Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
[linux-2.6-microblaze.git] / drivers / net / ethernet / freescale / gianfar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/kernel.h>
63 #include <linux/string.h>
64 #include <linux/errno.h>
65 #include <linux/unistd.h>
66 #include <linux/slab.h>
67 #include <linux/interrupt.h>
68 #include <linux/delay.h>
69 #include <linux/netdevice.h>
70 #include <linux/etherdevice.h>
71 #include <linux/skbuff.h>
72 #include <linux/if_vlan.h>
73 #include <linux/spinlock.h>
74 #include <linux/mm.h>
75 #include <linux/of_address.h>
76 #include <linux/of_irq.h>
77 #include <linux/of_mdio.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83 #include <linux/net_tstamp.h>
84
85 #include <asm/io.h>
86 #ifdef CONFIG_PPC
87 #include <asm/reg.h>
88 #include <asm/mpc85xx.h>
89 #endif
90 #include <asm/irq.h>
91 #include <linux/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97 #include <linux/phy_fixed.h>
98 #include <linux/of.h>
99 #include <linux/of_net.h>
100
101 #include "gianfar.h"
102
103 #define TX_TIMEOUT      (5*HZ)
104
105 MODULE_AUTHOR("Freescale Semiconductor, Inc");
106 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107 MODULE_LICENSE("GPL");
108
109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
110                             dma_addr_t buf)
111 {
112         u32 lstatus;
113
114         bdp->bufPtr = cpu_to_be32(buf);
115
116         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118                 lstatus |= BD_LFLAG(RXBD_WRAP);
119
120         gfar_wmb();
121
122         bdp->lstatus = cpu_to_be32(lstatus);
123 }
124
125 static void gfar_init_tx_rx_base(struct gfar_private *priv)
126 {
127         struct gfar __iomem *regs = priv->gfargrp[0].regs;
128         u32 __iomem *baddr;
129         int i;
130
131         baddr = &regs->tbase0;
132         for (i = 0; i < priv->num_tx_queues; i++) {
133                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
134                 baddr += 2;
135         }
136
137         baddr = &regs->rbase0;
138         for (i = 0; i < priv->num_rx_queues; i++) {
139                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
140                 baddr += 2;
141         }
142 }
143
144 static void gfar_init_rqprm(struct gfar_private *priv)
145 {
146         struct gfar __iomem *regs = priv->gfargrp[0].regs;
147         u32 __iomem *baddr;
148         int i;
149
150         baddr = &regs->rqprm0;
151         for (i = 0; i < priv->num_rx_queues; i++) {
152                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
153                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
154                 baddr++;
155         }
156 }
157
158 static void gfar_rx_offload_en(struct gfar_private *priv)
159 {
160         /* set this when rx hw offload (TOE) functions are being used */
161         priv->uses_rxfcb = 0;
162
163         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164                 priv->uses_rxfcb = 1;
165
166         if (priv->hwts_rx_en || priv->rx_filer_enable)
167                 priv->uses_rxfcb = 1;
168 }
169
170 static void gfar_mac_rx_config(struct gfar_private *priv)
171 {
172         struct gfar __iomem *regs = priv->gfargrp[0].regs;
173         u32 rctrl = 0;
174
175         if (priv->rx_filer_enable) {
176                 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177                 /* Program the RIR0 reg with the required distribution */
178                 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
179         }
180
181         /* Restore PROMISC mode */
182         if (priv->ndev->flags & IFF_PROMISC)
183                 rctrl |= RCTRL_PROM;
184
185         if (priv->ndev->features & NETIF_F_RXCSUM)
186                 rctrl |= RCTRL_CHECKSUMMING;
187
188         if (priv->extended_hash)
189                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
190
191         if (priv->padding) {
192                 rctrl &= ~RCTRL_PAL_MASK;
193                 rctrl |= RCTRL_PADDING(priv->padding);
194         }
195
196         /* Enable HW time stamping if requested from user space */
197         if (priv->hwts_rx_en)
198                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
199
200         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
201                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
202
203         /* Clear the LFC bit */
204         gfar_write(&regs->rctrl, rctrl);
205         /* Init flow control threshold values */
206         gfar_init_rqprm(priv);
207         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
208         rctrl |= RCTRL_LFC;
209
210         /* Init rctrl based on our settings */
211         gfar_write(&regs->rctrl, rctrl);
212 }
213
214 static void gfar_mac_tx_config(struct gfar_private *priv)
215 {
216         struct gfar __iomem *regs = priv->gfargrp[0].regs;
217         u32 tctrl = 0;
218
219         if (priv->ndev->features & NETIF_F_IP_CSUM)
220                 tctrl |= TCTRL_INIT_CSUM;
221
222         if (priv->prio_sched_en)
223                 tctrl |= TCTRL_TXSCHED_PRIO;
224         else {
225                 tctrl |= TCTRL_TXSCHED_WRRS;
226                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
227                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
228         }
229
230         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
231                 tctrl |= TCTRL_VLINS;
232
233         gfar_write(&regs->tctrl, tctrl);
234 }
235
236 static void gfar_configure_coalescing(struct gfar_private *priv,
237                                unsigned long tx_mask, unsigned long rx_mask)
238 {
239         struct gfar __iomem *regs = priv->gfargrp[0].regs;
240         u32 __iomem *baddr;
241
242         if (priv->mode == MQ_MG_MODE) {
243                 int i = 0;
244
245                 baddr = &regs->txic0;
246                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
247                         gfar_write(baddr + i, 0);
248                         if (likely(priv->tx_queue[i]->txcoalescing))
249                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
250                 }
251
252                 baddr = &regs->rxic0;
253                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
254                         gfar_write(baddr + i, 0);
255                         if (likely(priv->rx_queue[i]->rxcoalescing))
256                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
257                 }
258         } else {
259                 /* Backward compatible case -- even if we enable
260                  * multiple queues, there's only single reg to program
261                  */
262                 gfar_write(&regs->txic, 0);
263                 if (likely(priv->tx_queue[0]->txcoalescing))
264                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
265
266                 gfar_write(&regs->rxic, 0);
267                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
268                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
269         }
270 }
271
272 static void gfar_configure_coalescing_all(struct gfar_private *priv)
273 {
274         gfar_configure_coalescing(priv, 0xFF, 0xFF);
275 }
276
277 static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
278 {
279         struct gfar_private *priv = netdev_priv(dev);
280         int i;
281
282         for (i = 0; i < priv->num_rx_queues; i++) {
283                 stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
284                 stats->rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
285                 stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
286         }
287
288         for (i = 0; i < priv->num_tx_queues; i++) {
289                 stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
290                 stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
291         }
292
293         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
294                 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
295                 unsigned long flags;
296                 u32 rdrp, car, car_before;
297                 u64 rdrp_offset;
298
299                 spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
300                 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
301                 do {
302                         car_before = car;
303                         rdrp = gfar_read(&rmon->rdrp);
304                         car = gfar_read(&rmon->car1) & CAR1_C1RDR;
305                 } while (car != car_before);
306                 if (car) {
307                         priv->rmon_overflow.rdrp++;
308                         gfar_write(&rmon->car1, car);
309                 }
310                 rdrp_offset = priv->rmon_overflow.rdrp;
311                 spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
312
313                 stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
314         }
315 }
316
317 /* Set the appropriate hash bit for the given addr */
318 /* The algorithm works like so:
319  * 1) Take the Destination Address (ie the multicast address), and
320  * do a CRC on it (little endian), and reverse the bits of the
321  * result.
322  * 2) Use the 8 most significant bits as a hash into a 256-entry
323  * table.  The table is controlled through 8 32-bit registers:
324  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
325  * gaddr7.  This means that the 3 most significant bits in the
326  * hash index which gaddr register to use, and the 5 other bits
327  * indicate which bit (assuming an IBM numbering scheme, which
328  * for PowerPC (tm) is usually the case) in the register holds
329  * the entry.
330  */
331 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
332 {
333         u32 tempval;
334         struct gfar_private *priv = netdev_priv(dev);
335         u32 result = ether_crc(ETH_ALEN, addr);
336         int width = priv->hash_width;
337         u8 whichbit = (result >> (32 - width)) & 0x1f;
338         u8 whichreg = result >> (32 - width + 5);
339         u32 value = (1 << (31-whichbit));
340
341         tempval = gfar_read(priv->hash_regs[whichreg]);
342         tempval |= value;
343         gfar_write(priv->hash_regs[whichreg], tempval);
344 }
345
346 /* There are multiple MAC Address register pairs on some controllers
347  * This function sets the numth pair to a given address
348  */
349 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
350                                   const u8 *addr)
351 {
352         struct gfar_private *priv = netdev_priv(dev);
353         struct gfar __iomem *regs = priv->gfargrp[0].regs;
354         u32 tempval;
355         u32 __iomem *macptr = &regs->macstnaddr1;
356
357         macptr += num*2;
358
359         /* For a station address of 0x12345678ABCD in transmission
360          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
361          * MACnADDR2 is set to 0x34120000.
362          */
363         tempval = (addr[5] << 24) | (addr[4] << 16) |
364                   (addr[3] << 8)  |  addr[2];
365
366         gfar_write(macptr, tempval);
367
368         tempval = (addr[1] << 24) | (addr[0] << 16);
369
370         gfar_write(macptr+1, tempval);
371 }
372
373 static int gfar_set_mac_addr(struct net_device *dev, void *p)
374 {
375         int ret;
376
377         ret = eth_mac_addr(dev, p);
378         if (ret)
379                 return ret;
380
381         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
382
383         return 0;
384 }
385
386 static void gfar_ints_disable(struct gfar_private *priv)
387 {
388         int i;
389         for (i = 0; i < priv->num_grps; i++) {
390                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
391                 /* Clear IEVENT */
392                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
393
394                 /* Initialize IMASK */
395                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
396         }
397 }
398
399 static void gfar_ints_enable(struct gfar_private *priv)
400 {
401         int i;
402         for (i = 0; i < priv->num_grps; i++) {
403                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
404                 /* Unmask the interrupts we look for */
405                 gfar_write(&regs->imask,
406                            IMASK_DEFAULT | priv->rmon_overflow.imask);
407         }
408 }
409
410 static int gfar_alloc_tx_queues(struct gfar_private *priv)
411 {
412         int i;
413
414         for (i = 0; i < priv->num_tx_queues; i++) {
415                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
416                                             GFP_KERNEL);
417                 if (!priv->tx_queue[i])
418                         return -ENOMEM;
419
420                 priv->tx_queue[i]->tx_skbuff = NULL;
421                 priv->tx_queue[i]->qindex = i;
422                 priv->tx_queue[i]->dev = priv->ndev;
423                 spin_lock_init(&(priv->tx_queue[i]->txlock));
424         }
425         return 0;
426 }
427
428 static int gfar_alloc_rx_queues(struct gfar_private *priv)
429 {
430         int i;
431
432         for (i = 0; i < priv->num_rx_queues; i++) {
433                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
434                                             GFP_KERNEL);
435                 if (!priv->rx_queue[i])
436                         return -ENOMEM;
437
438                 priv->rx_queue[i]->qindex = i;
439                 priv->rx_queue[i]->ndev = priv->ndev;
440         }
441         return 0;
442 }
443
444 static void gfar_free_tx_queues(struct gfar_private *priv)
445 {
446         int i;
447
448         for (i = 0; i < priv->num_tx_queues; i++)
449                 kfree(priv->tx_queue[i]);
450 }
451
452 static void gfar_free_rx_queues(struct gfar_private *priv)
453 {
454         int i;
455
456         for (i = 0; i < priv->num_rx_queues; i++)
457                 kfree(priv->rx_queue[i]);
458 }
459
460 static void unmap_group_regs(struct gfar_private *priv)
461 {
462         int i;
463
464         for (i = 0; i < MAXGROUPS; i++)
465                 if (priv->gfargrp[i].regs)
466                         iounmap(priv->gfargrp[i].regs);
467 }
468
469 static void free_gfar_dev(struct gfar_private *priv)
470 {
471         int i, j;
472
473         for (i = 0; i < priv->num_grps; i++)
474                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
475                         kfree(priv->gfargrp[i].irqinfo[j]);
476                         priv->gfargrp[i].irqinfo[j] = NULL;
477                 }
478
479         free_netdev(priv->ndev);
480 }
481
482 static void disable_napi(struct gfar_private *priv)
483 {
484         int i;
485
486         for (i = 0; i < priv->num_grps; i++) {
487                 napi_disable(&priv->gfargrp[i].napi_rx);
488                 napi_disable(&priv->gfargrp[i].napi_tx);
489         }
490 }
491
492 static void enable_napi(struct gfar_private *priv)
493 {
494         int i;
495
496         for (i = 0; i < priv->num_grps; i++) {
497                 napi_enable(&priv->gfargrp[i].napi_rx);
498                 napi_enable(&priv->gfargrp[i].napi_tx);
499         }
500 }
501
502 static int gfar_parse_group(struct device_node *np,
503                             struct gfar_private *priv, const char *model)
504 {
505         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
506         int i;
507
508         for (i = 0; i < GFAR_NUM_IRQS; i++) {
509                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
510                                           GFP_KERNEL);
511                 if (!grp->irqinfo[i])
512                         return -ENOMEM;
513         }
514
515         grp->regs = of_iomap(np, 0);
516         if (!grp->regs)
517                 return -ENOMEM;
518
519         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
520
521         /* If we aren't the FEC we have multiple interrupts */
522         if (model && strcasecmp(model, "FEC")) {
523                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
524                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
525                 if (!gfar_irq(grp, TX)->irq ||
526                     !gfar_irq(grp, RX)->irq ||
527                     !gfar_irq(grp, ER)->irq)
528                         return -EINVAL;
529         }
530
531         grp->priv = priv;
532         spin_lock_init(&grp->grplock);
533         if (priv->mode == MQ_MG_MODE) {
534                 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
535                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
536                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
537         } else {
538                 grp->rx_bit_map = 0xFF;
539                 grp->tx_bit_map = 0xFF;
540         }
541
542         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
543          * right to left, so we need to revert the 8 bits to get the q index
544          */
545         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
546         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
547
548         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
549          * also assign queues to groups
550          */
551         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
552                 if (!grp->rx_queue)
553                         grp->rx_queue = priv->rx_queue[i];
554                 grp->num_rx_queues++;
555                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
556                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
557                 priv->rx_queue[i]->grp = grp;
558         }
559
560         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
561                 if (!grp->tx_queue)
562                         grp->tx_queue = priv->tx_queue[i];
563                 grp->num_tx_queues++;
564                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
565                 priv->tqueue |= (TQUEUE_EN0 >> i);
566                 priv->tx_queue[i]->grp = grp;
567         }
568
569         priv->num_grps++;
570
571         return 0;
572 }
573
574 static int gfar_of_group_count(struct device_node *np)
575 {
576         struct device_node *child;
577         int num = 0;
578
579         for_each_available_child_of_node(np, child)
580                 if (of_node_name_eq(child, "queue-group"))
581                         num++;
582
583         return num;
584 }
585
586 /* Reads the controller's registers to determine what interface
587  * connects it to the PHY.
