clk: mediatek: using CLK_MUX_ROUND_CLOSEST for the clock of dpi1_sel
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_cmd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/device.h>
5 #include <linux/dma-direction.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/err.h>
8 #include <linux/pci.h>
9 #include <linux/slab.h>
10 #include "hclgevf_cmd.h"
11 #include "hclgevf_main.h"
12 #include "hnae3.h"
13
14 #define hclgevf_is_csq(ring) ((ring)->flag & HCLGEVF_TYPE_CSQ)
15 #define hclgevf_ring_to_dma_dir(ring) (hclgevf_is_csq(ring) ? \
16                                         DMA_TO_DEVICE : DMA_FROM_DEVICE)
17 #define cmq_ring_to_dev(ring)   (&(ring)->dev->pdev->dev)
18
19 static int hclgevf_ring_space(struct hclgevf_cmq_ring *ring)
20 {
21         int ntc = ring->next_to_clean;
22         int ntu = ring->next_to_use;
23         int used;
24
25         used = (ntu - ntc + ring->desc_num) % ring->desc_num;
26
27         return ring->desc_num - used - 1;
28 }
29
30 static int hclgevf_cmd_csq_clean(struct hclgevf_hw *hw)
31 {
32         struct hclgevf_cmq_ring *csq = &hw->cmq.csq;
33         u16 ntc = csq->next_to_clean;
34         struct hclgevf_desc *desc;
35         int clean = 0;
36         u32 head;
37
38         desc = &csq->desc[ntc];
39         head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
40         while (head != ntc) {
41                 memset(desc, 0, sizeof(*desc));
42                 ntc++;
43                 if (ntc == csq->desc_num)
44                         ntc = 0;
45                 desc = &csq->desc[ntc];
46                 clean++;
47         }
48         csq->next_to_clean = ntc;
49
50         return clean;
51 }
52
53 static bool hclgevf_cmd_csq_done(struct hclgevf_hw *hw)
54 {
55         u32 head;
56
57         head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
58
59         return head == hw->cmq.csq.next_to_use;
60 }
61
62 static bool hclgevf_is_special_opcode(u16 opcode)
63 {
64         u16 spec_opcode[] = {0x30, 0x31, 0x32};
65         int i;
66
67         for (i = 0; i < ARRAY_SIZE(spec_opcode); i++) {
68                 if (spec_opcode[i] == opcode)
69                         return true;
70         }
71
72         return false;
73 }
74
75 static void hclgevf_cmd_config_regs(struct hclgevf_cmq_ring *ring)
76 {
77         struct hclgevf_dev *hdev = ring->dev;
78         struct hclgevf_hw *hw = &hdev->hw;
79         u32 reg_val;
80
81         if (ring->flag == HCLGEVF_TYPE_CSQ) {
82                 reg_val = (u32)ring->desc_dma_addr;
83                 hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_L_REG, reg_val);
84                 reg_val = (u32)((ring->desc_dma_addr >> 31) >> 1);
85                 hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_H_REG, reg_val);
86
87                 reg_val = (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
88                 reg_val |= HCLGEVF_NIC_CMQ_ENABLE;
89                 hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG, reg_val);
90
91                 hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG, 0);
92                 hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG, 0);
93         } else {
94                 reg_val = (u32)ring->desc_dma_addr;
95                 hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_L_REG, reg_val);
96                 reg_val = (u32)((ring->desc_dma_addr >> 31) >> 1);
97                 hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_H_REG, reg_val);
98
99                 reg_val = (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
100                 reg_val |= HCLGEVF_NIC_CMQ_ENABLE;
101                 hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_DEPTH_REG, reg_val);
102
103                 hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_HEAD_REG, 0);
104                 hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_TAIL_REG, 0);
105         }
106 }
107
108 static void hclgevf_cmd_init_regs(struct hclgevf_hw *hw)
109 {
110         hclgevf_cmd_config_regs(&hw->cmq.csq);
111         hclgevf_cmd_config_regs(&hw->cmq.crq);
112 }
113
114 static int hclgevf_alloc_cmd_desc(struct hclgevf_cmq_ring *ring)
115 {
116         int size = ring->desc_num * sizeof(struct hclgevf_desc);
117
118         ring->desc = dma_zalloc_coherent(cmq_ring_to_dev(ring),
119                                          size, &ring->desc_dma_addr,
120                                          GFP_KERNEL);
121         if (!ring->desc)
122                 return -ENOMEM;
123
124         return 0;
