fail_cnt++;
1975         dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1976                 hdev->rst_stats.rst_fail_cnt);
1977
1978         if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1979                 set_bit(hdev->reset_type, &hdev->reset_pending);
1980
1981         if (hclgevf_is_reset_pending(hdev)) {
1982                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1983                 hclgevf_reset_task_schedule(hdev);
1984         } else {
1985                 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1986                 hclgevf_dump_rst_info(hdev);
1987         }
1988 }
1989
1990 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1991 {
1992         int ret;
1993
1994         hdev->rst_stats.rst_cnt++;
1995
1996         /* perform reset of the stack & ae device for a client */
1997         ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1998         if (ret)
1999                 return ret;
2000
2001         rtnl_lock();
2002         /* bring down the nic to stop any ongoing TX/RX */
2003         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2004         rtnl_unlock();
2005         if (ret)
2006                 return ret;
2007
2008         return hclgevf_reset_prepare_wait(hdev);
2009 }
2010
2011 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
2012 {
2013         int ret;
2014
2015         hdev->rst_stats.hw_rst_done_cnt++;
2016         ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
2017         if (ret)
2018                 return ret;
2019
2020         rtnl_lock();
2021         /* now, re-initialize the nic client and ae device */
2022         ret = hclgevf_reset_stack(hdev);
2023         rtnl_unlock();
2024         if (ret) {
2025                 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2026                 return ret;
2027         }
2028
2029         ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
2030         /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
2031          * times
2032          */
2033         if (ret &&
2034             hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
2035                 return ret;
2036
2037         ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
2038         if (ret)
2039                 return ret;
2040
2041         hdev->last_reset_time = jiffies;
2042         hdev->rst_stats.rst_done_cnt++;
2043         hdev->rst_stats.rst_fail_cnt = 0;
2044         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2045
2046         return 0;
2047 }
2048
2049 static void hclgevf_reset(struct hclgevf_dev *hdev)
2050 {
2051         if (hclgevf_reset_prepare(hdev))
2052                 goto err_reset;
2053
2054         /* check if VF could successfully fetch the hardware reset completion
2055          * status from the hardware
2056          */
2057         if (hclgevf_reset_wait(hdev)) {
2058                 /* can't do much in this situation, will disable VF */
2059                 dev_err(&hdev->pdev->dev,
2060                         "failed to fetch H/W reset completion status\n");
2061                 goto err_reset;
2062         }
2063
2064         if (hclgevf_reset_rebuild(hdev))
2065                 goto err_reset;
2066
2067         return;
2068
2069 err_reset:
2070         hclgevf_reset_err_handle(hdev);
2071 }
2072
2073 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2074                                                      unsigned long *addr)
2075 {
2076         enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2077
2078         /* return the highest priority reset level amongst all */
2079         if (test_bit(HNAE3_VF_RESET, addr)) {
2080                 rst_level = HNAE3_VF_RESET;
2081                 clear_bit(HNAE3_VF_RESET, addr);
2082                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2083                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2084         } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2085                 rst_level = HNAE3_VF_FULL_RESET;
2086                 clear_bit(HNAE3_VF_FULL_RESET, addr);
2087                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2088         } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2089                 rst_level = HNAE3_VF_PF_FUNC_RESET;
2090                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2091                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2092         } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2093                 rst_level = HNAE3_VF_FUNC_RESET;
2094                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2095         } else if (test_bit(HNAE3_FLR_RESET, addr)) {
2096                 rst_level = HNAE3_FLR_RESET;
2097                 clear_bit(HNAE3_FLR_RESET, addr);
2098         }
2099
2100         return rst_level;
2101 }
2102
2103 static void hclgevf_reset_event(struct pci_dev *pdev,
2104                                 struct hnae3_handle *handle)
2105 {
2106         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2107         struct hclgevf_dev *hdev = ae_dev->priv;
2108
2109         dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2110
2111         if (hdev->default_reset_request)
2112                 hdev->reset_level =
2113                         hclgevf_get_reset_level(hdev,
2114                                                 &hdev->default_reset_request);
2115         else
2116                 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2117
2118         /* reset of this VF requested */
2119         set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2120         hclgevf_reset_task_schedule(hdev);
2121
2122         hdev->last_reset_time = jiffies;
2123 }
2124
2125 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2126                                           enum hnae3_reset_type rst_type)
2127 {
2128         struct hclgevf_dev *hdev = ae_dev->priv;
2129
2130         set_bit(rst_type, &hdev->default_reset_request);
2131 }
2132
2133 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2134 {
2135         writel(en ? 1 : 0, vector->addr);
2136 }
2137
2138 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
2139                                           enum hnae3_reset_type rst_type)
2140 {
2141 #define HCLGEVF_RESET_RETRY_WAIT_MS     500
2142 #define HCLGEVF_RESET_RETRY_CNT         5
2143
2144         struct hclgevf_dev *hdev = ae_dev->priv;
2145         int retry_cnt = 0;
2146         int ret;
2147
2148 retry:
2149         down(&hdev->reset_sem);
2150         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2151         hdev->reset_type = rst_type;
2152         ret = hclgevf_reset_prepare(hdev);
2153         if (ret) {
2154                 dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n",
2155                         ret);
2156                 if (hdev->reset_pending ||
2157                     retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
2158                         dev_err(&hdev->pdev->dev,
2159                                 "reset_pending:0x%lx, retry_cnt:%d\n",
2160                                 hdev->reset_pending, retry_cnt);
2161                         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2162                         up(&hdev->reset_sem);
2163                         msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
2164                         goto retry;
2165                 }
2166         }
2167
2168         /* disable misc vector before reset done */
2169         hclgevf_enable_vector(&hdev->misc_vector, false);
2170
2171         if (hdev->reset_type == HNAE3_FLR_RESET)
2172                 hdev->rst_stats.flr_rst_cnt++;
2173 }
2174
2175 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
2176 {
2177         struct hclgevf_dev *hdev = ae_dev->priv;
2178         int ret;
2179
2180         hclgevf_enable_vector(&hdev->misc_vector, true);
2181
2182         ret = hclgevf_reset_rebuild(hdev);
2183         if (ret)
2184                 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2185                          ret);
2186
2187         hdev->reset_type = HNAE3_NONE_RESET;
2188         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2189         up(&hdev->reset_sem);
2190 }
2191
2192 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2193 {
2194         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2195
2196         return hdev->fw_version;
2197 }
2198
2199 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2200 {
2201         struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2202
2203         vector->vector_irq = pci_irq_vector(hdev->pdev,
2204                                             HCLGEVF_MISC_VECTOR_NUM);
2205         vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2206         /* vector status always valid for Vector 0 */
2207         hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2208         hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2209
2210         hdev->num_msi_left -= 1;
2211         hdev->num_msi_used += 1;
2212 }
2213
2214 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2215 {
2216         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2217             !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2218                               &hdev->state))
2219                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2220 }
2221
2222 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2223 {
2224         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2225             !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2226                               &hdev->state))
2227                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2228 }
2229
2230 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2231                                   unsigned long delay)
2232 {
2233         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2234             !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2235                 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2236 }
2237
2238 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2239 {
2240 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT  3
2241
2242         if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2243                 return;
2244
2245         down(&hdev->reset_sem);
2246         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2247
2248         if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2249                                &hdev->reset_state)) {
2250                 /* PF has intimated that it is about to reset the hardware.
