Merge tag 'x86-urgent-2020-11-08' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / net / ethernet / freescale / gianfar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #define DEBUG
62
63 #include <linux/kernel.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84 #include <linux/net_tstamp.h>
85
86 #include <asm/io.h>
87 #ifdef CONFIG_PPC
88 #include <asm/reg.h>
89 #include <asm/mpc85xx.h>
90 #endif
91 #include <asm/irq.h>
92 #include <linux/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (5*HZ)
105
106 MODULE_AUTHOR("Freescale Semiconductor, Inc");
107 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
108 MODULE_LICENSE("GPL");
109
110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
111                             dma_addr_t buf)
112 {
113         u32 lstatus;
114
115         bdp->bufPtr = cpu_to_be32(buf);
116
117         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
118         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
119                 lstatus |= BD_LFLAG(RXBD_WRAP);
120
121         gfar_wmb();
122
123         bdp->lstatus = cpu_to_be32(lstatus);
124 }
125
126 static void gfar_init_tx_rx_base(struct gfar_private *priv)
127 {
128         struct gfar __iomem *regs = priv->gfargrp[0].regs;
129         u32 __iomem *baddr;
130         int i;
131
132         baddr = &regs->tbase0;
133         for (i = 0; i < priv->num_tx_queues; i++) {
134                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
135                 baddr += 2;
136         }
137
138         baddr = &regs->rbase0;
139         for (i = 0; i < priv->num_rx_queues; i++) {
140                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
141                 baddr += 2;
142         }
143 }
144
145 static void gfar_init_rqprm(struct gfar_private *priv)
146 {
147         struct gfar __iomem *regs = priv->gfargrp[0].regs;
148         u32 __iomem *baddr;
149         int i;
150
151         baddr = &regs->rqprm0;
152         for (i = 0; i < priv->num_rx_queues; i++) {
153                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
154                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
155                 baddr++;
156         }
157 }
158
159 static void gfar_rx_offload_en(struct gfar_private *priv)
160 {
161         /* set this when rx hw offload (TOE) functions are being used */
162         priv->uses_rxfcb = 0;
163
164         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
165                 priv->uses_rxfcb = 1;
166
167         if (priv->hwts_rx_en || priv->rx_filer_enable)
168                 priv->uses_rxfcb = 1;
169 }
170
171 static void gfar_mac_rx_config(struct gfar_private *priv)
172 {
173         struct gfar __iomem *regs = priv->gfargrp[0].regs;
174         u32 rctrl = 0;
175
176         if (priv->rx_filer_enable) {
177                 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
178                 /* Program the RIR0 reg with the required distribution */
179                 if (priv->poll_mode == GFAR_SQ_POLLING)
180                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
181                 else /* GFAR_MQ_POLLING */
182                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
183         }
184
185         /* Restore PROMISC mode */
186         if (priv->ndev->flags & IFF_PROMISC)
187                 rctrl |= RCTRL_PROM;
188
189         if (priv->ndev->features & NETIF_F_RXCSUM)
190                 rctrl |= RCTRL_CHECKSUMMING;
191
192         if (priv->extended_hash)
193                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
194
195         if (priv->padding) {
196                 rctrl &= ~RCTRL_PAL_MASK;
197                 rctrl |= RCTRL_PADDING(priv->padding);
198         }
199
200         /* Enable HW time stamping if requested from user space */
201         if (priv->hwts_rx_en)
202                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
203
204         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
205                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
206
207         /* Clear the LFC bit */
208         gfar_write(&regs->rctrl, rctrl);
209         /* Init flow control threshold values */
210         gfar_init_rqprm(priv);
211         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
212         rctrl |= RCTRL_LFC;
213
214         /* Init rctrl based on our settings */
215         gfar_write(&regs->rctrl, rctrl);
216 }
217
218 static void gfar_mac_tx_config(struct gfar_private *priv)
219 {
220         struct gfar __iomem *regs = priv->gfargrp[0].regs;
221         u32 tctrl = 0;
222
223         if (priv->ndev->features & NETIF_F_IP_CSUM)
224                 tctrl |= TCTRL_INIT_CSUM;
225
226         if (priv->prio_sched_en)
227                 tctrl |= TCTRL_TXSCHED_PRIO;
228         else {
229                 tctrl |= TCTRL_TXSCHED_WRRS;
230                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
231                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
232         }
233
234         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
235                 tctrl |= TCTRL_VLINS;
236
237         gfar_write(&regs->tctrl, tctrl);
238 }
239
240 static void gfar_configure_coalescing(struct gfar_private *priv,
241                                unsigned long tx_mask, unsigned long rx_mask)
242 {
243         struct gfar __iomem *regs = priv->gfargrp[0].regs;
244         u32 __iomem *baddr;
245
246         if (priv->mode == MQ_MG_MODE) {
247                 int i = 0;
248
249                 baddr = &regs->txic0;
250                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
251                         gfar_write(baddr + i, 0);
252                         if (likely(priv->tx_queue[i]->txcoalescing))
253                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
254                 }
255
256                 baddr = &regs->rxic0;
257                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
258                         gfar_write(baddr + i, 0);
259                         if (likely(priv->rx_queue[i]->rxcoalescing))
260                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
261                 }
262         } else {
263                 /* Backward compatible case -- even if we enable
264                  * multiple queues, there's only single reg to program
265                  */
266                 gfar_write(&regs->txic, 0);
267                 if (likely(priv->tx_queue[0]->txcoalescing))
268                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
269
270                 gfar_write(&regs->rxic, 0);
271                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
272                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
273         }
274 }
275
276 static void gfar_configure_coalescing_all(struct gfar_private *priv)
277 {
278         gfar_configure_coalescing(priv, 0xFF, 0xFF);
279 }
280
281 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
282 {
283         struct gfar_private *priv = netdev_priv(dev);
284         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
285         unsigned long tx_packets = 0, tx_bytes = 0;
286         int i;
287
288         for (i = 0; i < priv->num_rx_queues; i++) {
289                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
290                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
291                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
292         }
293
294         dev->stats.rx_packets = rx_packets;
295         dev->stats.rx_bytes   = rx_bytes;
296         dev->stats.rx_dropped = rx_dropped;
297
298         for (i = 0; i < priv->num_tx_queues; i++) {
299                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
300                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
301         }
302
303         dev->stats.tx_bytes   = tx_bytes;
304         dev->stats.tx_packets = tx_packets;
305
306         return &dev->stats;
307 }
308
309 /* Set the appropriate hash bit for the given addr */
310 /* The algorithm works like so:
311  * 1) Take the Destination Address (ie the multicast address), and
312  * do a CRC on it (little endian), and reverse the bits of the
313  * result.
314  * 2) Use the 8 most significant bits as a hash into a 256-entry
315  * table.  The table is controlled through 8 32-bit registers:
316  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
317  * gaddr7.  This means that the 3 most significant bits in the
318  * hash index which gaddr register to use, and the 5 other bits
319  * indicate which bit (assuming an IBM numbering scheme, which
320  * for PowerPC (tm) is usually the case) in the register holds
321  * the entry.
322  */
323 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
324 {
325         u32 tempval;
326         struct gfar_private *priv = netdev_priv(dev);
327         u32 result = ether_crc(ETH_ALEN, addr);
328         int width = priv->hash_width;
329         u8 whichbit = (result >> (32 - width)) & 0x1f;
330         u8 whichreg = result >> (32 - width + 5);
331         u32 value = (1 << (31-whichbit));
332
333         tempval = gfar_read(priv->hash_regs[whichreg]);
334         tempval |= value;
335         gfar_write(priv->hash_regs[whichreg], tempval);
336 }
337
338 /* There are multiple MAC Address register pairs on some controllers
339  * This function sets the numth pair to a given address
340  */
341 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
342                                   const u8 *addr)
343 {
344         struct gfar_private *priv = netdev_priv(dev);
345         struct gfar __iomem *regs = priv->gfargrp[0].regs;
346         u32 tempval;
347         u32 __iomem *macptr = &regs->macstnaddr1;
348
349         macptr += num*2;
350
351         /* For a station address of 0x12345678ABCD in transmission
352          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
353          * MACnADDR2 is set to 0x34120000.
354          */
355         tempval = (addr[5] << 24) | (addr[4] << 16) |
356                   (addr[3] << 8)  |  addr[2];
357
358         gfar_write(macptr, tempval);
359
360         tempval = (addr[1] << 24) | (addr[0] << 16);
361
362         gfar_write(macptr+1, tempval);
363 }
364
365 static int gfar_set_mac_addr(struct net_device *dev, void *p)
366 {
367         eth_mac_addr(dev, p);
368
369         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
370
371         return 0;
372 }
373
374 static void gfar_ints_disable(struct gfar_private *priv)
375 {
376         int i;
377         for (i = 0; i < priv->num_grps; i++) {
378                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
379                 /* Clear IEVENT */
380                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
381
382                 /* Initialize IMASK */
383                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
384         }
385 }
386
387 static void gfar_ints_enable(struct gfar_private *priv)
388 {
389         int i;
390         for (i = 0; i < priv->num_grps; i++) {
391                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
392                 /* Unmask the interrupts we look for */
393                 gfar_write(&regs->imask, IMASK_DEFAULT);
394         }
395 }
396
397 static int gfar_alloc_tx_queues(struct gfar_private *priv)
398 {
399         int i;
400
401         for (i = 0; i < priv->num_tx_queues; i++) {
402                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
403                                             GFP_KERNEL);
404                 if (!priv->tx_queue[i])
405                         return -ENOMEM;
406
407                 priv->tx_queue[i]->tx_skbuff = NULL;
408                 priv->tx_queue[i]->qindex = i;
409                 priv->tx_queue[i]->dev = priv->ndev;
410                 spin_lock_init(&(priv->tx_queue[i]->txlock));
411         }
412         return 0;
413 }
414
415 static int gfar_alloc_rx_queues(struct gfar_private *priv)
416 {
417         int i;
418
419         for (i = 0; i < priv->num_rx_queues; i++) {
420                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
421                                             GFP_KERNEL);
422                 if (!priv->rx_queue[i])
423                         return -ENOMEM;
424
425                 priv->rx_queue[i]->qindex = i;
426                 priv->rx_queue[i]->ndev = priv->ndev;
427         }
428         return 0;
429 }
430
431 static void gfar_free_tx_queues(struct gfar_private *priv)
432 {
433         int i;
434
435         for (i = 0; i < priv->num_tx_queues; i++)
436                 kfree(priv->tx_queue[i]);
437 }
438
439 static void gfar_free_rx_queues(struct gfar_private *priv)
440 {
441         int i;
442
443         for (i = 0; i < priv->num_rx_queues; i++)
444                 kfree(priv->rx_queue[i]);
445 }
446
447 static void unmap_group_regs(struct gfar_private *priv)
448 {
449         int i;
450
451         for (i = 0; i < MAXGROUPS; i++)
452                 if (priv->gfargrp[i].regs)
453                         iounmap(priv->gfargrp[i].regs);
454 }
455
456 static void free_gfar_dev(struct gfar_private *priv)
457 {
458         int i, j;
459
460         for (i = 0; i < priv->num_grps; i++)
461                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
462                         kfree(priv->gfargrp[i].irqinfo[j]);
463                         priv->gfargrp[i].irqinfo[j] = NULL;
464                 }
465
466         free_netdev(priv->ndev);
467 }
468
469 static void disable_napi(struct gfar_private *priv)
470 {
471         int i;
472
473         for (i = 0; i < priv->num_grps; i++) {
474                 napi_disable(&priv->gfargrp[i].napi_rx);
475                 napi_disable(&priv->gfargrp[i].napi_tx);
476         }
477 }
478
479 static void enable_napi(struct gfar_private *priv)
480 {
481         int i;
482
483         for (i = 0; i < priv->num_grps; i++) {
484                 napi_enable(&priv->gfargrp[i].napi_rx);
485                 napi_enable(&priv->gfargrp[i].napi_tx);
486         }
487 }
488
489 static int gfar_parse_group(struct device_node *np,
490                             struct gfar_private *priv, const char *model)
491 {
492         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
493         int i;
494
495         for (i = 0; i < GFAR_NUM_IRQS; i++) {
496                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
497                                           GFP_KERNEL);
498                 if (!grp->irqinfo[i])
499                         return -ENOMEM;
500         }
501
502         grp->regs = of_iomap(np, 0);
503         if (!grp->regs)
504                 return -ENOMEM;
505
506         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
507
508         /* If we aren't the FEC we have multiple interrupts */
509         if (model && strcasecmp(model, "FEC")) {
510                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
511                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
512                 if (!gfar_irq(grp, TX)->irq ||
513                     !gfar_irq(grp, RX)->irq ||
514                     !gfar_irq(grp, ER)->irq)
515                         return -EINVAL;
516         }
517
518         grp->priv = priv;
519         spin_lock_init(&grp->grplock);
520         if (priv->mode == MQ_MG_MODE) {
521                 u32 rxq_mask, txq_mask;
522                 int ret;
523
524                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
525                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
526
527                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
528                 if (!ret) {
529                         grp->rx_bit_map = rxq_mask ?
530                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
531                 }
532
533                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
534                 if (!ret) {
535                         grp->tx_bit_map = txq_mask ?
536                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
537                 }
538
539                 if (priv->poll_mode == GFAR_SQ_POLLING) {
540                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
541                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
542                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
543                 }
544         } else {
545                 grp->rx_bit_map = 0xFF;
546                 grp->tx_bit_map = 0xFF;
547         }
548
549         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
550          * right to left, so we need to revert the 8 bits to get the q index
551          */
552         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
553         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
554
555         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
556          * also assign queues to groups
557          */
558         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
559                 if (!grp->rx_queue)
560                         grp->rx_queue = priv->rx_queue[i];
561                 grp->num_rx_queues++;
562                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
563                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
564                 priv->rx_queue[i]->grp = grp;
565         }
566
567         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
568                 if (!grp->tx_queue)
569                         grp->tx_queue = priv->tx_queue[i];
570                 grp->num_tx_queues++;
571                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
572                 priv->tqueue |= (TQUEUE_EN0 >> i);
573                 priv->tx_queue[i]->grp = grp;
574         }
575
576         priv->num_grps++;
577
578         return 0;
579 }
580
581 static int gfar_of_group_count(struct device_node *np)
582 {
583         struct device_node *child;
584         int num = 0;
585
586         for_each_available_child_of_node(np, child)
587                 if (of_node_name_eq(child, "queue-group"))
588                         num++;
589
590         return num;
591 }
592
593 /* Reads the controller's registers to determine what interface
594  * connects it to the PHY.
