bf846b42bc7479f3065991f6509356385acd0b5c
[linux-2.6-microblaze.git] / drivers / net / ethernet / freescale / fs_enet / fs_enet-main.c
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43 #include <linux/pgtable.h>
44
45 #include <linux/vmalloc.h>
46 #include <asm/irq.h>
47 #include <linux/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56
57 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
58 module_param(fs_enet_debug, int, 0);
59 MODULE_PARM_DESC(fs_enet_debug,
60                  "Freescale bitmapped debugging message enable value");
61
62 #define RX_RING_SIZE    32
63 #define TX_RING_SIZE    64
64
65 #ifdef CONFIG_NET_POLL_CONTROLLER
66 static void fs_enet_netpoll(struct net_device *dev);
67 #endif
68
69 static void fs_set_multicast_list(struct net_device *dev)
70 {
71         struct fs_enet_private *fep = netdev_priv(dev);
72
73         (*fep->ops->set_multicast_list)(dev);
74 }
75
76 static void skb_align(struct sk_buff *skb, int align)
77 {
78         int off = ((unsigned long)skb->data) & (align - 1);
79
80         if (off)
81                 skb_reserve(skb, align - off);
82 }
83
84 /* NAPI function */
85 static int fs_enet_napi(struct napi_struct *napi, int budget)
86 {
87         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
88         struct net_device *dev = fep->ndev;
89         const struct fs_platform_info *fpi = fep->fpi;
90         cbd_t __iomem *bdp;
91         struct sk_buff *skb, *skbn;
92         int received = 0;
93         u16 pkt_len, sc;
94         int curidx;
95         int dirtyidx, do_wake, do_restart;
96         int tx_left = TX_RING_SIZE;
97
98         spin_lock(&fep->tx_lock);
99         bdp = fep->dirty_tx;
100
101         /* clear status bits for napi*/
102         (*fep->ops->napi_clear_event)(dev);
103
104         do_wake = do_restart = 0;
105         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
106                 dirtyidx = bdp - fep->tx_bd_base;
107
108                 if (fep->tx_free == fep->tx_ring)
109                         break;
110
111                 skb = fep->tx_skbuff[dirtyidx];
112
113                 /*
114                  * Check for errors.
115                  */
116                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
117                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
118
119                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
120                                 dev->stats.tx_heartbeat_errors++;
121                         if (sc & BD_ENET_TX_LC) /* Late collision */
122                                 dev->stats.tx_window_errors++;
123                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
124                                 dev->stats.tx_aborted_errors++;
125                         if (sc & BD_ENET_TX_UN) /* Underrun */
126                                 dev->stats.tx_fifo_errors++;
127                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
128                                 dev->stats.tx_carrier_errors++;
129
130                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
131                                 dev->stats.tx_errors++;
132                                 do_restart = 1;
133                         }
134                 } else
135                         dev->stats.tx_packets++;
136
137                 if (sc & BD_ENET_TX_READY) {
138                         dev_warn(fep->dev,
139                                  "HEY! Enet xmit interrupt and TX_READY.\n");
140                 }
141
142                 /*
143                  * Deferred means some collisions occurred during transmit,
144                  * but we eventually sent the packet OK.
145                  */
146                 if (sc & BD_ENET_TX_DEF)
147                         dev->stats.collisions++;
148
149                 /* unmap */
150                 if (fep->mapped_as_page[dirtyidx])
151                         dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
152                                        CBDR_DATLEN(bdp), DMA_TO_DEVICE);
153                 else
154                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
155                                          CBDR_DATLEN(bdp), DMA_TO_DEVICE);
156
157                 /*
158                  * Free the sk buffer associated with this last transmit.
159                  */
160                 if (skb) {
161                         dev_kfree_skb(skb);
162                         fep->tx_skbuff[dirtyidx] = NULL;
163                 }
164
165                 /*
166                  * Update pointer to next buffer descriptor to be transmitted.
167                  */
168                 if ((sc & BD_ENET_TX_WRAP) == 0)
169                         bdp++;
170                 else
171                         bdp = fep->tx_bd_base;
172
173                 /*
174                  * Since we have freed up a buffer, the ring is no longer
175                  * full.