2251                  * We now have to poll & check if hardware has actually
2252                  * completed the reset sequence. On hardware reset completion,
2253                  * VF needs to reset the client and ae device.
2254                  */
2255                 hdev->reset_attempts = 0;
2256
2257                 hdev->last_reset_time = jiffies;
2258                 while ((hdev->reset_type =
2259                         hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2260                        != HNAE3_NONE_RESET)
2261                         hclgevf_reset(hdev);
2262         } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2263                                       &hdev->reset_state)) {
2264                 /* we could be here when either of below happens:
2265                  * 1. reset was initiated due to watchdog timeout caused by
2266                  *    a. IMP was earlier reset and our TX got choked down and
2267                  *       which resulted in watchdog reacting and inducing VF
2268                  *       reset. This also means our cmdq would be unreliable.
2269                  *    b. problem in TX due to other lower layer(example link
2270                  *       layer not functioning properly etc.)
2271                  * 2. VF reset might have been initiated due to some config
2272                  *    change.
2273                  *
2274                  * NOTE: Theres no clear way to detect above cases than to react
2275                  * to the response of PF for this reset request. PF will ack the
2276                  * 1b and 2. cases but we will not get any intimation about 1a
2277                  * from PF as cmdq would be in unreliable state i.e. mailbox
2278                  * communication between PF and VF would be broken.
2279                  *
2280                  * if we are never geting into pending state it means either:
2281                  * 1. PF is not receiving our request which could be due to IMP
2282                  *    reset
2283                  * 2. PF is screwed
2284                  * We cannot do much for 2. but to check first we can try reset
2285                  * our PCIe + stack and see if it alleviates the problem.
2286                  */
2287                 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2288                         /* prepare for full reset of stack + pcie interface */
2289                         set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2290
2291                         /* "defer" schedule the reset task again */
2292                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2293                 } else {
2294                         hdev->reset_attempts++;
2295
2296                         set_bit(hdev->reset_level, &hdev->reset_pending);
2297                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2298                 }
2299                 hclgevf_reset_task_schedule(hdev);
2300         }
2301
2302         hdev->reset_type = HNAE3_NONE_RESET;
2303         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2304         up(&hdev->reset_sem);
2305 }
2306
2307 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2308 {
2309         if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2310                 return;
2311
2312         if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2313                 return;
2314
2315         hclgevf_mbx_async_handler(hdev);
2316
2317         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2318 }
2319
2320 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2321 {
2322         struct hclge_vf_to_pf_msg send_msg;
2323         int ret;
2324
2325         if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2326                 return;
2327
2328         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2329         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2330         if (ret)
2331                 dev_err(&hdev->pdev->dev,
2332                         "VF sends keep alive cmd failed(=%d)\n", ret);
2333 }
2334
2335 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2336 {
2337         unsigned long delta = round_jiffies_relative(HZ);
2338         struct hnae3_handle *handle = &hdev->nic;
2339
2340         if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2341                 return;
2342
2343         if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2344                 delta = jiffies - hdev->last_serv_processed;
2345
2346                 if (delta < round_jiffies_relative(HZ)) {
2347                         delta = round_jiffies_relative(HZ) - delta;
2348                         goto out;
2349                 }
2350         }
2351
2352         hdev->serv_processed_cnt++;
2353         if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2354                 hclgevf_keep_alive(hdev);
2355
2356         if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2357                 hdev->last_serv_processed = jiffies;
2358                 goto out;
2359         }
2360
2361         if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2362                 hclgevf_tqps_update_stats(handle);
2363
2364         /* VF does not need to request link status when this bit is set, because
2365          * PF will push its link status to VFs when link status changed.
2366          */
2367         if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
2368                 hclgevf_request_link_info(hdev);
2369
2370         hclgevf_update_link_mode(hdev);
2371
2372         hclgevf_sync_vlan_filter(hdev);
2373
2374         hclgevf_sync_mac_table(hdev);
2375
2376         hclgevf_sync_promisc_mode(hdev);
2377
2378         hdev->last_serv_processed = jiffies;
2379
2380 out:
2381         hclgevf_task_schedule(hdev, delta);
2382 }
2383
2384 static void hclgevf_service_task(struct work_struct *work)
2385 {
2386         struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2387                                                 service_task.work);
2388
2389         hclgevf_reset_service_task(hdev);
2390         hclgevf_mailbox_service_task(hdev);
2391         hclgevf_periodic_service_task(hdev);
2392
2393         /* Handle reset and mbx again in case periodical task delays the
2394          * handling by calling hclgevf_task_schedule() in
2395          * hclgevf_periodic_service_task()
2396          */
2397         hclgevf_reset_service_task(hdev);
2398         hclgevf_mailbox_service_task(hdev);
2399 }
2400
2401 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2402 {
2403         hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2404 }
2405
2406 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2407                                                       u32 *clearval)
2408 {
2409         u32 val, cmdq_stat_reg, rst_ing_reg;
2410
2411         /* fetch the events from their corresponding regs */
2412         cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2413                                          HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2414         if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2415                 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2416                 dev_info(&hdev->pdev->dev,
2417                          "receive reset interrupt 0x%x!\n", rst_ing_reg);
2418                 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2419                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2420                 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2421                 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2422                 hdev->rst_stats.vf_rst_cnt++;
2423                 /* set up VF hardware reset status, its PF will clear
2424                  * this status when PF has initialized done.
2425                  */
2426                 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2427                 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2428                                   val | HCLGEVF_VF_RST_ING_BIT);
2429                 return HCLGEVF_VECTOR0_EVENT_RST;
2430         }
2431
2432         /* check for vector0 mailbox(=CMDQ RX) event source */
2433         if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2434                 /* for revision 0x21, clearing interrupt is writing bit 0
2435                  * to the clear register, writing bit 1 means to keep the
2436                  * old value.
2437                  * for revision 0x20, the clear register is a read & write
2438                  * register, so we should just write 0 to the bit we are
2439                  * handling, and keep other bits as cmdq_stat_reg.