588  */
589 static phy_interface_t gfar_get_interface(struct net_device *dev)
590 {
591         struct gfar_private *priv = netdev_priv(dev);
592         struct gfar __iomem *regs = priv->gfargrp[0].regs;
593         u32 ecntrl;
594
595         ecntrl = gfar_read(&regs->ecntrl);
596
597         if (ecntrl & ECNTRL_SGMII_MODE)
598                 return PHY_INTERFACE_MODE_SGMII;
599
600         if (ecntrl & ECNTRL_TBI_MODE) {
601                 if (ecntrl & ECNTRL_REDUCED_MODE)
602                         return PHY_INTERFACE_MODE_RTBI;
603                 else
604                         return PHY_INTERFACE_MODE_TBI;
605         }
606
607         if (ecntrl & ECNTRL_REDUCED_MODE) {
608                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
609                         return PHY_INTERFACE_MODE_RMII;
610                 }
611                 else {
612                         phy_interface_t interface = priv->interface;
613
614                         /* This isn't autodetected right now, so it must
615                          * be set by the device tree or platform code.
616                          */
617                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
618                                 return PHY_INTERFACE_MODE_RGMII_ID;
619
620                         return PHY_INTERFACE_MODE_RGMII;
621                 }
622         }
623
624         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
625                 return PHY_INTERFACE_MODE_GMII;
626
627         return PHY_INTERFACE_MODE_MII;
628 }
629
630 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
631 {
632         const char *model;
633         int err = 0, i;
634         phy_interface_t interface;
635         struct net_device *dev = NULL;
636         struct gfar_private *priv = NULL;
637         struct device_node *np = ofdev->dev.of_node;
638         struct device_node *child = NULL;
639         u32 stash_len = 0;
640         u32 stash_idx = 0;
641         unsigned int num_tx_qs, num_rx_qs;
642         unsigned short mode;
643
644         if (!np)
645                 return -ENODEV;
646
647         if (of_device_is_compatible(np, "fsl,etsec2"))
648                 mode = MQ_MG_MODE;
649         else
650                 mode = SQ_SG_MODE;
651
652         if (mode == SQ_SG_MODE) {
653                 num_tx_qs = 1;
654                 num_rx_qs = 1;
655         } else { /* MQ_MG_MODE */
656                 /* get the actual number of supported groups */
657                 unsigned int num_grps = gfar_of_group_count(np);
658
659                 if (num_grps == 0 || num_grps > MAXGROUPS) {
660                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
661                                 num_grps);
662                         pr_err("Cannot do alloc_etherdev, aborting\n");
663                         return -EINVAL;
664                 }
665
666                 num_tx_qs = num_grps; /* one txq per int group */
667                 num_rx_qs = num_grps; /* one rxq per int group */
668         }
669
670         if (num_tx_qs > MAX_TX_QS) {
671                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
672                        num_tx_qs, MAX_TX_QS);
673                 pr_err("Cannot do alloc_etherdev, aborting\n");
674                 return -EINVAL;
675         }
676
677         if (num_rx_qs > MAX_RX_QS) {
678                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
679                        num_rx_qs, MAX_RX_QS);
680                 pr_err("Cannot do alloc_etherdev, aborting\n");
681                 return -EINVAL;
682         }
683
684         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
685         dev = *pdev;
686         if (NULL == dev)
687                 return -ENOMEM;
688
689         priv = netdev_priv(dev);
690         priv->ndev = dev;
691
692         priv->mode = mode;
693
694         priv->num_tx_queues = num_tx_qs;
695         netif_set_real_num_rx_queues(dev, num_rx_qs);
696         priv->num_rx_queues = num_rx_qs;
697
698         err = gfar_alloc_tx_queues(priv);
699         if (err)
700                 goto tx_alloc_failed;
701
702         err = gfar_alloc_rx_queues(priv);
703         if (err)
704                 goto rx_alloc_failed;
705
706         err = of_property_read_string(np, "model", &model);
707         if (err) {
708                 pr_err("Device model property missing, aborting\n");
709                 goto rx_alloc_failed;
710         }
711
712         /* Init Rx queue filer rule set linked list */
713         INIT_LIST_HEAD(&priv->rx_list.list);
714         priv->rx_list.count = 0;
715         mutex_init(&priv->rx_queue_access);
716
717         for (i = 0; i < MAXGROUPS; i++)
718                 priv->gfargrp[i].regs = NULL;
719
720         /* Parse and initialize group specific information */
721         if (priv->mode == MQ_MG_MODE) {
722                 for_each_available_child_of_node(np, child) {
723                         if (!of_node_name_eq(child, "queue-group"))
724                                 continue;
725
726                         err = gfar_parse_group(child, priv, model);
727                         if (err) {
728                                 of_node_put(child);
729                                 goto err_grp_init;
730                         }
731                 }
732         } else { /* SQ_SG_MODE */
733                 err = gfar_parse_group(np, priv, model);
734                 if (err)
735                         goto err_grp_init;
736         }
737
738         if (of_property_read_bool(np, "bd-stash")) {
739                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
740                 priv->bd_stash_en = 1;
741         }
742
743         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
744
745         if (err == 0)
746                 priv->rx_stash_size = stash_len;
747
748         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
749
750         if (err == 0)
751                 priv->rx_stash_index = stash_idx;
752
753         if (stash_len || stash_idx)
754                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
755
756         err = of_get_ethdev_address(np, dev);
757         if (err) {
758                 eth_hw_addr_random(dev);
759                 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
760         }
761
762         if (model && !strcasecmp(model, "TSEC"))
763                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
764                                      FSL_GIANFAR_DEV_HAS_COALESCE |
765                                      FSL_GIANFAR_DEV_HAS_RMON |
766                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
767
768         if (model && !strcasecmp(model, "eTSEC"))
769                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
770                                      FSL_GIANFAR_DEV_HAS_COALESCE |
771                                      FSL_GIANFAR_DEV_HAS_RMON |
772                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
773                                      FSL_GIANFAR_DEV_HAS_CSUM |
774                                      FSL_GIANFAR_DEV_HAS_VLAN |
775                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
776                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
777                                      FSL_GIANFAR_DEV_HAS_TIMER |
778                                      FSL_GIANFAR_DEV_HAS_RX_FILER;
779
780         /* Use PHY connection type from the DT node if one is specified there.
781          * rgmii-id really needs to be specified. Other types can be
782          * detected by hardware
783          */
784         err = of_get_phy_mode(np, &interface);
785         if (!err)
786                 priv->interface = interface;
787         else
788                 priv->interface = gfar_get_interface(dev);
789
790         if (of_find_property(np, "fsl,magic-packet", NULL))
791                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
792
793         if (of_get_property(np, "fsl,wake-on-filer", NULL))
794                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
795
796         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
797
798         /* In the case of a fixed PHY, the DT node associated
799          * to the PHY is the Ethernet MAC DT node.
800          */
801         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
802                 err = of_phy_register_fixed_link(np);
803                 if (err)
804                         goto err_grp_init;
805
806                 priv->phy_node = of_node_get(np);
807         }
808
809         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
810         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
811
812         return 0;
813
814 err_grp_init:
815         unmap_group_regs(priv);
816 rx_alloc_failed:
817         gfar_free_rx_queues(priv);
818 tx_alloc_failed:
819         gfar_free_tx_queues(priv);
820         free_gfar_dev(priv);
821         return err;
822 }
823
824 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
825                                    u32 class)
826 {
827         u32 rqfpr = FPR_FILER_MASK;
828         u32 rqfcr = 0x0;
829
830         rqfar--;
831         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
832         priv->ftp_rqfpr[rqfar] = rqfpr;
833         priv->ftp_rqfcr[rqfar] = rqfcr;
834         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
835
836         rqfar--;
837         rqfcr = RQFCR_CMP_NOMATCH;
838         priv->ftp_rqfpr[rqfar] = rqfpr;
839         priv->ftp_rqfcr[rqfar] = rqfcr;
840         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
841
842         rqfar--;
843         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
844         rqfpr = class;
845         priv->ftp_rqfcr[rqfar] = rqfcr;
846         priv->ftp_rqfpr[rqfar] = rqfpr;
847         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
848
849         rqfar--;
850         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
851         rqfpr = class;
852         priv->ftp_rqfcr[rqfar] = rqfcr;
853         priv->ftp_rqfpr[rqfar] = rqfpr;
854         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
855
856         return rqfar;
857 }
858
859 static void gfar_init_filer_table(struct gfar_private *priv)
860 {
861         int i = 0x0;
862         u32 rqfar = MAX_FILER_IDX;
863         u32 rqfcr = 0x0;
864         u32 rqfpr = FPR_FILER_MASK;
865
866         /* Default rule */
867         rqfcr = RQFCR_CMP_MATCH;
868         priv->ftp_rqfcr[rqfar] = rqfcr;
869         priv->ftp_rqfpr[rqfar] = rqfpr;
870         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
871
872         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
873         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
874         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
875         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
876         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
877         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
878
879         /* cur_filer_idx indicated the first non-masked rule */
880         priv->cur_filer_idx = rqfar;
881
882         /* Rest are masked rules */
883         rqfcr = RQFCR_CMP_NOMATCH;
884         for (i = 0; i < rqfar; i++) {
885                 priv->ftp_rqfcr[i] = rqfcr;
886                 priv->ftp_rqfpr[i] = rqfpr;
887                 gfar_write_filer(priv, i, rqfcr, rqfpr);
888         }
889 }
890
891 #ifdef CONFIG_PPC
892 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
893 {
894         unsigned int pvr = mfspr(SPRN_PVR);
895         unsigned int svr = mfspr(SPRN_SVR);
896         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
897         unsigned int rev = svr & 0xffff;
898
899         /* MPC8313 Rev 2.0 and higher; All MPC837x */
900         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
901             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
902                 priv->errata |= GFAR_ERRATA_74;
903
904         /* MPC8313 and MPC837x all rev */
905         if ((pvr == 0x80850010 && mod == 0x80b0) ||
906             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
907                 priv->errata |= GFAR_ERRATA_76;
908
909         /* MPC8313 Rev < 2.0 */
910         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
911                 priv->errata |= GFAR_ERRATA_12;
912 }
913
914 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
915 {
916         unsigned int svr = mfspr(SPRN_SVR);
917
918         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
919                 priv->errata |= GFAR_ERRATA_12;
920         /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
921         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
922             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
923             ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
924                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
925 }
926 #endif
927
928 static void gfar_detect_errata(struct gfar_private *priv)
929 {
930         struct device *dev = &priv->ofdev->dev;
931
932         /* no plans to fix */
933         priv->errata |= GFAR_ERRATA_A002;
934
935 #ifdef CONFIG_PPC
936         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
937                 __gfar_detect_errata_85xx(priv);
938         else /* non-mpc85xx parts, i.e. e300 core based */
939                 __gfar_detect_errata_83xx(priv);
940 #endif
941
942         if (priv->errata)
943                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
944                          priv->errata);
945 }
946
947 static void gfar_init_addr_hash_table(struct gfar_private *priv)
948 {
949         struct gfar __iomem *regs = priv->gfargrp[0].regs;
950
951         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
952                 priv->extended_hash = 1;
953                 priv->hash_width = 9;
954
955                 priv->hash_regs[0] = &regs->igaddr0;
956                 priv->hash_regs[1] = &regs->igaddr1;
957                 priv->hash_regs[2] = &regs->igaddr2;
958                 priv->hash_regs[3] = &regs->igaddr3;
959                 priv->hash_regs[4] = &regs->igaddr4;
960                 priv->hash_regs[5] = &regs->igaddr5;
961                 priv->hash_regs[6] = &regs->igaddr6;
962                 priv->hash_regs[7] = &regs->igaddr7;
963                 priv->hash_regs[8] = &regs->gaddr0;
964                 priv->hash_regs[9] = &regs->gaddr1;
965                 priv->hash_regs[10] = &regs->gaddr2;
966                 priv->hash_regs[11] = &regs->gaddr3;
967                 priv->hash_regs[12] = &regs->gaddr4;
968                 priv->hash_regs[13] = &regs->gaddr5;
969                 priv->hash_regs[14] = &regs->gaddr6;
970                 priv->hash_regs[15] = &regs->gaddr7;
971
972         } else {
973                 priv->extended_hash = 0;
974                 priv->hash_width = 8;
975
976                 priv->hash_regs[0] = &regs->gaddr0;
977                 priv->hash_regs[1] = &regs->gaddr1;
978                 priv->hash_regs[2] = &regs->gaddr2;
979                 priv->hash_regs[3] = &regs->gaddr3;
980                 priv->hash_regs[4] = &regs->gaddr4;
981                 priv->hash_regs[5] = &regs->gaddr5;
982                 priv->hash_regs[6] = &regs->gaddr6;
983                 priv->hash_regs[7] = &regs->gaddr7;
984         }
985 }
986
987 static int __gfar_is_rx_idle(struct gfar_private *priv)
988 {
989         u32 res;
990
991         /* Normaly TSEC should not hang on GRS commands, so we should
992          * actually wait for IEVENT_GRSC flag.
993          */
994         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
995                 return 0;
996
997         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
998          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
999          * and the Rx can be safely reset.
