Merge tag 'lkdtm-next' of https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux...
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/gro.h>
21 #include <net/ip6_checksum.h>
22 #include <net/pkt_cls.h>
23 #include <net/tcp.h>
24 #include <net/vxlan.h>
25 #include <net/geneve.h>
26
27 #include "hnae3.h"
28 #include "hns3_enet.h"
29 /* All hns3 tracepoints are defined by the include below, which
30  * must be included exactly once across the whole kernel with
31  * CREATE_TRACE_POINTS defined
32  */
33 #define CREATE_TRACE_POINTS
34 #include "hns3_trace.h"
35
36 #define hns3_set_field(origin, shift, val)      ((origin) |= (val) << (shift))
37 #define hns3_tx_bd_count(S)     DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
38
39 #define hns3_rl_err(fmt, ...)                                           \
40         do {                                                            \
41                 if (net_ratelimit())                                    \
42                         netdev_err(fmt, ##__VA_ARGS__);                 \
43         } while (0)
44
45 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
46
47 static const char hns3_driver_name[] = "hns3";
48 static const char hns3_driver_string[] =
49                         "Hisilicon Ethernet Network Driver for Hip08 Family";
50 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
51 static struct hnae3_client client;
52
53 static int debug = -1;
54 module_param(debug, int, 0);
55 MODULE_PARM_DESC(debug, " Network interface message level setting");
56
57 static unsigned int tx_sgl = 1;
58 module_param(tx_sgl, uint, 0600);
59 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
60
61 static bool page_pool_enabled = true;
62 module_param(page_pool_enabled, bool, 0400);
63
64 #define HNS3_SGL_SIZE(nfrag)    (sizeof(struct scatterlist) * (nfrag) + \
65                                  sizeof(struct sg_table))
66 #define HNS3_MAX_SGL_SIZE       ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
67                                       dma_get_cache_alignment())
68
69 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70                            NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
71
72 #define HNS3_INNER_VLAN_TAG     1
73 #define HNS3_OUTER_VLAN_TAG     2
74
75 #define HNS3_MIN_TX_LEN         33U
76 #define HNS3_MIN_TUN_PKT_LEN    65U
77
78 /* hns3_pci_tbl - PCI Device ID Table
79  *
80  * Last entry must be all 0s
81  *
82  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
83  *   Class, Class Mask, private data (not used) }
84  */
85 static const struct pci_device_id hns3_pci_tbl[] = {
86         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
87         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
88         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
89          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
90         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
91          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
92         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
93          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
94         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
95          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
96         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
97          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
98         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
99          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
100         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
101         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
102          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
103         /* required last entry */
104         {0,}
105 };
106 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
107
108 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t) \
109         {       ptype, \
110                 l, \
111                 CHECKSUM_##s, \
112                 HNS3_L3_TYPE_##t, \
113                 1 }
114
115 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
116                 { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0 }
117
118 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
119         HNS3_RX_PTYPE_UNUSED_ENTRY(0),
120         HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP),
121         HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP),
122         HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP),
123         HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL),
124         HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL),
125         HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL),
126         HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM),
127         HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL),
128         HNS3_RX_PTYPE_UNUSED_ENTRY(9),
129         HNS3_RX_PTYPE_UNUSED_ENTRY(10),
130         HNS3_RX_PTYPE_UNUSED_ENTRY(11),
131         HNS3_RX_PTYPE_UNUSED_ENTRY(12),
132         HNS3_RX_PTYPE_UNUSED_ENTRY(13),
133         HNS3_RX_PTYPE_UNUSED_ENTRY(14),
134         HNS3_RX_PTYPE_UNUSED_ENTRY(15),
135         HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL),
136         HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4),
137         HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4),
138         HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4),
139         HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4),
140         HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4),
141         HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4),
142         HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4),
143         HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4),
144         HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4),
145         HNS3_RX_PTYPE_UNUSED_ENTRY(26),
146         HNS3_RX_PTYPE_UNUSED_ENTRY(27),
147         HNS3_RX_PTYPE_UNUSED_ENTRY(28),
148         HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL),
149         HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL),
150         HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4),
151         HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4),
152         HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4),
153         HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4),
154         HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4),
155         HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4),
156         HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4),
157         HNS3_RX_PTYPE_UNUSED_ENTRY(38),
158         HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6),
159         HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6),
160         HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6),
161         HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6),
162         HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6),
163         HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6),
164         HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6),
165         HNS3_RX_PTYPE_UNUSED_ENTRY(46),
166         HNS3_RX_PTYPE_UNUSED_ENTRY(47),
167         HNS3_RX_PTYPE_UNUSED_ENTRY(48),
168         HNS3_RX_PTYPE_UNUSED_ENTRY(49),
169         HNS3_RX_PTYPE_UNUSED_ENTRY(50),
170         HNS3_RX_PTYPE_UNUSED_ENTRY(51),
171         HNS3_RX_PTYPE_UNUSED_ENTRY(52),
172         HNS3_RX_PTYPE_UNUSED_ENTRY(53),
173         HNS3_RX_PTYPE_UNUSED_ENTRY(54),
174         HNS3_RX_PTYPE_UNUSED_ENTRY(55),
175         HNS3_RX_PTYPE_UNUSED_ENTRY(56),
176         HNS3_RX_PTYPE_UNUSED_ENTRY(57),
177         HNS3_RX_PTYPE_UNUSED_ENTRY(58),
178         HNS3_RX_PTYPE_UNUSED_ENTRY(59),
179         HNS3_RX_PTYPE_UNUSED_ENTRY(60),
180         HNS3_RX_PTYPE_UNUSED_ENTRY(61),
181         HNS3_RX_PTYPE_UNUSED_ENTRY(62),
182         HNS3_RX_PTYPE_UNUSED_ENTRY(63),
183         HNS3_RX_PTYPE_UNUSED_ENTRY(64),
184         HNS3_RX_PTYPE_UNUSED_ENTRY(65),
185         HNS3_RX_PTYPE_UNUSED_ENTRY(66),
186         HNS3_RX_PTYPE_UNUSED_ENTRY(67),
187         HNS3_RX_PTYPE_UNUSED_ENTRY(68),
188         HNS3_RX_PTYPE_UNUSED_ENTRY(69),
189         HNS3_RX_PTYPE_UNUSED_ENTRY(70),
190         HNS3_RX_PTYPE_UNUSED_ENTRY(71),
191         HNS3_RX_PTYPE_UNUSED_ENTRY(72),
192         HNS3_RX_PTYPE_UNUSED_ENTRY(73),
193         HNS3_RX_PTYPE_UNUSED_ENTRY(74),
194         HNS3_RX_PTYPE_UNUSED_ENTRY(75),
195         HNS3_RX_PTYPE_UNUSED_ENTRY(76),
196         HNS3_RX_PTYPE_UNUSED_ENTRY(77),
197         HNS3_RX_PTYPE_UNUSED_ENTRY(78),
198         HNS3_RX_PTYPE_UNUSED_ENTRY(79),
199         HNS3_RX_PTYPE_UNUSED_ENTRY(80),
200         HNS3_RX_PTYPE_UNUSED_ENTRY(81),
201         HNS3_RX_PTYPE_UNUSED_ENTRY(82),
202         HNS3_RX_PTYPE_UNUSED_ENTRY(83),
203         HNS3_RX_PTYPE_UNUSED_ENTRY(84),
204         HNS3_RX_PTYPE_UNUSED_ENTRY(85),
205         HNS3_RX_PTYPE_UNUSED_ENTRY(86),
206         HNS3_RX_PTYPE_UNUSED_ENTRY(87),
207         HNS3_RX_PTYPE_UNUSED_ENTRY(88),
208         HNS3_RX_PTYPE_UNUSED_ENTRY(89),
209         HNS3_RX_PTYPE_UNUSED_ENTRY(90),
210         HNS3_RX_PTYPE_UNUSED_ENTRY(91),
211         HNS3_RX_PTYPE_UNUSED_ENTRY(92),
212         HNS3_RX_PTYPE_UNUSED_ENTRY(93),
213         HNS3_RX_PTYPE_UNUSED_ENTRY(94),
214         HNS3_RX_PTYPE_UNUSED_ENTRY(95),
215         HNS3_RX_PTYPE_UNUSED_ENTRY(96),
216         HNS3_RX_PTYPE_UNUSED_ENTRY(97),
217         HNS3_RX_PTYPE_UNUSED_ENTRY(98),
218         HNS3_RX_PTYPE_UNUSED_ENTRY(99),
219         HNS3_RX_PTYPE_UNUSED_ENTRY(100),
220         HNS3_RX_PTYPE_UNUSED_ENTRY(101),
221         HNS3_RX_PTYPE_UNUSED_ENTRY(102),
222         HNS3_RX_PTYPE_UNUSED_ENTRY(103),
223         HNS3_RX_PTYPE_UNUSED_ENTRY(104),
224         HNS3_RX_PTYPE_UNUSED_ENTRY(105),
225         HNS3_RX_PTYPE_UNUSED_ENTRY(106),
226         HNS3_RX_PTYPE_UNUSED_ENTRY(107),
227         HNS3_RX_PTYPE_UNUSED_ENTRY(108),
228         HNS3_RX_PTYPE_UNUSED_ENTRY(109),
229         HNS3_RX_PTYPE_UNUSED_ENTRY(110),
230         HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6),
231         HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6),
232         HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6),
233         HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6),
234         HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6),
235         HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6),
236         HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6),
237         HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6),
238         HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6),
239         HNS3_RX_PTYPE_UNUSED_ENTRY(120),
240         HNS3_RX_PTYPE_UNUSED_ENTRY(121),
241         HNS3_RX_PTYPE_UNUSED_ENTRY(122),
242         HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL),
243         HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL),
244         HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4),
245         HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4),
246         HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4),
247         HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4),
248         HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4),
249         HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4),
250         HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4),
251         HNS3_RX_PTYPE_UNUSED_ENTRY(132),
252         HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6),
253         HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6),
254         HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6),
255         HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6),
256         HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6),
257         HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6),
258         HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6),
259         HNS3_RX_PTYPE_UNUSED_ENTRY(140),
260         HNS3_RX_PTYPE_UNUSED_ENTRY(141),
261         HNS3_RX_PTYPE_UNUSED_ENTRY(142),
262         HNS3_RX_PTYPE_UNUSED_ENTRY(143),
263         HNS3_RX_PTYPE_UNUSED_ENTRY(144),
264         HNS3_RX_PTYPE_UNUSED_ENTRY(145),
265         HNS3_RX_PTYPE_UNUSED_ENTRY(146),
266         HNS3_RX_PTYPE_UNUSED_ENTRY(147),
267         HNS3_RX_PTYPE_UNUSED_ENTRY(148),
268         HNS3_RX_PTYPE_UNUSED_ENTRY(149),
269         HNS3_RX_PTYPE_UNUSED_ENTRY(150),
270         HNS3_RX_PTYPE_UNUSED_ENTRY(151),
271         HNS3_RX_PTYPE_UNUSED_ENTRY(152),
272         HNS3_RX_PTYPE_UNUSED_ENTRY(153),
273         HNS3_RX_PTYPE_UNUSED_ENTRY(154),
274         HNS3_RX_PTYPE_UNUSED_ENTRY(155),
275         HNS3_RX_PTYPE_UNUSED_ENTRY(156),
276         HNS3_RX_PTYPE_UNUSED_ENTRY(157),
277         HNS3_RX_PTYPE_UNUSED_ENTRY(158),
278         HNS3_RX_PTYPE_UNUSED_ENTRY(159),
279         HNS3_RX_PTYPE_UNUSED_ENTRY(160),
280         HNS3_RX_PTYPE_UNUSED_ENTRY(161),
281         HNS3_RX_PTYPE_UNUSED_ENTRY(162),
282         HNS3_RX_PTYPE_UNUSED_ENTRY(163),
283         HNS3_RX_PTYPE_UNUSED_ENTRY(164),
284         HNS3_RX_PTYPE_UNUSED_ENTRY(165),
285         HNS3_RX_PTYPE_UNUSED_ENTRY(166),
286         HNS3_RX_PTYPE_UNUSED_ENTRY(167),
287         HNS3_RX_PTYPE_UNUSED_ENTRY(168),
288         HNS3_RX_PTYPE_UNUSED_ENTRY(169),
289         HNS3_RX_PTYPE_UNUSED_ENTRY(170),
290         HNS3_RX_PTYPE_UNUSED_ENTRY(171),
291         HNS3_RX_PTYPE_UNUSED_ENTRY(172),
292         HNS3_RX_PTYPE_UNUSED_ENTRY(173),
293         HNS3_RX_PTYPE_UNUSED_ENTRY(174),
294         HNS3_RX_PTYPE_UNUSED_ENTRY(175),
295         HNS3_RX_PTYPE_UNUSED_ENTRY(176),
296         HNS3_RX_PTYPE_UNUSED_ENTRY(177),
297         HNS3_RX_PTYPE_UNUSED_ENTRY(178),
298         HNS3_RX_PTYPE_UNUSED_ENTRY(179),
299         HNS3_RX_PTYPE_UNUSED_ENTRY(180),
300         HNS3_RX_PTYPE_UNUSED_ENTRY(181),
301         HNS3_RX_PTYPE_UNUSED_ENTRY(182),
302         HNS3_RX_PTYPE_UNUSED_ENTRY(183),
303         HNS3_RX_PTYPE_UNUSED_ENTRY(184),
304         HNS3_RX_PTYPE_UNUSED_ENTRY(185),
305         HNS3_RX_PTYPE_UNUSED_ENTRY(186),
306         HNS3_RX_PTYPE_UNUSED_ENTRY(187),
307         HNS3_RX_PTYPE_UNUSED_ENTRY(188),
308         HNS3_RX_PTYPE_UNUSED_ENTRY(189),
309         HNS3_RX_PTYPE_UNUSED_ENTRY(190),
310         HNS3_RX_PTYPE_UNUSED_ENTRY(191),
311         HNS3_RX_PTYPE_UNUSED_ENTRY(192),
312         HNS3_RX_PTYPE_UNUSED_ENTRY(193),
313         HNS3_RX_PTYPE_UNUSED_ENTRY(194),
314         HNS3_RX_PTYPE_UNUSED_ENTRY(195),
315         HNS3_RX_PTYPE_UNUSED_ENTRY(196),
316         HNS3_RX_PTYPE_UNUSED_ENTRY(197),
317         HNS3_RX_PTYPE_UNUSED_ENTRY(198),
318         HNS3_RX_PTYPE_UNUSED_ENTRY(199),
319         HNS3_RX_PTYPE_UNUSED_ENTRY(200),
320         HNS3_RX_PTYPE_UNUSED_ENTRY(201),
321         HNS3_RX_PTYPE_UNUSED_ENTRY(202),
322         HNS3_RX_PTYPE_UNUSED_ENTRY(203),
323         HNS3_RX_PTYPE_UNUSED_ENTRY(204),
324         HNS3_RX_PTYPE_UNUSED_ENTRY(205),
325         HNS3_RX_PTYPE_UNUSED_ENTRY(206),
326         HNS3_RX_PTYPE_UNUSED_ENTRY(207),
327         HNS3_RX_PTYPE_UNUSED_ENTRY(208),
328         HNS3_RX_PTYPE_UNUSED_ENTRY(209),
329         HNS3_RX_PTYPE_UNUSED_ENTRY(210),
330         HNS3_RX_PTYPE_UNUSED_ENTRY(211),
331         HNS3_RX_PTYPE_UNUSED_ENTRY(212),
332         HNS3_RX_PTYPE_UNUSED_ENTRY(213),
333         HNS3_RX_PTYPE_UNUSED_ENTRY(214),
334         HNS3_RX_PTYPE_UNUSED_ENTRY(215),
335         HNS3_RX_PTYPE_UNUSED_ENTRY(216),
336         HNS3_RX_PTYPE_UNUSED_ENTRY(217),
337         HNS3_RX_PTYPE_UNUSED_ENTRY(218),
338         HNS3_RX_PTYPE_UNUSED_ENTRY(219),
339         HNS3_RX_PTYPE_UNUSED_ENTRY(220),
340         HNS3_RX_PTYPE_UNUSED_ENTRY(221),
341         HNS3_RX_PTYPE_UNUSED_ENTRY(222),
342         HNS3_RX_PTYPE_UNUSED_ENTRY(223),
343         HNS3_RX_PTYPE_UNUSED_ENTRY(224),
344         HNS3_RX_PTYPE_UNUSED_ENTRY(225),
345         HNS3_RX_PTYPE_UNUSED_ENTRY(226),
346         HNS3_RX_PTYPE_UNUSED_ENTRY(227),
347         HNS3_RX_PTYPE_UNUSED_ENTRY(228),
348         HNS3_RX_PTYPE_UNUSED_ENTRY(229),
349         HNS3_RX_PTYPE_UNUSED_ENTRY(230),
350         HNS3_RX_PTYPE_UNUSED_ENTRY(231),
351         HNS3_RX_PTYPE_UNUSED_ENTRY(232),
352         HNS3_RX_PTYPE_UNUSED_ENTRY(233),
353         HNS3_RX_PTYPE_UNUSED_ENTRY(234),
354         HNS3_RX_PTYPE_UNUSED_ENTRY(235),
355         HNS3_RX_PTYPE_UNUSED_ENTRY(236),
356         HNS3_RX_PTYPE_UNUSED_ENTRY(237),
357         HNS3_RX_PTYPE_UNUSED_ENTRY(238),
358         HNS3_RX_PTYPE_UNUSED_ENTRY(239),
359         HNS3_RX_PTYPE_UNUSED_ENTRY(240),
360         HNS3_RX_PTYPE_UNUSED_ENTRY(241),
361         HNS3_RX_PTYPE_UNUSED_ENTRY(242),
362         HNS3_RX_PTYPE_UNUSED_ENTRY(243),
363         HNS3_RX_PTYPE_UNUSED_ENTRY(244),
364         HNS3_RX_PTYPE_UNUSED_ENTRY(245),
365         HNS3_RX_PTYPE_UNUSED_ENTRY(246),
366         HNS3_RX_PTYPE_UNUSED_ENTRY(247),
367         HNS3_RX_PTYPE_UNUSED_ENTRY(248),
368         HNS3_RX_PTYPE_UNUSED_ENTRY(249),
369         HNS3_RX_PTYPE_UNUSED_ENTRY(250),
370         HNS3_RX_PTYPE_UNUSED_ENTRY(251),
371         HNS3_RX_PTYPE_UNUSED_ENTRY(252),
372         HNS3_RX_PTYPE_UNUSED_ENTRY(253),
373         HNS3_RX_PTYPE_UNUSED_ENTRY(254),
374         HNS3_RX_PTYPE_UNUSED_ENTRY(255),
375 };
376
377 #define HNS3_INVALID_PTYPE \
378                 ARRAY_SIZE(hns3_rx_ptype_tbl)
379
380 static irqreturn_t hns3_irq_handle(int irq, void *vector)
381 {
382         struct hns3_enet_tqp_vector *tqp_vector = vector;
383
384         napi_schedule_irqoff(&tqp_vector->napi);
385         tqp_vector->event_cnt++;
386
387         return IRQ_HANDLED;
388 }
389
390 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
391 {
392         struct hns3_enet_tqp_vector *tqp_vectors;
393         unsigned int i;
394
395         for (i = 0; i < priv->vector_num; i++) {
396                 tqp_vectors = &priv->tqp_vector[i];
397
398                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
399                         continue;
400
401                 /* clear the affinity mask */
402                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
403
404                 /* release the irq resource */
405                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
406                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
407         }
408 }
409
410 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
411 {
412         struct hns3_enet_tqp_vector *tqp_vectors;
413         int txrx_int_idx = 0;
414         int rx_int_idx = 0;
415         int tx_int_idx = 0;
416         unsigned int i;
417         int ret;
418
419         for (i = 0; i < priv->vector_num; i++) {
420                 tqp_vectors = &priv->tqp_vector[i];
421
422                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
423                         continue;
424
425                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
426                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
427                                  "%s-%s-%s-%d", hns3_driver_name,
428                                  pci_name(priv->ae_handle->pdev),
429                                  "TxRx", txrx_int_idx++);
430                         txrx_int_idx++;
431                 } else if (tqp_vectors->rx_group.ring) {
432                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
433                                  "%s-%s-%s-%d", hns3_driver_name,
434                                  pci_name(priv->ae_handle->pdev),
435                                  "Rx", rx_int_idx++);
436                 } else if (tqp_vectors->tx_group.ring) {
437                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
438                                  "%s-%s-%s-%d", hns3_driver_name,
439                                  pci_name(priv->ae_handle->pdev),
440                                  "Tx", tx_int_idx++);
441                 } else {
442                         /* Skip this unused q_vector */
443                         continue;
444                 }
445
446                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
447
448                 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
449                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
450                                   tqp_vectors->name, tqp_vectors);
451                 if (ret) {
452                         netdev_err(priv->netdev, "request irq(%d) fail\n",
453                                    tqp_vectors->vector_irq);
454                         hns3_nic_uninit_irq(priv);
455                         return ret;
456                 }
457
458                 irq_set_affinity_hint(tqp_vectors->vector_irq,
459                                       &tqp_vectors->affinity_mask);
460
461                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
462         }
463
464         return 0;
465 }
466
467 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
468                                  u32 mask_en)
469 {
470         writel(mask_en, tqp_vector->mask_addr);
471 }
472
473 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
474 {
475         napi_enable(&tqp_vector->napi);
476         enable_irq(tqp_vector->vector_irq);
477
478         /* enable vector */
479         hns3_mask_vector_irq(tqp_vector, 1);
480 }
481
482 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
483 {
484         /* disable vector */
485         hns3_mask_vector_irq(tqp_vector, 0);
486
487         disable_irq(tqp_vector->vector_irq);
488         napi_disable(&tqp_vector->napi);
489         cancel_work_sync(&tqp_vector->rx_group.dim.work);
490         cancel_work_sync(&tqp_vector->tx_group.dim.work);
491 }
492
493 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
494                                  u32 rl_value)
495 {
496         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
497
498         /* this defines the configuration for RL (Interrupt Rate Limiter).
499          * Rl defines rate of interrupts i.e. number of interrupts-per-second
500          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
501          */
502         if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
503             !tqp_vector->rx_group.coal.adapt_enable)
504                 /* According to the hardware, the range of rl_reg is
505                  * 0-59 and the unit is 4.
506                  */
507                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
508
509         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
510 }
511
512 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
513                                     u32 gl_value)
514 {
515         u32 new_val;
516
517         if (tqp_vector->rx_group.coal.unit_1us)
518                 new_val = gl_value | HNS3_INT_GL_1US;
519         else
520                 new_val = hns3_gl_usec_to_reg(gl_value);
521
522         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
523 }
524
525 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
526                                     u32 gl_value)
527 {
528         u32 new_val;
529
530         if (tqp_vector->tx_group.coal.unit_1us)
531                 new_val = gl_value | HNS3_INT_GL_1US;
532         else
533                 new_val = hns3_gl_usec_to_reg(gl_value);
534
535         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
536 }
537
538 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
539                                     u32 ql_value)
540 {
541         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
542 }
543
544 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
545                                     u32 ql_value)
546 {
547         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
548 }
549
550 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
551                                       struct hns3_nic_priv *priv)
552 {
553         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
554         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
555         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
556         struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
557         struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
558
559         tx_coal->adapt_enable = ptx_coal->adapt_enable;
560         rx_coal->adapt_enable = prx_coal->adapt_enable;
561
562         tx_coal->int_gl = ptx_coal->int_gl;
563         rx_coal->int_gl = prx_coal->int_gl;
564
565         rx_coal->flow_level = prx_coal->flow_level;
566         tx_coal->flow_level = ptx_coal->flow_level;
567
568         /* device version above V3(include V3), GL can configure 1us
569          * unit, so uses 1us unit.
