Merge tag 'mt76-for-kvalo-2021-01-29' of https://github.com/nbd168/wireless
[linux-2.6-microblaze.git] / drivers / net / ethernet / freescale / gianfar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/kernel.h>
63 #include <linux/string.h>
64 #include <linux/errno.h>
65 #include <linux/unistd.h>
66 #include <linux/slab.h>
67 #include <linux/interrupt.h>
68 #include <linux/delay.h>
69 #include <linux/netdevice.h>
70 #include <linux/etherdevice.h>
71 #include <linux/skbuff.h>
72 #include <linux/if_vlan.h>
73 #include <linux/spinlock.h>
74 #include <linux/mm.h>
75 #include <linux/of_address.h>
76 #include <linux/of_irq.h>
77 #include <linux/of_mdio.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83 #include <linux/net_tstamp.h>
84
85 #include <asm/io.h>
86 #ifdef CONFIG_PPC
87 #include <asm/reg.h>
88 #include <asm/mpc85xx.h>
89 #endif
90 #include <asm/irq.h>
91 #include <linux/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97 #include <linux/phy_fixed.h>
98 #include <linux/of.h>
99 #include <linux/of_net.h>
100
101 #include "gianfar.h"
102
103 #define TX_TIMEOUT      (5*HZ)
104
105 MODULE_AUTHOR("Freescale Semiconductor, Inc");
106 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107 MODULE_LICENSE("GPL");
108
109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
110                             dma_addr_t buf)
111 {
112         u32 lstatus;
113
114         bdp->bufPtr = cpu_to_be32(buf);
115
116         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118                 lstatus |= BD_LFLAG(RXBD_WRAP);
119
120         gfar_wmb();
121
122         bdp->lstatus = cpu_to_be32(lstatus);
123 }
124
125 static void gfar_init_tx_rx_base(struct gfar_private *priv)
126 {
127         struct gfar __iomem *regs = priv->gfargrp[0].regs;
128         u32 __iomem *baddr;
129         int i;
130
131         baddr = &regs->tbase0;
132         for (i = 0; i < priv->num_tx_queues; i++) {
133                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
134                 baddr += 2;
135         }
136
137         baddr = &regs->rbase0;
138         for (i = 0; i < priv->num_rx_queues; i++) {
139                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
140                 baddr += 2;
141         }
142 }
143
144 static void gfar_init_rqprm(struct gfar_private *priv)
145 {
146         struct gfar __iomem *regs = priv->gfargrp[0].regs;
147         u32 __iomem *baddr;
148         int i;
149
150         baddr = &regs->rqprm0;
151         for (i = 0; i < priv->num_rx_queues; i++) {
152                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
153                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
154                 baddr++;
155         }
156 }
157
158 static void gfar_rx_offload_en(struct gfar_private *priv)
159 {
160         /* set this when rx hw offload (TOE) functions are being used */
161         priv->uses_rxfcb = 0;
162
163         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164                 priv->uses_rxfcb = 1;
165
166         if (priv->hwts_rx_en || priv->rx_filer_enable)
167                 priv->uses_rxfcb = 1;
168 }
169
170 static void gfar_mac_rx_config(struct gfar_private *priv)
171 {
172         struct gfar __iomem *regs = priv->gfargrp[0].regs;
173         u32 rctrl = 0;
174
175         if (priv->rx_filer_enable) {
176                 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177                 /* Program the RIR0 reg with the required distribution */
178                 if (priv->poll_mode == GFAR_SQ_POLLING)
179                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
180                 else /* GFAR_MQ_POLLING */
181                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
182         }
183
184         /* Restore PROMISC mode */
185         if (priv->ndev->flags & IFF_PROMISC)
186                 rctrl |= RCTRL_PROM;
187
188         if (priv->ndev->features & NETIF_F_RXCSUM)
189                 rctrl |= RCTRL_CHECKSUMMING;
190
191         if (priv->extended_hash)
192                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
193
194         if (priv->padding) {
195                 rctrl &= ~RCTRL_PAL_MASK;
196                 rctrl |= RCTRL_PADDING(priv->padding);
197         }
198
199         /* Enable HW time stamping if requested from user space */
200         if (priv->hwts_rx_en)
201                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
202
203         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
204                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
205
206         /* Clear the LFC bit */
207         gfar_write(&regs->rctrl, rctrl);
208         /* Init flow control threshold values */
209         gfar_init_rqprm(priv);
210         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
211         rctrl |= RCTRL_LFC;
212
213         /* Init rctrl based on our settings */
214         gfar_write(&regs->rctrl, rctrl);
215 }
216
217 static void gfar_mac_tx_config(struct gfar_private *priv)
218 {
219         struct gfar __iomem *regs = priv->gfargrp[0].regs;
220         u32 tctrl = 0;
221
222         if (priv->ndev->features & NETIF_F_IP_CSUM)
223                 tctrl |= TCTRL_INIT_CSUM;
224
225         if (priv->prio_sched_en)
226                 tctrl |= TCTRL_TXSCHED_PRIO;
227         else {
228                 tctrl |= TCTRL_TXSCHED_WRRS;
229                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
230                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
231         }
232
233         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
234                 tctrl |= TCTRL_VLINS;
235
236         gfar_write(&regs->tctrl, tctrl);
237 }
238
239 static void gfar_configure_coalescing(struct gfar_private *priv,
240                                unsigned long tx_mask, unsigned long rx_mask)
241 {
242         struct gfar __iomem *regs = priv->gfargrp[0].regs;
243         u32 __iomem *baddr;
244
245         if (priv->mode == MQ_MG_MODE) {
246                 int i = 0;
247
248                 baddr = &regs->txic0;
249                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
250                         gfar_write(baddr + i, 0);
251                         if (likely(priv->tx_queue[i]->txcoalescing))
252                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
253                 }
254
255                 baddr = &regs->rxic0;
256                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
257                         gfar_write(baddr + i, 0);
258                         if (likely(priv->rx_queue[i]->rxcoalescing))
259                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
260                 }
261         } else {
262                 /* Backward compatible case -- even if we enable
263                  * multiple queues, there's only single reg to program
264                  */
265                 gfar_write(&regs->txic, 0);
266                 if (likely(priv->tx_queue[0]->txcoalescing))
267                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
268
269                 gfar_write(&regs->rxic, 0);
270                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
271                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
272         }
273 }
274
275 static void gfar_configure_coalescing_all(struct gfar_private *priv)
276 {
277         gfar_configure_coalescing(priv, 0xFF, 0xFF);
278 }
279
280 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
281 {
282         struct gfar_private *priv = netdev_priv(dev);
283         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
284         unsigned long tx_packets = 0, tx_bytes = 0;
285         int i;
286
287         for (i = 0; i < priv->num_rx_queues; i++) {
288                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
289                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
290                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
291         }
292
293         dev->stats.rx_packets = rx_packets;
294         dev->stats.rx_bytes   = rx_bytes;
295         dev->stats.rx_dropped = rx_dropped;
296
297         for (i = 0; i < priv->num_tx_queues; i++) {
298                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
299                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
300         }
301
302         dev->stats.tx_bytes   = tx_bytes;
303         dev->stats.tx_packets = tx_packets;
304
305         return &dev->stats;
306 }
307
308 /* Set the appropriate hash bit for the given addr */
309 /* The algorithm works like so:
310  * 1) Take the Destination Address (ie the multicast address), and
311  * do a CRC on it (little endian), and reverse the bits of the
312  * result.
313  * 2) Use the 8 most significant bits as a hash into a 256-entry
314  * table.  The table is controlled through 8 32-bit registers:
315  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
316  * gaddr7.  This means that the 3 most significant bits in the
317  * hash index which gaddr register to use, and the 5 other bits
318  * indicate which bit (assuming an IBM numbering scheme, which
319  * for PowerPC (tm) is usually the case) in the register holds
320  * the entry.
321  */
322 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
323 {
324         u32 tempval;
325         struct gfar_private *priv = netdev_priv(dev);
326         u32 result = ether_crc(ETH_ALEN, addr);
327         int width = priv->hash_width;
328         u8 whichbit = (result >> (32 - width)) & 0x1f;
329         u8 whichreg = result >> (32 - width + 5);
330         u32 value = (1 << (31-whichbit));
331
332         tempval = gfar_read(priv->hash_regs[whichreg]);
333         tempval |= value;
334         gfar_write(priv->hash_regs[whichreg], tempval);
335 }
336
337 /* There are multiple MAC Address register pairs on some controllers
338  * This function sets the numth pair to a given address
339  */
340 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
341                                   const u8 *addr)
342 {
343         struct gfar_private *priv = netdev_priv(dev);
344         struct gfar __iomem *regs = priv->gfargrp[0].regs;
345         u32 tempval;
346         u32 __iomem *macptr = &regs->macstnaddr1;
347
348         macptr += num*2;
349
350         /* For a station address of 0x12345678ABCD in transmission
351          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
352          * MACnADDR2 is set to 0x34120000.
353          */
354         tempval = (addr[5] << 24) | (addr[4] << 16) |
355                   (addr[3] << 8)  |  addr[2];
356
357         gfar_write(macptr, tempval);
358
359         tempval = (addr[1] << 24) | (addr[0] << 16);
360
361         gfar_write(macptr+1, tempval);
362 }
363
364 static int gfar_set_mac_addr(struct net_device *dev, void *p)
365 {
366         eth_mac_addr(dev, p);
367
368         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
369
370         return 0;
371 }
372
373 static void gfar_ints_disable(struct gfar_private *priv)
374 {
375         int i;
376         for (i = 0; i < priv->num_grps; i++) {
377                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
378                 /* Clear IEVENT */
379                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
380
381                 /* Initialize IMASK */
382                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
383         }
384 }
385
386 static void gfar_ints_enable(struct gfar_private *priv)
387 {
388         int i;
389         for (i = 0; i < priv->num_grps; i++) {
390                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
391                 /* Unmask the interrupts we look for */
392                 gfar_write(&regs->imask, IMASK_DEFAULT);
393         }
394 }
395
396 static int gfar_alloc_tx_queues(struct gfar_private *priv)
397 {
398         int i;
399
400         for (i = 0; i < priv->num_tx_queues; i++) {
401                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
402                                             GFP_KERNEL);
403                 if (!priv->tx_queue[i])
404                         return -ENOMEM;
405
406                 priv->tx_queue[i]->tx_skbuff = NULL;
407                 priv->tx_queue[i]->qindex = i;
408                 priv->tx_queue[i]->dev = priv->ndev;
409                 spin_lock_init(&(priv->tx_queue[i]->txlock));
410         }
411         return 0;
412 }
413
414 static int gfar_alloc_rx_queues(struct gfar_private *priv)
415 {
416         int i;
417
418         for (i = 0; i < priv->num_rx_queues; i++) {
419                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
420                                             GFP_KERNEL);
421                 if (!priv->rx_queue[i])
422                         return -ENOMEM;
423
424                 priv->rx_queue[i]->qindex = i;
425                 priv->rx_queue[i]->ndev = priv->ndev;
426         }
427         return 0;
428 }
429
430 static void gfar_free_tx_queues(struct gfar_private *priv)
431 {
432         int i;
433
434         for (i = 0; i < priv->num_tx_queues; i++)
435                 kfree(priv->tx_queue[i]);
436 }
437
438 static void gfar_free_rx_queues(struct gfar_private *priv)
439 {
440         int i;
441
442         for (i = 0; i < priv->num_rx_queues; i++)
443                 kfree(priv->rx_queue[i]);
444 }
445
446 static void unmap_group_regs(struct gfar_private *priv)
447 {
448         int i;
449
450         for (i = 0; i < MAXGROUPS; i++)
451                 if (priv->gfargrp[i].regs)
452                         iounmap(priv->gfargrp[i].regs);
453 }
454
455 static void free_gfar_dev(struct gfar_private *priv)
456 {
457         int i, j;
458
459         for (i = 0; i < priv->num_grps; i++)
460                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
461                         kfree(priv->gfargrp[i].irqinfo[j]);
462                         priv->gfargrp[i].irqinfo[j] = NULL;
463                 }
464
465         free_netdev(priv->ndev);
466 }
467
468 static void disable_napi(struct gfar_private *priv)
469 {
470         int i;
471
472         for (i = 0; i < priv->num_grps; i++) {
473                 napi_disable(&priv->gfargrp[i].napi_rx);
474                 napi_disable(&priv->gfargrp[i].napi_tx);
475         }
476 }
477
478 static void enable_napi(struct gfar_private *priv)
479 {
480         int i;
481
482         for (i = 0; i < priv->num_grps; i++) {
483                 napi_enable(&priv->gfargrp[i].napi_rx);
484                 napi_enable(&priv->gfargrp[i].napi_tx);
485         }
486 }
487
488 static int gfar_parse_group(struct device_node *np,
489                             struct gfar_private *priv, const char *model)
490 {
491         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
492         int i;
493
494         for (i = 0; i < GFAR_NUM_IRQS; i++) {
495                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
496                                           GFP_KERNEL);
497                 if (!grp->irqinfo[i])
498                         return -ENOMEM;
499         }
500
501         grp->regs = of_iomap(np, 0);
502         if (!grp->regs)
503                 return -ENOMEM;
504
505         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
506
507         /* If we aren't the FEC we have multiple interrupts */
508         if (model && strcasecmp(model, "FEC")) {
509                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
510                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
511                 if (!gfar_irq(grp, TX)->irq ||
512                     !gfar_irq(grp, RX)->irq ||
513                     !gfar_irq(grp, ER)->irq)
514                         return -EINVAL;
515         }
516
517         grp->priv = priv;
518         spin_lock_init(&grp->grplock);
519         if (priv->mode == MQ_MG_MODE) {
520                 u32 rxq_mask, txq_mask;
521                 int ret;
522
523                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
524                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
525
526                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
527                 if (!ret) {
528                         grp->rx_bit_map = rxq_mask ?
529                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
530                 }
531
532                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
533                 if (!ret) {
534                         grp->tx_bit_map = txq_mask ?