1000          */
1001         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1002         res &= 0x7f807f80;
1003         if ((res & 0xffff) == (res >> 16))
1004                 return 1;
1005
1006         return 0;
1007 }
1008
1009 /* Halt the receive and transmit queues */
1010 static void gfar_halt_nodisable(struct gfar_private *priv)
1011 {
1012         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1013         u32 tempval;
1014         unsigned int timeout;
1015         int stopped;
1016
1017         gfar_ints_disable(priv);
1018
1019         if (gfar_is_dma_stopped(priv))
1020                 return;
1021
1022         /* Stop the DMA, and wait for it to stop */
1023         tempval = gfar_read(&regs->dmactrl);
1024         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1025         gfar_write(&regs->dmactrl, tempval);
1026
1027 retry:
1028         timeout = 1000;
1029         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1030                 cpu_relax();
1031                 timeout--;
1032         }
1033
1034         if (!timeout)
1035                 stopped = gfar_is_dma_stopped(priv);
1036
1037         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1038             !__gfar_is_rx_idle(priv))
1039                 goto retry;
1040 }
1041
1042 /* Halt the receive and transmit queues */
1043 static void gfar_halt(struct gfar_private *priv)
1044 {
1045         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1046         u32 tempval;
1047
1048         /* Dissable the Rx/Tx hw queues */
1049         gfar_write(&regs->rqueue, 0);
1050         gfar_write(&regs->tqueue, 0);
1051
1052         mdelay(10);
1053
1054         gfar_halt_nodisable(priv);
1055
1056         /* Disable Rx/Tx DMA */
1057         tempval = gfar_read(&regs->maccfg1);
1058         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1059         gfar_write(&regs->maccfg1, tempval);
1060 }
1061
1062 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1063 {
1064         struct txbd8 *txbdp;
1065         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1066         int i, j;
1067
1068         txbdp = tx_queue->tx_bd_base;
1069
1070         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1071                 if (!tx_queue->tx_skbuff[i])
1072                         continue;
1073
1074                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1075                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1076                 txbdp->lstatus = 0;
1077                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1078                      j++) {
1079                         txbdp++;
1080                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1081                                        be16_to_cpu(txbdp->length),
1082                                        DMA_TO_DEVICE);
1083                 }
1084                 txbdp++;
1085                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1086                 tx_queue->tx_skbuff[i] = NULL;
1087         }
1088         kfree(tx_queue->tx_skbuff);
1089         tx_queue->tx_skbuff = NULL;
1090 }
1091
1092 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1093 {
1094         int i;
1095
1096         struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1097
1098         dev_kfree_skb(rx_queue->skb);
1099
1100         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1101                 struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1102
1103                 rxbdp->lstatus = 0;
1104                 rxbdp->bufPtr = 0;
1105                 rxbdp++;
1106
1107                 if (!rxb->page)
1108                         continue;
1109
1110                 dma_unmap_page(rx_queue->dev, rxb->dma,
1111                                PAGE_SIZE, DMA_FROM_DEVICE);
1112                 __free_page(rxb->page);
1113
1114                 rxb->page = NULL;
1115         }
1116
1117         kfree(rx_queue->rx_buff);
1118         rx_queue->rx_buff = NULL;
1119 }
1120
1121 /* If there are any tx skbs or rx skbs still around, free them.
1122  * Then free tx_skbuff and rx_skbuff
1123  */
1124 static void free_skb_resources(struct gfar_private *priv)
1125 {
1126         struct gfar_priv_tx_q *tx_queue = NULL;
1127         struct gfar_priv_rx_q *rx_queue = NULL;
1128         int i;
1129
1130         /* Go through all the buffer descriptors and free their data buffers */
1131         for (i = 0; i < priv->num_tx_queues; i++) {
1132                 struct netdev_queue *txq;
1133
1134                 tx_queue = priv->tx_queue[i];
1135                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1136                 if (tx_queue->tx_skbuff)
1137                         free_skb_tx_queue(tx_queue);
1138                 netdev_tx_reset_queue(txq);
1139         }
1140
1141         for (i = 0; i < priv->num_rx_queues; i++) {
1142                 rx_queue = priv->rx_queue[i];
1143                 if (rx_queue->rx_buff)
1144                         free_skb_rx_queue(rx_queue);
1145         }
1146
1147         dma_free_coherent(priv->dev,
1148                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1149                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1150                           priv->tx_queue[0]->tx_bd_base,
1151                           priv->tx_queue[0]->tx_bd_dma_base);
1152 }
1153
1154 void stop_gfar(struct net_device *dev)
1155 {
1156         struct gfar_private *priv = netdev_priv(dev);
1157
1158         netif_tx_stop_all_queues(dev);
1159
1160         smp_mb__before_atomic();
1161         set_bit(GFAR_DOWN, &priv->state);
1162         smp_mb__after_atomic();
1163
1164         disable_napi(priv);
1165
1166         /* disable ints and gracefully shut down Rx/Tx DMA */
1167         gfar_halt(priv);
1168
1169         phy_stop(dev->phydev);
1170
1171         free_skb_resources(priv);
1172 }
1173
1174 static void gfar_start(struct gfar_private *priv)
1175 {
1176         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1177         u32 tempval;
1178         int i = 0;
1179
1180         /* Enable Rx/Tx hw queues */
1181         gfar_write(&regs->rqueue, priv->rqueue);
1182         gfar_write(&regs->tqueue, priv->tqueue);
1183
1184         /* Initialize DMACTRL to have WWR and WOP */
1185         tempval = gfar_read(&regs->dmactrl);
1186         tempval |= DMACTRL_INIT_SETTINGS;
1187         gfar_write(&regs->dmactrl, tempval);
1188
1189         /* Make sure we aren't stopped */
1190         tempval = gfar_read(&regs->dmactrl);
1191         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1192         gfar_write(&regs->dmactrl, tempval);
1193
1194         for (i = 0; i < priv->num_grps; i++) {
1195                 regs = priv->gfargrp[i].regs;
1196                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1197                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1198                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1199         }
1200
1201         /* Enable Rx/Tx DMA */
1202         tempval = gfar_read(&regs->maccfg1);
1203         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1204         gfar_write(&regs->maccfg1, tempval);
1205
1206         gfar_ints_enable(priv);
1207
1208         netif_trans_update(priv->ndev); /* prevent tx timeout */
1209 }
1210
1211 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1212 {
1213         struct page *page;
1214         dma_addr_t addr;
1215
1216         page = dev_alloc_page();
1217         if (unlikely(!page))
1218                 return false;
1219
1220         addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1221         if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1222                 __free_page(page);
1223
1224                 return false;
1225         }
1226
1227         rxb->dma = addr;
1228         rxb->page = page;
1229         rxb->page_offset = 0;
1230
1231         return true;
1232 }
1233
1234 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1235 {
1236         struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1237         struct gfar_extra_stats *estats = &priv->extra_stats;
1238
1239         netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1240         atomic64_inc(&estats->rx_alloc_err);
1241 }
1242
1243 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1244                                 int alloc_cnt)
1245 {
1246         struct rxbd8 *bdp;
1247         struct gfar_rx_buff *rxb;
1248         int i;
1249
1250         i = rx_queue->next_to_use;
1251         bdp = &rx_queue->rx_bd_base[i];
1252         rxb = &rx_queue->rx_buff[i];
1253
1254         while (alloc_cnt--) {
1255                 /* try reuse page */
1256                 if (unlikely(!rxb->page)) {
1257                         if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1258                                 gfar_rx_alloc_err(rx_queue);
1259                                 break;
1260                         }
1261                 }
1262
1263                 /* Setup the new RxBD */
1264                 gfar_init_rxbdp(rx_queue, bdp,
1265                                 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1266
1267                 /* Update to the next pointer */
1268                 bdp++;
1269                 rxb++;
1270
1271                 if (unlikely(++i == rx_queue->rx_ring_size)) {
1272                         i = 0;
1273                         bdp = rx_queue->rx_bd_base;
1274                         rxb = rx_queue->rx_buff;
1275                 }
1276         }
1277
1278         rx_queue->next_to_use = i;
1279         rx_queue->next_to_alloc = i;
1280 }
1281
1282 static void gfar_init_bds(struct net_device *ndev)
1283 {
1284         struct gfar_private *priv = netdev_priv(ndev);
1285         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1286         struct gfar_priv_tx_q *tx_queue = NULL;
1287         struct gfar_priv_rx_q *rx_queue = NULL;
1288         struct txbd8 *txbdp;
1289         u32 __iomem *rfbptr;
1290         int i, j;
1291
1292         for (i = 0; i < priv->num_tx_queues; i++) {
1293                 tx_queue = priv->tx_queue[i];
1294                 /* Initialize some variables in our dev structure */
1295                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1296                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
1297                 tx_queue->cur_tx = tx_queue->tx_bd_base;
1298                 tx_queue->skb_curtx = 0;
1299                 tx_queue->skb_dirtytx = 0;
1300
1301                 /* Initialize Transmit Descriptor Ring */
1302                 txbdp = tx_queue->tx_bd_base;
1303                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
1304                         txbdp->lstatus = 0;
1305                         txbdp->bufPtr = 0;
1306                         txbdp++;
1307                 }
1308
1309                 /* Set the last descriptor in the ring to indicate wrap */
1310                 txbdp--;
1311                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1312                                             TXBD_WRAP);
1313         }
1314
1315         rfbptr = &regs->rfbptr0;
1316         for (i = 0; i < priv->num_rx_queues; i++) {
1317                 rx_queue = priv->rx_queue[i];
1318
1319                 rx_queue->next_to_clean = 0;
1320                 rx_queue->next_to_use = 0;
1321                 rx_queue->next_to_alloc = 0;
1322
1323                 /* make sure next_to_clean != next_to_use after this
1324                  * by leaving at least 1 unused descriptor
1325                  */
1326                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1327
1328                 rx_queue->rfbptr = rfbptr;
1329                 rfbptr += 2;
1330         }
1331 }
1332
1333 static int gfar_alloc_skb_resources(struct net_device *ndev)
1334 {
1335         void *vaddr;
1336         dma_addr_t addr;
1337         int i, j;
1338         struct gfar_private *priv = netdev_priv(ndev);
1339         struct device *dev = priv->dev;
1340         struct gfar_priv_tx_q *tx_queue = NULL;
1341         struct gfar_priv_rx_q *rx_queue = NULL;
1342
1343         priv->total_tx_ring_size = 0;
1344         for (i = 0; i < priv->num_tx_queues; i++)
1345                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1346
1347         priv->total_rx_ring_size = 0;
1348         for (i = 0; i < priv->num_rx_queues; i++)
1349                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1350
1351         /* Allocate memory for the buffer descriptors */
1352         vaddr = dma_alloc_coherent(dev,
1353                                    (priv->total_tx_ring_size *
1354                                     sizeof(struct txbd8)) +
1355                                    (priv->total_rx_ring_size *
1356                                     sizeof(struct rxbd8)),
1357                                    &addr, GFP_KERNEL);
1358         if (!vaddr)
1359                 return -ENOMEM;
1360
1361         for (i = 0; i < priv->num_tx_queues; i++) {
1362                 tx_queue = priv->tx_queue[i];
1363                 tx_queue->tx_bd_base = vaddr;
1364                 tx_queue->tx_bd_dma_base = addr;
1365                 tx_queue->dev = ndev;
1366                 /* enet DMA only understands physical addresses */
1367                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1368                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1369         }
1370
1371         /* Start the rx descriptor ring where the tx ring leaves off */
1372         for (i = 0; i < priv->num_rx_queues; i++) {
1373                 rx_queue = priv->rx_queue[i];
1374                 rx_queue->rx_bd_base = vaddr;
1375                 rx_queue->rx_bd_dma_base = addr;
1376                 rx_queue->ndev = ndev;
1377                 rx_queue->dev = dev;
1378                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1379                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1380         }
1381
1382         /* Setup the skbuff rings */
1383         for (i = 0; i < priv->num_tx_queues; i++) {
1384                 tx_queue = priv->tx_queue[i];
1385                 tx_queue->tx_skbuff =
1386                         kmalloc_array(tx_queue->tx_ring_size,
1387                                       sizeof(*tx_queue->tx_skbuff),
1388                                       GFP_KERNEL);
1389                 if (!tx_queue->tx_skbuff)
1390                         goto cleanup;
1391
1392                 for (j = 0; j < tx_queue->tx_ring_size; j++)
1393                         tx_queue->tx_skbuff[j] = NULL;
1394         }
1395
1396         for (i = 0; i < priv->num_rx_queues; i++) {
1397                 rx_queue = priv->rx_queue[i];
1398                 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1399                                             sizeof(*rx_queue->rx_buff),
1400                                             GFP_KERNEL);
1401                 if (!rx_queue->rx_buff)
1402                         goto cleanup;
1403         }
1404
1405         gfar_init_bds(ndev);
1406
1407         return 0;
1408
1409 cleanup:
1410         free_skb_resources(priv);
1411         return -ENOMEM;
1412 }
1413
1414 /* Bring the controller up and running */
1415 int startup_gfar(struct net_device *ndev)
1416 {
1417         struct gfar_private *priv = netdev_priv(ndev);
1418         int err;
1419
1420         gfar_mac_reset(priv);
1421
1422         err = gfar_alloc_skb_resources(ndev);
1423         if (err)
1424                 return err;
1425
1426         gfar_init_tx_rx_base(priv);
1427
1428         smp_mb__before_atomic();
1429         clear_bit(GFAR_DOWN, &priv->state);
1430         smp_mb__after_atomic();
1431
1432         /* Start Rx/Tx DMA and enable the interrupts */
1433         gfar_start(priv);
1434
1435         /* force link state update after mac reset */
1436         priv->oldlink = 0;
1437         priv->oldspeed = 0;
1438         priv->oldduplex = -1;
1439
1440         phy_start(ndev->phydev);
1441
1442         enable_napi(priv);
1443
1444         netif_tx_wake_all_queues(ndev);
1445
1446         return 0;
1447 }
1448
1449 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1450 {
1451         struct net_device *ndev = priv->ndev;
1452         struct phy_device *phydev = ndev->phydev;
1453         u32 val = 0;
1454
1455         if (!phydev->duplex)
1456                 return val;
1457
1458         if (!priv->pause_aneg_en) {
1459                 if (priv->tx_pause_en)
1460                         val |= MACCFG1_TX_FLOW;
1461                 if (priv->rx_pause_en)
1462                         val |= MACCFG1_RX_FLOW;
1463         } else {
1464                 u16 lcl_adv, rmt_adv;
1465                 u8 flowctrl;
1466                 /* get link partner capabilities */
1467                 rmt_adv = 0;
1468                 if (phydev->pause)
1469                         rmt_adv = LPA_PAUSE_CAP;
1470                 if (phydev->asym_pause)
1471                         rmt_adv |= LPA_PAUSE_ASYM;
1472
1473                 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1474                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1475                 if (flowctrl & FLOW_CTRL_TX)
1476                         val |= MACCFG1_TX_FLOW;
1477                 if (flowctrl & FLOW_CTRL_RX)
1478                         val |= MACCFG1_RX_FLOW;
1479         }
1480
1481         return val;
1482 }
1483
1484 static noinline void gfar_update_link_state(struct gfar_private *priv)
1485 {
1486         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1487         struct net_device *ndev = priv->ndev;
1488         struct phy_device *phydev = ndev->phydev;
1489         struct gfar_priv_rx_q *rx_queue = NULL;
1490         int i;
1491
1492         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1493                 return;
1494
1495         if (phydev->link) {
1496                 u32 tempval1 = gfar_read(&regs->maccfg1);
1497                 u32 tempval = gfar_read(&regs->maccfg2);
1498                 u32 ecntrl = gfar_read(&regs->ecntrl);
1499                 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1500
1501                 if (phydev->duplex != priv->oldduplex) {
1502                         if (!(phydev->duplex))
1503                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1504                         else
1505                                 tempval |= MACCFG2_FULL_DUPLEX;
1506
1507                         priv->oldduplex = phydev->duplex;
1508                 }
1509
1510                 if (phydev->speed != priv->oldspeed) {
1511                         switch (phydev->speed) {
1512                         case 1000:
1513                                 tempval =
1514                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1515
1516                                 ecntrl &= ~(ECNTRL_R100);
1517                                 break;
1518                         case 100:
1519                         case 10:
1520                                 tempval =
1521                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1522
1523                                 /* Reduced mode distinguishes
1524                                  * between 10 and 100
1525                                  */
1526                                 if (phydev->speed == SPEED_100)
1527                                         ecntrl |= ECNTRL_R100;
1528                                 else
1529                                         ecntrl &= ~(ECNTRL_R100);
1530                                 break;
1531                         default:
1532                                 netif_warn(priv, link, priv->ndev,
1533                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
1534                                            phydev->speed);
1535                                 break;
1536                         }
1537
1538                         priv->oldspeed = phydev->speed;
1539                 }
1540
1541                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1542                 tempval1 |= gfar_get_flowctrl_cfg(priv);
1543
1544                 /* Turn last free buffer recording on */
1545                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1546                         for (i = 0; i < priv->num_rx_queues; i++) {
1547                                 u32 bdp_dma;
1548
1549                                 rx_queue = priv->rx_queue[i];
1550                                 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1551                                 gfar_write(rx_queue->rfbptr, bdp_dma);
1552                         }
1553
1554                         priv->tx_actual_en = 1;
1555                 }
1556
1557                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1558                         priv->tx_actual_en = 0;
1559
1560                 gfar_write(&regs->maccfg1, tempval1);
1561                 gfar_write(&regs->maccfg2, tempval);
1562                 gfar_write(&regs->ecntrl, ecntrl);
1563
1564                 if (!priv->oldlink)
1565                         priv->oldlink = 1;
1566
1567         } else if (priv->oldlink) {
1568                 priv->oldlink = 0;
1569                 priv->oldspeed = 0;
1570                 priv->oldduplex = -1;
1571         }
1572
1573         if (netif_msg_link(priv))
1574                 phy_print_status(phydev);
1575 }
1576
1577 /* Called every time the controller might need to be made
1578  * aware of new link state.  The PHY code conveys this
1579  * information through variables in the phydev structure, and this
1580  * function converts those variables into the appropriate
1581  * register values, and can bring down the device if needed.
