Merge tag 'pinctrl-v5.8-4' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46  * Wait for the device to become ready (signified by our "who am I" register
47  * returning a value other than all 1's).  Return an error if it doesn't
48  * become ready ...
49  */
50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52         const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53         const u32 notready1 = 0xffffffff;
54         const u32 notready2 = 0xeeeeeeee;
55         u32 val;
56
57         val = t4_read_reg(adapter, whoami);
58         if (val != notready1 && val != notready2)
59                 return 0;
60         msleep(500);
61         val = t4_read_reg(adapter, whoami);
62         if (val != notready1 && val != notready2)
63                 return 0;
64         else
65                 return -EIO;
66 }
67
68 /*
69  * Get the reply to a mailbox command and store it in @rpl in big-endian order
70  * (since the firmware data structures are specified in a big-endian layout).
71  */
72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73                          u32 mbox_data)
74 {
75         for ( ; size; size -= 8, mbox_data += 8)
76                 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80  *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81  *      @adapter: the adapter
82  *      @cmd: the Firmware Mailbox Command or Reply
83  *      @size: command length in bytes
84  *      @access: the time (ms) needed to access the Firmware Mailbox
85  *      @execute: the time (ms) the command spent being executed
86  */
87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88                              int size, int access, int execute)
89 {
90         struct mbox_cmd_log *log = adapter->mbox_log;
91         struct mbox_cmd *entry;
92         int i;
93
94         entry = mbox_cmd_log_entry(log, log->cursor++);
95         if (log->cursor == log->size)
96                 log->cursor = 0;
97
98         for (i = 0; i < size / 8; i++)
99                 entry->cmd[i] = be64_to_cpu(cmd[i]);
100         while (i < MBOX_LEN / 8)
101                 entry->cmd[i++] = 0;
102         entry->timestamp = jiffies;
103         entry->seqno = log->seqno++;
104         entry->access = access;
105         entry->execute = execute;
106 }
107
108 /**
109  *      t4vf_wr_mbox_core - send a command to FW through the mailbox
110  *      @adapter: the adapter
111  *      @cmd: the command to write
112  *      @size: command length in bytes
113  *      @rpl: where to optionally store the reply
114  *      @sleep_ok: if true we may sleep while awaiting command completion
115  *
116  *      Sends the given command to FW through the mailbox and waits for the
117  *      FW to execute the command.  If @rpl is not %NULL it is used to store
118  *      the FW's reply to the command.  The command and its optional reply
119  *      are of the same length.  FW can take up to 500 ms to respond.
120  *      @sleep_ok determines whether we may sleep while awaiting the response.
121  *      If sleeping is allowed we use progressive backoff otherwise we spin.
122  *
123  *      The return value is 0 on success or a negative errno on failure.  A
124  *      failure can happen either because we are not able to execute the
125  *      command or FW executes it but signals an error.  In the latter case
126  *      the return value is the error code indicated by FW (negated).
127  */
128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129                       void *rpl, bool sleep_ok)
130 {
131         static const int delay[] = {
132                 1, 1, 3, 5, 10, 10, 20, 50, 100
133         };
134
135         u16 access = 0, execute = 0;
136         u32 v, mbox_data;
137         int i, ms, delay_idx, ret;
138         const __be64 *p;
139         u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140         u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141         __be64 cmd_rpl[MBOX_LEN / 8];
142         struct mbox_list entry;
143
144         /* In T6, mailbox size is changed to 128 bytes to avoid
145          * invalidating the entire prefetch buffer.
146          */
147         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148                 mbox_data = T4VF_MBDATA_BASE_ADDR;
149         else
150                 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152         /*
153          * Commands must be multiples of 16 bytes in length and may not be
154          * larger than the size of the Mailbox Data register array.
155          */
156         if ((size % 16) != 0 ||
157             size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158                 return -EINVAL;
159
160         /* Queue ourselves onto the mailbox access list.  When our entry is at
161          * the front of the list, we have rights to access the mailbox.  So we
162          * wait [for a while] till we're at the front [or bail out with an
163          * EBUSY] ...
164          */
165         spin_lock(&adapter->mbox_lock);
166         list_add_tail(&entry.list, &adapter->mlist.list);
167         spin_unlock(&adapter->mbox_lock);
168
169         delay_idx = 0;
170         ms = delay[0];
171
172         for (i = 0; ; i += ms) {
173                 /* If we've waited too long, return a busy indication.  This
174                  * really ought to be based on our initial position in the
175                  * mailbox access list but this is a start.  We very rearely
176                  * contend on access to the mailbox ...
177                  */
178                 if (i > FW_CMD_MAX_TIMEOUT) {
179                         spin_lock(&adapter->mbox_lock);
180                         list_del(&entry.list);
181                         spin_unlock(&adapter->mbox_lock);
182                         ret = -EBUSY;
183                         t4vf_record_mbox(adapter, cmd, size, access, ret);
184                         return ret;
185                 }
186
187                 /* If we're at the head, break out and start the mailbox
188                  * protocol.
189                  */
190                 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191                                      list) == &entry)
192                         break;
193
194                 /* Delay for a bit before checking again ... */
195                 if (sleep_ok) {
196                         ms = delay[delay_idx];  /* last element may repeat */
197                         if (delay_idx < ARRAY_SIZE(delay) - 1)
198                                 delay_idx++;
199                         msleep(ms);
200                 } else {
201                         mdelay(ms);
202                 }
203         }
204
205         /*
206          * Loop trying to get ownership of the mailbox.  Return an error
207          * if we can't gain ownership.
208          */
209         v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211                 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212         if (v != MBOX_OWNER_DRV) {
213                 spin_lock(&adapter->mbox_lock);
214                 list_del(&entry.list);
215                 spin_unlock(&adapter->mbox_lock);
216                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217                 t4vf_record_mbox(adapter, cmd, size, access, ret);
218                 return ret;
219         }
220
221         /*
222          * Write the command array into the Mailbox Data register array and
223          * transfer ownership of the mailbox to the firmware.
224          *
225          * For the VFs, the Mailbox Data "registers" are actually backed by
226          * T4's "MA" interface rather than PL Registers (as is the case for
227          * the PFs).  Because these are in different coherency domains, the
228          * write to the VF's PL-register-backed Mailbox Control can race in
229          * front of the writes to the MA-backed VF Mailbox Data "registers".
230          * So we need to do a read-back on at least one byte of the VF Mailbox
231          * Data registers before doing the write to the VF Mailbox Control
232          * register.
233          */
234         if (cmd_op != FW_VI_STATS_CMD)
235                 t4vf_record_mbox(adapter, cmd, size, access, 0);
236         for (i = 0, p = cmd; i < size; i += 8)
237                 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238         t4_read_reg(adapter, mbox_data);         /* flush write */
239
240         t4_write_reg(adapter, mbox_ctl,
241                      MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242         t4_read_reg(adapter, mbox_ctl);          /* flush write */
243
244         /*
245          * Spin waiting for firmware to acknowledge processing our command.
246          */
247         delay_idx = 0;
248         ms = delay[0];
249
250         for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251                 if (sleep_ok) {
252                         ms = delay[delay_idx];
253                         if (delay_idx < ARRAY_SIZE(delay) - 1)
254                                 delay_idx++;
255                         msleep(ms);
256                 } else
257                         mdelay(ms);
258
259                 /*
260                  * If we're the owner, see if this is the reply we wanted.
261                  */
262                 v = t4_read_reg(adapter, mbox_ctl);
263                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264                         /*
265                          * If the Message Valid bit isn't on, revoke ownership
266                          * of the mailbox and continue waiting for our reply.
267                          */
268                         if ((v & MBMSGVALID_F) == 0) {
269                                 t4_write_reg(adapter, mbox_ctl,
270                                              MBOWNER_V(MBOX_OWNER_NONE));
271                                 continue;
272                         }
273
274                         /*
275                          * We now have our reply.  Extract the command return
276                          * value, copy the reply back to our caller's buffer
277                          * (if specified) and revoke ownership of the mailbox.
278                          * We return the (negated) firmware command return
279                          * code (this depends on FW_SUCCESS == 0).
