4c2fb86889565c67eda59d62757fb0a4c39c3df5
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34
35 #define hns3_set_field(origin, shift, val)      ((origin) |= ((val) << (shift)))
36 #define hns3_tx_bd_count(S)     DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37
38 #define hns3_rl_err(fmt, ...)                                           \
39         do {                                                            \
40                 if (net_ratelimit())                                    \
41                         netdev_err(fmt, ##__VA_ARGS__);                 \
42         } while (0)
43
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48                         "Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55
56 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
57                            NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
58
59 #define HNS3_INNER_VLAN_TAG     1
60 #define HNS3_OUTER_VLAN_TAG     2
61
62 #define HNS3_MIN_TX_LEN         33U
63
64 /* hns3_pci_tbl - PCI Device ID Table
65  *
66  * Last entry must be all 0s
67  *
68  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
69  *   Class, Class Mask, private data (not used) }
70  */
71 static const struct pci_device_id hns3_pci_tbl[] = {
72         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
73         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
74         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
75          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
77          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
79          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
81          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
83          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
84         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
85          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
87         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
88          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
89         /* required last entry */
90         {0, }
91 };
92 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
93
94 static irqreturn_t hns3_irq_handle(int irq, void *vector)
95 {
96         struct hns3_enet_tqp_vector *tqp_vector = vector;
97
98         napi_schedule_irqoff(&tqp_vector->napi);
99
100         return IRQ_HANDLED;
101 }
102
103 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
104 {
105         struct hns3_enet_tqp_vector *tqp_vectors;
106         unsigned int i;
107
108         for (i = 0; i < priv->vector_num; i++) {
109                 tqp_vectors = &priv->tqp_vector[i];
110
111                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
112                         continue;
113
114                 /* clear the affinity mask */
115                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
116
117                 /* release the irq resource */
118                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
119                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
120         }
121 }
122
123 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
124 {
125         struct hns3_enet_tqp_vector *tqp_vectors;
126         int txrx_int_idx = 0;
127         int rx_int_idx = 0;
128         int tx_int_idx = 0;
129         unsigned int i;
130         int ret;
131
132         for (i = 0; i < priv->vector_num; i++) {
133                 tqp_vectors = &priv->tqp_vector[i];
134
135                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
136                         continue;
137
138                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
139                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
140                                  "%s-%s-%s-%d", hns3_driver_name,
141                                  pci_name(priv->ae_handle->pdev),
142                                  "TxRx", txrx_int_idx++);
143                         txrx_int_idx++;
144                 } else if (tqp_vectors->rx_group.ring) {
145                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
146                                  "%s-%s-%s-%d", hns3_driver_name,
147                                  pci_name(priv->ae_handle->pdev),
148                                  "Rx", rx_int_idx++);
149                 } else if (tqp_vectors->tx_group.ring) {
150                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
151                                  "%s-%s-%s-%d", hns3_driver_name,
152                                  pci_name(priv->ae_handle->pdev),
153                                  "Tx", tx_int_idx++);
154                 } else {
155                         /* Skip this unused q_vector */
156                         continue;
157                 }
158
159                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
160
161                 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
162                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
163                                   tqp_vectors->name, tqp_vectors);
164                 if (ret) {
165                         netdev_err(priv->netdev, "request irq(%d) fail\n",
166                                    tqp_vectors->vector_irq);
167                         hns3_nic_uninit_irq(priv);
168                         return ret;
169                 }
170
171                 irq_set_affinity_hint(tqp_vectors->vector_irq,
172                                       &tqp_vectors->affinity_mask);
173
174                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
175         }
176
177         return 0;
178 }
179
180 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
181                                  u32 mask_en)
182 {
183         writel(mask_en, tqp_vector->mask_addr);
184 }
185
186 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188         napi_enable(&tqp_vector->napi);
189         enable_irq(tqp_vector->vector_irq);
190
191         /* enable vector */
192         hns3_mask_vector_irq(tqp_vector, 1);
193 }
194
195 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
196 {
197         /* disable vector */
198         hns3_mask_vector_irq(tqp_vector, 0);
199
200         disable_irq(tqp_vector->vector_irq);
201         napi_disable(&tqp_vector->napi);
202 }
203
204 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
205                                  u32 rl_value)
206 {
207         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
208
209         /* this defines the configuration for RL (Interrupt Rate Limiter).
210          * Rl defines rate of interrupts i.e. number of interrupts-per-second
211          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
212          */
213
214         if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
215             !tqp_vector->rx_group.coal.adapt_enable)
216                 /* According to the hardware, the range of rl_reg is
217                  * 0-59 and the unit is 4.
218                  */
219                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
220
221         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
222 }
223
224 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
225                                     u32 gl_value)
226 {
227         u32 new_val;
228
229         if (tqp_vector->rx_group.coal.unit_1us)
230                 new_val = gl_value | HNS3_INT_GL_1US;
231         else
232                 new_val = hns3_gl_usec_to_reg(gl_value);
233
234         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
235 }
236
237 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
238                                     u32 gl_value)
239 {
240         u32 new_val;
241
242         if (tqp_vector->tx_group.coal.unit_1us)
243                 new_val = gl_value | HNS3_INT_GL_1US;
244         else
245                 new_val = hns3_gl_usec_to_reg(gl_value);
246
247         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
248 }
249
250 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
251                                     u32 ql_value)
252 {
253         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
254 }
255
256 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
257                                     u32 ql_value)
258 {
259         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
260 }
261
262 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
263                                       struct hns3_nic_priv *priv)
264 {
265         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
266         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
267         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
268
269         /* initialize the configuration for interrupt coalescing.
270          * 1. GL (Interrupt Gap Limiter)
271          * 2. RL (Interrupt Rate Limiter)
272          * 3. QL (Interrupt Quantity Limiter)
273          *
274          * Default: enable interrupt coalescing self-adaptive and GL
275          */
276         tx_coal->adapt_enable = 1;
277         rx_coal->adapt_enable = 1;
278
279         tx_coal->int_gl = HNS3_INT_GL_50K;
280         rx_coal->int_gl = HNS3_INT_GL_50K;
281
282         rx_coal->flow_level = HNS3_FLOW_LOW;
283         tx_coal->flow_level = HNS3_FLOW_LOW;
284
285         /* device version above V3(include V3), GL can configure 1us
286          * unit, so uses 1us unit.
287          */
288         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
289                 tx_coal->unit_1us = 1;
290                 rx_coal->unit_1us = 1;
291         }
292
293         if (ae_dev->dev_specs.int_ql_max) {
294                 tx_coal->ql_enable = 1;
295                 rx_coal->ql_enable = 1;
296                 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
297                 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
298                 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
299                 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
300         }
301 }
302
303 static void
304 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
305                              struct hns3_nic_priv *priv)
306 {
307         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
308         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
309         struct hnae3_handle *h = priv->ae_handle;
310
311         hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
312         hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
313         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
314
315         if (tx_coal->ql_enable)
316                 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
317
318         if (rx_coal->ql_enable)
319                 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
320 }
321
322 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
323 {
324         struct hnae3_handle *h = hns3_get_handle(netdev);
325         struct hnae3_knic_private_info *kinfo = &h->kinfo;
326         unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
327         int i, ret;
328
329         if (kinfo->num_tc <= 1) {
330                 netdev_reset_tc(netdev);
331         } else {
332                 ret = netdev_set_num_tc(netdev, kinfo->num_tc);
333                 if (ret) {
334                         netdev_err(netdev,
335                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
336                         return ret;
337                 }
338
339                 for (i = 0; i < HNAE3_MAX_TC; i++) {
340                         if (!kinfo->tc_info[i].enable)
341                                 continue;
342
343                         netdev_set_tc_queue(netdev,
344                                             kinfo->tc_info[i].tc,
345                                             kinfo->tc_info[i].tqp_count,
346                                             kinfo->tc_info[i].tqp_offset);
347                 }
348         }
349
350         ret = netif_set_real_num_tx_queues(netdev, queue_size);
351         if (ret) {
352                 netdev_err(netdev,
353                            "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
354                 return ret;
355         }
356
357         ret = netif_set_real_num_rx_queues(netdev, queue_size);
358         if (ret) {
359                 netdev_err(netdev,
360                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
361                 return ret;
362         }
363
364         return 0;
365 }
366
367 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
368 {
369         u16 alloc_tqps, max_rss_size, rss_size;
370
371         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
372         rss_size = alloc_tqps / h->kinfo.num_tc;
373
374         return min_t(u16, rss_size, max_rss_size);
375 }
376
377 static void hns3_tqp_enable(struct hnae3_queue *tqp)
378 {
379         u32 rcb_reg;
380
381         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
382         rcb_reg |= BIT(HNS3_RING_EN_B);
383         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
384 }
385
386 static void hns3_tqp_disable(struct hnae3_queue *tqp)
387 {
388         u32 rcb_reg;
389
390         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
391         rcb_reg &= ~BIT(HNS3_RING_EN_B);
392         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
393 }
394
395 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
396 {
397 #ifdef CONFIG_RFS_ACCEL
398         free_irq_cpu_rmap(netdev->rx_cpu_rmap);
399         netdev->rx_cpu_rmap = NULL;
400 #endif
401 }
402
403 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
404 {
405 #ifdef CONFIG_RFS_ACCEL
406         struct hns3_nic_priv *priv = netdev_priv(netdev);
407         struct hns3_enet_tqp_vector *tqp_vector;
408         int i, ret;
409
410         if (!netdev->rx_cpu_rmap) {
411                 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
412                 if (!netdev->rx_cpu_rmap)
413                         return -ENOMEM;
414         }
415
416         for (i = 0; i < priv->vector_num; i++) {
417                 tqp_vector = &priv->tqp_vector[i];
418                 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
419                                        tqp_vector->vector_irq);
420                 if (ret) {
421                         hns3_free_rx_cpu_rmap(netdev);
422                         return ret;
423                 }
424         }
425 #endif
426         return 0;
427 }
428
429 static int hns3_nic_net_up(struct net_device *netdev)
430 {
431         struct hns3_nic_priv *priv = netdev_priv(netdev);
432         struct hnae3_handle *h = priv->ae_handle;
433         int i, j;
434         int ret;
435
436         ret = hns3_nic_reset_all_ring(h);
437         if (ret)
438                 return ret;
439
440         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
441
442         /* enable the vectors */
443         for (i = 0; i < priv->vector_num; i++)
444                 hns3_vector_enable(&priv->tqp_vector[i]);
445
446         /* enable rcb */
447         for (j = 0; j < h->kinfo.num_tqps; j++)
448                 hns3_tqp_enable(h->kinfo.tqp[j]);
449
450         /* start the ae_dev */
451         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
452         if (ret) {
453                 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
454                 while (j--)
455                         hns3_tqp_disable(h->kinfo.tqp[j]);
456
457                 for (j = i - 1; j >= 0; j--)
458                         hns3_vector_disable(&priv->tqp_vector[j]);
459         }
460
461         return ret;
462 }
463
464 static void hns3_config_xps(struct hns3_nic_priv *priv)
465 {
466         int i;
467
468         for (i = 0; i < priv->vector_num; i++) {
469                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
470                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
471
472                 while (ring) {
473                         int ret;
474
475                         ret = netif_set_xps_queue(priv->netdev,
476                                                   &tqp_vector->affinity_mask,
477                                                   ring->tqp->tqp_index);
478                         if (ret)
479                                 netdev_warn(priv->netdev,
480                                             "set xps queue failed: %d", ret);
481
482                         ring = ring->next;
483                 }
484         }
485 }
486
487 static int hns3_nic_net_open(struct net_device *netdev)
488 {
489         struct hns3_nic_priv *priv = netdev_priv(netdev);
490         struct hnae3_handle *h = hns3_get_handle(netdev);
491         struct hnae3_knic_private_info *kinfo;
492         int i, ret;
493
494         if (hns3_nic_resetting(netdev))
495                 return -EBUSY;
496
497         netif_carrier_off(netdev);
498
499         ret = hns3_nic_set_real_num_queue(netdev);
500         if (ret)
501                 return ret;
502
503         ret = hns3_nic_net_up(netdev);
504         if (ret) {
505                 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
506                 return ret;
507         }
508
509         kinfo = &h->kinfo;
510         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
511                 netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
512
513         if (h->ae_algo->ops->set_timer_task)
514                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
515
516         hns3_config_xps(priv);
517
518         netif_dbg(h, drv, netdev, "net open\n");
519
520         return 0;
521 }
522
523 static void hns3_reset_tx_queue(struct hnae3_handle *h)
524 {
525         struct net_device *ndev = h->kinfo.netdev;
526         struct hns3_nic_priv *priv = netdev_priv(ndev);
527         struct netdev_queue *dev_queue;
528         u32 i;
529
530         for (i = 0; i < h->kinfo.num_tqps; i++) {
531                 dev_queue = netdev_get_tx_queue(ndev,
532                                                 priv->ring[i].queue_index);
533                 netdev_tx_reset_queue(dev_queue);
534         }
535 }
536
537 static void hns3_nic_net_down(struct net_device *netdev)
538 {
539         struct hns3_nic_priv *priv = netdev_priv(netdev);
540         struct hnae3_handle *h = hns3_get_handle(netdev);
541         const struct hnae3_ae_ops *ops;
542         int i;
543
544         /* disable vectors */
545         for (i = 0; i < priv->vector_num; i++)
546                 hns3_vector_disable(&priv->tqp_vector[i]);
547
548         /* disable rcb */
549         for (i = 0; i < h->kinfo.num_tqps; i++)
550                 hns3_tqp_disable(h->kinfo.tqp[i]);
551
552         /* stop ae_dev */
553         ops = priv->ae_handle->ae_algo->ops;
554         if (ops->stop)
555                 ops->stop(priv->ae_handle);
556
557         /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
558          * during reset process, because driver may not be able
559          * to disable the ring through firmware when downing the netdev.
560          */
561         if (!hns3_nic_resetting(netdev))
562                 hns3_clear_all_ring(priv->ae_handle, false);
563
564         hns3_reset_tx_queue(priv->ae_handle);
565 }
566
567 static int hns3_nic_net_stop(struct net_device *netdev)
568 {
569         struct hns3_nic_priv *priv = netdev_priv(netdev);
570         struct hnae3_handle *h = hns3_get_handle(netdev);
571
572         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
573                 return 0;
574
575         netif_dbg(h, drv, netdev, "net stop\n");
576
577         if (h->ae_algo->ops->set_timer_task)
578                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
579
580         netif_tx_stop_all_queues(netdev);
581         netif_carrier_off(netdev);
582
583         hns3_nic_net_down(netdev);
584
585         return 0;
586 }
587
588 static int hns3_nic_uc_sync(struct net_device *netdev,
589                             const unsigned char *addr)
590 {
591         struct hnae3_handle *h = hns3_get_handle(netdev);
592
593         if (h->ae_algo->ops->add_uc_addr)
594                 return h->ae_algo->ops->add_uc_addr(h, addr);
595
596         return 0;
597 }
598
599 static int hns3_nic_uc_unsync(struct net_device *netdev,
600                               const unsigned char *addr)
601 {
602         struct hnae3_handle *h = hns3_get_handle(netdev);
603
604         /* need ignore the request of removing device address, because
605          * we store the device address and other addresses of uc list
606          * in the function's mac filter list.
607          */
608         if (ether_addr_equal(addr, netdev->dev_addr))
609                 return 0;
610
611         if (h->ae_algo->ops->rm_uc_addr)
612                 return h->ae_algo->ops->rm_uc_addr(h, addr);
613
614         return 0;
615 }
616
617 static int hns3_nic_mc_sync(struct net_device *netdev,
618                             const unsigned char *addr)
619 {
620         struct hnae3_handle *h = hns3_get_handle(netdev);
621
622         if (h->ae_algo->ops->add_mc_addr)
623                 return h->ae_algo->ops->add_mc_addr(h, addr);
624
625         return 0;
626 }
627
628 static int hns3_nic_mc_unsync(struct net_device *netdev,
629                               const unsigned char *addr)
630 {
631         struct hnae3_handle *h = hns3_get_handle(netdev);
632
633         if (h->ae_algo->ops->rm_mc_addr)
634                 return h->ae_algo->ops->rm_mc_addr(h, addr);
635
636         return 0;
637 }
638
639 static u8 hns3_get_netdev_flags(struct net_device *netdev)
640 {
641         u8 flags = 0;
642
643         if (netdev->flags & IFF_PROMISC) {
644                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
645         } else {
646                 flags |= HNAE3_VLAN_FLTR;
647                 if (netdev->flags & IFF_ALLMULTI)
648                         flags |= HNAE3_USER_MPE;
649         }
650
651         return flags;
652 }
653
654 static void hns3_nic_set_rx_mode(struct net_device *netdev)
655 {
656         struct hnae3_handle *h = hns3_get_handle(netdev);
657         u8 new_flags;
658
659         new_flags = hns3_get_netdev_flags(netdev);
660
661         __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
662         __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
663
664         /* User mode Promisc mode enable and vlan filtering is disabled to
665          * let all packets in.
666          */
667         h->netdev_flags = new_flags;
668         hns3_request_update_promisc_mode(h);
669 }
670
671 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
672 {
673         const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
674
675         if (ops->request_update_promisc_mode)
676                 ops->request_update_promisc_mode(handle);
677 }
678
679 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
680 {
681         struct hns3_nic_priv *priv = netdev_priv(netdev);
682         struct hnae3_handle *h = priv->ae_handle;
683         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(h->pdev);
684         bool last_state;
685
686         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
687             h->ae_algo->ops->enable_vlan_filter) {
688                 last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
689                 if (enable != last_state) {
690                         netdev_info(netdev,
691                                     "%s vlan filter\n",
692                                     enable ? "enable" : "disable");
693                         h->ae_algo->ops->enable_vlan_filter(h, enable);
694                 }
695         }
696 }
697
698 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
699                         u16 *mss, u32 *type_cs_vlan_tso)
700 {
701         u32 l4_offset, hdr_len;
702         union l3_hdr_info l3;
703         union l4_hdr_info l4;
704         u32 l4_paylen;
705         int ret;
706
707         if (!skb_is_gso(skb))
708                 return 0;
709
710         ret = skb_cow_head(skb, 0);
711         if (unlikely(ret < 0))
712                 return ret;
713
714         l3.hdr = skb_network_header(skb);
715         l4.hdr = skb_transport_header(skb);
716
717         /* Software should clear the IPv4's checksum field when tso is
718          * needed.