1582  */
1583 static void adjust_link(struct net_device *dev)
1584 {
1585         struct gfar_private *priv = netdev_priv(dev);
1586         struct phy_device *phydev = dev->phydev;
1587
1588         if (unlikely(phydev->link != priv->oldlink ||
1589                      (phydev->link && (phydev->duplex != priv->oldduplex ||
1590                                        phydev->speed != priv->oldspeed))))
1591                 gfar_update_link_state(priv);
1592 }
1593
1594 /* Initialize TBI PHY interface for communicating with the
1595  * SERDES lynx PHY on the chip.  We communicate with this PHY
1596  * through the MDIO bus on each controller, treating it as a
1597  * "normal" PHY at the address found in the TBIPA register.  We assume
1598  * that the TBIPA register is valid.  Either the MDIO bus code will set
1599  * it to a value that doesn't conflict with other PHYs on the bus, or the
1600  * value doesn't matter, as there are no other PHYs on the bus.
1601  */
1602 static void gfar_configure_serdes(struct net_device *dev)
1603 {
1604         struct gfar_private *priv = netdev_priv(dev);
1605         struct phy_device *tbiphy;
1606
1607         if (!priv->tbi_node) {
1608                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1609                                     "device tree specify a tbi-handle\n");
1610                 return;
1611         }
1612
1613         tbiphy = of_phy_find_device(priv->tbi_node);
1614         if (!tbiphy) {
1615                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1616                 return;
1617         }
1618
1619         /* If the link is already up, we must already be ok, and don't need to
1620          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1621          * everything for us?  Resetting it takes the link down and requires
1622          * several seconds for it to come back.
1623          */
1624         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1625                 put_device(&tbiphy->mdio.dev);
1626                 return;
1627         }
1628
1629         /* Single clk mode, mii mode off(for serdes communication) */
1630         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1631
1632         phy_write(tbiphy, MII_ADVERTISE,
1633                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1634                   ADVERTISE_1000XPSE_ASYM);
1635
1636         phy_write(tbiphy, MII_BMCR,
1637                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1638                   BMCR_SPEED1000);
1639
1640         put_device(&tbiphy->mdio.dev);
1641 }
1642
1643 /* Initializes driver's PHY state, and attaches to the PHY.
1644  * Returns 0 on success.
1645  */
1646 static int init_phy(struct net_device *dev)
1647 {
1648         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1649         struct gfar_private *priv = netdev_priv(dev);
1650         phy_interface_t interface = priv->interface;
1651         struct phy_device *phydev;
1652         struct ethtool_eee edata;
1653
1654         linkmode_set_bit_array(phy_10_100_features_array,
1655                                ARRAY_SIZE(phy_10_100_features_array),
1656                                mask);
1657         linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1658         linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1659         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1660                 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1661
1662         priv->oldlink = 0;
1663         priv->oldspeed = 0;
1664         priv->oldduplex = -1;
1665
1666         phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1667                                 interface);
1668         if (!phydev) {
1669                 dev_err(&dev->dev, "could not attach to PHY\n");
1670                 return -ENODEV;
1671         }
1672
1673         if (interface == PHY_INTERFACE_MODE_SGMII)
1674                 gfar_configure_serdes(dev);
1675
1676         /* Remove any features not supported by the controller */
1677         linkmode_and(phydev->supported, phydev->supported, mask);
1678         linkmode_copy(phydev->advertising, phydev->supported);
1679
1680         /* Add support for flow control */
1681         phy_support_asym_pause(phydev);
1682
1683         /* disable EEE autoneg, EEE not supported by eTSEC */
1684         memset(&edata, 0, sizeof(struct ethtool_eee));
1685         phy_ethtool_set_eee(phydev, &edata);
1686
1687         return 0;
1688 }
1689
1690 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1691 {
1692         struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1693
1694         memset(fcb, 0, GMAC_FCB_LEN);
1695
1696         return fcb;
1697 }
1698
1699 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1700                                     int fcb_length)
1701 {
1702         /* If we're here, it's a IP packet with a TCP or UDP
1703          * payload.  We set it to checksum, using a pseudo-header
1704          * we provide
1705          */
1706         u8 flags = TXFCB_DEFAULT;
1707
1708         /* Tell the controller what the protocol is
1709          * And provide the already calculated phcs
1710          */
1711         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1712                 flags |= TXFCB_UDP;
1713                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1714         } else
1715                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1716
1717         /* l3os is the distance between the start of the
1718          * frame (skb->data) and the start of the IP hdr.
1719          * l4os is the distance between the start of the
1720          * l3 hdr and the l4 hdr
1721          */
1722         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1723         fcb->l4os = skb_network_header_len(skb);
1724
1725         fcb->flags = flags;
1726 }
1727
1728 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1729 {
1730         fcb->flags |= TXFCB_VLN;
1731         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1732 }
1733
1734 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1735                                       struct txbd8 *base, int ring_size)
1736 {
1737         struct txbd8 *new_bd = bdp + stride;
1738
1739         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1740 }
1741
1742 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1743                                       int ring_size)
1744 {
1745         return skip_txbd(bdp, 1, base, ring_size);
1746 }
1747
1748 /* eTSEC12: csum generation not supported for some fcb offsets */
1749 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1750                                        unsigned long fcb_addr)
1751 {
1752         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1753                (fcb_addr % 0x20) > 0x18);
1754 }
1755
1756 /* eTSEC76: csum generation for frames larger than 2500 may
1757  * cause excess delays before start of transmission
1758  */
1759 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1760                                        unsigned int len)
1761 {
1762         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1763                (len > 2500));
1764 }
1765
1766 /* This is called by the kernel when a frame is ready for transmission.
1767  * It is pointed to by the dev->hard_start_xmit function pointer
1768  */
1769 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1770 {
1771         struct gfar_private *priv = netdev_priv(dev);
1772         struct gfar_priv_tx_q *tx_queue = NULL;
1773         struct netdev_queue *txq;
1774         struct gfar __iomem *regs = NULL;
1775         struct txfcb *fcb = NULL;
1776         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1777         u32 lstatus;
1778         skb_frag_t *frag;
1779         int i, rq = 0;
1780         int do_tstamp, do_csum, do_vlan;
1781         u32 bufaddr;
1782         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1783
1784         rq = skb->queue_mapping;
1785         tx_queue = priv->tx_queue[rq];
1786         txq = netdev_get_tx_queue(dev, rq);
1787         base = tx_queue->tx_bd_base;
1788         regs = tx_queue->grp->regs;
1789
1790         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1791         do_vlan = skb_vlan_tag_present(skb);
1792         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1793                     priv->hwts_tx_en;
1794
1795         if (do_csum || do_vlan)
1796                 fcb_len = GMAC_FCB_LEN;
1797
1798         /* check if time stamp should be generated */
1799         if (unlikely(do_tstamp))
1800                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1801
1802         /* make space for additional header when fcb is needed */
1803         if (fcb_len) {
1804                 if (unlikely(skb_cow_head(skb, fcb_len))) {
1805                         dev->stats.tx_errors++;
1806                         dev_kfree_skb_any(skb);
1807                         return NETDEV_TX_OK;
1808                 }
1809         }
1810
1811         /* total number of fragments in the SKB */
1812         nr_frags = skb_shinfo(skb)->nr_frags;
1813
1814         /* calculate the required number of TxBDs for this skb */
1815         if (unlikely(do_tstamp))
1816                 nr_txbds = nr_frags + 2;
1817         else
1818                 nr_txbds = nr_frags + 1;
1819
1820         /* check if there is space to queue this packet */
1821         if (nr_txbds > tx_queue->num_txbdfree) {
1822                 /* no space, stop the queue */
1823                 netif_tx_stop_queue(txq);
1824                 dev->stats.tx_fifo_errors++;
1825                 return NETDEV_TX_BUSY;
1826         }
1827
1828         /* Update transmit stats */
1829         bytes_sent = skb->len;
1830         tx_queue->stats.tx_bytes += bytes_sent;
1831         /* keep Tx bytes on wire for BQL accounting */
1832         GFAR_CB(skb)->bytes_sent = bytes_sent;
1833         tx_queue->stats.tx_packets++;
1834
1835         txbdp = txbdp_start = tx_queue->cur_tx;
1836         lstatus = be32_to_cpu(txbdp->lstatus);
1837
1838         /* Add TxPAL between FCB and frame if required */
1839         if (unlikely(do_tstamp)) {
1840                 skb_push(skb, GMAC_TXPAL_LEN);
1841                 memset(skb->data, 0, GMAC_TXPAL_LEN);
1842         }
1843
1844         /* Add TxFCB if required */
1845         if (fcb_len) {
1846                 fcb = gfar_add_fcb(skb);
1847                 lstatus |= BD_LFLAG(TXBD_TOE);
1848         }
1849
1850         /* Set up checksumming */
1851         if (do_csum) {
1852                 gfar_tx_checksum(skb, fcb, fcb_len);
1853
1854                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1855                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
1856                         __skb_pull(skb, GMAC_FCB_LEN);
1857                         skb_checksum_help(skb);
1858                         if (do_vlan || do_tstamp) {
1859                                 /* put back a new fcb for vlan/tstamp TOE */
1860                                 fcb = gfar_add_fcb(skb);
1861                         } else {
1862                                 /* Tx TOE not used */
1863                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
1864                                 fcb = NULL;
1865                         }
1866                 }
1867         }
1868
1869         if (do_vlan)
1870                 gfar_tx_vlan(skb, fcb);
1871
1872         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1873                                  DMA_TO_DEVICE);
1874         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1875                 goto dma_map_err;
1876
1877         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1878
1879         /* Time stamp insertion requires one additional TxBD */
1880         if (unlikely(do_tstamp))
1881                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1882                                                  tx_queue->tx_ring_size);
1883
1884         if (likely(!nr_frags)) {
1885                 if (likely(!do_tstamp))
1886                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1887         } else {
1888                 u32 lstatus_start = lstatus;
1889
1890                 /* Place the fragment addresses and lengths into the TxBDs */
1891                 frag = &skb_shinfo(skb)->frags[0];
1892                 for (i = 0; i < nr_frags; i++, frag++) {
1893                         unsigned int size;
1894
1895                         /* Point at the next BD, wrapping as needed */
1896                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1897
1898                         size = skb_frag_size(frag);
1899
1900                         lstatus = be32_to_cpu(txbdp->lstatus) | size |
1901                                   BD_LFLAG(TXBD_READY);
1902
1903                         /* Handle the last BD specially */
1904                         if (i == nr_frags - 1)
1905                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1906
1907                         bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1908                                                    size, DMA_TO_DEVICE);
1909                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1910                                 goto dma_map_err;
1911
1912                         /* set the TxBD length and buffer pointer */
1913                         txbdp->bufPtr = cpu_to_be32(bufaddr);
1914                         txbdp->lstatus = cpu_to_be32(lstatus);
1915                 }
1916
1917                 lstatus = lstatus_start;
1918         }
1919
1920         /* If time stamping is requested one additional TxBD must be set up. The
1921          * first TxBD points to the FCB and must have a data length of
1922          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1923          * the full frame length.