570          */
571         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
572                 tx_coal->unit_1us = 1;
573                 rx_coal->unit_1us = 1;
574         }
575
576         if (ae_dev->dev_specs.int_ql_max) {
577                 tx_coal->ql_enable = 1;
578                 rx_coal->ql_enable = 1;
579                 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
580                 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
581                 tx_coal->int_ql = ptx_coal->int_ql;
582                 rx_coal->int_ql = prx_coal->int_ql;
583         }
584 }
585
586 static void
587 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
588                              struct hns3_nic_priv *priv)
589 {
590         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
591         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
592         struct hnae3_handle *h = priv->ae_handle;
593
594         hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
595         hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
596         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
597
598         if (tx_coal->ql_enable)
599                 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
600
601         if (rx_coal->ql_enable)
602                 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
603 }
604
605 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
606 {
607         struct hnae3_handle *h = hns3_get_handle(netdev);
608         struct hnae3_knic_private_info *kinfo = &h->kinfo;
609         struct hnae3_tc_info *tc_info = &kinfo->tc_info;
610         unsigned int queue_size = kinfo->num_tqps;
611         int i, ret;
612
613         if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
614                 netdev_reset_tc(netdev);
615         } else {
616                 ret = netdev_set_num_tc(netdev, tc_info->num_tc);
617                 if (ret) {
618                         netdev_err(netdev,
619                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
620                         return ret;
621                 }
622
623                 for (i = 0; i < tc_info->num_tc; i++)
624                         netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
625                                             tc_info->tqp_offset[i]);
626         }
627
628         ret = netif_set_real_num_tx_queues(netdev, queue_size);
629         if (ret) {
630                 netdev_err(netdev,
631                            "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
632                 return ret;
633         }
634
635         ret = netif_set_real_num_rx_queues(netdev, queue_size);
636         if (ret) {
637                 netdev_err(netdev,
638                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
639                 return ret;
640         }
641
642         return 0;
643 }
644
645 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
646 {
647         u16 alloc_tqps, max_rss_size, rss_size;
648
649         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
650         rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
651
652         return min_t(u16, rss_size, max_rss_size);
653 }
654
655 static void hns3_tqp_enable(struct hnae3_queue *tqp)
656 {
657         u32 rcb_reg;
658
659         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
660         rcb_reg |= BIT(HNS3_RING_EN_B);
661         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
662 }
663
664 static void hns3_tqp_disable(struct hnae3_queue *tqp)
665 {
666         u32 rcb_reg;
667
668         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
669         rcb_reg &= ~BIT(HNS3_RING_EN_B);
670         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
671 }
672
673 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
674 {
675 #ifdef CONFIG_RFS_ACCEL
676         free_irq_cpu_rmap(netdev->rx_cpu_rmap);
677         netdev->rx_cpu_rmap = NULL;
678 #endif
679 }
680
681 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
682 {
683 #ifdef CONFIG_RFS_ACCEL
684         struct hns3_nic_priv *priv = netdev_priv(netdev);
685         struct hns3_enet_tqp_vector *tqp_vector;
686         int i, ret;
687
688         if (!netdev->rx_cpu_rmap) {
689                 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
690                 if (!netdev->rx_cpu_rmap)
691                         return -ENOMEM;
692         }
693
694         for (i = 0; i < priv->vector_num; i++) {
695                 tqp_vector = &priv->tqp_vector[i];
696                 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
697                                        tqp_vector->vector_irq);
698                 if (ret) {
699                         hns3_free_rx_cpu_rmap(netdev);
700                         return ret;
701                 }
702         }
703 #endif
704         return 0;
705 }
706
707 static int hns3_nic_net_up(struct net_device *netdev)
708 {
709         struct hns3_nic_priv *priv = netdev_priv(netdev);
710         struct hnae3_handle *h = priv->ae_handle;
711         int i, j;
712         int ret;
713
714         ret = hns3_nic_reset_all_ring(h);
715         if (ret)
716                 return ret;
717
718         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
719
720         /* enable the vectors */
721         for (i = 0; i < priv->vector_num; i++)
722                 hns3_vector_enable(&priv->tqp_vector[i]);
723
724         /* enable rcb */
725         for (j = 0; j < h->kinfo.num_tqps; j++)
726                 hns3_tqp_enable(h->kinfo.tqp[j]);
727
728         /* start the ae_dev */
729         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
730         if (ret) {
731                 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
732                 while (j--)
733                         hns3_tqp_disable(h->kinfo.tqp[j]);
734
735                 for (j = i - 1; j >= 0; j--)
736                         hns3_vector_disable(&priv->tqp_vector[j]);
737         }
738
739         return ret;
740 }
741
742 static void hns3_config_xps(struct hns3_nic_priv *priv)
743 {
744         int i;
745
746         for (i = 0; i < priv->vector_num; i++) {
747                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
748                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
749
750                 while (ring) {
751                         int ret;
752
753                         ret = netif_set_xps_queue(priv->netdev,
754                                                   &tqp_vector->affinity_mask,
755                                                   ring->tqp->tqp_index);
756                         if (ret)
757                                 netdev_warn(priv->netdev,
758                                             "set xps queue failed: %d", ret);
759
760                         ring = ring->next;
761                 }
762         }
763 }
764
765 static int hns3_nic_net_open(struct net_device *netdev)
766 {
767         struct hns3_nic_priv *priv = netdev_priv(netdev);
768         struct hnae3_handle *h = hns3_get_handle(netdev);
769         struct hnae3_knic_private_info *kinfo;
770         int i, ret;
771
772         if (hns3_nic_resetting(netdev))
773                 return -EBUSY;
774
775         if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
776                 netdev_warn(netdev, "net open repeatedly!\n");
777                 return 0;
778         }
779
780         netif_carrier_off(netdev);
781
782         ret = hns3_nic_set_real_num_queue(netdev);
783         if (ret)
784                 return ret;
785
786         ret = hns3_nic_net_up(netdev);
787         if (ret) {
788                 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
789                 return ret;
790         }
791
792         kinfo = &h->kinfo;
793         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
794                 netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
795
796         if (h->ae_algo->ops->set_timer_task)
797                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
798
799         hns3_config_xps(priv);
800
801         netif_dbg(h, drv, netdev, "net open\n");
802
803         return 0;
804 }
805
806 static void hns3_reset_tx_queue(struct hnae3_handle *h)
807 {
808         struct net_device *ndev = h->kinfo.netdev;
809         struct hns3_nic_priv *priv = netdev_priv(ndev);
810         struct netdev_queue *dev_queue;
811         u32 i;
812
813         for (i = 0; i < h->kinfo.num_tqps; i++) {
814                 dev_queue = netdev_get_tx_queue(ndev,
815                                                 priv->ring[i].queue_index);
816                 netdev_tx_reset_queue(dev_queue);
817         }
818 }
819
820 static void hns3_nic_net_down(struct net_device *netdev)
821 {
822         struct hns3_nic_priv *priv = netdev_priv(netdev);
823         struct hnae3_handle *h = hns3_get_handle(netdev);
824         const struct hnae3_ae_ops *ops;
825         int i;
826
827         /* disable vectors */
828         for (i = 0; i < priv->vector_num; i++)
829                 hns3_vector_disable(&priv->tqp_vector[i]);
830
831         /* disable rcb */
832         for (i = 0; i < h->kinfo.num_tqps; i++)
833                 hns3_tqp_disable(h->kinfo.tqp[i]);
834
835         /* stop ae_dev */
836         ops = priv->ae_handle->ae_algo->ops;
837         if (ops->stop)
838                 ops->stop(priv->ae_handle);
839
840         /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
841          * during reset process, because driver may not be able
842          * to disable the ring through firmware when downing the netdev.
843          */
844         if (!hns3_nic_resetting(netdev))
845                 hns3_clear_all_ring(priv->ae_handle, false);
846
847         hns3_reset_tx_queue(priv->ae_handle);
848 }
849
850 static int hns3_nic_net_stop(struct net_device *netdev)
851 {
852         struct hns3_nic_priv *priv = netdev_priv(netdev);
853         struct hnae3_handle *h = hns3_get_handle(netdev);
854
855         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
856                 return 0;
857
858         netif_dbg(h, drv, netdev, "net stop\n");
859
860         if (h->ae_algo->ops->set_timer_task)
861                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
862
863         netif_carrier_off(netdev);
864         netif_tx_disable(netdev);
865
866         hns3_nic_net_down(netdev);
867
868         return 0;
869 }
870
871 static int hns3_nic_uc_sync(struct net_device *netdev,
872                             const unsigned char *addr)
873 {
874         struct hnae3_handle *h = hns3_get_handle(netdev);
875
876         if (h->ae_algo->ops->add_uc_addr)
877                 return h->ae_algo->ops->add_uc_addr(h, addr);
878
879         return 0;
880 }
881
882 static int hns3_nic_uc_unsync(struct net_device *netdev,
883                               const unsigned char *addr)
884 {
885         struct hnae3_handle *h = hns3_get_handle(netdev);
886
887         /* need ignore the request of removing device address, because
888          * we store the device address and other addresses of uc list
889          * in the function's mac filter list.
890          */
891         if (ether_addr_equal(addr, netdev->dev_addr))
892                 return 0;
893
894         if (h->ae_algo->ops->rm_uc_addr)
895                 return h->ae_algo->ops->rm_uc_addr(h, addr);
896
897         return 0;
898 }
899
900 static int hns3_nic_mc_sync(struct net_device *netdev,
901                             const unsigned char *addr)
902 {
903         struct hnae3_handle *h = hns3_get_handle(netdev);
904
905         if (h->ae_algo->ops->add_mc_addr)
906                 return h->ae_algo->ops->add_mc_addr(h, addr);
907
908         return 0;
909 }
910
911 static int hns3_nic_mc_unsync(struct net_device *netdev,
912                               const unsigned char *addr)
913 {
914         struct hnae3_handle *h = hns3_get_handle(netdev);
915
916         if (h->ae_algo->ops->rm_mc_addr)
917                 return h->ae_algo->ops->rm_mc_addr(h, addr);
918
919         return 0;
920 }
921
922 static u8 hns3_get_netdev_flags(struct net_device *netdev)
923 {
924         u8 flags = 0;
925
926         if (netdev->flags & IFF_PROMISC)
927                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
928         else if (netdev->flags & IFF_ALLMULTI)
929                 flags = HNAE3_USER_MPE;
930
931         return flags;
932 }
933
934 static void hns3_nic_set_rx_mode(struct net_device *netdev)
935 {
936         struct hnae3_handle *h = hns3_get_handle(netdev);
937         u8 new_flags;
938
939         new_flags = hns3_get_netdev_flags(netdev);
940
941         __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
942         __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
943
944         /* User mode Promisc mode enable and vlan filtering is disabled to
945          * let all packets in.
946          */
947         h->netdev_flags = new_flags;
948         hns3_request_update_promisc_mode(h);
949 }
950
951 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
952 {
953         const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
954
955         if (ops->request_update_promisc_mode)
956                 ops->request_update_promisc_mode(handle);
957 }
958
959 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
960 {
961         struct hns3_tx_spare *tx_spare = ring->tx_spare;
962         u32 ntc, ntu;
963
964         /* This smp_load_acquire() pairs with smp_store_release() in
965          * hns3_tx_spare_update() called in tx desc cleaning process.
966          */
967         ntc = smp_load_acquire(&tx_spare->last_to_clean);
968         ntu = tx_spare->next_to_use;
969
970         if (ntc > ntu)
971                 return ntc - ntu - 1;
972
973         /* The free tx buffer is divided into two part, so pick the
974          * larger one.
975          */
976         return max(ntc, tx_spare->len - ntu) - 1;
977 }
978
979 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
980 {
981         struct hns3_tx_spare *tx_spare = ring->tx_spare;
982
983         if (!tx_spare ||
984             tx_spare->last_to_clean == tx_spare->next_to_clean)
985                 return;
986
987         /* This smp_store_release() pairs with smp_load_acquire() in
988          * hns3_tx_spare_space() called in xmit process.
989          */
990         smp_store_release(&tx_spare->last_to_clean,
991                           tx_spare->next_to_clean);
992 }
993
994 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
995                                    struct sk_buff *skb,
996                                    u32 space)
997 {
998         u32 len = skb->len <= ring->tx_copybreak ? skb->len :
999                                 skb_headlen(skb);
1000
1001         if (len > ring->tx_copybreak)
1002                 return false;
1003
1004         if (ALIGN(len, dma_get_cache_alignment()) > space) {
1005                 hns3_ring_stats_update(ring, tx_spare_full);
1006                 return false;
1007         }
1008
1009         return true;
1010 }
1011
1012 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1013                                 struct sk_buff *skb,
1014                                 u32 space)
1015 {
1016         if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1017             (!skb_has_frag_list(skb) &&
1018              skb_shinfo(skb)->nr_frags < tx_sgl))
1019                 return false;
1020
1021         if (space < HNS3_MAX_SGL_SIZE) {
1022                 hns3_ring_stats_update(ring, tx_spare_full);
1023                 return false;
1024         }
1025
1026         return true;
1027 }
1028
1029 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1030 {
1031         u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size;
1032         struct hns3_tx_spare *tx_spare;
1033         struct page *page;
1034         dma_addr_t dma;
1035         int order;
1036
1037         if (!alloc_size)
1038                 return;
1039
1040         order = get_order(alloc_size);
1041         if (order >= MAX_ORDER) {
1042                 if (net_ratelimit())
1043                         dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n");
1044                 return;
1045         }
1046
1047         tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1048                                 GFP_KERNEL);
1049         if (!tx_spare) {
1050                 /* The driver still work without the tx spare buffer */
1051                 dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1052                 goto devm_kzalloc_error;
1053         }
1054
1055         page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1056                                 GFP_KERNEL, order);
1057         if (!page) {
1058                 dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1059                 goto alloc_pages_error;
1060         }
1061
1062         dma = dma_map_page(ring_to_dev(ring), page, 0,
1063                            PAGE_SIZE << order, DMA_TO_DEVICE);
1064         if (dma_mapping_error(ring_to_dev(ring), dma)) {
1065                 dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1066                 goto dma_mapping_error;
1067         }
1068
1069         tx_spare->dma = dma;
1070         tx_spare->buf = page_address(page);
1071         tx_spare->len = PAGE_SIZE << order;
1072         ring->tx_spare = tx_spare;
1073         return;
1074
1075 dma_mapping_error:
1076         put_page(page);
1077 alloc_pages_error:
1078         devm_kfree(ring_to_dev(ring), tx_spare);
1079 devm_kzalloc_error:
1080         ring->tqp->handle->kinfo.tx_spare_buf_size = 0;
1081 }
1082
1083 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1084  * before calling below function to allocate tx buffer.
1085  */
1086 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1087                                  unsigned int size, dma_addr_t *dma,
1088                                  u32 *cb_len)
1089 {
1090         struct hns3_tx_spare *tx_spare = ring->tx_spare;
1091         u32 ntu = tx_spare->next_to_use;
1092
1093         size = ALIGN(size, dma_get_cache_alignment());
1094         *cb_len = size;
1095
1096         /* Tx spare buffer wraps back here because the end of
1097          * freed tx buffer is not enough.
1098          */
1099         if (ntu + size > tx_spare->len) {
1100                 *cb_len += (tx_spare->len - ntu);
1101                 ntu = 0;
1102         }
1103
1104         tx_spare->next_to_use = ntu + size;
1105         if (tx_spare->next_to_use == tx_spare->len)
1106                 tx_spare->next_to_use = 0;
1107
1108         *dma = tx_spare->dma + ntu;
1109
1110         return tx_spare->buf + ntu;
1111 }
1112
1113 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1114 {
1115         struct hns3_tx_spare *tx_spare = ring->tx_spare;
1116
1117         if (len > tx_spare->next_to_use) {
1118                 len -= tx_spare->next_to_use;
1119                 tx_spare->next_to_use = tx_spare->len - len;
1120         } else {
1121                 tx_spare->next_to_use -= len;
1122         }
1123 }
1124
1125 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1126                                      struct hns3_desc_cb *cb)
1127 {
1128         struct hns3_tx_spare *tx_spare = ring->tx_spare;
1129         u32 ntc = tx_spare->next_to_clean;
1130         u32 len = cb->length;
1131
1132         tx_spare->next_to_clean += len;
1133
1134         if (tx_spare->next_to_clean >= tx_spare->len) {
1135                 tx_spare->next_to_clean -= tx_spare->len;
1136
1137                 if (tx_spare->next_to_clean) {
1138                         ntc = 0;
1139                         len = tx_spare->next_to_clean;
1140                 }
1141         }
1142
1143         /* This tx spare buffer is only really reclaimed after calling
1144          * hns3_tx_spare_update(), so it is still safe to use the info in
1145          * the tx buffer to do the dma sync or sg unmapping after
1146          * tx_spare->next_to_clean is moved forword.
1147          */
1148         if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1149                 dma_addr_t dma = tx_spare->dma + ntc;
1150
1151                 dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1152                                         DMA_TO_DEVICE);
1153         } else {
1154                 struct sg_table *sgt = tx_spare->buf + ntc;
1155
1156                 dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1157                              DMA_TO_DEVICE);
1158         }
1159 }
1160
1161 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1162                         u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1163 {
1164         u32 l4_offset, hdr_len;
1165         union l3_hdr_info l3;
1166         union l4_hdr_info l4;
1167         u32 l4_paylen;
1168         int ret;
1169
1170         if (!skb_is_gso(skb))
1171                 return 0;
1172
1173         ret = skb_cow_head(skb, 0);
1174         if (unlikely(ret < 0))
1175                 return ret;
1176
1177         l3.hdr = skb_network_header(skb);
1178         l4.hdr = skb_transport_header(skb);
1179
1180         /* Software should clear the IPv4's checksum field when tso is
1181          * needed.
1182          */
1183         if (l3.v4->version == 4)
1184                 l3.v4->check = 0;
1185
1186         /* tunnel packet */
1187         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1188                                          SKB_GSO_GRE_CSUM |
1189                                          SKB_GSO_UDP_TUNNEL |
1190                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
1191                 /* reset l3&l4 pointers from outer to inner headers */
1192                 l3.hdr = skb_inner_network_header(skb);
1193                 l4.hdr = skb_inner_transport_header(skb);
1194
1195                 /* Software should clear the IPv4's checksum field when
1196                  * tso is needed.
1197                  */
1198                 if (l3.v4->version == 4)
1199                         l3.v4->check = 0;
1200         }
1201
1202         /* normal or tunnel packet */
1203         l4_offset = l4.hdr - skb->data;
1204
1205         /* remove payload length from inner pseudo checksum when tso */
1206         l4_paylen = skb->len - l4_offset;
1207
1208         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1209                 hdr_len = sizeof(*l4.udp) + l4_offset;
1210                 csum_replace_by_diff(&l4.udp->check,
1211                                      (__force __wsum)htonl(l4_paylen));
1212         } else {
1213                 hdr_len = (l4.tcp->doff << 2) + l4_offset;
1214                 csum_replace_by_diff(&l4.tcp->check,
1215                                      (__force __wsum)htonl(l4_paylen));
1216         }
1217
1218         *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1219
1220         /* find the txbd field values */
1221         *paylen_fdop_ol4cs = skb->len - hdr_len;
1222         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1223
1224         /* offload outer UDP header checksum */
1225         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1226                 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1227
1228         /* get MSS for TSO */
1229         *mss = skb_shinfo(skb)->gso_size;
1230
1231         trace_hns3_tso(skb);
1232
1233         return 0;
1234 }
1235
1236 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1237                                 u8 *il4_proto)
1238 {
1239         union l3_hdr_info l3;
1240         unsigned char *l4_hdr;
1241         unsigned char *exthdr;
1242         u8 l4_proto_tmp;
1243         __be16 frag_off;
1244
1245         /* find outer header point */
1246         l3.hdr = skb_network_header(skb);
1247         l4_hdr = skb_transport_header(skb);
1248
1249         if (skb->protocol == htons(ETH_P_IPV6)) {
1250                 exthdr = l3.hdr + sizeof(*l3.v6);
1251                 l4_proto_tmp = l3.v6->nexthdr;
1252                 if (l4_hdr != exthdr)
1253                         ipv6_skip_exthdr(skb, exthdr - skb->data,
1254                                          &l4_proto_tmp, &frag_off);
1255         } else if (skb->protocol == htons(ETH_P_IP)) {
1256                 l4_proto_tmp = l3.v4->protocol;
1257         } else {
1258                 return -EINVAL;
1259         }
1260
1261         *ol4_proto = l4_proto_tmp;
1262
1263         /* tunnel packet */
1264         if (!skb->encapsulation) {
1265                 *il4_proto = 0;
1266                 return 0;
1267         }
1268
1269         /* find inner header point */
1270         l3.hdr = skb_inner_network_header(skb);
1271         l4_hdr = skb_inner_transport_header(skb);
1272
1273         if (l3.v6->version == 6) {
1274                 exthdr = l3.hdr + sizeof(*l3.v6);
1275                 l4_proto_tmp = l3.v6->nexthdr;
1276                 if (l4_hdr != exthdr)
1277                         ipv6_skip_exthdr(skb, exthdr - skb->data,
1278                                          &l4_proto_tmp, &frag_off);
1279         } else if (l3.v4->version == 4) {
1280                 l4_proto_tmp = l3.v4->protocol;
1281         }
1282
1283         *il4_proto = l4_proto_tmp;
1284
1285         return 0;
1286 }
1287
1288 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1289  * and it is udp packet, which has a dest port as the IANA assigned.
1290  * the hardware is expected to do the checksum offload, but the
1291  * hardware will not do the checksum offload when udp dest port is
1292  * 4789, 4790 or 6081.
1293  */
1294 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1295 {
1296         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1297         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1298         union l4_hdr_info l4;
1299
1300         /* device version above V3(include V3), the hardware can
1301          * do this checksum offload.