2440                  */
2441                 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2442                         *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2443                 else
2444                         *clearval = cmdq_stat_reg &
2445                                     ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2446
2447                 return HCLGEVF_VECTOR0_EVENT_MBX;
2448         }
2449
2450         /* print other vector0 event source */
2451         dev_info(&hdev->pdev->dev,
2452                  "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2453                  cmdq_stat_reg);
2454
2455         return HCLGEVF_VECTOR0_EVENT_OTHER;
2456 }
2457
2458 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2459 {
2460         enum hclgevf_evt_cause event_cause;
2461         struct hclgevf_dev *hdev = data;
2462         u32 clearval;
2463
2464         hclgevf_enable_vector(&hdev->misc_vector, false);
2465         event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2466
2467         switch (event_cause) {
2468         case HCLGEVF_VECTOR0_EVENT_RST:
2469                 hclgevf_reset_task_schedule(hdev);
2470                 break;
2471         case HCLGEVF_VECTOR0_EVENT_MBX:
2472                 hclgevf_mbx_handler(hdev);
2473                 break;
2474         default:
2475                 break;
2476         }
2477
2478         if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2479                 hclgevf_clear_event_cause(hdev, clearval);
2480                 hclgevf_enable_vector(&hdev->misc_vector, true);
2481         }
2482
2483         return IRQ_HANDLED;
2484 }
2485
2486 static int hclgevf_configure(struct hclgevf_dev *hdev)
2487 {
2488         int ret;
2489
2490         hdev->gro_en = true;
2491
2492         ret = hclgevf_get_basic_info(hdev);
2493         if (ret)
2494                 return ret;
2495
2496         /* get current port based vlan state from PF */
2497         ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2498         if (ret)
2499                 return ret;
2500
2501         /* get queue configuration from PF */
2502         ret = hclgevf_get_queue_info(hdev);
2503         if (ret)
2504                 return ret;
2505
2506         /* get queue depth info from PF */
2507         ret = hclgevf_get_queue_depth(hdev);
2508         if (ret)
2509                 return ret;
2510
2511         return hclgevf_get_pf_media_type(hdev);
2512 }
2513
2514 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2515 {
2516         struct pci_dev *pdev = ae_dev->pdev;
2517         struct hclgevf_dev *hdev;
2518
2519         hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2520         if (!hdev)
2521                 return -ENOMEM;
2522
2523         hdev->pdev = pdev;
2524         hdev->ae_dev = ae_dev;
2525         ae_dev->priv = hdev;
2526
2527         return 0;
2528 }
2529
2530 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2531 {
2532         struct hnae3_handle *roce = &hdev->roce;
2533         struct hnae3_handle *nic = &hdev->nic;
2534
2535         roce->rinfo.num_vectors = hdev->num_roce_msix;
2536
2537         if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2538             hdev->num_msi_left == 0)
2539                 return -EINVAL;
2540
2541         roce->rinfo.base_vector = hdev->roce_base_vector;
2542
2543         roce->rinfo.netdev = nic->kinfo.netdev;
2544         roce->rinfo.roce_io_base = hdev->hw.io_base;
2545         roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2546
2547         roce->pdev = nic->pdev;
2548         roce->ae_algo = nic->ae_algo;
2549         roce->numa_node_mask = nic->numa_node_mask;
2550
2551         return 0;
2552 }
2553
2554 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2555 {
2556         struct hclgevf_cfg_gro_status_cmd *req;
2557         struct hclgevf_desc desc;
2558         int ret;
2559
2560         if (!hnae3_dev_gro_supported(hdev))
2561                 return 0;
2562
2563         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2564                                      false);
2565         req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2566
2567         req->gro_en = hdev->gro_en ? 1 : 0;
2568
2569         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2570         if (ret)
2571                 dev_err(&hdev->pdev->dev,
2572                         "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2573
2574         return ret;
2575 }
2576
2577 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2578 {
2579         u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2580         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2581         struct hclgevf_rss_tuple_cfg *tuple_sets;
2582         u32 i;
2583
2584         rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2585         rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2586         tuple_sets = &rss_cfg->rss_tuple_sets;
2587         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2588                 u8 *rss_ind_tbl;
2589
2590                 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2591
2592                 rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2593                                            sizeof(*rss_ind_tbl), GFP_KERNEL);
2594                 if (!rss_ind_tbl)
2595                         return -ENOMEM;
2596
2597                 rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2598                 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2599                        HCLGEVF_RSS_KEY_SIZE);
2600
2601                 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2602                 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2603                 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2604                 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2605                 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2606                 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2607                 tuple_sets->ipv6_sctp_en =
2608                         hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2609                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2610                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2611                 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2612         }
2613
2614         /* Initialize RSS indirect table */
2615         for (i = 0; i < rss_ind_tbl_size; i++)
2616                 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2617
2618         return 0;
2619 }
2620
2621 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2622 {
2623         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2624         int ret;
2625
2626         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2627                 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2628                                                rss_cfg->rss_hash_key);
2629                 if (ret)
2630                         return ret;
2631
2632                 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2633                 if (ret)
2634                         return ret;
2635         }
2636
2637         ret = hclgevf_set_rss_indir_table(hdev);
2638         if (ret)
2639                 return ret;
2640
2641         return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2642 }
2643
2644 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2645 {
2646         struct hnae3_handle *nic = &hdev->nic;
2647         int ret;
2648
2649         ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2650         if (ret) {
2651                 dev_err(&hdev->pdev->dev,
2652                         "failed to enable rx vlan offload, ret = %d\n", ret);
2653                 return ret;
2654         }
2655
2656         return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2657                                        false);
2658 }
2659
2660 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2661 {
2662 #define HCLGEVF_FLUSH_LINK_TIMEOUT      100000
2663
2664         unsigned long last = hdev->serv_processed_cnt;
2665         int i = 0;
2666
2667         while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2668                i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2669                last == hdev->serv_processed_cnt)
2670                 usleep_range(1, 1);
2671 }
2672
2673 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2674 {
2675         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2676
2677         if (enable) {
2678                 hclgevf_task_schedule(hdev, 0);
2679         } else {
2680                 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2681
2682                 /* flush memory to make sure DOWN is seen by service task */
2683                 smp_mb__before_atomic();
2684                 hclgevf_flush_link_update(hdev);
2685         }
2686 }
2687
2688 static int hclgevf_ae_start(struct hnae3_handle *handle)
2689 {
2690         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2691
2692         clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2693         clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2694
2695         hclgevf_reset_tqp_stats(handle);
2696
2697         hclgevf_request_link_info(hdev);
2698
2699         hclgevf_update_link_mode(hdev);
2700
2701         return 0;
2702 }
2703
2704 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2705 {