1924          */
1925         if (unlikely(do_tstamp)) {
1926                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1927
1928                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1929                 bufaddr += fcb_len;
1930
1931                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
1932                               (skb_headlen(skb) - fcb_len);
1933                 if (!nr_frags)
1934                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1935
1936                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1937                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1938                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1939
1940                 /* Setup tx hardware time stamping */
1941                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1942                 fcb->ptp = 1;
1943         } else {
1944                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1945         }
1946
1947         skb_tx_timestamp(skb);
1948         netdev_tx_sent_queue(txq, bytes_sent);
1949
1950         gfar_wmb();
1951
1952         txbdp_start->lstatus = cpu_to_be32(lstatus);
1953
1954         gfar_wmb(); /* force lstatus write before tx_skbuff */
1955
1956         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1957
1958         /* Update the current skb pointer to the next entry we will use
1959          * (wrapping if necessary)
1960          */
1961         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1962                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1963
1964         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1965
1966         /* We can work in parallel with gfar_clean_tx_ring(), except
1967          * when modifying num_txbdfree. Note that we didn't grab the lock
1968          * when we were reading the num_txbdfree and checking for available
1969          * space, that's because outside of this function it can only grow.
1970          */
1971         spin_lock_bh(&tx_queue->txlock);
1972         /* reduce TxBD free count */
1973         tx_queue->num_txbdfree -= (nr_txbds);
1974         spin_unlock_bh(&tx_queue->txlock);
1975
1976         /* If the next BD still needs to be cleaned up, then the bds
1977          * are full.  We need to tell the kernel to stop sending us stuff.
1978          */
1979         if (!tx_queue->num_txbdfree) {
1980                 netif_tx_stop_queue(txq);
1981
1982                 dev->stats.tx_fifo_errors++;
1983         }
1984
1985         /* Tell the DMA to go go go */
1986         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1987
1988         return NETDEV_TX_OK;
1989
1990 dma_map_err:
1991         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1992         if (do_tstamp)
1993                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1994         for (i = 0; i < nr_frags; i++) {
1995                 lstatus = be32_to_cpu(txbdp->lstatus);
1996                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
1997                         break;
1998
1999                 lstatus &= ~BD_LFLAG(TXBD_READY);
2000                 txbdp->lstatus = cpu_to_be32(lstatus);
2001                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2002                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2003                                DMA_TO_DEVICE);
2004                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2005         }
2006         gfar_wmb();
2007         dev_kfree_skb_any(skb);
2008         return NETDEV_TX_OK;
2009 }
2010
2011 /* Changes the mac address if the controller is not running. */
2012 static int gfar_set_mac_address(struct net_device *dev)
2013 {
2014         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2015
2016         return 0;
2017 }
2018
2019 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2020 {
2021         struct gfar_private *priv = netdev_priv(dev);
2022
2023         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2024                 cpu_relax();
2025
2026         if (dev->flags & IFF_UP)
2027                 stop_gfar(dev);
2028
2029         dev->mtu = new_mtu;
2030
2031         if (dev->flags & IFF_UP)
2032                 startup_gfar(dev);
2033
2034         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2035
2036         return 0;
2037 }
2038
2039 static void reset_gfar(struct net_device *ndev)
2040 {
2041         struct gfar_private *priv = netdev_priv(ndev);
2042
2043         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2044                 cpu_relax();
2045
2046         stop_gfar(ndev);
2047         startup_gfar(ndev);
2048
2049         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2050 }
2051
2052 /* gfar_reset_task gets scheduled when a packet has not been
2053  * transmitted after a set amount of time.
2054  * For now, assume that clearing out all the structures, and
2055  * starting over will fix the problem.
2056  */
2057 static void gfar_reset_task(struct work_struct *work)
2058 {
2059         struct gfar_private *priv = container_of(work, struct gfar_private,
2060                                                  reset_task);
2061         reset_gfar(priv->ndev);
2062 }
2063
2064 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2065 {
2066         struct gfar_private *priv = netdev_priv(dev);
2067
2068         dev->stats.tx_errors++;
2069         schedule_work(&priv->reset_task);
2070 }
2071
2072 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2073 {
2074         struct hwtstamp_config config;
2075         struct gfar_private *priv = netdev_priv(netdev);
2076
2077         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2078                 return -EFAULT;
2079
2080         switch (config.tx_type) {
2081         case HWTSTAMP_TX_OFF:
2082                 priv->hwts_tx_en = 0;
2083                 break;
2084         case HWTSTAMP_TX_ON:
2085                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2086                         return -ERANGE;
2087                 priv->hwts_tx_en = 1;
2088                 break;
2089         default:
2090                 return -ERANGE;
2091         }
2092
2093         switch (config.rx_filter) {
2094         case HWTSTAMP_FILTER_NONE:
2095                 if (priv->hwts_rx_en) {
2096                         priv->hwts_rx_en = 0;
2097                         reset_gfar(netdev);
2098                 }
2099                 break;
2100         default:
2101                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2102                         return -ERANGE;
2103                 if (!priv->hwts_rx_en) {
2104                         priv->hwts_rx_en = 1;
2105                         reset_gfar(netdev);
2106                 }
2107                 config.rx_filter = HWTSTAMP_FILTER_ALL;
2108                 break;
2109         }
2110
2111         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2112                 -EFAULT : 0;
2113 }
2114
2115 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2116 {
2117         struct hwtstamp_config config;
2118         struct gfar_private *priv = netdev_priv(netdev);
2119
2120         config.flags = 0;
2121         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2122         config.rx_filter = (priv->hwts_rx_en ?
2123                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2124
2125         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2126                 -EFAULT : 0;
2127 }
2128
2129 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2130 {
2131         struct phy_device *phydev = dev->phydev;
2132
2133         if (!netif_running(dev))
2134                 return -EINVAL;
2135
2136         if (cmd == SIOCSHWTSTAMP)
2137                 return gfar_hwtstamp_set(dev, rq);
2138         if (cmd == SIOCGHWTSTAMP)
2139                 return gfar_hwtstamp_get(dev, rq);
2140
2141         if (!phydev)
2142                 return -ENODEV;
2143
2144         return phy_mii_ioctl(phydev, rq, cmd);
2145 }
2146
2147 /* Interrupt Handler for Transmit complete */
2148 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2149 {
2150         struct net_device *dev = tx_queue->dev;
2151         struct netdev_queue *txq;
2152         struct gfar_private *priv = netdev_priv(dev);
2153         struct txbd8 *bdp, *next = NULL;
2154         struct txbd8 *lbdp = NULL;
2155         struct txbd8 *base = tx_queue->tx_bd_base;
2156         struct sk_buff *skb;
2157         int skb_dirtytx;
2158         int tx_ring_size = tx_queue->tx_ring_size;
2159         int frags = 0, nr_txbds = 0;
2160         int i;
2161         int howmany = 0;
2162         int tqi = tx_queue->qindex;
2163         unsigned int bytes_sent = 0;
2164         u32 lstatus;
2165         size_t buflen;
2166
2167         txq = netdev_get_tx_queue(dev, tqi);
2168         bdp = tx_queue->dirty_tx;
2169         skb_dirtytx = tx_queue->skb_dirtytx;
2170
2171         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2172                 bool do_tstamp;
2173
2174                 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2175                             priv->hwts_tx_en;
2176
2177                 frags = skb_shinfo(skb)->nr_frags;
2178
2179                 /* When time stamping, one additional TxBD must be freed.
2180                  * Also, we need to dma_unmap_single() the TxPAL.
2181                  */
2182                 if (unlikely(do_tstamp))
2183                         nr_txbds = frags + 2;
2184                 else
2185                         nr_txbds = frags + 1;
2186
2187                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2188
2189                 lstatus = be32_to_cpu(lbdp->lstatus);
2190
2191                 /* Only clean completed frames */
2192                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2193                     (lstatus & BD_LENGTH_MASK))
2194                         break;
2195
2196                 if (unlikely(do_tstamp)) {
2197                         next = next_txbd(bdp, base, tx_ring_size);
2198                         buflen = be16_to_cpu(next->length) +
2199                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2200                 } else
2201                         buflen = be16_to_cpu(bdp->length);
2202
2203                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2204                                  buflen, DMA_TO_DEVICE);
2205
2206                 if (unlikely(do_tstamp)) {
2207                         struct skb_shared_hwtstamps shhwtstamps;
2208                         u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2209                                           ~0x7UL);
2210
2211                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2212                         shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2213                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2214                         skb_tstamp_tx(skb, &shhwtstamps);
2215                         gfar_clear_txbd_status(bdp);
2216                         bdp = next;
2217                 }
2218
2219                 gfar_clear_txbd_status(bdp);
2220                 bdp = next_txbd(bdp, base, tx_ring_size);
2221
2222                 for (i = 0; i < frags; i++) {
2223                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2224                                        be16_to_cpu(bdp->length),
2225                                        DMA_TO_DEVICE);
2226                         gfar_clear_txbd_status(bdp);
2227                         bdp = next_txbd(bdp, base, tx_ring_size);
2228                 }
2229
2230                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2231
2232                 dev_kfree_skb_any(skb);
2233
2234                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2235
2236                 skb_dirtytx = (skb_dirtytx + 1) &
2237                               TX_RING_MOD_MASK(tx_ring_size);
2238
2239                 howmany++;
2240                 spin_lock(&tx_queue->txlock);
2241                 tx_queue->num_txbdfree += nr_txbds;
2242                 spin_unlock(&tx_queue->txlock);
2243         }
2244
2245         /* If we freed a buffer, we can restart transmission, if necessary */
2246         if (tx_queue->num_txbdfree &&
2247             netif_tx_queue_stopped(txq) &&
2248             !(test_bit(GFAR_DOWN, &priv->state)))
2249                 netif_wake_subqueue(priv->ndev, tqi);
2250
2251         /* Update dirty indicators */
2252         tx_queue->skb_dirtytx = skb_dirtytx;
2253         tx_queue->dirty_tx = bdp;
2254
2255         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2256 }
2257
2258 static void count_errors(u32 lstatus, struct net_device *ndev)
2259 {
2260         struct gfar_private *priv = netdev_priv(ndev);
2261         struct net_device_stats *stats = &ndev->stats;
2262         struct gfar_extra_stats *estats = &priv->extra_stats;
2263
2264         /* If the packet was truncated, none of the other errors matter */
2265         if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2266                 stats->rx_length_errors++;
2267
2268                 atomic64_inc(&estats->rx_trunc);
2269
2270                 return;
2271         }
2272         /* Count the errors, if there were any */
2273         if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2274                 stats->rx_length_errors++;
2275
2276                 if (lstatus & BD_LFLAG(RXBD_LARGE))
2277                         atomic64_inc(&estats->rx_large);
2278                 else
2279                         atomic64_inc(&estats->rx_short);
2280         }
2281         if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2282                 stats->rx_frame_errors++;
2283                 atomic64_inc(&estats->rx_nonoctet);
2284         }
2285         if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2286                 atomic64_inc(&estats->rx_crcerr);
2287                 stats->rx_crc_errors++;
2288         }
2289         if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2290                 atomic64_inc(&estats->rx_overrun);
2291                 stats->rx_over_errors++;
2292         }
2293 }
2294
2295 static irqreturn_t gfar_receive(int irq, void *grp_id)
2296 {
2297         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2298         unsigned long flags;
2299         u32 imask, ievent;
2300
2301         ievent = gfar_read(&grp->regs->ievent);
2302
2303         if (unlikely(ievent & IEVENT_FGPI)) {
2304                 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2305                 return IRQ_HANDLED;
2306         }
2307
2308         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2309                 spin_lock_irqsave(&grp->grplock, flags);
2310                 imask = gfar_read(&grp->regs->imask);
2311                 imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2312                 gfar_write(&grp->regs->imask, imask);
2313                 spin_unlock_irqrestore(&grp->grplock, flags);
2314                 __napi_schedule(&grp->napi_rx);
2315         } else {
2316                 /* Clear IEVENT, so interrupts aren't called again
2317                  * because of the packets that have already arrived.
2318                  */
2319                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2320         }
2321
2322         return IRQ_HANDLED;
2323 }
2324
2325 /* Interrupt Handler for Transmit complete */
2326 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2327 {
2328         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2329         unsigned long flags;
2330         u32 imask;
2331
2332         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2333                 spin_lock_irqsave(&grp->grplock, flags);
2334                 imask = gfar_read(&grp->regs->imask);
2335                 imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2336                 gfar_write(&grp->regs->imask, imask);
2337                 spin_unlock_irqrestore(&grp->grplock, flags);
2338                 __napi_schedule(&grp->napi_tx);
2339         } else {
2340                 /* Clear IEVENT, so interrupts aren't called again
2341                  * because of the packets that have already arrived.