719          */
720         if (l3.v4->version == 4)
721                 l3.v4->check = 0;
722
723         /* tunnel packet */
724         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
725                                          SKB_GSO_GRE_CSUM |
726                                          SKB_GSO_UDP_TUNNEL |
727                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
728                 /* reset l3&l4 pointers from outer to inner headers */
729                 l3.hdr = skb_inner_network_header(skb);
730                 l4.hdr = skb_inner_transport_header(skb);
731
732                 /* Software should clear the IPv4's checksum field when
733                  * tso is needed.
734                  */
735                 if (l3.v4->version == 4)
736                         l3.v4->check = 0;
737         }
738
739         /* normal or tunnel packet */
740         l4_offset = l4.hdr - skb->data;
741
742         /* remove payload length from inner pseudo checksum when tso */
743         l4_paylen = skb->len - l4_offset;
744
745         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
746                 hdr_len = sizeof(*l4.udp) + l4_offset;
747                 csum_replace_by_diff(&l4.udp->check,
748                                      (__force __wsum)htonl(l4_paylen));
749         } else {
750                 hdr_len = (l4.tcp->doff << 2) + l4_offset;
751                 csum_replace_by_diff(&l4.tcp->check,
752                                      (__force __wsum)htonl(l4_paylen));
753         }
754
755         /* find the txbd field values */
756         *paylen_fdop_ol4cs = skb->len - hdr_len;
757         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
758
759         /* offload outer UDP header checksum */
760         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
761                 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
762
763         /* get MSS for TSO */
764         *mss = skb_shinfo(skb)->gso_size;
765
766         trace_hns3_tso(skb);
767
768         return 0;
769 }
770
771 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
772                                 u8 *il4_proto)
773 {
774         union l3_hdr_info l3;
775         unsigned char *l4_hdr;
776         unsigned char *exthdr;
777         u8 l4_proto_tmp;
778         __be16 frag_off;
779
780         /* find outer header point */
781         l3.hdr = skb_network_header(skb);
782         l4_hdr = skb_transport_header(skb);
783
784         if (skb->protocol == htons(ETH_P_IPV6)) {
785                 exthdr = l3.hdr + sizeof(*l3.v6);
786                 l4_proto_tmp = l3.v6->nexthdr;
787                 if (l4_hdr != exthdr)
788                         ipv6_skip_exthdr(skb, exthdr - skb->data,
789                                          &l4_proto_tmp, &frag_off);
790         } else if (skb->protocol == htons(ETH_P_IP)) {
791                 l4_proto_tmp = l3.v4->protocol;
792         } else {
793                 return -EINVAL;
794         }
795
796         *ol4_proto = l4_proto_tmp;
797
798         /* tunnel packet */
799         if (!skb->encapsulation) {
800                 *il4_proto = 0;
801                 return 0;
802         }
803
804         /* find inner header point */
805         l3.hdr = skb_inner_network_header(skb);
806         l4_hdr = skb_inner_transport_header(skb);
807
808         if (l3.v6->version == 6) {
809                 exthdr = l3.hdr + sizeof(*l3.v6);
810                 l4_proto_tmp = l3.v6->nexthdr;
811                 if (l4_hdr != exthdr)
812                         ipv6_skip_exthdr(skb, exthdr - skb->data,
813                                          &l4_proto_tmp, &frag_off);
814         } else if (l3.v4->version == 4) {
815                 l4_proto_tmp = l3.v4->protocol;
816         }
817
818         *il4_proto = l4_proto_tmp;
819
820         return 0;
821 }
822
823 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
824  * and it is udp packet, which has a dest port as the IANA assigned.
825  * the hardware is expected to do the checksum offload, but the
826  * hardware will not do the checksum offload when udp dest port is
827  * 4789 or 6081.
828  */
829 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
830 {
831         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
832         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
833         union l4_hdr_info l4;
834
835         /* device version above V3(include V3), the hardware can
836          * do this checksum offload.
837          */
838         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
839                 return false;
840
841         l4.hdr = skb_transport_header(skb);
842
843         if (!(!skb->encapsulation &&
844               (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
845               l4.udp->dest == htons(GENEVE_UDP_PORT))))
846                 return false;
847
848         skb_checksum_help(skb);
849
850         return true;
851 }
852
853 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
854                                   u32 *ol_type_vlan_len_msec)
855 {
856         u32 l2_len, l3_len, l4_len;
857         unsigned char *il2_hdr;
858         union l3_hdr_info l3;
859         union l4_hdr_info l4;
860
861         l3.hdr = skb_network_header(skb);
862         l4.hdr = skb_transport_header(skb);
863
864         /* compute OL2 header size, defined in 2 Bytes */
865         l2_len = l3.hdr - skb->data;
866         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
867
868         /* compute OL3 header size, defined in 4 Bytes */
869         l3_len = l4.hdr - l3.hdr;
870         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
871
872         il2_hdr = skb_inner_mac_header(skb);
873         /* compute OL4 header size, defined in 4 Bytes */
874         l4_len = il2_hdr - l4.hdr;
875         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
876
877         /* define outer network header type */
878         if (skb->protocol == htons(ETH_P_IP)) {
879                 if (skb_is_gso(skb))
880                         hns3_set_field(*ol_type_vlan_len_msec,
881                                        HNS3_TXD_OL3T_S,
882                                        HNS3_OL3T_IPV4_CSUM);
883                 else
884                         hns3_set_field(*ol_type_vlan_len_msec,
885                                        HNS3_TXD_OL3T_S,
886                                        HNS3_OL3T_IPV4_NO_CSUM);
887
888         } else if (skb->protocol == htons(ETH_P_IPV6)) {
889                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
890                                HNS3_OL3T_IPV6);
891         }
892
893         if (ol4_proto == IPPROTO_UDP)
894                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
895                                HNS3_TUN_MAC_IN_UDP);
896         else if (ol4_proto == IPPROTO_GRE)
897                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
898                                HNS3_TUN_NVGRE);
899 }
900
901 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
902                            u8 il4_proto, u32 *type_cs_vlan_tso,
903                            u32 *ol_type_vlan_len_msec)
904 {
905         unsigned char *l2_hdr = skb->data;
906         u32 l4_proto = ol4_proto;
907         union l4_hdr_info l4;
908         union l3_hdr_info l3;
909         u32 l2_len, l3_len;
910
911         l4.hdr = skb_transport_header(skb);
912         l3.hdr = skb_network_header(skb);
913
914         /* handle encapsulation skb */
915         if (skb->encapsulation) {
916                 /* If this is a not UDP/GRE encapsulation skb */
917                 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
918                         /* drop the skb tunnel packet if hardware don't support,
919                          * because hardware can't calculate csum when TSO.
920                          */
921                         if (skb_is_gso(skb))
922                                 return -EDOM;
923
924                         /* the stack computes the IP header already,
925                          * driver calculate l4 checksum when not TSO.
926                          */
927                         skb_checksum_help(skb);
928                         return 0;
929                 }
930
931                 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
932
933                 /* switch to inner header */
934                 l2_hdr = skb_inner_mac_header(skb);
935                 l3.hdr = skb_inner_network_header(skb);
936                 l4.hdr = skb_inner_transport_header(skb);
937                 l4_proto = il4_proto;
938         }
939
940         if (l3.v4->version == 4) {
941                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
942                                HNS3_L3T_IPV4);
943
944                 /* the stack computes the IP header already, the only time we
945                  * need the hardware to recompute it is in the case of TSO.
946                  */
947                 if (skb_is_gso(skb))
948                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
949         } else if (l3.v6->version == 6) {
950                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
951                                HNS3_L3T_IPV6);
952         }
953
954         /* compute inner(/normal) L2 header size, defined in 2 Bytes */
955         l2_len = l3.hdr - l2_hdr;
956         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
957
958         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
959         l3_len = l4.hdr - l3.hdr;
960         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
961
962         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
963         switch (l4_proto) {
964         case IPPROTO_TCP:
965                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
966                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
967                                HNS3_L4T_TCP);
968                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
969                                l4.tcp->doff);
970                 break;
971         case IPPROTO_UDP:
972                 if (hns3_tunnel_csum_bug(skb))
973                         break;
974
975                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
976                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
977                                HNS3_L4T_UDP);
978                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
979                                (sizeof(struct udphdr) >> 2));
980                 break;
981         case IPPROTO_SCTP:
982                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
983                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
984                                HNS3_L4T_SCTP);
985                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
986                                (sizeof(struct sctphdr) >> 2));
987                 break;
988         default:
989                 /* drop the skb tunnel packet if hardware don't support,
990                  * because hardware can't calculate csum when TSO.
991                  */
992                 if (skb_is_gso(skb))
993                         return -EDOM;
994
995                 /* the stack computes the IP header already,
996                  * driver calculate l4 checksum when not TSO.
997                  */
998                 skb_checksum_help(skb);
999                 return 0;
1000         }
1001
1002         return 0;
1003 }
1004
1005 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1006                              struct sk_buff *skb)
1007 {
1008         struct hnae3_handle *handle = tx_ring->tqp->handle;
1009         struct hnae3_ae_dev *ae_dev;
1010         struct vlan_ethhdr *vhdr;
1011         int rc;
1012
1013         if (!(skb->protocol == htons(ETH_P_8021Q) ||
1014               skb_vlan_tag_present(skb)))
1015                 return 0;
1016
1017         /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1018          * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1019          * will cause RAS error.
1020          */
1021         ae_dev = pci_get_drvdata(handle->pdev);
1022         if (unlikely(skb_vlan_tagged_multi(skb) &&
1023                      ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1024                      handle->port_base_vlan_state ==
1025                      HNAE3_PORT_BASE_VLAN_ENABLE))
1026                 return -EINVAL;
1027
1028         if (skb->protocol == htons(ETH_P_8021Q) &&
1029             !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1030                 /* When HW VLAN acceleration is turned off, and the stack
1031                  * sets the protocol to 802.1q, the driver just need to
1032                  * set the protocol to the encapsulated ethertype.
1033                  */
1034                 skb->protocol = vlan_get_protocol(skb);
1035                 return 0;
1036         }
1037
1038         if (skb_vlan_tag_present(skb)) {
1039                 /* Based on hw strategy, use out_vtag in two layer tag case,
1040                  * and use inner_vtag in one tag case.
1041                  */
1042                 if (skb->protocol == htons(ETH_P_8021Q) &&
1043                     handle->port_base_vlan_state ==
1044                     HNAE3_PORT_BASE_VLAN_DISABLE)
1045                         rc = HNS3_OUTER_VLAN_TAG;
1046                 else
1047                         rc = HNS3_INNER_VLAN_TAG;
1048
1049                 skb->protocol = vlan_get_protocol(skb);
1050                 return rc;
1051         }
1052
1053         rc = skb_cow_head(skb, 0);
1054         if (unlikely(rc < 0))
1055                 return rc;
1056
1057         vhdr = (struct vlan_ethhdr *)skb->data;
1058         vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1059                                          & VLAN_PRIO_MASK);
1060
1061         skb->protocol = vlan_get_protocol(skb);
1062         return 0;
1063 }
1064
1065 /* check if the hardware is capable of checksum offloading */
1066 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1067 {
1068         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1069
1070         /* Kindly note, due to backward compatibility of the TX descriptor,
1071          * HW checksum of the non-IP packets and GSO packets is handled at
1072          * different place in the following code
1073          */
1074         if (skb->csum_not_inet || skb_is_gso(skb) ||
1075             !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1076                 return false;
1077
1078         return true;
1079 }
1080
1081 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1082                               struct sk_buff *skb, struct hns3_desc *desc)
1083 {
1084         u32 ol_type_vlan_len_msec = 0;
1085         u32 paylen_ol4cs = skb->len;
1086         u32 type_cs_vlan_tso = 0;
1087         u16 mss_hw_csum = 0;
1088         u16 inner_vtag = 0;
1089         u16 out_vtag = 0;
1090         int ret;
1091
1092         ret = hns3_handle_vtags(ring, skb);
1093         if (unlikely(ret < 0)) {
1094                 u64_stats_update_begin(&ring->syncp);
1095                 ring->stats.tx_vlan_err++;
1096                 u64_stats_update_end(&ring->syncp);
1097                 return ret;
1098         } else if (ret == HNS3_INNER_VLAN_TAG) {
1099                 inner_vtag = skb_vlan_tag_get(skb);
1100                 inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1101                                 VLAN_PRIO_MASK;
1102                 hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1103         } else if (ret == HNS3_OUTER_VLAN_TAG) {
1104                 out_vtag = skb_vlan_tag_get(skb);
1105                 out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1106                                 VLAN_PRIO_MASK;
1107                 hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1108                                1);
1109         }
1110
1111         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1112                 u8 ol4_proto, il4_proto;
1113
1114                 if (hns3_check_hw_tx_csum(skb)) {
1115                         /* set checksum start and offset, defined in 2 Bytes */
1116                         hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1117                                        skb_checksum_start_offset(skb) >> 1);
1118                         hns3_set_field(ol_type_vlan_len_msec,
1119                                        HNS3_TXD_CSUM_OFFSET_S,
1120                                        skb->csum_offset >> 1);
1121                         mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1122                         goto out_hw_tx_csum;
1123                 }
1124
1125                 skb_reset_mac_len(skb);
1126
1127                 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1128                 if (unlikely(ret < 0)) {
1129                         u64_stats_update_begin(&ring->syncp);
1130                         ring->stats.tx_l4_proto_err++;
1131                         u64_stats_update_end(&ring->syncp);
1132                         return ret;
1133                 }
1134
1135                 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1136                                       &type_cs_vlan_tso,
1137                                       &ol_type_vlan_len_msec);
1138                 if (unlikely(ret < 0)) {
1139                         u64_stats_update_begin(&ring->syncp);
1140                         ring->stats.tx_l2l3l4_err++;
1141                         u64_stats_update_end(&ring->syncp);
1142                         return ret;
1143                 }
1144
1145                 ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1146                                    &type_cs_vlan_tso);
1147                 if (unlikely(ret < 0)) {
1148                         u64_stats_update_begin(&ring->syncp);
1149                         ring->stats.tx_tso_err++;
1150                         u64_stats_update_end(&ring->syncp);
1151                         return ret;
1152                 }
1153         }
1154
1155 out_hw_tx_csum:
1156         /* Set txbd */
1157         desc->tx.ol_type_vlan_len_msec =
1158                 cpu_to_le32(ol_type_vlan_len_msec);
1159         desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1160         desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1161         desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1162         desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1163         desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1164
1165         return 0;
1166 }
1167
1168 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1169                           unsigned int size, enum hns_desc_type type)
1170 {
1171 #define HNS3_LIKELY_BD_NUM      1
1172
1173         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1174         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1175         struct device *dev = ring_to_dev(ring);
1176         skb_frag_t *frag;
1177         unsigned int frag_buf_num;
1178         int k, sizeoflast;
1179         dma_addr_t dma;
1180
1181         if (type == DESC_TYPE_FRAGLIST_SKB ||
1182             type == DESC_TYPE_SKB) {
1183                 struct sk_buff *skb = (struct sk_buff *)priv;
1184
1185                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1186         } else {
1187                 frag = (skb_frag_t *)priv;
1188                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1189         }
1190
1191         if (unlikely(dma_mapping_error(dev, dma))) {
1192                 u64_stats_update_begin(&ring->syncp);
1193                 ring->stats.sw_err_cnt++;
1194                 u64_stats_update_end(&ring->syncp);
1195                 return -ENOMEM;
1196         }
1197
1198         desc_cb->priv = priv;
1199         desc_cb->length = size;
1200         desc_cb->dma = dma;
1201         desc_cb->type = type;
1202
1203         if (likely(size <= HNS3_MAX_BD_SIZE)) {
1204                 desc->addr = cpu_to_le64(dma);
1205                 desc->tx.send_size = cpu_to_le16(size);
1206                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1207                         cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1208
1209                 trace_hns3_tx_desc(ring, ring->next_to_use);
1210                 ring_ptr_move_fw(ring, next_to_use);
1211                 return HNS3_LIKELY_BD_NUM;
1212         }
1213
1214         frag_buf_num = hns3_tx_bd_count(size);
1215         sizeoflast = size % HNS3_MAX_BD_SIZE;
1216         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1217
1218         /* When frag size is bigger than hardware limit, split this frag */
1219         for (k = 0; k < frag_buf_num; k++) {
1220                 /* now, fill the descriptor */
1221                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1222                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1223                                      (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1224                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1225                                 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1226
1227                 trace_hns3_tx_desc(ring, ring->next_to_use);
1228                 /* move ring pointer to next */
1229                 ring_ptr_move_fw(ring, next_to_use);
1230
1231                 desc = &ring->desc[ring->next_to_use];
1232         }
1233
1234         return frag_buf_num;
1235 }
1236
1237 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1238                                     unsigned int bd_num)
1239 {
1240         unsigned int size;
1241         int i;
1242
1243         size = skb_headlen(skb);
1244         while (size > HNS3_MAX_BD_SIZE) {
1245                 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1246                 size -= HNS3_MAX_BD_SIZE;
1247
1248                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1249                         return bd_num;
1250         }
1251
1252         if (size) {
1253                 bd_size[bd_num++] = size;
1254                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1255                         return bd_num;
1256         }
1257
1258         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1259                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1260                 size = skb_frag_size(frag);
1261                 if (!size)
1262                         continue;
1263
1264                 while (size > HNS3_MAX_BD_SIZE) {
1265                         bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1266                         size -= HNS3_MAX_BD_SIZE;
1267
1268                         if (bd_num > HNS3_MAX_TSO_BD_NUM)
1269                                 return bd_num;
1270                 }
1271
1272                 bd_size[bd_num++] = size;
1273                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1274                         return bd_num;
1275         }
1276
1277         return bd_num;
1278 }
1279
1280 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1281                                    u8 max_non_tso_bd_num)
1282 {
1283         struct sk_buff *frag_skb;
1284         unsigned int bd_num = 0;
1285
1286         /* If the total len is within the max bd limit */
1287         if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1288                    skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1289                 return skb_shinfo(skb)->nr_frags + 1U;
1290
1291         /* The below case will always be linearized, return
1292          * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1293          */
1294         if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1295                      (!skb_is_gso(skb) && skb->len >
1296                       HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))))
1297                 return HNS3_MAX_TSO_BD_NUM + 1U;
1298
1299         bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1300
1301         if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1302                 return bd_num;
1303
1304         skb_walk_frags(skb, frag_skb) {
1305                 bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1306                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1307                         return bd_num;
1308         }
1309
1310         return bd_num;
1311 }
1312
1313 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1314 {
1315         if (!skb->encapsulation)
1316                 return skb_transport_offset(skb) + tcp_hdrlen(skb);
1317
1318         return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1319 }
1320
1321 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1322  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1323  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1324  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1325  * than MSS except the last max_non_tso_bd_num - 1 frags.