280                          */
281                         get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283                         /* return value in low-order little-endian word */
284                         v = be64_to_cpu(cmd_rpl[0]);
285
286                         if (rpl) {
287                                 /* request bit in high-order BE word */
288                                 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289                                          & FW_CMD_REQUEST_F) == 0);
290                                 memcpy(rpl, cmd_rpl, size);
291                                 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292                                          & FW_CMD_REQUEST_F) != 0);
293                         }
294                         t4_write_reg(adapter, mbox_ctl,
295                                      MBOWNER_V(MBOX_OWNER_NONE));
296                         execute = i + ms;
297                         if (cmd_op != FW_VI_STATS_CMD)
298                                 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299                                                  execute);
300                         spin_lock(&adapter->mbox_lock);
301                         list_del(&entry.list);
302                         spin_unlock(&adapter->mbox_lock);
303                         return -FW_CMD_RETVAL_G(v);
304                 }
305         }
306
307         /* We timed out.  Return the error ... */
308         ret = -ETIMEDOUT;
309         t4vf_record_mbox(adapter, cmd, size, access, ret);
310         spin_lock(&adapter->mbox_lock);
311         list_del(&entry.list);
312         spin_unlock(&adapter->mbox_lock);
313         return ret;
314 }
315
316 /* In the Physical Function Driver Common Code, the ADVERT_MASK is used to
317  * mask out bits in the Advertised Port Capabilities which are managed via
318  * separate controls, like Pause Frames and Forward Error Correction.  In the
319  * Virtual Function Common Code, since we never perform L1 Configuration on
320  * the Link, the only things we really need to filter out are things which
321  * we decode and report separately like Speed.
322  */
323 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
324                      FW_PORT_CAP32_802_3_PAUSE | \
325                      FW_PORT_CAP32_802_3_ASM_DIR | \
326                      FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \
327                      FW_PORT_CAP32_ANEG)
328
329 /**
330  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
331  *      @caps16: a 16-bit Port Capabilities value
332  *
333  *      Returns the equivalent 32-bit Port Capabilities value.
334  */
335 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
336 {
337         fw_port_cap32_t caps32 = 0;
338
339         #define CAP16_TO_CAP32(__cap) \
340                 do { \
341                         if (caps16 & FW_PORT_CAP_##__cap) \
342                                 caps32 |= FW_PORT_CAP32_##__cap; \
343                 } while (0)
344
345         CAP16_TO_CAP32(SPEED_100M);
346         CAP16_TO_CAP32(SPEED_1G);
347         CAP16_TO_CAP32(SPEED_25G);
348         CAP16_TO_CAP32(SPEED_10G);
349         CAP16_TO_CAP32(SPEED_40G);
350         CAP16_TO_CAP32(SPEED_100G);
351         CAP16_TO_CAP32(FC_RX);
352         CAP16_TO_CAP32(FC_TX);
353         CAP16_TO_CAP32(ANEG);
354         CAP16_TO_CAP32(MDIAUTO);
355         CAP16_TO_CAP32(MDISTRAIGHT);
356         CAP16_TO_CAP32(FEC_RS);
357         CAP16_TO_CAP32(FEC_BASER_RS);
358         CAP16_TO_CAP32(802_3_PAUSE);
359         CAP16_TO_CAP32(802_3_ASM_DIR);
360
361         #undef CAP16_TO_CAP32
362
363         return caps32;
364 }
365
366 /* Translate Firmware Pause specification to Common Code */
367 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
368 {
369         enum cc_pause cc_pause = 0;
370
371         if (fw_pause & FW_PORT_CAP32_FC_RX)
372                 cc_pause |= PAUSE_RX;
373         if (fw_pause & FW_PORT_CAP32_FC_TX)
374                 cc_pause |= PAUSE_TX;
375
376         return cc_pause;
377 }
378
379 /* Translate Firmware Forward Error Correction specification to Common Code */
380 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
381 {
382         enum cc_fec cc_fec = 0;
383
384         if (fw_fec & FW_PORT_CAP32_FEC_RS)
385                 cc_fec |= FEC_RS;
386         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
387                 cc_fec |= FEC_BASER_RS;
388
389         return cc_fec;
390 }
391
392 /* Return the highest speed set in the port capabilities, in Mb/s. */
393 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
394 {
395         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
396                 do { \
397                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
398                                 return __speed; \
399                 } while (0)
400
401         TEST_SPEED_RETURN(400G, 400000);
402         TEST_SPEED_RETURN(200G, 200000);
403         TEST_SPEED_RETURN(100G, 100000);
404         TEST_SPEED_RETURN(50G,   50000);
405         TEST_SPEED_RETURN(40G,   40000);
406         TEST_SPEED_RETURN(25G,   25000);
407         TEST_SPEED_RETURN(10G,   10000);
408         TEST_SPEED_RETURN(1G,     1000);
409         TEST_SPEED_RETURN(100M,    100);
410
411         #undef TEST_SPEED_RETURN
412
413         return 0;
414 }
415
416 /**
417  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
418  *      @acaps: advertised Port Capabilities
419  *
420  *      Get the highest speed for the port from the advertised Port
421  *      Capabilities.  It will be either the highest speed from the list of
422  *      speeds or whatever user has set using ethtool.
423  */
424 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
425 {
426         #define TEST_SPEED_RETURN(__caps_speed) \
427                 do { \
428                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
429                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
430                 } while (0)
431
432         TEST_SPEED_RETURN(400G);
433         TEST_SPEED_RETURN(200G);
434         TEST_SPEED_RETURN(100G);
435         TEST_SPEED_RETURN(50G);
436         TEST_SPEED_RETURN(40G);
437         TEST_SPEED_RETURN(25G);
438         TEST_SPEED_RETURN(10G);
439         TEST_SPEED_RETURN(1G);
440         TEST_SPEED_RETURN(100M);
441
442         #undef TEST_SPEED_RETURN
443         return 0;
444 }
445
446 /*
447  *      init_link_config - initialize a link's SW state
448  *      @lc: structure holding the link state
449  *      @pcaps: link Port Capabilities
450  *      @acaps: link current Advertised Port Capabilities
451  *
452  *      Initializes the SW state maintained for each link, including the link's
453  *      capabilities and default speed/flow-control/autonegotiation settings.
454  */
455 static void init_link_config(struct link_config *lc,
456                              fw_port_cap32_t pcaps,
457                              fw_port_cap32_t acaps)
458 {
459         lc->pcaps = pcaps;
460         lc->lpacaps = 0;
461         lc->speed_caps = 0;
462         lc->speed = 0;
463         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
464
465         /* For Forward Error Control, we default to whatever the Firmware
466          * tells us the Link is currently advertising.
467          */
468         lc->auto_fec = fwcap_to_cc_fec(acaps);
469         lc->requested_fec = FEC_AUTO;
470         lc->fec = lc->auto_fec;
471
472         /* If the Port is capable of Auto-Negtotiation, initialize it as
473          * "enabled" and copy over all of the Physical Port Capabilities
474          * to the Advertised Port Capabilities.  Otherwise mark it as
475          * Auto-Negotiate disabled and select the highest supported speed
476          * for the link.  Note parallel structure in t4_link_l1cfg_core()
477          * and t4_handle_get_port_info().
478          */
479         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
480                 lc->acaps = acaps & ADVERT_MASK;
481                 lc->autoneg = AUTONEG_ENABLE;
482                 lc->requested_fc |= PAUSE_AUTONEG;
483         } else {
484                 lc->acaps = 0;
485                 lc->autoneg = AUTONEG_DISABLE;
486                 lc->speed_caps = fwcap_to_fwspeed(acaps);
487         }
488 }
489
490 /**
491  *      t4vf_port_init - initialize port hardware/software state
492  *      @adapter: the adapter
493  *      @pidx: the adapter port index
494  */
495 int t4vf_port_init(struct adapter *adapter, int pidx)
496 {
497         struct port_info *pi = adap2pinfo(adapter, pidx);
498         unsigned int fw_caps = adapter->params.fw_caps_support;
499         struct fw_vi_cmd vi_cmd, vi_rpl;
500         struct fw_port_cmd port_cmd, port_rpl;
501         enum fw_port_type port_type;
502         int mdio_addr;
503         fw_port_cap32_t pcaps, acaps;
504         int ret;
505
506         /* If we haven't yet determined whether we're talking to Firmware
507          * which knows the new 32-bit Port Capabilities, it's time to find
508          * out now.  This will also tell new Firmware to send us Port Status
509          * Updates using the new 32-bit Port Capabilities version of the
510          * Port Information message.
511          */
512         if (fw_caps == FW_CAPS_UNKNOWN) {
513                 u32 param, val;
514
515                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
516                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
517                 val = 1;
518                 ret = t4vf_set_params(adapter, 1, &param, &val);
519                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
520                 adapter->params.fw_caps_support = fw_caps;
521         }
522
523         /*
524          * Execute a VI Read command to get our Virtual Interface information
525          * like MAC address, etc.
526          */
527         memset(&vi_cmd, 0, sizeof(vi_cmd));
528         vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
529                                        FW_CMD_REQUEST_F |
530                                        FW_CMD_READ_F);
531         vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
532         vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
533         ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
534         if (ret != FW_SUCCESS)
535                 return ret;
536
537         BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
538         pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
539         t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
540
541         /*
542          * If we don't have read access to our port information, we're done
543          * now.  Otherwise, execute a PORT Read command to get it ...