595  */
596 static phy_interface_t gfar_get_interface(struct net_device *dev)
597 {
598         struct gfar_private *priv = netdev_priv(dev);
599         struct gfar __iomem *regs = priv->gfargrp[0].regs;
600         u32 ecntrl;
601
602         ecntrl = gfar_read(&regs->ecntrl);
603
604         if (ecntrl & ECNTRL_SGMII_MODE)
605                 return PHY_INTERFACE_MODE_SGMII;
606
607         if (ecntrl & ECNTRL_TBI_MODE) {
608                 if (ecntrl & ECNTRL_REDUCED_MODE)
609                         return PHY_INTERFACE_MODE_RTBI;
610                 else
611                         return PHY_INTERFACE_MODE_TBI;
612         }
613
614         if (ecntrl & ECNTRL_REDUCED_MODE) {
615                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
616                         return PHY_INTERFACE_MODE_RMII;
617                 }
618                 else {
619                         phy_interface_t interface = priv->interface;
620
621                         /* This isn't autodetected right now, so it must
622                          * be set by the device tree or platform code.
623                          */
624                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
625                                 return PHY_INTERFACE_MODE_RGMII_ID;
626
627                         return PHY_INTERFACE_MODE_RGMII;
628                 }
629         }
630
631         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
632                 return PHY_INTERFACE_MODE_GMII;
633
634         return PHY_INTERFACE_MODE_MII;
635 }
636
637 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
638 {
639         const char *model;
640         const void *mac_addr;
641         int err = 0, i;
642         phy_interface_t interface;
643         struct net_device *dev = NULL;
644         struct gfar_private *priv = NULL;
645         struct device_node *np = ofdev->dev.of_node;
646         struct device_node *child = NULL;
647         u32 stash_len = 0;
648         u32 stash_idx = 0;
649         unsigned int num_tx_qs, num_rx_qs;
650         unsigned short mode, poll_mode;
651
652         if (!np)
653                 return -ENODEV;
654
655         if (of_device_is_compatible(np, "fsl,etsec2")) {
656                 mode = MQ_MG_MODE;
657                 poll_mode = GFAR_SQ_POLLING;
658         } else {
659                 mode = SQ_SG_MODE;
660                 poll_mode = GFAR_SQ_POLLING;
661         }
662
663         if (mode == SQ_SG_MODE) {
664                 num_tx_qs = 1;
665                 num_rx_qs = 1;
666         } else { /* MQ_MG_MODE */
667                 /* get the actual number of supported groups */
668                 unsigned int num_grps = gfar_of_group_count(np);
669
670                 if (num_grps == 0 || num_grps > MAXGROUPS) {
671                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
672                                 num_grps);
673                         pr_err("Cannot do alloc_etherdev, aborting\n");
674                         return -EINVAL;
675                 }
676
677                 if (poll_mode == GFAR_SQ_POLLING) {
678                         num_tx_qs = num_grps; /* one txq per int group */
679                         num_rx_qs = num_grps; /* one rxq per int group */
680                 } else { /* GFAR_MQ_POLLING */
681                         u32 tx_queues, rx_queues;
682                         int ret;
683
684                         /* parse the num of HW tx and rx queues */
685                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
686                                                    &tx_queues);
687                         num_tx_qs = ret ? 1 : tx_queues;
688
689                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
690                                                    &rx_queues);
691                         num_rx_qs = ret ? 1 : rx_queues;
692                 }
693         }
694
695         if (num_tx_qs > MAX_TX_QS) {
696                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
697                        num_tx_qs, MAX_TX_QS);
698                 pr_err("Cannot do alloc_etherdev, aborting\n");
699                 return -EINVAL;
700         }
701
702         if (num_rx_qs > MAX_RX_QS) {
703                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
704                        num_rx_qs, MAX_RX_QS);
705                 pr_err("Cannot do alloc_etherdev, aborting\n");
706                 return -EINVAL;
707         }
708
709         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
710         dev = *pdev;
711         if (NULL == dev)
712                 return -ENOMEM;
713
714         priv = netdev_priv(dev);
715         priv->ndev = dev;
716
717         priv->mode = mode;
718         priv->poll_mode = poll_mode;
719
720         priv->num_tx_queues = num_tx_qs;
721         netif_set_real_num_rx_queues(dev, num_rx_qs);
722         priv->num_rx_queues = num_rx_qs;
723
724         err = gfar_alloc_tx_queues(priv);
725         if (err)
726                 goto tx_alloc_failed;
727
728         err = gfar_alloc_rx_queues(priv);
729         if (err)
730                 goto rx_alloc_failed;
731
732         err = of_property_read_string(np, "model", &model);
733         if (err) {
734                 pr_err("Device model property missing, aborting\n");
735                 goto rx_alloc_failed;
736         }
737
738         /* Init Rx queue filer rule set linked list */
739         INIT_LIST_HEAD(&priv->rx_list.list);
740         priv->rx_list.count = 0;
741         mutex_init(&priv->rx_queue_access);
742
743         for (i = 0; i < MAXGROUPS; i++)
744                 priv->gfargrp[i].regs = NULL;
745
746         /* Parse and initialize group specific information */
747         if (priv->mode == MQ_MG_MODE) {
748                 for_each_available_child_of_node(np, child) {
749                         if (!of_node_name_eq(child, "queue-group"))
750                                 continue;
751
752                         err = gfar_parse_group(child, priv, model);
753                         if (err) {
754                                 of_node_put(child);
755                                 goto err_grp_init;
756                         }
757                 }
758         } else { /* SQ_SG_MODE */
759                 err = gfar_parse_group(np, priv, model);
760                 if (err)
761                         goto err_grp_init;
762         }
763
764         if (of_property_read_bool(np, "bd-stash")) {
765                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
766                 priv->bd_stash_en = 1;
767         }
768
769         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
770
771         if (err == 0)
772                 priv->rx_stash_size = stash_len;
773
774         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
775
776         if (err == 0)
777                 priv->rx_stash_index = stash_idx;
778
779         if (stash_len || stash_idx)
780                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
781
782         mac_addr = of_get_mac_address(np);
783
784         if (!IS_ERR(mac_addr)) {
785                 ether_addr_copy(dev->dev_addr, mac_addr);
786         } else {
787                 eth_hw_addr_random(dev);
788                 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
789         }
790
791         if (model && !strcasecmp(model, "TSEC"))
792                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
793                                      FSL_GIANFAR_DEV_HAS_COALESCE |
794                                      FSL_GIANFAR_DEV_HAS_RMON |
795                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
796
797         if (model && !strcasecmp(model, "eTSEC"))
798                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
799                                      FSL_GIANFAR_DEV_HAS_COALESCE |
800                                      FSL_GIANFAR_DEV_HAS_RMON |
801                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
802                                      FSL_GIANFAR_DEV_HAS_CSUM |
803                                      FSL_GIANFAR_DEV_HAS_VLAN |
804                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
805                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
806                                      FSL_GIANFAR_DEV_HAS_TIMER |
807                                      FSL_GIANFAR_DEV_HAS_RX_FILER;
808
809         /* Use PHY connection type from the DT node if one is specified there.
810          * rgmii-id really needs to be specified. Other types can be
811          * detected by hardware
812          */
813         err = of_get_phy_mode(np, &interface);
814         if (!err)
815                 priv->interface = interface;
816         else
817                 priv->interface = gfar_get_interface(dev);
818
819         if (of_find_property(np, "fsl,magic-packet", NULL))
820                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
821
822         if (of_get_property(np, "fsl,wake-on-filer", NULL))
823                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
824
825         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
826
827         /* In the case of a fixed PHY, the DT node associated
828          * to the PHY is the Ethernet MAC DT node.
829          */
830         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
831                 err = of_phy_register_fixed_link(np);
832                 if (err)
833                         goto err_grp_init;
834
835                 priv->phy_node = of_node_get(np);
836         }
837
838         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
839         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
840
841         return 0;
842
843 err_grp_init:
844         unmap_group_regs(priv);
845 rx_alloc_failed:
846         gfar_free_rx_queues(priv);
847 tx_alloc_failed:
848         gfar_free_tx_queues(priv);
849         free_gfar_dev(priv);
850         return err;
851 }
852
853 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
854                                    u32 class)
855 {
856         u32 rqfpr = FPR_FILER_MASK;
857         u32 rqfcr = 0x0;
858
859         rqfar--;
860         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
861         priv->ftp_rqfpr[rqfar] = rqfpr;
862         priv->ftp_rqfcr[rqfar] = rqfcr;
863         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
864
865         rqfar--;
866         rqfcr = RQFCR_CMP_NOMATCH;
867         priv->ftp_rqfpr[rqfar] = rqfpr;
868         priv->ftp_rqfcr[rqfar] = rqfcr;
869         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
870
871         rqfar--;
872         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
873         rqfpr = class;
874         priv->ftp_rqfcr[rqfar] = rqfcr;
875         priv->ftp_rqfpr[rqfar] = rqfpr;
876         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
877
878         rqfar--;
879         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
880         rqfpr = class;
881         priv->ftp_rqfcr[rqfar] = rqfcr;
882         priv->ftp_rqfpr[rqfar] = rqfpr;
883         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
884
885         return rqfar;
886 }
887
888 static void gfar_init_filer_table(struct gfar_private *priv)
889 {
890         int i = 0x0;
891         u32 rqfar = MAX_FILER_IDX;
892         u32 rqfcr = 0x0;
893         u32 rqfpr = FPR_FILER_MASK;
894
895         /* Default rule */
896         rqfcr = RQFCR_CMP_MATCH;
897         priv->ftp_rqfcr[rqfar] = rqfcr;
898         priv->ftp_rqfpr[rqfar] = rqfpr;
899         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
900
901         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
902         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
903         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
904         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
905         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
906         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
907
908         /* cur_filer_idx indicated the first non-masked rule */
909         priv->cur_filer_idx = rqfar;
910
911         /* Rest are masked rules */
912         rqfcr = RQFCR_CMP_NOMATCH;
913         for (i = 0; i < rqfar; i++) {
914                 priv->ftp_rqfcr[i] = rqfcr;
915                 priv->ftp_rqfpr[i] = rqfpr;
916                 gfar_write_filer(priv, i, rqfcr, rqfpr);
917         }
918 }
919
920 #ifdef CONFIG_PPC
921 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
922 {
923         unsigned int pvr = mfspr(SPRN_PVR);
924         unsigned int svr = mfspr(SPRN_SVR);
925         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
926         unsigned int rev = svr & 0xffff;
927
928         /* MPC8313 Rev 2.0 and higher; All MPC837x */
929         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
930             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
931                 priv->errata |= GFAR_ERRATA_74;
932
933         /* MPC8313 and MPC837x all rev */
934         if ((pvr == 0x80850010 && mod == 0x80b0) ||
935             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
936                 priv->errata |= GFAR_ERRATA_76;
937
938         /* MPC8313 Rev < 2.0 */
939         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
940                 priv->errata |= GFAR_ERRATA_12;
941 }
942
943 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
944 {
945         unsigned int svr = mfspr(SPRN_SVR);
946
947         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
948                 priv->errata |= GFAR_ERRATA_12;
949         /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
950         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
951             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
952             ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
953                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
954 }
955 #endif
956
957 static void gfar_detect_errata(struct gfar_private *priv)
958 {
959         struct device *dev = &priv->ofdev->dev;
960
961         /* no plans to fix */
962         priv->errata |= GFAR_ERRATA_A002;
963
964 #ifdef CONFIG_PPC
965         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
966                 __gfar_detect_errata_85xx(priv);
967         else /* non-mpc85xx parts, i.e. e300 core based */
968                 __gfar_detect_errata_83xx(priv);
969 #endif
970
971         if (priv->errata)
972                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
973                          priv->errata);
974 }
975
976 static void gfar_init_addr_hash_table(struct gfar_private *priv)
977 {
978         struct gfar __iomem *regs = priv->gfargrp[0].regs;
979
980         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
981                 priv->extended_hash = 1;
982                 priv->hash_width = 9;
983
984                 priv->hash_regs[0] = &regs->igaddr0;
985                 priv->hash_regs[1] = &regs->igaddr1;
986                 priv->hash_regs[2] = &regs->igaddr2;
987                 priv->hash_regs[3] = &regs->igaddr3;
988                 priv->hash_regs[4] = &regs->igaddr4;
989                 priv->hash_regs[5] = &regs->igaddr5;
990                 priv->hash_regs[6] = &regs->igaddr6;
991                 priv->hash_regs[7] = &regs->igaddr7;
992                 priv->hash_regs[8] = &regs->gaddr0;
993                 priv->hash_regs[9] = &regs->gaddr1;
994                 priv->hash_regs[10] = &regs->gaddr2;
995                 priv->hash_regs[11] = &regs->gaddr3;
996                 priv->hash_regs[12] = &regs->gaddr4;
997                 priv->hash_regs[13] = &regs->gaddr5;
998                 priv->hash_regs[14] = &regs->gaddr6;
999                 priv->hash_regs[15] = &regs->gaddr7;
1000
1001         } else {
1002                 priv->extended_hash = 0;
1003                 priv->hash_width = 8;
1004
1005                 priv->hash_regs[0] = &regs->gaddr0;
1006                 priv->hash_regs[1] = &regs->gaddr1;
1007                 priv->hash_regs[2] = &regs->gaddr2;
1008                 priv->hash_regs[3] = &regs->gaddr3;
1009                 priv->hash_regs[4] = &regs->gaddr4;
1010                 priv->hash_regs[5] = &regs->gaddr5;
1011                 priv->hash_regs[6] = &regs->gaddr6;
1012                 priv->hash_regs[7] = &regs->gaddr7;
1013         }
1014 }
1015
1016 static int __gfar_is_rx_idle(struct gfar_private *priv)
1017 {
1018         u32 res;
1019
1020         /* Normaly TSEC should not hang on GRS commands, so we should
1021          * actually wait for IEVENT_GRSC flag.
1022          */
1023         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1024                 return 0;
1025
1026         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1027          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1028          * and the Rx can be safely reset.