176                  */
177                 if (++fep->tx_free == MAX_SKB_FRAGS)
178                         do_wake = 1;
179                 tx_left--;
180         }
181
182         fep->dirty_tx = bdp;
183
184         if (do_restart)
185                 (*fep->ops->tx_restart)(dev);
186
187         spin_unlock(&fep->tx_lock);
188
189         if (do_wake)
190                 netif_wake_queue(dev);
191
192         /*
193          * First, grab all of the stats for the incoming packet.
194          * These get messed up if we get called due to a busy condition.
195          */
196         bdp = fep->cur_rx;
197
198         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
199                received < budget) {
200                 curidx = bdp - fep->rx_bd_base;
201
202                 /*
203                  * Since we have allocated space to hold a complete frame,
204                  * the last indicator should be set.
205                  */
206                 if ((sc & BD_ENET_RX_LAST) == 0)
207                         dev_warn(fep->dev, "rcv is not +last\n");
208
209                 /*
210                  * Check for errors.
211                  */
212                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
213                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
214                         dev->stats.rx_errors++;
215                         /* Frame too long or too short. */
216                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
217                                 dev->stats.rx_length_errors++;
218                         /* Frame alignment */
219                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
220                                 dev->stats.rx_frame_errors++;
221                         /* CRC Error */
222                         if (sc & BD_ENET_RX_CR)
223                                 dev->stats.rx_crc_errors++;
224                         /* FIFO overrun */
225                         if (sc & BD_ENET_RX_OV)
226                                 dev->stats.rx_crc_errors++;
227
228                         skbn = fep->rx_skbuff[curidx];
229                 } else {
230                         skb = fep->rx_skbuff[curidx];
231
232                         /*
233                          * Process the incoming frame.
234                          */
235                         dev->stats.rx_packets++;
236                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
237                         dev->stats.rx_bytes += pkt_len + 4;
238
239                         if (pkt_len <= fpi->rx_copybreak) {
240                                 /* +2 to make IP header L1 cache aligned */
241                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
242                                 if (skbn != NULL) {
243                                         skb_reserve(skbn, 2);   /* align IP header */
244                                         skb_copy_from_linear_data(skb,
245                                                       skbn->data, pkt_len);
246                                         swap(skb, skbn);
247                                         dma_sync_single_for_cpu(fep->dev,
248                                                 CBDR_BUFADDR(bdp),
249                                                 L1_CACHE_ALIGN(pkt_len),
250                                                 DMA_FROM_DEVICE);
251                                 }
252                         } else {
253                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
254
255                                 if (skbn) {
256                                         dma_addr_t dma;
257
258                                         skb_align(skbn, ENET_RX_ALIGN);
259
260                                         dma_unmap_single(fep->dev,
261                                                 CBDR_BUFADDR(bdp),
262                                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
263                                                 DMA_FROM_DEVICE);
264
265                                         dma = dma_map_single(fep->dev,
266                                                 skbn->data,
267                                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
268                                                 DMA_FROM_DEVICE);
269                                         CBDW_BUFADDR(bdp, dma);
270                                 }
271                         }
272
273                         if (skbn != NULL) {
274                                 skb_put(skb, pkt_len);  /* Make room */
275                                 skb->protocol = eth_type_trans(skb, dev);
276                                 received++;
277                                 netif_receive_skb(skb);
278                         } else {
279                                 dev->stats.rx_dropped++;
280                                 skbn = skb;
281                         }
282                 }
283
284                 fep->rx_skbuff[curidx] = skbn;
285                 CBDW_DATLEN(bdp, 0);
286                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
287
288                 /*
289                  * Update BD pointer to next entry.
290                  */
291                 if ((sc & BD_ENET_RX_WRAP) == 0)
292                         bdp++;
293                 else
294                         bdp = fep->rx_bd_base;
295
296                 (*fep->ops->rx_bd_done)(dev);
297         }
298
299         fep->cur_rx = bdp;
300
301         if (received < budget && tx_left) {
302                 /* done */
303                 napi_complete_done(napi, received);
304                 (*fep->ops->napi_enable)(dev);
305
306                 return received;
307         }
308
309         return budget;
310 }
311
312 /*
313  * The interrupt handler.
314  * This is called from the MPC core interrupt.