544          */
545         if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
546                 return 0;
547
548         memset(&port_cmd, 0, sizeof(port_cmd));
549         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
550                                             FW_CMD_REQUEST_F |
551                                             FW_CMD_READ_F |
552                                             FW_PORT_CMD_PORTID_V(pi->port_id));
553         port_cmd.action_to_len16 = cpu_to_be32(
554                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
555                                      ? FW_PORT_ACTION_GET_PORT_INFO
556                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
557                 FW_LEN16(port_cmd));
558         ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
559         if (ret != FW_SUCCESS)
560                 return ret;
561
562         /* Extract the various fields from the Port Information message. */
563         if (fw_caps == FW_CAPS16) {
564                 u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
565
566                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
567                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
568                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
569                              : -1);
570                 pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
571                 acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
572         } else {
573                 u32 lstatus32 =
574                            be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
575
576                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
577                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
578                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
579                              : -1);
580                 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
581                 acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
582         }
583
584         pi->port_type = port_type;
585         pi->mdio_addr = mdio_addr;
586         pi->mod_type = FW_PORT_MOD_TYPE_NA;
587
588         init_link_config(&pi->link_cfg, pcaps, acaps);
589         return 0;
590 }
591
592 /**
593  *      t4vf_fw_reset - issue a reset to FW
594  *      @adapter: the adapter
595  *
596  *      Issues a reset command to FW.  For a Physical Function this would
597  *      result in the Firmware resetting all of its state.  For a Virtual
598  *      Function this just resets the state associated with the VF.
599  */
600 int t4vf_fw_reset(struct adapter *adapter)
601 {
602         struct fw_reset_cmd cmd;
603
604         memset(&cmd, 0, sizeof(cmd));
605         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
606                                       FW_CMD_WRITE_F);
607         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
608         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
609 }
610
611 /**
612  *      t4vf_query_params - query FW or device parameters
613  *      @adapter: the adapter
614  *      @nparams: the number of parameters
615  *      @params: the parameter names
616  *      @vals: the parameter values
617  *
618  *      Reads the values of firmware or device parameters.  Up to 7 parameters
619  *      can be queried at once.
620  */
621 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
622                              const u32 *params, u32 *vals)
623 {
624         int i, ret;
625         struct fw_params_cmd cmd, rpl;
626         struct fw_params_param *p;
627         size_t len16;
628
629         if (nparams > 7)
630                 return -EINVAL;
631
632         memset(&cmd, 0, sizeof(cmd));
633         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
634                                     FW_CMD_REQUEST_F |
635                                     FW_CMD_READ_F);
636         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
637                                       param[nparams].mnem), 16);
638         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
639         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
640                 p->mnem = htonl(*params++);
641
642         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
643         if (ret == 0)
644                 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
645                         *vals++ = be32_to_cpu(p->val);
646         return ret;
647 }
648
649 /**
650  *      t4vf_set_params - sets FW or device parameters
651  *      @adapter: the adapter
652  *      @nparams: the number of parameters
653  *      @params: the parameter names
654  *      @vals: the parameter values
655  *
656  *      Sets the values of firmware or device parameters.  Up to 7 parameters
657  *      can be specified at once.
658  */
659 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
660                     const u32 *params, const u32 *vals)
661 {
662         int i;
663         struct fw_params_cmd cmd;
664         struct fw_params_param *p;
665         size_t len16;
666
667         if (nparams > 7)
668                 return -EINVAL;
669
670         memset(&cmd, 0, sizeof(cmd));
671         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
672                                     FW_CMD_REQUEST_F |
673                                     FW_CMD_WRITE_F);
674         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
675                                       param[nparams]), 16);
676         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
677         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
678                 p->mnem = cpu_to_be32(*params++);
679                 p->val = cpu_to_be32(*vals++);
680         }
681
682         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
683 }
684
685 /**
686  *      t4vf_fl_pkt_align - return the fl packet alignment
687  *      @adapter: the adapter
688  *
689  *      T4 has a single field to specify the packing and padding boundary.
690  *      T5 onwards has separate fields for this and hence the alignment for
691  *      next packet offset is maximum of these two.  And T6 changes the
692  *      Ingress Padding Boundary Shift, so it's all a mess and it's best
693  *      if we put this in low-level Common Code ...
694  *
695  */
696 int t4vf_fl_pkt_align(struct adapter *adapter)
697 {
698         u32 sge_control, sge_control2;
699         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
700
701         sge_control = adapter->params.sge.sge_control;
702
703         /* T4 uses a single control field to specify both the PCIe Padding and
704          * Packing Boundary.  T5 introduced the ability to specify these
705          * separately.  The actual Ingress Packet Data alignment boundary
706          * within Packed Buffer Mode is the maximum of these two
707          * specifications.  (Note that it makes no real practical sense to
708          * have the Pading Boudary be larger than the Packing Boundary but you
709          * could set the chip up that way and, in fact, legacy T4 code would
710          * end doing this because it would initialize the Padding Boundary and
711          * leave the Packing Boundary initialized to 0 (16 bytes).)
712          * Padding Boundary values in T6 starts from 8B,
713          * where as it is 32B for T4 and T5.
714          */
715         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
716                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
717         else
718                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
719
720         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
721
722         fl_align = ingpadboundary;
723         if (!is_t4(adapter->params.chip)) {
724                 /* T5 has a different interpretation of one of the PCIe Packing
725                  * Boundary values.
726                  */
727                 sge_control2 = adapter->params.sge.sge_control2;
728                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
729                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
730                         ingpackboundary = 16;
731                 else
732                         ingpackboundary = 1 << (ingpackboundary +
733                                                 INGPACKBOUNDARY_SHIFT_X);
734
735                 fl_align = max(ingpadboundary, ingpackboundary);
736         }
737         return fl_align;
738 }
739
740 /**
741  *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
742  *      @adapter: the adapter
743  *      @qid: the Queue ID
744  *      @qtype: the Ingress or Egress type for @qid
745  *      @pbar2_qoffset: BAR2 Queue Offset
746  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
747  *
748  *      Returns the BAR2 SGE Queue Registers information associated with the
749  *      indicated Absolute Queue ID.  These are passed back in return value
750  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
751  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
752  *
753  *      This may return an error which indicates that BAR2 SGE Queue
754  *      registers aren't available.  If an error is not returned, then the
755  *      following values are returned:
756  *
757  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
758  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
759  *
760  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
761  *      require the "Inferred Queue ID" ability may be used.  E.g. the
762  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
763  *      then these "Inferred Queue ID" register may not be used.
764  */
765 int t4vf_bar2_sge_qregs(struct adapter *adapter,
766                         unsigned int qid,
767                         enum t4_bar2_qtype qtype,
768                         u64 *pbar2_qoffset,
769                         unsigned int *pbar2_qid)
770 {
771         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
772         u64 bar2_page_offset, bar2_qoffset;
773         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
774
775         /* T4 doesn't support BAR2 SGE Queue registers.
776          */
777         if (is_t4(adapter->params.chip))
778                 return -EINVAL;
779
780         /* Get our SGE Page Size parameters.
781          */
782         page_shift = adapter->params.sge.sge_vf_hps + 10;
783         page_size = 1 << page_shift;
784
785         /* Get the right Queues per Page parameters for our Queue.
786          */
787         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
788                      ? adapter->params.sge.sge_vf_eq_qpp
789                      : adapter->params.sge.sge_vf_iq_qpp);
790         qpp_mask = (1 << qpp_shift) - 1;
791
792         /* Calculate the basics of the BAR2 SGE Queue register area:
793          *  o The BAR2 page the Queue registers will be in.
794          *  o The BAR2 Queue ID.
795          *  o The BAR2 Queue ID Offset into the BAR2 page.
796          */
797         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
798         bar2_qid = qid & qpp_mask;
799         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
800
801         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
802          * hardware will infer the Absolute Queue ID simply from the writes to
803          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
804          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
805          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
806          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
807          * from the BAR2 Page and BAR2 Queue ID.
808          *
809          * One important censequence of this is that some BAR2 SGE registers
810          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
811          * there.  But other registers synthesize the SGE Queue ID purely
812          * from the writes to the registers -- the Write Combined Doorbell
813          * Buffer is a good example.  These BAR2 SGE Registers are only
814          * available for those BAR2 SGE Register areas where the SGE Absolute
815          * Queue ID can be inferred from simple writes.
816          */
817         bar2_qoffset = bar2_page_offset;
818         bar2_qinferred = (bar2_qid_offset < page_size);
819         if (bar2_qinferred) {
820                 bar2_qoffset += bar2_qid_offset;
821                 bar2_qid = 0;
822         }
823
824         *pbar2_qoffset = bar2_qoffset;
825         *pbar2_qid = bar2_qid;
826         return 0;
827 }
828
829 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
830 {
831         u32 whoami;
832
833         whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
834         return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
835                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
836 }
837
838 /**
839  *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
840  *      @adapter: the adapter
841  *
842  *      Retrieves various core SGE parameters in the form of hardware SGE
843  *      register values.  The caller is responsible for decoding these as
844  *      needed.  The SGE parameters are stored in @adapter->params.sge.