1326  */
1327 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1328                                      unsigned int bd_num, u8 max_non_tso_bd_num)
1329 {
1330         unsigned int tot_len = 0;
1331         int i;
1332
1333         for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1334                 tot_len += bd_size[i];
1335
1336         /* ensure the first max_non_tso_bd_num frags is greater than
1337          * mss + header
1338          */
1339         if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1340             skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1341                 return true;
1342
1343         /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1344          * than mss except the last one.
1345          */
1346         for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1347                 tot_len -= bd_size[i];
1348                 tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1349
1350                 if (tot_len < skb_shinfo(skb)->gso_size)
1351                         return true;
1352         }
1353
1354         return false;
1355 }
1356
1357 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1358 {
1359         int i;
1360
1361         for (i = 0; i < MAX_SKB_FRAGS; i++)
1362                 size[i] = skb_frag_size(&shinfo->frags[i]);
1363 }
1364
1365 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1366                                   struct net_device *netdev,
1367                                   struct sk_buff *skb)
1368 {
1369         struct hns3_nic_priv *priv = netdev_priv(netdev);
1370         u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1371         unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1372         unsigned int bd_num;
1373
1374         bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num);
1375         if (unlikely(bd_num > max_non_tso_bd_num)) {
1376                 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1377                     !hns3_skb_need_linearized(skb, bd_size, bd_num,
1378                                               max_non_tso_bd_num)) {
1379                         trace_hns3_over_max_bd(skb);
1380                         goto out;
1381                 }
1382
1383                 if (__skb_linearize(skb))
1384                         return -ENOMEM;
1385
1386                 bd_num = hns3_tx_bd_count(skb->len);
1387                 if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1388                     (!skb_is_gso(skb) &&
1389                      bd_num > max_non_tso_bd_num)) {
1390                         trace_hns3_over_max_bd(skb);
1391                         return -ENOMEM;
1392                 }
1393
1394                 u64_stats_update_begin(&ring->syncp);
1395                 ring->stats.tx_copy++;
1396                 u64_stats_update_end(&ring->syncp);
1397         }
1398
1399 out:
1400         if (likely(ring_space(ring) >= bd_num))
1401                 return bd_num;
1402
1403         netif_stop_subqueue(netdev, ring->queue_index);
1404         smp_mb(); /* Memory barrier before checking ring_space */
1405
1406         /* Start queue in case hns3_clean_tx_ring has just made room
1407          * available and has not seen the queue stopped state performed
1408          * by netif_stop_subqueue above.
1409          */
1410         if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1411             !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1412                 netif_start_subqueue(netdev, ring->queue_index);
1413                 return bd_num;
1414         }
1415
1416         return -EBUSY;
1417 }
1418
1419 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1420 {
1421         struct device *dev = ring_to_dev(ring);
1422         unsigned int i;
1423
1424         for (i = 0; i < ring->desc_num; i++) {
1425                 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1426
1427                 memset(desc, 0, sizeof(*desc));
1428
1429                 /* check if this is where we started */
1430                 if (ring->next_to_use == next_to_use_orig)
1431                         break;
1432
1433                 /* rollback one */
1434                 ring_ptr_move_bw(ring, next_to_use);
1435
1436                 if (!ring->desc_cb[ring->next_to_use].dma)
1437                         continue;
1438
1439                 /* unmap the descriptor dma address */
1440                 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1441                     ring->desc_cb[ring->next_to_use].type ==
1442                     DESC_TYPE_FRAGLIST_SKB)
1443                         dma_unmap_single(dev,
1444                                          ring->desc_cb[ring->next_to_use].dma,
1445                                         ring->desc_cb[ring->next_to_use].length,
1446                                         DMA_TO_DEVICE);
1447                 else if (ring->desc_cb[ring->next_to_use].length)
1448                         dma_unmap_page(dev,
1449                                        ring->desc_cb[ring->next_to_use].dma,
1450                                        ring->desc_cb[ring->next_to_use].length,
1451                                        DMA_TO_DEVICE);
1452
1453                 ring->desc_cb[ring->next_to_use].length = 0;
1454                 ring->desc_cb[ring->next_to_use].dma = 0;
1455                 ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1456         }
1457 }
1458
1459 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1460                                  struct sk_buff *skb, enum hns_desc_type type)
1461 {
1462         unsigned int size = skb_headlen(skb);
1463         int i, ret, bd_num = 0;
1464
1465         if (size) {
1466                 ret = hns3_fill_desc(ring, skb, size, type);
1467                 if (unlikely(ret < 0))
1468                         return ret;
1469
1470                 bd_num += ret;
1471         }
1472
1473         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1474                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1475
1476                 size = skb_frag_size(frag);
1477                 if (!size)
1478                         continue;
1479
1480                 ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1481                 if (unlikely(ret < 0))
1482                         return ret;
1483
1484                 bd_num += ret;
1485         }
1486
1487         return bd_num;
1488 }
1489
1490 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
1491                              bool doorbell)
1492 {
1493         ring->pending_buf += num;
1494
1495         if (!doorbell) {
1496                 u64_stats_update_begin(&ring->syncp);
1497                 ring->stats.tx_more++;
1498                 u64_stats_update_end(&ring->syncp);
1499                 return;
1500         }
1501
1502         if (!ring->pending_buf)
1503                 return;
1504
1505         writel(ring->pending_buf,
1506                ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1507         ring->pending_buf = 0;
1508         WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1509 }
1510
1511 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1512 {
1513         struct hns3_nic_priv *priv = netdev_priv(netdev);
1514         struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1515         struct netdev_queue *dev_queue;
1516         int pre_ntu, next_to_use_head;
1517         struct sk_buff *frag_skb;
1518         int bd_num = 0;
1519         bool doorbell;
1520         int ret;
1521
1522         /* Hardware can only handle short frames above 32 bytes */
1523         if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
1524                 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1525                 return NETDEV_TX_OK;
1526         }
1527
1528         /* Prefetch the data used later */
1529         prefetch(skb->data);
1530
1531         ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1532         if (unlikely(ret <= 0)) {
1533                 if (ret == -EBUSY) {
1534                         u64_stats_update_begin(&ring->syncp);
1535                         ring->stats.tx_busy++;
1536                         u64_stats_update_end(&ring->syncp);
1537                         hns3_tx_doorbell(ring, 0, true);
1538                         return NETDEV_TX_BUSY;
1539                 } else if (ret == -ENOMEM) {
1540                         u64_stats_update_begin(&ring->syncp);
1541                         ring->stats.sw_err_cnt++;
1542                         u64_stats_update_end(&ring->syncp);
1543                 }
1544
1545                 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1546                 goto out_err_tx_ok;
1547         }
1548
1549         next_to_use_head = ring->next_to_use;
1550
1551         ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use]);
1552         if (unlikely(ret < 0))
1553                 goto fill_err;
1554
1555         ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1556         if (unlikely(ret < 0))
1557                 goto fill_err;
1558
1559         bd_num += ret;
1560
1561         skb_walk_frags(skb, frag_skb) {
1562                 ret = hns3_fill_skb_to_desc(ring, frag_skb,
1563                                             DESC_TYPE_FRAGLIST_SKB);
1564                 if (unlikely(ret < 0))
1565                         goto fill_err;
1566
1567                 bd_num += ret;
1568         }
1569
1570         pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1571                                         (ring->desc_num - 1);
1572         ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1573                                 cpu_to_le16(BIT(HNS3_TXD_FE_B));
1574         trace_hns3_tx_desc(ring, pre_ntu);
1575
1576         /* Complete translate all packets */
1577         dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1578         doorbell = __netdev_tx_sent_queue(dev_queue, skb->len,
1579                                           netdev_xmit_more());
1580         hns3_tx_doorbell(ring, bd_num, doorbell);
1581
1582         return NETDEV_TX_OK;
1583
1584 fill_err:
1585         hns3_clear_desc(ring, next_to_use_head);
1586
1587 out_err_tx_ok:
1588         dev_kfree_skb_any(skb);
1589         hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1590         return NETDEV_TX_OK;
1591 }
1592
1593 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1594 {
1595         struct hnae3_handle *h = hns3_get_handle(netdev);
1596         struct sockaddr *mac_addr = p;
1597         int ret;
1598
1599         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1600                 return -EADDRNOTAVAIL;
1601
1602         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1603                 netdev_info(netdev, "already using mac address %pM\n",
1604                             mac_addr->sa_data);
1605                 return 0;
1606         }
1607
1608         /* For VF device, if there is a perm_addr, then the user will not
1609          * be allowed to change the address.
1610          */
1611         if (!hns3_is_phys_func(h->pdev) &&
1612             !is_zero_ether_addr(netdev->perm_addr)) {
1613                 netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1614                            netdev->perm_addr, mac_addr->sa_data);
1615                 return -EPERM;
1616         }
1617
1618         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1619         if (ret) {
1620                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1621                 return ret;
1622         }
1623
1624         ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1625
1626         return 0;
1627 }
1628
1629 static int hns3_nic_do_ioctl(struct net_device *netdev,
1630                              struct ifreq *ifr, int cmd)
1631 {
1632         struct hnae3_handle *h = hns3_get_handle(netdev);
1633
1634         if (!netif_running(netdev))
1635                 return -EINVAL;
1636
1637         if (!h->ae_algo->ops->do_ioctl)
1638                 return -EOPNOTSUPP;
1639
1640         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1641 }
1642
1643 static int hns3_nic_set_features(struct net_device *netdev,
1644                                  netdev_features_t features)
1645 {
1646         netdev_features_t changed = netdev->features ^ features;
1647         struct hns3_nic_priv *priv = netdev_priv(netdev);
1648         struct hnae3_handle *h = priv->ae_handle;
1649         bool enable;
1650         int ret;
1651
1652         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1653                 enable = !!(features & NETIF_F_GRO_HW);
1654                 ret = h->ae_algo->ops->set_gro_en(h, enable);
1655                 if (ret)
1656                         return ret;
1657         }
1658
1659         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1660             h->ae_algo->ops->enable_hw_strip_rxvtag) {
1661                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1662                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1663                 if (ret)
1664                         return ret;
1665         }
1666
1667         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1668                 enable = !!(features & NETIF_F_NTUPLE);
1669                 h->ae_algo->ops->enable_fd(h, enable);
1670         }
1671
1672         netdev->features = features;
1673         return 0;
1674 }
1675
1676 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1677                                              struct net_device *dev,
1678                                              netdev_features_t features)
1679 {
1680 #define HNS3_MAX_HDR_LEN        480U
1681 #define HNS3_MAX_L4_HDR_LEN     60U
1682
1683         size_t len;
1684
1685         if (skb->ip_summed != CHECKSUM_PARTIAL)
1686                 return features;
1687
1688         if (skb->encapsulation)
1689                 len = skb_inner_transport_header(skb) - skb->data;
1690         else
1691                 len = skb_transport_header(skb) - skb->data;
1692
1693         /* Assume L4 is 60 byte as TCP is the only protocol with a
1694          * a flexible value, and it's max len is 60 bytes.
1695          */
1696         len += HNS3_MAX_L4_HDR_LEN;
1697
1698         /* Hardware only supports checksum on the skb with a max header
1699          * len of 480 bytes.
1700          */
1701         if (len > HNS3_MAX_HDR_LEN)
1702                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1703
1704         return features;
1705 }
1706
1707 static void hns3_nic_get_stats64(struct net_device *netdev,
1708                                  struct rtnl_link_stats64 *stats)
1709 {
1710         struct hns3_nic_priv *priv = netdev_priv(netdev);
1711         int queue_num = priv->ae_handle->kinfo.num_tqps;
1712         struct hnae3_handle *handle = priv->ae_handle;
1713         struct hns3_enet_ring *ring;
1714         u64 rx_length_errors = 0;
1715         u64 rx_crc_errors = 0;
1716         u64 rx_multicast = 0;
1717         unsigned int start;
1718         u64 tx_errors = 0;
1719         u64 rx_errors = 0;
1720         unsigned int idx;
1721         u64 tx_bytes = 0;
1722         u64 rx_bytes = 0;
1723         u64 tx_pkts = 0;
1724         u64 rx_pkts = 0;
1725         u64 tx_drop = 0;
1726         u64 rx_drop = 0;
1727
1728         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1729                 return;
1730
1731         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1732
1733         for (idx = 0; idx < queue_num; idx++) {
1734                 /* fetch the tx stats */
1735                 ring = &priv->ring[idx];
1736                 do {
1737                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1738                         tx_bytes += ring->stats.tx_bytes;
1739                         tx_pkts += ring->stats.tx_pkts;
1740                         tx_drop += ring->stats.sw_err_cnt;
1741                         tx_drop += ring->stats.tx_vlan_err;
1742                         tx_drop += ring->stats.tx_l4_proto_err;
1743                         tx_drop += ring->stats.tx_l2l3l4_err;
1744                         tx_drop += ring->stats.tx_tso_err;
1745                         tx_errors += ring->stats.sw_err_cnt;
1746                         tx_errors += ring->stats.tx_vlan_err;
1747                         tx_errors += ring->stats.tx_l4_proto_err;
1748                         tx_errors += ring->stats.tx_l2l3l4_err;
1749                         tx_errors += ring->stats.tx_tso_err;
1750                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1751
1752                 /* fetch the rx stats */
1753                 ring = &priv->ring[idx + queue_num];
1754                 do {
1755                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1756                         rx_bytes += ring->stats.rx_bytes;
1757                         rx_pkts += ring->stats.rx_pkts;
1758                         rx_drop += ring->stats.l2_err;
1759                         rx_errors += ring->stats.l2_err;
1760                         rx_errors += ring->stats.l3l4_csum_err;
1761                         rx_crc_errors += ring->stats.l2_err;
1762                         rx_multicast += ring->stats.rx_multicast;
1763                         rx_length_errors += ring->stats.err_pkt_len;
1764                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1765         }
1766
1767         stats->tx_bytes = tx_bytes;
1768         stats->tx_packets = tx_pkts;
1769         stats->rx_bytes = rx_bytes;
1770         stats->rx_packets = rx_pkts;
1771
1772         stats->rx_errors = rx_errors;
1773         stats->multicast = rx_multicast;
1774         stats->rx_length_errors = rx_length_errors;
1775         stats->rx_crc_errors = rx_crc_errors;
1776         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1777
1778         stats->tx_errors = tx_errors;
1779         stats->rx_dropped = rx_drop;
1780         stats->tx_dropped = tx_drop;
1781         stats->collisions = netdev->stats.collisions;
1782         stats->rx_over_errors = netdev->stats.rx_over_errors;
1783         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1784         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1785         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1786         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1787         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1788         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1789         stats->tx_window_errors = netdev->stats.tx_window_errors;
1790         stats->rx_compressed = netdev->stats.rx_compressed;
1791         stats->tx_compressed = netdev->stats.tx_compressed;
1792 }
1793
1794 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1795 {
1796         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1797         u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1798         struct hnae3_knic_private_info *kinfo;
1799         u8 tc = mqprio_qopt->qopt.num_tc;
1800         u16 mode = mqprio_qopt->mode;
1801         u8 hw = mqprio_qopt->qopt.hw;
1802         struct hnae3_handle *h;
1803
1804         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1805                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1806                 return -EOPNOTSUPP;
1807
1808         if (tc > HNAE3_MAX_TC)
1809                 return -EINVAL;
1810
1811         if (!netdev)
1812                 return -EINVAL;
1813
1814         h = hns3_get_handle(netdev);
1815         kinfo = &h->kinfo;
1816
1817         netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1818
1819         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1820                 kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1821 }
1822
1823 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1824                              void *type_data)
1825 {
1826         if (type != TC_SETUP_QDISC_MQPRIO)
1827                 return -EOPNOTSUPP;
1828
1829         return hns3_setup_tc(dev, type_data);
1830 }
1831
1832 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1833                                 __be16 proto, u16 vid)
1834 {
1835         struct hnae3_handle *h = hns3_get_handle(netdev);
1836         int ret = -EIO;
1837
1838         if (h->ae_algo->ops->set_vlan_filter)
1839                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1840
1841         return ret;
1842 }
1843
1844 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1845                                  __be16 proto, u16 vid)
1846 {
1847         struct hnae3_handle *h = hns3_get_handle(netdev);
1848         int ret = -EIO;
1849
1850         if (h->ae_algo->ops->set_vlan_filter)
1851                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1852
1853         return ret;
1854 }
1855
1856 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1857                                 u8 qos, __be16 vlan_proto)
1858 {
1859         struct hnae3_handle *h = hns3_get_handle(netdev);
1860         int ret = -EIO;
1861
1862         netif_dbg(h, drv, netdev,
1863                   "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1864                   vf, vlan, qos, ntohs(vlan_proto));
1865
1866         if (h->ae_algo->ops->set_vf_vlan_filter)
1867                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1868                                                           qos, vlan_proto);
1869
1870         return ret;
1871 }
1872
1873 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1874 {
1875         struct hnae3_handle *handle = hns3_get_handle(netdev);
1876
1877         if (hns3_nic_resetting(netdev))
1878                 return -EBUSY;
1879
1880         if (!handle->ae_algo->ops->set_vf_spoofchk)
1881                 return -EOPNOTSUPP;
1882
1883         return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1884 }
1885
1886 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1887 {
1888         struct hnae3_handle *handle = hns3_get_handle(netdev);
1889
1890         if (!handle->ae_algo->ops->set_vf_trust)
1891                 return -EOPNOTSUPP;
1892
1893         return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1894 }
1895
1896 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1897 {
1898         struct hnae3_handle *h = hns3_get_handle(netdev);
1899         int ret;
1900
1901         if (hns3_nic_resetting(netdev))
1902                 return -EBUSY;
1903
1904         if (!h->ae_algo->ops->set_mtu)
1905                 return -EOPNOTSUPP;
1906
1907         netif_dbg(h, drv, netdev,
1908                   "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1909
1910         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1911         if (ret)
1912                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1913                            ret);
1914         else
1915                 netdev->mtu = new_mtu;
1916
1917         return ret;
1918 }
1919
1920 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1921 {
1922         struct hns3_nic_priv *priv = netdev_priv(ndev);
1923         struct hnae3_handle *h = hns3_get_handle(ndev);
1924         struct hns3_enet_ring *tx_ring;
1925         struct napi_struct *napi;
1926         int timeout_queue = 0;
1927         int hw_head, hw_tail;
1928         int fbd_num, fbd_oft;
1929         int ebd_num, ebd_oft;
1930         int bd_num, bd_err;
1931         int ring_en, tc;
1932         int i;
1933
1934         /* Find the stopped queue the same way the stack does */
1935         for (i = 0; i < ndev->num_tx_queues; i++) {
1936                 struct netdev_queue *q;
1937                 unsigned long trans_start;
1938
1939                 q = netdev_get_tx_queue(ndev, i);
1940                 trans_start = q->trans_start;
1941                 if (netif_xmit_stopped(q) &&
1942                     time_after(jiffies,
1943                                (trans_start + ndev->watchdog_timeo))) {
1944                         timeout_queue = i;
1945                         netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1946                                     q->state,
1947                                     jiffies_to_msecs(jiffies - trans_start));
1948                         break;
1949                 }
1950         }
1951
1952         if (i == ndev->num_tx_queues) {
1953                 netdev_info(ndev,
1954                             "no netdev TX timeout queue found, timeout count: %llu\n",
1955                             priv->tx_timeout_count);
1956                 return false;
1957         }
1958
1959         priv->tx_timeout_count++;
1960
1961         tx_ring = &priv->ring[timeout_queue];
1962         napi = &tx_ring->tqp_vector->napi;
1963
1964         netdev_info(ndev,
1965                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1966                     priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1967                     tx_ring->next_to_clean, napi->state);
1968
1969         netdev_info(ndev,