2706         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2707
2708         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2709
2710         if (hdev->reset_type != HNAE3_VF_RESET)
2711                 hclgevf_reset_tqp(handle);
2712
2713         hclgevf_reset_tqp_stats(handle);
2714         hclgevf_update_link_status(hdev, 0);
2715 }
2716
2717 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2718 {
2719 #define HCLGEVF_STATE_ALIVE     1
2720 #define HCLGEVF_STATE_NOT_ALIVE 0
2721
2722         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2723         struct hclge_vf_to_pf_msg send_msg;
2724
2725         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2726         send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2727                                 HCLGEVF_STATE_NOT_ALIVE;
2728         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2729 }
2730
2731 static int hclgevf_client_start(struct hnae3_handle *handle)
2732 {
2733         return hclgevf_set_alive(handle, true);
2734 }
2735
2736 static void hclgevf_client_stop(struct hnae3_handle *handle)
2737 {
2738         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2739         int ret;
2740
2741         ret = hclgevf_set_alive(handle, false);
2742         if (ret)
2743                 dev_warn(&hdev->pdev->dev,
2744                          "%s failed %d\n", __func__, ret);
2745 }
2746
2747 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2748 {
2749         clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2750         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2751         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2752
2753         INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2754
2755         mutex_init(&hdev->mbx_resp.mbx_mutex);
2756         sema_init(&hdev->reset_sem, 1);
2757
2758         spin_lock_init(&hdev->mac_table.mac_list_lock);
2759         INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2760         INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2761
2762         /* bring the device down */
2763         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2764 }
2765
2766 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2767 {
2768         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2769         set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2770
2771         if (hdev->service_task.work.func)
2772                 cancel_delayed_work_sync(&hdev->service_task);
2773
2774         mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2775 }
2776
2777 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2778 {
2779         struct pci_dev *pdev = hdev->pdev;
2780         int vectors;
2781         int i;
2782
2783         if (hnae3_dev_roce_supported(hdev))
2784                 vectors = pci_alloc_irq_vectors(pdev,
2785                                                 hdev->roce_base_msix_offset + 1,
2786                                                 hdev->num_msi,
2787                                                 PCI_IRQ_MSIX);
2788         else
2789                 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2790                                                 hdev->num_msi,
2791                                                 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2792
2793         if (vectors < 0) {
2794                 dev_err(&pdev->dev,
2795                         "failed(%d) to allocate MSI/MSI-X vectors\n",
2796                         vectors);
2797                 return vectors;
2798         }
2799         if (vectors < hdev->num_msi)
2800                 dev_warn(&hdev->pdev->dev,
2801                          "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2802                          hdev->num_msi, vectors);
2803
2804         hdev->num_msi = vectors;
2805         hdev->num_msi_left = vectors;
2806
2807         hdev->base_msi_vector = pdev->irq;
2808         hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2809
2810         hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2811                                            sizeof(u16), GFP_KERNEL);
2812         if (!hdev->vector_status) {
2813                 pci_free_irq_vectors(pdev);
2814                 return -ENOMEM;
2815         }
2816
2817         for (i = 0; i < hdev->num_msi; i++)
2818                 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2819
2820         hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2821                                         sizeof(int), GFP_KERNEL);
2822         if (!hdev->vector_irq) {
2823                 devm_kfree(&pdev->dev, hdev->vector_status);
2824                 pci_free_irq_vectors(pdev);
2825                 return -ENOMEM;
2826         }
2827
2828         return 0;
2829 }
2830
2831 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2832 {
2833         struct pci_dev *pdev = hdev->pdev;
2834
2835         devm_kfree(&pdev->dev, hdev->vector_status);
2836         devm_kfree(&pdev->dev, hdev->vector_irq);
2837         pci_free_irq_vectors(pdev);
2838 }
2839
2840 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2841 {
2842         int ret;
2843
2844         hclgevf_get_misc_vector(hdev);
2845
2846         snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2847                  HCLGEVF_NAME, pci_name(hdev->pdev));
2848         ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2849                           0, hdev->misc_vector.name, hdev);
2850         if (ret) {
2851                 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2852                         hdev->misc_vector.vector_irq);
2853                 return ret;
2854         }
2855
2856         hclgevf_clear_event_cause(hdev, 0);
2857
2858         /* enable misc. vector(vector 0) */
2859         hclgevf_enable_vector(&hdev->misc_vector, true);
2860
2861         return ret;
2862 }
2863
2864 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2865 {
2866         /* disable misc vector(vector 0) */
2867         hclgevf_enable_vector(&hdev->misc_vector, false);
2868         synchronize_irq(hdev->misc_vector.vector_irq);
2869         free_irq(hdev->misc_vector.vector_irq, hdev);
2870         hclgevf_free_vector(hdev, 0);
2871 }
2872
2873 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2874 {
2875         struct device *dev = &hdev->pdev->dev;
2876
2877         dev_info(dev, "VF info begin:\n");
2878
2879         dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2880         dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2881         dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2882         dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2883         dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2884         dev_info(dev, "PF media type of this VF: %u\n",
2885                  hdev->hw.mac.media_type);
2886
2887         dev_info(dev, "VF info end.\n");
2888 }
2889
2890 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2891                                             struct hnae3_client *client)
2892 {
2893         struct hclgevf_dev *hdev = ae_dev->priv;
2894         int rst_cnt = hdev->rst_stats.rst_cnt;
2895         int ret;
2896
2897         ret = client->ops->init_instance(&hdev->nic);
2898         if (ret)
2899                 return ret;
2900
2901         set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2902         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2903             rst_cnt != hdev->rst_stats.rst_cnt) {
2904                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2905
2906                 client->ops->uninit_instance(&hdev->nic, 0);
2907                 return -EBUSY;
2908         }
2909
2910         hnae3_set_client_init_flag(client, ae_dev, 1);
2911
2912         if (netif_msg_drv(&hdev->nic))
2913                 hclgevf_info_show(hdev);
2914
2915         return 0;
2916 }
2917
2918 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2919                                              struct hnae3_client *client)
2920 {
2921         struct hclgevf_dev *hdev = ae_dev->priv;
2922         int ret;
2923
2924         if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2925             !hdev->nic_client)
2926                 return 0;
2927
2928         ret = hclgevf_init_roce_base_info(hdev);
2929         if (ret)
2930                 return ret;
2931
2932         ret = client->ops->init_instance(&hdev->roce);
2933         if (ret)
2934                 return ret;
2935
2936         set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2937         hnae3_set_client_init_flag(client, ae_dev, 1);
2938
2939         return 0;
2940 }
2941
2942 static int hclgevf_init_client_instance(struct hnae3_client *client,
2943                                         struct hnae3_ae_dev *ae_dev)
2944 {
2945         struct hclgevf_dev *hdev = ae_dev->priv;
2946         int ret;
2947
2948         switch (client->type) {
2949         case HNAE3_CLIENT_KNIC:
2950                 hdev->nic_client = client;
2951                 hdev->nic.client = client;
2952
2953                 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2954                 if (ret)
2955                         goto clear_nic;
2956
2957                 ret = hclgevf_init_roce_client_instance(ae_dev,
2958                                                         hdev->roce_client);
2959                 if (ret)
2960                         goto clear_roce;