535                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
536                 }
537
538                 if (priv->poll_mode == GFAR_SQ_POLLING) {
539                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
540                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
541                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
542                 }
543         } else {
544                 grp->rx_bit_map = 0xFF;
545                 grp->tx_bit_map = 0xFF;
546         }
547
548         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
549          * right to left, so we need to revert the 8 bits to get the q index
550          */
551         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
552         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
553
554         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
555          * also assign queues to groups
556          */
557         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
558                 if (!grp->rx_queue)
559                         grp->rx_queue = priv->rx_queue[i];
560                 grp->num_rx_queues++;
561                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
562                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
563                 priv->rx_queue[i]->grp = grp;
564         }
565
566         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
567                 if (!grp->tx_queue)
568                         grp->tx_queue = priv->tx_queue[i];
569                 grp->num_tx_queues++;
570                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
571                 priv->tqueue |= (TQUEUE_EN0 >> i);
572                 priv->tx_queue[i]->grp = grp;
573         }
574
575         priv->num_grps++;
576
577         return 0;
578 }
579
580 static int gfar_of_group_count(struct device_node *np)
581 {
582         struct device_node *child;
583         int num = 0;
584
585         for_each_available_child_of_node(np, child)
586                 if (of_node_name_eq(child, "queue-group"))
587                         num++;
588
589         return num;
590 }
591
592 /* Reads the controller's registers to determine what interface
593  * connects it to the PHY.
594  */
595 static phy_interface_t gfar_get_interface(struct net_device *dev)
596 {
597         struct gfar_private *priv = netdev_priv(dev);
598         struct gfar __iomem *regs = priv->gfargrp[0].regs;
599         u32 ecntrl;
600
601         ecntrl = gfar_read(&regs->ecntrl);
602
603         if (ecntrl & ECNTRL_SGMII_MODE)
604                 return PHY_INTERFACE_MODE_SGMII;
605
606         if (ecntrl & ECNTRL_TBI_MODE) {
607                 if (ecntrl & ECNTRL_REDUCED_MODE)
608                         return PHY_INTERFACE_MODE_RTBI;
609                 else
610                         return PHY_INTERFACE_MODE_TBI;
611         }
612
613         if (ecntrl & ECNTRL_REDUCED_MODE) {
614                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
615                         return PHY_INTERFACE_MODE_RMII;
616                 }
617                 else {
618                         phy_interface_t interface = priv->interface;
619
620                         /* This isn't autodetected right now, so it must
621                          * be set by the device tree or platform code.
622                          */
623                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
624                                 return PHY_INTERFACE_MODE_RGMII_ID;
625
626                         return PHY_INTERFACE_MODE_RGMII;
627                 }
628         }
629
630         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
631                 return PHY_INTERFACE_MODE_GMII;
632
633         return PHY_INTERFACE_MODE_MII;
634 }
635
636 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
637 {
638         const char *model;
639         const void *mac_addr;
640         int err = 0, i;
641         phy_interface_t interface;
642         struct net_device *dev = NULL;
643         struct gfar_private *priv = NULL;
644         struct device_node *np = ofdev->dev.of_node;
645         struct device_node *child = NULL;
646         u32 stash_len = 0;
647         u32 stash_idx = 0;
648         unsigned int num_tx_qs, num_rx_qs;
649         unsigned short mode, poll_mode;
650
651         if (!np)
652                 return -ENODEV;
653
654         if (of_device_is_compatible(np, "fsl,etsec2")) {
655                 mode = MQ_MG_MODE;
656                 poll_mode = GFAR_SQ_POLLING;
657         } else {
658                 mode = SQ_SG_MODE;
659                 poll_mode = GFAR_SQ_POLLING;
660         }
661
662         if (mode == SQ_SG_MODE) {
663                 num_tx_qs = 1;
664                 num_rx_qs = 1;
665         } else { /* MQ_MG_MODE */
666                 /* get the actual number of supported groups */
667                 unsigned int num_grps = gfar_of_group_count(np);
668
669                 if (num_grps == 0 || num_grps > MAXGROUPS) {
670                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
671                                 num_grps);
672                         pr_err("Cannot do alloc_etherdev, aborting\n");
673                         return -EINVAL;
674                 }
675
676                 if (poll_mode == GFAR_SQ_POLLING) {
677                         num_tx_qs = num_grps; /* one txq per int group */
678                         num_rx_qs = num_grps; /* one rxq per int group */
679                 } else { /* GFAR_MQ_POLLING */
680                         u32 tx_queues, rx_queues;
681                         int ret;
682
683                         /* parse the num of HW tx and rx queues */
684                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
685                                                    &tx_queues);
686                         num_tx_qs = ret ? 1 : tx_queues;
687
688                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
689                                                    &rx_queues);
690                         num_rx_qs = ret ? 1 : rx_queues;
691                 }
692         }
693
694         if (num_tx_qs > MAX_TX_QS) {
695                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
696                        num_tx_qs, MAX_TX_QS);
697                 pr_err("Cannot do alloc_etherdev, aborting\n");
698                 return -EINVAL;
699         }
700
701         if (num_rx_qs > MAX_RX_QS) {
702                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
703                        num_rx_qs, MAX_RX_QS);
704                 pr_err("Cannot do alloc_etherdev, aborting\n");
705                 return -EINVAL;
706         }
707
708         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
709         dev = *pdev;
710         if (NULL == dev)
711                 return -ENOMEM;
712
713         priv = netdev_priv(dev);
714         priv->ndev = dev;
715
716         priv->mode = mode;
717         priv->poll_mode = poll_mode;
718
719         priv->num_tx_queues = num_tx_qs;
720         netif_set_real_num_rx_queues(dev, num_rx_qs);
721         priv->num_rx_queues = num_rx_qs;
722
723         err = gfar_alloc_tx_queues(priv);
724         if (err)
725                 goto tx_alloc_failed;
726
727         err = gfar_alloc_rx_queues(priv);
728         if (err)
729                 goto rx_alloc_failed;
730
731         err = of_property_read_string(np, "model", &model);
732         if (err) {
733                 pr_err("Device model property missing, aborting\n");
734                 goto rx_alloc_failed;
735         }
736
737         /* Init Rx queue filer rule set linked list */
738         INIT_LIST_HEAD(&priv->rx_list.list);
739         priv->rx_list.count = 0;
740         mutex_init(&priv->rx_queue_access);
741
742         for (i = 0; i < MAXGROUPS; i++)
743                 priv->gfargrp[i].regs = NULL;
744
745         /* Parse and initialize group specific information */
746         if (priv->mode == MQ_MG_MODE) {
747                 for_each_available_child_of_node(np, child) {
748                         if (!of_node_name_eq(child, "queue-group"))
749                                 continue;
750
751                         err = gfar_parse_group(child, priv, model);
752                         if (err) {
753                                 of_node_put(child);
754                                 goto err_grp_init;
755                         }
756                 }
757         } else { /* SQ_SG_MODE */
758                 err = gfar_parse_group(np, priv, model);
759                 if (err)
760                         goto err_grp_init;
761         }
762
763         if (of_property_read_bool(np, "bd-stash")) {
764                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
765                 priv->bd_stash_en = 1;
766         }
767
768         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
769
770         if (err == 0)
771                 priv->rx_stash_size = stash_len;
772
773         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
774
775         if (err == 0)
776                 priv->rx_stash_index = stash_idx;
777
778         if (stash_len || stash_idx)
779                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
780
781         mac_addr = of_get_mac_address(np);
782
783         if (!IS_ERR(mac_addr)) {
784                 ether_addr_copy(dev->dev_addr, mac_addr);
785         } else {
786                 eth_hw_addr_random(dev);
787                 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
788         }
789
790         if (model && !strcasecmp(model, "TSEC"))
791                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
792                                      FSL_GIANFAR_DEV_HAS_COALESCE |
793                                      FSL_GIANFAR_DEV_HAS_RMON |
794                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
795
796         if (model && !strcasecmp(model, "eTSEC"))
797                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
798                                      FSL_GIANFAR_DEV_HAS_COALESCE |
799                                      FSL_GIANFAR_DEV_HAS_RMON |
800                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
801                                      FSL_GIANFAR_DEV_HAS_CSUM |
802                                      FSL_GIANFAR_DEV_HAS_VLAN |
803                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
804                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
805                                      FSL_GIANFAR_DEV_HAS_TIMER |
806                                      FSL_GIANFAR_DEV_HAS_RX_FILER;
807
808         /* Use PHY connection type from the DT node if one is specified there.
809          * rgmii-id really needs to be specified. Other types can be
810          * detected by hardware
811          */
812         err = of_get_phy_mode(np, &interface);
813         if (!err)
814                 priv->interface = interface;
815         else
816                 priv->interface = gfar_get_interface(dev);
817
818         if (of_find_property(np, "fsl,magic-packet", NULL))
819                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
820
821         if (of_get_property(np, "fsl,wake-on-filer", NULL))
822                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
823
824         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
825
826         /* In the case of a fixed PHY, the DT node associated
827          * to the PHY is the Ethernet MAC DT node.
828          */
829         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
830                 err = of_phy_register_fixed_link(np);
831                 if (err)
832                         goto err_grp_init;
833
834                 priv->phy_node = of_node_get(np);
835         }
836
837         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
838         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
839
840         return 0;
841
842 err_grp_init:
843         unmap_group_regs(priv);
844 rx_alloc_failed:
845         gfar_free_rx_queues(priv);
846 tx_alloc_failed:
847         gfar_free_tx_queues(priv);
848         free_gfar_dev(priv);
849         return err;
850 }
851
852 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
853                                    u32 class)
854 {
855         u32 rqfpr = FPR_FILER_MASK;
856         u32 rqfcr = 0x0;
857
858         rqfar--;
859         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
860         priv->ftp_rqfpr[rqfar] = rqfpr;
861         priv->ftp_rqfcr[rqfar] = rqfcr;
862         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
863
864         rqfar--;
865         rqfcr = RQFCR_CMP_NOMATCH;
866         priv->ftp_rqfpr[rqfar] = rqfpr;
867         priv->ftp_rqfcr[rqfar] = rqfcr;
868         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
869
870         rqfar--;
871         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
872         rqfpr = class;
873         priv->ftp_rqfcr[rqfar] = rqfcr;
874         priv->ftp_rqfpr[rqfar] = rqfpr;
875         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
876
877         rqfar--;
878         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
879         rqfpr = class;
880         priv->ftp_rqfcr[rqfar] = rqfcr;
881         priv->ftp_rqfpr[rqfar] = rqfpr;
882         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
883
884         return rqfar;
885 }
886
887 static void gfar_init_filer_table(struct gfar_private *priv)
888 {
889         int i = 0x0;
890         u32 rqfar = MAX_FILER_IDX;
891         u32 rqfcr = 0x0;
892         u32 rqfpr = FPR_FILER_MASK;
893
894         /* Default rule */
895         rqfcr = RQFCR_CMP_MATCH;
896         priv->ftp_rqfcr[rqfar] = rqfcr;
897         priv->ftp_rqfpr[rqfar] = rqfpr;
898         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899
900         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
901         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
902         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
903         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
904         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
905         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
906
907         /* cur_filer_idx indicated the first non-masked rule */
908         priv->cur_filer_idx = rqfar;
909
910         /* Rest are masked rules */
911         rqfcr = RQFCR_CMP_NOMATCH;
912         for (i = 0; i < rqfar; i++) {
913                 priv->ftp_rqfcr[i] = rqfcr;
914                 priv->ftp_rqfpr[i] = rqfpr;
915                 gfar_write_filer(priv, i, rqfcr, rqfpr);
916         }
917 }
918
919 #ifdef CONFIG_PPC
920 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
921 {
922         unsigned int pvr = mfspr(SPRN_PVR);
923         unsigned int svr = mfspr(SPRN_SVR);
924         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
925         unsigned int rev = svr & 0xffff;
926
927         /* MPC8313 Rev 2.0 and higher; All MPC837x */
928         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
929             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
930                 priv->errata |= GFAR_ERRATA_74;
931
932         /* MPC8313 and MPC837x all rev */
933         if ((pvr == 0x80850010 && mod == 0x80b0) ||
934             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
935                 priv->errata |= GFAR_ERRATA_76;
936
937         /* MPC8313 Rev < 2.0 */
938         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
939                 priv->errata |= GFAR_ERRATA_12;
940 }
941
942 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
943 {
944         unsigned int svr = mfspr(SPRN_SVR);
945
946         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
947                 priv->errata |= GFAR_ERRATA_12;
948         /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
949         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
950             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
951             ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
952                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
953 }
954 #endif
955
956 static void gfar_detect_errata(struct gfar_private *priv)
957 {
958         struct device *dev = &priv->ofdev->dev;
959
960         /* no plans to fix */
961         priv->errata |= GFAR_ERRATA_A002;
962
963 #ifdef CONFIG_PPC
964         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
965                 __gfar_detect_errata_85xx(priv);
966         else /* non-mpc85xx parts, i.e. e300 core based */
967                 __gfar_detect_errata_83xx(priv);
968 #endif
969
970         if (priv->errata)
971                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
972                          priv->errata);
973 }
974
975 static void gfar_init_addr_hash_table(struct gfar_private *priv)
976 {
977         struct gfar __iomem *regs = priv->gfargrp[0].regs;
978
979         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
980                 priv->extended_hash = 1;
981                 priv->hash_width = 9;
982
983                 priv->hash_regs[0] = &regs->igaddr0;
984                 priv->hash_regs[1] = &regs->igaddr1;
985                 priv->hash_regs[2] = &regs->igaddr2;
986                 priv->hash_regs[3] = &regs->igaddr3;
987                 priv->hash_regs[4] = &regs->igaddr4;
988                 priv->hash_regs[5] = &regs->igaddr5;
989                 priv->hash_regs[6] = &regs->igaddr6;
990                 priv->hash_regs[7] = &regs->igaddr7;
991                 priv->hash_regs[8] = &regs->gaddr0;
992                 priv->hash_regs[9] = &regs->gaddr1;
993                 priv->hash_regs[10] = &regs->gaddr2;
994                 priv->hash_regs[11] = &regs->gaddr3;
995                 priv->hash_regs[12] = &regs->gaddr4;
996                 priv->hash_regs[13] = &regs->gaddr5;
997                 priv->hash_regs[14] = &regs->gaddr6;
998                 priv->hash_regs[15] = &regs->gaddr7;
999
1000         } else {
1001                 priv->extended_hash = 0;
1002                 priv->hash_width = 8;
1003
1004                 priv->hash_regs[0] = &regs->gaddr0;
1005                 priv->hash_regs[1] = &regs->gaddr1;
1006                 priv->hash_regs[2] = &regs->gaddr2;
1007                 priv->hash_regs[3] = &regs->gaddr3;
1008                 priv->hash_regs[4] = &regs->gaddr4;
1009                 priv->hash_regs[5] = &regs->gaddr5;
1010                 priv->hash_regs[6] = &regs->gaddr6;
1011                 priv->hash_regs[7] = &regs->gaddr7;
1012         }
1013 }
1014
1015 static int __gfar_is_rx_idle(struct gfar_private *priv)
1016 {
1017         u32 res;
1018
1019         /* Normaly TSEC should not hang on GRS commands, so we should
1020          * actually wait for IEVENT_GRSC flag.