2342                  */
2343                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2344         }
2345
2346         return IRQ_HANDLED;
2347 }
2348
2349 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2350                              struct sk_buff *skb, bool first)
2351 {
2352         int size = lstatus & BD_LENGTH_MASK;
2353         struct page *page = rxb->page;
2354
2355         if (likely(first)) {
2356                 skb_put(skb, size);
2357         } else {
2358                 /* the last fragments' length contains the full frame length */
2359                 if (lstatus & BD_LFLAG(RXBD_LAST))
2360                         size -= skb->len;
2361
2362                 WARN(size < 0, "gianfar: rx fragment size underflow");
2363                 if (size < 0)
2364                         return false;
2365
2366                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2367                                 rxb->page_offset + RXBUF_ALIGNMENT,
2368                                 size, GFAR_RXB_TRUESIZE);
2369         }
2370
2371         /* try reuse page */
2372         if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2373                 return false;
2374
2375         /* change offset to the other half */
2376         rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2377
2378         page_ref_inc(page);
2379
2380         return true;
2381 }
2382
2383 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2384                                struct gfar_rx_buff *old_rxb)
2385 {
2386         struct gfar_rx_buff *new_rxb;
2387         u16 nta = rxq->next_to_alloc;
2388
2389         new_rxb = &rxq->rx_buff[nta];
2390
2391         /* find next buf that can reuse a page */
2392         nta++;
2393         rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2394
2395         /* copy page reference */
2396         *new_rxb = *old_rxb;
2397
2398         /* sync for use by the device */
2399         dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2400                                          old_rxb->page_offset,
2401                                          GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2402 }
2403
2404 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2405                                             u32 lstatus, struct sk_buff *skb)
2406 {
2407         struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2408         struct page *page = rxb->page;
2409         bool first = false;
2410
2411         if (likely(!skb)) {
2412                 void *buff_addr = page_address(page) + rxb->page_offset;
2413
2414                 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2415                 if (unlikely(!skb)) {
2416                         gfar_rx_alloc_err(rx_queue);
2417                         return NULL;
2418                 }
2419                 skb_reserve(skb, RXBUF_ALIGNMENT);
2420                 first = true;
2421         }
2422
2423         dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2424                                       GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2425
2426         if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2427                 /* reuse the free half of the page */
2428                 gfar_reuse_rx_page(rx_queue, rxb);
2429         } else {
2430                 /* page cannot be reused, unmap it */
2431                 dma_unmap_page(rx_queue->dev, rxb->dma,
2432                                PAGE_SIZE, DMA_FROM_DEVICE);
2433         }
2434
2435         /* clear rxb content */
2436         rxb->page = NULL;
2437
2438         return skb;
2439 }
2440
2441 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2442 {
2443         /* If valid headers were found, and valid sums
2444          * were verified, then we tell the kernel that no
2445          * checksumming is necessary.  Otherwise, it is [FIXME]
2446          */
2447         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2448             (RXFCB_CIP | RXFCB_CTU))
2449                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2450         else
2451                 skb_checksum_none_assert(skb);
2452 }
2453
2454 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2455 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2456 {
2457         struct gfar_private *priv = netdev_priv(ndev);
2458         struct rxfcb *fcb = NULL;
2459
2460         /* fcb is at the beginning if exists */
2461         fcb = (struct rxfcb *)skb->data;
2462
2463         /* Remove the FCB from the skb
2464          * Remove the padded bytes, if there are any
2465          */
2466         if (priv->uses_rxfcb)
2467                 skb_pull(skb, GMAC_FCB_LEN);
2468
2469         /* Get receive timestamp from the skb */
2470         if (priv->hwts_rx_en) {
2471                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2472                 u64 *ns = (u64 *) skb->data;
2473
2474                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2475                 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2476         }
2477
2478         if (priv->padding)
2479                 skb_pull(skb, priv->padding);
2480
2481         /* Trim off the FCS */
2482         pskb_trim(skb, skb->len - ETH_FCS_LEN);
2483
2484         if (ndev->features & NETIF_F_RXCSUM)
2485                 gfar_rx_checksum(skb, fcb);
2486
2487         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2488          * Even if vlan rx accel is disabled, on some chips
2489          * RXFCB_VLN is pseudo randomly set.
2490          */
2491         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2492             be16_to_cpu(fcb->flags) & RXFCB_VLN)
2493                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2494                                        be16_to_cpu(fcb->vlctl));
2495 }
2496
2497 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2498  * until the budget/quota has been reached. Returns the number
2499  * of frames handled
2500  */
2501 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2502                               int rx_work_limit)
2503 {
2504         struct net_device *ndev = rx_queue->ndev;
2505         struct gfar_private *priv = netdev_priv(ndev);
2506         struct rxbd8 *bdp;
2507         int i, howmany = 0;
2508         struct sk_buff *skb = rx_queue->skb;
2509         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2510         unsigned int total_bytes = 0, total_pkts = 0;
2511
2512         /* Get the first full descriptor */
2513         i = rx_queue->next_to_clean;
2514
2515         while (rx_work_limit--) {
2516                 u32 lstatus;
2517
2518                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2519                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2520                         cleaned_cnt = 0;
2521                 }
2522
2523                 bdp = &rx_queue->rx_bd_base[i];
2524                 lstatus = be32_to_cpu(bdp->lstatus);
2525                 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2526                         break;
2527
2528                 /* lost RXBD_LAST descriptor due to overrun */
2529                 if (skb &&
2530                     (lstatus & BD_LFLAG(RXBD_FIRST))) {
2531                         /* discard faulty buffer */
2532                         dev_kfree_skb(skb);
2533                         skb = NULL;
2534                         rx_queue->stats.rx_dropped++;
2535
2536                         /* can continue normally */
2537                 }
2538
2539                 /* order rx buffer descriptor reads */
2540                 rmb();
2541
2542                 /* fetch next to clean buffer from the ring */
2543                 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2544                 if (unlikely(!skb))
2545                         break;
2546
2547                 cleaned_cnt++;
2548                 howmany++;
2549
2550                 if (unlikely(++i == rx_queue->rx_ring_size))
2551                         i = 0;
2552
2553                 rx_queue->next_to_clean = i;
2554
2555                 /* fetch next buffer if not the last in frame */
2556                 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2557                         continue;
2558
2559                 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2560                         count_errors(lstatus, ndev);
2561
2562                         /* discard faulty buffer */
2563                         dev_kfree_skb(skb);
2564                         skb = NULL;
2565                         rx_queue->stats.rx_dropped++;
2566                         continue;
2567                 }
2568
2569                 gfar_process_frame(ndev, skb);
2570
2571                 /* Increment the number of packets */
2572                 total_pkts++;
2573                 total_bytes += skb->len;
2574
2575                 skb_record_rx_queue(skb, rx_queue->qindex);
2576
2577                 skb->protocol = eth_type_trans(skb, ndev);
2578
2579                 /* Send the packet up the stack */
2580                 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2581
2582                 skb = NULL;
2583         }
2584
2585         /* Store incomplete frames for completion */
2586         rx_queue->skb = skb;
2587
2588         rx_queue->stats.rx_packets += total_pkts;
2589         rx_queue->stats.rx_bytes += total_bytes;
2590
2591         if (cleaned_cnt)
2592                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2593
2594         /* Update Last Free RxBD pointer for LFC */
2595         if (unlikely(priv->tx_actual_en)) {
2596                 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2597
2598                 gfar_write(rx_queue->rfbptr, bdp_dma);
2599         }
2600
2601         return howmany;
2602 }
2603
2604 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2605 {
2606         struct gfar_priv_grp *gfargrp =
2607                 container_of(napi, struct gfar_priv_grp, napi_rx);
2608         struct gfar __iomem *regs = gfargrp->regs;
2609         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2610         int work_done = 0;
2611
2612         /* Clear IEVENT, so interrupts aren't called again
2613          * because of the packets that have already arrived
2614          */
2615         gfar_write(&regs->ievent, IEVENT_RX_MASK);
2616
2617         work_done = gfar_clean_rx_ring(rx_queue, budget);
2618
2619         if (work_done < budget) {
2620                 u32 imask;
2621                 napi_complete_done(napi, work_done);
2622                 /* Clear the halt bit in RSTAT */
2623                 gfar_write(&regs->rstat, gfargrp->rstat);
2624
2625                 spin_lock_irq(&gfargrp->grplock);
2626                 imask = gfar_read(&regs->imask);
2627                 imask |= IMASK_RX_DEFAULT;
2628                 gfar_write(&regs->imask, imask);
2629                 spin_unlock_irq(&gfargrp->grplock);
2630         }
2631
2632         return work_done;
2633 }
2634
2635 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2636 {
2637         struct gfar_priv_grp *gfargrp =
2638                 container_of(napi, struct gfar_priv_grp, napi_tx);
2639         struct gfar __iomem *regs = gfargrp->regs;
2640         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2641         u32 imask;
2642
2643         /* Clear IEVENT, so interrupts aren't called again
2644          * because of the packets that have already arrived
2645          */
2646         gfar_write(&regs->ievent, IEVENT_TX_MASK);
2647
2648         /* run Tx cleanup to completion */
2649         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2650                 gfar_clean_tx_ring(tx_queue);
2651
2652         napi_complete(napi);
2653
2654         spin_lock_irq(&gfargrp->grplock);
2655         imask = gfar_read(&regs->imask);
2656         imask |= IMASK_TX_DEFAULT;
2657         gfar_write(&regs->imask, imask);
2658         spin_unlock_irq(&gfargrp->grplock);
2659
2660         return 0;
2661 }
2662
2663 /* GFAR error interrupt handler */
2664 static irqreturn_t gfar_error(int irq, void *grp_id)
2665 {
2666         struct gfar_priv_grp *gfargrp = grp_id;
2667         struct gfar __iomem *regs = gfargrp->regs;
2668         struct gfar_private *priv= gfargrp->priv;
2669         struct net_device *dev = priv->ndev;
2670
2671         /* Save ievent for future reference */
2672         u32 events = gfar_read(&regs->ievent);
2673
2674         /* Clear IEVENT */
2675         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2676
2677         /* Magic Packet is not an error. */
2678         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2679             (events & IEVENT_MAG))
2680                 events &= ~IEVENT_MAG;
2681
2682         /* Hmm... */
2683         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2684                 netdev_dbg(dev,
2685                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2686                            events, gfar_read(&regs->imask));
2687
2688         /* Update the error counters */
2689         if (events & IEVENT_TXE) {
2690                 dev->stats.tx_errors++;
2691
2692                 if (events & IEVENT_LC)
2693                         dev->stats.tx_window_errors++;
2694                 if (events & IEVENT_CRL)
2695                         dev->stats.tx_aborted_errors++;
2696                 if (events & IEVENT_XFUN) {
2697                         netif_dbg(priv, tx_err, dev,
2698                                   "TX FIFO underrun, packet dropped\n");
2699                         dev->stats.tx_dropped++;
2700                         atomic64_inc(&priv->extra_stats.tx_underrun);
2701
2702                         schedule_work(&priv->reset_task);
2703                 }
2704                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2705         }
2706         if (events & IEVENT_MSRO) {
2707                 struct rmon_mib __iomem *rmon = &regs->rmon;
2708                 u32 car;
2709
2710                 spin_lock(&priv->rmon_overflow.lock);
2711                 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2712                 if (car) {
2713                         priv->rmon_overflow.rdrp++;
2714                         gfar_write(&rmon->car1, car);
2715                 }
2716                 spin_unlock(&priv->rmon_overflow.lock);
2717         }
2718         if (events & IEVENT_BSY) {
2719                 dev->stats.rx_over_errors++;
2720                 atomic64_inc(&priv->extra_stats.rx_bsy);
2721
2722                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2723                           gfar_read(&regs->rstat));
2724         }
2725         if (events & IEVENT_BABR) {
2726                 dev->stats.rx_errors++;
2727                 atomic64_inc(&priv->extra_stats.rx_babr);
2728
2729                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2730         }
2731         if (events & IEVENT_EBERR) {
2732                 atomic64_inc(&priv->extra_stats.eberr);
2733                 netif_dbg(priv, rx_err, dev, "bus error\n");
2734         }
2735         if (events & IEVENT_RXC)
2736                 netif_dbg(priv, rx_status, dev, "control frame\n");
2737
2738         if (events & IEVENT_BABT) {
2739                 atomic64_inc(&priv->extra_stats.tx_babt);
2740                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2741         }
2742         return IRQ_HANDLED;
2743 }
2744
2745 /* The interrupt handler for devices with one interrupt */
2746 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2747 {
2748         struct gfar_priv_grp *gfargrp = grp_id;
2749
2750         /* Save ievent for future reference */
2751         u32 events = gfar_read(&gfargrp->regs->ievent);
2752
2753         /* Check for reception */
2754         if (events & IEVENT_RX_MASK)
2755                 gfar_receive(irq, grp_id);
2756
2757         /* Check for transmit completion */
2758         if (events & IEVENT_TX_MASK)
2759                 gfar_transmit(irq, grp_id);
2760
2761         /* Check for errors */
2762         if (events & IEVENT_ERR_MASK)
2763                 gfar_error(irq, grp_id);
2764
2765         return IRQ_HANDLED;
2766 }
2767
2768 #ifdef CONFIG_NET_POLL_CONTROLLER
2769 /* Polling 'interrupt' - used by things like netconsole to send skbs
2770  * without having to re-enable interrupts. It's not called while
2771  * the interrupt routine is executing.