1970                     "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
1971                     tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1972                     tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
1973
1974         netdev_info(ndev,
1975                     "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
1976                     tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
1977                     tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1978
1979         /* When mac received many pause frames continuous, it's unable to send
1980          * packets, which may cause tx timeout
1981          */
1982         if (h->ae_algo->ops->get_mac_stats) {
1983                 struct hns3_mac_stats mac_stats;
1984
1985                 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1986                 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1987                             mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1988         }
1989
1990         hw_head = readl_relaxed(tx_ring->tqp->io_base +
1991                                 HNS3_RING_TX_RING_HEAD_REG);
1992         hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1993                                 HNS3_RING_TX_RING_TAIL_REG);
1994         fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1995                                 HNS3_RING_TX_RING_FBDNUM_REG);
1996         fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1997                                 HNS3_RING_TX_RING_OFFSET_REG);
1998         ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1999                                 HNS3_RING_TX_RING_EBDNUM_REG);
2000         ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2001                                 HNS3_RING_TX_RING_EBD_OFFSET_REG);
2002         bd_num = readl_relaxed(tx_ring->tqp->io_base +
2003                                HNS3_RING_TX_RING_BD_NUM_REG);
2004         bd_err = readl_relaxed(tx_ring->tqp->io_base +
2005                                HNS3_RING_TX_RING_BD_ERR_REG);
2006         ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2007         tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2008
2009         netdev_info(ndev,
2010                     "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2011                     bd_num, hw_head, hw_tail, bd_err,
2012                     readl(tx_ring->tqp_vector->mask_addr));
2013         netdev_info(ndev,
2014                     "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2015                     ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2016
2017         return true;
2018 }
2019
2020 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2021 {
2022         struct hns3_nic_priv *priv = netdev_priv(ndev);
2023         struct hnae3_handle *h = priv->ae_handle;
2024
2025         if (!hns3_get_tx_timeo_queue_info(ndev))
2026                 return;
2027
2028         /* request the reset, and let the hclge to determine
2029          * which reset level should be done
2030          */
2031         if (h->ae_algo->ops->reset_event)
2032                 h->ae_algo->ops->reset_event(h->pdev, h);
2033 }
2034
2035 #ifdef CONFIG_RFS_ACCEL
2036 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2037                               u16 rxq_index, u32 flow_id)
2038 {
2039         struct hnae3_handle *h = hns3_get_handle(dev);
2040         struct flow_keys fkeys;
2041
2042         if (!h->ae_algo->ops->add_arfs_entry)
2043                 return -EOPNOTSUPP;
2044
2045         if (skb->encapsulation)
2046                 return -EPROTONOSUPPORT;
2047
2048         if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2049                 return -EPROTONOSUPPORT;
2050
2051         if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2052              fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2053             (fkeys.basic.ip_proto != IPPROTO_TCP &&
2054              fkeys.basic.ip_proto != IPPROTO_UDP))
2055                 return -EPROTONOSUPPORT;
2056
2057         return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2058 }
2059 #endif
2060
2061 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2062                                   struct ifla_vf_info *ivf)
2063 {
2064         struct hnae3_handle *h = hns3_get_handle(ndev);
2065
2066         if (!h->ae_algo->ops->get_vf_config)
2067                 return -EOPNOTSUPP;
2068
2069         return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2070 }
2071
2072 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2073                                       int link_state)
2074 {
2075         struct hnae3_handle *h = hns3_get_handle(ndev);
2076
2077         if (!h->ae_algo->ops->set_vf_link_state)
2078                 return -EOPNOTSUPP;
2079
2080         return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2081 }
2082
2083 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2084                                 int min_tx_rate, int max_tx_rate)
2085 {
2086         struct hnae3_handle *h = hns3_get_handle(ndev);
2087
2088         if (!h->ae_algo->ops->set_vf_rate)
2089                 return -EOPNOTSUPP;
2090
2091         return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2092                                             false);
2093 }
2094
2095 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2096 {
2097         struct hnae3_handle *h = hns3_get_handle(netdev);
2098
2099         if (!h->ae_algo->ops->set_vf_mac)
2100                 return -EOPNOTSUPP;
2101
2102         if (is_multicast_ether_addr(mac)) {
2103                 netdev_err(netdev,
2104                            "Invalid MAC:%pM specified. Could not set MAC\n",
2105                            mac);
2106                 return -EINVAL;
2107         }
2108
2109         return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2110 }
2111
2112 static const struct net_device_ops hns3_nic_netdev_ops = {
2113         .ndo_open               = hns3_nic_net_open,
2114         .ndo_stop               = hns3_nic_net_stop,
2115         .ndo_start_xmit         = hns3_nic_net_xmit,
2116         .ndo_tx_timeout         = hns3_nic_net_timeout,
2117         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
2118         .ndo_do_ioctl           = hns3_nic_do_ioctl,
2119         .ndo_change_mtu         = hns3_nic_change_mtu,
2120         .ndo_set_features       = hns3_nic_set_features,
2121         .ndo_features_check     = hns3_features_check,
2122         .ndo_get_stats64        = hns3_nic_get_stats64,
2123         .ndo_setup_tc           = hns3_nic_setup_tc,
2124         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
2125         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
2126         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
2127         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
2128         .ndo_set_vf_spoofchk    = hns3_set_vf_spoofchk,
2129         .ndo_set_vf_trust       = hns3_set_vf_trust,
2130 #ifdef CONFIG_RFS_ACCEL
2131         .ndo_rx_flow_steer      = hns3_rx_flow_steer,
2132 #endif
2133         .ndo_get_vf_config      = hns3_nic_get_vf_config,
2134         .ndo_set_vf_link_state  = hns3_nic_set_vf_link_state,
2135         .ndo_set_vf_rate        = hns3_nic_set_vf_rate,
2136         .ndo_set_vf_mac         = hns3_nic_set_vf_mac,
2137 };
2138
2139 bool hns3_is_phys_func(struct pci_dev *pdev)
2140 {
2141         u32 dev_id = pdev->device;
2142
2143         switch (dev_id) {
2144         case HNAE3_DEV_ID_GE:
2145         case HNAE3_DEV_ID_25GE:
2146         case HNAE3_DEV_ID_25GE_RDMA:
2147         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2148         case HNAE3_DEV_ID_50GE_RDMA:
2149         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2150         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2151         case HNAE3_DEV_ID_200G_RDMA:
2152                 return true;
2153         case HNAE3_DEV_ID_VF:
2154         case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2155                 return false;
2156         default:
2157                 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2158                          dev_id);
2159         }
2160
2161         return false;
2162 }
2163
2164 static void hns3_disable_sriov(struct pci_dev *pdev)
2165 {
2166         /* If our VFs are assigned we cannot shut down SR-IOV
2167          * without causing issues, so just leave the hardware
2168          * available but disabled
2169          */
2170         if (pci_vfs_assigned(pdev)) {
2171                 dev_warn(&pdev->dev,
2172                          "disabling driver while VFs are assigned\n");
2173                 return;
2174         }
2175
2176         pci_disable_sriov(pdev);
2177 }
2178
2179 /* hns3_probe - Device initialization routine
2180  * @pdev: PCI device information struct
2181  * @ent: entry in hns3_pci_tbl
2182  *
2183  * hns3_probe initializes a PF identified by a pci_dev structure.
2184  * The OS initialization, configuring of the PF private structure,
2185  * and a hardware reset occur.
2186  *
2187  * Returns 0 on success, negative on failure
2188  */
2189 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2190 {
2191         struct hnae3_ae_dev *ae_dev;
2192         int ret;
2193
2194         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2195         if (!ae_dev)
2196                 return -ENOMEM;
2197
2198         ae_dev->pdev = pdev;
2199         ae_dev->flag = ent->driver_data;
2200         pci_set_drvdata(pdev, ae_dev);
2201
2202         ret = hnae3_register_ae_dev(ae_dev);
2203         if (ret)
2204                 pci_set_drvdata(pdev, NULL);
2205
2206         return ret;
2207 }
2208
2209 /* hns3_remove - Device removal routine
2210  * @pdev: PCI device information struct
2211  */
2212 static void hns3_remove(struct pci_dev *pdev)
2213 {
2214         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2215
2216         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2217                 hns3_disable_sriov(pdev);
2218
2219         hnae3_unregister_ae_dev(ae_dev);
2220         pci_set_drvdata(pdev, NULL);
2221 }
2222
2223 /**
2224  * hns3_pci_sriov_configure
2225  * @pdev: pointer to a pci_dev structure
2226  * @num_vfs: number of VFs to allocate
2227  *
2228  * Enable or change the number of VFs. Called when the user updates the number
2229  * of VFs in sysfs.
2230  **/
2231 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2232 {
2233         int ret;
2234
2235         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2236                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
2237                 return -EINVAL;
2238         }
2239
2240         if (num_vfs) {
2241                 ret = pci_enable_sriov(pdev, num_vfs);
2242                 if (ret)
2243                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2244                 else
2245                         return num_vfs;
2246         } else if (!pci_vfs_assigned(pdev)) {
2247                 pci_disable_sriov(pdev);
2248         } else {
2249                 dev_warn(&pdev->dev,
2250                          "Unable to free VFs because some are assigned to VMs.\n");
2251         }
2252
2253         return 0;
2254 }
2255
2256 static void hns3_shutdown(struct pci_dev *pdev)
2257 {
2258         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2259
2260         hnae3_unregister_ae_dev(ae_dev);
2261         pci_set_drvdata(pdev, NULL);
2262
2263         if (system_state == SYSTEM_POWER_OFF)
2264                 pci_set_power_state(pdev, PCI_D3hot);
2265 }
2266
2267 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2268                                             pci_channel_state_t state)
2269 {
2270         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2271         pci_ers_result_t ret;
2272
2273         dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2274
2275         if (state == pci_channel_io_perm_failure)
2276                 return PCI_ERS_RESULT_DISCONNECT;
2277
2278         if (!ae_dev || !ae_dev->ops) {
2279                 dev_err(&pdev->dev,
2280                         "Can't recover - error happened before device initialized\n");
2281                 return PCI_ERS_RESULT_NONE;
2282         }
2283
2284         if (ae_dev->ops->handle_hw_ras_error)
2285                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2286         else
2287                 return PCI_ERS_RESULT_NONE;
2288
2289         return ret;
2290 }
2291
2292 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2293 {
2294         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2295         const struct hnae3_ae_ops *ops;
2296         enum hnae3_reset_type reset_type;
2297         struct device *dev = &pdev->dev;
2298
2299         if (!ae_dev || !ae_dev->ops)
2300                 return PCI_ERS_RESULT_NONE;
2301
2302         ops = ae_dev->ops;
2303         /* request the reset */
2304         if (ops->reset_event && ops->get_reset_level &&
2305             ops->set_default_reset_request) {
2306                 if (ae_dev->hw_err_reset_req) {
2307                         reset_type = ops->get_reset_level(ae_dev,
2308                                                 &ae_dev->hw_err_reset_req);
2309                         ops->set_default_reset_request(ae_dev, reset_type);
2310                         dev_info(dev, "requesting reset due to PCI error\n");
2311                         ops->reset_event(pdev, NULL);
2312                 }
2313
2314                 return PCI_ERS_RESULT_RECOVERED;
2315         }
2316
2317         return PCI_ERS_RESULT_DISCONNECT;
2318 }
2319
2320 static void hns3_reset_prepare(struct pci_dev *pdev)
2321 {
2322         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2323
2324         dev_info(&pdev->dev, "FLR prepare\n");
2325         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2326                 ae_dev->ops->flr_prepare(ae_dev);
2327 }
2328
2329 static void hns3_reset_done(struct pci_dev *pdev)
2330 {
2331         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2332
2333         dev_info(&pdev->dev, "FLR done\n");
2334         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2335                 ae_dev->ops->flr_done(ae_dev);
2336 }
2337
2338 static const struct pci_error_handlers hns3_err_handler = {
2339         .error_detected = hns3_error_detected,
2340         .slot_reset     = hns3_slot_reset,
2341         .reset_prepare  = hns3_reset_prepare,
2342         .reset_done     = hns3_reset_done,
2343 };
2344
2345 static struct pci_driver hns3_driver = {
2346         .name     = hns3_driver_name,
2347         .id_table = hns3_pci_tbl,
2348         .probe    = hns3_probe,
2349         .remove   = hns3_remove,
2350         .shutdown = hns3_shutdown,
2351         .sriov_configure = hns3_pci_sriov_configure,
2352         .err_handler    = &hns3_err_handler,
2353 };
2354
2355 /* set default feature to hns3 */
2356 static void hns3_set_default_feature(struct net_device *netdev)
2357 {
2358         struct hnae3_handle *h = hns3_get_handle(netdev);
2359         struct pci_dev *pdev = h->pdev;
2360         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2361
2362         netdev->priv_flags |= IFF_UNICAST_FLT;
2363
2364         netdev->hw_enc_features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2365                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2366                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2367                 NETIF_F_SCTP_CRC | NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2368
2369         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2370
2371         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2372                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2373                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2374                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2375                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2376                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2377
2378         netdev->vlan_features |= NETIF_F_RXCSUM |
2379                 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2380                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2381                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2382                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2383
2384         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
2385                 NETIF_F_HW_VLAN_CTAG_RX |
2386                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2387                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2388                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2389                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2390
2391         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2392                 netdev->hw_features |= NETIF_F_GRO_HW;
2393                 netdev->features |= NETIF_F_GRO_HW;
2394
2395                 if (!(h->flags & HNAE3_SUPPORT_VF)) {
2396                         netdev->hw_features |= NETIF_F_NTUPLE;
2397                         netdev->features |= NETIF_F_NTUPLE;
2398                 }
2399         }
2400
2401         if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
2402                 netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2403                 netdev->features |= NETIF_F_GSO_UDP_L4;
2404                 netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
2405                 netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
2406         }
2407
2408         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) {
2409                 netdev->hw_features |= NETIF_F_HW_CSUM;
2410                 netdev->features |= NETIF_F_HW_CSUM;
2411                 netdev->vlan_features |= NETIF_F_HW_CSUM;
2412                 netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2413         } else {
2414                 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2415                 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2416                 netdev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2417                 netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2418         }
2419
2420         if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) {
2421                 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2422                 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2423                 netdev->vlan_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2424                 netdev->hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2425         }
2426 }
2427
2428 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2429                              struct hns3_desc_cb *cb)
2430 {
2431         unsigned int order = hns3_page_order(ring);
2432         struct page *p;
2433
2434         p = dev_alloc_pages(order);
2435         if (!p)
2436                 return -ENOMEM;
2437
2438         cb->priv = p;
2439         cb->page_offset = 0;
2440         cb->reuse_flag = 0;
2441         cb->buf  = page_address(p);
2442         cb->length = hns3_page_size(ring);
2443         cb->type = DESC_TYPE_PAGE;
2444         page_ref_add(p, USHRT_MAX - 1);
2445         cb->pagecnt_bias = USHRT_MAX;
2446
2447         return 0;
2448 }
2449
2450 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2451                              struct hns3_desc_cb *cb, int budget)
2452 {
2453         if (cb->type == DESC_TYPE_SKB)
2454                 napi_consume_skb(cb->priv, budget);
2455         else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
2456                 __page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2457         memset(cb, 0, sizeof(*cb));
2458 }
2459
2460 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2461 {
2462         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2463                                cb->length, ring_to_dma_dir(ring));
2464
2465         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2466                 return -EIO;
2467
2468         return 0;
2469 }
2470
2471 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2472                               struct hns3_desc_cb *cb)
2473 {
2474         if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2475                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2476                                  ring_to_dma_dir(ring));
2477         else if (cb->length)
2478                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2479                                ring_to_dma_dir(ring));
2480 }
2481
2482 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2483 {
2484         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2485         ring->desc[i].addr = 0;
2486 }
2487
2488 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
2489                                     int budget)
2490 {
2491         struct hns3_desc_cb *cb = &ring->desc_cb[i];
2492
2493         if (!ring->desc_cb[i].dma)
2494                 return;
2495
2496         hns3_buffer_detach(ring, i);
2497         hns3_free_buffer(ring, cb, budget);
2498 }
2499
2500 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2501 {
2502         int i;
2503
2504         for (i = 0; i < ring->desc_num; i++)
2505                 hns3_free_buffer_detach(ring, i, 0);
2506 }
2507
2508 /* free desc along with its attached buffer */
2509 static void hns3_free_desc(struct hns3_enet_ring *ring)
2510 {
2511         int size = ring->desc_num * sizeof(ring->desc[0]);
2512
2513         hns3_free_buffers(ring);
2514
2515         if (ring->desc) {
2516                 dma_free_coherent(ring_to_dev(ring), size,
2517                                   ring->desc, ring->desc_dma_addr);
2518                 ring->desc = NULL;
2519         }
2520 }
2521
2522 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2523 {
2524         int size = ring->desc_num * sizeof(ring->desc[0]);
2525
2526         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2527                                         &ring->desc_dma_addr, GFP_KERNEL);
2528         if (!ring->desc)
2529                 return -ENOMEM;
2530
2531         return 0;
2532 }
2533
2534 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2535                                    struct hns3_desc_cb *cb)
2536 {
2537         int ret;
2538
2539         ret = hns3_alloc_buffer(ring, cb);
2540         if (ret)
2541                 goto out;
2542
2543         ret = hns3_map_buffer(ring, cb);
2544         if (ret)
2545                 goto out_with_buf;
2546
2547         return 0;
2548
2549 out_with_buf:
2550         hns3_free_buffer(ring, cb, 0);
2551 out:
2552         return ret;
2553 }
2554
2555 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2556 {
2557         int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2558
2559         if (ret)
2560                 return ret;
2561
2562         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2563
2564         return 0;
2565 }
2566
2567 /* Allocate memory for raw pkg, and map with dma */
2568 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2569 {
2570         int i, j, ret;
2571
2572         for (i = 0; i < ring->desc_num; i++) {
2573                 ret = hns3_alloc_and_attach_buffer(ring, i);
2574                 if (ret)
2575                         goto out_buffer_fail;
2576         }
2577
2578         return 0;
2579
2580 out_buffer_fail:
2581         for (j = i - 1; j >= 0; j--)
2582                 hns3_free_buffer_detach(ring, j, 0);
2583         return ret;
2584 }
2585
2586 /* detach a in-used buffer and replace with a reserved one */
2587 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2588                                 struct hns3_desc_cb *res_cb)
2589 {
2590         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2591         ring->desc_cb[i] = *res_cb;
2592         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2593         ring->desc[i].rx.bd_base_info = 0;
2594 }
2595
2596 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2597 {
2598         ring->desc_cb[i].reuse_flag = 0;
2599         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2600                                          ring->desc_cb[i].page_offset);
2601         ring->desc[i].rx.bd_base_info = 0;
2602
2603         dma_sync_single_for_device(ring_to_dev(ring),
2604                         ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2605                         hns3_buf_size(ring),
2606                         DMA_FROM_DEVICE);
2607 }
2608
2609 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
2610                                   int *bytes, int *pkts, int budget)
2611 {
2612         /* pair with ring->last_to_use update in hns3_tx_doorbell(),
2613          * smp_store_release() is not used in hns3_tx_doorbell() because
2614          * the doorbell operation already have the needed barrier operation.