1021          */
1022         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1023                 return 0;
1024
1025         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1026          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1027          * and the Rx can be safely reset.
1028          */
1029         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1030         res &= 0x7f807f80;
1031         if ((res & 0xffff) == (res >> 16))
1032                 return 1;
1033
1034         return 0;
1035 }
1036
1037 /* Halt the receive and transmit queues */
1038 static void gfar_halt_nodisable(struct gfar_private *priv)
1039 {
1040         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1041         u32 tempval;
1042         unsigned int timeout;
1043         int stopped;
1044
1045         gfar_ints_disable(priv);
1046
1047         if (gfar_is_dma_stopped(priv))
1048                 return;
1049
1050         /* Stop the DMA, and wait for it to stop */
1051         tempval = gfar_read(&regs->dmactrl);
1052         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1053         gfar_write(&regs->dmactrl, tempval);
1054
1055 retry:
1056         timeout = 1000;
1057         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1058                 cpu_relax();
1059                 timeout--;
1060         }
1061
1062         if (!timeout)
1063                 stopped = gfar_is_dma_stopped(priv);
1064
1065         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1066             !__gfar_is_rx_idle(priv))
1067                 goto retry;
1068 }
1069
1070 /* Halt the receive and transmit queues */
1071 static void gfar_halt(struct gfar_private *priv)
1072 {
1073         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1074         u32 tempval;
1075
1076         /* Dissable the Rx/Tx hw queues */
1077         gfar_write(&regs->rqueue, 0);
1078         gfar_write(&regs->tqueue, 0);
1079
1080         mdelay(10);
1081
1082         gfar_halt_nodisable(priv);
1083
1084         /* Disable Rx/Tx DMA */
1085         tempval = gfar_read(&regs->maccfg1);
1086         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1087         gfar_write(&regs->maccfg1, tempval);
1088 }
1089
1090 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1091 {
1092         struct txbd8 *txbdp;
1093         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1094         int i, j;
1095
1096         txbdp = tx_queue->tx_bd_base;
1097
1098         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1099                 if (!tx_queue->tx_skbuff[i])
1100                         continue;
1101
1102                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1103                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1104                 txbdp->lstatus = 0;
1105                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1106                      j++) {
1107                         txbdp++;
1108                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1109                                        be16_to_cpu(txbdp->length),
1110                                        DMA_TO_DEVICE);
1111                 }
1112                 txbdp++;
1113                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1114                 tx_queue->tx_skbuff[i] = NULL;
1115         }
1116         kfree(tx_queue->tx_skbuff);
1117         tx_queue->tx_skbuff = NULL;
1118 }
1119
1120 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1121 {
1122         int i;
1123
1124         struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1125
1126         dev_kfree_skb(rx_queue->skb);
1127
1128         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1129                 struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1130
1131                 rxbdp->lstatus = 0;
1132                 rxbdp->bufPtr = 0;
1133                 rxbdp++;
1134
1135                 if (!rxb->page)
1136                         continue;
1137
1138                 dma_unmap_page(rx_queue->dev, rxb->dma,
1139                                PAGE_SIZE, DMA_FROM_DEVICE);
1140                 __free_page(rxb->page);
1141
1142                 rxb->page = NULL;
1143         }
1144
1145         kfree(rx_queue->rx_buff);
1146         rx_queue->rx_buff = NULL;
1147 }
1148
1149 /* If there are any tx skbs or rx skbs still around, free them.
1150  * Then free tx_skbuff and rx_skbuff
1151  */
1152 static void free_skb_resources(struct gfar_private *priv)
1153 {
1154         struct gfar_priv_tx_q *tx_queue = NULL;
1155         struct gfar_priv_rx_q *rx_queue = NULL;
1156         int i;
1157
1158         /* Go through all the buffer descriptors and free their data buffers */
1159         for (i = 0; i < priv->num_tx_queues; i++) {
1160                 struct netdev_queue *txq;
1161
1162                 tx_queue = priv->tx_queue[i];
1163                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1164                 if (tx_queue->tx_skbuff)
1165                         free_skb_tx_queue(tx_queue);
1166                 netdev_tx_reset_queue(txq);
1167         }
1168
1169         for (i = 0; i < priv->num_rx_queues; i++) {
1170                 rx_queue = priv->rx_queue[i];
1171                 if (rx_queue->rx_buff)
1172                         free_skb_rx_queue(rx_queue);
1173         }
1174
1175         dma_free_coherent(priv->dev,
1176                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1177                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1178                           priv->tx_queue[0]->tx_bd_base,
1179                           priv->tx_queue[0]->tx_bd_dma_base);
1180 }
1181
1182 void stop_gfar(struct net_device *dev)
1183 {
1184         struct gfar_private *priv = netdev_priv(dev);
1185
1186         netif_tx_stop_all_queues(dev);
1187
1188         smp_mb__before_atomic();
1189         set_bit(GFAR_DOWN, &priv->state);
1190         smp_mb__after_atomic();
1191
1192         disable_napi(priv);
1193
1194         /* disable ints and gracefully shut down Rx/Tx DMA */
1195         gfar_halt(priv);
1196
1197         phy_stop(dev->phydev);
1198
1199         free_skb_resources(priv);
1200 }
1201
1202 static void gfar_start(struct gfar_private *priv)
1203 {
1204         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1205         u32 tempval;
1206         int i = 0;
1207
1208         /* Enable Rx/Tx hw queues */
1209         gfar_write(&regs->rqueue, priv->rqueue);
1210         gfar_write(&regs->tqueue, priv->tqueue);
1211
1212         /* Initialize DMACTRL to have WWR and WOP */
1213         tempval = gfar_read(&regs->dmactrl);
1214         tempval |= DMACTRL_INIT_SETTINGS;
1215         gfar_write(&regs->dmactrl, tempval);
1216
1217         /* Make sure we aren't stopped */
1218         tempval = gfar_read(&regs->dmactrl);
1219         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1220         gfar_write(&regs->dmactrl, tempval);
1221
1222         for (i = 0; i < priv->num_grps; i++) {
1223                 regs = priv->gfargrp[i].regs;
1224                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1225                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1226                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1227         }
1228
1229         /* Enable Rx/Tx DMA */
1230         tempval = gfar_read(&regs->maccfg1);
1231         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1232         gfar_write(&regs->maccfg1, tempval);
1233
1234         gfar_ints_enable(priv);
1235
1236         netif_trans_update(priv->ndev); /* prevent tx timeout */
1237 }
1238
1239 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1240 {
1241         struct page *page;
1242         dma_addr_t addr;
1243
1244         page = dev_alloc_page();
1245         if (unlikely(!page))
1246                 return false;
1247
1248         addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1249         if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1250                 __free_page(page);
1251
1252                 return false;
1253         }
1254
1255         rxb->dma = addr;
1256         rxb->page = page;
1257         rxb->page_offset = 0;
1258
1259         return true;
1260 }
1261
1262 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1263 {
1264         struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1265         struct gfar_extra_stats *estats = &priv->extra_stats;
1266
1267         netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1268         atomic64_inc(&estats->rx_alloc_err);
1269 }
1270
1271 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1272                                 int alloc_cnt)
1273 {
1274         struct rxbd8 *bdp;
1275         struct gfar_rx_buff *rxb;
1276         int i;
1277
1278         i = rx_queue->next_to_use;
1279         bdp = &rx_queue->rx_bd_base[i];
1280         rxb = &rx_queue->rx_buff[i];
1281
1282         while (alloc_cnt--) {
1283                 /* try reuse page */
1284                 if (unlikely(!rxb->page)) {
1285                         if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1286                                 gfar_rx_alloc_err(rx_queue);
1287                                 break;
1288                         }
1289                 }
1290
1291                 /* Setup the new RxBD */
1292                 gfar_init_rxbdp(rx_queue, bdp,
1293                                 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1294
1295                 /* Update to the next pointer */
1296                 bdp++;
1297                 rxb++;
1298
1299                 if (unlikely(++i == rx_queue->rx_ring_size)) {
1300                         i = 0;
1301                         bdp = rx_queue->rx_bd_base;
1302                         rxb = rx_queue->rx_buff;
1303                 }
1304         }
1305
1306         rx_queue->next_to_use = i;
1307         rx_queue->next_to_alloc = i;
1308 }
1309
1310 static void gfar_init_bds(struct net_device *ndev)
1311 {
1312         struct gfar_private *priv = netdev_priv(ndev);
1313         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1314         struct gfar_priv_tx_q *tx_queue = NULL;
1315         struct gfar_priv_rx_q *rx_queue = NULL;
1316         struct txbd8 *txbdp;
1317         u32 __iomem *rfbptr;
1318         int i, j;
1319
1320         for (i = 0; i < priv->num_tx_queues; i++) {
1321                 tx_queue = priv->tx_queue[i];
1322                 /* Initialize some variables in our dev structure */
1323                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1324                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
1325                 tx_queue->cur_tx = tx_queue->tx_bd_base;
1326                 tx_queue->skb_curtx = 0;
1327                 tx_queue->skb_dirtytx = 0;
1328
1329                 /* Initialize Transmit Descriptor Ring */
1330                 txbdp = tx_queue->tx_bd_base;
1331                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
1332                         txbdp->lstatus = 0;
1333                         txbdp->bufPtr = 0;
1334                         txbdp++;
1335                 }
1336
1337                 /* Set the last descriptor in the ring to indicate wrap */
1338                 txbdp--;
1339                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1340                                             TXBD_WRAP);
1341         }
1342
1343         rfbptr = &regs->rfbptr0;
1344         for (i = 0; i < priv->num_rx_queues; i++) {
1345                 rx_queue = priv->rx_queue[i];
1346
1347                 rx_queue->next_to_clean = 0;
1348                 rx_queue->next_to_use = 0;
1349                 rx_queue->next_to_alloc = 0;
1350
1351                 /* make sure next_to_clean != next_to_use after this
1352                  * by leaving at least 1 unused descriptor
1353                  */
1354                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1355
1356                 rx_queue->rfbptr = rfbptr;
1357                 rfbptr += 2;
1358         }
1359 }
1360
1361 static int gfar_alloc_skb_resources(struct net_device *ndev)
1362 {
1363         void *vaddr;
1364         dma_addr_t addr;
1365         int i, j;
1366         struct gfar_private *priv = netdev_priv(ndev);
1367         struct device *dev = priv->dev;
1368         struct gfar_priv_tx_q *tx_queue = NULL;
1369         struct gfar_priv_rx_q *rx_queue = NULL;
1370
1371         priv->total_tx_ring_size = 0;
1372         for (i = 0; i < priv->num_tx_queues; i++)
1373                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1374
1375         priv->total_rx_ring_size = 0;
1376         for (i = 0; i < priv->num_rx_queues; i++)
1377                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1378
1379         /* Allocate memory for the buffer descriptors */
1380         vaddr = dma_alloc_coherent(dev,
1381                                    (priv->total_tx_ring_size *
1382                                     sizeof(struct txbd8)) +
1383                                    (priv->total_rx_ring_size *
1384                                     sizeof(struct rxbd8)),
1385                                    &addr, GFP_KERNEL);
1386         if (!vaddr)
1387                 return -ENOMEM;
1388
1389         for (i = 0; i < priv->num_tx_queues; i++) {
1390                 tx_queue = priv->tx_queue[i];
1391                 tx_queue->tx_bd_base = vaddr;
1392                 tx_queue->tx_bd_dma_base = addr;
1393                 tx_queue->dev = ndev;
1394                 /* enet DMA only understands physical addresses */
1395                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1396                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1397         }
1398
1399         /* Start the rx descriptor ring where the tx ring leaves off */
1400         for (i = 0; i < priv->num_rx_queues; i++) {
1401                 rx_queue = priv->rx_queue[i];
1402                 rx_queue->rx_bd_base = vaddr;
1403                 rx_queue->rx_bd_dma_base = addr;
1404                 rx_queue->ndev = ndev;
1405                 rx_queue->dev = dev;
1406                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1407                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1408         }
1409
1410         /* Setup the skbuff rings */
1411         for (i = 0; i < priv->num_tx_queues; i++) {
1412                 tx_queue = priv->tx_queue[i];
1413                 tx_queue->tx_skbuff =
1414                         kmalloc_array(tx_queue->tx_ring_size,
1415                                       sizeof(*tx_queue->tx_skbuff),
1416                                       GFP_KERNEL);
1417                 if (!tx_queue->tx_skbuff)
1418                         goto cleanup;
1419
1420                 for (j = 0; j < tx_queue->tx_ring_size; j++)
1421                         tx_queue->tx_skbuff[j] = NULL;
1422         }
1423
1424         for (i = 0; i < priv->num_rx_queues; i++) {
1425                 rx_queue = priv->rx_queue[i];
1426                 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1427                                             sizeof(*rx_queue->rx_buff),
1428                                             GFP_KERNEL);
1429                 if (!rx_queue->rx_buff)
1430                         goto cleanup;
1431         }
1432
1433         gfar_init_bds(ndev);
1434
1435         return 0;
1436
1437 cleanup:
1438         free_skb_resources(priv);
1439         return -ENOMEM;
1440 }
1441
1442 /* Bring the controller up and running */
1443 int startup_gfar(struct net_device *ndev)
1444 {
1445         struct gfar_private *priv = netdev_priv(ndev);
1446         int err;
1447
1448         gfar_mac_reset(priv);
1449
1450         err = gfar_alloc_skb_resources(ndev);
1451         if (err)
1452                 return err;
1453
1454         gfar_init_tx_rx_base(priv);
1455
1456         smp_mb__before_atomic();
1457         clear_bit(GFAR_DOWN, &priv->state);
1458         smp_mb__after_atomic();
1459
1460         /* Start Rx/Tx DMA and enable the interrupts */
1461         gfar_start(priv);
1462
1463         /* force link state update after mac reset */
1464         priv->oldlink = 0;
1465         priv->oldspeed = 0;
1466         priv->oldduplex = -1;
1467
1468         phy_start(ndev->phydev);
1469
1470         enable_napi(priv);
1471
1472         netif_tx_wake_all_queues(ndev);
1473
1474         return 0;
1475 }
1476
1477 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1478 {
1479         struct net_device *ndev = priv->ndev;
1480         struct phy_device *phydev = ndev->phydev;
1481         u32 val = 0;
1482
1483         if (!phydev->duplex)
1484                 return val;
1485
1486         if (!priv->pause_aneg_en) {
1487                 if (priv->tx_pause_en)
1488                         val |= MACCFG1_TX_FLOW;
1489                 if (priv->rx_pause_en)
1490                         val |= MACCFG1_RX_FLOW;
1491         } else {
1492                 u16 lcl_adv, rmt_adv;
1493                 u8 flowctrl;
1494                 /* get link partner capabilities */
1495                 rmt_adv = 0;
1496                 if (phydev->pause)
1497                         rmt_adv = LPA_PAUSE_CAP;
1498                 if (phydev->asym_pause)
1499                         rmt_adv |= LPA_PAUSE_ASYM;
1500
1501                 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1502                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1503                 if (flowctrl & FLOW_CTRL_TX)
1504                         val |= MACCFG1_TX_FLOW;
1505                 if (flowctrl & FLOW_CTRL_RX)
1506                         val |= MACCFG1_RX_FLOW;
1507         }
1508
1509         return val;
1510 }
1511
1512 static noinline void gfar_update_link_state(struct gfar_private *priv)
1513 {
1514         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1515         struct net_device *ndev = priv->ndev;
1516         struct phy_device *phydev = ndev->phydev;
1517         struct gfar_priv_rx_q *rx_queue = NULL;
1518         int i;
1519
1520         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1521                 return;
1522
1523         if (phydev->link) {
1524                 u32 tempval1 = gfar_read(&regs->maccfg1);
1525                 u32 tempval = gfar_read(&regs->maccfg2);
1526                 u32 ecntrl = gfar_read(&regs->ecntrl);
1527                 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1528
1529                 if (phydev->duplex != priv->oldduplex) {
1530                         if (!(phydev->duplex))
1531                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1532                         else
1533                                 tempval |= MACCFG2_FULL_DUPLEX;
1534
1535                         priv->oldduplex = phydev->duplex;
1536                 }
1537
1538                 if (phydev->speed != priv->oldspeed) {
1539                         switch (phydev->speed) {
1540                         case 1000:
1541                                 tempval =
1542                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1543
1544                                 ecntrl &= ~(ECNTRL_R100);
1545                                 break;
1546                         case 100:
1547                         case 10:
1548                                 tempval =
1549                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1550
1551                                 /* Reduced mode distinguishes
1552                                  * between 10 and 100
1553                                  */
1554                                 if (phydev->speed == SPEED_100)
1555                                         ecntrl |= ECNTRL_R100;
1556                                 else
1557                                         ecntrl &= ~(ECNTRL_R100);
1558                                 break;
1559                         default:
1560                                 netif_warn(priv, link, priv->ndev,
1561                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
1562                                            phydev->speed);
1563                                 break;
1564                         }
1565
1566                         priv->oldspeed = phydev->speed;
1567                 }
1568
1569                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1570                 tempval1 |= gfar_get_flowctrl_cfg(priv);
1571
1572                 /* Turn last free buffer recording on */
1573                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1574                         for (i = 0; i < priv->num_rx_queues; i++) {
1575                                 u32 bdp_dma;
1576
1577                                 rx_queue = priv->rx_queue[i];
1578                                 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1579                                 gfar_write(rx_queue->rfbptr, bdp_dma);
1580                         }
1581
1582                         priv->tx_actual_en = 1;
1583                 }
1584
1585                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1586                         priv->tx_actual_en = 0;
1587
1588                 gfar_write(&regs->maccfg1, tempval1);
1589                 gfar_write(&regs->maccfg2, tempval);
1590                 gfar_write(&regs->ecntrl, ecntrl);
1591
1592                 if (!priv->oldlink)
1593                         priv->oldlink = 1;
1594
1595         } else if (priv->oldlink) {
1596                 priv->oldlink = 0;
1597                 priv->oldspeed = 0;
1598                 priv->oldduplex = -1;
1599         }
1600
1601         if (netif_msg_link(priv))
1602                 phy_print_status(phydev);
1603 }
1604
1605 /* Called every time the controller might need to be made
1606  * aware of new link state.  The PHY code conveys this
1607  * information through variables in the phydev structure, and this
1608  * function converts those variables into the appropriate
1609  * register values, and can bring down the device if needed.