1029          */
1030         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1031         res &= 0x7f807f80;
1032         if ((res & 0xffff) == (res >> 16))
1033                 return 1;
1034
1035         return 0;
1036 }
1037
1038 /* Halt the receive and transmit queues */
1039 static void gfar_halt_nodisable(struct gfar_private *priv)
1040 {
1041         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1042         u32 tempval;
1043         unsigned int timeout;
1044         int stopped;
1045
1046         gfar_ints_disable(priv);
1047
1048         if (gfar_is_dma_stopped(priv))
1049                 return;
1050
1051         /* Stop the DMA, and wait for it to stop */
1052         tempval = gfar_read(&regs->dmactrl);
1053         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1054         gfar_write(&regs->dmactrl, tempval);
1055
1056 retry:
1057         timeout = 1000;
1058         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1059                 cpu_relax();
1060                 timeout--;
1061         }
1062
1063         if (!timeout)
1064                 stopped = gfar_is_dma_stopped(priv);
1065
1066         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1067             !__gfar_is_rx_idle(priv))
1068                 goto retry;
1069 }
1070
1071 /* Halt the receive and transmit queues */
1072 static void gfar_halt(struct gfar_private *priv)
1073 {
1074         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1075         u32 tempval;
1076
1077         /* Dissable the Rx/Tx hw queues */
1078         gfar_write(&regs->rqueue, 0);
1079         gfar_write(&regs->tqueue, 0);
1080
1081         mdelay(10);
1082
1083         gfar_halt_nodisable(priv);
1084
1085         /* Disable Rx/Tx DMA */
1086         tempval = gfar_read(&regs->maccfg1);
1087         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1088         gfar_write(&regs->maccfg1, tempval);
1089 }
1090
1091 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1092 {
1093         struct txbd8 *txbdp;
1094         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1095         int i, j;
1096
1097         txbdp = tx_queue->tx_bd_base;
1098
1099         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1100                 if (!tx_queue->tx_skbuff[i])
1101                         continue;
1102
1103                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1104                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1105                 txbdp->lstatus = 0;
1106                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1107                      j++) {
1108                         txbdp++;
1109                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1110                                        be16_to_cpu(txbdp->length),
1111                                        DMA_TO_DEVICE);
1112                 }
1113                 txbdp++;
1114                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1115                 tx_queue->tx_skbuff[i] = NULL;
1116         }
1117         kfree(tx_queue->tx_skbuff);
1118         tx_queue->tx_skbuff = NULL;
1119 }
1120
1121 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1122 {
1123         int i;
1124
1125         struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1126
1127         dev_kfree_skb(rx_queue->skb);
1128
1129         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1130                 struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1131
1132                 rxbdp->lstatus = 0;
1133                 rxbdp->bufPtr = 0;
1134                 rxbdp++;
1135
1136                 if (!rxb->page)
1137                         continue;
1138
1139                 dma_unmap_page(rx_queue->dev, rxb->dma,
1140                                PAGE_SIZE, DMA_FROM_DEVICE);
1141                 __free_page(rxb->page);
1142
1143                 rxb->page = NULL;
1144         }
1145
1146         kfree(rx_queue->rx_buff);
1147         rx_queue->rx_buff = NULL;
1148 }
1149
1150 /* If there are any tx skbs or rx skbs still around, free them.
1151  * Then free tx_skbuff and rx_skbuff
1152  */
1153 static void free_skb_resources(struct gfar_private *priv)
1154 {
1155         struct gfar_priv_tx_q *tx_queue = NULL;
1156         struct gfar_priv_rx_q *rx_queue = NULL;
1157         int i;
1158
1159         /* Go through all the buffer descriptors and free their data buffers */
1160         for (i = 0; i < priv->num_tx_queues; i++) {
1161                 struct netdev_queue *txq;
1162
1163                 tx_queue = priv->tx_queue[i];
1164                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1165                 if (tx_queue->tx_skbuff)
1166                         free_skb_tx_queue(tx_queue);
1167                 netdev_tx_reset_queue(txq);
1168         }
1169
1170         for (i = 0; i < priv->num_rx_queues; i++) {
1171                 rx_queue = priv->rx_queue[i];
1172                 if (rx_queue->rx_buff)
1173                         free_skb_rx_queue(rx_queue);
1174         }
1175
1176         dma_free_coherent(priv->dev,
1177                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1178                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1179                           priv->tx_queue[0]->tx_bd_base,
1180                           priv->tx_queue[0]->tx_bd_dma_base);
1181 }
1182
1183 void stop_gfar(struct net_device *dev)
1184 {
1185         struct gfar_private *priv = netdev_priv(dev);
1186
1187         netif_tx_stop_all_queues(dev);
1188
1189         smp_mb__before_atomic();
1190         set_bit(GFAR_DOWN, &priv->state);
1191         smp_mb__after_atomic();
1192
1193         disable_napi(priv);
1194
1195         /* disable ints and gracefully shut down Rx/Tx DMA */
1196         gfar_halt(priv);
1197
1198         phy_stop(dev->phydev);
1199
1200         free_skb_resources(priv);
1201 }
1202
1203 static void gfar_start(struct gfar_private *priv)
1204 {
1205         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1206         u32 tempval;
1207         int i = 0;
1208
1209         /* Enable Rx/Tx hw queues */
1210         gfar_write(&regs->rqueue, priv->rqueue);
1211         gfar_write(&regs->tqueue, priv->tqueue);
1212
1213         /* Initialize DMACTRL to have WWR and WOP */
1214         tempval = gfar_read(&regs->dmactrl);
1215         tempval |= DMACTRL_INIT_SETTINGS;
1216         gfar_write(&regs->dmactrl, tempval);
1217
1218         /* Make sure we aren't stopped */
1219         tempval = gfar_read(&regs->dmactrl);
1220         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1221         gfar_write(&regs->dmactrl, tempval);
1222
1223         for (i = 0; i < priv->num_grps; i++) {
1224                 regs = priv->gfargrp[i].regs;
1225                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1226                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1227                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1228         }
1229
1230         /* Enable Rx/Tx DMA */
1231         tempval = gfar_read(&regs->maccfg1);
1232         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1233         gfar_write(&regs->maccfg1, tempval);
1234
1235         gfar_ints_enable(priv);
1236
1237         netif_trans_update(priv->ndev); /* prevent tx timeout */
1238 }
1239
1240 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1241 {
1242         struct page *page;
1243         dma_addr_t addr;
1244
1245         page = dev_alloc_page();
1246         if (unlikely(!page))
1247                 return false;
1248
1249         addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1250         if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1251                 __free_page(page);
1252
1253                 return false;
1254         }
1255
1256         rxb->dma = addr;
1257         rxb->page = page;
1258         rxb->page_offset = 0;
1259
1260         return true;
1261 }
1262
1263 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1264 {
1265         struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1266         struct gfar_extra_stats *estats = &priv->extra_stats;
1267
1268         netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1269         atomic64_inc(&estats->rx_alloc_err);
1270 }
1271
1272 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1273                                 int alloc_cnt)
1274 {
1275         struct rxbd8 *bdp;
1276         struct gfar_rx_buff *rxb;
1277         int i;
1278
1279         i = rx_queue->next_to_use;
1280         bdp = &rx_queue->rx_bd_base[i];
1281         rxb = &rx_queue->rx_buff[i];
1282
1283         while (alloc_cnt--) {
1284                 /* try reuse page */
1285                 if (unlikely(!rxb->page)) {
1286                         if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1287                                 gfar_rx_alloc_err(rx_queue);
1288                                 break;
1289                         }
1290                 }
1291
1292                 /* Setup the new RxBD */
1293                 gfar_init_rxbdp(rx_queue, bdp,
1294                                 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1295
1296                 /* Update to the next pointer */
1297                 bdp++;
1298                 rxb++;
1299
1300                 if (unlikely(++i == rx_queue->rx_ring_size)) {
1301                         i = 0;
1302                         bdp = rx_queue->rx_bd_base;
1303                         rxb = rx_queue->rx_buff;
1304                 }
1305         }
1306
1307         rx_queue->next_to_use = i;
1308         rx_queue->next_to_alloc = i;
1309 }
1310
1311 static void gfar_init_bds(struct net_device *ndev)
1312 {
1313         struct gfar_private *priv = netdev_priv(ndev);
1314         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1315         struct gfar_priv_tx_q *tx_queue = NULL;
1316         struct gfar_priv_rx_q *rx_queue = NULL;
1317         struct txbd8 *txbdp;
1318         u32 __iomem *rfbptr;
1319         int i, j;
1320
1321         for (i = 0; i < priv->num_tx_queues; i++) {
1322                 tx_queue = priv->tx_queue[i];
1323                 /* Initialize some variables in our dev structure */
1324                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1325                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
1326                 tx_queue->cur_tx = tx_queue->tx_bd_base;
1327                 tx_queue->skb_curtx = 0;
1328                 tx_queue->skb_dirtytx = 0;
1329
1330                 /* Initialize Transmit Descriptor Ring */
1331                 txbdp = tx_queue->tx_bd_base;
1332                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
1333                         txbdp->lstatus = 0;
1334                         txbdp->bufPtr = 0;
1335                         txbdp++;
1336                 }
1337
1338                 /* Set the last descriptor in the ring to indicate wrap */
1339                 txbdp--;
1340                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1341                                             TXBD_WRAP);
1342         }
1343
1344         rfbptr = &regs->rfbptr0;
1345         for (i = 0; i < priv->num_rx_queues; i++) {
1346                 rx_queue = priv->rx_queue[i];
1347
1348                 rx_queue->next_to_clean = 0;
1349                 rx_queue->next_to_use = 0;
1350                 rx_queue->next_to_alloc = 0;
1351
1352                 /* make sure next_to_clean != next_to_use after this
1353                  * by leaving at least 1 unused descriptor
1354                  */
1355                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1356
1357                 rx_queue->rfbptr = rfbptr;
1358                 rfbptr += 2;
1359         }
1360 }
1361
1362 static int gfar_alloc_skb_resources(struct net_device *ndev)
1363 {
1364         void *vaddr;
1365         dma_addr_t addr;
1366         int i, j;
1367         struct gfar_private *priv = netdev_priv(ndev);
1368         struct device *dev = priv->dev;
1369         struct gfar_priv_tx_q *tx_queue = NULL;
1370         struct gfar_priv_rx_q *rx_queue = NULL;
1371
1372         priv->total_tx_ring_size = 0;
1373         for (i = 0; i < priv->num_tx_queues; i++)
1374                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1375
1376         priv->total_rx_ring_size = 0;
1377         for (i = 0; i < priv->num_rx_queues; i++)
1378                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1379
1380         /* Allocate memory for the buffer descriptors */
1381         vaddr = dma_alloc_coherent(dev,
1382                                    (priv->total_tx_ring_size *
1383                                     sizeof(struct txbd8)) +
1384                                    (priv->total_rx_ring_size *
1385                                     sizeof(struct rxbd8)),
1386                                    &addr, GFP_KERNEL);
1387         if (!vaddr)
1388                 return -ENOMEM;
1389
1390         for (i = 0; i < priv->num_tx_queues; i++) {
1391                 tx_queue = priv->tx_queue[i];
1392                 tx_queue->tx_bd_base = vaddr;
1393                 tx_queue->tx_bd_dma_base = addr;
1394                 tx_queue->dev = ndev;
1395                 /* enet DMA only understands physical addresses */
1396                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1397                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1398         }
1399
1400         /* Start the rx descriptor ring where the tx ring leaves off */
1401         for (i = 0; i < priv->num_rx_queues; i++) {
1402                 rx_queue = priv->rx_queue[i];
1403                 rx_queue->rx_bd_base = vaddr;
1404                 rx_queue->rx_bd_dma_base = addr;
1405                 rx_queue->ndev = ndev;
1406                 rx_queue->dev = dev;
1407                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1408                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1409         }
1410
1411         /* Setup the skbuff rings */
1412         for (i = 0; i < priv->num_tx_queues; i++) {
1413                 tx_queue = priv->tx_queue[i];
1414                 tx_queue->tx_skbuff =
1415                         kmalloc_array(tx_queue->tx_ring_size,
1416                                       sizeof(*tx_queue->tx_skbuff),
1417                                       GFP_KERNEL);
1418                 if (!tx_queue->tx_skbuff)
1419                         goto cleanup;
1420
1421                 for (j = 0; j < tx_queue->tx_ring_size; j++)
1422                         tx_queue->tx_skbuff[j] = NULL;
1423         }
1424
1425         for (i = 0; i < priv->num_rx_queues; i++) {
1426                 rx_queue = priv->rx_queue[i];
1427                 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1428                                             sizeof(*rx_queue->rx_buff),
1429                                             GFP_KERNEL);
1430                 if (!rx_queue->rx_buff)
1431                         goto cleanup;
1432         }
1433
1434         gfar_init_bds(ndev);
1435
1436         return 0;
1437
1438 cleanup:
1439         free_skb_resources(priv);
1440         return -ENOMEM;
1441 }
1442
1443 /* Bring the controller up and running */
1444 int startup_gfar(struct net_device *ndev)
1445 {
1446         struct gfar_private *priv = netdev_priv(ndev);
1447         int err;
1448
1449         gfar_mac_reset(priv);
1450
1451         err = gfar_alloc_skb_resources(ndev);
1452         if (err)
1453                 return err;
1454
1455         gfar_init_tx_rx_base(priv);
1456
1457         smp_mb__before_atomic();
1458         clear_bit(GFAR_DOWN, &priv->state);
1459         smp_mb__after_atomic();
1460
1461         /* Start Rx/Tx DMA and enable the interrupts */
1462         gfar_start(priv);
1463
1464         /* force link state update after mac reset */
1465         priv->oldlink = 0;
1466         priv->oldspeed = 0;
1467         priv->oldduplex = -1;
1468
1469         phy_start(ndev->phydev);
1470
1471         enable_napi(priv);
1472
1473         netif_tx_wake_all_queues(ndev);
1474
1475         return 0;
1476 }
1477
1478 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1479 {
1480         struct net_device *ndev = priv->ndev;
1481         struct phy_device *phydev = ndev->phydev;
1482         u32 val = 0;
1483
1484         if (!phydev->duplex)
1485                 return val;
1486
1487         if (!priv->pause_aneg_en) {
1488                 if (priv->tx_pause_en)
1489                         val |= MACCFG1_TX_FLOW;
1490                 if (priv->rx_pause_en)
1491                         val |= MACCFG1_RX_FLOW;
1492         } else {
1493                 u16 lcl_adv, rmt_adv;
1494                 u8 flowctrl;
1495                 /* get link partner capabilities */
1496                 rmt_adv = 0;
1497                 if (phydev->pause)
1498                         rmt_adv = LPA_PAUSE_CAP;
1499                 if (phydev->asym_pause)
1500                         rmt_adv |= LPA_PAUSE_ASYM;
1501
1502                 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1503                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1504                 if (flowctrl & FLOW_CTRL_TX)
1505                         val |= MACCFG1_TX_FLOW;
1506                 if (flowctrl & FLOW_CTRL_RX)
1507                         val |= MACCFG1_RX_FLOW;
1508         }
1509
1510         return val;
1511 }
1512
1513 static noinline void gfar_update_link_state(struct gfar_private *priv)
1514 {
1515         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1516         struct net_device *ndev = priv->ndev;
1517         struct phy_device *phydev = ndev->phydev;
1518         struct gfar_priv_rx_q *rx_queue = NULL;
1519         int i;
1520
1521         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1522                 return;
1523
1524         if (phydev->link) {
1525                 u32 tempval1 = gfar_read(&regs->maccfg1);
1526                 u32 tempval = gfar_read(&regs->maccfg2);
1527                 u32 ecntrl = gfar_read(&regs->ecntrl);
1528                 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1529
1530                 if (phydev->duplex != priv->oldduplex) {
1531                         if (!(phydev->duplex))
1532                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1533                         else
1534                                 tempval |= MACCFG2_FULL_DUPLEX;
1535
1536                         priv->oldduplex = phydev->duplex;
1537                 }
1538
1539                 if (phydev->speed != priv->oldspeed) {
1540                         switch (phydev->speed) {
1541                         case 1000:
1542                                 tempval =
1543                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1544
1545                                 ecntrl &= ~(ECNTRL_R100);
1546                                 break;
1547                         case 100:
1548                         case 10:
1549                                 tempval =
1550                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1551
1552                                 /* Reduced mode distinguishes
1553                                  * between 10 and 100
1554                                  */
1555                                 if (phydev->speed == SPEED_100)
1556                                         ecntrl |= ECNTRL_R100;
1557                                 else
1558                                         ecntrl &= ~(ECNTRL_R100);
1559                                 break;
1560                         default:
1561                                 netif_warn(priv, link, priv->ndev,
1562                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
1563                                            phydev->speed);
1564                                 break;
1565                         }
1566
1567                         priv->oldspeed = phydev->speed;
1568                 }
1569
1570                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1571                 tempval1 |= gfar_get_flowctrl_cfg(priv);
1572
1573                 /* Turn last free buffer recording on */
1574                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1575                         for (i = 0; i < priv->num_rx_queues; i++) {
1576                                 u32 bdp_dma;
1577
1578                                 rx_queue = priv->rx_queue[i];
1579                                 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1580                                 gfar_write(rx_queue->rfbptr, bdp_dma);
1581                         }
1582
1583                         priv->tx_actual_en = 1;
1584                 }
1585
1586                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1587                         priv->tx_actual_en = 0;
1588
1589                 gfar_write(&regs->maccfg1, tempval1);
1590                 gfar_write(&regs->maccfg2, tempval);
1591                 gfar_write(&regs->ecntrl, ecntrl);
1592
1593                 if (!priv->oldlink)
1594                         priv->oldlink = 1;
1595
1596         } else if (priv->oldlink) {
1597                 priv->oldlink = 0;
1598                 priv->oldspeed = 0;
1599                 priv->oldduplex = -1;
1600         }
1601
1602         if (netif_msg_link(priv))
1603                 phy_print_status(phydev);
1604 }
1605
1606 /* Called every time the controller might need to be made
1607  * aware of new link state.  The PHY code conveys this
1608  * information through variables in the phydev structure, and this
1609  * function converts those variables into the appropriate
1610  * register values, and can bring down the device if needed.