2961
2962                 break;
2963         case HNAE3_CLIENT_ROCE:
2964                 if (hnae3_dev_roce_supported(hdev)) {
2965                         hdev->roce_client = client;
2966                         hdev->roce.client = client;
2967                 }
2968
2969                 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2970                 if (ret)
2971                         goto clear_roce;
2972
2973                 break;
2974         default:
2975                 return -EINVAL;
2976         }
2977
2978         return 0;
2979
2980 clear_nic:
2981         hdev->nic_client = NULL;
2982         hdev->nic.client = NULL;
2983         return ret;
2984 clear_roce:
2985         hdev->roce_client = NULL;
2986         hdev->roce.client = NULL;
2987         return ret;
2988 }
2989
2990 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2991                                            struct hnae3_ae_dev *ae_dev)
2992 {
2993         struct hclgevf_dev *hdev = ae_dev->priv;
2994
2995         /* un-init roce, if it exists */
2996         if (hdev->roce_client) {
2997                 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2998                 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2999                 hdev->roce_client = NULL;
3000                 hdev->roce.client = NULL;
3001         }
3002
3003         /* un-init nic/unic, if this was not called by roce client */
3004         if (client->ops->uninit_instance && hdev->nic_client &&
3005             client->type != HNAE3_CLIENT_ROCE) {
3006                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
3007
3008                 client->ops->uninit_instance(&hdev->nic, 0);
3009                 hdev->nic_client = NULL;
3010                 hdev->nic.client = NULL;
3011         }
3012 }
3013
3014 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
3015 {
3016 #define HCLGEVF_MEM_BAR         4
3017
3018         struct pci_dev *pdev = hdev->pdev;
3019         struct hclgevf_hw *hw = &hdev->hw;
3020
3021         /* for device does not have device memory, return directly */
3022         if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
3023                 return 0;
3024
3025         hw->mem_base = devm_ioremap_wc(&pdev->dev,
3026                                        pci_resource_start(pdev,
3027                                                           HCLGEVF_MEM_BAR),
3028                                        pci_resource_len(pdev, HCLGEVF_MEM_BAR));
3029         if (!hw->mem_base) {
3030                 dev_err(&pdev->dev, "failed to map device memory\n");
3031                 return -EFAULT;
3032         }
3033
3034         return 0;
3035 }
3036
3037 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
3038 {
3039         struct pci_dev *pdev = hdev->pdev;
3040         struct hclgevf_hw *hw;
3041         int ret;
3042
3043         ret = pci_enable_device(pdev);
3044         if (ret) {
3045                 dev_err(&pdev->dev, "failed to enable PCI device\n");
3046                 return ret;
3047         }
3048
3049         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3050         if (ret) {
3051                 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
3052                 goto err_disable_device;
3053         }
3054
3055         ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
3056         if (ret) {
3057                 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
3058                 goto err_disable_device;
3059         }
3060
3061         pci_set_master(pdev);
3062         hw = &hdev->hw;
3063         hw->hdev = hdev;
3064         hw->io_base = pci_iomap(pdev, 2, 0);
3065         if (!hw->io_base) {
3066                 dev_err(&pdev->dev, "can't map configuration register space\n");
3067                 ret = -ENOMEM;
3068                 goto err_clr_master;
3069         }
3070
3071         ret = hclgevf_dev_mem_map(hdev);
3072         if (ret)
3073                 goto err_unmap_io_base;
3074
3075         return 0;
3076
3077 err_unmap_io_base:
3078         pci_iounmap(pdev, hdev->hw.io_base);
3079 err_clr_master:
3080         pci_clear_master(pdev);
3081         pci_release_regions(pdev);
3082 err_disable_device:
3083         pci_disable_device(pdev);
3084
3085         return ret;
3086 }
3087
3088 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3089 {
3090         struct pci_dev *pdev = hdev->pdev;
3091
3092         if (hdev->hw.mem_base)
3093                 devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3094
3095         pci_iounmap(pdev, hdev->hw.io_base);
3096         pci_clear_master(pdev);
3097         pci_release_regions(pdev);
3098         pci_disable_device(pdev);
3099 }
3100
3101 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3102 {
3103         struct hclgevf_query_res_cmd *req;
3104         struct hclgevf_desc desc;
3105         int ret;
3106
3107         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3108         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3109         if (ret) {
3110                 dev_err(&hdev->pdev->dev,
3111                         "query vf resource failed, ret = %d.\n", ret);
3112                 return ret;
3113         }
3114
3115         req = (struct hclgevf_query_res_cmd *)desc.data;
3116
3117         if (hnae3_dev_roce_supported(hdev)) {
3118                 hdev->roce_base_msix_offset =
3119                 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3120                                 HCLGEVF_MSIX_OFT_ROCEE_M,
3121                                 HCLGEVF_MSIX_OFT_ROCEE_S);
3122                 hdev->num_roce_msix =
3123                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3124                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3125
3126                 /* nic's msix numbers is always equals to the roce's. */
3127                 hdev->num_nic_msix = hdev->num_roce_msix;
3128
3129                 /* VF should have NIC vectors and Roce vectors, NIC vectors
3130                  * are queued before Roce vectors. The offset is fixed to 64.
3131                  */
3132                 hdev->num_msi = hdev->num_roce_msix +
3133                                 hdev->roce_base_msix_offset;
3134         } else {
3135                 hdev->num_msi =
3136                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3137                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3138
3139                 hdev->num_nic_msix = hdev->num_msi;
3140         }
3141
3142         if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3143                 dev_err(&hdev->pdev->dev,
3144                         "Just %u msi resources, not enough for vf(min:2).\n",
3145                         hdev->num_nic_msix);
3146                 return -EINVAL;
3147         }
3148
3149         return 0;
3150 }
3151
3152 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3153 {
3154 #define HCLGEVF_MAX_NON_TSO_BD_NUM                      8U
3155
3156         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3157
3158         ae_dev->dev_specs.max_non_tso_bd_num =
3159                                         HCLGEVF_MAX_NON_TSO_BD_NUM;
3160         ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3161         ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3162         ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3163         ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3164 }
3165
3166 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3167                                     struct hclgevf_desc *desc)
3168 {
3169         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3170         struct hclgevf_dev_specs_0_cmd *req0;
3171         struct hclgevf_dev_specs_1_cmd *req1;
3172
3173         req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3174         req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3175
3176         ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3177         ae_dev->dev_specs.rss_ind_tbl_size =
3178                                         le16_to_cpu(req0->rss_ind_tbl_size);
3179         ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3180         ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3181         ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3182         ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3183 }
3184
3185 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3186 {
3187         struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3188
3189         if (!dev_specs->max_non_tso_bd_num)
3190                 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3191         if (!dev_specs->rss_ind_tbl_size)
3192                 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3193         if (!dev_specs->rss_key_size)
3194                 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3195         if (!dev_specs->max_int_gl)
3196                 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3197         if (!dev_specs->max_frm_size)
3198                 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3199 }
3200
3201 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3202 {
3203         struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3204         int ret;
3205         int i;
3206
3207         /* set default specifications as devices lower than version V3 do not
3208          * support querying specifications from firmware.