1610  */
1611 static void adjust_link(struct net_device *dev)
1612 {
1613         struct gfar_private *priv = netdev_priv(dev);
1614         struct phy_device *phydev = dev->phydev;
1615
1616         if (unlikely(phydev->link != priv->oldlink ||
1617                      (phydev->link && (phydev->duplex != priv->oldduplex ||
1618                                        phydev->speed != priv->oldspeed))))
1619                 gfar_update_link_state(priv);
1620 }
1621
1622 /* Initialize TBI PHY interface for communicating with the
1623  * SERDES lynx PHY on the chip.  We communicate with this PHY
1624  * through the MDIO bus on each controller, treating it as a
1625  * "normal" PHY at the address found in the TBIPA register.  We assume
1626  * that the TBIPA register is valid.  Either the MDIO bus code will set
1627  * it to a value that doesn't conflict with other PHYs on the bus, or the
1628  * value doesn't matter, as there are no other PHYs on the bus.
1629  */
1630 static void gfar_configure_serdes(struct net_device *dev)
1631 {
1632         struct gfar_private *priv = netdev_priv(dev);
1633         struct phy_device *tbiphy;
1634
1635         if (!priv->tbi_node) {
1636                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1637                                     "device tree specify a tbi-handle\n");
1638                 return;
1639         }
1640
1641         tbiphy = of_phy_find_device(priv->tbi_node);
1642         if (!tbiphy) {
1643                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1644                 return;
1645         }
1646
1647         /* If the link is already up, we must already be ok, and don't need to
1648          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1649          * everything for us?  Resetting it takes the link down and requires
1650          * several seconds for it to come back.
1651          */
1652         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1653                 put_device(&tbiphy->mdio.dev);
1654                 return;
1655         }
1656
1657         /* Single clk mode, mii mode off(for serdes communication) */
1658         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1659
1660         phy_write(tbiphy, MII_ADVERTISE,
1661                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1662                   ADVERTISE_1000XPSE_ASYM);
1663
1664         phy_write(tbiphy, MII_BMCR,
1665                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1666                   BMCR_SPEED1000);
1667
1668         put_device(&tbiphy->mdio.dev);
1669 }
1670
1671 /* Initializes driver's PHY state, and attaches to the PHY.
1672  * Returns 0 on success.
1673  */
1674 static int init_phy(struct net_device *dev)
1675 {
1676         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1677         struct gfar_private *priv = netdev_priv(dev);
1678         phy_interface_t interface = priv->interface;
1679         struct phy_device *phydev;
1680         struct ethtool_eee edata;
1681
1682         linkmode_set_bit_array(phy_10_100_features_array,
1683                                ARRAY_SIZE(phy_10_100_features_array),
1684                                mask);
1685         linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1686         linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1687         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1688                 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1689
1690         priv->oldlink = 0;
1691         priv->oldspeed = 0;
1692         priv->oldduplex = -1;
1693
1694         phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1695                                 interface);
1696         if (!phydev) {
1697                 dev_err(&dev->dev, "could not attach to PHY\n");
1698                 return -ENODEV;
1699         }
1700
1701         if (interface == PHY_INTERFACE_MODE_SGMII)
1702                 gfar_configure_serdes(dev);
1703
1704         /* Remove any features not supported by the controller */
1705         linkmode_and(phydev->supported, phydev->supported, mask);
1706         linkmode_copy(phydev->advertising, phydev->supported);
1707
1708         /* Add support for flow control */
1709         phy_support_asym_pause(phydev);
1710
1711         /* disable EEE autoneg, EEE not supported by eTSEC */
1712         memset(&edata, 0, sizeof(struct ethtool_eee));
1713         phy_ethtool_set_eee(phydev, &edata);
1714
1715         return 0;
1716 }
1717
1718 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1719 {
1720         struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1721
1722         memset(fcb, 0, GMAC_FCB_LEN);
1723
1724         return fcb;
1725 }
1726
1727 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1728                                     int fcb_length)
1729 {
1730         /* If we're here, it's a IP packet with a TCP or UDP
1731          * payload.  We set it to checksum, using a pseudo-header
1732          * we provide
1733          */
1734         u8 flags = TXFCB_DEFAULT;
1735
1736         /* Tell the controller what the protocol is
1737          * And provide the already calculated phcs
1738          */
1739         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1740                 flags |= TXFCB_UDP;
1741                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1742         } else
1743                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1744
1745         /* l3os is the distance between the start of the
1746          * frame (skb->data) and the start of the IP hdr.
1747          * l4os is the distance between the start of the
1748          * l3 hdr and the l4 hdr
1749          */
1750         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1751         fcb->l4os = skb_network_header_len(skb);
1752
1753         fcb->flags = flags;
1754 }
1755
1756 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1757 {
1758         fcb->flags |= TXFCB_VLN;
1759         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1760 }
1761
1762 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1763                                       struct txbd8 *base, int ring_size)
1764 {
1765         struct txbd8 *new_bd = bdp + stride;
1766
1767         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1768 }
1769
1770 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1771                                       int ring_size)
1772 {
1773         return skip_txbd(bdp, 1, base, ring_size);
1774 }
1775
1776 /* eTSEC12: csum generation not supported for some fcb offsets */
1777 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1778                                        unsigned long fcb_addr)
1779 {
1780         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1781                (fcb_addr % 0x20) > 0x18);
1782 }
1783
1784 /* eTSEC76: csum generation for frames larger than 2500 may
1785  * cause excess delays before start of transmission
1786  */
1787 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1788                                        unsigned int len)
1789 {
1790         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1791                (len > 2500));
1792 }
1793
1794 /* This is called by the kernel when a frame is ready for transmission.
1795  * It is pointed to by the dev->hard_start_xmit function pointer
1796  */
1797 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1798 {
1799         struct gfar_private *priv = netdev_priv(dev);
1800         struct gfar_priv_tx_q *tx_queue = NULL;
1801         struct netdev_queue *txq;
1802         struct gfar __iomem *regs = NULL;
1803         struct txfcb *fcb = NULL;
1804         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1805         u32 lstatus;
1806         skb_frag_t *frag;
1807         int i, rq = 0;
1808         int do_tstamp, do_csum, do_vlan;
1809         u32 bufaddr;
1810         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1811
1812         rq = skb->queue_mapping;
1813         tx_queue = priv->tx_queue[rq];
1814         txq = netdev_get_tx_queue(dev, rq);
1815         base = tx_queue->tx_bd_base;
1816         regs = tx_queue->grp->regs;
1817
1818         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1819         do_vlan = skb_vlan_tag_present(skb);
1820         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1821                     priv->hwts_tx_en;
1822
1823         if (do_csum || do_vlan)
1824                 fcb_len = GMAC_FCB_LEN;
1825
1826         /* check if time stamp should be generated */
1827         if (unlikely(do_tstamp))
1828                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1829
1830         /* make space for additional header when fcb is needed */
1831         if (fcb_len) {
1832                 if (unlikely(skb_cow_head(skb, fcb_len))) {
1833                         dev->stats.tx_errors++;
1834                         dev_kfree_skb_any(skb);
1835                         return NETDEV_TX_OK;
1836                 }
1837         }
1838
1839         /* total number of fragments in the SKB */
1840         nr_frags = skb_shinfo(skb)->nr_frags;
1841
1842         /* calculate the required number of TxBDs for this skb */
1843         if (unlikely(do_tstamp))
1844                 nr_txbds = nr_frags + 2;
1845         else
1846                 nr_txbds = nr_frags + 1;
1847
1848         /* check if there is space to queue this packet */
1849         if (nr_txbds > tx_queue->num_txbdfree) {
1850                 /* no space, stop the queue */
1851                 netif_tx_stop_queue(txq);
1852                 dev->stats.tx_fifo_errors++;
1853                 return NETDEV_TX_BUSY;
1854         }
1855
1856         /* Update transmit stats */
1857         bytes_sent = skb->len;
1858         tx_queue->stats.tx_bytes += bytes_sent;
1859         /* keep Tx bytes on wire for BQL accounting */
1860         GFAR_CB(skb)->bytes_sent = bytes_sent;
1861         tx_queue->stats.tx_packets++;
1862
1863         txbdp = txbdp_start = tx_queue->cur_tx;
1864         lstatus = be32_to_cpu(txbdp->lstatus);
1865
1866         /* Add TxPAL between FCB and frame if required */
1867         if (unlikely(do_tstamp)) {
1868                 skb_push(skb, GMAC_TXPAL_LEN);
1869                 memset(skb->data, 0, GMAC_TXPAL_LEN);
1870         }
1871
1872         /* Add TxFCB if required */
1873         if (fcb_len) {
1874                 fcb = gfar_add_fcb(skb);
1875                 lstatus |= BD_LFLAG(TXBD_TOE);
1876         }
1877
1878         /* Set up checksumming */
1879         if (do_csum) {
1880                 gfar_tx_checksum(skb, fcb, fcb_len);
1881
1882                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1883                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
1884                         __skb_pull(skb, GMAC_FCB_LEN);
1885                         skb_checksum_help(skb);
1886                         if (do_vlan || do_tstamp) {
1887                                 /* put back a new fcb for vlan/tstamp TOE */
1888                                 fcb = gfar_add_fcb(skb);
1889                         } else {
1890                                 /* Tx TOE not used */
1891                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
1892                                 fcb = NULL;
1893                         }
1894                 }
1895         }
1896
1897         if (do_vlan)
1898                 gfar_tx_vlan(skb, fcb);
1899
1900         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1901                                  DMA_TO_DEVICE);
1902         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1903                 goto dma_map_err;
1904
1905         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1906
1907         /* Time stamp insertion requires one additional TxBD */
1908         if (unlikely(do_tstamp))
1909                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1910                                                  tx_queue->tx_ring_size);
1911
1912         if (likely(!nr_frags)) {
1913                 if (likely(!do_tstamp))
1914                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1915         } else {
1916                 u32 lstatus_start = lstatus;
1917
1918                 /* Place the fragment addresses and lengths into the TxBDs */
1919                 frag = &skb_shinfo(skb)->frags[0];
1920                 for (i = 0; i < nr_frags; i++, frag++) {
1921                         unsigned int size;
1922
1923                         /* Point at the next BD, wrapping as needed */
1924                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1925
1926                         size = skb_frag_size(frag);
1927
1928                         lstatus = be32_to_cpu(txbdp->lstatus) | size |
1929                                   BD_LFLAG(TXBD_READY);
1930
1931                         /* Handle the last BD specially */
1932                         if (i == nr_frags - 1)
1933                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1934
1935                         bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1936                                                    size, DMA_TO_DEVICE);
1937                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1938                                 goto dma_map_err;
1939
1940                         /* set the TxBD length and buffer pointer */
1941                         txbdp->bufPtr = cpu_to_be32(bufaddr);
1942                         txbdp->lstatus = cpu_to_be32(lstatus);
1943                 }
1944
1945                 lstatus = lstatus_start;
1946         }
1947
1948         /* If time stamping is requested one additional TxBD must be set up. The
1949          * first TxBD points to the FCB and must have a data length of
1950          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1951          * the full frame length.