1302          */
1303         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1304                 return false;
1305
1306         l4.hdr = skb_transport_header(skb);
1307
1308         if (!(!skb->encapsulation &&
1309               (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1310               l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1311               l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT))))
1312                 return false;
1313
1314         return true;
1315 }
1316
1317 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1318                                   u32 *ol_type_vlan_len_msec)
1319 {
1320         u32 l2_len, l3_len, l4_len;
1321         unsigned char *il2_hdr;
1322         union l3_hdr_info l3;
1323         union l4_hdr_info l4;
1324
1325         l3.hdr = skb_network_header(skb);
1326         l4.hdr = skb_transport_header(skb);
1327
1328         /* compute OL2 header size, defined in 2 Bytes */
1329         l2_len = l3.hdr - skb->data;
1330         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1331
1332         /* compute OL3 header size, defined in 4 Bytes */
1333         l3_len = l4.hdr - l3.hdr;
1334         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1335
1336         il2_hdr = skb_inner_mac_header(skb);
1337         /* compute OL4 header size, defined in 4 Bytes */
1338         l4_len = il2_hdr - l4.hdr;
1339         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1340
1341         /* define outer network header type */
1342         if (skb->protocol == htons(ETH_P_IP)) {
1343                 if (skb_is_gso(skb))
1344                         hns3_set_field(*ol_type_vlan_len_msec,
1345                                        HNS3_TXD_OL3T_S,
1346                                        HNS3_OL3T_IPV4_CSUM);
1347                 else
1348                         hns3_set_field(*ol_type_vlan_len_msec,
1349                                        HNS3_TXD_OL3T_S,
1350                                        HNS3_OL3T_IPV4_NO_CSUM);
1351         } else if (skb->protocol == htons(ETH_P_IPV6)) {
1352                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1353                                HNS3_OL3T_IPV6);
1354         }
1355
1356         if (ol4_proto == IPPROTO_UDP)
1357                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1358                                HNS3_TUN_MAC_IN_UDP);
1359         else if (ol4_proto == IPPROTO_GRE)
1360                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1361                                HNS3_TUN_NVGRE);
1362 }
1363
1364 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3,
1365                              u32 *type_cs_vlan_tso)
1366 {
1367         if (l3.v4->version == 4) {
1368                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1369                                HNS3_L3T_IPV4);
1370
1371                 /* the stack computes the IP header already, the only time we
1372                  * need the hardware to recompute it is in the case of TSO.
1373                  */
1374                 if (skb_is_gso(skb))
1375                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1376         } else if (l3.v6->version == 6) {
1377                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1378                                HNS3_L3T_IPV6);
1379         }
1380 }
1381
1382 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4,
1383                                    u32 l4_proto, u32 *type_cs_vlan_tso)
1384 {
1385         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
1386         switch (l4_proto) {
1387         case IPPROTO_TCP:
1388                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1389                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1390                                HNS3_L4T_TCP);
1391                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1392                                l4.tcp->doff);
1393                 break;
1394         case IPPROTO_UDP:
1395                 if (hns3_tunnel_csum_bug(skb)) {
1396                         int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1397
1398                         return ret ? ret : skb_checksum_help(skb);
1399                 }
1400
1401                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1402                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1403                                HNS3_L4T_UDP);
1404                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1405                                (sizeof(struct udphdr) >> 2));
1406                 break;
1407         case IPPROTO_SCTP:
1408                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1409                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1410                                HNS3_L4T_SCTP);
1411                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1412                                (sizeof(struct sctphdr) >> 2));
1413                 break;
1414         default:
1415                 /* drop the skb tunnel packet if hardware don't support,
1416                  * because hardware can't calculate csum when TSO.
1417                  */
1418                 if (skb_is_gso(skb))
1419                         return -EDOM;
1420
1421                 /* the stack computes the IP header already,
1422                  * driver calculate l4 checksum when not TSO.
1423                  */
1424                 return skb_checksum_help(skb);
1425         }
1426
1427         return 0;
1428 }
1429
1430 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1431                            u8 il4_proto, u32 *type_cs_vlan_tso,
1432                            u32 *ol_type_vlan_len_msec)
1433 {
1434         unsigned char *l2_hdr = skb->data;
1435         u32 l4_proto = ol4_proto;
1436         union l4_hdr_info l4;
1437         union l3_hdr_info l3;
1438         u32 l2_len, l3_len;
1439
1440         l4.hdr = skb_transport_header(skb);
1441         l3.hdr = skb_network_header(skb);
1442
1443         /* handle encapsulation skb */
1444         if (skb->encapsulation) {
1445                 /* If this is a not UDP/GRE encapsulation skb */
1446                 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1447                         /* drop the skb tunnel packet if hardware don't support,
1448                          * because hardware can't calculate csum when TSO.
1449                          */
1450                         if (skb_is_gso(skb))
1451                                 return -EDOM;
1452
1453                         /* the stack computes the IP header already,
1454                          * driver calculate l4 checksum when not TSO.
1455                          */
1456                         return skb_checksum_help(skb);
1457                 }
1458
1459                 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1460
1461                 /* switch to inner header */
1462                 l2_hdr = skb_inner_mac_header(skb);
1463                 l3.hdr = skb_inner_network_header(skb);
1464                 l4.hdr = skb_inner_transport_header(skb);
1465                 l4_proto = il4_proto;
1466         }
1467
1468         hns3_set_l3_type(skb, l3, type_cs_vlan_tso);
1469
1470         /* compute inner(/normal) L2 header size, defined in 2 Bytes */
1471         l2_len = l3.hdr - l2_hdr;
1472         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1473
1474         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
1475         l3_len = l4.hdr - l3.hdr;
1476         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1477
1478         return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso);
1479 }
1480
1481 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1482                              struct sk_buff *skb)
1483 {
1484         struct hnae3_handle *handle = tx_ring->tqp->handle;
1485         struct hnae3_ae_dev *ae_dev;
1486         struct vlan_ethhdr *vhdr;
1487         int rc;
1488
1489         if (!(skb->protocol == htons(ETH_P_8021Q) ||
1490               skb_vlan_tag_present(skb)))
1491                 return 0;
1492
1493         /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1494          * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1495          * will cause RAS error.
1496          */
1497         ae_dev = pci_get_drvdata(handle->pdev);
1498         if (unlikely(skb_vlan_tagged_multi(skb) &&
1499                      ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1500                      handle->port_base_vlan_state ==
1501                      HNAE3_PORT_BASE_VLAN_ENABLE))
1502                 return -EINVAL;
1503
1504         if (skb->protocol == htons(ETH_P_8021Q) &&
1505             !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1506                 /* When HW VLAN acceleration is turned off, and the stack
1507                  * sets the protocol to 802.1q, the driver just need to
1508                  * set the protocol to the encapsulated ethertype.
1509                  */
1510                 skb->protocol = vlan_get_protocol(skb);
1511                 return 0;
1512         }
1513
1514         if (skb_vlan_tag_present(skb)) {
1515                 /* Based on hw strategy, use out_vtag in two layer tag case,
1516                  * and use inner_vtag in one tag case.
1517                  */
1518                 if (skb->protocol == htons(ETH_P_8021Q) &&
1519                     handle->port_base_vlan_state ==
1520                     HNAE3_PORT_BASE_VLAN_DISABLE)
1521                         rc = HNS3_OUTER_VLAN_TAG;
1522                 else
1523                         rc = HNS3_INNER_VLAN_TAG;
1524
1525                 skb->protocol = vlan_get_protocol(skb);
1526                 return rc;
1527         }
1528
1529         rc = skb_cow_head(skb, 0);
1530         if (unlikely(rc < 0))
1531                 return rc;
1532
1533         vhdr = (struct vlan_ethhdr *)skb->data;
1534         vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1535                                          & VLAN_PRIO_MASK);
1536
1537         skb->protocol = vlan_get_protocol(skb);
1538         return 0;
1539 }
1540
1541 /* check if the hardware is capable of checksum offloading */
1542 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1543 {
1544         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1545
1546         /* Kindly note, due to backward compatibility of the TX descriptor,
1547          * HW checksum of the non-IP packets and GSO packets is handled at
1548          * different place in the following code
1549          */
1550         if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1551             !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1552                 return false;
1553
1554         return true;
1555 }
1556
1557 struct hns3_desc_param {
1558         u32 paylen_ol4cs;
1559         u32 ol_type_vlan_len_msec;
1560         u32 type_cs_vlan_tso;
1561         u16 mss_hw_csum;
1562         u16 inner_vtag;
1563         u16 out_vtag;
1564 };
1565
1566 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa)
1567 {
1568         pa->paylen_ol4cs = skb->len;
1569         pa->ol_type_vlan_len_msec = 0;
1570         pa->type_cs_vlan_tso = 0;
1571         pa->mss_hw_csum = 0;
1572         pa->inner_vtag = 0;
1573         pa->out_vtag = 0;
1574 }
1575
1576 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring,
1577                                  struct sk_buff *skb,
1578                                  struct hns3_desc_param *param)
1579 {
1580         int ret;
1581
1582         ret = hns3_handle_vtags(ring, skb);
1583         if (unlikely(ret < 0)) {
1584                 hns3_ring_stats_update(ring, tx_vlan_err);
1585                 return ret;
1586         } else if (ret == HNS3_INNER_VLAN_TAG) {
1587                 param->inner_vtag = skb_vlan_tag_get(skb);
1588                 param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1589                                 VLAN_PRIO_MASK;
1590                 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1591         } else if (ret == HNS3_OUTER_VLAN_TAG) {
1592                 param->out_vtag = skb_vlan_tag_get(skb);
1593                 param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1594                                 VLAN_PRIO_MASK;
1595                 hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1596                                1);
1597         }
1598         return 0;
1599 }
1600
1601 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring,
1602                                     struct sk_buff *skb,
1603                                     struct hns3_desc_cb *desc_cb,
1604                                     struct hns3_desc_param *param)
1605 {
1606         u8 ol4_proto, il4_proto;
1607         int ret;
1608
1609         if (hns3_check_hw_tx_csum(skb)) {
1610                 /* set checksum start and offset, defined in 2 Bytes */
1611                 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1612                                skb_checksum_start_offset(skb) >> 1);
1613                 hns3_set_field(param->ol_type_vlan_len_msec,
1614                                HNS3_TXD_CSUM_OFFSET_S,
1615                                skb->csum_offset >> 1);
1616                 param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1617                 return 0;
1618         }
1619
1620         skb_reset_mac_len(skb);
1621
1622         ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1623         if (unlikely(ret < 0)) {
1624                 hns3_ring_stats_update(ring, tx_l4_proto_err);
1625                 return ret;
1626         }
1627
1628         ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1629                               &param->type_cs_vlan_tso,
1630                               &param->ol_type_vlan_len_msec);
1631         if (unlikely(ret < 0)) {
1632                 hns3_ring_stats_update(ring, tx_l2l3l4_err);
1633                 return ret;
1634         }
1635
1636         ret = hns3_set_tso(skb, &param->paylen_ol4cs, &param->mss_hw_csum,
1637                            &param->type_cs_vlan_tso, &desc_cb->send_bytes);
1638         if (unlikely(ret < 0)) {
1639                 hns3_ring_stats_update(ring, tx_tso_err);
1640                 return ret;
1641         }
1642         return 0;
1643 }
1644
1645 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1646                               struct sk_buff *skb, struct hns3_desc *desc,
1647                               struct hns3_desc_cb *desc_cb)
1648 {
1649         struct hns3_desc_param param;
1650         int ret;
1651
1652         hns3_init_desc_data(skb, &param);
1653         ret = hns3_handle_vlan_info(ring, skb, &param);
1654         if (unlikely(ret < 0))
1655                 return ret;
1656
1657         desc_cb->send_bytes = skb->len;
1658
1659         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1660                 ret = hns3_handle_csum_partial(ring, skb, desc_cb, &param);
1661                 if (ret)
1662                         return ret;
1663         }
1664
1665         /* Set txbd */
1666         desc->tx.ol_type_vlan_len_msec =
1667                 cpu_to_le32(param.ol_type_vlan_len_msec);
1668         desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso);
1669         desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs);
1670         desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum);
1671         desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag);
1672         desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag);
1673
1674         return 0;
1675 }
1676
1677 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1678                           unsigned int size)
1679 {
1680 #define HNS3_LIKELY_BD_NUM      1
1681
1682         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1683         unsigned int frag_buf_num;
1684         int k, sizeoflast;
1685
1686         if (likely(size <= HNS3_MAX_BD_SIZE)) {
1687                 desc->addr = cpu_to_le64(dma);
1688                 desc->tx.send_size = cpu_to_le16(size);
1689                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1690                         cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1691
1692                 trace_hns3_tx_desc(ring, ring->next_to_use);
1693                 ring_ptr_move_fw(ring, next_to_use);
1694                 return HNS3_LIKELY_BD_NUM;
1695         }
1696
1697         frag_buf_num = hns3_tx_bd_count(size);
1698         sizeoflast = size % HNS3_MAX_BD_SIZE;
1699         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1700
1701         /* When frag size is bigger than hardware limit, split this frag */
1702         for (k = 0; k < frag_buf_num; k++) {
1703                 /* now, fill the descriptor */
1704                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1705                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1706                                      (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1707                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1708                                 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1709
1710                 trace_hns3_tx_desc(ring, ring->next_to_use);
1711                 /* move ring pointer to next */
1712                 ring_ptr_move_fw(ring, next_to_use);
1713
1714                 desc = &ring->desc[ring->next_to_use];
1715         }
1716
1717         return frag_buf_num;
1718 }
1719
1720 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1721                                   unsigned int type)
1722 {
1723         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1724         struct device *dev = ring_to_dev(ring);
1725         unsigned int size;
1726         dma_addr_t dma;
1727
1728         if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1729                 struct sk_buff *skb = (struct sk_buff *)priv;
1730
1731                 size = skb_headlen(skb);
1732                 if (!size)
1733                         return 0;
1734
1735                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1736         } else if (type & DESC_TYPE_BOUNCE_HEAD) {
1737                 /* Head data has been filled in hns3_handle_tx_bounce(),
1738                  * just return 0 here.
1739                  */
1740                 return 0;
1741         } else {
1742                 skb_frag_t *frag = (skb_frag_t *)priv;
1743
1744                 size = skb_frag_size(frag);
1745                 if (!size)
1746                         return 0;
1747
1748                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1749         }
1750
1751         if (unlikely(dma_mapping_error(dev, dma))) {
1752                 hns3_ring_stats_update(ring, sw_err_cnt);
1753                 return -ENOMEM;
1754         }
1755
1756         desc_cb->priv = priv;
1757         desc_cb->length = size;
1758         desc_cb->dma = dma;
1759         desc_cb->type = type;
1760
1761         return hns3_fill_desc(ring, dma, size);
1762 }
1763
1764 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1765                                     unsigned int bd_num)
1766 {
1767         unsigned int size;
1768         int i;
1769
1770         size = skb_headlen(skb);
1771         while (size > HNS3_MAX_BD_SIZE) {
1772                 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1773                 size -= HNS3_MAX_BD_SIZE;
1774
1775                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1776                         return bd_num;
1777         }
1778
1779         if (size) {
1780                 bd_size[bd_num++] = size;
1781                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1782                         return bd_num;
1783         }
1784
1785         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1786                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1787                 size = skb_frag_size(frag);
1788                 if (!size)
1789                         continue;
1790
1791                 while (size > HNS3_MAX_BD_SIZE) {
1792                         bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1793                         size -= HNS3_MAX_BD_SIZE;
1794
1795                         if (bd_num > HNS3_MAX_TSO_BD_NUM)
1796                                 return bd_num;
1797                 }
1798
1799                 bd_size[bd_num++] = size;
1800                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1801                         return bd_num;
1802         }
1803
1804         return bd_num;
1805 }
1806
1807 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1808                                    u8 max_non_tso_bd_num, unsigned int bd_num,
1809                                    unsigned int recursion_level)
1810 {
1811 #define HNS3_MAX_RECURSION_LEVEL        24
1812
1813         struct sk_buff *frag_skb;
1814
1815         /* If the total len is within the max bd limit */
1816         if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1817                    !skb_has_frag_list(skb) &&
1818                    skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1819                 return skb_shinfo(skb)->nr_frags + 1U;
1820
1821         if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1822                 return UINT_MAX;
1823
1824         bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1825         if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1826                 return bd_num;
1827
1828         skb_walk_frags(skb, frag_skb) {
1829                 bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1830                                         bd_num, recursion_level + 1);
1831                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1832                         return bd_num;
1833         }
1834
1835         return bd_num;
1836 }
1837
1838 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1839 {
1840         if (!skb->encapsulation)
1841                 return skb_transport_offset(skb) + tcp_hdrlen(skb);
1842
1843         return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1844 }
1845
1846 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1847  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1848  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1849  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1850  * than MSS except the last max_non_tso_bd_num - 1 frags.
1851  */
1852 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1853                                      unsigned int bd_num, u8 max_non_tso_bd_num)
1854 {
1855         unsigned int tot_len = 0;
1856         int i;
1857
1858         for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1859                 tot_len += bd_size[i];
1860
1861         /* ensure the first max_non_tso_bd_num frags is greater than
1862          * mss + header
1863          */
1864         if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1865             skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1866                 return true;
1867
1868         /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1869          * than mss except the last one.
1870          */
1871         for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1872                 tot_len -= bd_size[i];
1873                 tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1874
1875                 if (tot_len < skb_shinfo(skb)->gso_size)
1876                         return true;
1877         }
1878
1879         return false;
1880 }
1881
1882 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1883 {
1884         int i;
1885
1886         for (i = 0; i < MAX_SKB_FRAGS; i++)
1887                 size[i] = skb_frag_size(&shinfo->frags[i]);
1888 }
1889
1890 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1891                               struct sk_buff *skb,
1892                               unsigned int bd_num)
1893 {
1894         /* 'bd_num == UINT_MAX' means the skb' fraglist has a
1895          * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1896          */
1897         if (bd_num == UINT_MAX) {
1898                 hns3_ring_stats_update(ring, over_max_recursion);
1899                 return -ENOMEM;
1900         }
1901
1902         /* The skb->len has exceeded the hw limitation, linearization
1903          * will not help.
1904          */
1905         if (skb->len > HNS3_MAX_TSO_SIZE ||
1906             (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
1907                 hns3_ring_stats_update(ring, hw_limitation);
1908                 return -ENOMEM;
1909         }
1910
1911         if (__skb_linearize(skb)) {
1912                 hns3_ring_stats_update(ring, sw_err_cnt);
1913                 return -ENOMEM;
1914         }
1915
1916         return 0;
1917 }
1918
1919 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1920                                   struct net_device *netdev,
1921                                   struct sk_buff *skb)
1922 {
1923         struct hns3_nic_priv *priv = netdev_priv(netdev);
1924         u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1925         unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1926         unsigned int bd_num;
1927
1928         bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1929         if (unlikely(bd_num > max_non_tso_bd_num)) {
1930                 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1931                     !hns3_skb_need_linearized(skb, bd_size, bd_num,
1932                                               max_non_tso_bd_num)) {
1933                         trace_hns3_over_max_bd(skb);
1934                         goto out;
1935                 }
1936
1937                 if (hns3_skb_linearize(ring, skb, bd_num))
1938                         return -ENOMEM;
1939
1940                 bd_num = hns3_tx_bd_count(skb->len);
1941
1942                 hns3_ring_stats_update(ring, tx_copy);
1943         }
1944
1945 out:
1946         if (likely(ring_space(ring) >= bd_num))
1947                 return bd_num;
1948
1949         netif_stop_subqueue(netdev, ring->queue_index);
1950         smp_mb(); /* Memory barrier before checking ring_space */
1951
1952         /* Start queue in case hns3_clean_tx_ring has just made room
1953          * available and has not seen the queue stopped state performed
1954          * by netif_stop_subqueue above.
1955          */
1956         if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1957             !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1958                 netif_start_subqueue(netdev, ring->queue_index);
1959                 return bd_num;
1960         }
1961
1962         hns3_ring_stats_update(ring, tx_busy);
1963
1964         return -EBUSY;
1965 }
1966
1967 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1968 {
1969         struct device *dev = ring_to_dev(ring);
1970         unsigned int i;
1971
1972         for (i = 0; i < ring->desc_num; i++) {
1973                 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1974                 struct hns3_desc_cb *desc_cb;
1975
1976                 memset(desc, 0, sizeof(*desc));
1977
1978                 /* check if this is where we started */
1979                 if (ring->next_to_use == next_to_use_orig)
1980                         break;
1981
1982                 /* rollback one */
1983                 ring_ptr_move_bw(ring, next_to_use);
1984
1985                 desc_cb = &ring->desc_cb[ring->next_to_use];
1986
1987                 if (!desc_cb->dma)
1988                         continue;
1989
1990                 /* unmap the descriptor dma address */
1991                 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
1992                         dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
1993                                          DMA_TO_DEVICE);
1994                 else if (desc_cb->type &
1995                          (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
1996                         hns3_tx_spare_rollback(ring, desc_cb->length);
1997                 else if (desc_cb->length)
1998                         dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
1999                                        DMA_TO_DEVICE);
2000
2001                 desc_cb->length = 0;
2002                 desc_cb->dma = 0;
2003                 desc_cb->type = DESC_TYPE_UNKNOWN;
2004         }
2005 }
2006
2007 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
2008                                  struct sk_buff *skb, unsigned int type)
2009 {
2010         struct sk_buff *frag_skb;
2011         int i, ret, bd_num = 0;
2012
2013         ret = hns3_map_and_fill_desc(ring, skb, type);
2014         if (unlikely(ret < 0))
2015                 return ret;
2016
2017         bd_num += ret;
2018
2019         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2020                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2021
2022                 ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
2023                 if (unlikely(ret < 0))
2024                         return ret;
2025
2026                 bd_num += ret;
2027         }
2028
2029         skb_walk_frags(skb, frag_skb) {
2030                 ret = hns3_fill_skb_to_desc(ring, frag_skb,
2031                                             DESC_TYPE_FRAGLIST_SKB);
2032                 if (unlikely(ret < 0))
2033                         return ret;
2034
2035                 bd_num += ret;
2036         }
2037
2038         return bd_num;
2039 }
2040
2041 static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num)
2042 {
2043 #define HNS3_BYTES_PER_64BIT            8
2044
2045         struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {};
2046         int offset = 0;
2047
2048         /* make sure everything is visible to device before
2049          * excuting tx push or updating doorbell
2050          */
2051         dma_wmb();
2052
2053         do {
2054                 int idx = (ring->next_to_use - num + ring->desc_num) %
2055                           ring->desc_num;
2056
2057                 u64_stats_update_begin(&ring->syncp);
2058                 ring->stats.tx_push++;
2059                 u64_stats_update_end(&ring->syncp);
2060                 memcpy(&desc[offset], &ring->desc[idx],
2061                        sizeof(struct hns3_desc));
2062                 offset++;
2063         } while (--num);
2064
2065         __iowrite64_copy(ring->tqp->mem_base, desc,
2066                          (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) /
2067                          HNS3_BYTES_PER_64BIT);
2068
2069         io_stop_wc();
2070 }
2071
2072 static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring)
2073 {
2074 #define HNS3_MEM_DOORBELL_OFFSET        64
2075
2076         __le64 bd_num = cpu_to_le64((u64)ring->pending_buf);
2077
2078         /* make sure everything is visible to device before
2079          * excuting tx push or updating doorbell
2080          */
2081         dma_wmb();
2082
2083         __iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET,
2084                          &bd_num, 1);
2085         u64_stats_update_begin(&ring->syncp);
2086         ring->stats.tx_mem_doorbell += ring->pending_buf;
2087         u64_stats_update_end(&ring->syncp);
2088
2089         io_stop_wc();
2090 }
2091
2092 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2093                              bool doorbell)
2094 {
2095         struct net_device *netdev = ring_to_netdev(ring);
2096         struct hns3_nic_priv *priv = netdev_priv(netdev);
2097
2098         /* when tx push is enabled, the packet whose number of BD below
2099          * HNS3_MAX_PUSH_BD_NUM can be pushed directly.