3209          */
3210         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3211                 hclgevf_set_default_dev_specs(hdev);
3212                 return 0;
3213         }
3214
3215         for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3216                 hclgevf_cmd_setup_basic_desc(&desc[i],
3217                                              HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3218                 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3219         }
3220         hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3221                                      true);
3222
3223         ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3224         if (ret)
3225                 return ret;
3226
3227         hclgevf_parse_dev_specs(hdev, desc);
3228         hclgevf_check_dev_specs(hdev);
3229
3230         return 0;
3231 }
3232
3233 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3234 {
3235         struct pci_dev *pdev = hdev->pdev;
3236         int ret = 0;
3237
3238         if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3239             test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3240                 hclgevf_misc_irq_uninit(hdev);
3241                 hclgevf_uninit_msi(hdev);
3242                 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3243         }
3244
3245         if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3246                 pci_set_master(pdev);
3247                 ret = hclgevf_init_msi(hdev);
3248                 if (ret) {
3249                         dev_err(&pdev->dev,
3250                                 "failed(%d) to init MSI/MSI-X\n", ret);
3251                         return ret;
3252                 }
3253
3254                 ret = hclgevf_misc_irq_init(hdev);
3255                 if (ret) {
3256                         hclgevf_uninit_msi(hdev);
3257                         dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3258                                 ret);
3259                         return ret;
3260                 }
3261
3262                 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3263         }
3264
3265         return ret;
3266 }
3267
3268 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3269 {
3270         struct hclge_vf_to_pf_msg send_msg;
3271
3272         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3273                                HCLGE_MBX_VPORT_LIST_CLEAR);
3274         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3275 }
3276
3277 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
3278 {
3279         if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3280                 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
3281 }
3282
3283 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
3284 {
3285         if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3286                 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
3287 }
3288
3289 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3290 {
3291         struct pci_dev *pdev = hdev->pdev;
3292         int ret;
3293
3294         ret = hclgevf_pci_reset(hdev);
3295         if (ret) {
3296                 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3297                 return ret;
3298         }
3299
3300         ret = hclgevf_cmd_init(hdev);
3301         if (ret) {
3302                 dev_err(&pdev->dev, "cmd failed %d\n", ret);
3303                 return ret;
3304         }
3305
3306         ret = hclgevf_rss_init_hw(hdev);
3307         if (ret) {
3308                 dev_err(&hdev->pdev->dev,
3309                         "failed(%d) to initialize RSS\n", ret);
3310                 return ret;
3311         }
3312
3313         ret = hclgevf_config_gro(hdev);
3314         if (ret)
3315                 return ret;
3316
3317         ret = hclgevf_init_vlan_config(hdev);
3318         if (ret) {
3319                 dev_err(&hdev->pdev->dev,
3320                         "failed(%d) to initialize VLAN config\n", ret);
3321                 return ret;
3322         }
3323
3324         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3325
3326         hclgevf_init_rxd_adv_layout(hdev);
3327
3328         dev_info(&hdev->pdev->dev, "Reset done\n");
3329
3330         return 0;
3331 }
3332
3333 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3334 {
3335         struct pci_dev *pdev = hdev->pdev;
3336         int ret;
3337
3338         ret = hclgevf_pci_init(hdev);
3339         if (ret)
3340                 return ret;
3341
3342         ret = hclgevf_cmd_queue_init(hdev);
3343         if (ret)
3344                 goto err_cmd_queue_init;
3345
3346         ret = hclgevf_cmd_init(hdev);
3347         if (ret)
3348                 goto err_cmd_init;
3349
3350         /* Get vf resource */
3351         ret = hclgevf_query_vf_resource(hdev);
3352         if (ret)
3353                 goto err_cmd_init;
3354
3355         ret = hclgevf_query_dev_specs(hdev);
3356         if (ret) {
3357                 dev_err(&pdev->dev,
3358                         "failed to query dev specifications, ret = %d\n", ret);
3359                 goto err_cmd_init;
3360         }
3361
3362         ret = hclgevf_init_msi(hdev);
3363         if (ret) {
3364                 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3365                 goto err_cmd_init;
3366         }
3367
3368         hclgevf_state_init(hdev);
3369         hdev->reset_level = HNAE3_VF_FUNC_RESET;
3370         hdev->reset_type = HNAE3_NONE_RESET;
3371
3372         ret = hclgevf_misc_irq_init(hdev);
3373         if (ret)
3374                 goto err_misc_irq_init;
3375
3376         set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3377
3378         ret = hclgevf_configure(hdev);
3379         if (ret) {
3380                 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3381                 goto err_config;
3382         }
3383
3384         ret = hclgevf_alloc_tqps(hdev);
3385         if (ret) {
3386                 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3387                 goto err_config;
3388         }
3389
3390         ret = hclgevf_set_handle_info(hdev);
3391         if (ret)
3392                 goto err_config;
3393
3394         ret = hclgevf_config_gro(hdev);
3395         if (ret)
3396                 goto err_config;
3397
3398         /* Initialize RSS for this VF */
3399         ret = hclgevf_rss_init_cfg(hdev);
3400         if (ret) {
3401                 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3402                 goto err_config;
3403         }
3404
3405         ret = hclgevf_rss_init_hw(hdev);
3406         if (ret) {
3407                 dev_err(&hdev->pdev->dev,
3408                         "failed(%d) to initialize RSS\n", ret);
3409                 goto err_config;
3410         }
3411
3412         /* ensure vf tbl list as empty before init*/
3413         ret = hclgevf_clear_vport_list(hdev);
3414         if (ret) {
3415                 dev_err(&pdev->dev,
3416                         "failed to clear tbl list configuration, ret = %d.\n",
3417                         ret);
3418                 goto err_config;
3419         }
3420
3421         ret = hclgevf_init_vlan_config(hdev);
3422         if (ret) {
3423                 dev_err(&hdev->pdev->dev,
3424                         "failed(%d) to initialize VLAN config\n", ret);
3425                 goto err_config;
3426         }
3427
3428         hclgevf_init_rxd_adv_layout(hdev);
3429
3430         hdev->last_reset_time = jiffies;
3431         dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3432                  HCLGEVF_DRIVER_NAME);
3433
3434         hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3435
3436         return 0;
3437
3438 err_config:
3439         hclgevf_misc_irq_uninit(hdev);
3440 err_misc_irq_init:
3441         hclgevf_state_uninit(hdev);
3442         hclgevf_uninit_msi(hdev);
3443 err_cmd_init:
3444         hclgevf_cmd_uninit(hdev);
3445 err_cmd_queue_init:
3446         hclgevf_pci_uninit(hdev);
3447         clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3448         return ret;
3449 }
3450
3451 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3452 {
3453         struct hclge_vf_to_pf_msg send_msg;
3454
3455         hclgevf_state_uninit(hdev);
3456         hclgevf_uninit_rxd_adv_layout(hdev);
3457
3458         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3459         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3460
3461         if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3462                 hclgevf_misc_irq_uninit(hdev);
3463                 hclgevf_uninit_msi(hdev);
3464         }
3465
3466         hclgevf_cmd_uninit(hdev);
3467         hclgevf_pci_uninit(hdev);
3468         hclgevf_uninit_mac_list(hdev);
3469 }
3470
3471 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3472 {
3473         struct pci_dev *pdev = ae_dev->pdev;
3474         int ret;
3475
3476         ret = hclgevf_alloc_hdev(ae_dev);
3477         if (ret) {
3478                 dev_err(&pdev->dev, "hclge device allocation failed\n");
3479                 return ret;
3480         }
3481
3482         ret = hclgevf_init_hdev(ae_dev->priv);
3483         if (ret) {
3484                 dev_err(&pdev->dev, "hclge device initialization failed\n");
3485                 return ret;
3486         }
3487
3488         return 0;
3489 }
3490
3491 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3492 {
3493         struct hclgevf_dev *hdev = ae_dev->priv;
3494
3495         hclgevf_uninit_hdev(hdev);
3496         ae_dev->priv = NULL;
3497 }
3498
3499 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3500 {
3501         struct hnae3_handle *nic = &hdev->nic;
3502         struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3503
3504         return min_t(u32, hdev->rss_size_max,
3505                      hdev->num_tqps / kinfo->tc_info.num_tc);
3506 }
3507
3508 /**
3509  * hclgevf_get_channels - Get the current channels enabled and max supported.