2615          */
2616         int ltu = smp_load_acquire(&ring->last_to_use);
2617         int ntc = ring->next_to_clean;
2618         struct hns3_desc_cb *desc_cb;
2619         bool reclaimed = false;
2620         struct hns3_desc *desc;
2621
2622         while (ltu != ntc) {
2623                 desc = &ring->desc[ntc];
2624
2625                 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
2626                                 BIT(HNS3_TXD_VLD_B))
2627                         break;
2628
2629                 desc_cb = &ring->desc_cb[ntc];
2630                 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2631                 (*bytes) += desc_cb->length;
2632                 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2633                 hns3_free_buffer_detach(ring, ntc, budget);
2634
2635                 if (++ntc == ring->desc_num)
2636                         ntc = 0;
2637
2638                 /* Issue prefetch for next Tx descriptor */
2639                 prefetch(&ring->desc_cb[ntc]);
2640                 reclaimed = true;
2641         }
2642
2643         if (unlikely(!reclaimed))
2644                 return false;
2645
2646         /* This smp_store_release() pairs with smp_load_acquire() in
2647          * ring_space called by hns3_nic_net_xmit.
2648          */
2649         smp_store_release(&ring->next_to_clean, ntc);
2650         return true;
2651 }
2652
2653 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
2654 {
2655         struct net_device *netdev = ring_to_netdev(ring);
2656         struct hns3_nic_priv *priv = netdev_priv(netdev);
2657         struct netdev_queue *dev_queue;
2658         int bytes, pkts;
2659
2660         bytes = 0;
2661         pkts = 0;
2662
2663         if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
2664                 return;
2665
2666         ring->tqp_vector->tx_group.total_bytes += bytes;
2667         ring->tqp_vector->tx_group.total_packets += pkts;
2668
2669         u64_stats_update_begin(&ring->syncp);
2670         ring->stats.tx_bytes += bytes;
2671         ring->stats.tx_pkts += pkts;
2672         u64_stats_update_end(&ring->syncp);
2673
2674         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2675         netdev_tx_completed_queue(dev_queue, pkts, bytes);
2676
2677         if (unlikely(netif_carrier_ok(netdev) &&
2678                      ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2679                 /* Make sure that anybody stopping the queue after this
2680                  * sees the new next_to_clean.
2681                  */
2682                 smp_mb();
2683                 if (netif_tx_queue_stopped(dev_queue) &&
2684                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2685                         netif_tx_wake_queue(dev_queue);
2686                         ring->stats.restart_queue++;
2687                 }
2688         }
2689 }
2690
2691 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2692 {
2693         int ntc = ring->next_to_clean;
2694         int ntu = ring->next_to_use;
2695
2696         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2697 }
2698
2699 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2700                                       int cleand_count)
2701 {
2702         struct hns3_desc_cb *desc_cb;
2703         struct hns3_desc_cb res_cbs;
2704         int i, ret;
2705
2706         for (i = 0; i < cleand_count; i++) {
2707                 desc_cb = &ring->desc_cb[ring->next_to_use];
2708                 if (desc_cb->reuse_flag) {
2709                         u64_stats_update_begin(&ring->syncp);
2710                         ring->stats.reuse_pg_cnt++;
2711                         u64_stats_update_end(&ring->syncp);
2712
2713                         hns3_reuse_buffer(ring, ring->next_to_use);
2714                 } else {
2715                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2716                         if (ret) {
2717                                 u64_stats_update_begin(&ring->syncp);
2718                                 ring->stats.sw_err_cnt++;
2719                                 u64_stats_update_end(&ring->syncp);
2720
2721                                 hns3_rl_err(ring_to_netdev(ring),
2722                                             "alloc rx buffer failed: %d\n",
2723                                             ret);
2724                                 break;
2725                         }
2726                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2727
2728                         u64_stats_update_begin(&ring->syncp);
2729                         ring->stats.non_reuse_pg++;
2730                         u64_stats_update_end(&ring->syncp);
2731                 }
2732
2733                 ring_ptr_move_fw(ring, next_to_use);
2734         }
2735
2736         writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2737 }
2738
2739 static bool hns3_page_is_reusable(struct page *page)
2740 {
2741         return page_to_nid(page) == numa_mem_id() &&
2742                 !page_is_pfmemalloc(page);
2743 }
2744
2745 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
2746 {
2747         return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
2748 }
2749
2750 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2751                                 struct hns3_enet_ring *ring, int pull_len,
2752                                 struct hns3_desc_cb *desc_cb)
2753 {
2754         struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2755         int size = le16_to_cpu(desc->rx.size);
2756         u32 truesize = hns3_buf_size(ring);
2757
2758         desc_cb->pagecnt_bias--;
2759         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2760                         size - pull_len, truesize);
2761
2762         /* Avoid re-using remote pages, or the stack is still using the page
2763          * when page_offset rollback to zero, flag default unreuse
2764          */
2765         if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2766             (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
2767                 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2768                 return;
2769         }
2770
2771         /* Move offset up to the next cache line */
2772         desc_cb->page_offset += truesize;
2773
2774         if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2775                 desc_cb->reuse_flag = 1;
2776         } else if (hns3_can_reuse_page(desc_cb)) {
2777                 desc_cb->reuse_flag = 1;
2778                 desc_cb->page_offset = 0;
2779         } else if (desc_cb->pagecnt_bias) {
2780                 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2781                 return;
2782         }
2783
2784         if (unlikely(!desc_cb->pagecnt_bias)) {
2785                 page_ref_add(desc_cb->priv, USHRT_MAX);
2786                 desc_cb->pagecnt_bias = USHRT_MAX;
2787         }
2788 }
2789
2790 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2791 {
2792         __be16 type = skb->protocol;
2793         struct tcphdr *th;
2794         int depth = 0;
2795
2796         while (eth_type_vlan(type)) {
2797                 struct vlan_hdr *vh;
2798
2799                 if ((depth + VLAN_HLEN) > skb_headlen(skb))
2800                         return -EFAULT;
2801
2802                 vh = (struct vlan_hdr *)(skb->data + depth);
2803                 type = vh->h_vlan_encapsulated_proto;
2804                 depth += VLAN_HLEN;
2805         }
2806
2807         skb_set_network_header(skb, depth);
2808
2809         if (type == htons(ETH_P_IP)) {
2810                 const struct iphdr *iph = ip_hdr(skb);
2811
2812                 depth += sizeof(struct iphdr);
2813                 skb_set_transport_header(skb, depth);
2814                 th = tcp_hdr(skb);
2815                 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2816                                           iph->daddr, 0);
2817         } else if (type == htons(ETH_P_IPV6)) {
2818                 const struct ipv6hdr *iph = ipv6_hdr(skb);
2819
2820                 depth += sizeof(struct ipv6hdr);
2821                 skb_set_transport_header(skb, depth);
2822                 th = tcp_hdr(skb);
2823                 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2824                                           &iph->daddr, 0);
2825         } else {
2826                 hns3_rl_err(skb->dev,
2827                             "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2828                             be16_to_cpu(type), depth);
2829                 return -EFAULT;
2830         }
2831
2832         skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2833         if (th->cwr)
2834                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2835
2836         if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2837                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2838
2839         skb->csum_start = (unsigned char *)th - skb->head;
2840         skb->csum_offset = offsetof(struct tcphdr, check);
2841         skb->ip_summed = CHECKSUM_PARTIAL;
2842
2843         trace_hns3_gro(skb);
2844
2845         return 0;
2846 }
2847
2848 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
2849                                    struct sk_buff *skb, u32 l234info)
2850 {
2851         u32 lo, hi;
2852
2853         u64_stats_update_begin(&ring->syncp);
2854         ring->stats.csum_complete++;
2855         u64_stats_update_end(&ring->syncp);
2856         skb->ip_summed = CHECKSUM_COMPLETE;
2857         lo = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_L_M,
2858                              HNS3_RXD_L2_CSUM_L_S);
2859         hi = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_H_M,
2860                              HNS3_RXD_L2_CSUM_H_S);
2861         skb->csum = csum_unfold((__force __sum16)(lo | hi << 8));
2862 }
2863
2864 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2865                              u32 l234info, u32 bd_base_info, u32 ol_info)
2866 {
2867         struct net_device *netdev = ring_to_netdev(ring);
2868         int l3_type, l4_type;
2869         int ol4_type;
2870
2871         skb->ip_summed = CHECKSUM_NONE;
2872
2873         skb_checksum_none_assert(skb);
2874
2875         if (!(netdev->features & NETIF_F_RXCSUM))
2876                 return;
2877
2878         if (l234info & BIT(HNS3_RXD_L2_CSUM_B)) {
2879                 hns3_checksum_complete(ring, skb, l234info);
2880                 return;
2881         }
2882
2883         /* check if hardware has done checksum */
2884         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2885                 return;
2886
2887         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2888                                  BIT(HNS3_RXD_OL3E_B) |
2889                                  BIT(HNS3_RXD_OL4E_B)))) {
2890                 u64_stats_update_begin(&ring->syncp);
2891                 ring->stats.l3l4_csum_err++;
2892                 u64_stats_update_end(&ring->syncp);
2893
2894                 return;
2895         }
2896
2897         ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2898                                    HNS3_RXD_OL4ID_S);
2899         switch (ol4_type) {
2900         case HNS3_OL4_TYPE_MAC_IN_UDP:
2901         case HNS3_OL4_TYPE_NVGRE:
2902                 skb->csum_level = 1;
2903                 fallthrough;
2904         case HNS3_OL4_TYPE_NO_TUN:
2905                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2906                                           HNS3_RXD_L3ID_S);
2907                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2908                                           HNS3_RXD_L4ID_S);
2909
2910                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2911                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2912                      l3_type == HNS3_L3_TYPE_IPV6) &&
2913                     (l4_type == HNS3_L4_TYPE_UDP ||
2914                      l4_type == HNS3_L4_TYPE_TCP ||
2915                      l4_type == HNS3_L4_TYPE_SCTP))
2916                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2917                 break;
2918         default:
2919                 break;
2920         }
2921 }
2922
2923 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2924 {
2925         if (skb_has_frag_list(skb))
2926                 napi_gro_flush(&ring->tqp_vector->napi, false);
2927
2928         napi_gro_receive(&ring->tqp_vector->napi, skb);
2929 }
2930
2931 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2932                                 struct hns3_desc *desc, u32 l234info,
2933                                 u16 *vlan_tag)
2934 {
2935         struct hnae3_handle *handle = ring->tqp->handle;
2936         struct pci_dev *pdev = ring->tqp->handle->pdev;
2937         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2938
2939         if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
2940                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2941                 if (!(*vlan_tag & VLAN_VID_MASK))
2942                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2943
2944                 return (*vlan_tag != 0);
2945         }
2946
2947 #define HNS3_STRP_OUTER_VLAN    0x1
2948 #define HNS3_STRP_INNER_VLAN    0x2
2949 #define HNS3_STRP_BOTH          0x3
2950
2951         /* Hardware always insert VLAN tag into RX descriptor when
2952          * remove the tag from packet, driver needs to determine
2953          * reporting which tag to stack.
2954          */
2955         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2956                                 HNS3_RXD_STRP_TAGP_S)) {
2957         case HNS3_STRP_OUTER_VLAN:
2958                 if (handle->port_base_vlan_state !=
2959                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2960                         return false;
2961
2962                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2963                 return true;
2964         case HNS3_STRP_INNER_VLAN:
2965                 if (handle->port_base_vlan_state !=
2966                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2967                         return false;
2968
2969                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2970                 return true;
2971         case HNS3_STRP_BOTH:
2972                 if (handle->port_base_vlan_state ==
2973                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2974                         *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2975                 else
2976                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2977
2978                 return true;
2979         default:
2980                 return false;
2981         }
2982 }
2983
2984 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
2985 {
2986         ring->desc[ring->next_to_clean].rx.bd_base_info &=
2987                 cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
2988         ring->next_to_clean += 1;
2989
2990         if (unlikely(ring->next_to_clean == ring->desc_num))
2991                 ring->next_to_clean = 0;
2992 }
2993
2994 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2995                           unsigned char *va)
2996 {
2997         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2998         struct net_device *netdev = ring_to_netdev(ring);
2999         struct sk_buff *skb;
3000
3001         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3002         skb = ring->skb;
3003         if (unlikely(!skb)) {
3004                 hns3_rl_err(netdev, "alloc rx skb fail\n");
3005
3006                 u64_stats_update_begin(&ring->syncp);
3007                 ring->stats.sw_err_cnt++;
3008                 u64_stats_update_end(&ring->syncp);
3009
3010                 return -ENOMEM;
3011         }
3012
3013         trace_hns3_rx_desc(ring);
3014         prefetchw(skb->data);
3015
3016         ring->pending_buf = 1;
3017         ring->frag_num = 0;
3018         ring->tail_skb = NULL;
3019         if (length <= HNS3_RX_HEAD_SIZE) {
3020                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3021
3022                 /* We can reuse buffer as-is, just make sure it is local */
3023                 if (likely(hns3_page_is_reusable(desc_cb->priv)))
3024                         desc_cb->reuse_flag = 1;
3025                 else /* This page cannot be reused so discard it */
3026                         __page_frag_cache_drain(desc_cb->priv,
3027                                                 desc_cb->pagecnt_bias);
3028
3029                 hns3_rx_ring_move_fw(ring);
3030                 return 0;
3031         }
3032         u64_stats_update_begin(&ring->syncp);
3033         ring->stats.seg_pkt_cnt++;
3034         u64_stats_update_end(&ring->syncp);
3035
3036         ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3037         __skb_put(skb, ring->pull_len);
3038         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3039                             desc_cb);
3040         hns3_rx_ring_move_fw(ring);
3041
3042         return 0;
3043 }
3044
3045 static int hns3_add_frag(struct hns3_enet_ring *ring)
3046 {
3047         struct sk_buff *skb = ring->skb;
3048         struct sk_buff *head_skb = skb;
3049         struct sk_buff *new_skb;
3050         struct hns3_desc_cb *desc_cb;
3051         struct hns3_desc *desc;
3052         u32 bd_base_info;
3053
3054         do {
3055                 desc = &ring->desc[ring->next_to_clean];
3056                 desc_cb = &ring->desc_cb[ring->next_to_clean];
3057                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3058                 /* make sure HW write desc complete */
3059                 dma_rmb();
3060                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3061                         return -ENXIO;
3062
3063                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3064                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3065                         if (unlikely(!new_skb)) {
3066                                 hns3_rl_err(ring_to_netdev(ring),
3067                                             "alloc rx fraglist skb fail\n");
3068                                 return -ENXIO;
3069                         }
3070                         ring->frag_num = 0;
3071
3072                         if (ring->tail_skb) {
3073                                 ring->tail_skb->next = new_skb;
3074                                 ring->tail_skb = new_skb;
3075                         } else {
3076                                 skb_shinfo(skb)->frag_list = new_skb;
3077                                 ring->tail_skb = new_skb;
3078                         }
3079                 }
3080
3081                 if (ring->tail_skb) {
3082                         head_skb->truesize += hns3_buf_size(ring);
3083                         head_skb->data_len += le16_to_cpu(desc->rx.size);
3084                         head_skb->len += le16_to_cpu(desc->rx.size);
3085                         skb = ring->tail_skb;
3086                 }
3087
3088                 dma_sync_single_for_cpu(ring_to_dev(ring),
3089                                 desc_cb->dma + desc_cb->page_offset,
3090                                 hns3_buf_size(ring),
3091                                 DMA_FROM_DEVICE);
3092
3093                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3094                 trace_hns3_rx_desc(ring);
3095                 hns3_rx_ring_move_fw(ring);
3096                 ring->pending_buf++;
3097         } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3098
3099         return 0;
3100 }
3101
3102 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3103                                      struct sk_buff *skb, u32 l234info,
3104                                      u32 bd_base_info, u32 ol_info)
3105 {
3106         u32 l3_type;
3107
3108         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3109                                                     HNS3_RXD_GRO_SIZE_M,
3110                                                     HNS3_RXD_GRO_SIZE_S);
3111         /* if there is no HW GRO, do not set gro params */
3112         if (!skb_shinfo(skb)->gso_size) {
3113                 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
3114                 return 0;
3115         }
3116
3117         NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3118                                                   HNS3_RXD_GRO_COUNT_M,
3119                                                   HNS3_RXD_GRO_COUNT_S);
3120
3121         l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
3122         if (l3_type == HNS3_L3_TYPE_IPV4)
3123                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3124         else if (l3_type == HNS3_L3_TYPE_IPV6)
3125                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3126         else
3127                 return -EFAULT;
3128
3129         return  hns3_gro_complete(skb, l234info);
3130 }
3131
3132 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3133                                      struct sk_buff *skb, u32 rss_hash)
3134 {
3135         struct hnae3_handle *handle = ring->tqp->handle;
3136         enum pkt_hash_types rss_type;
3137
3138         if (rss_hash)
3139                 rss_type = handle->kinfo.rss_type;
3140         else
3141                 rss_type = PKT_HASH_TYPE_NONE;
3142
3143         skb_set_hash(skb, rss_hash, rss_type);
3144 }
3145
3146 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3147 {
3148         struct net_device *netdev = ring_to_netdev(ring);
3149         enum hns3_pkt_l2t_type l2_frame_type;
3150         u32 bd_base_info, l234info, ol_info;
3151         struct hns3_desc *desc;
3152         unsigned int len;
3153         int pre_ntc, ret;
3154
3155         /* bdinfo handled below is only valid on the last BD of the
3156          * current packet, and ring->next_to_clean indicates the first
3157          * descriptor of next packet, so need - 1 below.