845  */
846 int t4vf_get_sge_params(struct adapter *adapter)
847 {
848         struct sge_params *sge_params = &adapter->params.sge;
849         u32 params[7], vals[7];
850         int v;
851
852         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
853                      FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
854         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
855                      FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
856         params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
857                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
858         params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
859                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
860         params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
861                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
862         params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
863                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
864         params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
865                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
866         v = t4vf_query_params(adapter, 7, params, vals);
867         if (v)
868                 return v;
869         sge_params->sge_control = vals[0];
870         sge_params->sge_host_page_size = vals[1];
871         sge_params->sge_fl_buffer_size[0] = vals[2];
872         sge_params->sge_fl_buffer_size[1] = vals[3];
873         sge_params->sge_timer_value_0_and_1 = vals[4];
874         sge_params->sge_timer_value_2_and_3 = vals[5];
875         sge_params->sge_timer_value_4_and_5 = vals[6];
876
877         /* T4 uses a single control field to specify both the PCIe Padding and
878          * Packing Boundary.  T5 introduced the ability to specify these
879          * separately with the Padding Boundary in SGE_CONTROL and and Packing
880          * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
881          * SGE_CONTROL in order to determine how ingress packet data will be
882          * laid out in Packed Buffer Mode.  Unfortunately, older versions of
883          * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
884          * failure grabbing it we throw an error since we can't figure out the
885          * right value.
886          */
887         if (!is_t4(adapter->params.chip)) {
888                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
889                              FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
890                 v = t4vf_query_params(adapter, 1, params, vals);
891                 if (v != FW_SUCCESS) {
892                         dev_err(adapter->pdev_dev,
893                                 "Unable to get SGE Control2; "
894                                 "probably old firmware.\n");
895                         return v;
896                 }
897                 sge_params->sge_control2 = vals[0];
898         }
899
900         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
901                      FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
902         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
903                      FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
904         v = t4vf_query_params(adapter, 2, params, vals);
905         if (v)
906                 return v;
907         sge_params->sge_ingress_rx_threshold = vals[0];
908         sge_params->sge_congestion_control = vals[1];
909
910         /* For T5 and later we want to use the new BAR2 Doorbells.
911          * Unfortunately, older firmware didn't allow the this register to be
912          * read.
913          */
914         if (!is_t4(adapter->params.chip)) {
915                 unsigned int pf, s_hps, s_qpp;
916
917                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
918                              FW_PARAMS_PARAM_XYZ_V(
919                                      SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
920                 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
921                              FW_PARAMS_PARAM_XYZ_V(
922                                      SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
923                 v = t4vf_query_params(adapter, 2, params, vals);
924                 if (v != FW_SUCCESS) {
925                         dev_warn(adapter->pdev_dev,
926                                  "Unable to get VF SGE Queues/Page; "
927                                  "probably old firmware.\n");
928                         return v;
929                 }
930                 sge_params->sge_egress_queues_per_page = vals[0];
931                 sge_params->sge_ingress_queues_per_page = vals[1];
932
933                 /* We need the Queues/Page for our VF.  This is based on the
934                  * PF from which we're instantiated and is indexed in the
935                  * register we just read. Do it once here so other code in
936                  * the driver can just use it.
937                  */
938                 pf = t4vf_get_pf_from_vf(adapter);
939                 s_hps = (HOSTPAGESIZEPF0_S +
940                          (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
941                 sge_params->sge_vf_hps =
942                         ((sge_params->sge_host_page_size >> s_hps)
943                          & HOSTPAGESIZEPF0_M);
944
945                 s_qpp = (QUEUESPERPAGEPF0_S +
946                          (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
947                 sge_params->sge_vf_eq_qpp =
948                         ((sge_params->sge_egress_queues_per_page >> s_qpp)
949                          & QUEUESPERPAGEPF0_M);
950                 sge_params->sge_vf_iq_qpp =
951                         ((sge_params->sge_ingress_queues_per_page >> s_qpp)
952                          & QUEUESPERPAGEPF0_M);
953         }
954
955         return 0;
956 }
957
958 /**
959  *      t4vf_get_vpd_params - retrieve device VPD paremeters
960  *      @adapter: the adapter
961  *
962  *      Retrives various device Vital Product Data parameters.  The parameters
963  *      are stored in @adapter->params.vpd.
964  */
965 int t4vf_get_vpd_params(struct adapter *adapter)
966 {
967         struct vpd_params *vpd_params = &adapter->params.vpd;
968         u32 params[7], vals[7];
969         int v;
970
971         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
972                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
973         v = t4vf_query_params(adapter, 1, params, vals);
974         if (v)
975                 return v;
976         vpd_params->cclk = vals[0];
977
978         return 0;
979 }
980
981 /**
982  *      t4vf_get_dev_params - retrieve device paremeters
983  *      @adapter: the adapter
984  *
985  *      Retrives various device parameters.  The parameters are stored in
986  *      @adapter->params.dev.
987  */
988 int t4vf_get_dev_params(struct adapter *adapter)
989 {
990         struct dev_params *dev_params = &adapter->params.dev;
991         u32 params[7], vals[7];
992         int v;
993
994         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
995                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
996         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
997                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
998         v = t4vf_query_params(adapter, 2, params, vals);
999         if (v)
1000                 return v;
1001         dev_params->fwrev = vals[0];
1002         dev_params->tprev = vals[1];
1003
1004         return 0;
1005 }
1006
1007 /**
1008  *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1009  *      @adapter: the adapter
1010  *
1011  *      Retrieves global RSS mode and parameters with which we have to live
1012  *      and stores them in the @adapter's RSS parameters.
1013  */
1014 int t4vf_get_rss_glb_config(struct adapter *adapter)
1015 {
1016         struct rss_params *rss = &adapter->params.rss;
1017         struct fw_rss_glb_config_cmd cmd, rpl;
1018         int v;
1019
1020         /*
1021          * Execute an RSS Global Configuration read command to retrieve
1022          * our RSS configuration.
1023          */
1024         memset(&cmd, 0, sizeof(cmd));
1025         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1026                                       FW_CMD_REQUEST_F |
1027                                       FW_CMD_READ_F);
1028         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1029         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1030         if (v)
1031                 return v;
1032
1033         /*
1034          * Transate the big-endian RSS Global Configuration into our
1035          * cpu-endian format based on the RSS mode.  We also do first level
1036          * filtering at this point to weed out modes which don't support
1037          * VF Drivers ...
1038          */
1039         rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1040                         be32_to_cpu(rpl.u.manual.mode_pkd));
1041         switch (rss->mode) {
1042         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1043                 u32 word = be32_to_cpu(
1044                                 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1045
1046                 rss->u.basicvirtual.synmapen =
1047                         ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1048                 rss->u.basicvirtual.syn4tupenipv6 =
1049                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1050                 rss->u.basicvirtual.syn2tupenipv6 =
1051                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1052                 rss->u.basicvirtual.syn4tupenipv4 =
1053                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1054                 rss->u.basicvirtual.syn2tupenipv4 =
1055                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1056
1057                 rss->u.basicvirtual.ofdmapen =
1058                         ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1059
1060                 rss->u.basicvirtual.tnlmapen =
1061                         ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1062                 rss->u.basicvirtual.tnlalllookup =
1063                         ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1064
1065                 rss->u.basicvirtual.hashtoeplitz =
1066                         ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1067
1068                 /* we need at least Tunnel Map Enable to be set */
1069                 if (!rss->u.basicvirtual.tnlmapen)
1070                         return -EINVAL;
1071                 break;
1072         }
1073
1074         default:
1075                 /* all unknown/unsupported RSS modes result in an error */
1076                 return -EINVAL;
1077         }
1078
1079         return 0;
1080 }
1081
1082 /**
1083  *      t4vf_get_vfres - retrieve VF resource limits
1084  *      @adapter: the adapter
1085  *
1086  *      Retrieves configured resource limits and capabilities for a virtual
1087  *      function.  The results are stored in @adapter->vfres.
1088  */
1089 int t4vf_get_vfres(struct adapter *adapter)
1090 {
1091         struct vf_resources *vfres = &adapter->params.vfres;
1092         struct fw_pfvf_cmd cmd, rpl;
1093         int v;
1094         u32 word;
1095
1096         /*
1097          * Execute PFVF Read command to get VF resource limits; bail out early
1098          * with error on command failure.
1099          */
1100         memset(&cmd, 0, sizeof(cmd));
1101         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1102                                     FW_CMD_REQUEST_F |
1103                                     FW_CMD_READ_F);
1104         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1105         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1106         if (v)
1107                 return v;
1108
1109         /*
1110          * Extract VF resource limits and return success.