3510  * @handle: hardware information for network interface
3511  * @ch: ethtool channels structure
3512  *
3513  * We don't support separate tx and rx queues as channels. The other count
3514  * represents how many queues are being used for control. max_combined counts
3515  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3516  * q_vectors since we support a lot more queue pairs than q_vectors.
3517  **/
3518 static void hclgevf_get_channels(struct hnae3_handle *handle,
3519                                  struct ethtool_channels *ch)
3520 {
3521         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3522
3523         ch->max_combined = hclgevf_get_max_channels(hdev);
3524         ch->other_count = 0;
3525         ch->max_other = 0;
3526         ch->combined_count = handle->kinfo.rss_size;
3527 }
3528
3529 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3530                                           u16 *alloc_tqps, u16 *max_rss_size)
3531 {
3532         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3533
3534         *alloc_tqps = hdev->num_tqps;
3535         *max_rss_size = hdev->rss_size_max;
3536 }
3537
3538 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3539                                     u32 new_tqps_num)
3540 {
3541         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3542         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3543         u16 max_rss_size;
3544
3545         kinfo->req_rss_size = new_tqps_num;
3546
3547         max_rss_size = min_t(u16, hdev->rss_size_max,
3548                              hdev->num_tqps / kinfo->tc_info.num_tc);
3549
3550         /* Use the user's configuration when it is not larger than
3551          * max_rss_size, otherwise, use the maximum specification value.
3552          */
3553         if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3554             kinfo->req_rss_size <= max_rss_size)
3555                 kinfo->rss_size = kinfo->req_rss_size;
3556         else if (kinfo->rss_size > max_rss_size ||
3557                  (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3558                 kinfo->rss_size = max_rss_size;
3559
3560         kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3561 }
3562
3563 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3564                                 bool rxfh_configured)
3565 {
3566         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3567         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3568         u16 cur_rss_size = kinfo->rss_size;
3569         u16 cur_tqps = kinfo->num_tqps;
3570         u32 *rss_indir;
3571         unsigned int i;
3572         int ret;
3573
3574         hclgevf_update_rss_size(handle, new_tqps_num);
3575
3576         ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3577         if (ret)
3578                 return ret;
3579
3580         /* RSS indirection table has been configured by user */
3581         if (rxfh_configured)
3582                 goto out;
3583
3584         /* Reinitializes the rss indirect table according to the new RSS size */
3585         rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3586                             sizeof(u32), GFP_KERNEL);
3587         if (!rss_indir)
3588                 return -ENOMEM;
3589
3590         for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3591                 rss_indir[i] = i % kinfo->rss_size;
3592
3593         hdev->rss_cfg.rss_size = kinfo->rss_size;
3594
3595         ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3596         if (ret)
3597                 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3598                         ret);
3599
3600         kfree(rss_indir);
3601
3602 out:
3603         if (!ret)
3604                 dev_info(&hdev->pdev->dev,
3605                          "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3606                          cur_rss_size, kinfo->rss_size,
3607                          cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3608
3609         return ret;
3610 }
3611
3612 static int hclgevf_get_status(struct hnae3_handle *handle)
3613 {
3614         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3615
3616         return hdev->hw.mac.link;
3617 }
3618
3619 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3620                                             u8 *auto_neg, u32 *speed,
3621                                             u8 *duplex)
3622 {
3623         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3624
3625         if (speed)
3626                 *speed = hdev->hw.mac.speed;
3627         if (duplex)
3628                 *duplex = hdev->hw.mac.duplex;
3629         if (auto_neg)
3630                 *auto_neg = AUTONEG_DISABLE;
3631 }
3632
3633 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3634                                  u8 duplex)
3635 {
3636         hdev->hw.mac.speed = speed;
3637         hdev->hw.mac.duplex = duplex;
3638 }
3639
3640 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3641 {
3642         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3643         bool gro_en_old = hdev->gro_en;
3644         int ret;
3645
3646         hdev->gro_en = enable;
3647         ret = hclgevf_config_gro(hdev);
3648         if (ret)
3649                 hdev->gro_en = gro_en_old;
3650
3651         return ret;
3652 }
3653
3654 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3655                                    u8 *module_type)
3656 {
3657         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3658
3659         if (media_type)
3660                 *media_type = hdev->hw.mac.media_type;
3661
3662         if (module_type)
3663                 *module_type = hdev->hw.mac.module_type;
3664 }
3665
3666 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3667 {
3668         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3669
3670         return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3671 }
3672
3673 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3674 {
3675         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3676
3677         return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3678 }
3679
3680 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3681 {
3682         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3683
3684         return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3685 }
3686
3687 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3688 {
3689         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3690
3691         return hdev->rst_stats.hw_rst_done_cnt;
3692 }
3693
3694 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3695                                   unsigned long *supported,
3696                                   unsigned long *advertising)
3697 {
3698         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3699
3700         *supported = hdev->hw.mac.supported;
3701         *advertising = hdev->hw.mac.advertising;
3702 }
3703
3704 #define MAX_SEPARATE_NUM        4
3705 #define SEPARATOR_VALUE         0xFDFCFBFA
3706 #define REG_NUM_PER_LINE        4
3707 #define REG_LEN_PER_LINE        (REG_NUM_PER_LINE * sizeof(u32))
3708
3709 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3710 {
3711         int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3712         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3713
3714         cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3715         common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3716         ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3717         tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3718
3719         return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3720                 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3721 }
3722