2100          */
2101         if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num &&
2102             !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) {
2103                 hns3_tx_push_bd(ring, num);
2104                 WRITE_ONCE(ring->last_to_use, ring->next_to_use);
2105                 return;
2106         }
2107
2108         ring->pending_buf += num;
2109
2110         if (!doorbell) {
2111                 hns3_ring_stats_update(ring, tx_more);
2112                 return;
2113         }
2114
2115         if (ring->tqp->mem_base)
2116                 hns3_tx_mem_doorbell(ring);
2117         else
2118                 writel(ring->pending_buf,
2119                        ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2120
2121         ring->pending_buf = 0;
2122         WRITE_ONCE(ring->last_to_use, ring->next_to_use);
2123 }
2124
2125 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2126                       struct hns3_desc *desc)
2127 {
2128         struct hnae3_handle *h = hns3_get_handle(netdev);
2129
2130         if (!(h->ae_algo->ops->set_tx_hwts_info &&
2131               h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2132                 return;
2133
2134         desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2135 }
2136
2137 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2138                                  struct sk_buff *skb)
2139 {
2140         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2141         unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2142         unsigned int size = skb_headlen(skb);
2143         dma_addr_t dma;
2144         int bd_num = 0;
2145         u32 cb_len;
2146         void *buf;
2147         int ret;
2148
2149         if (skb->len <= ring->tx_copybreak) {
2150                 size = skb->len;
2151                 type = DESC_TYPE_BOUNCE_ALL;
2152         }
2153
2154         /* hns3_can_use_tx_bounce() is called to ensure the below
2155          * function can always return the tx buffer.
2156          */
2157         buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2158
2159         ret = skb_copy_bits(skb, 0, buf, size);
2160         if (unlikely(ret < 0)) {
2161                 hns3_tx_spare_rollback(ring, cb_len);
2162                 hns3_ring_stats_update(ring, copy_bits_err);
2163                 return ret;
2164         }
2165
2166         desc_cb->priv = skb;
2167         desc_cb->length = cb_len;
2168         desc_cb->dma = dma;
2169         desc_cb->type = type;
2170
2171         bd_num += hns3_fill_desc(ring, dma, size);
2172
2173         if (type == DESC_TYPE_BOUNCE_HEAD) {
2174                 ret = hns3_fill_skb_to_desc(ring, skb,
2175                                             DESC_TYPE_BOUNCE_HEAD);
2176                 if (unlikely(ret < 0))
2177                         return ret;
2178
2179                 bd_num += ret;
2180         }
2181
2182         dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2183                                    DMA_TO_DEVICE);
2184
2185         hns3_ring_stats_update(ring, tx_bounce);
2186
2187         return bd_num;
2188 }
2189
2190 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2191                               struct sk_buff *skb)
2192 {
2193         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2194         u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2195         struct sg_table *sgt;
2196         int i, bd_num = 0;
2197         dma_addr_t dma;
2198         u32 cb_len;
2199         int nents;
2200
2201         if (skb_has_frag_list(skb))
2202                 nfrag = HNS3_MAX_TSO_BD_NUM;
2203
2204         /* hns3_can_use_tx_sgl() is called to ensure the below
2205          * function can always return the tx buffer.
2206          */
2207         sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2208                                   &dma, &cb_len);
2209
2210         /* scatterlist follows by the sg table */
2211         sgt->sgl = (struct scatterlist *)(sgt + 1);
2212         sg_init_table(sgt->sgl, nfrag);
2213         nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2214         if (unlikely(nents < 0)) {
2215                 hns3_tx_spare_rollback(ring, cb_len);
2216                 hns3_ring_stats_update(ring, skb2sgl_err);
2217                 return -ENOMEM;
2218         }
2219
2220         sgt->orig_nents = nents;
2221         sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2222                                 DMA_TO_DEVICE);
2223         if (unlikely(!sgt->nents)) {
2224                 hns3_tx_spare_rollback(ring, cb_len);
2225                 hns3_ring_stats_update(ring, map_sg_err);
2226                 return -ENOMEM;
2227         }
2228
2229         desc_cb->priv = skb;
2230         desc_cb->length = cb_len;
2231         desc_cb->dma = dma;
2232         desc_cb->type = DESC_TYPE_SGL_SKB;
2233
2234         for (i = 0; i < sgt->nents; i++)
2235                 bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2236                                          sg_dma_len(sgt->sgl + i));
2237         hns3_ring_stats_update(ring, tx_sgl);
2238
2239         return bd_num;
2240 }
2241
2242 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2243                                     struct sk_buff *skb)
2244 {
2245         u32 space;
2246
2247         if (!ring->tx_spare)
2248                 goto out;
2249
2250         space = hns3_tx_spare_space(ring);
2251
2252         if (hns3_can_use_tx_sgl(ring, skb, space))
2253                 return hns3_handle_tx_sgl(ring, skb);
2254
2255         if (hns3_can_use_tx_bounce(ring, skb, space))
2256                 return hns3_handle_tx_bounce(ring, skb);
2257
2258 out:
2259         return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2260 }
2261
2262 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring,
2263                                 struct sk_buff *skb,
2264                                 struct hns3_desc_cb *desc_cb,
2265                                 int next_to_use_head)
2266 {
2267         int ret;
2268
2269         ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2270                                  desc_cb);
2271         if (unlikely(ret < 0))
2272                 goto fill_err;
2273
2274         /* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2275          * zero, which is unlikely, and 'ret > 0' means how many tx desc
2276          * need to be notified to the hw.
2277          */
2278         ret = hns3_handle_desc_filling(ring, skb);
2279         if (likely(ret > 0))
2280                 return ret;
2281
2282 fill_err:
2283         hns3_clear_desc(ring, next_to_use_head);
2284         return ret;
2285 }
2286
2287 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2288 {
2289         struct hns3_nic_priv *priv = netdev_priv(netdev);
2290         struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2291         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2292         struct netdev_queue *dev_queue;
2293         int pre_ntu, ret;
2294         bool doorbell;
2295
2296         /* Hardware can only handle short frames above 32 bytes */
2297         if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2298                 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2299
2300                 hns3_ring_stats_update(ring, sw_err_cnt);
2301
2302                 return NETDEV_TX_OK;
2303         }
2304
2305         /* Prefetch the data used later */
2306         prefetch(skb->data);
2307
2308         ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2309         if (unlikely(ret <= 0)) {
2310                 if (ret == -EBUSY) {
2311                         hns3_tx_doorbell(ring, 0, true);
2312                         return NETDEV_TX_BUSY;
2313                 }
2314
2315                 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2316                 goto out_err_tx_ok;
2317         }
2318
2319         ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use);
2320         if (unlikely(ret <= 0))
2321                 goto out_err_tx_ok;
2322
2323         pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2324                                         (ring->desc_num - 1);
2325
2326         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2327                 hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2328
2329         ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2330                                 cpu_to_le16(BIT(HNS3_TXD_FE_B));
2331         trace_hns3_tx_desc(ring, pre_ntu);
2332
2333         skb_tx_timestamp(skb);
2334
2335         /* Complete translate all packets */
2336         dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2337         doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2338                                           netdev_xmit_more());
2339         hns3_tx_doorbell(ring, ret, doorbell);
2340
2341         return NETDEV_TX_OK;
2342
2343 out_err_tx_ok:
2344         dev_kfree_skb_any(skb);
2345         hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2346         return NETDEV_TX_OK;
2347 }
2348
2349 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2350 {
2351         char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN];
2352         char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN];
2353         struct hnae3_handle *h = hns3_get_handle(netdev);
2354         struct sockaddr *mac_addr = p;
2355         int ret;
2356
2357         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2358                 return -EADDRNOTAVAIL;
2359
2360         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2361                 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2362                 netdev_info(netdev, "already using mac address %s\n",
2363                             format_mac_addr_sa);
2364                 return 0;
2365         }
2366
2367         /* For VF device, if there is a perm_addr, then the user will not
2368          * be allowed to change the address.
2369          */
2370         if (!hns3_is_phys_func(h->pdev) &&
2371             !is_zero_ether_addr(netdev->perm_addr)) {
2372                 hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr);
2373                 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2374                 netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n",
2375                            format_mac_addr_perm, format_mac_addr_sa);
2376                 return -EPERM;
2377         }
2378
2379         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2380         if (ret) {
2381                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2382                 return ret;
2383         }
2384
2385         eth_hw_addr_set(netdev, mac_addr->sa_data);
2386
2387         return 0;
2388 }
2389
2390 static int hns3_nic_do_ioctl(struct net_device *netdev,
2391                              struct ifreq *ifr, int cmd)
2392 {
2393         struct hnae3_handle *h = hns3_get_handle(netdev);
2394
2395         if (!netif_running(netdev))
2396                 return -EINVAL;
2397
2398         if (!h->ae_algo->ops->do_ioctl)
2399                 return -EOPNOTSUPP;
2400
2401         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2402 }
2403
2404 static int hns3_nic_set_features(struct net_device *netdev,
2405                                  netdev_features_t features)
2406 {
2407         netdev_features_t changed = netdev->features ^ features;
2408         struct hns3_nic_priv *priv = netdev_priv(netdev);
2409         struct hnae3_handle *h = priv->ae_handle;
2410         bool enable;
2411         int ret;
2412
2413         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2414                 enable = !!(features & NETIF_F_GRO_HW);
2415                 ret = h->ae_algo->ops->set_gro_en(h, enable);
2416                 if (ret)
2417                         return ret;
2418         }
2419
2420         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2421             h->ae_algo->ops->enable_hw_strip_rxvtag) {
2422                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2423                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2424                 if (ret)
2425                         return ret;
2426         }
2427
2428         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2429                 enable = !!(features & NETIF_F_NTUPLE);
2430                 h->ae_algo->ops->enable_fd(h, enable);
2431         }
2432
2433         if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2434             h->ae_algo->ops->cls_flower_active(h)) {
2435                 netdev_err(netdev,
2436                            "there are offloaded TC filters active, cannot disable HW TC offload");
2437                 return -EINVAL;
2438         }
2439
2440         if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2441             h->ae_algo->ops->enable_vlan_filter) {
2442                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2443                 ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2444                 if (ret)
2445                         return ret;
2446         }
2447
2448         netdev->features = features;
2449         return 0;
2450 }
2451
2452 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2453                                              struct net_device *dev,
2454                                              netdev_features_t features)
2455 {
2456 #define HNS3_MAX_HDR_LEN        480U
2457 #define HNS3_MAX_L4_HDR_LEN     60U
2458
2459         size_t len;
2460
2461         if (skb->ip_summed != CHECKSUM_PARTIAL)
2462                 return features;
2463
2464         if (skb->encapsulation)
2465                 len = skb_inner_transport_header(skb) - skb->data;
2466         else
2467                 len = skb_transport_header(skb) - skb->data;
2468
2469         /* Assume L4 is 60 byte as TCP is the only protocol with a
2470          * a flexible value, and it's max len is 60 bytes.
2471          */
2472         len += HNS3_MAX_L4_HDR_LEN;
2473
2474         /* Hardware only supports checksum on the skb with a max header
2475          * len of 480 bytes.
2476          */
2477         if (len > HNS3_MAX_HDR_LEN)
2478                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2479
2480         return features;
2481 }
2482
2483 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats,
2484                              struct hns3_enet_ring *ring, bool is_tx)
2485 {
2486         unsigned int start;
2487
2488         do {
2489                 start = u64_stats_fetch_begin_irq(&ring->syncp);
2490                 if (is_tx) {
2491                         stats->tx_bytes += ring->stats.tx_bytes;
2492                         stats->tx_packets += ring->stats.tx_pkts;
2493                         stats->tx_dropped += ring->stats.sw_err_cnt;
2494                         stats->tx_dropped += ring->stats.tx_vlan_err;
2495                         stats->tx_dropped += ring->stats.tx_l4_proto_err;
2496                         stats->tx_dropped += ring->stats.tx_l2l3l4_err;
2497                         stats->tx_dropped += ring->stats.tx_tso_err;
2498                         stats->tx_dropped += ring->stats.over_max_recursion;
2499                         stats->tx_dropped += ring->stats.hw_limitation;
2500                         stats->tx_dropped += ring->stats.copy_bits_err;
2501                         stats->tx_dropped += ring->stats.skb2sgl_err;
2502                         stats->tx_dropped += ring->stats.map_sg_err;
2503                         stats->tx_errors += ring->stats.sw_err_cnt;
2504                         stats->tx_errors += ring->stats.tx_vlan_err;
2505                         stats->tx_errors += ring->stats.tx_l4_proto_err;
2506                         stats->tx_errors += ring->stats.tx_l2l3l4_err;
2507                         stats->tx_errors += ring->stats.tx_tso_err;
2508                         stats->tx_errors += ring->stats.over_max_recursion;
2509                         stats->tx_errors += ring->stats.hw_limitation;
2510                         stats->tx_errors += ring->stats.copy_bits_err;
2511                         stats->tx_errors += ring->stats.skb2sgl_err;
2512                         stats->tx_errors += ring->stats.map_sg_err;
2513                 } else {
2514                         stats->rx_bytes += ring->stats.rx_bytes;
2515                         stats->rx_packets += ring->stats.rx_pkts;
2516                         stats->rx_dropped += ring->stats.l2_err;
2517                         stats->rx_errors += ring->stats.l2_err;
2518                         stats->rx_errors += ring->stats.l3l4_csum_err;
2519                         stats->rx_crc_errors += ring->stats.l2_err;
2520                         stats->multicast += ring->stats.rx_multicast;
2521                         stats->rx_length_errors += ring->stats.err_pkt_len;
2522                 }
2523         } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
2524 }
2525
2526 static void hns3_nic_get_stats64(struct net_device *netdev,
2527                                  struct rtnl_link_stats64 *stats)
2528 {
2529         struct hns3_nic_priv *priv = netdev_priv(netdev);
2530         int queue_num = priv->ae_handle->kinfo.num_tqps;
2531         struct hnae3_handle *handle = priv->ae_handle;
2532         struct rtnl_link_stats64 ring_total_stats;
2533         struct hns3_enet_ring *ring;
2534         unsigned int idx;
2535
2536         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2537                 return;
2538
2539         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
2540
2541         memset(&ring_total_stats, 0, sizeof(ring_total_stats));
2542         for (idx = 0; idx < queue_num; idx++) {
2543                 /* fetch the tx stats */
2544                 ring = &priv->ring[idx];
2545                 hns3_fetch_stats(&ring_total_stats, ring, true);
2546
2547                 /* fetch the rx stats */
2548                 ring = &priv->ring[idx + queue_num];
2549                 hns3_fetch_stats(&ring_total_stats, ring, false);
2550         }
2551
2552         stats->tx_bytes = ring_total_stats.tx_bytes;
2553         stats->tx_packets = ring_total_stats.tx_packets;
2554         stats->rx_bytes = ring_total_stats.rx_bytes;
2555         stats->rx_packets = ring_total_stats.rx_packets;
2556
2557         stats->rx_errors = ring_total_stats.rx_errors;
2558         stats->multicast = ring_total_stats.multicast;
2559         stats->rx_length_errors = ring_total_stats.rx_length_errors;
2560         stats->rx_crc_errors = ring_total_stats.rx_crc_errors;
2561         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2562
2563         stats->tx_errors = ring_total_stats.tx_errors;
2564         stats->rx_dropped = ring_total_stats.rx_dropped;
2565         stats->tx_dropped = ring_total_stats.tx_dropped;
2566         stats->collisions = netdev->stats.collisions;
2567         stats->rx_over_errors = netdev->stats.rx_over_errors;
2568         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2569         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2570         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2571         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2572         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2573         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2574         stats->tx_window_errors = netdev->stats.tx_window_errors;
2575         stats->rx_compressed = netdev->stats.rx_compressed;
2576         stats->tx_compressed = netdev->stats.tx_compressed;
2577 }
2578
2579 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2580 {
2581         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2582         struct hnae3_knic_private_info *kinfo;
2583         u8 tc = mqprio_qopt->qopt.num_tc;
2584         u16 mode = mqprio_qopt->mode;
2585         u8 hw = mqprio_qopt->qopt.hw;
2586         struct hnae3_handle *h;
2587
2588         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2589                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2590                 return -EOPNOTSUPP;
2591
2592         if (tc > HNAE3_MAX_TC)
2593                 return -EINVAL;
2594
2595         if (!netdev)
2596                 return -EINVAL;
2597
2598         h = hns3_get_handle(netdev);
2599         kinfo = &h->kinfo;
2600
2601         netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2602
2603         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2604                 kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2605 }
2606
2607 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2608                                     struct flow_cls_offload *flow)
2609 {
2610         int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2611         struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2612
2613         switch (flow->command) {
2614         case FLOW_CLS_REPLACE:
2615                 if (h->ae_algo->ops->add_cls_flower)
2616                         return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2617                 break;
2618         case FLOW_CLS_DESTROY:
2619                 if (h->ae_algo->ops->del_cls_flower)
2620                         return h->ae_algo->ops->del_cls_flower(h, flow);
2621                 break;
2622         default:
2623                 break;
2624         }
2625
2626         return -EOPNOTSUPP;
2627 }
2628
2629 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2630                                   void *cb_priv)
2631 {
2632         struct hns3_nic_priv *priv = cb_priv;
2633
2634         if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2635                 return -EOPNOTSUPP;
2636
2637         switch (type) {
2638         case TC_SETUP_CLSFLOWER:
2639                 return hns3_setup_tc_cls_flower(priv, type_data);
2640         default:
2641                 return -EOPNOTSUPP;
2642         }
2643 }
2644
2645 static LIST_HEAD(hns3_block_cb_list);
2646
2647 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2648                              void *type_data)
2649 {
2650         struct hns3_nic_priv *priv = netdev_priv(dev);
2651         int ret;
2652
2653         switch (type) {
2654         case TC_SETUP_QDISC_MQPRIO:
2655                 ret = hns3_setup_tc(dev, type_data);
2656                 break;
2657         case TC_SETUP_BLOCK:
2658                 ret = flow_block_cb_setup_simple(type_data,
2659                                                  &hns3_block_cb_list,
2660                                                  hns3_setup_tc_block_cb,
2661                                                  priv, priv, true);
2662                 break;
2663         default:
2664                 return -EOPNOTSUPP;
2665         }
2666
2667         return ret;
2668 }
2669
2670 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2671                                 __be16 proto, u16 vid)
2672 {
2673         struct hnae3_handle *h = hns3_get_handle(netdev);
2674         int ret = -EIO;
2675
2676         if (h->ae_algo->ops->set_vlan_filter)
2677                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2678
2679         return ret;
2680 }
2681
2682 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2683                                  __be16 proto, u16 vid)
2684 {
2685         struct hnae3_handle *h = hns3_get_handle(netdev);
2686         int ret = -EIO;
2687
2688         if (h->ae_algo->ops->set_vlan_filter)
2689                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2690
2691         return ret;
2692 }
2693
2694 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2695                                 u8 qos, __be16 vlan_proto)
2696 {
2697         struct hnae3_handle *h = hns3_get_handle(netdev);
2698         int ret = -EIO;
2699
2700         netif_dbg(h, drv, netdev,
2701                   "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2702                   vf, vlan, qos, ntohs(vlan_proto));
2703
2704         if (h->ae_algo->ops->set_vf_vlan_filter)
2705                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2706                                                           qos, vlan_proto);
2707
2708         return ret;
2709 }
2710
2711 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2712 {
2713         struct hnae3_handle *handle = hns3_get_handle(netdev);
2714
2715         if (hns3_nic_resetting(netdev))
2716                 return -EBUSY;
2717
2718         if (!handle->ae_algo->ops->set_vf_spoofchk)
2719                 return -EOPNOTSUPP;
2720
2721         return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2722 }
2723
2724 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2725 {
2726         struct hnae3_handle *handle = hns3_get_handle(netdev);
2727
2728         if (!handle->ae_algo->ops->set_vf_trust)
2729                 return -EOPNOTSUPP;
2730
2731         return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2732 }
2733
2734 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2735 {
2736         struct hnae3_handle *h = hns3_get_handle(netdev);
2737         int ret;
2738
2739         if (hns3_nic_resetting(netdev))
2740                 return -EBUSY;
2741
2742         if (!h->ae_algo->ops->set_mtu)
2743                 return -EOPNOTSUPP;
2744
2745         netif_dbg(h, drv, netdev,
2746                   "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2747
2748         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2749         if (ret)
2750                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
2751                            ret);
2752         else
2753                 netdev->mtu = new_mtu;
2754
2755         return ret;
2756 }
2757
2758 static int hns3_get_timeout_queue(struct net_device *ndev)
2759 {
2760         int i;
2761
2762         /* Find the stopped queue the same way the stack does */
2763         for (i = 0; i < ndev->num_tx_queues; i++) {
2764                 struct netdev_queue *q;
2765                 unsigned long trans_start;
2766
2767                 q = netdev_get_tx_queue(ndev, i);
2768                 trans_start = READ_ONCE(q->trans_start);
2769                 if (netif_xmit_stopped(q) &&
2770                     time_after(jiffies,
2771                                (trans_start + ndev->watchdog_timeo))) {
2772 #ifdef CONFIG_BQL
2773                         struct dql *dql = &q->dql;
2774
2775                         netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n",
2776                                     dql->last_obj_cnt, dql->num_queued,
2777                                     dql->adj_limit, dql->num_completed);
2778 #endif
2779                         netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2780                                     q->state,
2781                                     jiffies_to_msecs(jiffies - trans_start));
2782                         break;
2783                 }
2784         }
2785
2786         return i;
2787 }
2788
2789 static void hns3_dump_queue_stats(struct net_device *ndev,
2790                                   struct hns3_enet_ring *tx_ring,
2791                                   int timeout_queue)
2792 {
2793         struct napi_struct *napi = &tx_ring->tqp_vector->napi;
2794         struct hns3_nic_priv *priv = netdev_priv(ndev);
2795
2796         netdev_info(ndev,
2797                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2798                     priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2799                     tx_ring->next_to_clean, napi->state);
2800
2801         netdev_info(ndev,
2802                     "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2803                     tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2804                     tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2805
2806         netdev_info(ndev,
2807                     "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2808                     tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2809                     tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2810
2811         netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n",
2812                     tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell);
2813 }
2814
2815 static void hns3_dump_queue_reg(struct net_device *ndev,
2816                                 struct hns3_enet_ring *tx_ring)
2817 {
2818         netdev_info(ndev,
2819                     "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2820                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG),
2821                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG),
2822                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG),
2823                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG),
2824                     readl(tx_ring->tqp_vector->mask_addr));
2825         netdev_info(ndev,
2826                     "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2827                     hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG),
2828                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG),
2829                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG),
2830                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG),
2831                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG),
2832                     hns3_tqp_read_reg(tx_ring,
2833                                       HNS3_RING_TX_RING_EBD_OFFSET_REG));
2834 }
2835
2836 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2837 {
2838         struct hns3_nic_priv *priv = netdev_priv(ndev);
2839         struct hnae3_handle *h = hns3_get_handle(ndev);
2840         struct hns3_enet_ring *tx_ring;
2841         int timeout_queue;
2842
2843         timeout_queue = hns3_get_timeout_queue(ndev);
2844         if (timeout_queue >= ndev->num_tx_queues) {
2845                 netdev_info(ndev,
2846                             "no netdev TX timeout queue found, timeout count: %llu\n",
2847                             priv->tx_timeout_count);
2848                 return false;
2849         }
2850
2851         priv->tx_timeout_count++;
2852
2853         tx_ring = &priv->ring[timeout_queue];
2854         hns3_dump_queue_stats(ndev, tx_ring, timeout_queue);
2855
2856         /* When mac received many pause frames continuous, it's unable to send
2857          * packets, which may cause tx timeout
2858          */
2859         if (h->ae_algo->ops->get_mac_stats) {
2860                 struct hns3_mac_stats mac_stats;
2861
2862                 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2863                 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2864                             mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2865         }
2866
2867         hns3_dump_queue_reg(ndev, tx_ring);
2868
2869         return true;
2870 }
2871
2872 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2873 {
2874         struct hns3_nic_priv *priv = netdev_priv(ndev);
2875         struct hnae3_handle *h = priv->ae_handle;
2876
2877         if (!hns3_get_tx_timeo_queue_info(ndev))
2878                 return;
2879
2880         /* request the reset, and let the hclge to determine
2881          * which reset level should be done
2882          */
2883         if (h->ae_algo->ops->reset_event)
2884                 h->ae_algo->ops->reset_event(h->pdev, h);
2885 }
2886
2887 #ifdef CONFIG_RFS_ACCEL
2888 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2889                               u16 rxq_index, u32 flow_id)
2890 {
2891         struct hnae3_handle *h = hns3_get_handle(dev);
2892         struct flow_keys fkeys;
2893
2894         if (!h->ae_algo->ops->add_arfs_entry)
2895                 return -EOPNOTSUPP;
2896
2897         if (skb->encapsulation)
2898                 return -EPROTONOSUPPORT;
2899
2900         if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2901                 return -EPROTONOSUPPORT;
2902
2903         if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2904              fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2905             (fkeys.basic.ip_proto != IPPROTO_TCP &&
2906              fkeys.basic.ip_proto != IPPROTO_UDP))
2907                 return -EPROTONOSUPPORT;
2908
2909         return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2910 }
2911 #endif
2912
2913 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2914                                   struct ifla_vf_info *ivf)
2915 {
2916         struct hnae3_handle *h = hns3_get_handle(ndev);
2917
2918         if (!h->ae_algo->ops->get_vf_config)
2919                 return -EOPNOTSUPP;
2920
2921         return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2922 }
2923
2924 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2925                                       int link_state)
2926 {
2927         struct hnae3_handle *h = hns3_get_handle(ndev);
2928
2929         if (!h->ae_algo->ops->set_vf_link_state)
2930                 return -EOPNOTSUPP;
2931
2932         return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2933 }
2934
2935 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2936                                 int min_tx_rate, int max_tx_rate)
2937 {
2938         struct hnae3_handle *h = hns3_get_handle(ndev);
2939
2940         if (!h->ae_algo->ops->set_vf_rate)
2941                 return -EOPNOTSUPP;
2942
2943         return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2944                                             false);
2945 }
2946
2947 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2948 {
2949         struct hnae3_handle *h = hns3_get_handle(netdev);
2950         char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
2951
2952         if (!h->ae_algo->ops->set_vf_mac)
2953                 return -EOPNOTSUPP;
2954
2955         if (is_multicast_ether_addr(mac)) {
2956                 hnae3_format_mac_addr(format_mac_addr, mac);
2957                 netdev_err(netdev,
2958                            "Invalid MAC:%s specified. Could not set MAC\n",
2959                            format_mac_addr);
2960                 return -EINVAL;
2961         }
2962
2963         return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2964 }
2965
2966 static const struct net_device_ops hns3_nic_netdev_ops = {
2967         .ndo_open               = hns3_nic_net_open,
2968         .ndo_stop               = hns3_nic_net_stop,
2969         .ndo_start_xmit         = hns3_nic_net_xmit,
2970         .ndo_tx_timeout         = hns3_nic_net_timeout,
2971         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
2972         .ndo_eth_ioctl          = hns3_nic_do_ioctl,
2973         .ndo_change_mtu         = hns3_nic_change_mtu,
2974         .ndo_set_features       = hns3_nic_set_features,
2975         .ndo_features_check     = hns3_features_check,
2976         .ndo_get_stats64        = hns3_nic_get_stats64,
2977         .ndo_setup_tc           = hns3_nic_setup_tc,
2978         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
2979         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
2980         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
2981         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
2982         .ndo_set_vf_spoofchk    = hns3_set_vf_spoofchk,
2983         .ndo_set_vf_trust       = hns3_set_vf_trust,
2984 #ifdef CONFIG_RFS_ACCEL
2985         .ndo_rx_flow_steer      = hns3_rx_flow_steer,
2986 #endif
2987         .ndo_get_vf_config      = hns3_nic_get_vf_config,
2988         .ndo_set_vf_link_state  = hns3_nic_set_vf_link_state,
2989         .ndo_set_vf_rate        = hns3_nic_set_vf_rate,
2990         .ndo_set_vf_mac         = hns3_nic_set_vf_mac,
2991 };
2992
2993 bool hns3_is_phys_func(struct pci_dev *pdev)
2994 {
2995         u32 dev_id = pdev->device;
2996
2997         switch (dev_id) {
2998         case HNAE3_DEV_ID_GE:
2999         case HNAE3_DEV_ID_25GE:
3000         case HNAE3_DEV_ID_25GE_RDMA:
3001         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
3002         case HNAE3_DEV_ID_50GE_RDMA:
3003         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
3004         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
3005         case HNAE3_DEV_ID_200G_RDMA:
3006                 return true;
3007         case HNAE3_DEV_ID_VF:
3008         case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
3009                 return false;
3010         default:
3011                 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
3012                          dev_id);
3013         }
3014
3015         return false;
3016 }
3017
3018 static void hns3_disable_sriov(struct pci_dev *pdev)
3019 {
3020         /* If our VFs are assigned we cannot shut down SR-IOV
3021          * without causing issues, so just leave the hardware
3022          * available but disabled
3023          */
3024         if (pci_vfs_assigned(pdev)) {
3025                 dev_warn(&pdev->dev,
3026                          "disabling driver while VFs are assigned\n");
3027                 return;
3028         }
3029
3030         pci_disable_sriov(pdev);
3031 }
3032
3033 /* hns3_probe - Device initialization routine
3034  * @pdev: PCI device information struct
3035  * @ent: entry in hns3_pci_tbl
3036  *
3037  * hns3_probe initializes a PF identified by a pci_dev structure.