125 }
126
127 static void hclgevf_free_cmd_desc(struct hclgevf_cmq_ring *ring)
128 {
129         int size  = ring->desc_num * sizeof(struct hclgevf_desc);
130
131         if (ring->desc) {
132                 dma_free_coherent(cmq_ring_to_dev(ring), size,
133                                   ring->desc, ring->desc_dma_addr);
134                 ring->desc = NULL;
135         }
136 }
137
138 static int hclgevf_alloc_cmd_queue(struct hclgevf_dev *hdev, int ring_type)
139 {
140         struct hclgevf_hw *hw = &hdev->hw;
141         struct hclgevf_cmq_ring *ring =
142                 (ring_type == HCLGEVF_TYPE_CSQ) ? &hw->cmq.csq : &hw->cmq.crq;
143         int ret;
144
145         ring->dev = hdev;
146         ring->flag = ring_type;
147
148         /* allocate CSQ/CRQ descriptor */
149         ret = hclgevf_alloc_cmd_desc(ring);
150         if (ret)
151                 dev_err(&hdev->pdev->dev, "failed(%d) to alloc %s desc\n", ret,
152                         (ring_type == HCLGEVF_TYPE_CSQ) ? "CSQ" : "CRQ");
153
154         return ret;
155 }
156
157 void hclgevf_cmd_setup_basic_desc(struct hclgevf_desc *desc,
158                                   enum hclgevf_opcode_type opcode, bool is_read)
159 {
160         memset(desc, 0, sizeof(struct hclgevf_desc));
161         desc->opcode = cpu_to_le16(opcode);
162         desc->flag = cpu_to_le16(HCLGEVF_CMD_FLAG_NO_INTR |
163                                  HCLGEVF_CMD_FLAG_IN);
164         if (is_read)
165                 desc->flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_WR);
166         else
167                 desc->flag &= cpu_to_le16(~HCLGEVF_CMD_FLAG_WR);
168 }
169
170 /* hclgevf_cmd_send - send command to command queue
171  * @hw: pointer to the hw struct
172  * @desc: prefilled descriptor for describing the command
173  * @num : the number of descriptors to be sent
174  *
175  * This is the main send command for command queue, it
176  * sends the queue, cleans the queue, etc
177  */
178 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclgevf_desc *desc, int num)
179 {
180         struct hclgevf_dev *hdev = (struct hclgevf_dev *)hw->hdev;
181         struct hclgevf_desc *desc_to_use;
182         bool complete = false;
183         u32 timeout = 0;
184         int handle = 0;
185         int status = 0;
186         u16 retval;
187         u16 opcode;
188         int ntc;
189
190         spin_lock_bh(&hw->cmq.csq.lock);
191
192         if (num > hclgevf_ring_space(&hw->cmq.csq) ||
193             test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) {
194                 spin_unlock_bh(&hw->cmq.csq.lock);
195                 return -EBUSY;
196         }
197
198         /* Record the location of desc in the ring for this time
199          * which will be use for hardware to write back
200          */
201         ntc = hw->cmq.csq.next_to_use;
202         opcode = le16_to_cpu(desc[0].opcode);
203         while (handle < num) {
204                 desc_to_use = &hw->cmq.csq.desc[hw->cmq.csq.next_to_use];
205                 *desc_to_use = desc[handle];
206                 (hw->cmq.csq.next_to_use)++;
207                 if (hw->cmq.csq.next_to_use == hw->cmq.csq.desc_num)
208                         hw->cmq.csq.next_to_use = 0;
209                 handle++;
210         }
211
212         /* Write to hardware */
213         hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG,
214                           hw->cmq.csq.next_to_use);
215
216         /* If the command is sync, wait for the firmware to write back,
217          * if multi descriptors to be sent, use the first one to check
218          */
219         if (HCLGEVF_SEND_SYNC(le16_to_cpu(desc->flag))) {
220                 do {
221                         if (hclgevf_cmd_csq_done(hw))
222                                 break;
223                         udelay(1);
224                         timeout++;
225                 } while (timeout < hw->cmq.tx_timeout);
226         }
227
228         if (hclgevf_cmd_csq_done(hw)) {
229                 complete = true;
230                 handle = 0;
231
232                 while (handle < num) {
233                         /* Get the result of hardware write back */
234                         desc_to_use = &hw->cmq.csq.desc[ntc];
235                         desc[handle] = *desc_to_use;
236
237                         if (likely(!hclgevf_is_special_opcode(opcode)))
238                                 retval = le16_to_cpu(desc[handle].retval);
239                         else