315  */
316 static irqreturn_t
317 fs_enet_interrupt(int irq, void *dev_id)
318 {
319         struct net_device *dev = dev_id;
320         struct fs_enet_private *fep;
321         const struct fs_platform_info *fpi;
322         u32 int_events;
323         u32 int_clr_events;
324         int nr, napi_ok;
325         int handled;
326
327         fep = netdev_priv(dev);
328         fpi = fep->fpi;
329
330         nr = 0;
331         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
332                 nr++;
333
334                 int_clr_events = int_events;
335                 int_clr_events &= ~fep->ev_napi;
336
337                 (*fep->ops->clear_int_events)(dev, int_clr_events);
338
339                 if (int_events & fep->ev_err)
340                         (*fep->ops->ev_error)(dev, int_events);
341
342                 if (int_events & fep->ev) {
343                         napi_ok = napi_schedule_prep(&fep->napi);
344
345                         (*fep->ops->napi_disable)(dev);
346                         (*fep->ops->clear_int_events)(dev, fep->ev_napi);
347
348                         /* NOTE: it is possible for FCCs in NAPI mode    */
349                         /* to submit a spurious interrupt while in poll  */
350                         if (napi_ok)
351                                 __napi_schedule(&fep->napi);
352                 }
353
354         }
355
356         handled = nr > 0;
357         return IRQ_RETVAL(handled);
358 }
359
360 void fs_init_bds(struct net_device *dev)
361 {
362         struct fs_enet_private *fep = netdev_priv(dev);
363         cbd_t __iomem *bdp;
364         struct sk_buff *skb;
365         int i;
366
367         fs_cleanup_bds(dev);
368
369         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
370         fep->tx_free = fep->tx_ring;
371         fep->cur_rx = fep->rx_bd_base;
372
373         /*
374          * Initialize the receive buffer descriptors.
375          */
376         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
377                 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
378                 if (skb == NULL)
379                         break;
380
381                 skb_align(skb, ENET_RX_ALIGN);
382                 fep->rx_skbuff[i] = skb;
383                 CBDW_BUFADDR(bdp,
384                         dma_map_single(fep->dev, skb->data,
385                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
386                                 DMA_FROM_DEVICE));
387                 CBDW_DATLEN(bdp, 0);    /* zero */
388                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
389                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
390         }
391         /*
392          * if we failed, fillup remainder
393          */
394         for (; i < fep->rx_ring; i++, bdp++) {
395                 fep->rx_skbuff[i] = NULL;
396                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
397         }
398
399         /*
400          * ...and the same for transmit.
401          */
402         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
403                 fep->tx_skbuff[i] = NULL;
404                 CBDW_BUFADDR(bdp, 0);
405                 CBDW_DATLEN(bdp, 0);
406                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
407         }
408 }
409
410 void fs_cleanup_bds(struct net_device *dev)
411 {
412         struct fs_enet_private *fep = netdev_priv(dev);
413         struct sk_buff *skb;
414         cbd_t __iomem *bdp;
415         int i;
416
417         /*
418          * Reset SKB transmit buffers.
419          */
420         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
421                 if ((skb = fep->tx_skbuff[i]) == NULL)
422                         continue;
423
424                 /* unmap */
425                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
426                                 skb->len, DMA_TO_DEVICE);
427
428                 fep->tx_skbuff[i] = NULL;
429                 dev_kfree_skb(skb);
430         }
431
432         /*
433          * Reset SKB receive buffers
434          */
435         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
436                 if ((skb = fep->rx_skbuff[i]) == NULL)
437                         continue;
438
439                 /* unmap */
440                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
441                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
442                         DMA_FROM_DEVICE);
443
444                 fep->rx_skbuff[i] = NULL;