1611  */
1612 static void adjust_link(struct net_device *dev)
1613 {
1614         struct gfar_private *priv = netdev_priv(dev);
1615         struct phy_device *phydev = dev->phydev;
1616
1617         if (unlikely(phydev->link != priv->oldlink ||
1618                      (phydev->link && (phydev->duplex != priv->oldduplex ||
1619                                        phydev->speed != priv->oldspeed))))
1620                 gfar_update_link_state(priv);
1621 }
1622
1623 /* Initialize TBI PHY interface for communicating with the
1624  * SERDES lynx PHY on the chip.  We communicate with this PHY
1625  * through the MDIO bus on each controller, treating it as a
1626  * "normal" PHY at the address found in the TBIPA register.  We assume
1627  * that the TBIPA register is valid.  Either the MDIO bus code will set
1628  * it to a value that doesn't conflict with other PHYs on the bus, or the
1629  * value doesn't matter, as there are no other PHYs on the bus.
1630  */
1631 static void gfar_configure_serdes(struct net_device *dev)
1632 {
1633         struct gfar_private *priv = netdev_priv(dev);
1634         struct phy_device *tbiphy;
1635
1636         if (!priv->tbi_node) {
1637                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1638                                     "device tree specify a tbi-handle\n");
1639                 return;
1640         }
1641
1642         tbiphy = of_phy_find_device(priv->tbi_node);
1643         if (!tbiphy) {
1644                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1645                 return;
1646         }
1647
1648         /* If the link is already up, we must already be ok, and don't need to
1649          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1650          * everything for us?  Resetting it takes the link down and requires
1651          * several seconds for it to come back.
1652          */
1653         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1654                 put_device(&tbiphy->mdio.dev);
1655                 return;
1656         }
1657
1658         /* Single clk mode, mii mode off(for serdes communication) */
1659         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1660
1661         phy_write(tbiphy, MII_ADVERTISE,
1662                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1663                   ADVERTISE_1000XPSE_ASYM);
1664
1665         phy_write(tbiphy, MII_BMCR,
1666                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1667                   BMCR_SPEED1000);
1668
1669         put_device(&tbiphy->mdio.dev);
1670 }
1671
1672 /* Initializes driver's PHY state, and attaches to the PHY.
1673  * Returns 0 on success.
1674  */
1675 static int init_phy(struct net_device *dev)
1676 {
1677         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1678         struct gfar_private *priv = netdev_priv(dev);
1679         phy_interface_t interface = priv->interface;
1680         struct phy_device *phydev;
1681         struct ethtool_eee edata;
1682
1683         linkmode_set_bit_array(phy_10_100_features_array,
1684                                ARRAY_SIZE(phy_10_100_features_array),
1685                                mask);
1686         linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1687         linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1688         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1689                 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1690
1691         priv->oldlink = 0;
1692         priv->oldspeed = 0;
1693         priv->oldduplex = -1;
1694
1695         phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1696                                 interface);
1697         if (!phydev) {
1698                 dev_err(&dev->dev, "could not attach to PHY\n");
1699                 return -ENODEV;
1700         }
1701
1702         if (interface == PHY_INTERFACE_MODE_SGMII)
1703                 gfar_configure_serdes(dev);
1704
1705         /* Remove any features not supported by the controller */
1706         linkmode_and(phydev->supported, phydev->supported, mask);
1707         linkmode_copy(phydev->advertising, phydev->supported);
1708
1709         /* Add support for flow control */
1710         phy_support_asym_pause(phydev);
1711
1712         /* disable EEE autoneg, EEE not supported by eTSEC */
1713         memset(&edata, 0, sizeof(struct ethtool_eee));
1714         phy_ethtool_set_eee(phydev, &edata);
1715
1716         return 0;
1717 }
1718
1719 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1720 {
1721         struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1722
1723         memset(fcb, 0, GMAC_FCB_LEN);
1724
1725         return fcb;
1726 }
1727
1728 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1729                                     int fcb_length)
1730 {
1731         /* If we're here, it's a IP packet with a TCP or UDP
1732          * payload.  We set it to checksum, using a pseudo-header
1733          * we provide
1734          */
1735         u8 flags = TXFCB_DEFAULT;
1736
1737         /* Tell the controller what the protocol is
1738          * And provide the already calculated phcs
1739          */
1740         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1741                 flags |= TXFCB_UDP;
1742                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1743         } else
1744                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1745
1746         /* l3os is the distance between the start of the
1747          * frame (skb->data) and the start of the IP hdr.
1748          * l4os is the distance between the start of the
1749          * l3 hdr and the l4 hdr
1750          */
1751         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1752         fcb->l4os = skb_network_header_len(skb);
1753
1754         fcb->flags = flags;
1755 }
1756
1757 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1758 {
1759         fcb->flags |= TXFCB_VLN;
1760         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1761 }
1762
1763 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1764                                       struct txbd8 *base, int ring_size)
1765 {
1766         struct txbd8 *new_bd = bdp + stride;
1767
1768         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1769 }
1770
1771 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1772                                       int ring_size)
1773 {
1774         return skip_txbd(bdp, 1, base, ring_size);
1775 }
1776
1777 /* eTSEC12: csum generation not supported for some fcb offsets */
1778 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1779                                        unsigned long fcb_addr)
1780 {
1781         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1782                (fcb_addr % 0x20) > 0x18);
1783 }
1784
1785 /* eTSEC76: csum generation for frames larger than 2500 may
1786  * cause excess delays before start of transmission
1787  */
1788 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1789                                        unsigned int len)
1790 {
1791         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1792                (len > 2500));
1793 }
1794
1795 /* This is called by the kernel when a frame is ready for transmission.
1796  * It is pointed to by the dev->hard_start_xmit function pointer
1797  */
1798 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1799 {
1800         struct gfar_private *priv = netdev_priv(dev);
1801         struct gfar_priv_tx_q *tx_queue = NULL;
1802         struct netdev_queue *txq;
1803         struct gfar __iomem *regs = NULL;
1804         struct txfcb *fcb = NULL;
1805         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1806         u32 lstatus;
1807         skb_frag_t *frag;
1808         int i, rq = 0;
1809         int do_tstamp, do_csum, do_vlan;
1810         u32 bufaddr;
1811         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1812
1813         rq = skb->queue_mapping;
1814         tx_queue = priv->tx_queue[rq];
1815         txq = netdev_get_tx_queue(dev, rq);
1816         base = tx_queue->tx_bd_base;
1817         regs = tx_queue->grp->regs;
1818
1819         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1820         do_vlan = skb_vlan_tag_present(skb);
1821         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1822                     priv->hwts_tx_en;
1823
1824         if (do_csum || do_vlan)
1825                 fcb_len = GMAC_FCB_LEN;
1826
1827         /* check if time stamp should be generated */
1828         if (unlikely(do_tstamp))
1829                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1830
1831         /* make space for additional header when fcb is needed */
1832         if (fcb_len) {
1833                 if (unlikely(skb_cow_head(skb, fcb_len))) {
1834                         dev->stats.tx_errors++;
1835                         dev_kfree_skb_any(skb);
1836                         return NETDEV_TX_OK;
1837                 }
1838         }
1839
1840         /* total number of fragments in the SKB */
1841         nr_frags = skb_shinfo(skb)->nr_frags;
1842
1843         /* calculate the required number of TxBDs for this skb */
1844         if (unlikely(do_tstamp))
1845                 nr_txbds = nr_frags + 2;
1846         else
1847                 nr_txbds = nr_frags + 1;
1848
1849         /* check if there is space to queue this packet */
1850         if (nr_txbds > tx_queue->num_txbdfree) {
1851                 /* no space, stop the queue */
1852                 netif_tx_stop_queue(txq);
1853                 dev->stats.tx_fifo_errors++;
1854                 return NETDEV_TX_BUSY;
1855         }
1856
1857         /* Update transmit stats */
1858         bytes_sent = skb->len;
1859         tx_queue->stats.tx_bytes += bytes_sent;
1860         /* keep Tx bytes on wire for BQL accounting */
1861         GFAR_CB(skb)->bytes_sent = bytes_sent;
1862         tx_queue->stats.tx_packets++;
1863
1864         txbdp = txbdp_start = tx_queue->cur_tx;
1865         lstatus = be32_to_cpu(txbdp->lstatus);
1866
1867         /* Add TxPAL between FCB and frame if required */
1868         if (unlikely(do_tstamp)) {
1869                 skb_push(skb, GMAC_TXPAL_LEN);
1870                 memset(skb->data, 0, GMAC_TXPAL_LEN);
1871         }
1872
1873         /* Add TxFCB if required */
1874         if (fcb_len) {
1875                 fcb = gfar_add_fcb(skb);
1876                 lstatus |= BD_LFLAG(TXBD_TOE);
1877         }
1878
1879         /* Set up checksumming */
1880         if (do_csum) {
1881                 gfar_tx_checksum(skb, fcb, fcb_len);
1882
1883                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1884                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
1885                         __skb_pull(skb, GMAC_FCB_LEN);
1886                         skb_checksum_help(skb);
1887                         if (do_vlan || do_tstamp) {
1888                                 /* put back a new fcb for vlan/tstamp TOE */
1889                                 fcb = gfar_add_fcb(skb);
1890                         } else {
1891                                 /* Tx TOE not used */
1892                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
1893                                 fcb = NULL;
1894                         }
1895                 }
1896         }
1897
1898         if (do_vlan)
1899                 gfar_tx_vlan(skb, fcb);
1900
1901         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1902                                  DMA_TO_DEVICE);
1903         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1904                 goto dma_map_err;
1905
1906         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1907
1908         /* Time stamp insertion requires one additional TxBD */
1909         if (unlikely(do_tstamp))
1910                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1911                                                  tx_queue->tx_ring_size);
1912
1913         if (likely(!nr_frags)) {
1914                 if (likely(!do_tstamp))
1915                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1916         } else {
1917                 u32 lstatus_start = lstatus;
1918
1919                 /* Place the fragment addresses and lengths into the TxBDs */
1920                 frag = &skb_shinfo(skb)->frags[0];
1921                 for (i = 0; i < nr_frags; i++, frag++) {
1922                         unsigned int size;
1923
1924                         /* Point at the next BD, wrapping as needed */
1925                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1926
1927                         size = skb_frag_size(frag);
1928
1929                         lstatus = be32_to_cpu(txbdp->lstatus) | size |
1930                                   BD_LFLAG(TXBD_READY);
1931
1932                         /* Handle the last BD specially */
1933                         if (i == nr_frags - 1)
1934                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1935
1936                         bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1937                                                    size, DMA_TO_DEVICE);
1938                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1939                                 goto dma_map_err;
1940
1941                         /* set the TxBD length and buffer pointer */
1942                         txbdp->bufPtr = cpu_to_be32(bufaddr);
1943                         txbdp->lstatus = cpu_to_be32(lstatus);
1944                 }
1945
1946                 lstatus = lstatus_start;
1947         }
1948
1949         /* If time stamping is requested one additional TxBD must be set up. The
1950          * first TxBD points to the FCB and must have a data length of
1951          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1952          * the full frame length.