3723 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3724                              void *data)
3725 {
3726         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3727         int i, j, reg_um, separator_num;
3728         u32 *reg = data;
3729
3730         *version = hdev->fw_version;
3731
3732         /* fetching per-VF registers values from VF PCIe register space */
3733         reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3734         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3735         for (i = 0; i < reg_um; i++)
3736                 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3737         for (i = 0; i < separator_num; i++)
3738                 *reg++ = SEPARATOR_VALUE;
3739
3740         reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3741         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3742         for (i = 0; i < reg_um; i++)
3743                 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3744         for (i = 0; i < separator_num; i++)
3745                 *reg++ = SEPARATOR_VALUE;
3746
3747         reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3748         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3749         for (j = 0; j < hdev->num_tqps; j++) {
3750                 for (i = 0; i < reg_um; i++)
3751                         *reg++ = hclgevf_read_dev(&hdev->hw,
3752                                                   ring_reg_addr_list[i] +
3753                                                   0x200 * j);
3754                 for (i = 0; i < separator_num; i++)
3755                         *reg++ = SEPARATOR_VALUE;
3756         }
3757
3758         reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3759         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3760         for (j = 0; j < hdev->num_msi_used - 1; j++) {
3761                 for (i = 0; i < reg_um; i++)
3762                         *reg++ = hclgevf_read_dev(&hdev->hw,
3763                                                   tqp_intr_reg_addr_list[i] +
3764                                                   4 * j);
3765                 for (i = 0; i < separator_num; i++)
3766                         *reg++ = SEPARATOR_VALUE;
3767         }
3768 }
3769
3770 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3771                                         u8 *port_base_vlan_info, u8 data_size)
3772 {
3773         struct hnae3_handle *nic = &hdev->nic;
3774         struct hclge_vf_to_pf_msg send_msg;
3775         int ret;
3776
3777         rtnl_lock();
3778
3779         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3780             test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3781                 dev_warn(&hdev->pdev->dev,
3782                          "is resetting when updating port based vlan info\n");
3783                 rtnl_unlock();
3784                 return;
3785         }
3786
3787         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3788         if (ret) {
3789                 rtnl_unlock();
3790                 return;
3791         }
3792
3793         /* send msg to PF and wait update port based vlan info */
3794         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3795                                HCLGE_MBX_PORT_BASE_VLAN_CFG);
3796         memcpy(send_msg.data, port_base_vlan_info, data_size);
3797         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3798         if (!ret) {
3799                 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3800                         nic->port_base_vlan_state = state;
3801                 else
3802                         nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3803         }
3804
3805         hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3806         rtnl_unlock();
3807 }
3808
3809 static const struct hnae3_ae_ops hclgevf_ops = {
3810         .init_ae_dev = hclgevf_init_ae_dev,
3811         .uninit_ae_dev = hclgevf_uninit_ae_dev,
3812         .reset_prepare = hclgevf_reset_prepare_general,
3813         .reset_done = hclgevf_reset_done,
3814         .init_client_instance = hclgevf_init_client_instance,
3815         .uninit_client_instance = hclgevf_uninit_client_instance,
3816         .start = hclgevf_ae_start,
3817         .stop = hclgevf_ae_stop,
3818         .client_start = hclgevf_client_start,
3819         .client_stop = hclgevf_client_stop,
3820         .map_ring_to_vector = hclgevf_map_ring_to_vector,
3821         .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3822         .get_vector = hclgevf_get_vector,
3823         .put_vector = hclgevf_put_vector,
3824         .reset_queue = hclgevf_reset_tqp,
3825         .get_mac_addr = hclgevf_get_mac_addr,
3826         .set_mac_addr = hclgevf_set_mac_addr,
3827         .add_uc_addr = hclgevf_add_uc_addr,
3828         .rm_uc_addr = hclgevf_rm_uc_addr,
3829         .add_mc_addr = hclgevf_add_mc_addr,
3830         .rm_mc_addr = hclgevf_rm_mc_addr,
3831         .get_stats = hclgevf_get_stats,
3832         .update_stats = hclgevf_update_stats,
3833         .get_strings = hclgevf_get_strings,
3834         .get_sset_count = hclgevf_get_sset_count,
3835         .get_rss_key_size = hclgevf_get_rss_key_size,
3836         .get_rss = hclgevf_get_rss,
3837         .set_rss = hclgevf_set_rss,
3838         .get_rss_tuple = hclgevf_get_rss_tuple,
3839         .set_rss_tuple = hclgevf_set_rss_tuple,
3840         .get_tc_size = hclgevf_get_tc_size,
3841         .get_fw_version = hclgevf_get_fw_version,
3842         .set_vlan_filter = hclgevf_set_vlan_filter,
3843         .enable_vlan_filter = hclgevf_enable_vlan_filter,
3844         .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3845         .reset_event = hclgevf_reset_event,
3846         .set_default_reset_request = hclgevf_set_def_reset_request,
3847         .set_channels = hclgevf_set_channels,
3848         .get_channels = hclgevf_get_channels,
3849         .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3850         .get_regs_len = hclgevf_get_regs_len,
3851         .get_regs = hclgevf_get_regs,
3852         .get_status = hclgevf_get_status,
3853         .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3854         .get_media_type = hclgevf_get_media_type,
3855         .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3856         .ae_dev_resetting = hclgevf_ae_dev_resetting,
3857         .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3858         .set_gro_en = hclgevf_gro_en,
3859         .set_mtu = hclgevf_set_mtu,
3860         .get_global_queue_id = hclgevf_get_qid_global,
3861         .set_timer_task = hclgevf_set_timer_task,
3862         .get_link_mode = hclgevf_get_link_mode,
3863         .set_promisc_mode = hclgevf_set_promisc_mode,
3864         .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3865         .get_cmdq_stat = hclgevf_get_cmdq_stat,
3866 };
3867
3868 static struct hnae3_ae_algo ae_algovf = {
3869         .ops = &hclgevf_ops,
3870         .pdev_id_table = ae_algovf_pci_tbl,
3871 };
3872
3873 static int hclgevf_init(void)
3874 {
3875         pr_info("%s is initializing\n", HCLGEVF_NAME);
3876
3877         hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3878         if (!hclgevf_wq) {
3879                 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3880                 return -ENOMEM;
3881         }
3882
3883         hnae3_register_ae_algo(&ae_algovf);
3884
3885         return 0;
3886 }
3887
3888 static void hclgevf_exit(void)
3889 {
3890         hnae3_unregister_ae_algo(&ae_algovf);
3891         destroy_workqueue(hclgevf_wq);
3892 }
3893 module_init(hclgevf_init);
3894 module_exit(hclgevf_exit);
3895
3896 MODULE_LICENSE("GPL");
3897 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3898 MODULE_DESCRIPTION("HCLGEVF Driver");
3899 MODULE_VERSION(HCLGEVF_MOD_VERSION);