445
446                 dev_kfree_skb(skb);
447         }
448 }
449
450 /**********************************************************************************/
451
452 #ifdef CONFIG_FS_ENET_MPC5121_FEC
453 /*
454  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
455  */
456 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
457                                                struct sk_buff *skb)
458 {
459         struct sk_buff *new_skb;
460
461         if (skb_linearize(skb))
462                 return NULL;
463
464         /* Alloc new skb */
465         new_skb = netdev_alloc_skb(dev, skb->len + 4);
466         if (!new_skb)
467                 return NULL;
468
469         /* Make sure new skb is properly aligned */
470         skb_align(new_skb, 4);
471
472         /* Copy data to new skb ... */
473         skb_copy_from_linear_data(skb, new_skb->data, skb->len);
474         skb_put(new_skb, skb->len);
475
476         /* ... and free an old one */
477         dev_kfree_skb_any(skb);
478
479         return new_skb;
480 }
481 #endif
482
483 static netdev_tx_t
484 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
485 {
486         struct fs_enet_private *fep = netdev_priv(dev);
487         cbd_t __iomem *bdp;
488         int curidx;
489         u16 sc;
490         int nr_frags;
491         skb_frag_t *frag;
492         int len;
493 #ifdef CONFIG_FS_ENET_MPC5121_FEC
494         int is_aligned = 1;
495         int i;
496
497         if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
498                 is_aligned = 0;
499         } else {
500                 nr_frags = skb_shinfo(skb)->nr_frags;
501                 frag = skb_shinfo(skb)->frags;
502                 for (i = 0; i < nr_frags; i++, frag++) {
503                         if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
504                                 is_aligned = 0;
505                                 break;
506                         }
507                 }
508         }
509
510         if (!is_aligned) {
511                 skb = tx_skb_align_workaround(dev, skb);
512                 if (!skb) {
513                         /*
514                          * We have lost packet due to memory allocation error
515                          * in tx_skb_align_workaround(). Hopefully original
516                          * skb is still valid, so try transmit it later.
517                          */
518                         return NETDEV_TX_BUSY;
519                 }
520         }
521 #endif
522
523         spin_lock(&fep->tx_lock);
524
525         /*
526          * Fill in a Tx ring entry
527          */
528         bdp = fep->cur_tx;
529
530         nr_frags = skb_shinfo(skb)->nr_frags;
531         if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
532                 netif_stop_queue(dev);
533                 spin_unlock(&fep->tx_lock);
534
535                 /*
536                  * Ooops.  All transmit buffers are full.  Bail out.
537                  * This should not happen, since the tx queue should be stopped.
538                  */
539                 dev_warn(fep->dev, "tx queue full!.\n");
540                 return NETDEV_TX_BUSY;
541         }
542
543         curidx = bdp - fep->tx_bd_base;
544
545         len = skb->len;
546         dev->stats.tx_bytes += len;
547         if (nr_frags)
548                 len -= skb->data_len;
549         fep->tx_free -= nr_frags + 1;
550         /*
551          * Push the data cache so the CPM does not get stale memory data.
552          */
553         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
554                                 skb->data, len, DMA_TO_DEVICE));
555         CBDW_DATLEN(bdp, len);
556
557         fep->mapped_as_page[curidx] = 0;
558         frag = skb_shinfo(skb)->frags;
559         while (nr_frags) {
560                 CBDC_SC(bdp,
561                         BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
562                         BD_ENET_TX_TC);
563                 CBDS_SC(bdp, BD_ENET_TX_READY);
564
565                 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
566                         bdp++, curidx++;
567                 else
568                         bdp = fep->tx_bd_base, curidx = 0;
569
570                 len = skb_frag_size(frag);
571                 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
572                                                    DMA_TO_DEVICE));
573                 CBDW_DATLEN(bdp, len);
574
575                 fep->tx_skbuff[curidx] = NULL;