3158          */
3159         pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3160                                         (ring->desc_num - 1);
3161         desc = &ring->desc[pre_ntc];
3162         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3163         l234info = le32_to_cpu(desc->rx.l234_info);
3164         ol_info = le32_to_cpu(desc->rx.ol_info);
3165
3166         /* Based on hw strategy, the tag offloaded will be stored at
3167          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3168          * in one layer tag case.
3169          */
3170         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3171                 u16 vlan_tag;
3172
3173                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3174                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3175                                                vlan_tag);
3176         }
3177
3178         if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3179                                   BIT(HNS3_RXD_L2E_B))))) {
3180                 u64_stats_update_begin(&ring->syncp);
3181                 if (l234info & BIT(HNS3_RXD_L2E_B))
3182                         ring->stats.l2_err++;
3183                 else
3184                         ring->stats.err_pkt_len++;
3185                 u64_stats_update_end(&ring->syncp);
3186
3187                 return -EFAULT;
3188         }
3189
3190         len = skb->len;
3191
3192         /* Do update ip stack process */
3193         skb->protocol = eth_type_trans(skb, netdev);
3194
3195         /* This is needed in order to enable forwarding support */
3196         ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3197                                         bd_base_info, ol_info);
3198         if (unlikely(ret)) {
3199                 u64_stats_update_begin(&ring->syncp);
3200                 ring->stats.rx_err_cnt++;
3201                 u64_stats_update_end(&ring->syncp);
3202                 return ret;
3203         }
3204
3205         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3206                                         HNS3_RXD_DMAC_S);
3207
3208         u64_stats_update_begin(&ring->syncp);
3209         ring->stats.rx_pkts++;
3210         ring->stats.rx_bytes += len;
3211
3212         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3213                 ring->stats.rx_multicast++;
3214
3215         u64_stats_update_end(&ring->syncp);
3216
3217         ring->tqp_vector->rx_group.total_bytes += len;
3218
3219         hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3220         return 0;
3221 }
3222
3223 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3224 {
3225         struct sk_buff *skb = ring->skb;
3226         struct hns3_desc_cb *desc_cb;
3227         struct hns3_desc *desc;
3228         unsigned int length;
3229         u32 bd_base_info;
3230         int ret;
3231
3232         desc = &ring->desc[ring->next_to_clean];
3233         desc_cb = &ring->desc_cb[ring->next_to_clean];
3234
3235         prefetch(desc);
3236
3237         if (!skb) {
3238                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3239
3240                 /* Check valid BD */
3241                 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3242                         return -ENXIO;
3243
3244                 dma_rmb();
3245                 length = le16_to_cpu(desc->rx.size);
3246
3247                 ring->va = desc_cb->buf + desc_cb->page_offset;
3248
3249                 dma_sync_single_for_cpu(ring_to_dev(ring),
3250                                 desc_cb->dma + desc_cb->page_offset,
3251                                 hns3_buf_size(ring),
3252                                 DMA_FROM_DEVICE);
3253
3254                 /* Prefetch first cache line of first page.
3255                  * Idea is to cache few bytes of the header of the packet.
3256                  * Our L1 Cache line size is 64B so need to prefetch twice to make
3257                  * it 128B. But in actual we can have greater size of caches with
3258                  * 128B Level 1 cache lines. In such a case, single fetch would
3259                  * suffice to cache in the relevant part of the header.
3260                  */
3261                 net_prefetch(ring->va);
3262
3263                 ret = hns3_alloc_skb(ring, length, ring->va);
3264                 skb = ring->skb;
3265
3266                 if (ret < 0) /* alloc buffer fail */
3267                         return ret;
3268                 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3269                         ret = hns3_add_frag(ring);
3270                         if (ret)
3271                                 return ret;
3272                 }
3273         } else {
3274                 ret = hns3_add_frag(ring);
3275                 if (ret)
3276                         return ret;
3277         }
3278
3279         /* As the head data may be changed when GRO enable, copy
3280          * the head data in after other data rx completed
3281          */
3282         if (skb->len > HNS3_RX_HEAD_SIZE)
3283                 memcpy(skb->data, ring->va,
3284                        ALIGN(ring->pull_len, sizeof(long)));
3285
3286         ret = hns3_handle_bdinfo(ring, skb);
3287         if (unlikely(ret)) {
3288                 dev_kfree_skb_any(skb);
3289                 return ret;
3290         }
3291
3292         skb_record_rx_queue(skb, ring->tqp->tqp_index);
3293         return 0;
3294 }
3295
3296 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3297                        void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3298 {
3299 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3300         int unused_count = hns3_desc_unused(ring);
3301         int recv_pkts = 0;
3302         int err;
3303
3304         unused_count -= ring->pending_buf;
3305
3306         while (recv_pkts < budget) {
3307                 /* Reuse or realloc buffers */
3308                 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3309                         hns3_nic_alloc_rx_buffers(ring, unused_count);
3310                         unused_count = hns3_desc_unused(ring) -
3311                                         ring->pending_buf;
3312                 }
3313
3314                 /* Poll one pkt */
3315                 err = hns3_handle_rx_bd(ring);
3316                 /* Do not get FE for the packet or failed to alloc skb */
3317                 if (unlikely(!ring->skb || err == -ENXIO)) {
3318                         goto out;
3319                 } else if (likely(!err)) {
3320                         rx_fn(ring, ring->skb);
3321                         recv_pkts++;
3322                 }
3323
3324                 unused_count += ring->pending_buf;
3325                 ring->skb = NULL;
3326                 ring->pending_buf = 0;
3327         }
3328
3329 out:
3330         /* Make all data has been write before submit */
3331         if (unused_count > 0)
3332                 hns3_nic_alloc_rx_buffers(ring, unused_count);
3333
3334         return recv_pkts;
3335 }
3336
3337 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3338 {
3339 #define HNS3_RX_LOW_BYTE_RATE 10000
3340 #define HNS3_RX_MID_BYTE_RATE 20000
3341 #define HNS3_RX_ULTRA_PACKET_RATE 40
3342
3343         enum hns3_flow_level_range new_flow_level;
3344         struct hns3_enet_tqp_vector *tqp_vector;
3345         int packets_per_msecs, bytes_per_msecs;
3346         u32 time_passed_ms;
3347
3348         tqp_vector = ring_group->ring->tqp_vector;
3349         time_passed_ms =
3350                 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3351         if (!time_passed_ms)
3352                 return false;
3353
3354         do_div(ring_group->total_packets, time_passed_ms);
3355         packets_per_msecs = ring_group->total_packets;
3356
3357         do_div(ring_group->total_bytes, time_passed_ms);
3358         bytes_per_msecs = ring_group->total_bytes;
3359
3360         new_flow_level = ring_group->coal.flow_level;
3361
3362         /* Simple throttlerate management
3363          * 0-10MB/s   lower     (50000 ints/s)
3364          * 10-20MB/s   middle    (20000 ints/s)
3365          * 20-1249MB/s high      (18000 ints/s)
3366          * > 40000pps  ultra     (8000 ints/s)
3367          */
3368         switch (new_flow_level) {
3369         case HNS3_FLOW_LOW:
3370                 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3371                         new_flow_level = HNS3_FLOW_MID;
3372                 break;
3373         case HNS3_FLOW_MID:
3374                 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3375                         new_flow_level = HNS3_FLOW_HIGH;
3376                 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3377                         new_flow_level = HNS3_FLOW_LOW;
3378                 break;
3379         case HNS3_FLOW_HIGH:
3380         case HNS3_FLOW_ULTRA:
3381         default:
3382                 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3383                         new_flow_level = HNS3_FLOW_MID;
3384                 break;
3385         }
3386
3387         if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3388             &tqp_vector->rx_group == ring_group)
3389                 new_flow_level = HNS3_FLOW_ULTRA;
3390
3391         ring_group->total_bytes = 0;
3392         ring_group->total_packets = 0;
3393         ring_group->coal.flow_level = new_flow_level;
3394
3395         return true;
3396 }
3397
3398 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3399 {
3400         struct hns3_enet_tqp_vector *tqp_vector;
3401         u16 new_int_gl;
3402
3403         if (!ring_group->ring)
3404                 return false;
3405
3406         tqp_vector = ring_group->ring->tqp_vector;
3407         if (!tqp_vector->last_jiffies)
3408                 return false;
3409
3410         if (ring_group->total_packets == 0) {
3411                 ring_group->coal.int_gl = HNS3_INT_GL_50K;
3412                 ring_group->coal.flow_level = HNS3_FLOW_LOW;
3413                 return true;
3414         }
3415
3416         if (!hns3_get_new_flow_lvl(ring_group))
3417                 return false;
3418
3419         new_int_gl = ring_group->coal.int_gl;
3420         switch (ring_group->coal.flow_level) {
3421         case HNS3_FLOW_LOW:
3422                 new_int_gl = HNS3_INT_GL_50K;
3423                 break;
3424         case HNS3_FLOW_MID:
3425                 new_int_gl = HNS3_INT_GL_20K;
3426                 break;
3427         case HNS3_FLOW_HIGH:
3428                 new_int_gl = HNS3_INT_GL_18K;
3429                 break;
3430         case HNS3_FLOW_ULTRA:
3431                 new_int_gl = HNS3_INT_GL_8K;
3432                 break;
3433         default:
3434                 break;
3435         }
3436
3437         if (new_int_gl != ring_group->coal.int_gl) {
3438                 ring_group->coal.int_gl = new_int_gl;
3439                 return true;
3440         }
3441         return false;
3442 }
3443
3444 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3445 {
3446         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3447         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3448         bool rx_update, tx_update;
3449
3450         /* update param every 1000ms */
3451         if (time_before(jiffies,
3452                         tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3453                 return;
3454
3455         if (rx_group->coal.adapt_enable) {
3456                 rx_update = hns3_get_new_int_gl(rx_group);
3457                 if (rx_update)
3458                         hns3_set_vector_coalesce_rx_gl(tqp_vector,
3459                                                        rx_group->coal.int_gl);
3460         }
3461
3462         if (tx_group->coal.adapt_enable) {
3463                 tx_update = hns3_get_new_int_gl(tx_group);
3464                 if (tx_update)
3465                         hns3_set_vector_coalesce_tx_gl(tqp_vector,
3466                                                        tx_group->coal.int_gl);
3467         }
3468
3469         tqp_vector->last_jiffies = jiffies;
3470 }
3471
3472 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3473 {
3474         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3475         struct hns3_enet_ring *ring;
3476         int rx_pkt_total = 0;
3477
3478         struct hns3_enet_tqp_vector *tqp_vector =
3479                 container_of(napi, struct hns3_enet_tqp_vector, napi);
3480         bool clean_complete = true;
3481         int rx_budget = budget;
3482
3483         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3484                 napi_complete(napi);
3485                 return 0;
3486         }
3487
3488         /* Since the actual Tx work is minimal, we can give the Tx a larger
3489          * budget and be more aggressive about cleaning up the Tx descriptors.