3038  * The OS initialization, configuring of the PF private structure,
3039  * and a hardware reset occur.
3040  *
3041  * Returns 0 on success, negative on failure
3042  */
3043 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3044 {
3045         struct hnae3_ae_dev *ae_dev;
3046         int ret;
3047
3048         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
3049         if (!ae_dev)
3050                 return -ENOMEM;
3051
3052         ae_dev->pdev = pdev;
3053         ae_dev->flag = ent->driver_data;
3054         pci_set_drvdata(pdev, ae_dev);
3055
3056         ret = hnae3_register_ae_dev(ae_dev);
3057         if (ret)
3058                 pci_set_drvdata(pdev, NULL);
3059
3060         return ret;
3061 }
3062
3063 /**
3064  * hns3_clean_vf_config
3065  * @pdev: pointer to a pci_dev structure
3066  * @num_vfs: number of VFs allocated
3067  *
3068  * Clean residual vf config after disable sriov
3069  **/
3070 static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs)
3071 {
3072         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3073
3074         if (ae_dev->ops->clean_vf_config)
3075                 ae_dev->ops->clean_vf_config(ae_dev, num_vfs);
3076 }
3077
3078 /* hns3_remove - Device removal routine
3079  * @pdev: PCI device information struct
3080  */
3081 static void hns3_remove(struct pci_dev *pdev)
3082 {
3083         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3084
3085         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
3086                 hns3_disable_sriov(pdev);
3087
3088         hnae3_unregister_ae_dev(ae_dev);
3089         pci_set_drvdata(pdev, NULL);
3090 }
3091
3092 /**
3093  * hns3_pci_sriov_configure
3094  * @pdev: pointer to a pci_dev structure
3095  * @num_vfs: number of VFs to allocate
3096  *
3097  * Enable or change the number of VFs. Called when the user updates the number
3098  * of VFs in sysfs.
3099  **/
3100 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
3101 {
3102         int ret;
3103
3104         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
3105                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
3106                 return -EINVAL;
3107         }
3108
3109         if (num_vfs) {
3110                 ret = pci_enable_sriov(pdev, num_vfs);
3111                 if (ret)
3112                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
3113                 else
3114                         return num_vfs;
3115         } else if (!pci_vfs_assigned(pdev)) {
3116                 int num_vfs_pre = pci_num_vf(pdev);
3117
3118                 pci_disable_sriov(pdev);
3119                 hns3_clean_vf_config(pdev, num_vfs_pre);
3120         } else {
3121                 dev_warn(&pdev->dev,
3122                          "Unable to free VFs because some are assigned to VMs.\n");
3123         }
3124
3125         return 0;
3126 }
3127
3128 static void hns3_shutdown(struct pci_dev *pdev)
3129 {
3130         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3131
3132         hnae3_unregister_ae_dev(ae_dev);
3133         pci_set_drvdata(pdev, NULL);
3134
3135         if (system_state == SYSTEM_POWER_OFF)
3136                 pci_set_power_state(pdev, PCI_D3hot);
3137 }
3138
3139 static int __maybe_unused hns3_suspend(struct device *dev)
3140 {
3141         struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3142
3143         if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3144                 dev_info(dev, "Begin to suspend.\n");
3145                 if (ae_dev->ops && ae_dev->ops->reset_prepare)
3146                         ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3147         }
3148
3149         return 0;
3150 }
3151
3152 static int __maybe_unused hns3_resume(struct device *dev)
3153 {
3154         struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3155
3156         if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3157                 dev_info(dev, "Begin to resume.\n");
3158                 if (ae_dev->ops && ae_dev->ops->reset_done)
3159                         ae_dev->ops->reset_done(ae_dev);
3160         }
3161
3162         return 0;
3163 }
3164
3165 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3166                                             pci_channel_state_t state)
3167 {
3168         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3169         pci_ers_result_t ret;
3170
3171         dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3172
3173         if (state == pci_channel_io_perm_failure)
3174                 return PCI_ERS_RESULT_DISCONNECT;
3175
3176         if (!ae_dev || !ae_dev->ops) {
3177                 dev_err(&pdev->dev,
3178                         "Can't recover - error happened before device initialized\n");
3179                 return PCI_ERS_RESULT_NONE;
3180         }
3181
3182         if (ae_dev->ops->handle_hw_ras_error)
3183                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3184         else
3185                 return PCI_ERS_RESULT_NONE;
3186
3187         return ret;
3188 }
3189
3190 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3191 {
3192         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3193         const struct hnae3_ae_ops *ops;
3194         enum hnae3_reset_type reset_type;
3195         struct device *dev = &pdev->dev;
3196
3197         if (!ae_dev || !ae_dev->ops)
3198                 return PCI_ERS_RESULT_NONE;
3199
3200         ops = ae_dev->ops;
3201         /* request the reset */
3202         if (ops->reset_event && ops->get_reset_level &&
3203             ops->set_default_reset_request) {
3204                 if (ae_dev->hw_err_reset_req) {
3205                         reset_type = ops->get_reset_level(ae_dev,
3206                                                 &ae_dev->hw_err_reset_req);
3207                         ops->set_default_reset_request(ae_dev, reset_type);
3208                         dev_info(dev, "requesting reset due to PCI error\n");
3209                         ops->reset_event(pdev, NULL);
3210                 }
3211
3212                 return PCI_ERS_RESULT_RECOVERED;
3213         }
3214
3215         return PCI_ERS_RESULT_DISCONNECT;
3216 }
3217
3218 static void hns3_reset_prepare(struct pci_dev *pdev)
3219 {
3220         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3221
3222         dev_info(&pdev->dev, "FLR prepare\n");
3223         if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3224                 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3225 }
3226
3227 static void hns3_reset_done(struct pci_dev *pdev)
3228 {
3229         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3230
3231         dev_info(&pdev->dev, "FLR done\n");
3232         if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3233                 ae_dev->ops->reset_done(ae_dev);
3234 }
3235
3236 static const struct pci_error_handlers hns3_err_handler = {
3237         .error_detected = hns3_error_detected,
3238         .slot_reset     = hns3_slot_reset,
3239         .reset_prepare  = hns3_reset_prepare,
3240         .reset_done     = hns3_reset_done,
3241 };
3242
3243 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3244
3245 static struct pci_driver hns3_driver = {
3246         .name     = hns3_driver_name,
3247         .id_table = hns3_pci_tbl,
3248         .probe    = hns3_probe,
3249         .remove   = hns3_remove,
3250         .shutdown = hns3_shutdown,
3251         .driver.pm  = &hns3_pm_ops,
3252         .sriov_configure = hns3_pci_sriov_configure,
3253         .err_handler    = &hns3_err_handler,
3254 };
3255
3256 /* set default feature to hns3 */
3257 static void hns3_set_default_feature(struct net_device *netdev)
3258 {
3259         struct hnae3_handle *h = hns3_get_handle(netdev);
3260         struct pci_dev *pdev = h->pdev;
3261         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3262
3263         netdev->priv_flags |= IFF_UNICAST_FLT;
3264
3265         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3266
3267         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3268                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3269                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3270                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3271                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3272                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3273
3274         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3275                 netdev->features |= NETIF_F_GRO_HW;
3276
3277                 if (!(h->flags & HNAE3_SUPPORT_VF))
3278                         netdev->features |= NETIF_F_NTUPLE;
3279         }
3280
3281         if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3282                 netdev->features |= NETIF_F_GSO_UDP_L4;
3283
3284         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3285                 netdev->features |= NETIF_F_HW_CSUM;
3286         else
3287                 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3288
3289         if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3290                 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3291
3292         if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3293                 netdev->features |= NETIF_F_HW_TC;
3294
3295         netdev->hw_features |= netdev->features;
3296         if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3297                 netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3298
3299         netdev->vlan_features |= netdev->features &
3300                 ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3301                   NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3302                   NETIF_F_HW_TC);
3303
3304         netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3305 }
3306
3307 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3308                              struct hns3_desc_cb *cb)
3309 {
3310         unsigned int order = hns3_page_order(ring);
3311         struct page *p;
3312
3313         if (ring->page_pool) {
3314                 p = page_pool_dev_alloc_frag(ring->page_pool,
3315                                              &cb->page_offset,
3316                                              hns3_buf_size(ring));
3317                 if (unlikely(!p))
3318                         return -ENOMEM;
3319
3320                 cb->priv = p;
3321                 cb->buf = page_address(p);
3322                 cb->dma = page_pool_get_dma_addr(p);
3323                 cb->type = DESC_TYPE_PP_FRAG;
3324                 cb->reuse_flag = 0;
3325                 return 0;
3326         }
3327
3328         p = dev_alloc_pages(order);
3329         if (!p)
3330                 return -ENOMEM;
3331
3332         cb->priv = p;
3333         cb->page_offset = 0;
3334         cb->reuse_flag = 0;
3335         cb->buf  = page_address(p);
3336         cb->length = hns3_page_size(ring);
3337         cb->type = DESC_TYPE_PAGE;
3338         page_ref_add(p, USHRT_MAX - 1);
3339         cb->pagecnt_bias = USHRT_MAX;
3340
3341         return 0;
3342 }
3343
3344 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3345                              struct hns3_desc_cb *cb, int budget)
3346 {
3347         if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3348                         DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3349                 napi_consume_skb(cb->priv, budget);
3350         else if (!HNAE3_IS_TX_RING(ring)) {
3351                 if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3352                         __page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3353                 else if (cb->type & DESC_TYPE_PP_FRAG)
3354                         page_pool_put_full_page(ring->page_pool, cb->priv,
3355                                                 false);
3356         }
3357         memset(cb, 0, sizeof(*cb));
3358 }
3359
3360 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3361 {
3362         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3363                                cb->length, ring_to_dma_dir(ring));
3364
3365         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3366                 return -EIO;
3367
3368         return 0;
3369 }
3370
3371 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3372                               struct hns3_desc_cb *cb)
3373 {
3374         if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3375                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3376                                  ring_to_dma_dir(ring));
3377         else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3378                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3379                                ring_to_dma_dir(ring));
3380         else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3381                              DESC_TYPE_SGL_SKB))
3382                 hns3_tx_spare_reclaim_cb(ring, cb);
3383 }
3384
3385 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3386 {
3387         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3388         ring->desc[i].addr = 0;
3389         ring->desc_cb[i].refill = 0;
3390 }
3391
3392 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3393                                     int budget)
3394 {
3395         struct hns3_desc_cb *cb = &ring->desc_cb[i];
3396
3397         if (!ring->desc_cb[i].dma)
3398                 return;
3399
3400         hns3_buffer_detach(ring, i);
3401         hns3_free_buffer(ring, cb, budget);
3402 }
3403
3404 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3405 {
3406         int i;
3407
3408         for (i = 0; i < ring->desc_num; i++)
3409                 hns3_free_buffer_detach(ring, i, 0);
3410 }
3411
3412 /* free desc along with its attached buffer */
3413 static void hns3_free_desc(struct hns3_enet_ring *ring)
3414 {
3415         int size = ring->desc_num * sizeof(ring->desc[0]);
3416
3417         hns3_free_buffers(ring);
3418
3419         if (ring->desc) {
3420                 dma_free_coherent(ring_to_dev(ring), size,
3421                                   ring->desc, ring->desc_dma_addr);
3422                 ring->desc = NULL;
3423         }
3424 }
3425
3426 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3427 {
3428         int size = ring->desc_num * sizeof(ring->desc[0]);
3429
3430         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3431                                         &ring->desc_dma_addr, GFP_KERNEL);
3432         if (!ring->desc)
3433                 return -ENOMEM;
3434
3435         return 0;
3436 }
3437
3438 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3439                                    struct hns3_desc_cb *cb)
3440 {
3441         int ret;
3442
3443         ret = hns3_alloc_buffer(ring, cb);
3444         if (ret || ring->page_pool)
3445                 goto out;
3446
3447         ret = hns3_map_buffer(ring, cb);
3448         if (ret)
3449                 goto out_with_buf;
3450
3451         return 0;
3452
3453 out_with_buf:
3454         hns3_free_buffer(ring, cb, 0);
3455 out:
3456         return ret;
3457 }
3458
3459 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3460 {
3461         int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3462
3463         if (ret)
3464                 return ret;
3465
3466         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3467                                          ring->desc_cb[i].page_offset);
3468         ring->desc_cb[i].refill = 1;
3469
3470         return 0;
3471 }
3472
3473 /* Allocate memory for raw pkg, and map with dma */
3474 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3475 {
3476         int i, j, ret;
3477
3478         for (i = 0; i < ring->desc_num; i++) {
3479                 ret = hns3_alloc_and_attach_buffer(ring, i);
3480                 if (ret)
3481                         goto out_buffer_fail;
3482         }
3483
3484         return 0;
3485
3486 out_buffer_fail:
3487         for (j = i - 1; j >= 0; j--)
3488                 hns3_free_buffer_detach(ring, j, 0);
3489         return ret;
3490 }
3491
3492 /* detach a in-used buffer and replace with a reserved one */
3493 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3494                                 struct hns3_desc_cb *res_cb)
3495 {
3496         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3497         ring->desc_cb[i] = *res_cb;
3498         ring->desc_cb[i].refill = 1;
3499         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3500                                          ring->desc_cb[i].page_offset);
3501         ring->desc[i].rx.bd_base_info = 0;
3502 }
3503
3504 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3505 {
3506         ring->desc_cb[i].reuse_flag = 0;
3507         ring->desc_cb[i].refill = 1;
3508         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3509                                          ring->desc_cb[i].page_offset);
3510         ring->desc[i].rx.bd_base_info = 0;
3511
3512         dma_sync_single_for_device(ring_to_dev(ring),
3513                         ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3514                         hns3_buf_size(ring),
3515                         DMA_FROM_DEVICE);
3516 }
3517
3518 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3519                                   int *bytes, int *pkts, int budget)
3520 {
3521         /* pair with ring->last_to_use update in hns3_tx_doorbell(),
3522          * smp_store_release() is not used in hns3_tx_doorbell() because
3523          * the doorbell operation already have the needed barrier operation.
3524          */
3525         int ltu = smp_load_acquire(&ring->last_to_use);
3526         int ntc = ring->next_to_clean;
3527         struct hns3_desc_cb *desc_cb;
3528         bool reclaimed = false;
3529         struct hns3_desc *desc;
3530
3531         while (ltu != ntc) {
3532                 desc = &ring->desc[ntc];
3533
3534                 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3535                                 BIT(HNS3_TXD_VLD_B))
3536                         break;
3537
3538                 desc_cb = &ring->desc_cb[ntc];
3539
3540                 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3541                                      DESC_TYPE_BOUNCE_HEAD |
3542                                      DESC_TYPE_SGL_SKB)) {
3543                         (*pkts)++;
3544                         (*bytes) += desc_cb->send_bytes;
3545                 }
3546
3547                 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3548                 hns3_free_buffer_detach(ring, ntc, budget);
3549
3550                 if (++ntc == ring->desc_num)
3551                         ntc = 0;
3552
3553                 /* Issue prefetch for next Tx descriptor */
3554                 prefetch(&ring->desc_cb[ntc]);
3555                 reclaimed = true;
3556         }
3557
3558         if (unlikely(!reclaimed))
3559                 return false;
3560
3561         /* This smp_store_release() pairs with smp_load_acquire() in
3562          * ring_space called by hns3_nic_net_xmit.
3563          */
3564         smp_store_release(&ring->next_to_clean, ntc);
3565
3566         hns3_tx_spare_update(ring);
3567
3568         return true;
3569 }
3570
3571 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3572 {
3573         struct net_device *netdev = ring_to_netdev(ring);
3574         struct hns3_nic_priv *priv = netdev_priv(netdev);
3575         struct netdev_queue *dev_queue;
3576         int bytes, pkts;
3577
3578         bytes = 0;
3579         pkts = 0;
3580
3581         if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3582                 return;
3583
3584         ring->tqp_vector->tx_group.total_bytes += bytes;
3585         ring->tqp_vector->tx_group.total_packets += pkts;
3586
3587         u64_stats_update_begin(&ring->syncp);
3588         ring->stats.tx_bytes += bytes;
3589         ring->stats.tx_pkts += pkts;
3590         u64_stats_update_end(&ring->syncp);
3591
3592         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3593         netdev_tx_completed_queue(dev_queue, pkts, bytes);
3594
3595         if (unlikely(netif_carrier_ok(netdev) &&
3596                      ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3597                 /* Make sure that anybody stopping the queue after this
3598                  * sees the new next_to_clean.