576                 fep->mapped_as_page[curidx] = 1;
577
578                 frag++;
579                 nr_frags--;
580         }
581
582         /* Trigger transmission start */
583         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
584              BD_ENET_TX_LAST | BD_ENET_TX_TC;
585
586         /* note that while FEC does not have this bit
587          * it marks it as available for software use
588          * yay for hw reuse :) */
589         if (skb->len <= 60)
590                 sc |= BD_ENET_TX_PAD;
591         CBDC_SC(bdp, BD_ENET_TX_STATS);
592         CBDS_SC(bdp, sc);
593
594         /* Save skb pointer. */
595         fep->tx_skbuff[curidx] = skb;
596
597         /* If this was the last BD in the ring, start at the beginning again. */
598         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
599                 bdp++;
600         else
601                 bdp = fep->tx_bd_base;
602         fep->cur_tx = bdp;
603
604         if (fep->tx_free < MAX_SKB_FRAGS)
605                 netif_stop_queue(dev);
606
607         skb_tx_timestamp(skb);
608
609         (*fep->ops->tx_kickstart)(dev);
610
611         spin_unlock(&fep->tx_lock);
612
613         return NETDEV_TX_OK;
614 }
615
616 static void fs_timeout_work(struct work_struct *work)
617 {
618         struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
619                                                    timeout_work);
620         struct net_device *dev = fep->ndev;
621         unsigned long flags;
622         int wake = 0;
623
624         dev->stats.tx_errors++;
625
626         spin_lock_irqsave(&fep->lock, flags);
627
628         if (dev->flags & IFF_UP) {
629                 phy_stop(dev->phydev);
630                 (*fep->ops->stop)(dev);
631                 (*fep->ops->restart)(dev);
632         }
633
634         phy_start(dev->phydev);
635         wake = fep->tx_free >= MAX_SKB_FRAGS &&
636                !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
637         spin_unlock_irqrestore(&fep->lock, flags);
638
639         if (wake)
640                 netif_wake_queue(dev);
641 }
642
643 static void fs_timeout(struct net_device *dev, unsigned int txqueue)
644 {
645         struct fs_enet_private *fep = netdev_priv(dev);
646
647         schedule_work(&fep->timeout_work);
648 }
649
650 /*-----------------------------------------------------------------------------
651  *  generic link-change handler - should be sufficient for most cases
652  *-----------------------------------------------------------------------------*/
653 static void generic_adjust_link(struct  net_device *dev)
654 {
655         struct fs_enet_private *fep = netdev_priv(dev);
656         struct phy_device *phydev = dev->phydev;
657         int new_state = 0;
658
659         if (phydev->link) {
660                 /* adjust to duplex mode */
661                 if (phydev->duplex != fep->oldduplex) {
662                         new_state = 1;
663                         fep->oldduplex = phydev->duplex;
664                 }
665
666                 if (phydev->speed != fep->oldspeed) {
667                         new_state = 1;
668                         fep->oldspeed = phydev->speed;
669                 }
670
671                 if (!fep->oldlink) {
672                         new_state = 1;
673                         fep->oldlink = 1;
674                 }
675
676                 if (new_state)
677                         fep->ops->restart(dev);
678         } else if (fep->oldlink) {
679                 new_state = 1;
680                 fep->oldlink = 0;
681                 fep->oldspeed = 0;
682                 fep->oldduplex = -1;
683         }
684
685         if (new_state && netif_msg_link(fep))
686                 phy_print_status(phydev);
687 }
688
689
690 static void fs_adjust_link(struct net_device *dev)
691 {
692         struct fs_enet_private *fep = netdev_priv(dev);
693         unsigned long flags;
694
695         spin_lock_irqsave(&fep->lock, flags);
696
697         if(fep->ops->adjust_link)
698                 fep->ops->adjust_link(dev);
699         else
700                 generic_adjust_link(dev);
701
702         spin_unlock_irqrestore(&fep->lock, flags);
703 }
704
705 static int fs_init_phy(struct net_device *dev)
706 {
707         struct fs_enet_private *fep = netdev_priv(dev);
708         struct phy_device *phydev;
709         phy_interface_t iface;
710
711         fep->oldlink = 0;
712         fep->oldspeed = 0;
713         fep->oldduplex = -1;
714
715         iface = fep->fpi->use_rmii ?