1953          */
1954         if (unlikely(do_tstamp)) {
1955                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1956
1957                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1958                 bufaddr += fcb_len;
1959
1960                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
1961                               (skb_headlen(skb) - fcb_len);
1962                 if (!nr_frags)
1963                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1964
1965                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1966                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1967                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1968
1969                 /* Setup tx hardware time stamping */
1970                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1971                 fcb->ptp = 1;
1972         } else {
1973                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1974         }
1975
1976         netdev_tx_sent_queue(txq, bytes_sent);
1977
1978         gfar_wmb();
1979
1980         txbdp_start->lstatus = cpu_to_be32(lstatus);
1981
1982         gfar_wmb(); /* force lstatus write before tx_skbuff */
1983
1984         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1985
1986         /* Update the current skb pointer to the next entry we will use
1987          * (wrapping if necessary)
1988          */
1989         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1990                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1991
1992         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1993
1994         /* We can work in parallel with gfar_clean_tx_ring(), except
1995          * when modifying num_txbdfree. Note that we didn't grab the lock
1996          * when we were reading the num_txbdfree and checking for available
1997          * space, that's because outside of this function it can only grow.
1998          */
1999         spin_lock_bh(&tx_queue->txlock);
2000         /* reduce TxBD free count */
2001         tx_queue->num_txbdfree -= (nr_txbds);
2002         spin_unlock_bh(&tx_queue->txlock);
2003
2004         /* If the next BD still needs to be cleaned up, then the bds
2005          * are full.  We need to tell the kernel to stop sending us stuff.
2006          */
2007         if (!tx_queue->num_txbdfree) {
2008                 netif_tx_stop_queue(txq);
2009
2010                 dev->stats.tx_fifo_errors++;
2011         }
2012
2013         /* Tell the DMA to go go go */
2014         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2015
2016         return NETDEV_TX_OK;
2017
2018 dma_map_err:
2019         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2020         if (do_tstamp)
2021                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2022         for (i = 0; i < nr_frags; i++) {
2023                 lstatus = be32_to_cpu(txbdp->lstatus);
2024                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2025                         break;
2026
2027                 lstatus &= ~BD_LFLAG(TXBD_READY);
2028                 txbdp->lstatus = cpu_to_be32(lstatus);
2029                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2030                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2031                                DMA_TO_DEVICE);
2032                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2033         }
2034         gfar_wmb();
2035         dev_kfree_skb_any(skb);
2036         return NETDEV_TX_OK;
2037 }
2038
2039 /* Changes the mac address if the controller is not running. */
2040 static int gfar_set_mac_address(struct net_device *dev)
2041 {
2042         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2043
2044         return 0;
2045 }
2046
2047 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2048 {
2049         struct gfar_private *priv = netdev_priv(dev);
2050
2051         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2052                 cpu_relax();
2053
2054         if (dev->flags & IFF_UP)
2055                 stop_gfar(dev);
2056
2057         dev->mtu = new_mtu;
2058
2059         if (dev->flags & IFF_UP)
2060                 startup_gfar(dev);
2061
2062         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2063
2064         return 0;
2065 }
2066
2067 static void reset_gfar(struct net_device *ndev)
2068 {
2069         struct gfar_private *priv = netdev_priv(ndev);
2070
2071         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2072                 cpu_relax();
2073
2074         stop_gfar(ndev);
2075         startup_gfar(ndev);
2076
2077         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2078 }
2079
2080 /* gfar_reset_task gets scheduled when a packet has not been
2081  * transmitted after a set amount of time.
2082  * For now, assume that clearing out all the structures, and
2083  * starting over will fix the problem.
2084  */
2085 static void gfar_reset_task(struct work_struct *work)
2086 {
2087         struct gfar_private *priv = container_of(work, struct gfar_private,
2088                                                  reset_task);
2089         reset_gfar(priv->ndev);
2090 }
2091
2092 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2093 {
2094         struct gfar_private *priv = netdev_priv(dev);
2095
2096         dev->stats.tx_errors++;
2097         schedule_work(&priv->reset_task);
2098 }
2099
2100 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2101 {
2102         struct hwtstamp_config config;
2103         struct gfar_private *priv = netdev_priv(netdev);
2104
2105         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2106                 return -EFAULT;
2107
2108         /* reserved for future extensions */
2109         if (config.flags)
2110                 return -EINVAL;
2111
2112         switch (config.tx_type) {
2113         case HWTSTAMP_TX_OFF:
2114                 priv->hwts_tx_en = 0;
2115                 break;
2116         case HWTSTAMP_TX_ON:
2117                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2118                         return -ERANGE;
2119                 priv->hwts_tx_en = 1;
2120                 break;
2121         default:
2122                 return -ERANGE;
2123         }
2124
2125         switch (config.rx_filter) {
2126         case HWTSTAMP_FILTER_NONE:
2127                 if (priv->hwts_rx_en) {
2128                         priv->hwts_rx_en = 0;
2129                         reset_gfar(netdev);
2130                 }
2131                 break;
2132         default:
2133                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2134                         return -ERANGE;
2135                 if (!priv->hwts_rx_en) {
2136                         priv->hwts_rx_en = 1;
2137                         reset_gfar(netdev);
2138                 }
2139                 config.rx_filter = HWTSTAMP_FILTER_ALL;
2140                 break;
2141         }
2142
2143         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2144                 -EFAULT : 0;
2145 }
2146
2147 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2148 {
2149         struct hwtstamp_config config;
2150         struct gfar_private *priv = netdev_priv(netdev);
2151
2152         config.flags = 0;
2153         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2154         config.rx_filter = (priv->hwts_rx_en ?
2155                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2156
2157         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2158                 -EFAULT : 0;
2159 }
2160
2161 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2162 {
2163         struct phy_device *phydev = dev->phydev;
2164
2165         if (!netif_running(dev))
2166                 return -EINVAL;
2167
2168         if (cmd == SIOCSHWTSTAMP)
2169                 return gfar_hwtstamp_set(dev, rq);
2170         if (cmd == SIOCGHWTSTAMP)
2171                 return gfar_hwtstamp_get(dev, rq);
2172
2173         if (!phydev)
2174                 return -ENODEV;
2175
2176         return phy_mii_ioctl(phydev, rq, cmd);
2177 }
2178
2179 /* Interrupt Handler for Transmit complete */
2180 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2181 {
2182         struct net_device *dev = tx_queue->dev;
2183         struct netdev_queue *txq;
2184         struct gfar_private *priv = netdev_priv(dev);
2185         struct txbd8 *bdp, *next = NULL;
2186         struct txbd8 *lbdp = NULL;
2187         struct txbd8 *base = tx_queue->tx_bd_base;
2188         struct sk_buff *skb;
2189         int skb_dirtytx;
2190         int tx_ring_size = tx_queue->tx_ring_size;
2191         int frags = 0, nr_txbds = 0;
2192         int i;
2193         int howmany = 0;
2194         int tqi = tx_queue->qindex;
2195         unsigned int bytes_sent = 0;
2196         u32 lstatus;
2197         size_t buflen;
2198
2199         txq = netdev_get_tx_queue(dev, tqi);
2200         bdp = tx_queue->dirty_tx;
2201         skb_dirtytx = tx_queue->skb_dirtytx;
2202
2203         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2204                 bool do_tstamp;
2205
2206                 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2207                             priv->hwts_tx_en;
2208
2209                 frags = skb_shinfo(skb)->nr_frags;
2210
2211                 /* When time stamping, one additional TxBD must be freed.
2212                  * Also, we need to dma_unmap_single() the TxPAL.
2213                  */
2214                 if (unlikely(do_tstamp))
2215                         nr_txbds = frags + 2;
2216                 else
2217                         nr_txbds = frags + 1;
2218
2219                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2220
2221                 lstatus = be32_to_cpu(lbdp->lstatus);
2222
2223                 /* Only clean completed frames */
2224                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2225                     (lstatus & BD_LENGTH_MASK))
2226                         break;
2227
2228                 if (unlikely(do_tstamp)) {
2229                         next = next_txbd(bdp, base, tx_ring_size);
2230                         buflen = be16_to_cpu(next->length) +
2231                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2232                 } else
2233                         buflen = be16_to_cpu(bdp->length);
2234
2235                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2236                                  buflen, DMA_TO_DEVICE);
2237
2238                 if (unlikely(do_tstamp)) {
2239                         struct skb_shared_hwtstamps shhwtstamps;
2240                         u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2241                                           ~0x7UL);
2242
2243                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2244                         shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2245                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2246                         skb_tstamp_tx(skb, &shhwtstamps);
2247                         gfar_clear_txbd_status(bdp);
2248                         bdp = next;
2249                 }
2250
2251                 gfar_clear_txbd_status(bdp);
2252                 bdp = next_txbd(bdp, base, tx_ring_size);
2253
2254                 for (i = 0; i < frags; i++) {
2255                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2256                                        be16_to_cpu(bdp->length),
2257                                        DMA_TO_DEVICE);
2258                         gfar_clear_txbd_status(bdp);
2259                         bdp = next_txbd(bdp, base, tx_ring_size);
2260                 }
2261
2262                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2263
2264                 dev_kfree_skb_any(skb);
2265
2266                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2267
2268                 skb_dirtytx = (skb_dirtytx + 1) &
2269                               TX_RING_MOD_MASK(tx_ring_size);
2270
2271                 howmany++;
2272                 spin_lock(&tx_queue->txlock);
2273                 tx_queue->num_txbdfree += nr_txbds;
2274                 spin_unlock(&tx_queue->txlock);
2275         }
2276
2277         /* If we freed a buffer, we can restart transmission, if necessary */
2278         if (tx_queue->num_txbdfree &&
2279             netif_tx_queue_stopped(txq) &&
2280             !(test_bit(GFAR_DOWN, &priv->state)))
2281                 netif_wake_subqueue(priv->ndev, tqi);
2282
2283         /* Update dirty indicators */
2284         tx_queue->skb_dirtytx = skb_dirtytx;
2285         tx_queue->dirty_tx = bdp;
2286
2287         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2288 }
2289
2290 static void count_errors(u32 lstatus, struct net_device *ndev)
2291 {
2292         struct gfar_private *priv = netdev_priv(ndev);
2293         struct net_device_stats *stats = &ndev->stats;
2294         struct gfar_extra_stats *estats = &priv->extra_stats;
2295
2296         /* If the packet was truncated, none of the other errors matter */
2297         if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2298                 stats->rx_length_errors++;
2299
2300                 atomic64_inc(&estats->rx_trunc);
2301
2302                 return;
2303         }
2304         /* Count the errors, if there were any */
2305         if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2306                 stats->rx_length_errors++;
2307
2308                 if (lstatus & BD_LFLAG(RXBD_LARGE))
2309                         atomic64_inc(&estats->rx_large);
2310                 else
2311                         atomic64_inc(&estats->rx_short);
2312         }
2313         if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2314                 stats->rx_frame_errors++;
2315                 atomic64_inc(&estats->rx_nonoctet);
2316         }
2317         if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2318                 atomic64_inc(&estats->rx_crcerr);
2319                 stats->rx_crc_errors++;
2320         }
2321         if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2322                 atomic64_inc(&estats->rx_overrun);
2323                 stats->rx_over_errors++;
2324         }
2325 }
2326
2327 static irqreturn_t gfar_receive(int irq, void *grp_id)
2328 {
2329         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2330         unsigned long flags;
2331         u32 imask, ievent;
2332
2333         ievent = gfar_read(&grp->regs->ievent);
2334
2335         if (unlikely(ievent & IEVENT_FGPI)) {
2336                 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2337                 return IRQ_HANDLED;
2338         }
2339
2340         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2341                 spin_lock_irqsave(&grp->grplock, flags);
2342                 imask = gfar_read(&grp->regs->imask);
2343                 imask &= IMASK_RX_DISABLED;
2344                 gfar_write(&grp->regs->imask, imask);
2345                 spin_unlock_irqrestore(&grp->grplock, flags);
2346                 __napi_schedule(&grp->napi_rx);
2347         } else {
2348                 /* Clear IEVENT, so interrupts aren't called again
2349                  * because of the packets that have already arrived.
2350                  */
2351                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2352         }
2353
2354         return IRQ_HANDLED;
2355 }
2356
2357 /* Interrupt Handler for Transmit complete */
2358 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2359 {
2360         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2361         unsigned long flags;
2362         u32 imask;
2363
2364         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2365                 spin_lock_irqsave(&grp->grplock, flags);
2366                 imask = gfar_read(&grp->regs->imask);
2367                 imask &= IMASK_TX_DISABLED;
2368                 gfar_write(&grp->regs->imask, imask);
2369                 spin_unlock_irqrestore(&grp->grplock, flags);
2370                 __napi_schedule(&grp->napi_tx);
2371         } else {
2372                 /* Clear IEVENT, so interrupts aren't called again
2373                  * because of the packets that have already arrived.