3599                  */
3600                 smp_mb();
3601                 if (netif_tx_queue_stopped(dev_queue) &&
3602                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3603                         netif_tx_wake_queue(dev_queue);
3604                         ring->stats.restart_queue++;
3605                 }
3606         }
3607 }
3608
3609 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3610 {
3611         int ntc = ring->next_to_clean;
3612         int ntu = ring->next_to_use;
3613
3614         if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
3615                 return ring->desc_num;
3616
3617         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3618 }
3619
3620 /* Return true if there is any allocation failure */
3621 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3622                                       int cleand_count)
3623 {
3624         struct hns3_desc_cb *desc_cb;
3625         struct hns3_desc_cb res_cbs;
3626         int i, ret;
3627
3628         for (i = 0; i < cleand_count; i++) {
3629                 desc_cb = &ring->desc_cb[ring->next_to_use];
3630                 if (desc_cb->reuse_flag) {
3631                         hns3_ring_stats_update(ring, reuse_pg_cnt);
3632
3633                         hns3_reuse_buffer(ring, ring->next_to_use);
3634                 } else {
3635                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3636                         if (ret) {
3637                                 hns3_ring_stats_update(ring, sw_err_cnt);
3638
3639                                 hns3_rl_err(ring_to_netdev(ring),
3640                                             "alloc rx buffer failed: %d\n",
3641                                             ret);
3642
3643                                 writel(i, ring->tqp->io_base +
3644                                        HNS3_RING_RX_RING_HEAD_REG);
3645                                 return true;
3646                         }
3647                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3648
3649                         hns3_ring_stats_update(ring, non_reuse_pg);
3650                 }
3651
3652                 ring_ptr_move_fw(ring, next_to_use);
3653         }
3654
3655         writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3656         return false;
3657 }
3658
3659 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3660 {
3661         return page_count(cb->priv) == cb->pagecnt_bias;
3662 }
3663
3664 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i,
3665                                     struct hns3_enet_ring *ring,
3666                                     int pull_len,
3667                                     struct hns3_desc_cb *desc_cb)
3668 {
3669         struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3670         u32 frag_offset = desc_cb->page_offset + pull_len;
3671         int size = le16_to_cpu(desc->rx.size);
3672         u32 frag_size = size - pull_len;
3673         void *frag = napi_alloc_frag(frag_size);
3674
3675         if (unlikely(!frag)) {
3676                 hns3_ring_stats_update(ring, frag_alloc_err);
3677
3678                 hns3_rl_err(ring_to_netdev(ring),
3679                             "failed to allocate rx frag\n");
3680                 return -ENOMEM;
3681         }
3682
3683         desc_cb->reuse_flag = 1;
3684         memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3685         skb_add_rx_frag(skb, i, virt_to_page(frag),
3686                         offset_in_page(frag), frag_size, frag_size);
3687
3688         hns3_ring_stats_update(ring, frag_alloc);
3689         return 0;
3690 }
3691
3692 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3693                                 struct hns3_enet_ring *ring, int pull_len,
3694                                 struct hns3_desc_cb *desc_cb)
3695 {
3696         struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3697         u32 frag_offset = desc_cb->page_offset + pull_len;
3698         int size = le16_to_cpu(desc->rx.size);
3699         u32 truesize = hns3_buf_size(ring);
3700         u32 frag_size = size - pull_len;
3701         int ret = 0;
3702         bool reused;
3703
3704         if (ring->page_pool) {
3705                 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3706                                 frag_size, truesize);
3707                 return;
3708         }
3709
3710         /* Avoid re-using remote or pfmem page */
3711         if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3712                 goto out;
3713
3714         reused = hns3_can_reuse_page(desc_cb);
3715
3716         /* Rx page can be reused when:
3717          * 1. Rx page is only owned by the driver when page_offset
3718          *    is zero, which means 0 @ truesize will be used by
3719          *    stack after skb_add_rx_frag() is called, and the rest
3720          *    of rx page can be reused by driver.
3721          * Or
3722          * 2. Rx page is only owned by the driver when page_offset
3723          *    is non-zero, which means page_offset @ truesize will
3724          *    be used by stack after skb_add_rx_frag() is called,
3725          *    and 0 @ truesize can be reused by driver.
3726          */
3727         if ((!desc_cb->page_offset && reused) ||
3728             ((desc_cb->page_offset + truesize + truesize) <=
3729              hns3_page_size(ring) && desc_cb->page_offset)) {
3730                 desc_cb->page_offset += truesize;
3731                 desc_cb->reuse_flag = 1;
3732         } else if (desc_cb->page_offset && reused) {
3733                 desc_cb->page_offset = 0;
3734                 desc_cb->reuse_flag = 1;
3735         } else if (frag_size <= ring->rx_copybreak) {
3736                 ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb);
3737                 if (ret)
3738                         goto out;
3739         }
3740
3741 out:
3742         desc_cb->pagecnt_bias--;
3743
3744         if (unlikely(!desc_cb->pagecnt_bias)) {
3745                 page_ref_add(desc_cb->priv, USHRT_MAX);
3746                 desc_cb->pagecnt_bias = USHRT_MAX;
3747         }
3748
3749         skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3750                         frag_size, truesize);
3751
3752         if (unlikely(!desc_cb->reuse_flag))
3753                 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3754 }
3755
3756 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3757 {
3758         __be16 type = skb->protocol;
3759         struct tcphdr *th;
3760         int depth = 0;
3761
3762         while (eth_type_vlan(type)) {
3763                 struct vlan_hdr *vh;
3764
3765                 if ((depth + VLAN_HLEN) > skb_headlen(skb))
3766                         return -EFAULT;
3767
3768                 vh = (struct vlan_hdr *)(skb->data + depth);
3769                 type = vh->h_vlan_encapsulated_proto;
3770                 depth += VLAN_HLEN;
3771         }
3772
3773         skb_set_network_header(skb, depth);
3774
3775         if (type == htons(ETH_P_IP)) {
3776                 const struct iphdr *iph = ip_hdr(skb);
3777
3778                 depth += sizeof(struct iphdr);
3779                 skb_set_transport_header(skb, depth);
3780                 th = tcp_hdr(skb);
3781                 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3782                                           iph->daddr, 0);
3783         } else if (type == htons(ETH_P_IPV6)) {
3784                 const struct ipv6hdr *iph = ipv6_hdr(skb);
3785
3786                 depth += sizeof(struct ipv6hdr);
3787                 skb_set_transport_header(skb, depth);
3788                 th = tcp_hdr(skb);
3789                 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3790                                           &iph->daddr, 0);
3791         } else {
3792                 hns3_rl_err(skb->dev,
3793                             "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3794                             be16_to_cpu(type), depth);
3795                 return -EFAULT;
3796         }
3797
3798         skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3799         if (th->cwr)
3800                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3801
3802         if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3803                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3804
3805         skb->csum_start = (unsigned char *)th - skb->head;
3806         skb->csum_offset = offsetof(struct tcphdr, check);
3807         skb->ip_summed = CHECKSUM_PARTIAL;
3808
3809         trace_hns3_gro(skb);
3810
3811         return 0;
3812 }
3813
3814 static bool hns3_checksum_complete(struct hns3_enet_ring *ring,
3815                                    struct sk_buff *skb, u32 ptype, u16 csum)
3816 {
3817         if (ptype == HNS3_INVALID_PTYPE ||
3818             hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3819                 return false;
3820
3821         hns3_ring_stats_update(ring, csum_complete);
3822         skb->ip_summed = CHECKSUM_COMPLETE;
3823         skb->csum = csum_unfold((__force __sum16)csum);
3824
3825         return true;
3826 }
3827
3828 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3829                                 u32 ol_info, u32 ptype)
3830 {
3831         int l3_type, l4_type;
3832         int ol4_type;
3833
3834         if (ptype != HNS3_INVALID_PTYPE) {
3835                 skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3836                 skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3837
3838                 return;
3839         }
3840
3841         ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3842                                    HNS3_RXD_OL4ID_S);
3843         switch (ol4_type) {
3844         case HNS3_OL4_TYPE_MAC_IN_UDP:
3845         case HNS3_OL4_TYPE_NVGRE:
3846                 skb->csum_level = 1;
3847                 fallthrough;
3848         case HNS3_OL4_TYPE_NO_TUN:
3849                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3850                                           HNS3_RXD_L3ID_S);
3851                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3852                                           HNS3_RXD_L4ID_S);
3853                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3854                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3855                      l3_type == HNS3_L3_TYPE_IPV6) &&
3856                     (l4_type == HNS3_L4_TYPE_UDP ||
3857                      l4_type == HNS3_L4_TYPE_TCP ||
3858                      l4_type == HNS3_L4_TYPE_SCTP))
3859                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3860                 break;
3861         default:
3862                 break;
3863         }
3864 }
3865
3866 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3867                              u32 l234info, u32 bd_base_info, u32 ol_info,
3868                              u16 csum)
3869 {
3870         struct net_device *netdev = ring_to_netdev(ring);
3871         struct hns3_nic_priv *priv = netdev_priv(netdev);
3872         u32 ptype = HNS3_INVALID_PTYPE;
3873
3874         skb->ip_summed = CHECKSUM_NONE;
3875
3876         skb_checksum_none_assert(skb);
3877
3878         if (!(netdev->features & NETIF_F_RXCSUM))
3879                 return;
3880
3881         if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3882                 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3883                                         HNS3_RXD_PTYPE_S);
3884
3885         if (hns3_checksum_complete(ring, skb, ptype, csum))
3886                 return;
3887
3888         /* check if hardware has done checksum */
3889         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3890                 return;
3891
3892         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3893                                  BIT(HNS3_RXD_OL3E_B) |
3894                                  BIT(HNS3_RXD_OL4E_B)))) {
3895                 hns3_ring_stats_update(ring, l3l4_csum_err);
3896
3897                 return;
3898         }
3899
3900         hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3901 }
3902
3903 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3904 {
3905         if (skb_has_frag_list(skb))
3906                 napi_gro_flush(&ring->tqp_vector->napi, false);
3907
3908         napi_gro_receive(&ring->tqp_vector->napi, skb);
3909 }
3910
3911 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3912                                 struct hns3_desc *desc, u32 l234info,
3913                                 u16 *vlan_tag)
3914 {
3915         struct hnae3_handle *handle = ring->tqp->handle;
3916         struct pci_dev *pdev = ring->tqp->handle->pdev;
3917         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3918
3919         if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3920                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3921                 if (!(*vlan_tag & VLAN_VID_MASK))
3922                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3923
3924                 return (*vlan_tag != 0);
3925         }
3926
3927 #define HNS3_STRP_OUTER_VLAN    0x1
3928 #define HNS3_STRP_INNER_VLAN    0x2
3929 #define HNS3_STRP_BOTH          0x3
3930
3931         /* Hardware always insert VLAN tag into RX descriptor when
3932          * remove the tag from packet, driver needs to determine
3933          * reporting which tag to stack.
3934          */
3935         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3936                                 HNS3_RXD_STRP_TAGP_S)) {
3937         case HNS3_STRP_OUTER_VLAN:
3938                 if (handle->port_base_vlan_state !=
3939                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3940                         return false;
3941
3942                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3943                 return true;
3944         case HNS3_STRP_INNER_VLAN:
3945                 if (handle->port_base_vlan_state !=
3946                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3947                         return false;
3948
3949                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3950                 return true;
3951         case HNS3_STRP_BOTH:
3952                 if (handle->port_base_vlan_state ==
3953                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3954                         *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3955                 else
3956                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3957
3958                 return true;
3959         default:
3960                 return false;
3961         }
3962 }
3963
3964 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3965 {
3966         ring->desc[ring->next_to_clean].rx.bd_base_info &=
3967                 cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3968         ring->desc_cb[ring->next_to_clean].refill = 0;
3969         ring->next_to_clean += 1;
3970
3971         if (unlikely(ring->next_to_clean == ring->desc_num))
3972                 ring->next_to_clean = 0;
3973 }
3974
3975 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3976                           unsigned char *va)
3977 {
3978         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3979         struct net_device *netdev = ring_to_netdev(ring);
3980         struct sk_buff *skb;
3981
3982         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3983         skb = ring->skb;
3984         if (unlikely(!skb)) {
3985                 hns3_rl_err(netdev, "alloc rx skb fail\n");
3986                 hns3_ring_stats_update(ring, sw_err_cnt);
3987
3988                 return -ENOMEM;
3989         }
3990
3991         trace_hns3_rx_desc(ring);
3992         prefetchw(skb->data);
3993
3994         ring->pending_buf = 1;
3995         ring->frag_num = 0;
3996         ring->tail_skb = NULL;
3997         if (length <= HNS3_RX_HEAD_SIZE) {
3998                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3999
4000                 /* We can reuse buffer as-is, just make sure it is reusable */
4001                 if (dev_page_is_reusable(desc_cb->priv))
4002                         desc_cb->reuse_flag = 1;
4003                 else if (desc_cb->type & DESC_TYPE_PP_FRAG)
4004                         page_pool_put_full_page(ring->page_pool, desc_cb->priv,
4005                                                 false);
4006                 else /* This page cannot be reused so discard it */
4007                         __page_frag_cache_drain(desc_cb->priv,
4008                                                 desc_cb->pagecnt_bias);
4009
4010                 hns3_rx_ring_move_fw(ring);
4011                 return 0;
4012         }
4013
4014         if (ring->page_pool)
4015                 skb_mark_for_recycle(skb);
4016
4017         hns3_ring_stats_update(ring, seg_pkt_cnt);
4018
4019         ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
4020         __skb_put(skb, ring->pull_len);
4021         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
4022                             desc_cb);
4023         hns3_rx_ring_move_fw(ring);
4024
4025         return 0;
4026 }
4027
4028 static int hns3_add_frag(struct hns3_enet_ring *ring)
4029 {
4030         struct sk_buff *skb = ring->skb;
4031         struct sk_buff *head_skb = skb;
4032         struct sk_buff *new_skb;
4033         struct hns3_desc_cb *desc_cb;
4034         struct hns3_desc *desc;
4035         u32 bd_base_info;
4036
4037         do {
4038                 desc = &ring->desc[ring->next_to_clean];
4039                 desc_cb = &ring->desc_cb[ring->next_to_clean];
4040                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4041                 /* make sure HW write desc complete */
4042                 dma_rmb();
4043                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4044                         return -ENXIO;
4045
4046                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
4047                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
4048                         if (unlikely(!new_skb)) {
4049                                 hns3_rl_err(ring_to_netdev(ring),
4050                                             "alloc rx fraglist skb fail\n");
4051                                 return -ENXIO;
4052                         }
4053
4054                         if (ring->page_pool)
4055                                 skb_mark_for_recycle(new_skb);
4056
4057                         ring->frag_num = 0;
4058
4059                         if (ring->tail_skb) {
4060                                 ring->tail_skb->next = new_skb;
4061                                 ring->tail_skb = new_skb;
4062                         } else {
4063                                 skb_shinfo(skb)->frag_list = new_skb;
4064                                 ring->tail_skb = new_skb;
4065                         }
4066                 }
4067
4068                 if (ring->tail_skb) {
4069                         head_skb->truesize += hns3_buf_size(ring);
4070                         head_skb->data_len += le16_to_cpu(desc->rx.size);
4071                         head_skb->len += le16_to_cpu(desc->rx.size);
4072                         skb = ring->tail_skb;
4073                 }
4074
4075                 dma_sync_single_for_cpu(ring_to_dev(ring),
4076                                 desc_cb->dma + desc_cb->page_offset,
4077                                 hns3_buf_size(ring),
4078                                 DMA_FROM_DEVICE);
4079
4080                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
4081                 trace_hns3_rx_desc(ring);
4082                 hns3_rx_ring_move_fw(ring);
4083                 ring->pending_buf++;
4084         } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
4085
4086         return 0;
4087 }
4088
4089 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
4090                                      struct sk_buff *skb, u32 l234info,
4091                                      u32 bd_base_info, u32 ol_info, u16 csum)
4092 {
4093         struct net_device *netdev = ring_to_netdev(ring);
4094         struct hns3_nic_priv *priv = netdev_priv(netdev);
4095         u32 l3_type;
4096
4097         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
4098                                                     HNS3_RXD_GRO_SIZE_M,
4099                                                     HNS3_RXD_GRO_SIZE_S);
4100         /* if there is no HW GRO, do not set gro params */
4101         if (!skb_shinfo(skb)->gso_size) {
4102                 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
4103                                  csum);
4104                 return 0;
4105         }
4106
4107         NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
4108                                                   HNS3_RXD_GRO_COUNT_M,
4109                                                   HNS3_RXD_GRO_COUNT_S);
4110
4111         if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4112                 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4113                                             HNS3_RXD_PTYPE_S);
4114
4115                 l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
4116         } else {
4117                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4118                                           HNS3_RXD_L3ID_S);
4119         }
4120
4121         if (l3_type == HNS3_L3_TYPE_IPV4)
4122                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
4123         else if (l3_type == HNS3_L3_TYPE_IPV6)
4124                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
4125         else
4126                 return -EFAULT;
4127
4128         return  hns3_gro_complete(skb, l234info);
4129 }
4130
4131 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
4132                                      struct sk_buff *skb, u32 rss_hash)
4133 {
4134         struct hnae3_handle *handle = ring->tqp->handle;
4135         enum pkt_hash_types rss_type;
4136
4137         if (rss_hash)
4138                 rss_type = handle->kinfo.rss_type;
4139         else
4140                 rss_type = PKT_HASH_TYPE_NONE;
4141
4142         skb_set_hash(skb, rss_hash, rss_type);
4143 }
4144
4145 static void hns3_handle_rx_ts_info(struct net_device *netdev,
4146                                    struct hns3_desc *desc, struct sk_buff *skb,
4147                                    u32 bd_base_info)
4148 {
4149         if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4150                 struct hnae3_handle *h = hns3_get_handle(netdev);
4151                 u32 nsec = le32_to_cpu(desc->ts_nsec);
4152                 u32 sec = le32_to_cpu(desc->ts_sec);
4153
4154                 if (h->ae_algo->ops->get_rx_hwts)
4155                         h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4156         }
4157 }
4158
4159 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring,
4160                                     struct hns3_desc *desc, struct sk_buff *skb,
4161                                     u32 l234info)
4162 {
4163         struct net_device *netdev = ring_to_netdev(ring);
4164
4165         /* Based on hw strategy, the tag offloaded will be stored at
4166          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4167          * in one layer tag case.
4168          */
4169         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4170                 u16 vlan_tag;
4171
4172                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4173                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4174                                                vlan_tag);
4175         }
4176 }
4177
4178 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4179 {
4180         struct net_device *netdev = ring_to_netdev(ring);
4181         enum hns3_pkt_l2t_type l2_frame_type;
4182         u32 bd_base_info, l234info, ol_info;
4183         struct hns3_desc *desc;
4184         unsigned int len;
4185         int pre_ntc, ret;
4186         u16 csum;
4187
4188         /* bdinfo handled below is only valid on the last BD of the
4189          * current packet, and ring->next_to_clean indicates the first
4190          * descriptor of next packet, so need - 1 below.
4191          */
4192         pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4193                                         (ring->desc_num - 1);
4194         desc = &ring->desc[pre_ntc];
4195         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4196         l234info = le32_to_cpu(desc->rx.l234_info);
4197         ol_info = le32_to_cpu(desc->rx.ol_info);
4198         csum = le16_to_cpu(desc->csum);
4199
4200         hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info);
4201
4202         hns3_handle_rx_vlan_tag(ring, desc, skb, l234info);
4203
4204         if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4205                                   BIT(HNS3_RXD_L2E_B))))) {
4206                 u64_stats_update_begin(&ring->syncp);
4207                 if (l234info & BIT(HNS3_RXD_L2E_B))
4208                         ring->stats.l2_err++;
4209                 else
4210                         ring->stats.err_pkt_len++;
4211                 u64_stats_update_end(&ring->syncp);
4212
4213                 return -EFAULT;
4214         }
4215
4216         len = skb->len;
4217
4218         /* Do update ip stack process */
4219         skb->protocol = eth_type_trans(skb, netdev);
4220
4221         /* This is needed in order to enable forwarding support */
4222         ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4223                                         bd_base_info, ol_info, csum);
4224         if (unlikely(ret)) {
4225                 hns3_ring_stats_update(ring, rx_err_cnt);
4226                 return ret;
4227         }
4228
4229         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4230                                         HNS3_RXD_DMAC_S);
4231
4232         u64_stats_update_begin(&ring->syncp);
4233         ring->stats.rx_pkts++;
4234         ring->stats.rx_bytes += len;
4235
4236         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4237                 ring->stats.rx_multicast++;
4238
4239         u64_stats_update_end(&ring->syncp);
4240
4241         ring->tqp_vector->rx_group.total_bytes += len;
4242
4243         hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
4244         return 0;
4245 }
4246
4247 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4248 {
4249         struct sk_buff *skb = ring->skb;
4250         struct hns3_desc_cb *desc_cb;
4251         struct hns3_desc *desc;
4252         unsigned int length;
4253         u32 bd_base_info;
4254         int ret;
4255
4256         desc = &ring->desc[ring->next_to_clean];
4257         desc_cb = &ring->desc_cb[ring->next_to_clean];
4258
4259         prefetch(desc);
4260
4261         if (!skb) {
4262                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4263                 /* Check valid BD */
4264                 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4265                         return -ENXIO;
4266
4267                 dma_rmb();
4268                 length = le16_to_cpu(desc->rx.size);
4269
4270                 ring->va = desc_cb->buf + desc_cb->page_offset;
4271
4272                 dma_sync_single_for_cpu(ring_to_dev(ring),
4273                                 desc_cb->dma + desc_cb->page_offset,
4274                                 hns3_buf_size(ring),
4275                                 DMA_FROM_DEVICE);
4276
4277                 /* Prefetch first cache line of first page.
4278                  * Idea is to cache few bytes of the header of the packet.
4279                  * Our L1 Cache line size is 64B so need to prefetch twice to make
4280                  * it 128B. But in actual we can have greater size of caches with
4281                  * 128B Level 1 cache lines. In such a case, single fetch would
4282                  * suffice to cache in the relevant part of the header.