716                 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
717
718         phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
719                                 iface);
720         if (!phydev) {
721                 dev_err(&dev->dev, "Could not attach to PHY\n");
722                 return -ENODEV;
723         }
724
725         return 0;
726 }
727
728 static int fs_enet_open(struct net_device *dev)
729 {
730         struct fs_enet_private *fep = netdev_priv(dev);
731         int r;
732         int err;
733
734         /* to initialize the fep->cur_rx,... */
735         /* not doing this, will cause a crash in fs_enet_napi */
736         fs_init_bds(fep->ndev);
737
738         napi_enable(&fep->napi);
739
740         /* Install our interrupt handler. */
741         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
742                         "fs_enet-mac", dev);
743         if (r != 0) {
744                 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
745                 napi_disable(&fep->napi);
746                 return -EINVAL;
747         }
748
749         err = fs_init_phy(dev);
750         if (err) {
751                 free_irq(fep->interrupt, dev);
752                 napi_disable(&fep->napi);
753                 return err;
754         }
755         phy_start(dev->phydev);
756
757         netif_start_queue(dev);
758
759         return 0;
760 }
761
762 static int fs_enet_close(struct net_device *dev)
763 {
764         struct fs_enet_private *fep = netdev_priv(dev);
765         unsigned long flags;
766
767         netif_stop_queue(dev);
768         netif_carrier_off(dev);
769         napi_disable(&fep->napi);
770         cancel_work_sync(&fep->timeout_work);
771         phy_stop(dev->phydev);
772
773         spin_lock_irqsave(&fep->lock, flags);
774         spin_lock(&fep->tx_lock);
775         (*fep->ops->stop)(dev);
776         spin_unlock(&fep->tx_lock);
777         spin_unlock_irqrestore(&fep->lock, flags);
778
779         /* release any irqs */
780         phy_disconnect(dev->phydev);
781         free_irq(fep->interrupt, dev);
782
783         return 0;
784 }
785
786 /*************************************************************************/
787
788 static void fs_get_drvinfo(struct net_device *dev,
789                             struct ethtool_drvinfo *info)
790 {
791         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
792 }
793
794 static int fs_get_regs_len(struct net_device *dev)
795 {
796         struct fs_enet_private *fep = netdev_priv(dev);
797
798         return (*fep->ops->get_regs_len)(dev);
799 }
800
801 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
802                          void *p)
803 {
804         struct fs_enet_private *fep = netdev_priv(dev);
805         unsigned long flags;
806         int r, len;
807
808         len = regs->len;
809
810         spin_lock_irqsave(&fep->lock, flags);
811         r = (*fep->ops->get_regs)(dev, p, &len);
812         spin_unlock_irqrestore(&fep->lock, flags);
813
814         if (r == 0)
815                 regs->version = 0;
816 }
817
818 static u32 fs_get_msglevel(struct net_device *dev)
819 {
820         struct fs_enet_private *fep = netdev_priv(dev);
821         return fep->msg_enable;
822 }
823
824 static void fs_set_msglevel(struct net_device *dev, u32 value)
825 {
826         struct fs_enet_private *fep = netdev_priv(dev);
827         fep->msg_enable = value;
828 }
829
830 static int fs_get_tunable(struct net_device *dev,
831                           const struct ethtool_tunable *tuna, void *data)
832 {
833         struct fs_enet_private *fep = netdev_priv(dev);
834         struct fs_platform_info *fpi = fep->fpi;
835         int ret = 0;
836
837         switch (tuna->id) {
838         case ETHTOOL_RX_COPYBREAK:
839                 *(u32 *)data = fpi->rx_copybreak;
840                 break;
841         default:
842                 ret = -EINVAL;
843                 break;
844         }
845
846         return ret;
847 }
848
849 static int fs_set_tunable(struct net_device *dev,
850                           const struct ethtool_tunable *tuna, const void *data)
851 {
852         struct fs_enet_private *fep = netdev_priv(dev);
853         struct fs_platform_info *fpi = fep->fpi;
854         int ret = 0;
855
856         switch (tuna->id) {
857         case ETHTOOL_RX_COPYBREAK:
858                 fpi->rx_copybreak = *(u32 *)data;
859                 break;
860         default:
861                 ret = -EINVAL;
862                 break;
863         }
864
865         return ret;
866 }
867
868 static const struct ethtool_ops fs_ethtool_ops = {