1111          */
1112         word = be32_to_cpu(rpl.niqflint_niq);
1113         vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1114         vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1115
1116         word = be32_to_cpu(rpl.type_to_neq);
1117         vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1118         vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1119
1120         word = be32_to_cpu(rpl.tc_to_nexactf);
1121         vfres->tc = FW_PFVF_CMD_TC_G(word);
1122         vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1123         vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1124
1125         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1126         vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1127         vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1128         vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1129
1130         return 0;
1131 }
1132
1133 /**
1134  *      t4vf_read_rss_vi_config - read a VI's RSS configuration
1135  *      @adapter: the adapter
1136  *      @viid: Virtual Interface ID
1137  *      @config: pointer to host-native VI RSS Configuration buffer
1138  *
1139  *      Reads the Virtual Interface's RSS configuration information and
1140  *      translates it into CPU-native format.
1141  */
1142 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1143                             union rss_vi_config *config)
1144 {
1145         struct fw_rss_vi_config_cmd cmd, rpl;
1146         int v;
1147
1148         memset(&cmd, 0, sizeof(cmd));
1149         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1150                                      FW_CMD_REQUEST_F |
1151                                      FW_CMD_READ_F |
1152                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1153         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1154         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1155         if (v)
1156                 return v;
1157
1158         switch (adapter->params.rss.mode) {
1159         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1160                 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1161
1162                 config->basicvirtual.ip6fourtupen =
1163                         ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1164                 config->basicvirtual.ip6twotupen =
1165                         ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1166                 config->basicvirtual.ip4fourtupen =
1167                         ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1168                 config->basicvirtual.ip4twotupen =
1169                         ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1170                 config->basicvirtual.udpen =
1171                         ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1172                 config->basicvirtual.defaultq =
1173                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1174                 break;
1175         }
1176
1177         default:
1178                 return -EINVAL;
1179         }
1180
1181         return 0;
1182 }
1183
1184 /**
1185  *      t4vf_write_rss_vi_config - write a VI's RSS configuration
1186  *      @adapter: the adapter
1187  *      @viid: Virtual Interface ID
1188  *      @config: pointer to host-native VI RSS Configuration buffer
1189  *
1190  *      Write the Virtual Interface's RSS configuration information
1191  *      (translating it into firmware-native format before writing).
1192  */
1193 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1194                              union rss_vi_config *config)
1195 {
1196         struct fw_rss_vi_config_cmd cmd, rpl;
1197
1198         memset(&cmd, 0, sizeof(cmd));
1199         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1200                                      FW_CMD_REQUEST_F |
1201                                      FW_CMD_WRITE_F |
1202                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1203         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1204         switch (adapter->params.rss.mode) {
1205         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1206                 u32 word = 0;
1207
1208                 if (config->basicvirtual.ip6fourtupen)
1209                         word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1210                 if (config->basicvirtual.ip6twotupen)
1211                         word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1212                 if (config->basicvirtual.ip4fourtupen)
1213                         word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1214                 if (config->basicvirtual.ip4twotupen)
1215                         word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1216                 if (config->basicvirtual.udpen)
1217                         word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1218                 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1219                                 config->basicvirtual.defaultq);
1220                 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1221                 break;
1222         }
1223
1224         default:
1225                 return -EINVAL;
1226         }
1227
1228         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1229 }
1230
1231 /**
1232  *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1233  *      @adapter: the adapter
1234  *      @viid: Virtual Interface of RSS Table Slice
1235  *      @start: starting entry in the table to write
1236  *      @n: how many table entries to write
1237  *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1238  *      @nrspq: number of values in @rspq
1239  *
1240  *      Programs the selected part of the VI's RSS mapping table with the
1241  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1242  *      until the full table range is populated.
1243  *
1244  *      The caller must ensure the values in @rspq are in the range 0..1023.
1245  */
1246 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1247                           int start, int n, const u16 *rspq, int nrspq)
1248 {
1249         const u16 *rsp = rspq;
1250         const u16 *rsp_end = rspq+nrspq;
1251         struct fw_rss_ind_tbl_cmd cmd;
1252
1253         /*
1254          * Initialize firmware command template to write the RSS table.
1255          */
1256         memset(&cmd, 0, sizeof(cmd));
1257         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1258                                      FW_CMD_REQUEST_F |
1259                                      FW_CMD_WRITE_F |
1260                                      FW_RSS_IND_TBL_CMD_VIID_V(viid));
1261         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1262
1263         /*
1264          * Each firmware RSS command can accommodate up to 32 RSS Ingress
1265          * Queue Identifiers.  These Ingress Queue IDs are packed three to
1266          * a 32-bit word as 10-bit values with the upper remaining 2 bits
1267          * reserved.
1268          */
1269         while (n > 0) {
1270                 __be32 *qp = &cmd.iq0_to_iq2;
1271                 int nq = min(n, 32);
1272                 int ret;
1273
1274                 /*
1275                  * Set up the firmware RSS command header to send the next
1276                  * "nq" Ingress Queue IDs to the firmware.
1277                  */
1278                 cmd.niqid = cpu_to_be16(nq);
1279                 cmd.startidx = cpu_to_be16(start);
1280
1281                 /*
1282                  * "nq" more done for the start of the next loop.
1283                  */
1284                 start += nq;
1285                 n -= nq;
1286
1287                 /*
1288                  * While there are still Ingress Queue IDs to stuff into the
1289                  * current firmware RSS command, retrieve them from the
1290                  * Ingress Queue ID array and insert them into the command.
1291                  */
1292                 while (nq > 0) {
1293                         /*
1294                          * Grab up to the next 3 Ingress Queue IDs (wrapping
1295                          * around the Ingress Queue ID array if necessary) and
1296                          * insert them into the firmware RSS command at the
1297                          * current 3-tuple position within the commad.
1298                          */
1299                         u16 qbuf[3];
1300                         u16 *qbp = qbuf;
1301                         int nqbuf = min(3, nq);
1302
1303                         nq -= nqbuf;
1304                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
1305                         while (nqbuf) {
1306                                 nqbuf--;
1307                                 *qbp++ = *rsp++;
1308                                 if (rsp >= rsp_end)
1309                                         rsp = rspq;
1310                         }
1311                         *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1312                                             FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1313                                             FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1314                 }
1315
1316                 /*
1317                  * Send this portion of the RRS table update to the firmware;
1318                  * bail out on any errors.
1319                  */
1320                 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1321                 if (ret)
1322                         return ret;
1323         }
1324         return 0;
1325 }
1326
1327 /**
1328  *      t4vf_alloc_vi - allocate a virtual interface on a port
1329  *      @adapter: the adapter
1330  *      @port_id: physical port associated with the VI
1331  *
1332  *      Allocate a new Virtual Interface and bind it to the indicated
1333  *      physical port.  Return the new Virtual Interface Identifier on
1334  *      success, or a [negative] error number on failure.
1335  */
1336 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1337 {
1338         struct fw_vi_cmd cmd, rpl;
1339         int v;
1340
1341         /*
1342          * Execute a VI command to allocate Virtual Interface and return its
1343          * VIID.
1344          */
1345         memset(&cmd, 0, sizeof(cmd));
1346         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1347                                     FW_CMD_REQUEST_F |
1348                                     FW_CMD_WRITE_F |
1349                                     FW_CMD_EXEC_F);
1350         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1351                                          FW_VI_CMD_ALLOC_F);
1352         cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1353         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1354         if (v)
1355                 return v;
1356
1357         return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1358 }
1359
1360 /**
1361  *      t4vf_free_vi -- free a virtual interface
1362  *      @adapter: the adapter
1363  *      @viid: the virtual interface identifier
1364  *
1365  *      Free a previously allocated Virtual Interface.  Return an error on
1366  *      failure.
1367  */
1368 int t4vf_free_vi(struct adapter *adapter, int viid)
1369 {
1370         struct fw_vi_cmd cmd;
1371
1372         /*
1373          * Execute a VI command to free the Virtual Interface.
1374          */
1375         memset(&cmd, 0, sizeof(cmd));
1376         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1377                                     FW_CMD_REQUEST_F |
1378                                     FW_CMD_EXEC_F);
1379         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1380                                          FW_VI_CMD_FREE_F);
1381         cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1382         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1383 }
1384
1385 /**
1386  *      t4vf_enable_vi - enable/disable a virtual interface
1387  *      @adapter: the adapter
1388  *      @viid: the Virtual Interface ID
1389  *      @rx_en: 1=enable Rx, 0=disable Rx
1390  *      @tx_en: 1=enable Tx, 0=disable Tx
1391  *
1392  *      Enables/disables a virtual interface.
1393  */
1394 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1395                    bool rx_en, bool tx_en)
1396 {
1397         struct fw_vi_enable_cmd cmd;
1398
1399         memset(&cmd, 0, sizeof(cmd));
1400         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1401                                      FW_CMD_REQUEST_F |
1402                                      FW_CMD_EXEC_F |
1403                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1404         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1405                                        FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1406                                        FW_LEN16(cmd));
1407         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1408 }
1409
1410 /**
1411  *      t4vf_enable_pi - enable/disable a Port's virtual interface
1412  *      @adapter: the adapter
1413  *      @pi: the Port Information structure
1414  *      @rx_en: 1=enable Rx, 0=disable Rx
1415  *      @tx_en: 1=enable Tx, 0=disable Tx
1416  *
1417  *      Enables/disables a Port's virtual interface.  If the Virtual
1418  *      Interface enable/disable operation is successful, we notify the
1419  *      OS-specific code of a potential Link Status change via the OS Contract
1420  *      API t4vf_os_link_changed().