2772  */
2773 static void gfar_netpoll(struct net_device *dev)
2774 {
2775         struct gfar_private *priv = netdev_priv(dev);
2776         int i;
2777
2778         /* If the device has multiple interrupts, run tx/rx */
2779         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2780                 for (i = 0; i < priv->num_grps; i++) {
2781                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2782
2783                         disable_irq(gfar_irq(grp, TX)->irq);
2784                         disable_irq(gfar_irq(grp, RX)->irq);
2785                         disable_irq(gfar_irq(grp, ER)->irq);
2786                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2787                         enable_irq(gfar_irq(grp, ER)->irq);
2788                         enable_irq(gfar_irq(grp, RX)->irq);
2789                         enable_irq(gfar_irq(grp, TX)->irq);
2790                 }
2791         } else {
2792                 for (i = 0; i < priv->num_grps; i++) {
2793                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2794
2795                         disable_irq(gfar_irq(grp, TX)->irq);
2796                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2797                         enable_irq(gfar_irq(grp, TX)->irq);
2798                 }
2799         }
2800 }
2801 #endif
2802
2803 static void free_grp_irqs(struct gfar_priv_grp *grp)
2804 {
2805         free_irq(gfar_irq(grp, TX)->irq, grp);
2806         free_irq(gfar_irq(grp, RX)->irq, grp);
2807         free_irq(gfar_irq(grp, ER)->irq, grp);
2808 }
2809
2810 static int register_grp_irqs(struct gfar_priv_grp *grp)
2811 {
2812         struct gfar_private *priv = grp->priv;
2813         struct net_device *dev = priv->ndev;
2814         int err;
2815
2816         /* If the device has multiple interrupts, register for
2817          * them.  Otherwise, only register for the one
2818          */
2819         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2820                 /* Install our interrupt handlers for Error,
2821                  * Transmit, and Receive
2822                  */
2823                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2824                                   gfar_irq(grp, ER)->name, grp);
2825                 if (err < 0) {
2826                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2827                                   gfar_irq(grp, ER)->irq);
2828
2829                         goto err_irq_fail;
2830                 }
2831                 enable_irq_wake(gfar_irq(grp, ER)->irq);
2832
2833                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2834                                   gfar_irq(grp, TX)->name, grp);
2835                 if (err < 0) {
2836                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2837                                   gfar_irq(grp, TX)->irq);
2838                         goto tx_irq_fail;
2839                 }
2840                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2841                                   gfar_irq(grp, RX)->name, grp);
2842                 if (err < 0) {
2843                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2844                                   gfar_irq(grp, RX)->irq);
2845                         goto rx_irq_fail;
2846                 }
2847                 enable_irq_wake(gfar_irq(grp, RX)->irq);
2848
2849         } else {
2850                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2851                                   gfar_irq(grp, TX)->name, grp);
2852                 if (err < 0) {
2853                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2854                                   gfar_irq(grp, TX)->irq);
2855                         goto err_irq_fail;
2856                 }
2857                 enable_irq_wake(gfar_irq(grp, TX)->irq);
2858         }
2859
2860         return 0;
2861
2862 rx_irq_fail:
2863         free_irq(gfar_irq(grp, TX)->irq, grp);
2864 tx_irq_fail:
2865         free_irq(gfar_irq(grp, ER)->irq, grp);
2866 err_irq_fail:
2867         return err;
2868
2869 }
2870
2871 static void gfar_free_irq(struct gfar_private *priv)
2872 {
2873         int i;
2874
2875         /* Free the IRQs */
2876         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2877                 for (i = 0; i < priv->num_grps; i++)
2878                         free_grp_irqs(&priv->gfargrp[i]);
2879         } else {
2880                 for (i = 0; i < priv->num_grps; i++)
2881                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2882                                  &priv->gfargrp[i]);
2883         }
2884 }
2885
2886 static int gfar_request_irq(struct gfar_private *priv)
2887 {
2888         int err, i, j;
2889
2890         for (i = 0; i < priv->num_grps; i++) {
2891                 err = register_grp_irqs(&priv->gfargrp[i]);
2892                 if (err) {
2893                         for (j = 0; j < i; j++)
2894                                 free_grp_irqs(&priv->gfargrp[j]);
2895                         return err;
2896                 }
2897         }
2898
2899         return 0;
2900 }
2901
2902 /* Called when something needs to use the ethernet device
2903  * Returns 0 for success.
2904  */
2905 static int gfar_enet_open(struct net_device *dev)
2906 {
2907         struct gfar_private *priv = netdev_priv(dev);
2908         int err;
2909
2910         err = init_phy(dev);
2911         if (err)
2912                 return err;
2913
2914         err = gfar_request_irq(priv);
2915         if (err)
2916                 return err;
2917
2918         err = startup_gfar(dev);
2919         if (err)
2920                 return err;
2921
2922         return err;
2923 }
2924
2925 /* Stops the kernel queue, and halts the controller */
2926 static int gfar_close(struct net_device *dev)
2927 {
2928         struct gfar_private *priv = netdev_priv(dev);
2929
2930         cancel_work_sync(&priv->reset_task);
2931         stop_gfar(dev);
2932
2933         /* Disconnect from the PHY */
2934         phy_disconnect(dev->phydev);
2935
2936         gfar_free_irq(priv);
2937
2938         return 0;
2939 }
2940
2941 /* Clears each of the exact match registers to zero, so they
2942  * don't interfere with normal reception
2943  */
2944 static void gfar_clear_exact_match(struct net_device *dev)
2945 {
2946         int idx;
2947         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2948
2949         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2950                 gfar_set_mac_for_addr(dev, idx, zero_arr);
2951 }
2952
2953 /* Update the hash table based on the current list of multicast
2954  * addresses we subscribe to.  Also, change the promiscuity of
2955  * the device based on the flags (this function is called
2956  * whenever dev->flags is changed
2957  */
2958 static void gfar_set_multi(struct net_device *dev)
2959 {
2960         struct netdev_hw_addr *ha;
2961         struct gfar_private *priv = netdev_priv(dev);
2962         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2963         u32 tempval;
2964
2965         if (dev->flags & IFF_PROMISC) {
2966                 /* Set RCTRL to PROM */
2967                 tempval = gfar_read(&regs->rctrl);
2968                 tempval |= RCTRL_PROM;
2969                 gfar_write(&regs->rctrl, tempval);
2970         } else {
2971                 /* Set RCTRL to not PROM */
2972                 tempval = gfar_read(&regs->rctrl);
2973                 tempval &= ~(RCTRL_PROM);
2974                 gfar_write(&regs->rctrl, tempval);
2975         }
2976
2977         if (dev->flags & IFF_ALLMULTI) {
2978                 /* Set the hash to rx all multicast frames */
2979                 gfar_write(&regs->igaddr0, 0xffffffff);
2980                 gfar_write(&regs->igaddr1, 0xffffffff);
2981                 gfar_write(&regs->igaddr2, 0xffffffff);
2982                 gfar_write(&regs->igaddr3, 0xffffffff);
2983                 gfar_write(&regs->igaddr4, 0xffffffff);
2984                 gfar_write(&regs->igaddr5, 0xffffffff);
2985                 gfar_write(&regs->igaddr6, 0xffffffff);
2986                 gfar_write(&regs->igaddr7, 0xffffffff);
2987                 gfar_write(&regs->gaddr0, 0xffffffff);
2988                 gfar_write(&regs->gaddr1, 0xffffffff);
2989                 gfar_write(&regs->gaddr2, 0xffffffff);
2990                 gfar_write(&regs->gaddr3, 0xffffffff);
2991                 gfar_write(&regs->gaddr4, 0xffffffff);
2992                 gfar_write(&regs->gaddr5, 0xffffffff);
2993                 gfar_write(&regs->gaddr6, 0xffffffff);
2994                 gfar_write(&regs->gaddr7, 0xffffffff);
2995         } else {
2996                 int em_num;
2997                 int idx;
2998
2999                 /* zero out the hash */
3000                 gfar_write(&regs->igaddr0, 0x0);
3001                 gfar_write(&regs->igaddr1, 0x0);
3002                 gfar_write(&regs->igaddr2, 0x0);
3003                 gfar_write(&regs->igaddr3, 0x0);
3004                 gfar_write(&regs->igaddr4, 0x0);
3005                 gfar_write(&regs->igaddr5, 0x0);
3006                 gfar_write(&regs->igaddr6, 0x0);
3007                 gfar_write(&regs->igaddr7, 0x0);
3008                 gfar_write(&regs->gaddr0, 0x0);
3009                 gfar_write(&regs->gaddr1, 0x0);
3010                 gfar_write(&regs->gaddr2, 0x0);
3011                 gfar_write(&regs->gaddr3, 0x0);
3012                 gfar_write(&regs->gaddr4, 0x0);
3013                 gfar_write(&regs->gaddr5, 0x0);
3014                 gfar_write(&regs->gaddr6, 0x0);
3015                 gfar_write(&regs->gaddr7, 0x0);
3016
3017                 /* If we have extended hash tables, we need to
3018                  * clear the exact match registers to prepare for
3019                  * setting them
3020                  */
3021                 if (priv->extended_hash) {
3022                         em_num = GFAR_EM_NUM + 1;
3023                         gfar_clear_exact_match(dev);
3024                         idx = 1;
3025                 } else {
3026                         idx = 0;
3027                         em_num = 0;
3028                 }
3029
3030                 if (netdev_mc_empty(dev))
3031                         return;
3032
3033                 /* Parse the list, and set the appropriate bits */
3034                 netdev_for_each_mc_addr(ha, dev) {
3035                         if (idx < em_num) {
3036                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3037                                 idx++;
3038                         } else
3039                                 gfar_set_hash_for_addr(dev, ha->addr);
3040                 }
3041         }
3042 }
3043
3044 void gfar_mac_reset(struct gfar_private *priv)
3045 {
3046         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3047         u32 tempval;
3048
3049         /* Reset MAC layer */
3050         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3051
3052         /* We need to delay at least 3 TX clocks */
3053         udelay(3);
3054
3055         /* the soft reset bit is not self-resetting, so we need to
3056          * clear it before resuming normal operation
3057          */
3058         gfar_write(&regs->maccfg1, 0);
3059
3060         udelay(3);
3061
3062         gfar_rx_offload_en(priv);
3063
3064         /* Initialize the max receive frame/buffer lengths */
3065         gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3066         gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3067
3068         /* Initialize the Minimum Frame Length Register */
3069         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3070
3071         /* Initialize MACCFG2. */
3072         tempval = MACCFG2_INIT_SETTINGS;
3073
3074         /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3075          * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3076          * and by checking RxBD[LG] and discarding larger than MAXFRM.
3077          */
3078         if (gfar_has_errata(priv, GFAR_ERRATA_74))
3079                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3080
3081         gfar_write(&regs->maccfg2, tempval);
3082
3083         /* Clear mac addr hash registers */
3084         gfar_write(&regs->igaddr0, 0);
3085         gfar_write(&regs->igaddr1, 0);
3086         gfar_write(&regs->igaddr2, 0);
3087         gfar_write(&regs->igaddr3, 0);
3088         gfar_write(&regs->igaddr4, 0);
3089         gfar_write(&regs->igaddr5, 0);
3090         gfar_write(&regs->igaddr6, 0);
3091         gfar_write(&regs->igaddr7, 0);
3092
3093         gfar_write(&regs->gaddr0, 0);
3094         gfar_write(&regs->gaddr1, 0);
3095         gfar_write(&regs->gaddr2, 0);
3096         gfar_write(&regs->gaddr3, 0);
3097         gfar_write(&regs->gaddr4, 0);
3098         gfar_write(&regs->gaddr5, 0);
3099         gfar_write(&regs->gaddr6, 0);
3100         gfar_write(&regs->gaddr7, 0);
3101
3102         if (priv->extended_hash)
3103                 gfar_clear_exact_match(priv->ndev);
3104
3105         gfar_mac_rx_config(priv);
3106
3107         gfar_mac_tx_config(priv);
3108
3109         gfar_set_mac_address(priv->ndev);
3110
3111         gfar_set_multi(priv->ndev);
3112
3113         /* clear ievent and imask before configuring coalescing */
3114         gfar_ints_disable(priv);
3115
3116         /* Configure the coalescing support */
3117         gfar_configure_coalescing_all(priv);
3118 }
3119
3120 static void gfar_hw_init(struct gfar_private *priv)
3121 {
3122         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3123         u32 attrs;
3124
3125         /* Stop the DMA engine now, in case it was running before
3126          * (The firmware could have used it, and left it running).
3127          */
3128         gfar_halt(priv);
3129
3130         gfar_mac_reset(priv);
3131
3132         /* Zero out the rmon mib registers if it has them */
3133         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3134                 memset_io(&regs->rmon, 0, offsetof(struct rmon_mib, car1));
3135
3136                 /* Mask off the CAM interrupts */
3137                 gfar_write(&regs->rmon.cam1, 0xffffffff);
3138                 gfar_write(&regs->rmon.cam2, 0xffffffff);
3139                 /* Clear the CAR registers (w1c style) */
3140                 gfar_write(&regs->rmon.car1, 0xffffffff);
3141                 gfar_write(&regs->rmon.car2, 0xffffffff);
3142         }
3143
3144         /* Initialize ECNTRL */
3145         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3146
3147         /* Set the extraction length and index */
3148         attrs = ATTRELI_EL(priv->rx_stash_size) |
3149                 ATTRELI_EI(priv->rx_stash_index);
3150
3151         gfar_write(&regs->attreli, attrs);
3152
3153         /* Start with defaults, and add stashing
3154          * depending on driver parameters
3155          */
3156         attrs = ATTR_INIT_SETTINGS;
3157
3158         if (priv->bd_stash_en)
3159                 attrs |= ATTR_BDSTASH;
3160
3161         if (priv->rx_stash_size != 0)
3162                 attrs |= ATTR_BUFSTASH;
3163
3164         gfar_write(&regs->attr, attrs);
3165
3166         /* FIFO configs */
3167         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3168         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3169         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3170
3171         /* Program the interrupt steering regs, only for MG devices */
3172         if (priv->num_grps > 1)
3173                 gfar_write_isrg(priv);
3174 }
3175
3176 static const struct net_device_ops gfar_netdev_ops = {
3177         .ndo_open = gfar_enet_open,
3178         .ndo_start_xmit = gfar_start_xmit,
3179         .ndo_stop = gfar_close,
3180         .ndo_change_mtu = gfar_change_mtu,
3181         .ndo_set_features = gfar_set_features,
3182         .ndo_set_rx_mode = gfar_set_multi,
3183         .ndo_tx_timeout = gfar_timeout,
3184         .ndo_eth_ioctl = gfar_ioctl,
3185         .ndo_get_stats64 = gfar_get_stats64,
3186         .ndo_change_carrier = fixed_phy_change_carrier,
3187         .ndo_set_mac_address = gfar_set_mac_addr,
3188         .ndo_validate_addr = eth_validate_addr,
3189 #ifdef CONFIG_NET_POLL_CONTROLLER
3190         .ndo_poll_controller = gfar_netpoll,
3191 #endif
3192 };
3193
3194 /* Set up the ethernet device structure, private data,
3195  * and anything else we need before we start
3196  */
3197 static int gfar_probe(struct platform_device *ofdev)
3198 {
3199         struct device_node *np = ofdev->dev.of_node;
3200         struct net_device *dev = NULL;
3201         struct gfar_private *priv = NULL;
3202         int err = 0, i;
3203
3204         err = gfar_of_init(ofdev, &dev);
3205
3206         if (err)
3207                 return err;
3208
3209         priv = netdev_priv(dev);
3210         priv->ndev = dev;
3211         priv->ofdev = ofdev;
3212         priv->dev = &ofdev->dev;
3213         SET_NETDEV_DEV(dev, &ofdev->dev);
3214
3215         INIT_WORK(&priv->reset_task, gfar_reset_task);
3216
3217         platform_set_drvdata(ofdev, priv);
3218
3219         gfar_detect_errata(priv);
3220
3221         /* Set the dev->base_addr to the gfar reg region */
3222         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3223
3224         /* Fill in the dev structure */
3225         dev->watchdog_timeo = TX_TIMEOUT;
3226         /* MTU range: 50 - 9586 */
3227         dev->mtu = 1500;
3228         dev->min_mtu = 50;
3229         dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3230         dev->netdev_ops = &gfar_netdev_ops;
3231         dev->ethtool_ops = &gfar_ethtool_ops;
3232
3233         /* Register for napi ...We are registering NAPI for each grp */
3234         for (i = 0; i < priv->num_grps; i++) {
3235                 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3236                                gfar_poll_rx_sq, NAPI_POLL_WEIGHT);
3237                 netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx,
3238                                          gfar_poll_tx_sq, 2);
3239         }
3240
3241         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3242                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3243                                    NETIF_F_RXCSUM;
3244                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3245                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3246         }
3247
3248         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3249                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3250                                     NETIF_F_HW_VLAN_CTAG_RX;
3251                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3252         }
3253
3254         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3255
3256         gfar_init_addr_hash_table(priv);
3257
3258         /* Insert receive time stamps into padding alignment bytes, and
3259          * plus 2 bytes padding to ensure the cpu alignment.