869         .get_drvinfo = fs_get_drvinfo,
870         .get_regs_len = fs_get_regs_len,
871         .nway_reset = phy_ethtool_nway_reset,
872         .get_link = ethtool_op_get_link,
873         .get_msglevel = fs_get_msglevel,
874         .set_msglevel = fs_set_msglevel,
875         .get_regs = fs_get_regs,
876         .get_ts_info = ethtool_op_get_ts_info,
877         .get_link_ksettings = phy_ethtool_get_link_ksettings,
878         .set_link_ksettings = phy_ethtool_set_link_ksettings,
879         .get_tunable = fs_get_tunable,
880         .set_tunable = fs_set_tunable,
881 };
882
883 extern int fs_mii_connect(struct net_device *dev);
884 extern void fs_mii_disconnect(struct net_device *dev);
885
886 /**************************************************************************************/
887
888 #ifdef CONFIG_FS_ENET_HAS_FEC
889 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
890 #else
891 #define IS_FEC(match) 0
892 #endif
893
894 static const struct net_device_ops fs_enet_netdev_ops = {
895         .ndo_open               = fs_enet_open,
896         .ndo_stop               = fs_enet_close,
897         .ndo_start_xmit         = fs_enet_start_xmit,
898         .ndo_tx_timeout         = fs_timeout,
899         .ndo_set_rx_mode        = fs_set_multicast_list,
900         .ndo_do_ioctl           = phy_do_ioctl_running,
901         .ndo_validate_addr      = eth_validate_addr,
902         .ndo_set_mac_address    = eth_mac_addr,
903 #ifdef CONFIG_NET_POLL_CONTROLLER
904         .ndo_poll_controller    = fs_enet_netpoll,
905 #endif
906 };
907
908 static const struct of_device_id fs_enet_match[];
909 static int fs_enet_probe(struct platform_device *ofdev)
910 {
911         const struct of_device_id *match;
912         struct net_device *ndev;
913         struct fs_enet_private *fep;
914         struct fs_platform_info *fpi;
915         const u32 *data;
916         struct clk *clk;
917         int err;
918         const u8 *mac_addr;
919         const char *phy_connection_type;
920         int privsize, len, ret = -ENODEV;
921
922         match = of_match_device(fs_enet_match, &ofdev->dev);
923         if (!match)
924                 return -EINVAL;
925
926         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
927         if (!fpi)
928                 return -ENOMEM;
929
930         if (!IS_FEC(match)) {
931                 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
932                 if (!data || len != 4)
933                         goto out_free_fpi;
934
935                 fpi->cp_command = *data;
936         }
937
938         fpi->rx_ring = RX_RING_SIZE;
939         fpi->tx_ring = TX_RING_SIZE;
940         fpi->rx_copybreak = 240;
941         fpi->napi_weight = 17;
942         fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
943         if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
944                 err = of_phy_register_fixed_link(ofdev->dev.of_node);
945                 if (err)
946                         goto out_free_fpi;
947
948                 /* In the case of a fixed PHY, the DT node associated
949                  * to the PHY is the Ethernet MAC DT node.
950                  */
951                 fpi->phy_node = of_node_get(ofdev->dev.of_node);
952         }
953
954         if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
955                 phy_connection_type = of_get_property(ofdev->dev.of_node,
956                                                 "phy-connection-type", NULL);
957                 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
958                         fpi->use_rmii = 1;
959         }
960
961         /* make clock lookup non-fatal (the driver is shared among platforms),
962          * but require enable to succeed when a clock was specified/found,
963          * keep a reference to the clock upon successful acquisition
964          */
965         clk = devm_clk_get(&ofdev->dev, "per");
966         if (!IS_ERR(clk)) {
967                 ret = clk_prepare_enable(clk);
968                 if (ret)
969                         goto out_deregister_fixed_link;
970
971                 fpi->clk_per = clk;
972         }
973
974         privsize = sizeof(*fep) +
975                    sizeof(struct sk_buff **) *
976                      (fpi->rx_ring + fpi->tx_ring) +
977                    sizeof(char) * fpi->tx_ring;
978
979         ndev = alloc_etherdev(privsize);
980         if (!ndev) {
981                 ret = -ENOMEM;
982                 goto out_put;
983         }
984
985         SET_NETDEV_DEV(ndev, &ofdev->dev);
986         platform_set_drvdata(ofdev, ndev);