1952          */
1953         if (unlikely(do_tstamp)) {
1954                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1955
1956                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1957                 bufaddr += fcb_len;
1958
1959                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
1960                               (skb_headlen(skb) - fcb_len);
1961                 if (!nr_frags)
1962                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1963
1964                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1965                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1966                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1967
1968                 /* Setup tx hardware time stamping */
1969                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1970                 fcb->ptp = 1;
1971         } else {
1972                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1973         }
1974
1975         netdev_tx_sent_queue(txq, bytes_sent);
1976
1977         gfar_wmb();
1978
1979         txbdp_start->lstatus = cpu_to_be32(lstatus);
1980
1981         gfar_wmb(); /* force lstatus write before tx_skbuff */
1982
1983         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1984
1985         /* Update the current skb pointer to the next entry we will use
1986          * (wrapping if necessary)
1987          */
1988         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1989                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1990
1991         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1992
1993         /* We can work in parallel with gfar_clean_tx_ring(), except
1994          * when modifying num_txbdfree. Note that we didn't grab the lock
1995          * when we were reading the num_txbdfree and checking for available
1996          * space, that's because outside of this function it can only grow.
1997          */
1998         spin_lock_bh(&tx_queue->txlock);
1999         /* reduce TxBD free count */
2000         tx_queue->num_txbdfree -= (nr_txbds);
2001         spin_unlock_bh(&tx_queue->txlock);
2002
2003         /* If the next BD still needs to be cleaned up, then the bds
2004          * are full.  We need to tell the kernel to stop sending us stuff.
2005          */
2006         if (!tx_queue->num_txbdfree) {
2007                 netif_tx_stop_queue(txq);
2008
2009                 dev->stats.tx_fifo_errors++;
2010         }
2011
2012         /* Tell the DMA to go go go */
2013         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2014
2015         return NETDEV_TX_OK;
2016
2017 dma_map_err:
2018         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2019         if (do_tstamp)
2020                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2021         for (i = 0; i < nr_frags; i++) {
2022                 lstatus = be32_to_cpu(txbdp->lstatus);
2023                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2024                         break;
2025
2026                 lstatus &= ~BD_LFLAG(TXBD_READY);
2027                 txbdp->lstatus = cpu_to_be32(lstatus);
2028                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2029                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2030                                DMA_TO_DEVICE);
2031                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2032         }
2033         gfar_wmb();
2034         dev_kfree_skb_any(skb);
2035         return NETDEV_TX_OK;
2036 }
2037
2038 /* Changes the mac address if the controller is not running. */
2039 static int gfar_set_mac_address(struct net_device *dev)
2040 {
2041         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2042
2043         return 0;
2044 }
2045
2046 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2047 {
2048         struct gfar_private *priv = netdev_priv(dev);
2049
2050         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2051                 cpu_relax();
2052
2053         if (dev->flags & IFF_UP)
2054                 stop_gfar(dev);
2055
2056         dev->mtu = new_mtu;
2057
2058         if (dev->flags & IFF_UP)
2059                 startup_gfar(dev);
2060
2061         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2062
2063         return 0;
2064 }
2065
2066 static void reset_gfar(struct net_device *ndev)
2067 {
2068         struct gfar_private *priv = netdev_priv(ndev);
2069
2070         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2071                 cpu_relax();
2072
2073         stop_gfar(ndev);
2074         startup_gfar(ndev);
2075
2076         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2077 }
2078
2079 /* gfar_reset_task gets scheduled when a packet has not been
2080  * transmitted after a set amount of time.
2081  * For now, assume that clearing out all the structures, and
2082  * starting over will fix the problem.
2083  */
2084 static void gfar_reset_task(struct work_struct *work)
2085 {
2086         struct gfar_private *priv = container_of(work, struct gfar_private,
2087                                                  reset_task);
2088         reset_gfar(priv->ndev);
2089 }
2090
2091 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2092 {
2093         struct gfar_private *priv = netdev_priv(dev);
2094
2095         dev->stats.tx_errors++;
2096         schedule_work(&priv->reset_task);
2097 }
2098
2099 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2100 {
2101         struct hwtstamp_config config;
2102         struct gfar_private *priv = netdev_priv(netdev);
2103
2104         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2105                 return -EFAULT;
2106
2107         /* reserved for future extensions */
2108         if (config.flags)
2109                 return -EINVAL;
2110
2111         switch (config.tx_type) {
2112         case HWTSTAMP_TX_OFF:
2113                 priv->hwts_tx_en = 0;
2114                 break;
2115         case HWTSTAMP_TX_ON:
2116                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2117                         return -ERANGE;
2118                 priv->hwts_tx_en = 1;
2119                 break;
2120         default:
2121                 return -ERANGE;
2122         }
2123
2124         switch (config.rx_filter) {
2125         case HWTSTAMP_FILTER_NONE:
2126                 if (priv->hwts_rx_en) {
2127                         priv->hwts_rx_en = 0;
2128                         reset_gfar(netdev);
2129                 }
2130                 break;
2131         default:
2132                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2133                         return -ERANGE;
2134                 if (!priv->hwts_rx_en) {
2135                         priv->hwts_rx_en = 1;
2136                         reset_gfar(netdev);
2137                 }
2138                 config.rx_filter = HWTSTAMP_FILTER_ALL;
2139                 break;
2140         }
2141
2142         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2143                 -EFAULT : 0;
2144 }
2145
2146 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2147 {
2148         struct hwtstamp_config config;
2149         struct gfar_private *priv = netdev_priv(netdev);
2150
2151         config.flags = 0;
2152         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2153         config.rx_filter = (priv->hwts_rx_en ?
2154                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2155
2156         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2157                 -EFAULT : 0;
2158 }
2159
2160 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2161 {
2162         struct phy_device *phydev = dev->phydev;
2163
2164         if (!netif_running(dev))
2165                 return -EINVAL;
2166
2167         if (cmd == SIOCSHWTSTAMP)
2168                 return gfar_hwtstamp_set(dev, rq);
2169         if (cmd == SIOCGHWTSTAMP)
2170                 return gfar_hwtstamp_get(dev, rq);
2171
2172         if (!phydev)
2173                 return -ENODEV;
2174
2175         return phy_mii_ioctl(phydev, rq, cmd);
2176 }
2177
2178 /* Interrupt Handler for Transmit complete */
2179 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2180 {
2181         struct net_device *dev = tx_queue->dev;
2182         struct netdev_queue *txq;
2183         struct gfar_private *priv = netdev_priv(dev);
2184         struct txbd8 *bdp, *next = NULL;
2185         struct txbd8 *lbdp = NULL;
2186         struct txbd8 *base = tx_queue->tx_bd_base;
2187         struct sk_buff *skb;
2188         int skb_dirtytx;
2189         int tx_ring_size = tx_queue->tx_ring_size;
2190         int frags = 0, nr_txbds = 0;
2191         int i;
2192         int howmany = 0;
2193         int tqi = tx_queue->qindex;
2194         unsigned int bytes_sent = 0;
2195         u32 lstatus;
2196         size_t buflen;
2197
2198         txq = netdev_get_tx_queue(dev, tqi);
2199         bdp = tx_queue->dirty_tx;
2200         skb_dirtytx = tx_queue->skb_dirtytx;
2201
2202         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2203                 bool do_tstamp;
2204
2205                 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2206                             priv->hwts_tx_en;
2207
2208                 frags = skb_shinfo(skb)->nr_frags;
2209
2210                 /* When time stamping, one additional TxBD must be freed.
2211                  * Also, we need to dma_unmap_single() the TxPAL.
2212                  */
2213                 if (unlikely(do_tstamp))
2214                         nr_txbds = frags + 2;
2215                 else
2216                         nr_txbds = frags + 1;
2217
2218                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2219
2220                 lstatus = be32_to_cpu(lbdp->lstatus);
2221
2222                 /* Only clean completed frames */
2223                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2224                     (lstatus & BD_LENGTH_MASK))
2225                         break;
2226
2227                 if (unlikely(do_tstamp)) {
2228                         next = next_txbd(bdp, base, tx_ring_size);
2229                         buflen = be16_to_cpu(next->length) +
2230                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2231                 } else
2232                         buflen = be16_to_cpu(bdp->length);
2233
2234                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2235                                  buflen, DMA_TO_DEVICE);
2236
2237                 if (unlikely(do_tstamp)) {
2238                         struct skb_shared_hwtstamps shhwtstamps;
2239                         u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2240                                           ~0x7UL);
2241
2242                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2243                         shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2244                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2245                         skb_tstamp_tx(skb, &shhwtstamps);
2246                         gfar_clear_txbd_status(bdp);
2247                         bdp = next;
2248                 }
2249
2250                 gfar_clear_txbd_status(bdp);
2251                 bdp = next_txbd(bdp, base, tx_ring_size);
2252
2253                 for (i = 0; i < frags; i++) {
2254                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2255                                        be16_to_cpu(bdp->length),
2256                                        DMA_TO_DEVICE);
2257                         gfar_clear_txbd_status(bdp);
2258                         bdp = next_txbd(bdp, base, tx_ring_size);
2259                 }
2260
2261                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2262
2263                 dev_kfree_skb_any(skb);
2264
2265                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2266
2267                 skb_dirtytx = (skb_dirtytx + 1) &
2268                               TX_RING_MOD_MASK(tx_ring_size);
2269
2270                 howmany++;
2271                 spin_lock(&tx_queue->txlock);
2272                 tx_queue->num_txbdfree += nr_txbds;
2273                 spin_unlock(&tx_queue->txlock);
2274         }
2275
2276         /* If we freed a buffer, we can restart transmission, if necessary */
2277         if (tx_queue->num_txbdfree &&
2278             netif_tx_queue_stopped(txq) &&
2279             !(test_bit(GFAR_DOWN, &priv->state)))
2280                 netif_wake_subqueue(priv->ndev, tqi);
2281
2282         /* Update dirty indicators */
2283         tx_queue->skb_dirtytx = skb_dirtytx;
2284         tx_queue->dirty_tx = bdp;
2285
2286         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2287 }
2288
2289 static void count_errors(u32 lstatus, struct net_device *ndev)
2290 {
2291         struct gfar_private *priv = netdev_priv(ndev);
2292         struct net_device_stats *stats = &ndev->stats;
2293         struct gfar_extra_stats *estats = &priv->extra_stats;
2294
2295         /* If the packet was truncated, none of the other errors matter */
2296         if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2297                 stats->rx_length_errors++;
2298
2299                 atomic64_inc(&estats->rx_trunc);
2300
2301                 return;
2302         }
2303         /* Count the errors, if there were any */
2304         if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2305                 stats->rx_length_errors++;
2306
2307                 if (lstatus & BD_LFLAG(RXBD_LARGE))
2308                         atomic64_inc(&estats->rx_large);
2309                 else
2310                         atomic64_inc(&estats->rx_short);
2311         }
2312         if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2313                 stats->rx_frame_errors++;
2314                 atomic64_inc(&estats->rx_nonoctet);
2315         }
2316         if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2317                 atomic64_inc(&estats->rx_crcerr);
2318                 stats->rx_crc_errors++;
2319         }
2320         if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2321                 atomic64_inc(&estats->rx_overrun);
2322                 stats->rx_over_errors++;
2323         }
2324 }
2325
2326 static irqreturn_t gfar_receive(int irq, void *grp_id)
2327 {
2328         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2329         unsigned long flags;
2330         u32 imask, ievent;
2331
2332         ievent = gfar_read(&grp->regs->ievent);
2333
2334         if (unlikely(ievent & IEVENT_FGPI)) {
2335                 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2336                 return IRQ_HANDLED;
2337         }
2338
2339         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2340                 spin_lock_irqsave(&grp->grplock, flags);
2341                 imask = gfar_read(&grp->regs->imask);
2342                 imask &= IMASK_RX_DISABLED;
2343                 gfar_write(&grp->regs->imask, imask);
2344                 spin_unlock_irqrestore(&grp->grplock, flags);
2345                 __napi_schedule(&grp->napi_rx);
2346         } else {
2347                 /* Clear IEVENT, so interrupts aren't called again
2348                  * because of the packets that have already arrived.
2349                  */
2350                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2351         }
2352
2353         return IRQ_HANDLED;
2354 }
2355
2356 /* Interrupt Handler for Transmit complete */
2357 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2358 {
2359         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2360         unsigned long flags;
2361         u32 imask;
2362
2363         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2364                 spin_lock_irqsave(&grp->grplock, flags);
2365                 imask = gfar_read(&grp->regs->imask);
2366                 imask &= IMASK_TX_DISABLED;
2367                 gfar_write(&grp->regs->imask, imask);
2368                 spin_unlock_irqrestore(&grp->grplock, flags);
2369                 __napi_schedule(&grp->napi_tx);
2370         } else {
2371                 /* Clear IEVENT, so interrupts aren't called again
2372                  * because of the packets that have already arrived.