3490          */
3491         hns3_for_each_ring(ring, tqp_vector->tx_group)
3492                 hns3_clean_tx_ring(ring, budget);
3493
3494         /* make sure rx ring budget not smaller than 1 */
3495         if (tqp_vector->num_tqps > 1)
3496                 rx_budget = max(budget / tqp_vector->num_tqps, 1);
3497
3498         hns3_for_each_ring(ring, tqp_vector->rx_group) {
3499                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3500                                                     hns3_rx_skb);
3501
3502                 if (rx_cleaned >= rx_budget)
3503                         clean_complete = false;
3504
3505                 rx_pkt_total += rx_cleaned;
3506         }
3507
3508         tqp_vector->rx_group.total_packets += rx_pkt_total;
3509
3510         if (!clean_complete)
3511                 return budget;
3512
3513         if (napi_complete(napi) &&
3514             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3515                 hns3_update_new_int_gl(tqp_vector);
3516                 hns3_mask_vector_irq(tqp_vector, 1);
3517         }
3518
3519         return rx_pkt_total;
3520 }
3521
3522 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3523                                       struct hnae3_ring_chain_node *head)
3524 {
3525         struct pci_dev *pdev = tqp_vector->handle->pdev;
3526         struct hnae3_ring_chain_node *cur_chain = head;
3527         struct hnae3_ring_chain_node *chain;
3528         struct hns3_enet_ring *tx_ring;
3529         struct hns3_enet_ring *rx_ring;
3530
3531         tx_ring = tqp_vector->tx_group.ring;
3532         if (tx_ring) {
3533                 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3534                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3535                               HNAE3_RING_TYPE_TX);
3536                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3537                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3538
3539                 cur_chain->next = NULL;
3540
3541                 while (tx_ring->next) {
3542                         tx_ring = tx_ring->next;
3543
3544                         chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3545                                              GFP_KERNEL);
3546                         if (!chain)
3547                                 goto err_free_chain;
3548
3549                         cur_chain->next = chain;
3550                         chain->tqp_index = tx_ring->tqp->tqp_index;
3551                         hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3552                                       HNAE3_RING_TYPE_TX);
3553                         hnae3_set_field(chain->int_gl_idx,
3554                                         HNAE3_RING_GL_IDX_M,
3555                                         HNAE3_RING_GL_IDX_S,
3556                                         HNAE3_RING_GL_TX);
3557
3558                         cur_chain = chain;
3559                 }
3560         }
3561
3562         rx_ring = tqp_vector->rx_group.ring;
3563         if (!tx_ring && rx_ring) {
3564                 cur_chain->next = NULL;
3565                 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3566                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3567                               HNAE3_RING_TYPE_RX);
3568                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3569                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3570
3571                 rx_ring = rx_ring->next;
3572         }
3573
3574         while (rx_ring) {
3575                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3576                 if (!chain)
3577                         goto err_free_chain;
3578
3579                 cur_chain->next = chain;
3580                 chain->tqp_index = rx_ring->tqp->tqp_index;
3581                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3582                               HNAE3_RING_TYPE_RX);
3583                 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3584                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3585
3586                 cur_chain = chain;
3587
3588                 rx_ring = rx_ring->next;
3589         }
3590
3591         return 0;
3592
3593 err_free_chain:
3594         cur_chain = head->next;
3595         while (cur_chain) {
3596                 chain = cur_chain->next;
3597                 devm_kfree(&pdev->dev, cur_chain);
3598                 cur_chain = chain;
3599         }
3600         head->next = NULL;
3601
3602         return -ENOMEM;
3603 }
3604
3605 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3606                                         struct hnae3_ring_chain_node *head)
3607 {
3608         struct pci_dev *pdev = tqp_vector->handle->pdev;
3609         struct hnae3_ring_chain_node *chain_tmp, *chain;
3610
3611         chain = head->next;
3612
3613         while (chain) {
3614                 chain_tmp = chain->next;
3615                 devm_kfree(&pdev->dev, chain);
3616                 chain = chain_tmp;
3617         }
3618 }
3619
3620 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3621                                    struct hns3_enet_ring *ring)
3622 {
3623         ring->next = group->ring;
3624         group->ring = ring;
3625
3626         group->count++;
3627 }
3628
3629 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3630 {
3631         struct pci_dev *pdev = priv->ae_handle->pdev;
3632         struct hns3_enet_tqp_vector *tqp_vector;
3633         int num_vectors = priv->vector_num;
3634         int numa_node;
3635         int vector_i;
3636
3637         numa_node = dev_to_node(&pdev->dev);
3638
3639         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3640                 tqp_vector = &priv->tqp_vector[vector_i];
3641                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3642                                 &tqp_vector->affinity_mask);
3643         }
3644 }
3645
3646 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3647 {
3648         struct hnae3_ring_chain_node vector_ring_chain;
3649         struct hnae3_handle *h = priv->ae_handle;
3650         struct hns3_enet_tqp_vector *tqp_vector;
3651         int ret;
3652         int i;
3653
3654         hns3_nic_set_cpumask(priv);
3655
3656         for (i = 0; i < priv->vector_num; i++) {
3657                 tqp_vector = &priv->tqp_vector[i];
3658                 hns3_vector_coalesce_init_hw(tqp_vector, priv);
3659                 tqp_vector->num_tqps = 0;
3660         }
3661
3662         for (i = 0; i < h->kinfo.num_tqps; i++) {
3663                 u16 vector_i = i % priv->vector_num;
3664                 u16 tqp_num = h->kinfo.num_tqps;
3665
3666                 tqp_vector = &priv->tqp_vector[vector_i];
3667
3668                 hns3_add_ring_to_group(&tqp_vector->tx_group,
3669                                        &priv->ring[i]);
3670
3671                 hns3_add_ring_to_group(&tqp_vector->rx_group,
3672                                        &priv->ring[i + tqp_num]);
3673
3674                 priv->ring[i].tqp_vector = tqp_vector;
3675                 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3676                 tqp_vector->num_tqps++;
3677         }
3678
3679         for (i = 0; i < priv->vector_num; i++) {
3680                 tqp_vector = &priv->tqp_vector[i];
3681
3682                 tqp_vector->rx_group.total_bytes = 0;
3683                 tqp_vector->rx_group.total_packets = 0;
3684                 tqp_vector->tx_group.total_bytes = 0;
3685                 tqp_vector->tx_group.total_packets = 0;
3686                 tqp_vector->handle = h;
3687
3688                 ret = hns3_get_vector_ring_chain(tqp_vector,
3689                                                  &vector_ring_chain);
3690                 if (ret)
3691                         goto map_ring_fail;
3692
3693                 ret = h->ae_algo->ops->map_ring_to_vector(h,
3694                         tqp_vector->vector_irq, &vector_ring_chain);
3695
3696                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3697
3698                 if (ret)
3699                         goto map_ring_fail;
3700
3701                 netif_napi_add(priv->netdev, &tqp_vector->napi,
3702                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3703         }
3704
3705         return 0;
3706
3707 map_ring_fail:
3708         while (i--)
3709                 netif_napi_del(&priv->tqp_vector[i].napi);
3710
3711         return ret;
3712 }
3713
3714 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3715 {
3716         struct hnae3_handle *h = priv->ae_handle;
3717         struct hns3_enet_tqp_vector *tqp_vector;
3718         struct hnae3_vector_info *vector;
3719         struct pci_dev *pdev = h->pdev;
3720         u16 tqp_num = h->kinfo.num_tqps;
3721         u16 vector_num;
3722         int ret = 0;
3723         u16 i;
3724
3725         /* RSS size, cpu online and vector_num should be the same */
3726         /* Should consider 2p/4p later */
3727         vector_num = min_t(u16, num_online_cpus(), tqp_num);
3728
3729         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3730                               GFP_KERNEL);
3731         if (!vector)
3732                 return -ENOMEM;
3733
3734         /* save the actual available vector number */
3735         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3736
3737         priv->vector_num = vector_num;
3738         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3739                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3740                              GFP_KERNEL);
3741         if (!priv->tqp_vector) {
3742                 ret = -ENOMEM;
3743                 goto out;
3744         }
3745
3746         for (i = 0; i < priv->vector_num; i++) {
3747                 tqp_vector = &priv->tqp_vector[i];
3748                 tqp_vector->idx = i;
3749                 tqp_vector->mask_addr = vector[i].io_addr;
3750                 tqp_vector->vector_irq = vector[i].vector;
3751                 hns3_vector_coalesce_init(tqp_vector, priv);
3752         }
3753
3754 out:
3755         devm_kfree(&pdev->dev, vector);
3756         return ret;
3757 }
3758
3759 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3760 {
3761         group->ring = NULL;
3762         group->count = 0;
3763 }
3764
3765 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3766 {
3767         struct hnae3_ring_chain_node vector_ring_chain;
3768         struct hnae3_handle *h = priv->ae_handle;
3769         struct hns3_enet_tqp_vector *tqp_vector;
3770         int i;
3771
3772         for (i = 0; i < priv->vector_num; i++) {
3773                 tqp_vector = &priv->tqp_vector[i];
3774
3775                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3776                         continue;
3777
3778                 /* Since the mapping can be overwritten, when fail to get the
3779                  * chain between vector and ring, we should go on to deal with
3780                  * the remaining options.
3781                  */
3782                 if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3783                         dev_warn(priv->dev, "failed to get ring chain\n");
3784
3785                 h->ae_algo->ops->unmap_ring_from_vector(h,
3786                         tqp_vector->vector_irq, &vector_ring_chain);
3787
3788                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3789
3790                 hns3_clear_ring_group(&tqp_vector->rx_group);
3791                 hns3_clear_ring_group(&tqp_vector->tx_group);
3792                 netif_napi_del(&priv->tqp_vector[i].napi);
3793         }
3794 }
3795
3796 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3797 {
3798         struct hnae3_handle *h = priv->ae_handle;
3799         struct pci_dev *pdev = h->pdev;
3800         int i, ret;
3801
3802         for (i = 0; i < priv->vector_num; i++) {
3803                 struct hns3_enet_tqp_vector *tqp_vector;
3804
3805                 tqp_vector = &priv->tqp_vector[i];
3806                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3807                 if (ret)
3808                         return;
3809         }
3810
3811         devm_kfree(&pdev->dev, priv->tqp_vector);
3812 }
3813
3814 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3815                               unsigned int ring_type)
3816 {
3817         int queue_num = priv->ae_handle->kinfo.num_tqps;
3818         struct hns3_enet_ring *ring;
3819         int desc_num;
3820
3821         if (ring_type == HNAE3_RING_TYPE_TX) {
3822                 ring = &priv->ring[q->tqp_index];
3823                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
3824                 ring->queue_index = q->tqp_index;
3825         } else {
3826                 ring = &priv->ring[q->tqp_index + queue_num];
3827                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
3828                 ring->queue_index = q->tqp_index;
3829         }
3830
3831         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3832
3833         ring->tqp = q;
3834         ring->desc = NULL;
3835         ring->desc_cb = NULL;
3836         ring->dev = priv->dev;
3837         ring->desc_dma_addr = 0;
3838         ring->buf_size = q->buf_size;
3839         ring->desc_num = desc_num;
3840         ring->next_to_use = 0;
3841         ring->next_to_clean = 0;
3842         ring->last_to_use = 0;
3843 }
3844
3845 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3846                                struct hns3_nic_priv *priv)
3847 {
3848         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3849         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3850 }
3851
3852 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3853 {
3854         struct hnae3_handle *h = priv->ae_handle;
3855         struct pci_dev *pdev = h->pdev;
3856         int i;
3857
3858         priv->ring = devm_kzalloc(&pdev->dev,
3859                                   array3_size(h->kinfo.num_tqps,
3860                                               sizeof(*priv->ring), 2),
3861                                   GFP_KERNEL);
3862         if (!priv->ring)
3863                 return -ENOMEM;
3864
3865         for (i = 0; i < h->kinfo.num_tqps; i++)
3866                 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3867
3868         return 0;
3869 }
3870
3871 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3872 {
3873         if (!priv->ring)
3874                 return;
3875
3876         devm_kfree(priv->dev, priv->ring);
3877         priv->ring = NULL;
3878 }
3879
3880 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3881 {
3882         int ret;
3883
3884         if (ring->desc_num <= 0 || ring->buf_size <= 0)
3885                 return -EINVAL;
3886
3887         ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3888                                      sizeof(ring->desc_cb[0]), GFP_KERNEL);
3889         if (!ring->desc_cb) {
3890                 ret = -ENOMEM;
3891                 goto out;
3892         }
3893
3894         ret = hns3_alloc_desc(ring);
3895         if (ret)
3896                 goto out_with_desc_cb;
3897
3898         if (!HNAE3_IS_TX_RING(ring)) {
3899                 ret = hns3_alloc_ring_buffers(ring);
3900                 if (ret)
3901                         goto out_with_desc;
3902         }
3903
3904         return 0;
3905
3906 out_with_desc:
3907         hns3_free_desc(ring);
3908 out_with_desc_cb:
3909         devm_kfree(ring_to_dev(ring), ring->desc_cb);
3910         ring->desc_cb = NULL;
3911 out:
3912         return ret;
3913 }
3914
3915 void hns3_fini_ring(struct hns3_enet_ring *ring)
3916 {
3917         hns3_free_desc(ring);
3918         devm_kfree(ring_to_dev(ring), ring->desc_cb);
3919         ring->desc_cb = NULL;
3920         ring->next_to_clean = 0;
3921         ring->next_to_use = 0;
3922         ring->last_to_use = 0;
3923         ring->pending_buf = 0;
3924         if (ring->skb) {
3925                 dev_kfree_skb_any(ring->skb);
3926                 ring->skb = NULL;
3927         }
3928 }
3929
3930 static int hns3_buf_size2type(u32 buf_size)
3931 {
3932         int bd_size_type;
3933
3934         switch (buf_size) {
3935         case 512:
3936                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
3937                 break;
3938         case 1024:
3939                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3940                 break;
3941         case 2048:
3942                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3943                 break;
3944         case 4096:
3945                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3946                 break;
3947         default:
3948                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3949         }
3950
3951         return bd_size_type;
3952 }
3953
3954 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3955 {
3956         dma_addr_t dma = ring->desc_dma_addr;
3957         struct hnae3_queue *q = ring->tqp;
3958
3959         if (!HNAE3_IS_TX_RING(ring)) {
3960                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3961                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3962                                (u32)((dma >> 31) >> 1));
3963
3964                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3965                                hns3_buf_size2type(ring->buf_size));
3966                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3967                                ring->desc_num / 8 - 1);
3968
3969         } else {
3970                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3971                                (u32)dma);
3972                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3973                                (u32)((dma >> 31) >> 1));
3974
3975                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3976                                ring->desc_num / 8 - 1);
3977         }
3978 }
3979
3980 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3981 {
3982         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3983         int i;
3984
3985         for (i = 0; i < HNAE3_MAX_TC; i++) {
3986                 struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3987                 int j;
3988
3989                 if (!tc_info->enable)
3990                         continue;
3991
3992                 for (j = 0; j < tc_info->tqp_count; j++) {
3993                         struct hnae3_queue *q;
3994
3995                         q = priv->ring[tc_info->tqp_offset + j].tqp;
3996                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3997                                        tc_info->tc);
3998                 }
3999         }
4000 }
4001
4002 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4003 {
4004         struct hnae3_handle *h = priv->ae_handle;
4005         int ring_num = h->kinfo.num_tqps * 2;
4006         int i, j;
4007         int ret;
4008
4009         for (i = 0; i < ring_num; i++) {
4010                 ret = hns3_alloc_ring_memory(&priv->ring[i]);
4011                 if (ret) {
4012                         dev_err(priv->dev,
4013                                 "Alloc ring memory fail! ret=%d\n", ret);
4014                         goto out_when_alloc_ring_memory;
4015                 }
4016
4017                 u64_stats_init(&priv->ring[i].syncp);
4018         }
4019
4020         return 0;
4021
4022 out_when_alloc_ring_memory:
4023         for (j = i - 1; j >= 0; j--)
4024                 hns3_fini_ring(&priv->ring[j]);
4025
4026         return -ENOMEM;
4027 }
4028
4029 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4030 {
4031         struct hnae3_handle *h = priv->ae_handle;
4032         int i;
4033
4034         for (i = 0; i < h->kinfo.num_tqps; i++) {
4035                 hns3_fini_ring(&priv->ring[i]);
4036                 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4037         }
4038         return 0;
4039 }
4040
4041 /* Set mac addr if it is configured. or leave it to the AE driver */
4042 static int hns3_init_mac_addr(struct net_device *netdev)
4043 {
4044         struct hns3_nic_priv *priv = netdev_priv(netdev);
4045         struct hnae3_handle *h = priv->ae_handle;
4046         u8 mac_addr_temp[ETH_ALEN];
4047         int ret = 0;
4048
4049         if (h->ae_algo->ops->get_mac_addr)
4050                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4051
4052         /* Check if the MAC address is valid, if not get a random one */
4053         if (!is_valid_ether_addr(mac_addr_temp)) {
4054                 eth_hw_addr_random(netdev);
4055                 dev_warn(priv->dev, "using random MAC address %pM\n",
4056                          netdev->dev_addr);
4057         } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4058                 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4059                 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4060         } else {
4061                 return 0;
4062         }
4063
4064         if (h->ae_algo->ops->set_mac_addr)
4065                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4066
4067         return ret;
4068 }
4069
4070 static int hns3_init_phy(struct net_device *netdev)
4071 {
4072         struct hnae3_handle *h = hns3_get_handle(netdev);
4073         int ret = 0;
4074
4075         if (h->ae_algo->ops->mac_connect_phy)
4076                 ret = h->ae_algo->ops->mac_connect_phy(h);
4077
4078         return ret;
4079 }
4080
4081 static void hns3_uninit_phy(struct net_device *netdev)
4082 {
4083         struct hnae3_handle *h = hns3_get_handle(netdev);
4084
4085         if (h->ae_algo->ops->mac_disconnect_phy)
4086                 h->ae_algo->ops->mac_disconnect_phy(h);
4087 }
4088
4089 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
4090 {
4091         struct hnae3_handle *h = hns3_get_handle(netdev);
4092
4093         if (h->ae_algo->ops->del_all_fd_entries)
4094                 h->ae_algo->ops->del_all_fd_entries(h, clear_list);
4095 }
4096
4097 static int hns3_client_start(struct hnae3_handle *handle)
4098 {
4099         if (!handle->ae_algo->ops->client_start)
4100                 return 0;
4101
4102         return handle->ae_algo->ops->client_start(handle);
4103 }
4104
4105 static void hns3_client_stop(struct hnae3_handle *handle)
4106 {
4107         if (!handle->ae_algo->ops->client_stop)
4108                 return;
4109
4110         handle->ae_algo->ops->client_stop(handle);
4111 }
4112
4113 static void hns3_info_show(struct hns3_nic_priv *priv)
4114 {
4115         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4116
4117         dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4118         dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4119         dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4120         dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4121         dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4122         dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4123         dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4124         dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
4125         dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4126 }
4127
4128 static int hns3_client_init(struct hnae3_handle *handle)
4129 {
4130         struct pci_dev *pdev = handle->pdev;
4131         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4132         u16 alloc_tqps, max_rss_size;
4133         struct hns3_nic_priv *priv;
4134         struct net_device *netdev;
4135         int ret;
4136
4137         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
4138                                                     &max_rss_size);
4139         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4140         if (!netdev)
4141                 return -ENOMEM;
4142
4143         priv = netdev_priv(netdev);
4144         priv->dev = &pdev->dev;
4145         priv->netdev = netdev;
4146         priv->ae_handle = handle;
4147         priv->tx_timeout_count = 0;
4148         priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4149         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4150
4151         handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4152
4153         handle->kinfo.netdev = netdev;
4154         handle->priv = (void *)priv;
4155
4156         hns3_init_mac_addr(netdev);
4157
4158         hns3_set_default_feature(netdev);
4159
4160         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4161         netdev->priv_flags |= IFF_UNICAST_FLT;
4162         netdev->netdev_ops = &hns3_nic_netdev_ops;
4163         SET_NETDEV_DEV(netdev, &pdev->dev);
4164         hns3_ethtool_set_ops(netdev);
4165
4166         /* Carrier off reporting is important to ethtool even BEFORE open */
4167         netif_carrier_off(netdev);
4168
4169         ret = hns3_get_ring_config(priv);
4170         if (ret) {
4171                 ret = -ENOMEM;
4172                 goto out_get_ring_cfg;
4173         }
4174
4175         ret = hns3_nic_alloc_vector_data(priv);
4176         if (ret) {
4177                 ret = -ENOMEM;
4178                 goto out_alloc_vector_data;
4179         }
4180
4181         ret = hns3_nic_init_vector_data(priv);
4182         if (ret) {
4183                 ret = -ENOMEM;
4184                 goto out_init_vector_data;
4185         }
4186
4187         ret = hns3_init_all_ring(priv);
4188         if (ret) {
4189                 ret = -ENOMEM;
4190                 goto out_init_ring;
4191         }
4192
4193         ret = hns3_init_phy(netdev);
4194         if (ret)
4195                 goto out_init_phy;
4196
4197         ret = register_netdev(netdev);
4198         if (ret) {
4199                 dev_err(priv->dev, "probe register netdev fail!\n");
4200                 goto out_reg_netdev_fail;
4201         }
4202
4203         /* the device can work without cpu rmap, only aRFS needs it */
4204         ret = hns3_set_rx_cpu_rmap(netdev);
4205         if (ret)
4206                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4207
4208         ret = hns3_nic_init_irq(priv);
4209         if (ret) {
4210                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4211                 hns3_free_rx_cpu_rmap(netdev);
4212                 goto out_init_irq_fail;
4213         }
4214
4215         ret = hns3_client_start(handle);
4216         if (ret) {
4217                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4218                 goto out_client_start;
4219         }
4220
4221         hns3_dcbnl_setup(handle);
4222
4223         hns3_dbg_init(handle);
4224
4225         /* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4226         netdev->max_mtu = HNS3_MAX_MTU;
4227
4228         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
4229                 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
4230
4231         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4232
4233         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
4234                 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
4235
4236         if (netif_msg_drv(handle))
4237                 hns3_info_show(priv);
4238
4239         return ret;
4240
4241 out_client_start:
4242         hns3_free_rx_cpu_rmap(netdev);
4243         hns3_nic_uninit_irq(priv);
4244 out_init_irq_fail:
4245         unregister_netdev(netdev);
4246 out_reg_netdev_fail:
4247         hns3_uninit_phy(netdev);
4248 out_init_phy:
4249         hns3_uninit_all_ring(priv);
4250 out_init_ring:
4251         hns3_nic_uninit_vector_data(priv);
4252 out_init_vector_data:
4253         hns3_nic_dealloc_vector_data(priv);
4254 out_alloc_vector_data:
4255         priv->ring = NULL;
4256 out_get_ring_cfg:
4257         priv->ae_handle = NULL;
4258         free_netdev(netdev);
4259         return ret;
4260 }
4261
4262 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4263 {
4264         struct net_device *netdev = handle->kinfo.netdev;
4265         struct hns3_nic_priv *priv = netdev_priv(netdev);
4266         int ret;
4267
4268         if (netdev->reg_state != NETREG_UNINITIALIZED)
4269                 unregister_netdev(netdev);
4270
4271         hns3_client_stop(handle);
4272
4273         hns3_uninit_phy(netdev);
4274
4275         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4276                 netdev_warn(netdev, "already uninitialized\n");
4277                 goto out_netdev_free;
4278         }
4279
4280         hns3_free_rx_cpu_rmap(netdev);
4281
4282         hns3_nic_uninit_irq(priv);
4283
4284         hns3_del_all_fd_rules(netdev, true);
4285
4286         hns3_clear_all_ring(handle, true);
4287
4288         hns3_nic_uninit_vector_data(priv);
4289
4290         hns3_nic_dealloc_vector_data(priv);
4291
4292         ret = hns3_uninit_all_ring(priv);
4293         if (ret)
4294                 netdev_err(netdev, "uninit ring error\n");
4295
4296         hns3_put_ring_config(priv);
4297
4298 out_netdev_free:
4299         hns3_dbg_uninit(handle);
4300         free_netdev(netdev);
4301 }
4302
4303 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4304 {
4305         struct net_device *netdev = handle->kinfo.netdev;
4306
4307         if (!netdev)
4308                 return;
4309
4310         if (linkup) {
4311                 netif_tx_wake_all_queues(netdev);
4312                 netif_carrier_on(netdev);
4313                 if (netif_msg_link(handle))
4314                         netdev_info(netdev, "link up\n");
4315         } else {
4316                 netif_carrier_off(netdev);
4317                 netif_tx_stop_all_queues(netdev);
4318                 if (netif_msg_link(handle))
4319                         netdev_info(netdev, "link down\n");
4320         }
4321 }
4322
4323 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4324 {
4325         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4326         struct net_device *ndev = kinfo->netdev;
4327
4328         if (tc > HNAE3_MAX_TC)
4329                 return -EINVAL;
4330
4331         if (!ndev)
4332                 return -ENODEV;
4333
4334         return hns3_nic_set_real_num_queue(ndev);
4335 }
4336
4337 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4338 {
4339         while (ring->next_to_clean != ring->next_to_use) {
4340                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4341                 hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4342                 ring_ptr_move_fw(ring, next_to_clean);
4343         }
4344
4345         ring->pending_buf = 0;
4346 }
4347
4348 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4349 {
4350         struct hns3_desc_cb res_cbs;
4351         int ret;
4352
4353         while (ring->next_to_use != ring->next_to_clean) {
4354                 /* When a buffer is not reused, it's memory has been
4355                  * freed in hns3_handle_rx_bd or will be freed by
4356                  * stack, so we need to replace the buffer here.