3260          */
3261         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3262                 priv->padding = 8 + DEFAULT_PADDING;
3263
3264         if (dev->features & NETIF_F_IP_CSUM ||
3265             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3266                 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3267
3268         /* Initializing some of the rx/tx queue level parameters */
3269         for (i = 0; i < priv->num_tx_queues; i++) {
3270                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3271                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3272                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3273                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
3274         }
3275
3276         for (i = 0; i < priv->num_rx_queues; i++) {
3277                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3278                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3279                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3280         }
3281
3282         /* Always enable rx filer if available */
3283         priv->rx_filer_enable =
3284             (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3285         /* Enable most messages by default */
3286         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3287         /* use pritority h/w tx queue scheduling for single queue devices */
3288         if (priv->num_tx_queues == 1)
3289                 priv->prio_sched_en = 1;
3290
3291         set_bit(GFAR_DOWN, &priv->state);
3292
3293         gfar_hw_init(priv);
3294
3295         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3296                 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3297
3298                 spin_lock_init(&priv->rmon_overflow.lock);
3299                 priv->rmon_overflow.imask = IMASK_MSRO;
3300                 gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3301         }
3302
3303         /* Carrier starts down, phylib will bring it up */
3304         netif_carrier_off(dev);
3305
3306         err = register_netdev(dev);
3307
3308         if (err) {
3309                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
3310                 goto register_fail;
3311         }
3312
3313         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3314                 priv->wol_supported |= GFAR_WOL_MAGIC;
3315
3316         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3317             priv->rx_filer_enable)
3318                 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3319
3320         device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3321
3322         /* fill out IRQ number and name fields */
3323         for (i = 0; i < priv->num_grps; i++) {
3324                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3325                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3326                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3327                                 dev->name, "_g", '0' + i, "_tx");
3328                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3329                                 dev->name, "_g", '0' + i, "_rx");
3330                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3331                                 dev->name, "_g", '0' + i, "_er");
3332                 } else
3333                         strcpy(gfar_irq(grp, TX)->name, dev->name);
3334         }
3335
3336         /* Initialize the filer table */
3337         gfar_init_filer_table(priv);
3338
3339         /* Print out the device info */
3340         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3341
3342         /* Even more device info helps when determining which kernel
3343          * provided which set of benchmarks.
3344          */
3345         netdev_info(dev, "Running with NAPI enabled\n");
3346         for (i = 0; i < priv->num_rx_queues; i++)
3347                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3348                             i, priv->rx_queue[i]->rx_ring_size);
3349         for (i = 0; i < priv->num_tx_queues; i++)
3350                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3351                             i, priv->tx_queue[i]->tx_ring_size);
3352
3353         return 0;
3354
3355 register_fail:
3356         if (of_phy_is_fixed_link(np))
3357                 of_phy_deregister_fixed_link(np);
3358         unmap_group_regs(priv);
3359         gfar_free_rx_queues(priv);
3360         gfar_free_tx_queues(priv);
3361         of_node_put(priv->phy_node);
3362         of_node_put(priv->tbi_node);
3363         free_gfar_dev(priv);
3364         return err;
3365 }
3366
3367 static int gfar_remove(struct platform_device *ofdev)
3368 {
3369         struct gfar_private *priv = platform_get_drvdata(ofdev);
3370         struct device_node *np = ofdev->dev.of_node;
3371
3372         of_node_put(priv->phy_node);
3373         of_node_put(priv->tbi_node);
3374
3375         unregister_netdev(priv->ndev);
3376
3377         if (of_phy_is_fixed_link(np))
3378                 of_phy_deregister_fixed_link(np);
3379
3380         unmap_group_regs(priv);
3381         gfar_free_rx_queues(priv);
3382         gfar_free_tx_queues(priv);
3383         free_gfar_dev(priv);
3384
3385         return 0;
3386 }
3387
3388 #ifdef CONFIG_PM
3389
3390 static void __gfar_filer_disable(struct gfar_private *priv)
3391 {
3392         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3393         u32 temp;
3394
3395         temp = gfar_read(&regs->rctrl);
3396         temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3397         gfar_write(&regs->rctrl, temp);
3398 }
3399
3400 static void __gfar_filer_enable(struct gfar_private *priv)
3401 {
3402         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3403         u32 temp;
3404
3405         temp = gfar_read(&regs->rctrl);
3406         temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3407         gfar_write(&regs->rctrl, temp);
3408 }
3409
3410 /* Filer rules implementing wol capabilities */
3411 static void gfar_filer_config_wol(struct gfar_private *priv)
3412 {
3413         unsigned int i;
3414         u32 rqfcr;
3415
3416         __gfar_filer_disable(priv);
3417
3418         /* clear the filer table, reject any packet by default */
3419         rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3420         for (i = 0; i <= MAX_FILER_IDX; i++)
3421                 gfar_write_filer(priv, i, rqfcr, 0);
3422
3423         i = 0;
3424         if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3425                 /* unicast packet, accept it */
3426                 struct net_device *ndev = priv->ndev;
3427                 /* get the default rx queue index */
3428                 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3429                 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3430                                     (ndev->dev_addr[1] << 8) |
3431                                      ndev->dev_addr[2];
3432
3433                 rqfcr = (qindex << 10) | RQFCR_AND |
3434                         RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3435
3436                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3437
3438                 dest_mac_addr = (ndev->dev_addr[3] << 16) |
3439                                 (ndev->dev_addr[4] << 8) |
3440                                  ndev->dev_addr[5];
3441                 rqfcr = (qindex << 10) | RQFCR_GPI |
3442                         RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3443                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3444         }
3445
3446         __gfar_filer_enable(priv);
3447 }
3448
3449 static void gfar_filer_restore_table(struct gfar_private *priv)
3450 {
3451         u32 rqfcr, rqfpr;
3452         unsigned int i;
3453
3454         __gfar_filer_disable(priv);
3455
3456         for (i = 0; i <= MAX_FILER_IDX; i++) {
3457                 rqfcr = priv->ftp_rqfcr[i];
3458                 rqfpr = priv->ftp_rqfpr[i];
3459                 gfar_write_filer(priv, i, rqfcr, rqfpr);
3460         }
3461
3462         __gfar_filer_enable(priv);
3463 }
3464
3465 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3466 static void gfar_start_wol_filer(struct gfar_private *priv)
3467 {
3468         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3469         u32 tempval;
3470         int i = 0;
3471
3472         /* Enable Rx hw queues */
3473         gfar_write(&regs->rqueue, priv->rqueue);
3474
3475         /* Initialize DMACTRL to have WWR and WOP */
3476         tempval = gfar_read(&regs->dmactrl);
3477         tempval |= DMACTRL_INIT_SETTINGS;
3478         gfar_write(&regs->dmactrl, tempval);
3479
3480         /* Make sure we aren't stopped */
3481         tempval = gfar_read(&regs->dmactrl);
3482         tempval &= ~DMACTRL_GRS;
3483         gfar_write(&regs->dmactrl, tempval);
3484
3485         for (i = 0; i < priv->num_grps; i++) {
3486                 regs = priv->gfargrp[i].regs;
3487                 /* Clear RHLT, so that the DMA starts polling now */
3488                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3489                 /* enable the Filer General Purpose Interrupt */
3490                 gfar_write(&regs->imask, IMASK_FGPI);
3491         }
3492
3493         /* Enable Rx DMA */
3494         tempval = gfar_read(&regs->maccfg1);
3495         tempval |= MACCFG1_RX_EN;
3496         gfar_write(&regs->maccfg1, tempval);
3497 }
3498
3499 static int gfar_suspend(struct device *dev)
3500 {
3501         struct gfar_private *priv = dev_get_drvdata(dev);
3502         struct net_device *ndev = priv->ndev;
3503         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3504         u32 tempval;
3505         u16 wol = priv->wol_opts;
3506
3507         if (!netif_running(ndev))
3508                 return 0;
3509
3510         disable_napi(priv);
3511         netif_tx_lock(ndev);
3512         netif_device_detach(ndev);
3513         netif_tx_unlock(ndev);
3514
3515         gfar_halt(priv);
3516
3517         if (wol & GFAR_WOL_MAGIC) {
3518                 /* Enable interrupt on Magic Packet */
3519                 gfar_write(&regs->imask, IMASK_MAG);
3520
3521                 /* Enable Magic Packet mode */
3522                 tempval = gfar_read(&regs->maccfg2);
3523                 tempval |= MACCFG2_MPEN;
3524                 gfar_write(&regs->maccfg2, tempval);
3525
3526                 /* re-enable the Rx block */
3527                 tempval = gfar_read(&regs->maccfg1);
3528                 tempval |= MACCFG1_RX_EN;
3529                 gfar_write(&regs->maccfg1, tempval);
3530
3531         } else if (wol & GFAR_WOL_FILER_UCAST) {
3532                 gfar_filer_config_wol(priv);
3533                 gfar_start_wol_filer(priv);
3534
3535         } else {
3536                 phy_stop(ndev->phydev);
3537         }
3538
3539         return 0;
3540 }
3541
3542 static int gfar_resume(struct device *dev)
3543 {
3544         struct gfar_private *priv = dev_get_drvdata(dev);
3545         struct net_device *ndev = priv->ndev;
3546         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3547         u32 tempval;
3548         u16 wol = priv->wol_opts;
3549
3550         if (!netif_running(ndev))
3551                 return 0;
3552
3553         if (wol & GFAR_WOL_MAGIC) {
3554                 /* Disable Magic Packet mode */
3555                 tempval = gfar_read(&regs->maccfg2);
3556                 tempval &= ~MACCFG2_MPEN;
3557                 gfar_write(&regs->maccfg2, tempval);
3558
3559         } else if (wol & GFAR_WOL_FILER_UCAST) {
3560                 /* need to stop rx only, tx is already down */
3561                 gfar_halt(priv);
3562                 gfar_filer_restore_table(priv);
3563
3564         } else {
3565                 phy_start(ndev->phydev);
3566         }
3567
3568         gfar_start(priv);
3569
3570         netif_device_attach(ndev);
3571         enable_napi(priv);
3572
3573         return 0;
3574 }
3575
3576 static int gfar_restore(struct device *dev)
3577 {
3578         struct gfar_private *priv = dev_get_drvdata(dev);
3579         struct net_device *ndev = priv->ndev;
3580
3581         if (!netif_running(ndev)) {
3582                 netif_device_attach(ndev);
3583
3584                 return 0;
3585         }
3586
3587         gfar_init_bds(ndev);
3588
3589         gfar_mac_reset(priv);
3590
3591         gfar_init_tx_rx_base(priv);
3592
3593         gfar_start(priv);
3594
3595         priv->oldlink = 0;
3596         priv->oldspeed = 0;
3597         priv->oldduplex = -1;
3598
3599         if (ndev->phydev)
3600                 phy_start(ndev->phydev);
3601
3602         netif_device_attach(ndev);
3603         enable_napi(priv);
3604
3605         return 0;
3606 }
3607
3608 static const struct dev_pm_ops gfar_pm_ops = {
3609         .suspend = gfar_suspend,
3610         .resume = gfar_resume,
3611         .freeze = gfar_suspend,
3612         .thaw = gfar_resume,
3613         .restore = gfar_restore,
3614 };
3615
3616 #define GFAR_PM_OPS (&gfar_pm_ops)
3617
3618 #else
3619
3620 #define GFAR_PM_OPS NULL
3621
3622 #endif
3623
3624 static const struct of_device_id gfar_match[] =
3625 {
3626         {
3627                 .type = "network",
3628                 .compatible = "gianfar",
3629         },
3630         {
3631                 .compatible = "fsl,etsec2",
3632         },
3633         {},
3634 };
3635 MODULE_DEVICE_TABLE(of, gfar_match);
3636
3637 /* Structure for a device driver */
3638 static struct platform_driver gfar_driver = {
3639         .driver = {
3640                 .name = "fsl-gianfar",
3641                 .pm = GFAR_PM_OPS,
3642                 .of_match_table = gfar_match,
3643         },
3644         .probe = gfar_probe,
3645         .remove = gfar_remove,
3646 };
3647
3648 module_platform_driver(gfar_driver);