2373                  */
2374                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2375         }
2376
2377         return IRQ_HANDLED;
2378 }
2379
2380 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2381                              struct sk_buff *skb, bool first)
2382 {
2383         int size = lstatus & BD_LENGTH_MASK;
2384         struct page *page = rxb->page;
2385
2386         if (likely(first)) {
2387                 skb_put(skb, size);
2388         } else {
2389                 /* the last fragments' length contains the full frame length */
2390                 if (lstatus & BD_LFLAG(RXBD_LAST))
2391                         size -= skb->len;
2392
2393                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2394                                 rxb->page_offset + RXBUF_ALIGNMENT,
2395                                 size, GFAR_RXB_TRUESIZE);
2396         }
2397
2398         /* try reuse page */
2399         if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2400                 return false;
2401
2402         /* change offset to the other half */
2403         rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2404
2405         page_ref_inc(page);
2406
2407         return true;
2408 }
2409
2410 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2411                                struct gfar_rx_buff *old_rxb)
2412 {
2413         struct gfar_rx_buff *new_rxb;
2414         u16 nta = rxq->next_to_alloc;
2415
2416         new_rxb = &rxq->rx_buff[nta];
2417
2418         /* find next buf that can reuse a page */
2419         nta++;
2420         rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2421
2422         /* copy page reference */
2423         *new_rxb = *old_rxb;
2424
2425         /* sync for use by the device */
2426         dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2427                                          old_rxb->page_offset,
2428                                          GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2429 }
2430
2431 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2432                                             u32 lstatus, struct sk_buff *skb)
2433 {
2434         struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2435         struct page *page = rxb->page;
2436         bool first = false;
2437
2438         if (likely(!skb)) {
2439                 void *buff_addr = page_address(page) + rxb->page_offset;
2440
2441                 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2442                 if (unlikely(!skb)) {
2443                         gfar_rx_alloc_err(rx_queue);
2444                         return NULL;
2445                 }
2446                 skb_reserve(skb, RXBUF_ALIGNMENT);
2447                 first = true;
2448         }
2449
2450         dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2451                                       GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2452
2453         if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2454                 /* reuse the free half of the page */
2455                 gfar_reuse_rx_page(rx_queue, rxb);
2456         } else {
2457                 /* page cannot be reused, unmap it */
2458                 dma_unmap_page(rx_queue->dev, rxb->dma,
2459                                PAGE_SIZE, DMA_FROM_DEVICE);
2460         }
2461
2462         /* clear rxb content */
2463         rxb->page = NULL;
2464
2465         return skb;
2466 }
2467
2468 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2469 {
2470         /* If valid headers were found, and valid sums
2471          * were verified, then we tell the kernel that no
2472          * checksumming is necessary.  Otherwise, it is [FIXME]
2473          */
2474         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2475             (RXFCB_CIP | RXFCB_CTU))
2476                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2477         else
2478                 skb_checksum_none_assert(skb);
2479 }
2480
2481 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2482 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2483 {
2484         struct gfar_private *priv = netdev_priv(ndev);
2485         struct rxfcb *fcb = NULL;
2486
2487         /* fcb is at the beginning if exists */
2488         fcb = (struct rxfcb *)skb->data;
2489
2490         /* Remove the FCB from the skb
2491          * Remove the padded bytes, if there are any
2492          */
2493         if (priv->uses_rxfcb)
2494                 skb_pull(skb, GMAC_FCB_LEN);
2495
2496         /* Get receive timestamp from the skb */
2497         if (priv->hwts_rx_en) {
2498                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2499                 u64 *ns = (u64 *) skb->data;
2500
2501                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2502                 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2503         }
2504
2505         if (priv->padding)
2506                 skb_pull(skb, priv->padding);
2507
2508         /* Trim off the FCS */
2509         pskb_trim(skb, skb->len - ETH_FCS_LEN);
2510
2511         if (ndev->features & NETIF_F_RXCSUM)
2512                 gfar_rx_checksum(skb, fcb);
2513
2514         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2515          * Even if vlan rx accel is disabled, on some chips
2516          * RXFCB_VLN is pseudo randomly set.
2517          */
2518         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2519             be16_to_cpu(fcb->flags) & RXFCB_VLN)
2520                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2521                                        be16_to_cpu(fcb->vlctl));
2522 }
2523
2524 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2525  * until the budget/quota has been reached. Returns the number
2526  * of frames handled
2527  */
2528 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2529                               int rx_work_limit)
2530 {
2531         struct net_device *ndev = rx_queue->ndev;
2532         struct gfar_private *priv = netdev_priv(ndev);
2533         struct rxbd8 *bdp;
2534         int i, howmany = 0;
2535         struct sk_buff *skb = rx_queue->skb;
2536         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2537         unsigned int total_bytes = 0, total_pkts = 0;
2538
2539         /* Get the first full descriptor */
2540         i = rx_queue->next_to_clean;
2541
2542         while (rx_work_limit--) {
2543                 u32 lstatus;
2544
2545                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2546                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2547                         cleaned_cnt = 0;
2548                 }
2549
2550                 bdp = &rx_queue->rx_bd_base[i];
2551                 lstatus = be32_to_cpu(bdp->lstatus);
2552                 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2553                         break;
2554
2555                 /* order rx buffer descriptor reads */
2556                 rmb();
2557
2558                 /* fetch next to clean buffer from the ring */
2559                 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2560                 if (unlikely(!skb))
2561                         break;
2562
2563                 cleaned_cnt++;
2564                 howmany++;
2565
2566                 if (unlikely(++i == rx_queue->rx_ring_size))
2567                         i = 0;
2568
2569                 rx_queue->next_to_clean = i;
2570
2571                 /* fetch next buffer if not the last in frame */
2572                 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2573                         continue;
2574
2575                 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2576                         count_errors(lstatus, ndev);
2577
2578                         /* discard faulty buffer */
2579                         dev_kfree_skb(skb);
2580                         skb = NULL;
2581                         rx_queue->stats.rx_dropped++;
2582                         continue;
2583                 }
2584
2585                 gfar_process_frame(ndev, skb);
2586
2587                 /* Increment the number of packets */
2588                 total_pkts++;
2589                 total_bytes += skb->len;
2590
2591                 skb_record_rx_queue(skb, rx_queue->qindex);
2592
2593                 skb->protocol = eth_type_trans(skb, ndev);
2594
2595                 /* Send the packet up the stack */
2596                 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2597
2598                 skb = NULL;
2599         }
2600
2601         /* Store incomplete frames for completion */
2602         rx_queue->skb = skb;
2603
2604         rx_queue->stats.rx_packets += total_pkts;
2605         rx_queue->stats.rx_bytes += total_bytes;
2606
2607         if (cleaned_cnt)
2608                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2609
2610         /* Update Last Free RxBD pointer for LFC */
2611         if (unlikely(priv->tx_actual_en)) {
2612                 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2613
2614                 gfar_write(rx_queue->rfbptr, bdp_dma);
2615         }
2616
2617         return howmany;
2618 }
2619
2620 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2621 {
2622         struct gfar_priv_grp *gfargrp =
2623                 container_of(napi, struct gfar_priv_grp, napi_rx);
2624         struct gfar __iomem *regs = gfargrp->regs;
2625         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2626         int work_done = 0;
2627
2628         /* Clear IEVENT, so interrupts aren't called again
2629          * because of the packets that have already arrived
2630          */
2631         gfar_write(&regs->ievent, IEVENT_RX_MASK);
2632
2633         work_done = gfar_clean_rx_ring(rx_queue, budget);
2634
2635         if (work_done < budget) {
2636                 u32 imask;
2637                 napi_complete_done(napi, work_done);
2638                 /* Clear the halt bit in RSTAT */
2639                 gfar_write(&regs->rstat, gfargrp->rstat);
2640
2641                 spin_lock_irq(&gfargrp->grplock);
2642                 imask = gfar_read(&regs->imask);
2643                 imask |= IMASK_RX_DEFAULT;
2644                 gfar_write(&regs->imask, imask);
2645                 spin_unlock_irq(&gfargrp->grplock);
2646         }
2647
2648         return work_done;
2649 }
2650
2651 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2652 {
2653         struct gfar_priv_grp *gfargrp =
2654                 container_of(napi, struct gfar_priv_grp, napi_tx);
2655         struct gfar __iomem *regs = gfargrp->regs;
2656         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2657         u32 imask;
2658
2659         /* Clear IEVENT, so interrupts aren't called again
2660          * because of the packets that have already arrived
2661          */
2662         gfar_write(&regs->ievent, IEVENT_TX_MASK);
2663
2664         /* run Tx cleanup to completion */
2665         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2666                 gfar_clean_tx_ring(tx_queue);
2667
2668         napi_complete(napi);
2669
2670         spin_lock_irq(&gfargrp->grplock);
2671         imask = gfar_read(&regs->imask);
2672         imask |= IMASK_TX_DEFAULT;
2673         gfar_write(&regs->imask, imask);
2674         spin_unlock_irq(&gfargrp->grplock);
2675
2676         return 0;
2677 }
2678
2679 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2680 {
2681         struct gfar_priv_grp *gfargrp =
2682                 container_of(napi, struct gfar_priv_grp, napi_rx);
2683         struct gfar_private *priv = gfargrp->priv;
2684         struct gfar __iomem *regs = gfargrp->regs;
2685         struct gfar_priv_rx_q *rx_queue = NULL;
2686         int work_done = 0, work_done_per_q = 0;
2687         int i, budget_per_q = 0;
2688         unsigned long rstat_rxf;
2689         int num_act_queues;
2690
2691         /* Clear IEVENT, so interrupts aren't called again
2692          * because of the packets that have already arrived
2693          */
2694         gfar_write(&regs->ievent, IEVENT_RX_MASK);
2695
2696         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2697
2698         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2699         if (num_act_queues)
2700                 budget_per_q = budget/num_act_queues;
2701
2702         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2703                 /* skip queue if not active */
2704                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2705                         continue;
2706
2707                 rx_queue = priv->rx_queue[i];
2708                 work_done_per_q =
2709                         gfar_clean_rx_ring(rx_queue, budget_per_q);
2710                 work_done += work_done_per_q;
2711
2712                 /* finished processing this queue */
2713                 if (work_done_per_q < budget_per_q) {
2714                         /* clear active queue hw indication */
2715                         gfar_write(&regs->rstat,
2716                                    RSTAT_CLEAR_RXF0 >> i);
2717                         num_act_queues--;
2718
2719                         if (!num_act_queues)
2720                                 break;
2721                 }
2722         }
2723
2724         if (!num_act_queues) {
2725                 u32 imask;
2726                 napi_complete_done(napi, work_done);
2727
2728                 /* Clear the halt bit in RSTAT */
2729                 gfar_write(&regs->rstat, gfargrp->rstat);
2730
2731                 spin_lock_irq(&gfargrp->grplock);
2732                 imask = gfar_read(&regs->imask);
2733                 imask |= IMASK_RX_DEFAULT;
2734                 gfar_write(&regs->imask, imask);
2735                 spin_unlock_irq(&gfargrp->grplock);
2736         }
2737
2738         return work_done;
2739 }
2740
2741 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2742 {
2743         struct gfar_priv_grp *gfargrp =
2744                 container_of(napi, struct gfar_priv_grp, napi_tx);
2745         struct gfar_private *priv = gfargrp->priv;
2746         struct gfar __iomem *regs = gfargrp->regs;
2747         struct gfar_priv_tx_q *tx_queue = NULL;
2748         int has_tx_work = 0;
2749         int i;
2750
2751         /* Clear IEVENT, so interrupts aren't called again
2752          * because of the packets that have already arrived
2753          */
2754         gfar_write(&regs->ievent, IEVENT_TX_MASK);
2755
2756         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2757                 tx_queue = priv->tx_queue[i];
2758                 /* run Tx cleanup to completion */
2759                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2760                         gfar_clean_tx_ring(tx_queue);
2761                         has_tx_work = 1;
2762                 }
2763         }
2764
2765         if (!has_tx_work) {
2766                 u32 imask;
2767                 napi_complete(napi);
2768
2769                 spin_lock_irq(&gfargrp->grplock);
2770                 imask = gfar_read(&regs->imask);
2771                 imask |= IMASK_TX_DEFAULT;
2772                 gfar_write(&regs->imask, imask);
2773                 spin_unlock_irq(&gfargrp->grplock);
2774         }
2775
2776         return 0;
2777 }
2778
2779 /* GFAR error interrupt handler */
2780 static irqreturn_t gfar_error(int irq, void *grp_id)
2781 {
2782         struct gfar_priv_grp *gfargrp = grp_id;
2783         struct gfar __iomem *regs = gfargrp->regs;
2784         struct gfar_private *priv= gfargrp->priv;
2785         struct net_device *dev = priv->ndev;
2786
2787         /* Save ievent for future reference */
2788         u32 events = gfar_read(&regs->ievent);
2789
2790         /* Clear IEVENT */
2791         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2792
2793         /* Magic Packet is not an error. */
2794         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2795             (events & IEVENT_MAG))
2796                 events &= ~IEVENT_MAG;
2797
2798         /* Hmm... */
2799         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2800                 netdev_dbg(dev,
2801                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2802                            events, gfar_read(&regs->imask));
2803
2804         /* Update the error counters */
2805         if (events & IEVENT_TXE) {
2806                 dev->stats.tx_errors++;
2807
2808                 if (events & IEVENT_LC)
2809                         dev->stats.tx_window_errors++;
2810                 if (events & IEVENT_CRL)
2811                         dev->stats.tx_aborted_errors++;
2812                 if (events & IEVENT_XFUN) {
2813                         netif_dbg(priv, tx_err, dev,
2814                                   "TX FIFO underrun, packet dropped\n");
2815                         dev->stats.tx_dropped++;
2816                         atomic64_inc(&priv->extra_stats.tx_underrun);
2817
2818                         schedule_work(&priv->reset_task);
2819                 }
2820                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2821         }
2822         if (events & IEVENT_BSY) {
2823                 dev->stats.rx_over_errors++;
2824                 atomic64_inc(&priv->extra_stats.rx_bsy);
2825
2826                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2827                           gfar_read(&regs->rstat));
2828         }
2829         if (events & IEVENT_BABR) {
2830                 dev->stats.rx_errors++;
2831                 atomic64_inc(&priv->extra_stats.rx_babr);
2832
2833                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2834         }
2835         if (events & IEVENT_EBERR) {
2836                 atomic64_inc(&priv->extra_stats.eberr);
2837                 netif_dbg(priv, rx_err, dev, "bus error\n");
2838         }
2839         if (events & IEVENT_RXC)
2840                 netif_dbg(priv, rx_status, dev, "control frame\n");
2841
2842         if (events & IEVENT_BABT) {
2843                 atomic64_inc(&priv->extra_stats.tx_babt);
2844                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2845         }
2846         return IRQ_HANDLED;
2847 }
2848
2849 /* The interrupt handler for devices with one interrupt */
2850 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2851 {
2852         struct gfar_priv_grp *gfargrp = grp_id;
2853
2854         /* Save ievent for future reference */
2855         u32 events = gfar_read(&gfargrp->regs->ievent);
2856
2857         /* Check for reception */
2858         if (events & IEVENT_RX_MASK)
2859                 gfar_receive(irq, grp_id);
2860
2861         /* Check for transmit completion */
2862         if (events & IEVENT_TX_MASK)
2863                 gfar_transmit(irq, grp_id);
2864
2865         /* Check for errors */
2866         if (events & IEVENT_ERR_MASK)
2867                 gfar_error(irq, grp_id);
2868
2869         return IRQ_HANDLED;
2870 }
2871
2872 #ifdef CONFIG_NET_POLL_CONTROLLER
2873 /* Polling 'interrupt' - used by things like netconsole to send skbs
2874  * without having to re-enable interrupts. It's not called while
2875  * the interrupt routine is executing.