1421  */
1422 int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1423                    bool rx_en, bool tx_en)
1424 {
1425         int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1426
1427         if (ret)
1428                 return ret;
1429         t4vf_os_link_changed(adapter, pi->pidx,
1430                              rx_en && tx_en && pi->link_cfg.link_ok);
1431         return 0;
1432 }
1433
1434 /**
1435  *      t4vf_identify_port - identify a VI's port by blinking its LED
1436  *      @adapter: the adapter
1437  *      @viid: the Virtual Interface ID
1438  *      @nblinks: how many times to blink LED at 2.5 Hz
1439  *
1440  *      Identifies a VI's port by blinking its LED.
1441  */
1442 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1443                        unsigned int nblinks)
1444 {
1445         struct fw_vi_enable_cmd cmd;
1446
1447         memset(&cmd, 0, sizeof(cmd));
1448         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1449                                      FW_CMD_REQUEST_F |
1450                                      FW_CMD_EXEC_F |
1451                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1452         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1453                                        FW_LEN16(cmd));
1454         cmd.blinkdur = cpu_to_be16(nblinks);
1455         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1456 }
1457
1458 /**
1459  *      t4vf_set_rxmode - set Rx properties of a virtual interface
1460  *      @adapter: the adapter
1461  *      @viid: the VI id
1462  *      @mtu: the new MTU or -1 for no change
1463  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1464  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1465  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1466  *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1467  *              -1 no change
1468  *      @sleep_ok: call is allowed to sleep
1469  *
1470  *      Sets Rx properties of a virtual interface.
1471  */
1472 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1473                     int mtu, int promisc, int all_multi, int bcast, int vlanex,
1474                     bool sleep_ok)
1475 {
1476         struct fw_vi_rxmode_cmd cmd;
1477
1478         /* convert to FW values */
1479         if (mtu < 0)
1480                 mtu = FW_VI_RXMODE_CMD_MTU_M;
1481         if (promisc < 0)
1482                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1483         if (all_multi < 0)
1484                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1485         if (bcast < 0)
1486                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1487         if (vlanex < 0)
1488                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1489
1490         memset(&cmd, 0, sizeof(cmd));
1491         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1492                                      FW_CMD_REQUEST_F |
1493                                      FW_CMD_WRITE_F |
1494                                      FW_VI_RXMODE_CMD_VIID_V(viid));
1495         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1496         cmd.mtu_to_vlanexen =
1497                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1498                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1499                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1500                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1501                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1502         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1503 }
1504
1505 /**
1506  *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1507  *      @adapter: the adapter
1508  *      @viid: the Virtual Interface Identifier
1509  *      @free: if true any existing filters for this VI id are first removed
1510  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1511  *      @addr: the MAC address(es)
1512  *      @idx: where to store the index of each allocated filter
1513  *      @hash: pointer to hash address filter bitmap
1514  *      @sleep_ok: call is allowed to sleep
1515  *
1516  *      Allocates an exact-match filter for each of the supplied addresses and
1517  *      sets it to the corresponding address.  If @idx is not %NULL it should
1518  *      have at least @naddr entries, each of which will be set to the index of
1519  *      the filter allocated for the corresponding MAC address.  If a filter
1520  *      could not be allocated for an address its index is set to 0xffff.
1521  *      If @hash is not %NULL addresses that fail to allocate an exact filter
1522  *      are hashed and update the hash filter bitmap pointed at by @hash.
1523  *
1524  *      Returns a negative error number or the number of filters allocated.
1525  */
1526 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1527                         unsigned int naddr, const u8 **addr, u16 *idx,
1528                         u64 *hash, bool sleep_ok)
1529 {
1530         int offset, ret = 0;
1531         unsigned nfilters = 0;
1532         unsigned int rem = naddr;
1533         struct fw_vi_mac_cmd cmd, rpl;
1534         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1535
1536         if (naddr > max_naddr)
1537                 return -EINVAL;
1538
1539         for (offset = 0; offset < naddr; /**/) {
1540                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1541                                          ? rem
1542                                          : ARRAY_SIZE(cmd.u.exact));
1543                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1544                                                      u.exact[fw_naddr]), 16);
1545                 struct fw_vi_mac_exact *p;
1546                 int i;
1547
1548                 memset(&cmd, 0, sizeof(cmd));
1549                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1550                                              FW_CMD_REQUEST_F |
1551                                              FW_CMD_WRITE_F |
1552                                              (free ? FW_CMD_EXEC_F : 0) |
1553                                              FW_VI_MAC_CMD_VIID_V(viid));
1554                 cmd.freemacs_to_len16 =
1555                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1556                                     FW_CMD_LEN16_V(len16));
1557
1558                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1559                         p->valid_to_idx = cpu_to_be16(
1560                                 FW_VI_MAC_CMD_VALID_F |
1561                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1562                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1563                 }
1564
1565
1566                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1567                                         sleep_ok);
1568                 if (ret && ret != -ENOMEM)
1569                         break;
1570
1571                 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1572                         u16 index = FW_VI_MAC_CMD_IDX_G(
1573                                 be16_to_cpu(p->valid_to_idx));
1574
1575                         if (idx)
1576                                 idx[offset+i] =
1577                                         (index >= max_naddr
1578                                          ? 0xffff
1579                                          : index);
1580                         if (index < max_naddr)
1581                                 nfilters++;
1582                         else if (hash)
1583                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1584                 }
1585
1586                 free = false;
1587                 offset += fw_naddr;
1588                 rem -= fw_naddr;
1589         }
1590
1591         /*
1592          * If there were no errors or we merely ran out of room in our MAC
1593          * address arena, return the number of filters actually written.
1594          */
1595         if (ret == 0 || ret == -ENOMEM)
1596                 ret = nfilters;
1597         return ret;
1598 }
1599
1600 /**
1601  *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1602  *      @adapter: the adapter
1603  *      @viid: the VI id
1604  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1605  *      @addr: the MAC address(es)
1606  *      @sleep_ok: call is allowed to sleep
1607  *
1608  *      Frees the exact-match filter for each of the supplied addresses
1609  *
1610  *      Returns a negative error number or the number of filters freed.
1611  */
1612 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1613                        unsigned int naddr, const u8 **addr, bool sleep_ok)
1614 {
1615         int offset, ret = 0;
1616         struct fw_vi_mac_cmd cmd;
1617         unsigned int nfilters = 0;
1618         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1619         unsigned int rem = naddr;
1620
1621         if (naddr > max_naddr)
1622                 return -EINVAL;
1623
1624         for (offset = 0; offset < (int)naddr ; /**/) {
1625                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1626                                          rem : ARRAY_SIZE(cmd.u.exact));
1627                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1628                                                      u.exact[fw_naddr]), 16);
1629                 struct fw_vi_mac_exact *p;
1630                 int i;
1631
1632                 memset(&cmd, 0, sizeof(cmd));
1633                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1634                                      FW_CMD_REQUEST_F |
1635                                      FW_CMD_WRITE_F |
1636                                      FW_CMD_EXEC_V(0) |
1637                                      FW_VI_MAC_CMD_VIID_V(viid));
1638                 cmd.freemacs_to_len16 =
1639                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1640                                             FW_CMD_LEN16_V(len16));
1641
1642                 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1643                         p->valid_to_idx = cpu_to_be16(
1644                                 FW_VI_MAC_CMD_VALID_F |
1645                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1646                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1647                 }
1648
1649                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1650                                         sleep_ok);
1651                 if (ret)
1652                         break;
1653
1654                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1655                         u16 index = FW_VI_MAC_CMD_IDX_G(
1656                                                 be16_to_cpu(p->valid_to_idx));
1657
1658                         if (index < max_naddr)
1659                                 nfilters++;
1660                 }
1661
1662                 offset += fw_naddr;
1663                 rem -= fw_naddr;
1664         }
1665
1666         if (ret == 0)
1667                 ret = nfilters;
1668         return ret;
1669 }
1670
1671 /**
1672  *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1673  *      @adapter: the adapter
1674  *      @viid: the Virtual Interface ID
1675  *      @idx: index of existing filter for old value of MAC address, or -1
1676  *      @addr: the new MAC address value
1677  *      @persist: if idx < 0, the new MAC allocation should be persistent
1678  *
1679  *      Modifies an exact-match filter and sets it to the new MAC address.
1680  *      Note that in general it is not possible to modify the value of a given
1681  *      filter so the generic way to modify an address filter is to free the
1682  *      one being used by the old address value and allocate a new filter for
1683  *      the new address value.  @idx can be -1 if the address is a new
1684  *      addition.