2374                  */
2375                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2376         }
2377
2378         return IRQ_HANDLED;
2379 }
2380
2381 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2382                              struct sk_buff *skb, bool first)
2383 {
2384         int size = lstatus & BD_LENGTH_MASK;
2385         struct page *page = rxb->page;
2386
2387         if (likely(first)) {
2388                 skb_put(skb, size);
2389         } else {
2390                 /* the last fragments' length contains the full frame length */
2391                 if (lstatus & BD_LFLAG(RXBD_LAST))
2392                         size -= skb->len;
2393
2394                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2395                                 rxb->page_offset + RXBUF_ALIGNMENT,
2396                                 size, GFAR_RXB_TRUESIZE);
2397         }
2398
2399         /* try reuse page */
2400         if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2401                 return false;
2402
2403         /* change offset to the other half */
2404         rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2405
2406         page_ref_inc(page);
2407
2408         return true;
2409 }
2410
2411 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2412                                struct gfar_rx_buff *old_rxb)
2413 {
2414         struct gfar_rx_buff *new_rxb;
2415         u16 nta = rxq->next_to_alloc;
2416
2417         new_rxb = &rxq->rx_buff[nta];
2418
2419         /* find next buf that can reuse a page */
2420         nta++;
2421         rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2422
2423         /* copy page reference */
2424         *new_rxb = *old_rxb;
2425
2426         /* sync for use by the device */
2427         dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2428                                          old_rxb->page_offset,
2429                                          GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2430 }
2431
2432 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2433                                             u32 lstatus, struct sk_buff *skb)
2434 {
2435         struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2436         struct page *page = rxb->page;
2437         bool first = false;
2438
2439         if (likely(!skb)) {
2440                 void *buff_addr = page_address(page) + rxb->page_offset;
2441
2442                 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2443                 if (unlikely(!skb)) {
2444                         gfar_rx_alloc_err(rx_queue);
2445                         return NULL;
2446                 }
2447                 skb_reserve(skb, RXBUF_ALIGNMENT);
2448                 first = true;
2449         }
2450
2451         dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2452                                       GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2453
2454         if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2455                 /* reuse the free half of the page */
2456                 gfar_reuse_rx_page(rx_queue, rxb);
2457         } else {
2458                 /* page cannot be reused, unmap it */
2459                 dma_unmap_page(rx_queue->dev, rxb->dma,
2460                                PAGE_SIZE, DMA_FROM_DEVICE);
2461         }
2462
2463         /* clear rxb content */
2464         rxb->page = NULL;
2465
2466         return skb;
2467 }
2468
2469 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2470 {
2471         /* If valid headers were found, and valid sums
2472          * were verified, then we tell the kernel that no
2473          * checksumming is necessary.  Otherwise, it is [FIXME]
2474          */
2475         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2476             (RXFCB_CIP | RXFCB_CTU))
2477                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2478         else
2479                 skb_checksum_none_assert(skb);
2480 }
2481
2482 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2483 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2484 {
2485         struct gfar_private *priv = netdev_priv(ndev);
2486         struct rxfcb *fcb = NULL;
2487
2488         /* fcb is at the beginning if exists */
2489         fcb = (struct rxfcb *)skb->data;
2490
2491         /* Remove the FCB from the skb
2492          * Remove the padded bytes, if there are any
2493          */
2494         if (priv->uses_rxfcb)
2495                 skb_pull(skb, GMAC_FCB_LEN);
2496
2497         /* Get receive timestamp from the skb */
2498         if (priv->hwts_rx_en) {
2499                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2500                 u64 *ns = (u64 *) skb->data;
2501
2502                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2503                 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2504         }
2505
2506         if (priv->padding)
2507                 skb_pull(skb, priv->padding);
2508
2509         /* Trim off the FCS */
2510         pskb_trim(skb, skb->len - ETH_FCS_LEN);
2511
2512         if (ndev->features & NETIF_F_RXCSUM)
2513                 gfar_rx_checksum(skb, fcb);
2514
2515         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2516          * Even if vlan rx accel is disabled, on some chips
2517          * RXFCB_VLN is pseudo randomly set.
2518          */
2519         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2520             be16_to_cpu(fcb->flags) & RXFCB_VLN)
2521                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2522                                        be16_to_cpu(fcb->vlctl));
2523 }
2524
2525 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2526  * until the budget/quota has been reached. Returns the number
2527  * of frames handled
2528  */
2529 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2530                               int rx_work_limit)
2531 {
2532         struct net_device *ndev = rx_queue->ndev;
2533         struct gfar_private *priv = netdev_priv(ndev);
2534         struct rxbd8 *bdp;
2535         int i, howmany = 0;
2536         struct sk_buff *skb = rx_queue->skb;
2537         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2538         unsigned int total_bytes = 0, total_pkts = 0;
2539
2540         /* Get the first full descriptor */
2541         i = rx_queue->next_to_clean;
2542
2543         while (rx_work_limit--) {
2544                 u32 lstatus;
2545
2546                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2547                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2548                         cleaned_cnt = 0;
2549                 }
2550
2551                 bdp = &rx_queue->rx_bd_base[i];
2552                 lstatus = be32_to_cpu(bdp->lstatus);
2553                 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2554                         break;
2555
2556                 /* order rx buffer descriptor reads */
2557                 rmb();
2558
2559                 /* fetch next to clean buffer from the ring */
2560                 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2561                 if (unlikely(!skb))
2562                         break;
2563
2564                 cleaned_cnt++;
2565                 howmany++;
2566
2567                 if (unlikely(++i == rx_queue->rx_ring_size))
2568                         i = 0;
2569
2570                 rx_queue->next_to_clean = i;
2571
2572                 /* fetch next buffer if not the last in frame */
2573                 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2574                         continue;
2575
2576                 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2577                         count_errors(lstatus, ndev);
2578
2579                         /* discard faulty buffer */
2580                         dev_kfree_skb(skb);
2581                         skb = NULL;
2582                         rx_queue->stats.rx_dropped++;
2583                         continue;
2584                 }
2585
2586                 gfar_process_frame(ndev, skb);
2587
2588                 /* Increment the number of packets */
2589                 total_pkts++;
2590                 total_bytes += skb->len;
2591
2592                 skb_record_rx_queue(skb, rx_queue->qindex);
2593
2594                 skb->protocol = eth_type_trans(skb, ndev);
2595
2596                 /* Send the packet up the stack */
2597                 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2598
2599                 skb = NULL;
2600         }
2601
2602         /* Store incomplete frames for completion */
2603         rx_queue->skb = skb;
2604
2605         rx_queue->stats.rx_packets += total_pkts;
2606         rx_queue->stats.rx_bytes += total_bytes;
2607
2608         if (cleaned_cnt)
2609                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2610
2611         /* Update Last Free RxBD pointer for LFC */
2612         if (unlikely(priv->tx_actual_en)) {
2613                 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2614
2615                 gfar_write(rx_queue->rfbptr, bdp_dma);
2616         }
2617
2618         return howmany;
2619 }
2620
2621 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2622 {
2623         struct gfar_priv_grp *gfargrp =
2624                 container_of(napi, struct gfar_priv_grp, napi_rx);
2625         struct gfar __iomem *regs = gfargrp->regs;
2626         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2627         int work_done = 0;
2628
2629         /* Clear IEVENT, so interrupts aren't called again
2630          * because of the packets that have already arrived
2631          */
2632         gfar_write(&regs->ievent, IEVENT_RX_MASK);
2633
2634         work_done = gfar_clean_rx_ring(rx_queue, budget);
2635
2636         if (work_done < budget) {
2637                 u32 imask;
2638                 napi_complete_done(napi, work_done);
2639                 /* Clear the halt bit in RSTAT */
2640                 gfar_write(&regs->rstat, gfargrp->rstat);
2641
2642                 spin_lock_irq(&gfargrp->grplock);
2643                 imask = gfar_read(&regs->imask);
2644                 imask |= IMASK_RX_DEFAULT;
2645                 gfar_write(&regs->imask, imask);
2646                 spin_unlock_irq(&gfargrp->grplock);
2647         }
2648
2649         return work_done;
2650 }
2651
2652 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2653 {
2654         struct gfar_priv_grp *gfargrp =
2655                 container_of(napi, struct gfar_priv_grp, napi_tx);
2656         struct gfar __iomem *regs = gfargrp->regs;
2657         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2658         u32 imask;
2659
2660         /* Clear IEVENT, so interrupts aren't called again
2661          * because of the packets that have already arrived
2662          */
2663         gfar_write(&regs->ievent, IEVENT_TX_MASK);
2664
2665         /* run Tx cleanup to completion */
2666         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2667                 gfar_clean_tx_ring(tx_queue);
2668
2669         napi_complete(napi);
2670
2671         spin_lock_irq(&gfargrp->grplock);
2672         imask = gfar_read(&regs->imask);
2673         imask |= IMASK_TX_DEFAULT;
2674         gfar_write(&regs->imask, imask);
2675         spin_unlock_irq(&gfargrp->grplock);
2676
2677         return 0;
2678 }
2679
2680 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2681 {
2682         struct gfar_priv_grp *gfargrp =
2683                 container_of(napi, struct gfar_priv_grp, napi_rx);
2684         struct gfar_private *priv = gfargrp->priv;
2685         struct gfar __iomem *regs = gfargrp->regs;
2686         struct gfar_priv_rx_q *rx_queue = NULL;
2687         int work_done = 0, work_done_per_q = 0;
2688         int i, budget_per_q = 0;
2689         unsigned long rstat_rxf;
2690         int num_act_queues;
2691
2692         /* Clear IEVENT, so interrupts aren't called again
2693          * because of the packets that have already arrived
2694          */
2695         gfar_write(&regs->ievent, IEVENT_RX_MASK);
2696
2697         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2698
2699         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2700         if (num_act_queues)
2701                 budget_per_q = budget/num_act_queues;
2702
2703         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2704                 /* skip queue if not active */
2705                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2706                         continue;
2707
2708                 rx_queue = priv->rx_queue[i];
2709                 work_done_per_q =
2710                         gfar_clean_rx_ring(rx_queue, budget_per_q);
2711                 work_done += work_done_per_q;
2712
2713                 /* finished processing this queue */
2714                 if (work_done_per_q < budget_per_q) {
2715                         /* clear active queue hw indication */
2716                         gfar_write(&regs->rstat,
2717                                    RSTAT_CLEAR_RXF0 >> i);
2718                         num_act_queues--;
2719
2720                         if (!num_act_queues)
2721                                 break;
2722                 }
2723         }
2724
2725         if (!num_act_queues) {
2726                 u32 imask;
2727                 napi_complete_done(napi, work_done);
2728
2729                 /* Clear the halt bit in RSTAT */
2730                 gfar_write(&regs->rstat, gfargrp->rstat);
2731
2732                 spin_lock_irq(&gfargrp->grplock);
2733                 imask = gfar_read(&regs->imask);
2734                 imask |= IMASK_RX_DEFAULT;
2735                 gfar_write(&regs->imask, imask);
2736                 spin_unlock_irq(&gfargrp->grplock);
2737         }
2738
2739         return work_done;
2740 }
2741
2742 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2743 {
2744         struct gfar_priv_grp *gfargrp =
2745                 container_of(napi, struct gfar_priv_grp, napi_tx);
2746         struct gfar_private *priv = gfargrp->priv;
2747         struct gfar __iomem *regs = gfargrp->regs;
2748         struct gfar_priv_tx_q *tx_queue = NULL;
2749         int has_tx_work = 0;
2750         int i;
2751
2752         /* Clear IEVENT, so interrupts aren't called again
2753          * because of the packets that have already arrived
2754          */
2755         gfar_write(&regs->ievent, IEVENT_TX_MASK);
2756
2757         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2758                 tx_queue = priv->tx_queue[i];
2759                 /* run Tx cleanup to completion */
2760                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2761                         gfar_clean_tx_ring(tx_queue);
2762                         has_tx_work = 1;
2763                 }
2764         }
2765
2766         if (!has_tx_work) {
2767                 u32 imask;
2768                 napi_complete(napi);
2769
2770                 spin_lock_irq(&gfargrp->grplock);
2771                 imask = gfar_read(&regs->imask);
2772                 imask |= IMASK_TX_DEFAULT;
2773                 gfar_write(&regs->imask, imask);
2774                 spin_unlock_irq(&gfargrp->grplock);
2775         }
2776
2777         return 0;
2778 }
2779
2780 /* GFAR error interrupt handler */
2781 static irqreturn_t gfar_error(int irq, void *grp_id)
2782 {
2783         struct gfar_priv_grp *gfargrp = grp_id;
2784         struct gfar __iomem *regs = gfargrp->regs;
2785         struct gfar_private *priv= gfargrp->priv;
2786         struct net_device *dev = priv->ndev;
2787
2788         /* Save ievent for future reference */
2789         u32 events = gfar_read(&regs->ievent);
2790
2791         /* Clear IEVENT */
2792         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2793
2794         /* Magic Packet is not an error. */
2795         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2796             (events & IEVENT_MAG))
2797                 events &= ~IEVENT_MAG;
2798
2799         /* Hmm... */
2800         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2801                 netdev_dbg(dev,
2802                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2803                            events, gfar_read(&regs->imask));
2804
2805         /* Update the error counters */
2806         if (events & IEVENT_TXE) {
2807                 dev->stats.tx_errors++;
2808
2809                 if (events & IEVENT_LC)
2810                         dev->stats.tx_window_errors++;
2811                 if (events & IEVENT_CRL)
2812                         dev->stats.tx_aborted_errors++;
2813                 if (events & IEVENT_XFUN) {
2814                         netif_dbg(priv, tx_err, dev,
2815                                   "TX FIFO underrun, packet dropped\n");
2816                         dev->stats.tx_dropped++;
2817                         atomic64_inc(&priv->extra_stats.tx_underrun);
2818
2819                         schedule_work(&priv->reset_task);
2820                 }
2821                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2822         }
2823         if (events & IEVENT_BSY) {
2824                 dev->stats.rx_over_errors++;
2825                 atomic64_inc(&priv->extra_stats.rx_bsy);
2826
2827                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2828                           gfar_read(&regs->rstat));
2829         }
2830         if (events & IEVENT_BABR) {
2831                 dev->stats.rx_errors++;
2832                 atomic64_inc(&priv->extra_stats.rx_babr);
2833
2834                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2835         }
2836         if (events & IEVENT_EBERR) {
2837                 atomic64_inc(&priv->extra_stats.eberr);
2838                 netif_dbg(priv, rx_err, dev, "bus error\n");
2839         }
2840         if (events & IEVENT_RXC)
2841                 netif_dbg(priv, rx_status, dev, "control frame\n");
2842
2843         if (events & IEVENT_BABT) {
2844                 atomic64_inc(&priv->extra_stats.tx_babt);
2845                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2846         }
2847         return IRQ_HANDLED;
2848 }
2849
2850 /* The interrupt handler for devices with one interrupt */
2851 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2852 {
2853         struct gfar_priv_grp *gfargrp = grp_id;
2854
2855         /* Save ievent for future reference */
2856         u32 events = gfar_read(&gfargrp->regs->ievent);
2857
2858         /* Check for reception */
2859         if (events & IEVENT_RX_MASK)
2860                 gfar_receive(irq, grp_id);
2861
2862         /* Check for transmit completion */
2863         if (events & IEVENT_TX_MASK)
2864                 gfar_transmit(irq, grp_id);
2865
2866         /* Check for errors */
2867         if (events & IEVENT_ERR_MASK)
2868                 gfar_error(irq, grp_id);
2869
2870         return IRQ_HANDLED;
2871 }
2872
2873 #ifdef CONFIG_NET_POLL_CONTROLLER
2874 /* Polling 'interrupt' - used by things like netconsole to send skbs
2875  * without having to re-enable interrupts. It's not called while
2876  * the interrupt routine is executing.