4357                  */
4358                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4359                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4360                         if (ret) {
4361                                 u64_stats_update_begin(&ring->syncp);
4362                                 ring->stats.sw_err_cnt++;
4363                                 u64_stats_update_end(&ring->syncp);
4364                                 /* if alloc new buffer fail, exit directly
4365                                  * and reclear in up flow.
4366                                  */
4367                                 netdev_warn(ring_to_netdev(ring),
4368                                             "reserve buffer map failed, ret = %d\n",
4369                                             ret);
4370                                 return ret;
4371                         }
4372                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4373                 }
4374                 ring_ptr_move_fw(ring, next_to_use);
4375         }
4376
4377         /* Free the pending skb in rx ring */
4378         if (ring->skb) {
4379                 dev_kfree_skb_any(ring->skb);
4380                 ring->skb = NULL;
4381                 ring->pending_buf = 0;
4382         }
4383
4384         return 0;
4385 }
4386
4387 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4388 {
4389         while (ring->next_to_use != ring->next_to_clean) {
4390                 /* When a buffer is not reused, it's memory has been
4391                  * freed in hns3_handle_rx_bd or will be freed by
4392                  * stack, so only need to unmap the buffer here.
4393                  */
4394                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4395                         hns3_unmap_buffer(ring,
4396                                           &ring->desc_cb[ring->next_to_use]);
4397                         ring->desc_cb[ring->next_to_use].dma = 0;
4398                 }
4399
4400                 ring_ptr_move_fw(ring, next_to_use);
4401         }
4402 }
4403
4404 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4405 {
4406         struct net_device *ndev = h->kinfo.netdev;
4407         struct hns3_nic_priv *priv = netdev_priv(ndev);
4408         u32 i;
4409
4410         for (i = 0; i < h->kinfo.num_tqps; i++) {
4411                 struct hns3_enet_ring *ring;
4412
4413                 ring = &priv->ring[i];
4414                 hns3_clear_tx_ring(ring);
4415
4416                 ring = &priv->ring[i + h->kinfo.num_tqps];
4417                 /* Continue to clear other rings even if clearing some
4418                  * rings failed.
4419                  */
4420                 if (force)
4421                         hns3_force_clear_rx_ring(ring);
4422                 else
4423                         hns3_clear_rx_ring(ring);
4424         }
4425 }
4426
4427 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4428 {
4429         struct net_device *ndev = h->kinfo.netdev;
4430         struct hns3_nic_priv *priv = netdev_priv(ndev);
4431         struct hns3_enet_ring *rx_ring;
4432         int i, j;
4433         int ret;
4434
4435         for (i = 0; i < h->kinfo.num_tqps; i++) {
4436                 ret = h->ae_algo->ops->reset_queue(h, i);
4437                 if (ret)
4438                         return ret;
4439
4440                 hns3_init_ring_hw(&priv->ring[i]);
4441
4442                 /* We need to clear tx ring here because self test will
4443                  * use the ring and will not run down before up
4444                  */
4445                 hns3_clear_tx_ring(&priv->ring[i]);
4446                 priv->ring[i].next_to_clean = 0;
4447                 priv->ring[i].next_to_use = 0;
4448                 priv->ring[i].last_to_use = 0;
4449
4450                 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4451                 hns3_init_ring_hw(rx_ring);
4452                 ret = hns3_clear_rx_ring(rx_ring);
4453                 if (ret)
4454                         return ret;
4455
4456                 /* We can not know the hardware head and tail when this
4457                  * function is called in reset flow, so we reuse all desc.
4458                  */
4459                 for (j = 0; j < rx_ring->desc_num; j++)
4460                         hns3_reuse_buffer(rx_ring, j);
4461
4462                 rx_ring->next_to_clean = 0;
4463                 rx_ring->next_to_use = 0;
4464         }
4465
4466         hns3_init_tx_ring_tc(priv);
4467
4468         return 0;
4469 }
4470
4471 static void hns3_store_coal(struct hns3_nic_priv *priv)
4472 {
4473         /* ethtool only support setting and querying one coal
4474          * configuration for now, so save the vector 0' coal
4475          * configuration here in order to restore it.
4476          */
4477         memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4478                sizeof(struct hns3_enet_coalesce));
4479         memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4480                sizeof(struct hns3_enet_coalesce));
4481 }
4482
4483 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4484 {
4485         u16 vector_num = priv->vector_num;
4486         int i;
4487
4488         for (i = 0; i < vector_num; i++) {
4489                 memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4490                        sizeof(struct hns3_enet_coalesce));
4491                 memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4492                        sizeof(struct hns3_enet_coalesce));
4493         }
4494 }
4495
4496 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4497 {
4498         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4499         struct net_device *ndev = kinfo->netdev;
4500         struct hns3_nic_priv *priv = netdev_priv(ndev);
4501
4502         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4503                 return 0;
4504
4505         if (!netif_running(ndev))
4506                 return 0;
4507
4508         return hns3_nic_net_stop(ndev);
4509 }
4510
4511 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4512 {
4513         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4514         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4515         int ret = 0;
4516
4517         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4518
4519         if (netif_running(kinfo->netdev)) {
4520                 ret = hns3_nic_net_open(kinfo->netdev);
4521                 if (ret) {
4522                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4523                         netdev_err(kinfo->netdev,
4524                                    "net up fail, ret=%d!\n", ret);
4525                         return ret;
4526                 }
4527         }
4528
4529         return ret;
4530 }
4531
4532 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4533 {
4534         struct net_device *netdev = handle->kinfo.netdev;
4535         struct hns3_nic_priv *priv = netdev_priv(netdev);
4536         int ret;
4537
4538         /* Carrier off reporting is important to ethtool even BEFORE open */
4539         netif_carrier_off(netdev);
4540
4541         ret = hns3_get_ring_config(priv);
4542         if (ret)
4543                 return ret;
4544
4545         ret = hns3_nic_alloc_vector_data(priv);
4546         if (ret)
4547                 goto err_put_ring;
4548
4549         hns3_restore_coal(priv);
4550
4551         ret = hns3_nic_init_vector_data(priv);
4552         if (ret)
4553                 goto err_dealloc_vector;
4554
4555         ret = hns3_init_all_ring(priv);
4556         if (ret)
4557                 goto err_uninit_vector;
4558
4559         /* the device can work without cpu rmap, only aRFS needs it */
4560         ret = hns3_set_rx_cpu_rmap(netdev);
4561         if (ret)
4562                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4563
4564         ret = hns3_nic_init_irq(priv);
4565         if (ret) {
4566                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4567                 hns3_free_rx_cpu_rmap(netdev);
4568                 goto err_init_irq_fail;
4569         }
4570
4571         if (!hns3_is_phys_func(handle->pdev))
4572                 hns3_init_mac_addr(netdev);
4573
4574         ret = hns3_client_start(handle);
4575         if (ret) {
4576                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4577                 goto err_client_start_fail;
4578         }
4579
4580         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4581
4582         return ret;
4583
4584 err_client_start_fail:
4585         hns3_free_rx_cpu_rmap(netdev);
4586         hns3_nic_uninit_irq(priv);
4587 err_init_irq_fail:
4588         hns3_uninit_all_ring(priv);
4589 err_uninit_vector:
4590         hns3_nic_uninit_vector_data(priv);
4591 err_dealloc_vector:
4592         hns3_nic_dealloc_vector_data(priv);
4593 err_put_ring:
4594         hns3_put_ring_config(priv);
4595
4596         return ret;
4597 }
4598
4599 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4600 {
4601         struct net_device *netdev = handle->kinfo.netdev;
4602         struct hns3_nic_priv *priv = netdev_priv(netdev);
4603         int ret;
4604
4605         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4606                 netdev_warn(netdev, "already uninitialized\n");
4607                 return 0;
4608         }
4609
4610         hns3_free_rx_cpu_rmap(netdev);
4611         hns3_nic_uninit_irq(priv);
4612         hns3_clear_all_ring(handle, true);
4613         hns3_reset_tx_queue(priv->ae_handle);
4614
4615         hns3_nic_uninit_vector_data(priv);
4616
4617         hns3_store_coal(priv);
4618
4619         hns3_nic_dealloc_vector_data(priv);
4620
4621         ret = hns3_uninit_all_ring(priv);
4622         if (ret)
4623                 netdev_err(netdev, "uninit ring error\n");
4624
4625         hns3_put_ring_config(priv);
4626
4627         return ret;
4628 }
4629
4630 static int hns3_reset_notify(struct hnae3_handle *handle,
4631                              enum hnae3_reset_notify_type type)
4632 {
4633         int ret = 0;
4634
4635         switch (type) {
4636         case HNAE3_UP_CLIENT:
4637                 ret = hns3_reset_notify_up_enet(handle);
4638                 break;
4639         case HNAE3_DOWN_CLIENT:
4640                 ret = hns3_reset_notify_down_enet(handle);
4641                 break;
4642         case HNAE3_INIT_CLIENT:
4643                 ret = hns3_reset_notify_init_enet(handle);
4644                 break;
4645         case HNAE3_UNINIT_CLIENT:
4646                 ret = hns3_reset_notify_uninit_enet(handle);
4647                 break;
4648         default:
4649                 break;
4650         }
4651
4652         return ret;
4653 }
4654
4655 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4656                                 bool rxfh_configured)
4657 {
4658         int ret;
4659
4660         ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4661                                                  rxfh_configured);
4662         if (ret) {
4663                 dev_err(&handle->pdev->dev,
4664                         "Change tqp num(%u) fail.\n", new_tqp_num);
4665                 return ret;
4666         }
4667
4668         ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4669         if (ret)
4670                 return ret;
4671
4672         ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4673         if (ret)
4674                 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4675
4676         return ret;
4677 }
4678
4679 int hns3_set_channels(struct net_device *netdev,
4680                       struct ethtool_channels *ch)
4681 {
4682         struct hnae3_handle *h = hns3_get_handle(netdev);
4683         struct hnae3_knic_private_info *kinfo = &h->kinfo;
4684         bool rxfh_configured = netif_is_rxfh_configured(netdev);
4685         u32 new_tqp_num = ch->combined_count;
4686         u16 org_tqp_num;
4687         int ret;
4688
4689         if (hns3_nic_resetting(netdev))
4690                 return -EBUSY;
4691
4692         if (ch->rx_count || ch->tx_count)
4693                 return -EINVAL;
4694
4695         if (new_tqp_num > hns3_get_max_available_channels(h) ||
4696             new_tqp_num < 1) {
4697                 dev_err(&netdev->dev,
4698                         "Change tqps fail, the tqp range is from 1 to %u",
4699                         hns3_get_max_available_channels(h));
4700                 return -EINVAL;
4701         }
4702
4703         if (kinfo->rss_size == new_tqp_num)
4704                 return 0;
4705
4706         netif_dbg(h, drv, netdev,
4707                   "set channels: tqp_num=%u, rxfh=%d\n",
4708                   new_tqp_num, rxfh_configured);
4709
4710         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4711         if (ret)
4712                 return ret;
4713
4714         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4715         if (ret)
4716                 return ret;
4717
4718         org_tqp_num = h->kinfo.num_tqps;
4719         ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4720         if (ret) {
4721                 int ret1;
4722
4723                 netdev_warn(netdev,
4724                             "Change channels fail, revert to old value\n");
4725                 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4726                 if (ret1) {
4727                         netdev_err(netdev,
4728                                    "revert to old channel fail\n");
4729                         return ret1;
4730                 }
4731
4732                 return ret;
4733         }
4734
4735         return 0;
4736 }
4737
4738 static const struct hns3_hw_error_info hns3_hw_err[] = {
4739         { .type = HNAE3_PPU_POISON_ERROR,
4740           .msg = "PPU poison" },
4741         { .type = HNAE3_CMDQ_ECC_ERROR,
4742           .msg = "IMP CMDQ error" },
4743         { .type = HNAE3_IMP_RD_POISON_ERROR,
4744           .msg = "IMP RD poison" },
4745         { .type = HNAE3_ROCEE_AXI_RESP_ERROR,
4746           .msg = "ROCEE AXI RESP error" },
4747 };
4748
4749 static void hns3_process_hw_error(struct hnae3_handle *handle,
4750                                   enum hnae3_hw_error_type type)
4751 {
4752         int i;
4753
4754         for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4755                 if (hns3_hw_err[i].type == type) {
4756                         dev_err(&handle->pdev->dev, "Detected %s!\n",
4757                                 hns3_hw_err[i].msg);
4758                         break;
4759                 }
4760         }
4761 }
4762
4763 static const struct hnae3_client_ops client_ops = {
4764         .init_instance = hns3_client_init,
4765         .uninit_instance = hns3_client_uninit,
4766         .link_status_change = hns3_link_status_change,
4767         .setup_tc = hns3_client_setup_tc,
4768         .reset_notify = hns3_reset_notify,
4769         .process_hw_error = hns3_process_hw_error,
4770 };
4771
4772 /* hns3_init_module - Driver registration routine
4773  * hns3_init_module is the first routine called when the driver is
4774  * loaded. All it does is register with the PCI subsystem.
4775  */
4776 static int __init hns3_init_module(void)
4777 {
4778         int ret;
4779
4780         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4781         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4782
4783         client.type = HNAE3_CLIENT_KNIC;
4784         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4785                  hns3_driver_name);
4786
4787         client.ops = &client_ops;
4788
4789         INIT_LIST_HEAD(&client.node);
4790
4791         hns3_dbg_register_debugfs(hns3_driver_name);
4792
4793         ret = hnae3_register_client(&client);
4794         if (ret)
4795                 goto err_reg_client;
4796
4797         ret = pci_register_driver(&hns3_driver);
4798         if (ret)
4799                 goto err_reg_driver;
4800
4801         return ret;
4802
4803 err_reg_driver:
4804         hnae3_unregister_client(&client);
4805 err_reg_client:
4806         hns3_dbg_unregister_debugfs();
4807         return ret;
4808 }
4809 module_init(hns3_init_module);
4810
4811 /* hns3_exit_module - Driver exit cleanup routine
4812  * hns3_exit_module is called just before the driver is removed
4813  * from memory.
4814  */
4815 static void __exit hns3_exit_module(void)
4816 {
4817         pci_unregister_driver(&hns3_driver);
4818         hnae3_unregister_client(&client);
4819         hns3_dbg_unregister_debugfs();
4820 }
4821 module_exit(hns3_exit_module);
4822
4823 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4824 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4825 MODULE_LICENSE("GPL");
4826 MODULE_ALIAS("pci:hns-nic");