1685  *
1686  *      Returns a negative error number or the index of the filter with the new
1687  *      MAC value.
1688  */
1689 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1690                     int idx, const u8 *addr, bool persist)
1691 {
1692         int ret;
1693         struct fw_vi_mac_cmd cmd, rpl;
1694         struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1695         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1696                                              u.exact[1]), 16);
1697         unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1698
1699         /*
1700          * If this is a new allocation, determine whether it should be
1701          * persistent (across a "freemacs" operation) or not.
1702          */
1703         if (idx < 0)
1704                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1705
1706         memset(&cmd, 0, sizeof(cmd));
1707         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1708                                      FW_CMD_REQUEST_F |
1709                                      FW_CMD_WRITE_F |
1710                                      FW_VI_MAC_CMD_VIID_V(viid));
1711         cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1712         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1713                                       FW_VI_MAC_CMD_IDX_V(idx));
1714         memcpy(p->macaddr, addr, sizeof(p->macaddr));
1715
1716         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1717         if (ret == 0) {
1718                 p = &rpl.u.exact[0];
1719                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1720                 if (ret >= max_mac_addr)
1721                         ret = -ENOMEM;
1722         }
1723         return ret;
1724 }
1725
1726 /**
1727  *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1728  *      @adapter: the adapter
1729  *      @viid: the Virtual Interface Identifier
1730  *      @ucast: whether the hash filter should also match unicast addresses
1731  *      @vec: the value to be written to the hash filter
1732  *      @sleep_ok: call is allowed to sleep
1733  *
1734  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1735  */
1736 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1737                        bool ucast, u64 vec, bool sleep_ok)
1738 {
1739         struct fw_vi_mac_cmd cmd;
1740         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1741                                              u.exact[0]), 16);
1742
1743         memset(&cmd, 0, sizeof(cmd));
1744         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1745                                      FW_CMD_REQUEST_F |
1746                                      FW_CMD_WRITE_F |
1747                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1748         cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1749                                             FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1750                                             FW_CMD_LEN16_V(len16));
1751         cmd.u.hash.hashvec = cpu_to_be64(vec);
1752         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1753 }
1754
1755 /**
1756  *      t4vf_get_port_stats - collect "port" statistics
1757  *      @adapter: the adapter
1758  *      @pidx: the port index
1759  *      @s: the stats structure to fill
1760  *
1761  *      Collect statistics for the "port"'s Virtual Interface.
1762  */
1763 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1764                         struct t4vf_port_stats *s)
1765 {
1766         struct port_info *pi = adap2pinfo(adapter, pidx);
1767         struct fw_vi_stats_vf fwstats;
1768         unsigned int rem = VI_VF_NUM_STATS;
1769         __be64 *fwsp = (__be64 *)&fwstats;
1770
1771         /*
1772          * Grab the Virtual Interface statistics a chunk at a time via mailbox
1773          * commands.  We could use a Work Request and get all of them at once
1774          * but that's an asynchronous interface which is awkward to use.
1775          */
1776         while (rem) {
1777                 unsigned int ix = VI_VF_NUM_STATS - rem;
1778                 unsigned int nstats = min(6U, rem);
1779                 struct fw_vi_stats_cmd cmd, rpl;
1780                 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1781                               sizeof(struct fw_vi_stats_ctl));
1782                 size_t len16 = DIV_ROUND_UP(len, 16);
1783                 int ret;
1784
1785                 memset(&cmd, 0, sizeof(cmd));
1786                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1787                                              FW_VI_STATS_CMD_VIID_V(pi->viid) |
1788                                              FW_CMD_REQUEST_F |
1789                                              FW_CMD_READ_F);
1790                 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1791                 cmd.u.ctl.nstats_ix =
1792                         cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1793                                     FW_VI_STATS_CMD_NSTATS_V(nstats));
1794                 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1795                 if (ret)
1796                         return ret;
1797
1798                 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1799
1800                 rem -= nstats;
1801                 fwsp += nstats;
1802         }
1803
1804         /*
1805          * Translate firmware statistics into host native statistics.
1806          */
1807         s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1808         s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1809         s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1810         s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1811         s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1812         s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1813         s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1814         s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1815         s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1816
1817         s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1818         s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1819         s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1820         s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1821         s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1822         s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1823
1824         s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1825
1826         return 0;
1827 }
1828
1829 /**
1830  *      t4vf_iq_free - free an ingress queue and its free lists
1831  *      @adapter: the adapter
1832  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1833  *      @iqid: ingress queue ID
1834  *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1835  *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1836  *
1837  *      Frees an ingress queue and its associated free lists, if any.
1838  */
1839 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1840                  unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1841 {
1842         struct fw_iq_cmd cmd;
1843
1844         memset(&cmd, 0, sizeof(cmd));
1845         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1846                                     FW_CMD_REQUEST_F |
1847                                     FW_CMD_EXEC_F);
1848         cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1849                                          FW_LEN16(cmd));
1850         cmd.type_to_iqandstindex =
1851                 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1852
1853         cmd.iqid = cpu_to_be16(iqid);
1854         cmd.fl0id = cpu_to_be16(fl0id);
1855         cmd.fl1id = cpu_to_be16(fl1id);
1856         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1857 }
1858
1859 /**
1860  *      t4vf_eth_eq_free - free an Ethernet egress queue
1861  *      @adapter: the adapter
1862  *      @eqid: egress queue ID
1863  *
1864  *      Frees an Ethernet egress queue.
1865  */
1866 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1867 {
1868         struct fw_eq_eth_cmd cmd;
1869
1870         memset(&cmd, 0, sizeof(cmd));
1871         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1872                                     FW_CMD_REQUEST_F |
1873                                     FW_CMD_EXEC_F);
1874         cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1875                                          FW_LEN16(cmd));
1876         cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1877         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1878 }
1879
1880 /**
1881  *      t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1882  *      @link_down_rc: Link Down Reason Code
1883  *
1884  *      Returns a string representation of the Link Down Reason Code.
1885  */
1886 static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1887 {
1888         static const char * const reason[] = {
1889                 "Link Down",
1890                 "Remote Fault",
1891                 "Auto-negotiation Failure",
1892                 "Reserved",
1893                 "Insufficient Airflow",
1894                 "Unable To Determine Reason",
1895                 "No RX Signal Detected",
1896                 "Reserved",
1897         };
1898
1899         if (link_down_rc >= ARRAY_SIZE(reason))
1900                 return "Bad Reason Code";
1901
1902         return reason[link_down_rc];
1903 }
1904
1905 /**
1906  *      t4vf_handle_get_port_info - process a FW reply message
1907  *      @pi: the port info
1908  *      @cmd: start of the FW message
1909  *
1910  *      Processes a GET_PORT_INFO FW reply message.
1911  */
1912 static void t4vf_handle_get_port_info(struct port_info *pi,
1913                                       const struct fw_port_cmd *cmd)
1914 {
1915         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1916         struct link_config *lc = &pi->link_cfg;
1917         struct adapter *adapter = pi->adapter;
1918         unsigned int speed, fc, fec, adv_fc;
1919         enum fw_port_module_type mod_type;
1920         int action, link_ok, linkdnrc;
1921         enum fw_port_type port_type;
1922
1923         /* Extract the various fields from the Port Information message. */
1924         action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1925         switch (action) {
1926         case FW_PORT_ACTION_GET_PORT_INFO: {
1927                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1928
1929                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1930                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1931                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1932                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1933                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1934                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1935                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1936
1937                 /* Unfortunately the format of the Link Status in the old
1938                  * 16-bit Port Information message isn't the same as the
1939                  * 16-bit Port Capabilities bitfield used everywhere else ...
1940                  */
1941                 linkattr = 0;
1942                 if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1943                         linkattr |= FW_PORT_CAP32_FC_RX;
1944                 if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1945                         linkattr |= FW_PORT_CAP32_FC_TX;
1946                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1947                         linkattr |= FW_PORT_CAP32_SPEED_100M;
1948                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1949                         linkattr |= FW_PORT_CAP32_SPEED_1G;
1950                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1951                         linkattr |= FW_PORT_CAP32_SPEED_10G;
1952                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1953                         linkattr |= FW_PORT_CAP32_SPEED_25G;
1954                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1955                         linkattr |= FW_PORT_CAP32_SPEED_40G;
1956                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1957                         linkattr |= FW_PORT_CAP32_SPEED_100G;
1958
1959                 break;
1960         }
1961
1962         case FW_PORT_ACTION_GET_PORT_INFO32: {
1963                 u32 lstatus32;
1964
1965                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1966                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1967                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1968                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1969                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1970                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1971                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
1972                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1973                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1974                 break;
1975         }
1976
1977         default:
1978                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1979                         be32_to_cpu(cmd->action_to_len16));
1980                 return;
1981         }
1982
1983         fec = fwcap_to_cc_fec(acaps);
1984         adv_fc = fwcap_to_cc_pause(acaps);
1985         fc = fwcap_to_cc_pause(linkattr);
1986         speed = fwcap_to_speed(linkattr);
1987
1988         if (mod_type != pi->mod_type) {
1989                 /* When a new Transceiver Module is inserted, the Firmware
1990                  * will examine any Forward Error Correction parameters
1991                  * present in the Transceiver Module i2c EPROM and determine
1992                  * the supported and recommended FEC settings from those
1993                  * based on IEEE 802.3 standards.  We always record the
1994                  * IEEE 802.3 recommended "automatic" settings.