2876  */
2877 static void gfar_netpoll(struct net_device *dev)
2878 {
2879         struct gfar_private *priv = netdev_priv(dev);
2880         int i;
2881
2882         /* If the device has multiple interrupts, run tx/rx */
2883         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2884                 for (i = 0; i < priv->num_grps; i++) {
2885                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2886
2887                         disable_irq(gfar_irq(grp, TX)->irq);
2888                         disable_irq(gfar_irq(grp, RX)->irq);
2889                         disable_irq(gfar_irq(grp, ER)->irq);
2890                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2891                         enable_irq(gfar_irq(grp, ER)->irq);
2892                         enable_irq(gfar_irq(grp, RX)->irq);
2893                         enable_irq(gfar_irq(grp, TX)->irq);
2894                 }
2895         } else {
2896                 for (i = 0; i < priv->num_grps; i++) {
2897                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2898
2899                         disable_irq(gfar_irq(grp, TX)->irq);
2900                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2901                         enable_irq(gfar_irq(grp, TX)->irq);
2902                 }
2903         }
2904 }
2905 #endif
2906
2907 static void free_grp_irqs(struct gfar_priv_grp *grp)
2908 {
2909         free_irq(gfar_irq(grp, TX)->irq, grp);
2910         free_irq(gfar_irq(grp, RX)->irq, grp);
2911         free_irq(gfar_irq(grp, ER)->irq, grp);
2912 }
2913
2914 static int register_grp_irqs(struct gfar_priv_grp *grp)
2915 {
2916         struct gfar_private *priv = grp->priv;
2917         struct net_device *dev = priv->ndev;
2918         int err;
2919
2920         /* If the device has multiple interrupts, register for
2921          * them.  Otherwise, only register for the one
2922          */
2923         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2924                 /* Install our interrupt handlers for Error,
2925                  * Transmit, and Receive
2926                  */
2927                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2928                                   gfar_irq(grp, ER)->name, grp);
2929                 if (err < 0) {
2930                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2931                                   gfar_irq(grp, ER)->irq);
2932
2933                         goto err_irq_fail;
2934                 }
2935                 enable_irq_wake(gfar_irq(grp, ER)->irq);
2936
2937                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2938                                   gfar_irq(grp, TX)->name, grp);
2939                 if (err < 0) {
2940                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2941                                   gfar_irq(grp, TX)->irq);
2942                         goto tx_irq_fail;
2943                 }
2944                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2945                                   gfar_irq(grp, RX)->name, grp);
2946                 if (err < 0) {
2947                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2948                                   gfar_irq(grp, RX)->irq);
2949                         goto rx_irq_fail;
2950                 }
2951                 enable_irq_wake(gfar_irq(grp, RX)->irq);
2952
2953         } else {
2954                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2955                                   gfar_irq(grp, TX)->name, grp);
2956                 if (err < 0) {
2957                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2958                                   gfar_irq(grp, TX)->irq);
2959                         goto err_irq_fail;
2960                 }
2961                 enable_irq_wake(gfar_irq(grp, TX)->irq);
2962         }
2963
2964         return 0;
2965
2966 rx_irq_fail:
2967         free_irq(gfar_irq(grp, TX)->irq, grp);
2968 tx_irq_fail:
2969         free_irq(gfar_irq(grp, ER)->irq, grp);
2970 err_irq_fail:
2971         return err;
2972
2973 }
2974
2975 static void gfar_free_irq(struct gfar_private *priv)
2976 {
2977         int i;
2978
2979         /* Free the IRQs */
2980         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2981                 for (i = 0; i < priv->num_grps; i++)
2982                         free_grp_irqs(&priv->gfargrp[i]);
2983         } else {
2984                 for (i = 0; i < priv->num_grps; i++)
2985                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2986                                  &priv->gfargrp[i]);
2987         }
2988 }
2989
2990 static int gfar_request_irq(struct gfar_private *priv)
2991 {
2992         int err, i, j;
2993
2994         for (i = 0; i < priv->num_grps; i++) {
2995                 err = register_grp_irqs(&priv->gfargrp[i]);
2996                 if (err) {
2997                         for (j = 0; j < i; j++)
2998                                 free_grp_irqs(&priv->gfargrp[j]);
2999                         return err;
3000                 }
3001         }
3002
3003         return 0;
3004 }
3005
3006 /* Called when something needs to use the ethernet device
3007  * Returns 0 for success.
3008  */
3009 static int gfar_enet_open(struct net_device *dev)
3010 {
3011         struct gfar_private *priv = netdev_priv(dev);
3012         int err;
3013
3014         err = init_phy(dev);
3015         if (err)
3016                 return err;
3017
3018         err = gfar_request_irq(priv);
3019         if (err)
3020                 return err;
3021
3022         err = startup_gfar(dev);
3023         if (err)
3024                 return err;
3025
3026         return err;
3027 }
3028
3029 /* Stops the kernel queue, and halts the controller */
3030 static int gfar_close(struct net_device *dev)
3031 {
3032         struct gfar_private *priv = netdev_priv(dev);
3033
3034         cancel_work_sync(&priv->reset_task);
3035         stop_gfar(dev);
3036
3037         /* Disconnect from the PHY */
3038         phy_disconnect(dev->phydev);
3039
3040         gfar_free_irq(priv);
3041
3042         return 0;
3043 }
3044
3045 /* Clears each of the exact match registers to zero, so they
3046  * don't interfere with normal reception
3047  */
3048 static void gfar_clear_exact_match(struct net_device *dev)
3049 {
3050         int idx;
3051         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3052
3053         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3054                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3055 }
3056
3057 /* Update the hash table based on the current list of multicast
3058  * addresses we subscribe to.  Also, change the promiscuity of
3059  * the device based on the flags (this function is called
3060  * whenever dev->flags is changed
3061  */
3062 static void gfar_set_multi(struct net_device *dev)
3063 {
3064         struct netdev_hw_addr *ha;
3065         struct gfar_private *priv = netdev_priv(dev);
3066         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3067         u32 tempval;
3068
3069         if (dev->flags & IFF_PROMISC) {
3070                 /* Set RCTRL to PROM */
3071                 tempval = gfar_read(&regs->rctrl);
3072                 tempval |= RCTRL_PROM;
3073                 gfar_write(&regs->rctrl, tempval);
3074         } else {
3075                 /* Set RCTRL to not PROM */
3076                 tempval = gfar_read(&regs->rctrl);
3077                 tempval &= ~(RCTRL_PROM);
3078                 gfar_write(&regs->rctrl, tempval);
3079         }
3080
3081         if (dev->flags & IFF_ALLMULTI) {
3082                 /* Set the hash to rx all multicast frames */
3083                 gfar_write(&regs->igaddr0, 0xffffffff);
3084                 gfar_write(&regs->igaddr1, 0xffffffff);
3085                 gfar_write(&regs->igaddr2, 0xffffffff);
3086                 gfar_write(&regs->igaddr3, 0xffffffff);
3087                 gfar_write(&regs->igaddr4, 0xffffffff);
3088                 gfar_write(&regs->igaddr5, 0xffffffff);
3089                 gfar_write(&regs->igaddr6, 0xffffffff);
3090                 gfar_write(&regs->igaddr7, 0xffffffff);
3091                 gfar_write(&regs->gaddr0, 0xffffffff);
3092                 gfar_write(&regs->gaddr1, 0xffffffff);
3093                 gfar_write(&regs->gaddr2, 0xffffffff);
3094                 gfar_write(&regs->gaddr3, 0xffffffff);
3095                 gfar_write(&regs->gaddr4, 0xffffffff);
3096                 gfar_write(&regs->gaddr5, 0xffffffff);
3097                 gfar_write(&regs->gaddr6, 0xffffffff);
3098                 gfar_write(&regs->gaddr7, 0xffffffff);
3099         } else {
3100                 int em_num;
3101                 int idx;
3102
3103                 /* zero out the hash */
3104                 gfar_write(&regs->igaddr0, 0x0);
3105                 gfar_write(&regs->igaddr1, 0x0);
3106                 gfar_write(&regs->igaddr2, 0x0);
3107                 gfar_write(&regs->igaddr3, 0x0);
3108                 gfar_write(&regs->igaddr4, 0x0);
3109                 gfar_write(&regs->igaddr5, 0x0);
3110                 gfar_write(&regs->igaddr6, 0x0);
3111                 gfar_write(&regs->igaddr7, 0x0);
3112                 gfar_write(&regs->gaddr0, 0x0);
3113                 gfar_write(&regs->gaddr1, 0x0);
3114                 gfar_write(&regs->gaddr2, 0x0);
3115                 gfar_write(&regs->gaddr3, 0x0);
3116                 gfar_write(&regs->gaddr4, 0x0);
3117                 gfar_write(&regs->gaddr5, 0x0);
3118                 gfar_write(&regs->gaddr6, 0x0);
3119                 gfar_write(&regs->gaddr7, 0x0);
3120
3121                 /* If we have extended hash tables, we need to
3122                  * clear the exact match registers to prepare for
3123                  * setting them
3124                  */
3125                 if (priv->extended_hash) {
3126                         em_num = GFAR_EM_NUM + 1;
3127                         gfar_clear_exact_match(dev);
3128                         idx = 1;
3129                 } else {
3130                         idx = 0;
3131                         em_num = 0;
3132                 }
3133
3134                 if (netdev_mc_empty(dev))
3135                         return;
3136
3137                 /* Parse the list, and set the appropriate bits */
3138                 netdev_for_each_mc_addr(ha, dev) {
3139                         if (idx < em_num) {
3140                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3141                                 idx++;
3142                         } else
3143                                 gfar_set_hash_for_addr(dev, ha->addr);
3144                 }
3145         }
3146 }
3147
3148 void gfar_mac_reset(struct gfar_private *priv)
3149 {
3150         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3151         u32 tempval;
3152
3153         /* Reset MAC layer */
3154         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3155
3156         /* We need to delay at least 3 TX clocks */
3157         udelay(3);
3158
3159         /* the soft reset bit is not self-resetting, so we need to
3160          * clear it before resuming normal operation
3161          */
3162         gfar_write(&regs->maccfg1, 0);
3163
3164         udelay(3);
3165
3166         gfar_rx_offload_en(priv);
3167
3168         /* Initialize the max receive frame/buffer lengths */
3169         gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3170         gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3171
3172         /* Initialize the Minimum Frame Length Register */
3173         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3174
3175         /* Initialize MACCFG2. */
3176         tempval = MACCFG2_INIT_SETTINGS;
3177
3178         /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3179          * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3180          * and by checking RxBD[LG] and discarding larger than MAXFRM.
3181          */
3182         if (gfar_has_errata(priv, GFAR_ERRATA_74))
3183                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3184
3185         gfar_write(&regs->maccfg2, tempval);
3186
3187         /* Clear mac addr hash registers */
3188         gfar_write(&regs->igaddr0, 0);
3189         gfar_write(&regs->igaddr1, 0);
3190         gfar_write(&regs->igaddr2, 0);
3191         gfar_write(&regs->igaddr3, 0);
3192         gfar_write(&regs->igaddr4, 0);
3193         gfar_write(&regs->igaddr5, 0);
3194         gfar_write(&regs->igaddr6, 0);
3195         gfar_write(&regs->igaddr7, 0);
3196
3197         gfar_write(&regs->gaddr0, 0);
3198         gfar_write(&regs->gaddr1, 0);
3199         gfar_write(&regs->gaddr2, 0);
3200         gfar_write(&regs->gaddr3, 0);
3201         gfar_write(&regs->gaddr4, 0);
3202         gfar_write(&regs->gaddr5, 0);
3203         gfar_write(&regs->gaddr6, 0);
3204         gfar_write(&regs->gaddr7, 0);
3205
3206         if (priv->extended_hash)
3207                 gfar_clear_exact_match(priv->ndev);
3208
3209         gfar_mac_rx_config(priv);
3210
3211         gfar_mac_tx_config(priv);
3212
3213         gfar_set_mac_address(priv->ndev);
3214
3215         gfar_set_multi(priv->ndev);
3216
3217         /* clear ievent and imask before configuring coalescing */
3218         gfar_ints_disable(priv);
3219
3220         /* Configure the coalescing support */
3221         gfar_configure_coalescing_all(priv);
3222 }
3223
3224 static void gfar_hw_init(struct gfar_private *priv)
3225 {
3226         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3227         u32 attrs;
3228
3229         /* Stop the DMA engine now, in case it was running before
3230          * (The firmware could have used it, and left it running).