4283                  */
4284                 net_prefetch(ring->va);
4285
4286                 ret = hns3_alloc_skb(ring, length, ring->va);
4287                 skb = ring->skb;
4288
4289                 if (ret < 0) /* alloc buffer fail */
4290                         return ret;
4291                 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4292                         ret = hns3_add_frag(ring);
4293                         if (ret)
4294                                 return ret;
4295                 }
4296         } else {
4297                 ret = hns3_add_frag(ring);
4298                 if (ret)
4299                         return ret;
4300         }
4301
4302         /* As the head data may be changed when GRO enable, copy
4303          * the head data in after other data rx completed
4304          */
4305         if (skb->len > HNS3_RX_HEAD_SIZE)
4306                 memcpy(skb->data, ring->va,
4307                        ALIGN(ring->pull_len, sizeof(long)));
4308
4309         ret = hns3_handle_bdinfo(ring, skb);
4310         if (unlikely(ret)) {
4311                 dev_kfree_skb_any(skb);
4312                 return ret;
4313         }
4314
4315         skb_record_rx_queue(skb, ring->tqp->tqp_index);
4316         return 0;
4317 }
4318
4319 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4320                        void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4321 {
4322 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4323         int unused_count = hns3_desc_unused(ring);
4324         bool failure = false;
4325         int recv_pkts = 0;
4326         int err;
4327
4328         unused_count -= ring->pending_buf;
4329
4330         while (recv_pkts < budget) {
4331                 /* Reuse or realloc buffers */
4332                 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4333                         failure = failure ||
4334                                 hns3_nic_alloc_rx_buffers(ring, unused_count);
4335                         unused_count = 0;
4336                 }
4337
4338                 /* Poll one pkt */
4339                 err = hns3_handle_rx_bd(ring);
4340                 /* Do not get FE for the packet or failed to alloc skb */
4341                 if (unlikely(!ring->skb || err == -ENXIO)) {
4342                         goto out;
4343                 } else if (likely(!err)) {
4344                         rx_fn(ring, ring->skb);
4345                         recv_pkts++;
4346                 }
4347
4348                 unused_count += ring->pending_buf;
4349                 ring->skb = NULL;
4350                 ring->pending_buf = 0;
4351         }
4352
4353 out:
4354         /* sync head pointer before exiting, since hardware will calculate
4355          * FBD number with head pointer
4356          */
4357         if (unused_count > 0)
4358                 failure = failure ||
4359                           hns3_nic_alloc_rx_buffers(ring, unused_count);
4360
4361         return failure ? budget : recv_pkts;
4362 }
4363
4364 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4365 {
4366         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4367         struct dim_sample sample = {};
4368
4369         if (!rx_group->coal.adapt_enable)
4370                 return;
4371
4372         dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4373                           rx_group->total_bytes, &sample);
4374         net_dim(&rx_group->dim, sample);
4375 }
4376
4377 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4378 {
4379         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4380         struct dim_sample sample = {};
4381
4382         if (!tx_group->coal.adapt_enable)
4383                 return;
4384
4385         dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4386                           tx_group->total_bytes, &sample);
4387         net_dim(&tx_group->dim, sample);
4388 }
4389
4390 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4391 {
4392         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4393         struct hns3_enet_ring *ring;
4394         int rx_pkt_total = 0;
4395
4396         struct hns3_enet_tqp_vector *tqp_vector =
4397                 container_of(napi, struct hns3_enet_tqp_vector, napi);
4398         bool clean_complete = true;
4399         int rx_budget = budget;
4400
4401         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4402                 napi_complete(napi);
4403                 return 0;
4404         }
4405
4406         /* Since the actual Tx work is minimal, we can give the Tx a larger
4407          * budget and be more aggressive about cleaning up the Tx descriptors.
4408          */
4409         hns3_for_each_ring(ring, tqp_vector->tx_group)
4410                 hns3_clean_tx_ring(ring, budget);
4411
4412         /* make sure rx ring budget not smaller than 1 */
4413         if (tqp_vector->num_tqps > 1)
4414                 rx_budget = max(budget / tqp_vector->num_tqps, 1);
4415
4416         hns3_for_each_ring(ring, tqp_vector->rx_group) {
4417                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4418                                                     hns3_rx_skb);
4419                 if (rx_cleaned >= rx_budget)
4420                         clean_complete = false;
4421
4422                 rx_pkt_total += rx_cleaned;
4423         }
4424
4425         tqp_vector->rx_group.total_packets += rx_pkt_total;
4426
4427         if (!clean_complete)
4428                 return budget;
4429
4430         if (napi_complete(napi) &&
4431             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4432                 hns3_update_rx_int_coalesce(tqp_vector);
4433                 hns3_update_tx_int_coalesce(tqp_vector);
4434
4435                 hns3_mask_vector_irq(tqp_vector, 1);
4436         }
4437
4438         return rx_pkt_total;
4439 }
4440
4441 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4442                                   struct hnae3_ring_chain_node **head,
4443                                   bool is_tx)
4444 {
4445         u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX;
4446         u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX;
4447         struct hnae3_ring_chain_node *cur_chain = *head;
4448         struct pci_dev *pdev = tqp_vector->handle->pdev;
4449         struct hnae3_ring_chain_node *chain;
4450         struct hns3_enet_ring *ring;
4451
4452         ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring;
4453
4454         if (cur_chain) {
4455                 while (cur_chain->next)
4456                         cur_chain = cur_chain->next;
4457         }
4458
4459         while (ring) {
4460                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4461                 if (!chain)
4462                         return -ENOMEM;
4463                 if (cur_chain)
4464                         cur_chain->next = chain;
4465                 else
4466                         *head = chain;
4467                 chain->tqp_index = ring->tqp->tqp_index;
4468                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4469                                 bit_value);
4470                 hnae3_set_field(chain->int_gl_idx,
4471                                 HNAE3_RING_GL_IDX_M,
4472                                 HNAE3_RING_GL_IDX_S, field_value);
4473
4474                 cur_chain = chain;
4475
4476                 ring = ring->next;
4477         }
4478
4479         return 0;
4480 }
4481
4482 static struct hnae3_ring_chain_node *
4483 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector)
4484 {
4485         struct pci_dev *pdev = tqp_vector->handle->pdev;
4486         struct hnae3_ring_chain_node *cur_chain = NULL;
4487         struct hnae3_ring_chain_node *chain;
4488
4489         if (hns3_create_ring_chain(tqp_vector, &cur_chain, true))
4490                 goto err_free_chain;
4491
4492         if (hns3_create_ring_chain(tqp_vector, &cur_chain, false))
4493                 goto err_free_chain;
4494
4495         return cur_chain;
4496
4497 err_free_chain:
4498         while (cur_chain) {
4499                 chain = cur_chain->next;
4500                 devm_kfree(&pdev->dev, cur_chain);
4501                 cur_chain = chain;
4502         }
4503
4504         return NULL;
4505 }
4506
4507 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4508                                         struct hnae3_ring_chain_node *head)
4509 {
4510         struct pci_dev *pdev = tqp_vector->handle->pdev;
4511         struct hnae3_ring_chain_node *chain_tmp, *chain;
4512
4513         chain = head;
4514
4515         while (chain) {
4516                 chain_tmp = chain->next;
4517                 devm_kfree(&pdev->dev, chain);
4518                 chain = chain_tmp;
4519         }
4520 }
4521
4522 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4523                                    struct hns3_enet_ring *ring)
4524 {
4525         ring->next = group->ring;
4526         group->ring = ring;
4527
4528         group->count++;
4529 }
4530
4531 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4532 {
4533         struct pci_dev *pdev = priv->ae_handle->pdev;
4534         struct hns3_enet_tqp_vector *tqp_vector;
4535         int num_vectors = priv->vector_num;
4536         int numa_node;
4537         int vector_i;
4538
4539         numa_node = dev_to_node(&pdev->dev);
4540
4541         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4542                 tqp_vector = &priv->tqp_vector[vector_i];
4543                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4544                                 &tqp_vector->affinity_mask);
4545         }
4546 }
4547
4548 static void hns3_rx_dim_work(struct work_struct *work)
4549 {
4550         struct dim *dim = container_of(work, struct dim, work);
4551         struct hns3_enet_ring_group *group = container_of(dim,
4552                 struct hns3_enet_ring_group, dim);
4553         struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4554         struct dim_cq_moder cur_moder =
4555                 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4556
4557         hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4558         tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4559
4560         if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4561                 hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4562                 tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4563         }
4564
4565         dim->state = DIM_START_MEASURE;
4566 }
4567
4568 static void hns3_tx_dim_work(struct work_struct *work)
4569 {
4570         struct dim *dim = container_of(work, struct dim, work);
4571         struct hns3_enet_ring_group *group = container_of(dim,
4572                 struct hns3_enet_ring_group, dim);
4573         struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4574         struct dim_cq_moder cur_moder =
4575                 net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4576
4577         hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4578         tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4579
4580         if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4581                 hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4582                 tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4583         }
4584
4585         dim->state = DIM_START_MEASURE;
4586 }
4587
4588 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4589 {
4590         INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4591         INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4592 }
4593
4594 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4595 {
4596         struct hnae3_handle *h = priv->ae_handle;
4597         struct hns3_enet_tqp_vector *tqp_vector;
4598         int ret;
4599         int i;
4600
4601         hns3_nic_set_cpumask(priv);
4602
4603         for (i = 0; i < priv->vector_num; i++) {
4604                 tqp_vector = &priv->tqp_vector[i];
4605                 hns3_vector_coalesce_init_hw(tqp_vector, priv);
4606                 tqp_vector->num_tqps = 0;
4607                 hns3_nic_init_dim(tqp_vector);
4608         }
4609
4610         for (i = 0; i < h->kinfo.num_tqps; i++) {
4611                 u16 vector_i = i % priv->vector_num;
4612                 u16 tqp_num = h->kinfo.num_tqps;
4613
4614                 tqp_vector = &priv->tqp_vector[vector_i];
4615
4616                 hns3_add_ring_to_group(&tqp_vector->tx_group,
4617                                        &priv->ring[i]);
4618
4619                 hns3_add_ring_to_group(&tqp_vector->rx_group,
4620                                        &priv->ring[i + tqp_num]);
4621
4622                 priv->ring[i].tqp_vector = tqp_vector;
4623                 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4624                 tqp_vector->num_tqps++;
4625         }
4626
4627         for (i = 0; i < priv->vector_num; i++) {
4628                 struct hnae3_ring_chain_node *vector_ring_chain;
4629
4630                 tqp_vector = &priv->tqp_vector[i];
4631
4632                 tqp_vector->rx_group.total_bytes = 0;
4633                 tqp_vector->rx_group.total_packets = 0;
4634                 tqp_vector->tx_group.total_bytes = 0;
4635                 tqp_vector->tx_group.total_packets = 0;
4636                 tqp_vector->handle = h;
4637
4638                 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4639                 if (!vector_ring_chain) {
4640                         ret = -ENOMEM;
4641                         goto map_ring_fail;
4642                 }
4643
4644                 ret = h->ae_algo->ops->map_ring_to_vector(h,
4645                         tqp_vector->vector_irq, vector_ring_chain);
4646
4647                 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4648
4649                 if (ret)
4650                         goto map_ring_fail;
4651
4652                 netif_napi_add(priv->netdev, &tqp_vector->napi,
4653                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
4654         }
4655
4656         return 0;
4657
4658 map_ring_fail:
4659         while (i--)
4660                 netif_napi_del(&priv->tqp_vector[i].napi);
4661
4662         return ret;
4663 }
4664
4665 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4666 {
4667         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4668         struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4669         struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4670
4671         /* initialize the configuration for interrupt coalescing.
4672          * 1. GL (Interrupt Gap Limiter)
4673          * 2. RL (Interrupt Rate Limiter)
4674          * 3. QL (Interrupt Quantity Limiter)
4675          *
4676          * Default: enable interrupt coalescing self-adaptive and GL
4677          */
4678         tx_coal->adapt_enable = 1;
4679         rx_coal->adapt_enable = 1;
4680
4681         tx_coal->int_gl = HNS3_INT_GL_50K;
4682         rx_coal->int_gl = HNS3_INT_GL_50K;
4683
4684         rx_coal->flow_level = HNS3_FLOW_LOW;
4685         tx_coal->flow_level = HNS3_FLOW_LOW;
4686
4687         if (ae_dev->dev_specs.int_ql_max) {
4688                 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4689                 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4690         }
4691 }
4692
4693 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4694 {
4695         struct hnae3_handle *h = priv->ae_handle;
4696         struct hns3_enet_tqp_vector *tqp_vector;
4697         struct hnae3_vector_info *vector;
4698         struct pci_dev *pdev = h->pdev;
4699         u16 tqp_num = h->kinfo.num_tqps;
4700         u16 vector_num;
4701         int ret = 0;
4702         u16 i;
4703
4704         /* RSS size, cpu online and vector_num should be the same */
4705         /* Should consider 2p/4p later */
4706         vector_num = min_t(u16, num_online_cpus(), tqp_num);
4707
4708         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4709                               GFP_KERNEL);
4710         if (!vector)
4711                 return -ENOMEM;
4712
4713         /* save the actual available vector number */
4714         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4715
4716         priv->vector_num = vector_num;
4717         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4718                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4719                              GFP_KERNEL);
4720         if (!priv->tqp_vector) {
4721                 ret = -ENOMEM;
4722                 goto out;
4723         }
4724
4725         for (i = 0; i < priv->vector_num; i++) {
4726                 tqp_vector = &priv->tqp_vector[i];
4727                 tqp_vector->idx = i;
4728                 tqp_vector->mask_addr = vector[i].io_addr;
4729                 tqp_vector->vector_irq = vector[i].vector;
4730                 hns3_vector_coalesce_init(tqp_vector, priv);
4731         }
4732
4733 out:
4734         devm_kfree(&pdev->dev, vector);
4735         return ret;
4736 }
4737
4738 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4739 {
4740         group->ring = NULL;
4741         group->count = 0;
4742 }
4743
4744 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4745 {
4746         struct hnae3_ring_chain_node *vector_ring_chain;
4747         struct hnae3_handle *h = priv->ae_handle;
4748         struct hns3_enet_tqp_vector *tqp_vector;
4749         int i;
4750
4751         for (i = 0; i < priv->vector_num; i++) {
4752                 tqp_vector = &priv->tqp_vector[i];
4753
4754                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4755                         continue;
4756
4757                 /* Since the mapping can be overwritten, when fail to get the
4758                  * chain between vector and ring, we should go on to deal with
4759                  * the remaining options.
4760                  */
4761                 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4762                 if (!vector_ring_chain)
4763                         dev_warn(priv->dev, "failed to get ring chain\n");
4764
4765                 h->ae_algo->ops->unmap_ring_from_vector(h,
4766                         tqp_vector->vector_irq, vector_ring_chain);
4767
4768                 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4769
4770                 hns3_clear_ring_group(&tqp_vector->rx_group);
4771                 hns3_clear_ring_group(&tqp_vector->tx_group);
4772                 netif_napi_del(&priv->tqp_vector[i].napi);
4773         }
4774 }
4775
4776 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4777 {
4778         struct hnae3_handle *h = priv->ae_handle;
4779         struct pci_dev *pdev = h->pdev;
4780         int i, ret;
4781
4782         for (i = 0; i < priv->vector_num; i++) {
4783                 struct hns3_enet_tqp_vector *tqp_vector;
4784
4785                 tqp_vector = &priv->tqp_vector[i];
4786                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4787                 if (ret)
4788                         return;
4789         }
4790
4791         devm_kfree(&pdev->dev, priv->tqp_vector);
4792 }
4793
4794 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4795                               unsigned int ring_type)
4796 {
4797         int queue_num = priv->ae_handle->kinfo.num_tqps;
4798         struct hns3_enet_ring *ring;
4799         int desc_num;
4800
4801         if (ring_type == HNAE3_RING_TYPE_TX) {
4802                 ring = &priv->ring[q->tqp_index];
4803                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
4804                 ring->queue_index = q->tqp_index;
4805                 ring->tx_copybreak = priv->tx_copybreak;
4806                 ring->last_to_use = 0;
4807         } else {
4808                 ring = &priv->ring[q->tqp_index + queue_num];
4809                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
4810                 ring->queue_index = q->tqp_index;
4811                 ring->rx_copybreak = priv->rx_copybreak;
4812         }
4813
4814         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4815
4816         ring->tqp = q;
4817         ring->desc = NULL;
4818         ring->desc_cb = NULL;
4819         ring->dev = priv->dev;
4820         ring->desc_dma_addr = 0;
4821         ring->buf_size = q->buf_size;
4822         ring->desc_num = desc_num;
4823         ring->next_to_use = 0;
4824         ring->next_to_clean = 0;
4825 }
4826
4827 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4828                                struct hns3_nic_priv *priv)
4829 {
4830         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4831         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4832 }
4833
4834 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4835 {
4836         struct hnae3_handle *h = priv->ae_handle;
4837         struct pci_dev *pdev = h->pdev;
4838         int i;
4839
4840         priv->ring = devm_kzalloc(&pdev->dev,
4841                                   array3_size(h->kinfo.num_tqps,
4842                                               sizeof(*priv->ring), 2),
4843                                   GFP_KERNEL);
4844         if (!priv->ring)
4845                 return -ENOMEM;
4846
4847         for (i = 0; i < h->kinfo.num_tqps; i++)
4848                 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4849
4850         return 0;
4851 }
4852
4853 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4854 {
4855         if (!priv->ring)
4856                 return;
4857
4858         devm_kfree(priv->dev, priv->ring);
4859         priv->ring = NULL;
4860 }
4861
4862 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4863 {
4864         struct page_pool_params pp_params = {
4865                 .flags = PP_FLAG_DMA_MAP | PP_FLAG_PAGE_FRAG |
4866                                 PP_FLAG_DMA_SYNC_DEV,
4867                 .order = hns3_page_order(ring),
4868                 .pool_size = ring->desc_num * hns3_buf_size(ring) /
4869                                 (PAGE_SIZE << hns3_page_order(ring)),
4870                 .nid = dev_to_node(ring_to_dev(ring)),
4871                 .dev = ring_to_dev(ring),
4872                 .dma_dir = DMA_FROM_DEVICE,
4873                 .offset = 0,
4874                 .max_len = PAGE_SIZE << hns3_page_order(ring),
4875         };
4876
4877         ring->page_pool = page_pool_create(&pp_params);
4878         if (IS_ERR(ring->page_pool)) {
4879                 dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
4880                          PTR_ERR(ring->page_pool));
4881                 ring->page_pool = NULL;
4882         }
4883 }
4884
4885 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4886 {
4887         int ret;
4888
4889         if (ring->desc_num <= 0 || ring->buf_size <= 0)
4890                 return -EINVAL;
4891
4892         ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4893                                      sizeof(ring->desc_cb[0]), GFP_KERNEL);
4894         if (!ring->desc_cb) {
4895                 ret = -ENOMEM;
4896                 goto out;
4897         }
4898
4899         ret = hns3_alloc_desc(ring);
4900         if (ret)
4901                 goto out_with_desc_cb;
4902
4903         if (!HNAE3_IS_TX_RING(ring)) {
4904                 if (page_pool_enabled)
4905                         hns3_alloc_page_pool(ring);
4906
4907                 ret = hns3_alloc_ring_buffers(ring);
4908                 if (ret)
4909                         goto out_with_desc;
4910         } else {
4911                 hns3_init_tx_spare_buffer(ring);
4912         }
4913
4914         return 0;
4915
4916 out_with_desc:
4917         hns3_free_desc(ring);
4918 out_with_desc_cb:
4919         devm_kfree(ring_to_dev(ring), ring->desc_cb);
4920         ring->desc_cb = NULL;
4921 out:
4922         return ret;
4923 }
4924
4925 void hns3_fini_ring(struct hns3_enet_ring *ring)
4926 {
4927         hns3_free_desc(ring);
4928         devm_kfree(ring_to_dev(ring), ring->desc_cb);
4929         ring->desc_cb = NULL;
4930         ring->next_to_clean = 0;
4931         ring->next_to_use = 0;
4932         ring->last_to_use = 0;
4933         ring->pending_buf = 0;
4934         if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
4935                 dev_kfree_skb_any(ring->skb);
4936                 ring->skb = NULL;
4937         } else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
4938                 struct hns3_tx_spare *tx_spare = ring->tx_spare;
4939
4940                 dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
4941                                DMA_TO_DEVICE);
4942                 free_pages((unsigned long)tx_spare->buf,
4943                            get_order(tx_spare->len));
4944                 devm_kfree(ring_to_dev(ring), tx_spare);
4945                 ring->tx_spare = NULL;
4946         }
4947
4948         if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
4949                 page_pool_destroy(ring->page_pool);
4950                 ring->page_pool = NULL;
4951         }
4952 }
4953
4954 static int hns3_buf_size2type(u32 buf_size)
4955 {
4956         int bd_size_type;
4957
4958         switch (buf_size) {
4959         case 512:
4960                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
4961                 break;
4962         case 1024:
4963                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
4964                 break;
4965         case 2048:
4966                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4967                 break;
4968         case 4096:
4969                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4970                 break;
4971         default:
4972                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4973         }
4974
4975         return bd_size_type;
4976 }
4977
4978 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4979 {
4980         dma_addr_t dma = ring->desc_dma_addr;
4981         struct hnae3_queue *q = ring->tqp;
4982
4983         if (!HNAE3_IS_TX_RING(ring)) {
4984                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4985                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4986                                (u32)((dma >> 31) >> 1));
4987
4988                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4989                                hns3_buf_size2type(ring->buf_size));
4990                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4991                                ring->desc_num / 8 - 1);
4992         } else {
4993                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4994                                (u32)dma);
4995                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4996                                (u32)((dma >> 31) >> 1));
4997
4998                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4999                                ring->desc_num / 8 - 1);
5000         }
5001 }
5002
5003 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
5004 {
5005         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5006         struct hnae3_tc_info *tc_info = &kinfo->tc_info;
5007         int i;
5008
5009         for (i = 0; i < tc_info->num_tc; i++) {
5010                 int j;
5011
5012                 for (j = 0; j < tc_info->tqp_count[i]; j++) {
5013                         struct hnae3_queue *q;
5014
5015                         q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
5016                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
5017                 }
5018         }
5019 }
5020
5021 int hns3_init_all_ring(struct hns3_nic_priv *priv)
5022 {
5023         struct hnae3_handle *h = priv->ae_handle;
5024         int ring_num = h->kinfo.num_tqps * 2;
5025         int i, j;
5026         int ret;
5027
5028         for (i = 0; i < ring_num; i++) {
5029                 ret = hns3_alloc_ring_memory(&priv->ring[i]);
5030                 if (ret) {
5031                         dev_err(priv->dev,
5032                                 "Alloc ring memory fail! ret=%d\n", ret);
5033                         goto out_when_alloc_ring_memory;
5034                 }
5035
5036                 u64_stats_init(&priv->ring[i].syncp);
5037         }
5038
5039         return 0;
5040
5041 out_when_alloc_ring_memory:
5042         for (j = i - 1; j >= 0; j--)
5043                 hns3_fini_ring(&priv->ring[j]);
5044
5045         return -ENOMEM;
5046 }
5047
5048 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
5049 {
5050         struct hnae3_handle *h = priv->ae_handle;
5051         int i;
5052
5053         for (i = 0; i < h->kinfo.num_tqps; i++) {
5054                 hns3_fini_ring(&priv->ring[i]);
5055                 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
5056         }
5057 }
5058
5059 /* Set mac addr if it is configured. or leave it to the AE driver */
5060 static int hns3_init_mac_addr(struct net_device *netdev)
5061 {
5062         struct hns3_nic_priv *priv = netdev_priv(netdev);
5063         char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5064         struct hnae3_handle *h = priv->ae_handle;
5065         u8 mac_addr_temp[ETH_ALEN];
5066         int ret = 0;
5067
5068         if (h->ae_algo->ops->get_mac_addr)
5069                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
5070
5071         /* Check if the MAC address is valid, if not get a random one */
5072         if (!is_valid_ether_addr(mac_addr_temp)) {
5073                 eth_hw_addr_random(netdev);
5074                 hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr);
5075                 dev_warn(priv->dev, "using random MAC address %s\n",
5076                          format_mac_addr);
5077         } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
5078                 eth_hw_addr_set(netdev, mac_addr_temp);
5079                 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
5080         } else {
5081                 return 0;
5082         }
5083
5084         if (h->ae_algo->ops->set_mac_addr)
5085                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
5086
5087         return ret;
5088 }
5089
5090 static int hns3_init_phy(struct net_device *netdev)
5091 {
5092         struct hnae3_handle *h = hns3_get_handle(netdev);
5093         int ret = 0;
5094
5095         if (h->ae_algo->ops->mac_connect_phy)
5096                 ret = h->ae_algo->ops->mac_connect_phy(h);
5097
5098         return ret;
5099 }
5100
5101 static void hns3_uninit_phy(struct net_device *netdev)
5102 {
5103         struct hnae3_handle *h = hns3_get_handle(netdev);
5104
5105         if (h->ae_algo->ops->mac_disconnect_phy)
5106                 h->ae_algo->ops->mac_disconnect_phy(h);
5107 }
5108
5109 static int hns3_client_start(struct hnae3_handle *handle)
5110 {
5111         if (!handle->ae_algo->ops->client_start)
5112                 return 0;
5113
5114         return handle->ae_algo->ops->client_start(handle);
5115 }
5116
5117 static void hns3_client_stop(struct hnae3_handle *handle)
5118 {
5119         if (!handle->ae_algo->ops->client_stop)
5120                 return;
5121
5122         handle->ae_algo->ops->client_stop(handle);
5123 }
5124
5125 static void hns3_info_show(struct hns3_nic_priv *priv)
5126 {
5127         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5128         char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5129
5130         hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr);
5131         dev_info(priv->dev, "MAC address: %s\n", format_mac_addr);
5132         dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
5133         dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
5134         dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
5135         dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
5136         dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
5137         dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
5138         dev_info(priv->dev, "Total number of enabled TCs: %u\n",
5139                  kinfo->tc_info.num_tc);
5140         dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
5141 }
5142
5143 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5144                                     enum dim_cq_period_mode mode, bool is_tx)
5145 {
5146         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
5147         struct hnae3_handle *handle = priv->ae_handle;
5148         int i;
5149
5150         if (is_tx) {
5151                 priv->tx_cqe_mode = mode;
5152
5153                 for (i = 0; i < priv->vector_num; i++)
5154                         priv->tqp_vector[i].tx_group.dim.mode = mode;
5155         } else {
5156                 priv->rx_cqe_mode = mode;
5157
5158                 for (i = 0; i < priv->vector_num; i++)
5159                         priv->tqp_vector[i].rx_group.dim.mode = mode;
5160         }
5161
5162         /* only device version above V3(include V3), GL can switch CQ/EQ
5163          * period mode.