1995                  */
1996                 lc->auto_fec = fec;
1997
1998                 /* Some versions of the early T6 Firmware "cheated" when
1999                  * handling different Transceiver Modules by changing the
2000                  * underlaying Port Type reported to the Host Drivers.  As
2001                  * such we need to capture whatever Port Type the Firmware
2002                  * sends us and record it in case it's different from what we
2003                  * were told earlier.  Unfortunately, since Firmware is
2004                  * forever, we'll need to keep this code here forever, but in
2005                  * later T6 Firmware it should just be an assignment of the
2006                  * same value already recorded.
2007                  */
2008                 pi->port_type = port_type;
2009
2010                 pi->mod_type = mod_type;
2011                 t4vf_os_portmod_changed(adapter, pi->pidx);
2012         }
2013
2014         if (link_ok != lc->link_ok || speed != lc->speed ||
2015             fc != lc->fc || adv_fc != lc->advertised_fc ||
2016             fec != lc->fec) {
2017                 /* something changed */
2018                 if (!link_ok && lc->link_ok) {
2019                         lc->link_down_rc = linkdnrc;
2020                         dev_warn_ratelimited(adapter->pdev_dev,
2021                                              "Port %d link down, reason: %s\n",
2022                                              pi->port_id,
2023                                              t4vf_link_down_rc_str(linkdnrc));
2024                 }
2025                 lc->link_ok = link_ok;
2026                 lc->speed = speed;
2027                 lc->advertised_fc = adv_fc;
2028                 lc->fc = fc;
2029                 lc->fec = fec;
2030
2031                 lc->pcaps = pcaps;
2032                 lc->lpacaps = lpacaps;
2033                 lc->acaps = acaps & ADVERT_MASK;
2034
2035                 /* If we're not physically capable of Auto-Negotiation, note
2036                  * this as Auto-Negotiation disabled.  Otherwise, we track
2037                  * what Auto-Negotiation settings we have.  Note parallel
2038                  * structure in init_link_config().
2039                  */
2040                 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2041                         lc->autoneg = AUTONEG_DISABLE;
2042                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2043                         lc->autoneg = AUTONEG_ENABLE;
2044                 } else {
2045                         /* When Autoneg is disabled, user needs to set
2046                          * single speed.
2047                          * Similar to cxgb4_ethtool.c: set_link_ksettings
2048                          */
2049                         lc->acaps = 0;
2050                         lc->speed_caps = fwcap_to_speed(acaps);
2051                         lc->autoneg = AUTONEG_DISABLE;
2052                 }
2053
2054                 t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2055         }
2056 }
2057
2058 /**
2059  *      t4vf_update_port_info - retrieve and update port information if changed
2060  *      @pi: the port_info
2061  *
2062  *      We issue a Get Port Information Command to the Firmware and, if
2063  *      successful, we check to see if anything is different from what we
2064  *      last recorded and update things accordingly.
2065  */
2066 int t4vf_update_port_info(struct port_info *pi)
2067 {
2068         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2069         struct fw_port_cmd port_cmd;
2070         int ret;
2071
2072         memset(&port_cmd, 0, sizeof(port_cmd));
2073         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2074                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
2075                                             FW_PORT_CMD_PORTID_V(pi->port_id));
2076         port_cmd.action_to_len16 = cpu_to_be32(
2077                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2078                                      ? FW_PORT_ACTION_GET_PORT_INFO
2079                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
2080                 FW_LEN16(port_cmd));
2081         ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2082                            &port_cmd);
2083         if (ret)
2084                 return ret;
2085         t4vf_handle_get_port_info(pi, &port_cmd);
2086         return 0;
2087 }
2088
2089 /**
2090  *      t4vf_handle_fw_rpl - process a firmware reply message
2091  *      @adapter: the adapter
2092  *      @rpl: start of the firmware message
2093  *
2094  *      Processes a firmware message, such as link state change messages.
2095  */
2096 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2097 {
2098         const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2099         u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2100
2101         switch (opcode) {
2102         case FW_PORT_CMD: {
2103                 /*
2104                  * Link/module state change message.
2105                  */
2106                 const struct fw_port_cmd *port_cmd =
2107                         (const struct fw_port_cmd *)rpl;
2108                 int action = FW_PORT_CMD_ACTION_G(
2109                         be32_to_cpu(port_cmd->action_to_len16));
2110                 int port_id, pidx;
2111
2112                 if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2113                     action != FW_PORT_ACTION_GET_PORT_INFO32) {
2114                         dev_err(adapter->pdev_dev,
2115                                 "Unknown firmware PORT reply action %x\n",
2116                                 action);
2117                         break;
2118                 }
2119
2120                 port_id = FW_PORT_CMD_PORTID_G(
2121                         be32_to_cpu(port_cmd->op_to_portid));
2122                 for_each_port(adapter, pidx) {
2123                         struct port_info *pi = adap2pinfo(adapter, pidx);
2124
2125                         if (pi->port_id != port_id)
2126                                 continue;
2127                         t4vf_handle_get_port_info(pi, port_cmd);
2128                 }
2129                 break;
2130         }
2131
2132         default:
2133                 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2134                         opcode);
2135         }
2136         return 0;
2137 }
2138
2139 int t4vf_prep_adapter(struct adapter *adapter)
2140 {
2141         int err;
2142         unsigned int chipid;
2143
2144         /* Wait for the device to become ready before proceeding ...
2145          */
2146         err = t4vf_wait_dev_ready(adapter);
2147         if (err)
2148                 return err;
2149
2150         /* Default port and clock for debugging in case we can't reach
2151          * firmware.
2152          */
2153         adapter->params.nports = 1;
2154         adapter->params.vfres.pmask = 1;
2155         adapter->params.vpd.cclk = 50000;
2156
2157         adapter->params.chip = 0;
2158         switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2159         case CHELSIO_T4:
2160                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2161                 adapter->params.arch.sge_fl_db = DBPRIO_F;
2162                 adapter->params.arch.mps_tcam_size =
2163                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
2164                 break;
2165
2166         case CHELSIO_T5:
2167                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2168                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2169                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2170                 adapter->params.arch.mps_tcam_size =
2171                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2172                 break;
2173
2174         case CHELSIO_T6:
2175                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2176                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2177                 adapter->params.arch.sge_fl_db = 0;
2178                 adapter->params.arch.mps_tcam_size =
2179                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2180                 break;
2181         }
2182
2183         return 0;
2184 }
2185
2186 /**
2187  *      t4vf_get_vf_mac_acl - Get the MAC address to be set to
2188  *                            the VI of this VF.
2189  *      @adapter: The adapter
2190  *      @pf: The pf associated with vf
2191  *      @naddr: the number of ACL MAC addresses returned in addr
2192  *      @addr: Placeholder for MAC addresses
2193  *
2194  *      Find the MAC address to be set to the VF's VI. The requested MAC address
2195  *      is from the host OS via callback in the PF driver.
2196  */
2197 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
2198                         unsigned int *naddr, u8 *addr)
2199 {
2200         struct fw_acl_mac_cmd cmd;
2201         int ret;
2202
2203         memset(&cmd, 0, sizeof(cmd));
2204         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2205                                     FW_CMD_REQUEST_F |
2206                                     FW_CMD_READ_F);
2207         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2208         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2209         if (ret)
2210                 return ret;
2211
2212         if (cmd.nmac < *naddr)
2213                 *naddr = cmd.nmac;
2214
2215         switch (pf) {
2216         case 3:
2217                 memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2218                 break;
2219         case 2:
2220                 memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2221                 break;
2222         case 1:
2223                 memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2224                 break;
2225         case 0:
2226                 memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2227                 break;
2228         }
2229
2230         return ret;
2231 }
2232
2233 /**
2234  *      t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2235  *                             the VI of this VF.
2236  *      @adapter: The adapter
2237  *
2238  *      Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2239  *      is from the host OS via callback in the PF driver.
2240  */
2241 int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2242 {
2243         struct fw_acl_vlan_cmd cmd;
2244         int vlan = 0;
2245         int ret = 0;
2246
2247         cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2248                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
2249
2250         /* Note: Do not enable the ACL */
2251         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2252
2253         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2254
2255         if (!ret)
2256                 vlan = be16_to_cpu(cmd.vlanid[0]);
2257
2258         return vlan;
2259 }