240                                 retval = le16_to_cpu(desc[0].retval);
241
242                         if ((enum hclgevf_cmd_return_status)retval ==
243                             HCLGEVF_CMD_EXEC_SUCCESS)
244                                 status = 0;
245                         else
246                                 status = -EIO;
247                         hw->cmq.last_status = (enum hclgevf_cmd_status)retval;
248                         ntc++;
249                         handle++;
250                         if (ntc == hw->cmq.csq.desc_num)
251                                 ntc = 0;
252                 }
253         }
254
255         if (!complete)
256                 status = -EAGAIN;
257
258         /* Clean the command send queue */
259         handle = hclgevf_cmd_csq_clean(hw);
260         if (handle != num) {
261                 dev_warn(&hdev->pdev->dev,
262                          "cleaned %d, need to clean %d\n", handle, num);
263         }
264
265         spin_unlock_bh(&hw->cmq.csq.lock);
266
267         return status;
268 }
269
270 static int  hclgevf_cmd_query_firmware_version(struct hclgevf_hw *hw,
271                                                u32 *version)
272 {
273         struct hclgevf_query_version_cmd *resp;
274         struct hclgevf_desc desc;
275         int status;
276
277         resp = (struct hclgevf_query_version_cmd *)desc.data;
278
279         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_FW_VER, 1);
280         status = hclgevf_cmd_send(hw, &desc, 1);
281         if (!status)
282                 *version = le32_to_cpu(resp->firmware);
283
284         return status;
285 }
286
287 int hclgevf_cmd_queue_init(struct hclgevf_dev *hdev)
288 {
289         int ret;
290
291         /* Setup the lock for command queue */
292         spin_lock_init(&hdev->hw.cmq.csq.lock);
293         spin_lock_init(&hdev->hw.cmq.crq.lock);
294
295         hdev->hw.cmq.tx_timeout = HCLGEVF_CMDQ_TX_TIMEOUT;
296         hdev->hw.cmq.csq.desc_num = HCLGEVF_NIC_CMQ_DESC_NUM;
297         hdev->hw.cmq.crq.desc_num = HCLGEVF_NIC_CMQ_DESC_NUM;
298
299         ret = hclgevf_alloc_cmd_queue(hdev, HCLGEVF_TYPE_CSQ);
300         if (ret) {
301                 dev_err(&hdev->pdev->dev,
302                         "CSQ ring setup error %d\n", ret);
303                 return ret;
304         }
305
306         ret = hclgevf_alloc_cmd_queue(hdev, HCLGEVF_TYPE_CRQ);
307         if (ret) {
308                 dev_err(&hdev->pdev->dev,
309                         "CRQ ring setup error %d\n", ret);
310                 goto err_csq;
311         }
312
313         return 0;
314 err_csq:
315         hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
316         return ret;
317 }
318
319 int hclgevf_cmd_init(struct hclgevf_dev *hdev)
320 {
321         u32 version;
322         int ret;
323
324         spin_lock_bh(&hdev->hw.cmq.csq.lock);
325         spin_lock_bh(&hdev->hw.cmq.crq.lock);
326
327         /* initialize the pointers of async rx queue of mailbox */
328         hdev->arq.hdev = hdev;
329         hdev->arq.head = 0;
330         hdev->arq.tail = 0;
331         hdev->arq.count = 0;
332         hdev->hw.cmq.csq.next_to_clean = 0;
333         hdev->hw.cmq.csq.next_to_use = 0;
334         hdev->hw.cmq.crq.next_to_clean = 0;
335         hdev->hw.cmq.crq.next_to_use = 0;
336
337         hclgevf_cmd_init_regs(&hdev->hw);
338
339         spin_unlock_bh(&hdev->hw.cmq.crq.lock);
340         spin_unlock_bh(&hdev->hw.cmq.csq.lock);
341
342         clear_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
343
344         /* Check if there is new reset pending, because the higher level
345          * reset may happen when lower level reset is being processed.
346          */
347         if (hclgevf_is_reset_pending(hdev)) {
348                 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
349                 return -EBUSY;
350         }
351
352         /* get firmware version */
353         ret = hclgevf_cmd_query_firmware_version(&hdev->hw, &version);
354         if (ret) {
355                 dev_err(&hdev->pdev->dev,
356                         "failed(%d) to query firmware version\n", ret);
357                 return ret;
358         }
359         hdev->fw_version = version;
360
361         dev_info(&hdev->pdev->dev, "The firmware version is %08x\n", version);
362
363         return 0;
364 }
365
366 void hclgevf_cmd_uninit(struct hclgevf_dev *hdev)
367 {
368         hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
369         hclgevf_free_cmd_desc(&hdev->hw.cmq.crq);
370 }