3231          */
3232         gfar_halt(priv);
3233
3234         gfar_mac_reset(priv);
3235
3236         /* Zero out the rmon mib registers if it has them */
3237         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3238                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3239
3240                 /* Mask off the CAM interrupts */
3241                 gfar_write(&regs->rmon.cam1, 0xffffffff);
3242                 gfar_write(&regs->rmon.cam2, 0xffffffff);
3243         }
3244
3245         /* Initialize ECNTRL */
3246         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3247
3248         /* Set the extraction length and index */
3249         attrs = ATTRELI_EL(priv->rx_stash_size) |
3250                 ATTRELI_EI(priv->rx_stash_index);
3251
3252         gfar_write(&regs->attreli, attrs);
3253
3254         /* Start with defaults, and add stashing
3255          * depending on driver parameters
3256          */
3257         attrs = ATTR_INIT_SETTINGS;
3258
3259         if (priv->bd_stash_en)
3260                 attrs |= ATTR_BDSTASH;
3261
3262         if (priv->rx_stash_size != 0)
3263                 attrs |= ATTR_BUFSTASH;
3264
3265         gfar_write(&regs->attr, attrs);
3266
3267         /* FIFO configs */
3268         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3269         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3270         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3271
3272         /* Program the interrupt steering regs, only for MG devices */
3273         if (priv->num_grps > 1)
3274                 gfar_write_isrg(priv);
3275 }
3276
3277 static const struct net_device_ops gfar_netdev_ops = {
3278         .ndo_open = gfar_enet_open,
3279         .ndo_start_xmit = gfar_start_xmit,
3280         .ndo_stop = gfar_close,
3281         .ndo_change_mtu = gfar_change_mtu,
3282         .ndo_set_features = gfar_set_features,
3283         .ndo_set_rx_mode = gfar_set_multi,
3284         .ndo_tx_timeout = gfar_timeout,
3285         .ndo_do_ioctl = gfar_ioctl,
3286         .ndo_get_stats = gfar_get_stats,
3287         .ndo_change_carrier = fixed_phy_change_carrier,
3288         .ndo_set_mac_address = gfar_set_mac_addr,
3289         .ndo_validate_addr = eth_validate_addr,
3290 #ifdef CONFIG_NET_POLL_CONTROLLER
3291         .ndo_poll_controller = gfar_netpoll,
3292 #endif
3293 };
3294
3295 /* Set up the ethernet device structure, private data,
3296  * and anything else we need before we start
3297  */
3298 static int gfar_probe(struct platform_device *ofdev)
3299 {
3300         struct device_node *np = ofdev->dev.of_node;
3301         struct net_device *dev = NULL;
3302         struct gfar_private *priv = NULL;
3303         int err = 0, i;
3304
3305         err = gfar_of_init(ofdev, &dev);
3306
3307         if (err)
3308                 return err;
3309
3310         priv = netdev_priv(dev);
3311         priv->ndev = dev;
3312         priv->ofdev = ofdev;
3313         priv->dev = &ofdev->dev;
3314         SET_NETDEV_DEV(dev, &ofdev->dev);
3315
3316         INIT_WORK(&priv->reset_task, gfar_reset_task);
3317
3318         platform_set_drvdata(ofdev, priv);
3319
3320         gfar_detect_errata(priv);
3321
3322         /* Set the dev->base_addr to the gfar reg region */
3323         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3324
3325         /* Fill in the dev structure */
3326         dev->watchdog_timeo = TX_TIMEOUT;
3327         /* MTU range: 50 - 9586 */
3328         dev->mtu = 1500;
3329         dev->min_mtu = 50;
3330         dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3331         dev->netdev_ops = &gfar_netdev_ops;
3332         dev->ethtool_ops = &gfar_ethtool_ops;
3333
3334         /* Register for napi ...We are registering NAPI for each grp */
3335         for (i = 0; i < priv->num_grps; i++) {
3336                 if (priv->poll_mode == GFAR_SQ_POLLING) {
3337                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3338                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3339                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3340                                        gfar_poll_tx_sq, 2);
3341                 } else {
3342                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3343                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
3344                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3345                                        gfar_poll_tx, 2);
3346                 }
3347         }
3348
3349         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3350                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3351                                    NETIF_F_RXCSUM;
3352                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3353                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3354         }
3355
3356         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3357                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3358                                     NETIF_F_HW_VLAN_CTAG_RX;
3359                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3360         }
3361
3362         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3363
3364         gfar_init_addr_hash_table(priv);
3365
3366         /* Insert receive time stamps into padding alignment bytes, and
3367          * plus 2 bytes padding to ensure the cpu alignment.
3368          */
3369         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3370                 priv->padding = 8 + DEFAULT_PADDING;
3371
3372         if (dev->features & NETIF_F_IP_CSUM ||
3373             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3374                 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3375
3376         /* Initializing some of the rx/tx queue level parameters */
3377         for (i = 0; i < priv->num_tx_queues; i++) {
3378                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3379                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3380                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3381                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
3382         }
3383
3384         for (i = 0; i < priv->num_rx_queues; i++) {
3385                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3386                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3387                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3388         }
3389
3390         /* Always enable rx filer if available */
3391         priv->rx_filer_enable =
3392             (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3393         /* Enable most messages by default */
3394         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3395         /* use pritority h/w tx queue scheduling for single queue devices */
3396         if (priv->num_tx_queues == 1)
3397                 priv->prio_sched_en = 1;
3398
3399         set_bit(GFAR_DOWN, &priv->state);
3400
3401         gfar_hw_init(priv);
3402
3403         /* Carrier starts down, phylib will bring it up */
3404         netif_carrier_off(dev);
3405
3406         err = register_netdev(dev);
3407
3408         if (err) {
3409                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
3410                 goto register_fail;
3411         }
3412
3413         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3414                 priv->wol_supported |= GFAR_WOL_MAGIC;
3415
3416         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3417             priv->rx_filer_enable)
3418                 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3419
3420         device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3421
3422         /* fill out IRQ number and name fields */
3423         for (i = 0; i < priv->num_grps; i++) {
3424                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3425                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3426                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3427                                 dev->name, "_g", '0' + i, "_tx");
3428                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3429                                 dev->name, "_g", '0' + i, "_rx");
3430                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3431                                 dev->name, "_g", '0' + i, "_er");
3432                 } else
3433                         strcpy(gfar_irq(grp, TX)->name, dev->name);
3434         }
3435
3436         /* Initialize the filer table */
3437         gfar_init_filer_table(priv);
3438
3439         /* Print out the device info */
3440         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3441
3442         /* Even more device info helps when determining which kernel
3443          * provided which set of benchmarks.
3444          */
3445         netdev_info(dev, "Running with NAPI enabled\n");
3446         for (i = 0; i < priv->num_rx_queues; i++)
3447                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3448                             i, priv->rx_queue[i]->rx_ring_size);
3449         for (i = 0; i < priv->num_tx_queues; i++)
3450                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3451                             i, priv->tx_queue[i]->tx_ring_size);
3452
3453         return 0;
3454
3455 register_fail:
3456         if (of_phy_is_fixed_link(np))
3457                 of_phy_deregister_fixed_link(np);
3458         unmap_group_regs(priv);
3459         gfar_free_rx_queues(priv);
3460         gfar_free_tx_queues(priv);
3461         of_node_put(priv->phy_node);
3462         of_node_put(priv->tbi_node);
3463         free_gfar_dev(priv);
3464         return err;
3465 }
3466
3467 static int gfar_remove(struct platform_device *ofdev)
3468 {
3469         struct gfar_private *priv = platform_get_drvdata(ofdev);
3470         struct device_node *np = ofdev->dev.of_node;
3471
3472         of_node_put(priv->phy_node);
3473         of_node_put(priv->tbi_node);
3474
3475         unregister_netdev(priv->ndev);
3476
3477         if (of_phy_is_fixed_link(np))
3478                 of_phy_deregister_fixed_link(np);
3479
3480         unmap_group_regs(priv);
3481         gfar_free_rx_queues(priv);
3482         gfar_free_tx_queues(priv);
3483         free_gfar_dev(priv);
3484
3485         return 0;
3486 }
3487
3488 #ifdef CONFIG_PM
3489
3490 static void __gfar_filer_disable(struct gfar_private *priv)
3491 {
3492         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3493         u32 temp;
3494
3495         temp = gfar_read(&regs->rctrl);
3496         temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3497         gfar_write(&regs->rctrl, temp);
3498 }
3499
3500 static void __gfar_filer_enable(struct gfar_private *priv)
3501 {
3502         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3503         u32 temp;
3504
3505         temp = gfar_read(&regs->rctrl);
3506         temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3507         gfar_write(&regs->rctrl, temp);
3508 }
3509
3510 /* Filer rules implementing wol capabilities */
3511 static void gfar_filer_config_wol(struct gfar_private *priv)
3512 {
3513         unsigned int i;
3514         u32 rqfcr;
3515
3516         __gfar_filer_disable(priv);
3517
3518         /* clear the filer table, reject any packet by default */
3519         rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3520         for (i = 0; i <= MAX_FILER_IDX; i++)
3521                 gfar_write_filer(priv, i, rqfcr, 0);
3522
3523         i = 0;
3524         if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3525                 /* unicast packet, accept it */
3526                 struct net_device *ndev = priv->ndev;
3527                 /* get the default rx queue index */
3528                 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3529                 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3530                                     (ndev->dev_addr[1] << 8) |
3531                                      ndev->dev_addr[2];
3532
3533                 rqfcr = (qindex << 10) | RQFCR_AND |
3534                         RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3535
3536                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3537
3538                 dest_mac_addr = (ndev->dev_addr[3] << 16) |
3539                                 (ndev->dev_addr[4] << 8) |
3540                                  ndev->dev_addr[5];
3541                 rqfcr = (qindex << 10) | RQFCR_GPI |
3542                         RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3543                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3544         }
3545
3546         __gfar_filer_enable(priv);
3547 }
3548
3549 static void gfar_filer_restore_table(struct gfar_private *priv)
3550 {
3551         u32 rqfcr, rqfpr;
3552         unsigned int i;
3553
3554         __gfar_filer_disable(priv);
3555
3556         for (i = 0; i <= MAX_FILER_IDX; i++) {
3557                 rqfcr = priv->ftp_rqfcr[i];
3558                 rqfpr = priv->ftp_rqfpr[i];
3559                 gfar_write_filer(priv, i, rqfcr, rqfpr);
3560         }
3561
3562         __gfar_filer_enable(priv);
3563 }
3564
3565 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3566 static void gfar_start_wol_filer(struct gfar_private *priv)
3567 {
3568         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3569         u32 tempval;
3570         int i = 0;
3571
3572         /* Enable Rx hw queues */
3573         gfar_write(&regs->rqueue, priv->rqueue);
3574
3575         /* Initialize DMACTRL to have WWR and WOP */
3576         tempval = gfar_read(&regs->dmactrl);
3577         tempval |= DMACTRL_INIT_SETTINGS;
3578         gfar_write(&regs->dmactrl, tempval);
3579
3580         /* Make sure we aren't stopped */
3581         tempval = gfar_read(&regs->dmactrl);
3582         tempval &= ~DMACTRL_GRS;
3583         gfar_write(&regs->dmactrl, tempval);
3584
3585         for (i = 0; i < priv->num_grps; i++) {
3586                 regs = priv->gfargrp[i].regs;
3587                 /* Clear RHLT, so that the DMA starts polling now */
3588                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3589                 /* enable the Filer General Purpose Interrupt */
3590                 gfar_write(&regs->imask, IMASK_FGPI);
3591         }
3592
3593         /* Enable Rx DMA */
3594         tempval = gfar_read(&regs->maccfg1);
3595         tempval |= MACCFG1_RX_EN;
3596         gfar_write(&regs->maccfg1, tempval);
3597 }
3598
3599 static int gfar_suspend(struct device *dev)
3600 {
3601         struct gfar_private *priv = dev_get_drvdata(dev);
3602         struct net_device *ndev = priv->ndev;
3603         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3604         u32 tempval;
3605         u16 wol = priv->wol_opts;
3606
3607         if (!netif_running(ndev))
3608                 return 0;
3609
3610         disable_napi(priv);
3611         netif_tx_lock(ndev);
3612         netif_device_detach(ndev);
3613         netif_tx_unlock(ndev);
3614
3615         gfar_halt(priv);
3616
3617         if (wol & GFAR_WOL_MAGIC) {
3618                 /* Enable interrupt on Magic Packet */
3619                 gfar_write(&regs->imask, IMASK_MAG);
3620
3621                 /* Enable Magic Packet mode */
3622                 tempval = gfar_read(&regs->maccfg2);
3623                 tempval |= MACCFG2_MPEN;
3624                 gfar_write(&regs->maccfg2, tempval);
3625
3626                 /* re-enable the Rx block */
3627                 tempval = gfar_read(&regs->maccfg1);
3628                 tempval |= MACCFG1_RX_EN;
3629                 gfar_write(&regs->maccfg1, tempval);
3630
3631         } else if (wol & GFAR_WOL_FILER_UCAST) {
3632                 gfar_filer_config_wol(priv);
3633                 gfar_start_wol_filer(priv);
3634
3635         } else {
3636                 phy_stop(ndev->phydev);
3637         }
3638
3639         return 0;
3640 }
3641
3642 static int gfar_resume(struct device *dev)
3643 {
3644         struct gfar_private *priv = dev_get_drvdata(dev);
3645         struct net_device *ndev = priv->ndev;
3646         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3647         u32 tempval;
3648         u16 wol = priv->wol_opts;
3649
3650         if (!netif_running(ndev))
3651                 return 0;
3652
3653         if (wol & GFAR_WOL_MAGIC) {
3654                 /* Disable Magic Packet mode */
3655                 tempval = gfar_read(&regs->maccfg2);
3656                 tempval &= ~MACCFG2_MPEN;
3657                 gfar_write(&regs->maccfg2, tempval);
3658
3659         } else if (wol & GFAR_WOL_FILER_UCAST) {
3660                 /* need to stop rx only, tx is already down */
3661                 gfar_halt(priv);
3662                 gfar_filer_restore_table(priv);
3663
3664         } else {
3665                 phy_start(ndev->phydev);
3666         }
3667
3668         gfar_start(priv);
3669
3670         netif_device_attach(ndev);
3671         enable_napi(priv);
3672
3673         return 0;
3674 }
3675
3676 static int gfar_restore(struct device *dev)
3677 {
3678         struct gfar_private *priv = dev_get_drvdata(dev);
3679         struct net_device *ndev = priv->ndev;
3680
3681         if (!netif_running(ndev)) {
3682                 netif_device_attach(ndev);
3683
3684                 return 0;
3685         }
3686
3687         gfar_init_bds(ndev);
3688
3689         gfar_mac_reset(priv);
3690
3691         gfar_init_tx_rx_base(priv);
3692
3693         gfar_start(priv);
3694
3695         priv->oldlink = 0;
3696         priv->oldspeed = 0;
3697         priv->oldduplex = -1;
3698
3699         if (ndev->phydev)
3700                 phy_start(ndev->phydev);
3701
3702         netif_device_attach(ndev);
3703         enable_napi(priv);
3704
3705         return 0;
3706 }
3707
3708 static const struct dev_pm_ops gfar_pm_ops = {
3709         .suspend = gfar_suspend,
3710         .resume = gfar_resume,
3711         .freeze = gfar_suspend,
3712         .thaw = gfar_resume,
3713         .restore = gfar_restore,
3714 };
3715
3716 #define GFAR_PM_OPS (&gfar_pm_ops)
3717
3718 #else
3719
3720 #define GFAR_PM_OPS NULL
3721
3722 #endif
3723
3724 static const struct of_device_id gfar_match[] =
3725 {
3726         {
3727                 .type = "network",
3728                 .compatible = "gianfar",
3729         },
3730         {
3731                 .compatible = "fsl,etsec2",
3732         },
3733         {},
3734 };
3735 MODULE_DEVICE_TABLE(of, gfar_match);
3736
3737 /* Structure for a device driver */
3738 static struct platform_driver gfar_driver = {
3739         .driver = {
3740                 .name = "fsl-gianfar",
3741                 .pm = GFAR_PM_OPS,
3742                 .of_match_table = gfar_match,
3743         },
3744         .probe = gfar_probe,
3745         .remove = gfar_remove,
3746 };
3747
3748 module_platform_driver(gfar_driver);