5164          */
5165         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
5166                 u32 new_mode;
5167                 u64 reg;
5168
5169                 new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5170                         HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5171                 reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5172
5173                 writel(new_mode, handle->kinfo.io_base + reg);
5174         }
5175 }
5176
5177 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5178                               enum dim_cq_period_mode tx_mode,
5179                               enum dim_cq_period_mode rx_mode)
5180 {
5181         hns3_set_cq_period_mode(priv, tx_mode, true);
5182         hns3_set_cq_period_mode(priv, rx_mode, false);
5183 }
5184
5185 static void hns3_state_init(struct hnae3_handle *handle)
5186 {
5187         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
5188         struct net_device *netdev = handle->kinfo.netdev;
5189         struct hns3_nic_priv *priv = netdev_priv(netdev);
5190
5191         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5192
5193         if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
5194                 set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state);
5195
5196         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5197                 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5198
5199         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5200                 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5201
5202         if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5203                 set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5204 }
5205
5206 static void hns3_state_uninit(struct hnae3_handle *handle)
5207 {
5208         struct hns3_nic_priv *priv  = handle->priv;
5209
5210         clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
5211 }
5212
5213 static int hns3_client_init(struct hnae3_handle *handle)
5214 {
5215         struct pci_dev *pdev = handle->pdev;
5216         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5217         u16 alloc_tqps, max_rss_size;
5218         struct hns3_nic_priv *priv;
5219         struct net_device *netdev;
5220         int ret;
5221
5222         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5223                                                     &max_rss_size);
5224         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5225         if (!netdev)
5226                 return -ENOMEM;
5227
5228         priv = netdev_priv(netdev);
5229         priv->dev = &pdev->dev;
5230         priv->netdev = netdev;
5231         priv->ae_handle = handle;
5232         priv->tx_timeout_count = 0;
5233         priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5234         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5235
5236         handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5237
5238         handle->kinfo.netdev = netdev;
5239         handle->priv = (void *)priv;
5240
5241         hns3_init_mac_addr(netdev);
5242
5243         hns3_set_default_feature(netdev);
5244
5245         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5246         netdev->priv_flags |= IFF_UNICAST_FLT;
5247         netdev->netdev_ops = &hns3_nic_netdev_ops;
5248         SET_NETDEV_DEV(netdev, &pdev->dev);
5249         hns3_ethtool_set_ops(netdev);
5250
5251         /* Carrier off reporting is important to ethtool even BEFORE open */
5252         netif_carrier_off(netdev);
5253
5254         ret = hns3_get_ring_config(priv);
5255         if (ret) {
5256                 ret = -ENOMEM;
5257                 goto out_get_ring_cfg;
5258         }
5259
5260         hns3_nic_init_coal_cfg(priv);
5261
5262         ret = hns3_nic_alloc_vector_data(priv);
5263         if (ret) {
5264                 ret = -ENOMEM;
5265                 goto out_alloc_vector_data;
5266         }
5267
5268         ret = hns3_nic_init_vector_data(priv);
5269         if (ret) {
5270                 ret = -ENOMEM;
5271                 goto out_init_vector_data;
5272         }
5273
5274         ret = hns3_init_all_ring(priv);
5275         if (ret) {
5276                 ret = -ENOMEM;
5277                 goto out_init_ring;
5278         }
5279
5280         hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5281                                  DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5282
5283         ret = hns3_init_phy(netdev);
5284         if (ret)
5285                 goto out_init_phy;
5286
5287         /* the device can work without cpu rmap, only aRFS needs it */
5288         ret = hns3_set_rx_cpu_rmap(netdev);
5289         if (ret)
5290                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5291
5292         ret = hns3_nic_init_irq(priv);
5293         if (ret) {
5294                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5295                 hns3_free_rx_cpu_rmap(netdev);
5296                 goto out_init_irq_fail;
5297         }
5298
5299         ret = hns3_client_start(handle);
5300         if (ret) {
5301                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5302                 goto out_client_start;
5303         }
5304
5305         hns3_dcbnl_setup(handle);
5306
5307         ret = hns3_dbg_init(handle);
5308         if (ret) {
5309                 dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5310                         ret);
5311                 goto out_client_start;
5312         }
5313
5314         netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5315
5316         hns3_state_init(handle);
5317
5318         ret = register_netdev(netdev);
5319         if (ret) {
5320                 dev_err(priv->dev, "probe register netdev fail!\n");
5321                 goto out_reg_netdev_fail;
5322         }
5323
5324         if (netif_msg_drv(handle))
5325                 hns3_info_show(priv);
5326
5327         return ret;
5328
5329 out_reg_netdev_fail:
5330         hns3_state_uninit(handle);
5331         hns3_dbg_uninit(handle);
5332         hns3_client_stop(handle);
5333 out_client_start:
5334         hns3_free_rx_cpu_rmap(netdev);
5335         hns3_nic_uninit_irq(priv);
5336 out_init_irq_fail:
5337         hns3_uninit_phy(netdev);
5338 out_init_phy:
5339         hns3_uninit_all_ring(priv);
5340 out_init_ring:
5341         hns3_nic_uninit_vector_data(priv);
5342 out_init_vector_data:
5343         hns3_nic_dealloc_vector_data(priv);
5344 out_alloc_vector_data:
5345         priv->ring = NULL;
5346 out_get_ring_cfg:
5347         priv->ae_handle = NULL;
5348         free_netdev(netdev);
5349         return ret;
5350 }
5351
5352 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5353 {
5354         struct net_device *netdev = handle->kinfo.netdev;
5355         struct hns3_nic_priv *priv = netdev_priv(netdev);
5356
5357         if (netdev->reg_state != NETREG_UNINITIALIZED)
5358                 unregister_netdev(netdev);
5359
5360         hns3_client_stop(handle);
5361
5362         hns3_uninit_phy(netdev);
5363
5364         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5365                 netdev_warn(netdev, "already uninitialized\n");
5366                 goto out_netdev_free;
5367         }
5368
5369         hns3_free_rx_cpu_rmap(netdev);
5370
5371         hns3_nic_uninit_irq(priv);
5372
5373         hns3_clear_all_ring(handle, true);
5374
5375         hns3_nic_uninit_vector_data(priv);
5376
5377         hns3_nic_dealloc_vector_data(priv);
5378
5379         hns3_uninit_all_ring(priv);
5380
5381         hns3_put_ring_config(priv);
5382
5383 out_netdev_free:
5384         hns3_dbg_uninit(handle);
5385         free_netdev(netdev);
5386 }
5387
5388 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5389 {
5390         struct net_device *netdev = handle->kinfo.netdev;
5391
5392         if (!netdev)
5393                 return;
5394
5395         if (linkup) {
5396                 netif_tx_wake_all_queues(netdev);
5397                 netif_carrier_on(netdev);
5398                 if (netif_msg_link(handle))
5399                         netdev_info(netdev, "link up\n");
5400         } else {
5401                 netif_carrier_off(netdev);
5402                 netif_tx_stop_all_queues(netdev);
5403                 if (netif_msg_link(handle))
5404                         netdev_info(netdev, "link down\n");
5405         }
5406 }
5407
5408 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5409 {
5410         while (ring->next_to_clean != ring->next_to_use) {
5411                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5412                 hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5413                 ring_ptr_move_fw(ring, next_to_clean);
5414         }
5415
5416         ring->pending_buf = 0;
5417 }
5418
5419 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5420 {
5421         struct hns3_desc_cb res_cbs;
5422         int ret;
5423
5424         while (ring->next_to_use != ring->next_to_clean) {
5425                 /* When a buffer is not reused, it's memory has been
5426                  * freed in hns3_handle_rx_bd or will be freed by
5427                  * stack, so we need to replace the buffer here.
5428                  */
5429                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5430                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5431                         if (ret) {
5432                                 hns3_ring_stats_update(ring, sw_err_cnt);
5433                                 /* if alloc new buffer fail, exit directly
5434                                  * and reclear in up flow.
5435                                  */
5436                                 netdev_warn(ring_to_netdev(ring),
5437                                             "reserve buffer map failed, ret = %d\n",
5438                                             ret);
5439                                 return ret;
5440                         }
5441                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5442                 }
5443                 ring_ptr_move_fw(ring, next_to_use);
5444         }
5445
5446         /* Free the pending skb in rx ring */
5447         if (ring->skb) {
5448                 dev_kfree_skb_any(ring->skb);
5449                 ring->skb = NULL;
5450                 ring->pending_buf = 0;
5451         }
5452
5453         return 0;
5454 }
5455
5456 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5457 {
5458         while (ring->next_to_use != ring->next_to_clean) {
5459                 /* When a buffer is not reused, it's memory has been
5460                  * freed in hns3_handle_rx_bd or will be freed by
5461                  * stack, so only need to unmap the buffer here.
5462                  */
5463                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5464                         hns3_unmap_buffer(ring,
5465                                           &ring->desc_cb[ring->next_to_use]);
5466                         ring->desc_cb[ring->next_to_use].dma = 0;
5467                 }
5468
5469                 ring_ptr_move_fw(ring, next_to_use);
5470         }
5471 }
5472
5473 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5474 {
5475         struct net_device *ndev = h->kinfo.netdev;
5476         struct hns3_nic_priv *priv = netdev_priv(ndev);
5477         u32 i;
5478
5479         for (i = 0; i < h->kinfo.num_tqps; i++) {
5480                 struct hns3_enet_ring *ring;
5481
5482                 ring = &priv->ring[i];
5483                 hns3_clear_tx_ring(ring);
5484
5485                 ring = &priv->ring[i + h->kinfo.num_tqps];
5486                 /* Continue to clear other rings even if clearing some
5487                  * rings failed.
5488                  */
5489                 if (force)
5490                         hns3_force_clear_rx_ring(ring);
5491                 else
5492                         hns3_clear_rx_ring(ring);
5493         }
5494 }
5495
5496 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5497 {
5498         struct net_device *ndev = h->kinfo.netdev;
5499         struct hns3_nic_priv *priv = netdev_priv(ndev);
5500         struct hns3_enet_ring *rx_ring;
5501         int i, j;
5502         int ret;
5503
5504         ret = h->ae_algo->ops->reset_queue(h);
5505         if (ret)
5506                 return ret;
5507
5508         for (i = 0; i < h->kinfo.num_tqps; i++) {
5509                 hns3_init_ring_hw(&priv->ring[i]);
5510
5511                 /* We need to clear tx ring here because self test will
5512                  * use the ring and will not run down before up
5513                  */
5514                 hns3_clear_tx_ring(&priv->ring[i]);
5515                 priv->ring[i].next_to_clean = 0;
5516                 priv->ring[i].next_to_use = 0;
5517                 priv->ring[i].last_to_use = 0;
5518
5519                 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5520                 hns3_init_ring_hw(rx_ring);
5521                 ret = hns3_clear_rx_ring(rx_ring);
5522                 if (ret)
5523                         return ret;
5524
5525                 /* We can not know the hardware head and tail when this
5526                  * function is called in reset flow, so we reuse all desc.
5527                  */
5528                 for (j = 0; j < rx_ring->desc_num; j++)
5529                         hns3_reuse_buffer(rx_ring, j);
5530
5531                 rx_ring->next_to_clean = 0;
5532                 rx_ring->next_to_use = 0;
5533         }
5534
5535         hns3_init_tx_ring_tc(priv);
5536
5537         return 0;
5538 }
5539
5540 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5541 {
5542         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5543         struct net_device *ndev = kinfo->netdev;
5544         struct hns3_nic_priv *priv = netdev_priv(ndev);
5545
5546         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5547                 return 0;
5548
5549         if (!netif_running(ndev))
5550                 return 0;
5551
5552         return hns3_nic_net_stop(ndev);
5553 }
5554
5555 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5556 {
5557         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5558         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5559         int ret = 0;
5560
5561         if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5562                 netdev_err(kinfo->netdev, "device is not initialized yet\n");
5563                 return -EFAULT;
5564         }
5565
5566         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5567
5568         if (netif_running(kinfo->netdev)) {
5569                 ret = hns3_nic_net_open(kinfo->netdev);
5570                 if (ret) {
5571                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5572                         netdev_err(kinfo->netdev,
5573                                    "net up fail, ret=%d!\n", ret);
5574                         return ret;
5575                 }
5576         }
5577
5578         return ret;
5579 }
5580
5581 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5582 {
5583         struct net_device *netdev = handle->kinfo.netdev;
5584         struct hns3_nic_priv *priv = netdev_priv(netdev);
5585         int ret;
5586
5587         /* Carrier off reporting is important to ethtool even BEFORE open */
5588         netif_carrier_off(netdev);
5589
5590         ret = hns3_get_ring_config(priv);
5591         if (ret)
5592                 return ret;
5593
5594         ret = hns3_nic_alloc_vector_data(priv);
5595         if (ret)
5596                 goto err_put_ring;
5597
5598         ret = hns3_nic_init_vector_data(priv);
5599         if (ret)
5600                 goto err_dealloc_vector;
5601
5602         ret = hns3_init_all_ring(priv);
5603         if (ret)
5604                 goto err_uninit_vector;
5605
5606         hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5607
5608         /* the device can work without cpu rmap, only aRFS needs it */
5609         ret = hns3_set_rx_cpu_rmap(netdev);
5610         if (ret)
5611                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5612
5613         ret = hns3_nic_init_irq(priv);
5614         if (ret) {
5615                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5616                 hns3_free_rx_cpu_rmap(netdev);
5617                 goto err_init_irq_fail;
5618         }
5619
5620         if (!hns3_is_phys_func(handle->pdev))
5621                 hns3_init_mac_addr(netdev);
5622
5623         ret = hns3_client_start(handle);
5624         if (ret) {
5625                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5626                 goto err_client_start_fail;
5627         }
5628
5629         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5630
5631         return ret;
5632
5633 err_client_start_fail:
5634         hns3_free_rx_cpu_rmap(netdev);
5635         hns3_nic_uninit_irq(priv);
5636 err_init_irq_fail:
5637         hns3_uninit_all_ring(priv);
5638 err_uninit_vector:
5639         hns3_nic_uninit_vector_data(priv);
5640 err_dealloc_vector:
5641         hns3_nic_dealloc_vector_data(priv);
5642 err_put_ring:
5643         hns3_put_ring_config(priv);
5644
5645         return ret;
5646 }
5647
5648 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5649 {
5650         struct net_device *netdev = handle->kinfo.netdev;
5651         struct hns3_nic_priv *priv = netdev_priv(netdev);
5652
5653         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5654                 netdev_warn(netdev, "already uninitialized\n");
5655                 return 0;
5656         }
5657
5658         hns3_free_rx_cpu_rmap(netdev);
5659         hns3_nic_uninit_irq(priv);
5660         hns3_clear_all_ring(handle, true);
5661         hns3_reset_tx_queue(priv->ae_handle);
5662
5663         hns3_nic_uninit_vector_data(priv);
5664
5665         hns3_nic_dealloc_vector_data(priv);
5666
5667         hns3_uninit_all_ring(priv);
5668
5669         hns3_put_ring_config(priv);
5670
5671         return 0;
5672 }
5673
5674 int hns3_reset_notify(struct hnae3_handle *handle,
5675                       enum hnae3_reset_notify_type type)
5676 {
5677         int ret = 0;
5678
5679         switch (type) {
5680         case HNAE3_UP_CLIENT:
5681                 ret = hns3_reset_notify_up_enet(handle);
5682                 break;
5683         case HNAE3_DOWN_CLIENT:
5684                 ret = hns3_reset_notify_down_enet(handle);
5685                 break;
5686         case HNAE3_INIT_CLIENT:
5687                 ret = hns3_reset_notify_init_enet(handle);
5688                 break;
5689         case HNAE3_UNINIT_CLIENT:
5690                 ret = hns3_reset_notify_uninit_enet(handle);
5691                 break;
5692         default:
5693                 break;
5694         }
5695
5696         return ret;
5697 }
5698
5699 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5700                                 bool rxfh_configured)
5701 {
5702         int ret;
5703
5704         ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5705                                                  rxfh_configured);
5706         if (ret) {
5707                 dev_err(&handle->pdev->dev,
5708                         "Change tqp num(%u) fail.\n", new_tqp_num);
5709                 return ret;
5710         }
5711
5712         ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5713         if (ret)
5714                 return ret;
5715
5716         ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5717         if (ret)
5718                 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5719
5720         return ret;
5721 }
5722
5723 int hns3_set_channels(struct net_device *netdev,
5724                       struct ethtool_channels *ch)
5725 {
5726         struct hnae3_handle *h = hns3_get_handle(netdev);
5727         struct hnae3_knic_private_info *kinfo = &h->kinfo;
5728         bool rxfh_configured = netif_is_rxfh_configured(netdev);
5729         u32 new_tqp_num = ch->combined_count;
5730         u16 org_tqp_num;
5731         int ret;
5732
5733         if (hns3_nic_resetting(netdev))
5734                 return -EBUSY;
5735
5736         if (ch->rx_count || ch->tx_count)
5737                 return -EINVAL;
5738
5739         if (kinfo->tc_info.mqprio_active) {
5740                 dev_err(&netdev->dev,
5741                         "it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5742                 return -EINVAL;
5743         }
5744
5745         if (new_tqp_num > hns3_get_max_available_channels(h) ||
5746             new_tqp_num < 1) {
5747                 dev_err(&netdev->dev,
5748                         "Change tqps fail, the tqp range is from 1 to %u",
5749                         hns3_get_max_available_channels(h));
5750                 return -EINVAL;
5751         }
5752
5753         if (kinfo->rss_size == new_tqp_num)
5754                 return 0;
5755
5756         netif_dbg(h, drv, netdev,
5757                   "set channels: tqp_num=%u, rxfh=%d\n",
5758                   new_tqp_num, rxfh_configured);
5759
5760         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5761         if (ret)
5762                 return ret;
5763
5764         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5765         if (ret)
5766                 return ret;
5767
5768         org_tqp_num = h->kinfo.num_tqps;
5769         ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5770         if (ret) {
5771                 int ret1;
5772
5773                 netdev_warn(netdev,
5774                             "Change channels fail, revert to old value\n");
5775                 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5776                 if (ret1) {
5777                         netdev_err(netdev,
5778                                    "revert to old channel fail\n");
5779                         return ret1;
5780                 }
5781
5782                 return ret;
5783         }
5784
5785         return 0;
5786 }
5787
5788 static const struct hns3_hw_error_info hns3_hw_err[] = {
5789         { .type = HNAE3_PPU_POISON_ERROR,
5790           .msg = "PPU poison" },
5791         { .type = HNAE3_CMDQ_ECC_ERROR,
5792           .msg = "IMP CMDQ error" },
5793         { .type = HNAE3_IMP_RD_POISON_ERROR,
5794           .msg = "IMP RD poison" },
5795         { .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5796           .msg = "ROCEE AXI RESP error" },
5797 };
5798
5799 static void hns3_process_hw_error(struct hnae3_handle *handle,
5800                                   enum hnae3_hw_error_type type)
5801 {
5802         int i;
5803
5804         for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5805                 if (hns3_hw_err[i].type == type) {
5806                         dev_err(&handle->pdev->dev, "Detected %s!\n",
5807                                 hns3_hw_err[i].msg);
5808                         break;
5809                 }
5810         }
5811 }
5812
5813 static const struct hnae3_client_ops client_ops = {
5814         .init_instance = hns3_client_init,
5815         .uninit_instance = hns3_client_uninit,
5816         .link_status_change = hns3_link_status_change,
5817         .reset_notify = hns3_reset_notify,
5818         .process_hw_error = hns3_process_hw_error,
5819 };
5820
5821 /* hns3_init_module - Driver registration routine
5822  * hns3_init_module is the first routine called when the driver is
5823  * loaded. All it does is register with the PCI subsystem.
5824  */
5825 static int __init hns3_init_module(void)
5826 {
5827         int ret;
5828
5829         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5830         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
5831
5832         client.type = HNAE3_CLIENT_KNIC;
5833         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
5834                  hns3_driver_name);
5835
5836         client.ops = &client_ops;
5837
5838         INIT_LIST_HEAD(&client.node);
5839
5840         hns3_dbg_register_debugfs(hns3_driver_name);
5841
5842         ret = hnae3_register_client(&client);
5843         if (ret)
5844                 goto err_reg_client;
5845
5846         ret = pci_register_driver(&hns3_driver);
5847         if (ret)
5848                 goto err_reg_driver;
5849
5850         return ret;
5851
5852 err_reg_driver:
5853         hnae3_unregister_client(&client);
5854 err_reg_client:
5855         hns3_dbg_unregister_debugfs();
5856         return ret;
5857 }
5858 module_init(hns3_init_module);
5859
5860 /* hns3_exit_module - Driver exit cleanup routine
5861  * hns3_exit_module is called just before the driver is removed
5862  * from memory.
5863  */
5864 static void __exit hns3_exit_module(void)
5865 {
5866         pci_unregister_driver(&hns3_driver);
5867         hnae3_unregister_client(&client);
5868         hns3_dbg_unregister_debugfs();
5869 }
5870 module_exit(hns3_exit_module);
5871
5872 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
5873 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
5874 MODULE_LICENSE("GPL");
5875 MODULE_ALIAS("pci:hns-nic");