2877  */
2878 static void gfar_netpoll(struct net_device *dev)
2879 {
2880         struct gfar_private *priv = netdev_priv(dev);
2881         int i;
2882
2883         /* If the device has multiple interrupts, run tx/rx */
2884         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2885                 for (i = 0; i < priv->num_grps; i++) {
2886                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2887
2888                         disable_irq(gfar_irq(grp, TX)->irq);
2889                         disable_irq(gfar_irq(grp, RX)->irq);
2890                         disable_irq(gfar_irq(grp, ER)->irq);
2891                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2892                         enable_irq(gfar_irq(grp, ER)->irq);
2893                         enable_irq(gfar_irq(grp, RX)->irq);
2894                         enable_irq(gfar_irq(grp, TX)->irq);
2895                 }
2896         } else {
2897                 for (i = 0; i < priv->num_grps; i++) {
2898                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2899
2900                         disable_irq(gfar_irq(grp, TX)->irq);
2901                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2902                         enable_irq(gfar_irq(grp, TX)->irq);
2903                 }
2904         }
2905 }
2906 #endif
2907
2908 static void free_grp_irqs(struct gfar_priv_grp *grp)
2909 {
2910         free_irq(gfar_irq(grp, TX)->irq, grp);
2911         free_irq(gfar_irq(grp, RX)->irq, grp);
2912         free_irq(gfar_irq(grp, ER)->irq, grp);
2913 }
2914
2915 static int register_grp_irqs(struct gfar_priv_grp *grp)
2916 {
2917         struct gfar_private *priv = grp->priv;
2918         struct net_device *dev = priv->ndev;
2919         int err;
2920
2921         /* If the device has multiple interrupts, register for
2922          * them.  Otherwise, only register for the one
2923          */
2924         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2925                 /* Install our interrupt handlers for Error,
2926                  * Transmit, and Receive
2927                  */
2928                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2929                                   gfar_irq(grp, ER)->name, grp);
2930                 if (err < 0) {
2931                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2932                                   gfar_irq(grp, ER)->irq);
2933
2934                         goto err_irq_fail;
2935                 }
2936                 enable_irq_wake(gfar_irq(grp, ER)->irq);
2937
2938                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2939                                   gfar_irq(grp, TX)->name, grp);
2940                 if (err < 0) {
2941                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2942                                   gfar_irq(grp, TX)->irq);
2943                         goto tx_irq_fail;
2944                 }
2945                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2946                                   gfar_irq(grp, RX)->name, grp);
2947                 if (err < 0) {
2948                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2949                                   gfar_irq(grp, RX)->irq);
2950                         goto rx_irq_fail;
2951                 }
2952                 enable_irq_wake(gfar_irq(grp, RX)->irq);
2953
2954         } else {
2955                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2956                                   gfar_irq(grp, TX)->name, grp);
2957                 if (err < 0) {
2958                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2959                                   gfar_irq(grp, TX)->irq);
2960                         goto err_irq_fail;
2961                 }
2962                 enable_irq_wake(gfar_irq(grp, TX)->irq);
2963         }
2964
2965         return 0;
2966
2967 rx_irq_fail:
2968         free_irq(gfar_irq(grp, TX)->irq, grp);
2969 tx_irq_fail:
2970         free_irq(gfar_irq(grp, ER)->irq, grp);
2971 err_irq_fail:
2972         return err;
2973
2974 }
2975
2976 static void gfar_free_irq(struct gfar_private *priv)
2977 {
2978         int i;
2979
2980         /* Free the IRQs */
2981         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2982                 for (i = 0; i < priv->num_grps; i++)
2983                         free_grp_irqs(&priv->gfargrp[i]);
2984         } else {
2985                 for (i = 0; i < priv->num_grps; i++)
2986                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2987                                  &priv->gfargrp[i]);
2988         }
2989 }
2990
2991 static int gfar_request_irq(struct gfar_private *priv)
2992 {
2993         int err, i, j;
2994
2995         for (i = 0; i < priv->num_grps; i++) {
2996                 err = register_grp_irqs(&priv->gfargrp[i]);
2997                 if (err) {
2998                         for (j = 0; j < i; j++)
2999                                 free_grp_irqs(&priv->gfargrp[j]);
3000                         return err;
3001                 }
3002         }
3003
3004         return 0;
3005 }
3006
3007 /* Called when something needs to use the ethernet device
3008  * Returns 0 for success.
3009  */
3010 static int gfar_enet_open(struct net_device *dev)
3011 {
3012         struct gfar_private *priv = netdev_priv(dev);
3013         int err;
3014
3015         err = init_phy(dev);
3016         if (err)
3017                 return err;
3018
3019         err = gfar_request_irq(priv);
3020         if (err)
3021                 return err;
3022
3023         err = startup_gfar(dev);
3024         if (err)
3025                 return err;
3026
3027         return err;
3028 }
3029
3030 /* Stops the kernel queue, and halts the controller */
3031 static int gfar_close(struct net_device *dev)
3032 {
3033         struct gfar_private *priv = netdev_priv(dev);
3034
3035         cancel_work_sync(&priv->reset_task);
3036         stop_gfar(dev);
3037
3038         /* Disconnect from the PHY */
3039         phy_disconnect(dev->phydev);
3040
3041         gfar_free_irq(priv);
3042
3043         return 0;
3044 }
3045
3046 /* Clears each of the exact match registers to zero, so they
3047  * don't interfere with normal reception
3048  */
3049 static void gfar_clear_exact_match(struct net_device *dev)
3050 {
3051         int idx;
3052         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3053
3054         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3055                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3056 }
3057
3058 /* Update the hash table based on the current list of multicast
3059  * addresses we subscribe to.  Also, change the promiscuity of
3060  * the device based on the flags (this function is called
3061  * whenever dev->flags is changed
3062  */
3063 static void gfar_set_multi(struct net_device *dev)
3064 {
3065         struct netdev_hw_addr *ha;
3066         struct gfar_private *priv = netdev_priv(dev);
3067         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3068         u32 tempval;
3069
3070         if (dev->flags & IFF_PROMISC) {
3071                 /* Set RCTRL to PROM */
3072                 tempval = gfar_read(&regs->rctrl);
3073                 tempval |= RCTRL_PROM;
3074                 gfar_write(&regs->rctrl, tempval);
3075         } else {
3076                 /* Set RCTRL to not PROM */
3077                 tempval = gfar_read(&regs->rctrl);
3078                 tempval &= ~(RCTRL_PROM);
3079                 gfar_write(&regs->rctrl, tempval);
3080         }
3081
3082         if (dev->flags & IFF_ALLMULTI) {
3083                 /* Set the hash to rx all multicast frames */
3084                 gfar_write(&regs->igaddr0, 0xffffffff);
3085                 gfar_write(&regs->igaddr1, 0xffffffff);
3086                 gfar_write(&regs->igaddr2, 0xffffffff);
3087                 gfar_write(&regs->igaddr3, 0xffffffff);
3088                 gfar_write(&regs->igaddr4, 0xffffffff);
3089                 gfar_write(&regs->igaddr5, 0xffffffff);
3090                 gfar_write(&regs->igaddr6, 0xffffffff);
3091                 gfar_write(&regs->igaddr7, 0xffffffff);
3092                 gfar_write(&regs->gaddr0, 0xffffffff);
3093                 gfar_write(&regs->gaddr1, 0xffffffff);
3094                 gfar_write(&regs->gaddr2, 0xffffffff);
3095                 gfar_write(&regs->gaddr3, 0xffffffff);
3096                 gfar_write(&regs->gaddr4, 0xffffffff);
3097                 gfar_write(&regs->gaddr5, 0xffffffff);
3098                 gfar_write(&regs->gaddr6, 0xffffffff);
3099                 gfar_write(&regs->gaddr7, 0xffffffff);
3100         } else {
3101                 int em_num;
3102                 int idx;
3103
3104                 /* zero out the hash */
3105                 gfar_write(&regs->igaddr0, 0x0);
3106                 gfar_write(&regs->igaddr1, 0x0);
3107                 gfar_write(&regs->igaddr2, 0x0);
3108                 gfar_write(&regs->igaddr3, 0x0);
3109                 gfar_write(&regs->igaddr4, 0x0);
3110                 gfar_write(&regs->igaddr5, 0x0);
3111                 gfar_write(&regs->igaddr6, 0x0);
3112                 gfar_write(&regs->igaddr7, 0x0);
3113                 gfar_write(&regs->gaddr0, 0x0);
3114                 gfar_write(&regs->gaddr1, 0x0);
3115                 gfar_write(&regs->gaddr2, 0x0);
3116                 gfar_write(&regs->gaddr3, 0x0);
3117                 gfar_write(&regs->gaddr4, 0x0);
3118                 gfar_write(&regs->gaddr5, 0x0);
3119                 gfar_write(&regs->gaddr6, 0x0);
3120                 gfar_write(&regs->gaddr7, 0x0);
3121
3122                 /* If we have extended hash tables, we need to
3123                  * clear the exact match registers to prepare for
3124                  * setting them
3125                  */
3126                 if (priv->extended_hash) {
3127                         em_num = GFAR_EM_NUM + 1;
3128                         gfar_clear_exact_match(dev);
3129                         idx = 1;
3130                 } else {
3131                         idx = 0;
3132                         em_num = 0;
3133                 }
3134
3135                 if (netdev_mc_empty(dev))
3136                         return;
3137
3138                 /* Parse the list, and set the appropriate bits */
3139                 netdev_for_each_mc_addr(ha, dev) {
3140                         if (idx < em_num) {
3141                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3142                                 idx++;
3143                         } else
3144                                 gfar_set_hash_for_addr(dev, ha->addr);
3145                 }
3146         }
3147 }
3148
3149 void gfar_mac_reset(struct gfar_private *priv)
3150 {
3151         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3152         u32 tempval;
3153
3154         /* Reset MAC layer */
3155         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3156
3157         /* We need to delay at least 3 TX clocks */
3158         udelay(3);
3159
3160         /* the soft reset bit is not self-resetting, so we need to
3161          * clear it before resuming normal operation
3162          */
3163         gfar_write(&regs->maccfg1, 0);
3164
3165         udelay(3);
3166
3167         gfar_rx_offload_en(priv);
3168
3169         /* Initialize the max receive frame/buffer lengths */
3170         gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3171         gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3172
3173         /* Initialize the Minimum Frame Length Register */
3174         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3175
3176         /* Initialize MACCFG2. */
3177         tempval = MACCFG2_INIT_SETTINGS;
3178
3179         /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3180          * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3181          * and by checking RxBD[LG] and discarding larger than MAXFRM.
3182          */
3183         if (gfar_has_errata(priv, GFAR_ERRATA_74))
3184                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3185
3186         gfar_write(&regs->maccfg2, tempval);
3187
3188         /* Clear mac addr hash registers */
3189         gfar_write(&regs->igaddr0, 0);
3190         gfar_write(&regs->igaddr1, 0);
3191         gfar_write(&regs->igaddr2, 0);
3192         gfar_write(&regs->igaddr3, 0);
3193         gfar_write(&regs->igaddr4, 0);
3194         gfar_write(&regs->igaddr5, 0);
3195         gfar_write(&regs->igaddr6, 0);
3196         gfar_write(&regs->igaddr7, 0);
3197
3198         gfar_write(&regs->gaddr0, 0);
3199         gfar_write(&regs->gaddr1, 0);
3200         gfar_write(&regs->gaddr2, 0);
3201         gfar_write(&regs->gaddr3, 0);
3202         gfar_write(&regs->gaddr4, 0);
3203         gfar_write(&regs->gaddr5, 0);
3204         gfar_write(&regs->gaddr6, 0);
3205         gfar_write(&regs->gaddr7, 0);
3206
3207         if (priv->extended_hash)
3208                 gfar_clear_exact_match(priv->ndev);
3209
3210         gfar_mac_rx_config(priv);
3211
3212         gfar_mac_tx_config(priv);
3213
3214         gfar_set_mac_address(priv->ndev);
3215
3216         gfar_set_multi(priv->ndev);
3217
3218         /* clear ievent and imask before configuring coalescing */
3219         gfar_ints_disable(priv);
3220
3221         /* Configure the coalescing support */
3222         gfar_configure_coalescing_all(priv);
3223 }
3224
3225 static void gfar_hw_init(struct gfar_private *priv)
3226 {
3227         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3228         u32 attrs;
3229
3230         /* Stop the DMA engine now, in case it was running before
3231          * (The firmware could have used it, and left it running).