987
988         fep = netdev_priv(ndev);
989         fep->dev = &ofdev->dev;
990         fep->ndev = ndev;
991         fep->fpi = fpi;
992         fep->ops = match->data;
993
994         ret = fep->ops->setup_data(ndev);
995         if (ret)
996                 goto out_free_dev;
997
998         fep->rx_skbuff = (struct sk_buff **)&fep[1];
999         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1000         fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1001                                        fpi->tx_ring);
1002
1003         spin_lock_init(&fep->lock);
1004         spin_lock_init(&fep->tx_lock);
1005
1006         mac_addr = of_get_mac_address(ofdev->dev.of_node);
1007         if (!IS_ERR(mac_addr))
1008                 ether_addr_copy(ndev->dev_addr, mac_addr);
1009
1010         ret = fep->ops->allocate_bd(ndev);
1011         if (ret)
1012                 goto out_cleanup_data;
1013
1014         fep->rx_bd_base = fep->ring_base;
1015         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1016
1017         fep->tx_ring = fpi->tx_ring;
1018         fep->rx_ring = fpi->rx_ring;
1019
1020         ndev->netdev_ops = &fs_enet_netdev_ops;
1021         ndev->watchdog_timeo = 2 * HZ;
1022         INIT_WORK(&fep->timeout_work, fs_timeout_work);
1023         netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1024
1025         ndev->ethtool_ops = &fs_ethtool_ops;
1026
1027         netif_carrier_off(ndev);
1028
1029         ndev->features |= NETIF_F_SG;
1030
1031         ret = register_netdev(ndev);
1032         if (ret)
1033                 goto out_free_bd;
1034
1035         pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1036
1037         return 0;
1038
1039 out_free_bd:
1040         fep->ops->free_bd(ndev);
1041 out_cleanup_data:
1042         fep->ops->cleanup_data(ndev);
1043 out_free_dev:
1044         free_netdev(ndev);
1045 out_put:
1046         clk_disable_unprepare(fpi->clk_per);
1047 out_deregister_fixed_link:
1048         of_node_put(fpi->phy_node);
1049         if (of_phy_is_fixed_link(ofdev->dev.of_node))
1050                 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1051 out_free_fpi:
1052         kfree(fpi);
1053         return ret;
1054 }
1055
1056 static int fs_enet_remove(struct platform_device *ofdev)
1057 {
1058         struct net_device *ndev = platform_get_drvdata(ofdev);
1059         struct fs_enet_private *fep = netdev_priv(ndev);
1060
1061         unregister_netdev(ndev);
1062
1063         fep->ops->free_bd(ndev);
1064         fep->ops->cleanup_data(ndev);
1065         dev_set_drvdata(fep->dev, NULL);
1066         of_node_put(fep->fpi->phy_node);
1067         clk_disable_unprepare(fep->fpi->clk_per);
1068         if (of_phy_is_fixed_link(ofdev->dev.of_node))
1069                 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1070         free_netdev(ndev);
1071         return 0;
1072 }
1073
1074 static const struct of_device_id fs_enet_match[] = {
1075 #ifdef CONFIG_FS_ENET_HAS_SCC
1076         {
1077                 .compatible = "fsl,cpm1-scc-enet",
1078                 .data = (void *)&fs_scc_ops,
1079         },
1080         {
1081                 .compatible = "fsl,cpm2-scc-enet",
1082                 .data = (void *)&fs_scc_ops,
1083         },
1084 #endif
1085 #ifdef CONFIG_FS_ENET_HAS_FCC
1086         {
1087                 .compatible = "fsl,cpm2-fcc-enet",
1088                 .data = (void *)&fs_fcc_ops,
1089         },
1090 #endif
1091 #ifdef CONFIG_FS_ENET_HAS_FEC
1092 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1093         {
1094                 .compatible = "fsl,mpc5121-fec",
1095                 .data = (void *)&fs_fec_ops,
1096         },
1097         {
1098                 .compatible = "fsl,mpc5125-fec",
1099                 .data = (void *)&fs_fec_ops,
1100         },
1101 #else
1102         {
1103                 .compatible = "fsl,pq1-fec-enet",
1104                 .data = (void *)&fs_fec_ops,
1105         },
1106 #endif
1107 #endif
1108         {}
1109 };
1110 MODULE_DEVICE_TABLE(of, fs_enet_match);
1111
1112 static struct platform_driver fs_enet_driver = {
1113         .driver = {
1114                 .name = "fs_enet",
1115                 .of_match_table = fs_enet_match,
1116         },
1117         .probe = fs_enet_probe,
1118         .remove = fs_enet_remove,
1119 };
1120
1121 #ifdef CONFIG_NET_POLL_CONTROLLER
1122 static void fs_enet_netpoll(struct net_device *dev)
1123 {
1124        disable_irq(dev->irq);
1125        fs_enet_interrupt(dev->irq, dev);
1126        enable_irq(dev->irq);
1127 }
1128 #endif
1129
1130 module_platform_driver(fs_enet_driver);