3232          */
3233         gfar_halt(priv);
3234
3235         gfar_mac_reset(priv);
3236
3237         /* Zero out the rmon mib registers if it has them */
3238         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3239                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3240
3241                 /* Mask off the CAM interrupts */
3242                 gfar_write(&regs->rmon.cam1, 0xffffffff);
3243                 gfar_write(&regs->rmon.cam2, 0xffffffff);
3244         }
3245
3246         /* Initialize ECNTRL */
3247         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3248
3249         /* Set the extraction length and index */
3250         attrs = ATTRELI_EL(priv->rx_stash_size) |
3251                 ATTRELI_EI(priv->rx_stash_index);
3252
3253         gfar_write(&regs->attreli, attrs);
3254
3255         /* Start with defaults, and add stashing
3256          * depending on driver parameters
3257          */
3258         attrs = ATTR_INIT_SETTINGS;
3259
3260         if (priv->bd_stash_en)
3261                 attrs |= ATTR_BDSTASH;
3262
3263         if (priv->rx_stash_size != 0)
3264                 attrs |= ATTR_BUFSTASH;
3265
3266         gfar_write(&regs->attr, attrs);
3267
3268         /* FIFO configs */
3269         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3270         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3271         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3272
3273         /* Program the interrupt steering regs, only for MG devices */
3274         if (priv->num_grps > 1)
3275                 gfar_write_isrg(priv);
3276 }
3277
3278 static const struct net_device_ops gfar_netdev_ops = {
3279         .ndo_open = gfar_enet_open,
3280         .ndo_start_xmit = gfar_start_xmit,
3281         .ndo_stop = gfar_close,
3282         .ndo_change_mtu = gfar_change_mtu,
3283         .ndo_set_features = gfar_set_features,
3284         .ndo_set_rx_mode = gfar_set_multi,
3285         .ndo_tx_timeout = gfar_timeout,
3286         .ndo_do_ioctl = gfar_ioctl,
3287         .ndo_get_stats = gfar_get_stats,
3288         .ndo_change_carrier = fixed_phy_change_carrier,
3289         .ndo_set_mac_address = gfar_set_mac_addr,
3290         .ndo_validate_addr = eth_validate_addr,
3291 #ifdef CONFIG_NET_POLL_CONTROLLER
3292         .ndo_poll_controller = gfar_netpoll,
3293 #endif
3294 };
3295
3296 /* Set up the ethernet device structure, private data,
3297  * and anything else we need before we start
3298  */
3299 static int gfar_probe(struct platform_device *ofdev)
3300 {
3301         struct device_node *np = ofdev->dev.of_node;
3302         struct net_device *dev = NULL;
3303         struct gfar_private *priv = NULL;
3304         int err = 0, i;
3305
3306         err = gfar_of_init(ofdev, &dev);
3307
3308         if (err)
3309                 return err;
3310
3311         priv = netdev_priv(dev);
3312         priv->ndev = dev;
3313         priv->ofdev = ofdev;
3314         priv->dev = &ofdev->dev;
3315         SET_NETDEV_DEV(dev, &ofdev->dev);
3316
3317         INIT_WORK(&priv->reset_task, gfar_reset_task);
3318
3319         platform_set_drvdata(ofdev, priv);
3320
3321         gfar_detect_errata(priv);
3322
3323         /* Set the dev->base_addr to the gfar reg region */
3324         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3325
3326         /* Fill in the dev structure */
3327         dev->watchdog_timeo = TX_TIMEOUT;
3328         /* MTU range: 50 - 9586 */
3329         dev->mtu = 1500;
3330         dev->min_mtu = 50;
3331         dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3332         dev->netdev_ops = &gfar_netdev_ops;
3333         dev->ethtool_ops = &gfar_ethtool_ops;
3334
3335         /* Register for napi ...We are registering NAPI for each grp */
3336         for (i = 0; i < priv->num_grps; i++) {
3337                 if (priv->poll_mode == GFAR_SQ_POLLING) {
3338                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3339                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3340                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3341                                        gfar_poll_tx_sq, 2);
3342                 } else {
3343                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3344                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
3345                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3346                                        gfar_poll_tx, 2);
3347                 }
3348         }
3349
3350         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3351                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3352                                    NETIF_F_RXCSUM;
3353                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3354                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3355         }
3356
3357         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3358                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3359                                     NETIF_F_HW_VLAN_CTAG_RX;
3360                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3361         }
3362
3363         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3364
3365         gfar_init_addr_hash_table(priv);
3366
3367         /* Insert receive time stamps into padding alignment bytes, and
3368          * plus 2 bytes padding to ensure the cpu alignment.
3369          */
3370         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3371                 priv->padding = 8 + DEFAULT_PADDING;
3372
3373         if (dev->features & NETIF_F_IP_CSUM ||
3374             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3375                 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3376
3377         /* Initializing some of the rx/tx queue level parameters */
3378         for (i = 0; i < priv->num_tx_queues; i++) {
3379                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3380                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3381                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3382                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
3383         }
3384
3385         for (i = 0; i < priv->num_rx_queues; i++) {
3386                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3387                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3388                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3389         }
3390
3391         /* Always enable rx filer if available */
3392         priv->rx_filer_enable =
3393             (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3394         /* Enable most messages by default */
3395         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3396         /* use pritority h/w tx queue scheduling for single queue devices */
3397         if (priv->num_tx_queues == 1)
3398                 priv->prio_sched_en = 1;
3399
3400         set_bit(GFAR_DOWN, &priv->state);
3401
3402         gfar_hw_init(priv);
3403
3404         /* Carrier starts down, phylib will bring it up */
3405         netif_carrier_off(dev);
3406
3407         err = register_netdev(dev);
3408
3409         if (err) {
3410                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
3411                 goto register_fail;
3412         }
3413
3414         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3415                 priv->wol_supported |= GFAR_WOL_MAGIC;
3416
3417         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3418             priv->rx_filer_enable)
3419                 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3420
3421         device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3422
3423         /* fill out IRQ number and name fields */
3424         for (i = 0; i < priv->num_grps; i++) {
3425                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3426                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3427                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3428                                 dev->name, "_g", '0' + i, "_tx");
3429                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3430                                 dev->name, "_g", '0' + i, "_rx");
3431                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3432                                 dev->name, "_g", '0' + i, "_er");
3433                 } else
3434                         strcpy(gfar_irq(grp, TX)->name, dev->name);
3435         }
3436
3437         /* Initialize the filer table */
3438         gfar_init_filer_table(priv);
3439
3440         /* Print out the device info */
3441         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3442
3443         /* Even more device info helps when determining which kernel
3444          * provided which set of benchmarks.
3445          */
3446         netdev_info(dev, "Running with NAPI enabled\n");
3447         for (i = 0; i < priv->num_rx_queues; i++)
3448                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3449                             i, priv->rx_queue[i]->rx_ring_size);
3450         for (i = 0; i < priv->num_tx_queues; i++)
3451                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3452                             i, priv->tx_queue[i]->tx_ring_size);
3453
3454         return 0;
3455
3456 register_fail:
3457         if (of_phy_is_fixed_link(np))
3458                 of_phy_deregister_fixed_link(np);
3459         unmap_group_regs(priv);
3460         gfar_free_rx_queues(priv);
3461         gfar_free_tx_queues(priv);
3462         of_node_put(priv->phy_node);
3463         of_node_put(priv->tbi_node);
3464         free_gfar_dev(priv);
3465         return err;
3466 }
3467
3468 static int gfar_remove(struct platform_device *ofdev)
3469 {
3470         struct gfar_private *priv = platform_get_drvdata(ofdev);
3471         struct device_node *np = ofdev->dev.of_node;
3472
3473         of_node_put(priv->phy_node);
3474         of_node_put(priv->tbi_node);
3475
3476         unregister_netdev(priv->ndev);
3477
3478         if (of_phy_is_fixed_link(np))
3479                 of_phy_deregister_fixed_link(np);
3480
3481         unmap_group_regs(priv);
3482         gfar_free_rx_queues(priv);
3483         gfar_free_tx_queues(priv);
3484         free_gfar_dev(priv);
3485
3486         return 0;
3487 }
3488
3489 #ifdef CONFIG_PM
3490
3491 static void __gfar_filer_disable(struct gfar_private *priv)
3492 {
3493         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3494         u32 temp;
3495
3496         temp = gfar_read(&regs->rctrl);
3497         temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3498         gfar_write(&regs->rctrl, temp);
3499 }
3500
3501 static void __gfar_filer_enable(struct gfar_private *priv)
3502 {
3503         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3504         u32 temp;
3505
3506         temp = gfar_read(&regs->rctrl);
3507         temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3508         gfar_write(&regs->rctrl, temp);
3509 }
3510
3511 /* Filer rules implementing wol capabilities */
3512 static void gfar_filer_config_wol(struct gfar_private *priv)
3513 {
3514         unsigned int i;
3515         u32 rqfcr;
3516
3517         __gfar_filer_disable(priv);
3518
3519         /* clear the filer table, reject any packet by default */
3520         rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3521         for (i = 0; i <= MAX_FILER_IDX; i++)
3522                 gfar_write_filer(priv, i, rqfcr, 0);
3523
3524         i = 0;
3525         if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3526                 /* unicast packet, accept it */
3527                 struct net_device *ndev = priv->ndev;
3528                 /* get the default rx queue index */
3529                 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3530                 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3531                                     (ndev->dev_addr[1] << 8) |
3532                                      ndev->dev_addr[2];
3533
3534                 rqfcr = (qindex << 10) | RQFCR_AND |
3535                         RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3536
3537                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3538
3539                 dest_mac_addr = (ndev->dev_addr[3] << 16) |
3540                                 (ndev->dev_addr[4] << 8) |
3541                                  ndev->dev_addr[5];
3542                 rqfcr = (qindex << 10) | RQFCR_GPI |
3543                         RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3544                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3545         }
3546
3547         __gfar_filer_enable(priv);
3548 }
3549
3550 static void gfar_filer_restore_table(struct gfar_private *priv)
3551 {
3552         u32 rqfcr, rqfpr;
3553         unsigned int i;
3554
3555         __gfar_filer_disable(priv);
3556
3557         for (i = 0; i <= MAX_FILER_IDX; i++) {
3558                 rqfcr = priv->ftp_rqfcr[i];
3559                 rqfpr = priv->ftp_rqfpr[i];
3560                 gfar_write_filer(priv, i, rqfcr, rqfpr);
3561         }
3562
3563         __gfar_filer_enable(priv);
3564 }
3565
3566 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3567 static void gfar_start_wol_filer(struct gfar_private *priv)
3568 {
3569         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3570         u32 tempval;
3571         int i = 0;
3572
3573         /* Enable Rx hw queues */
3574         gfar_write(&regs->rqueue, priv->rqueue);
3575
3576         /* Initialize DMACTRL to have WWR and WOP */
3577         tempval = gfar_read(&regs->dmactrl);
3578         tempval |= DMACTRL_INIT_SETTINGS;
3579         gfar_write(&regs->dmactrl, tempval);
3580
3581         /* Make sure we aren't stopped */
3582         tempval = gfar_read(&regs->dmactrl);
3583         tempval &= ~DMACTRL_GRS;
3584         gfar_write(&regs->dmactrl, tempval);
3585
3586         for (i = 0; i < priv->num_grps; i++) {
3587                 regs = priv->gfargrp[i].regs;
3588                 /* Clear RHLT, so that the DMA starts polling now */
3589                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3590                 /* enable the Filer General Purpose Interrupt */
3591                 gfar_write(&regs->imask, IMASK_FGPI);
3592         }
3593
3594         /* Enable Rx DMA */
3595         tempval = gfar_read(&regs->maccfg1);
3596         tempval |= MACCFG1_RX_EN;
3597         gfar_write(&regs->maccfg1, tempval);
3598 }
3599
3600 static int gfar_suspend(struct device *dev)
3601 {
3602         struct gfar_private *priv = dev_get_drvdata(dev);
3603         struct net_device *ndev = priv->ndev;
3604         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3605         u32 tempval;
3606         u16 wol = priv->wol_opts;
3607
3608         if (!netif_running(ndev))
3609                 return 0;
3610
3611         disable_napi(priv);
3612         netif_tx_lock(ndev);
3613         netif_device_detach(ndev);
3614         netif_tx_unlock(ndev);
3615
3616         gfar_halt(priv);
3617
3618         if (wol & GFAR_WOL_MAGIC) {
3619                 /* Enable interrupt on Magic Packet */
3620                 gfar_write(&regs->imask, IMASK_MAG);
3621
3622                 /* Enable Magic Packet mode */
3623                 tempval = gfar_read(&regs->maccfg2);
3624                 tempval |= MACCFG2_MPEN;
3625                 gfar_write(&regs->maccfg2, tempval);
3626
3627                 /* re-enable the Rx block */
3628                 tempval = gfar_read(&regs->maccfg1);
3629                 tempval |= MACCFG1_RX_EN;
3630                 gfar_write(&regs->maccfg1, tempval);
3631
3632         } else if (wol & GFAR_WOL_FILER_UCAST) {
3633                 gfar_filer_config_wol(priv);
3634                 gfar_start_wol_filer(priv);
3635
3636         } else {
3637                 phy_stop(ndev->phydev);
3638         }
3639
3640         return 0;
3641 }
3642
3643 static int gfar_resume(struct device *dev)
3644 {
3645         struct gfar_private *priv = dev_get_drvdata(dev);
3646         struct net_device *ndev = priv->ndev;
3647         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3648         u32 tempval;
3649         u16 wol = priv->wol_opts;
3650
3651         if (!netif_running(ndev))
3652                 return 0;
3653
3654         if (wol & GFAR_WOL_MAGIC) {
3655                 /* Disable Magic Packet mode */
3656                 tempval = gfar_read(&regs->maccfg2);
3657                 tempval &= ~MACCFG2_MPEN;
3658                 gfar_write(&regs->maccfg2, tempval);
3659
3660         } else if (wol & GFAR_WOL_FILER_UCAST) {
3661                 /* need to stop rx only, tx is already down */
3662                 gfar_halt(priv);
3663                 gfar_filer_restore_table(priv);
3664
3665         } else {
3666                 phy_start(ndev->phydev);
3667         }
3668
3669         gfar_start(priv);
3670
3671         netif_device_attach(ndev);
3672         enable_napi(priv);
3673
3674         return 0;
3675 }
3676
3677 static int gfar_restore(struct device *dev)
3678 {
3679         struct gfar_private *priv = dev_get_drvdata(dev);
3680         struct net_device *ndev = priv->ndev;
3681
3682         if (!netif_running(ndev)) {
3683                 netif_device_attach(ndev);
3684
3685                 return 0;
3686         }
3687
3688         gfar_init_bds(ndev);
3689
3690         gfar_mac_reset(priv);
3691
3692         gfar_init_tx_rx_base(priv);
3693
3694         gfar_start(priv);
3695
3696         priv->oldlink = 0;
3697         priv->oldspeed = 0;
3698         priv->oldduplex = -1;
3699
3700         if (ndev->phydev)
3701                 phy_start(ndev->phydev);
3702
3703         netif_device_attach(ndev);
3704         enable_napi(priv);
3705
3706         return 0;
3707 }
3708
3709 static const struct dev_pm_ops gfar_pm_ops = {
3710         .suspend = gfar_suspend,
3711         .resume = gfar_resume,
3712         .freeze = gfar_suspend,
3713         .thaw = gfar_resume,
3714         .restore = gfar_restore,
3715 };
3716
3717 #define GFAR_PM_OPS (&gfar_pm_ops)
3718
3719 #else
3720
3721 #define GFAR_PM_OPS NULL
3722
3723 #endif
3724
3725 static const struct of_device_id gfar_match[] =
3726 {
3727         {
3728                 .type = "network",
3729                 .compatible = "gianfar",
3730         },
3731         {
3732                 .compatible = "fsl,etsec2",
3733         },
3734         {},
3735 };
3736 MODULE_DEVICE_TABLE(of, gfar_match);
3737
3738 /* Structure for a device driver */
3739 static struct platform_driver gfar_driver = {
3740         .driver = {
3741                 .name = "fsl-gianfar",
3742                 .pm = GFAR_PM_OPS,
3743                 .of_match_table = gfar_match,
3744         },
3745         .probe = gfar_probe,
3746         .remove = gfar_remove,
3747 };
3748
3749 module_platform_driver(gfar_driver);