Merge tag 'ecryptfs-5.13-rc1-updates' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F) {
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201                 adap->flags &= ~CXGB4_FW_OK;
202         }
203 }
204
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209                          u32 mbox_addr)
210 {
211         for ( ; nflit; nflit--, mbox_addr += 8)
212                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220         struct fw_debug_cmd asrt;
221
222         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223         dev_alert(adap->pdev_dev,
224                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228
229 /**
230  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *      @adapter: the adapter
232  *      @cmd: the Firmware Mailbox Command or Reply
233  *      @size: command length in bytes
234  *      @access: the time (ms) needed to access the Firmware Mailbox
235  *      @execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238                            const __be64 *cmd, unsigned int size,
239                            int access, int execute)
240 {
241         struct mbox_cmd_log *log = adapter->mbox_log;
242         struct mbox_cmd *entry;
243         int i;
244
245         entry = mbox_cmd_log_entry(log, log->cursor++);
246         if (log->cursor == log->size)
247                 log->cursor = 0;
248
249         for (i = 0; i < size / 8; i++)
250                 entry->cmd[i] = be64_to_cpu(cmd[i]);
251         while (i < MBOX_LEN / 8)
252                 entry->cmd[i++] = 0;
253         entry->timestamp = jiffies;
254         entry->seqno = log->seqno++;
255         entry->access = access;
256         entry->execute = execute;
257 }
258
259 /**
260  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *      @adap: the adapter
262  *      @mbox: index of the mailbox to use
263  *      @cmd: the command to write
264  *      @size: command length in bytes
265  *      @rpl: where to optionally store the reply
266  *      @sleep_ok: if true we may sleep while awaiting command completion
267  *      @timeout: time to wait for command to finish before timing out
268  *
269  *      Sends the given command to FW through the selected mailbox and waits
270  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *      store the FW's reply to the command.  The command and its optional
272  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *      the response.  If sleeping is allowed we use progressive backoff
275  *      otherwise we spin.
276  *
277  *      The return value is 0 on success or a negative errno on failure.  A
278  *      failure can happen either because we are not able to execute the
279  *      command or FW executes it but signals an error.  In the latter case
280  *      the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283                             int size, void *rpl, bool sleep_ok, int timeout)
284 {
285         static const int delay[] = {
286                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287         };
288
289         struct mbox_list entry;
290         u16 access = 0;
291         u16 execute = 0;
292         u32 v;
293         u64 res;
294         int i, ms, delay_idx, ret;
295         const __be64 *p = cmd;
296         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298         __be64 cmd_rpl[MBOX_LEN / 8];
299         u32 pcie_fw;
300
301         if ((size & 15) || size > MBOX_LEN)
302                 return -EINVAL;
303
304         /*
305          * If the device is off-line, as in EEH, commands will time out.
306          * Fail them early so we don't waste time waiting.
307          */
308         if (adap->pdev->error_state != pci_channel_io_normal)
309                 return -EIO;
310
311         /* If we have a negative timeout, that implies that we can't sleep. */
312         if (timeout < 0) {
313                 sleep_ok = false;
314                 timeout = -timeout;
315         }
316
317         /* Queue ourselves onto the mailbox access list.  When our entry is at
318          * the front of the list, we have rights to access the mailbox.  So we
319          * wait [for a while] till we're at the front [or bail out with an
320          * EBUSY] ...
321          */
322         spin_lock_bh(&adap->mbox_lock);
323         list_add_tail(&entry.list, &adap->mlist.list);
324         spin_unlock_bh(&adap->mbox_lock);
325
326         delay_idx = 0;
327         ms = delay[0];
328
329         for (i = 0; ; i += ms) {
330                 /* If we've waited too long, return a busy indication.  This
331                  * really ought to be based on our initial position in the
332                  * mailbox access list but this is a start.  We very rarely
333                  * contend on access to the mailbox ...
334                  */
335                 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336                 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337                         spin_lock_bh(&adap->mbox_lock);
338                         list_del(&entry.list);
339                         spin_unlock_bh(&adap->mbox_lock);
340                         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341                         t4_record_mbox(adap, cmd, size, access, ret);
342                         return ret;
343                 }
344
345                 /* If we're at the head, break out and start the mailbox
346                  * protocol.
347                  */
348                 if (list_first_entry(&adap->mlist.list, struct mbox_list,
349                                      list) == &entry)
350                         break;
351
352                 /* Delay for a bit before checking again ... */
353                 if (sleep_ok) {
354                         ms = delay[delay_idx];  /* last element may repeat */
355                         if (delay_idx < ARRAY_SIZE(delay) - 1)
356                                 delay_idx++;
357                         msleep(ms);
358                 } else {
359                         mdelay(ms);
360                 }
361         }
362
363         /* Loop trying to get ownership of the mailbox.  Return an error
364          * if we can't gain ownership.
365          */
366         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369         if (v != MBOX_OWNER_DRV) {
370                 spin_lock_bh(&adap->mbox_lock);
371                 list_del(&entry.list);
372                 spin_unlock_bh(&adap->mbox_lock);
373                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374                 t4_record_mbox(adap, cmd, size, access, ret);
375                 return ret;
376         }
377
378         /* Copy in the new mailbox command and send it on its way ... */
379         t4_record_mbox(adap, cmd, size, access, 0);
380         for (i = 0; i < size; i += 8)
381                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382
383         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384         t4_read_reg(adap, ctl_reg);          /* flush write */
385
386         delay_idx = 0;
387         ms = delay[0];
388
389         for (i = 0;
390              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391              i < timeout;
392              i += ms) {
393                 if (sleep_ok) {
394                         ms = delay[delay_idx];  /* last element may repeat */
395                         if (delay_idx < ARRAY_SIZE(delay) - 1)
396                                 delay_idx++;
397                         msleep(ms);
398                 } else
399                         mdelay(ms);
400
401                 v = t4_read_reg(adap, ctl_reg);
402                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403                         if (!(v & MBMSGVALID_F)) {
404                                 t4_write_reg(adap, ctl_reg, 0);
405                                 continue;
406                         }
407
408                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409                         res = be64_to_cpu(cmd_rpl[0]);
410
411                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412                                 fw_asrt(adap, data_reg);
413                                 res = FW_CMD_RETVAL_V(EIO);
414                         } else if (rpl) {
415                                 memcpy(rpl, cmd_rpl, size);
416                         }
417
418                         t4_write_reg(adap, ctl_reg, 0);
419
420                         execute = i + ms;
421                         t4_record_mbox(adap, cmd_rpl,
422                                        MBOX_LEN, access, execute);
423                         spin_lock_bh(&adap->mbox_lock);
424                         list_del(&entry.list);
425                         spin_unlock_bh(&adap->mbox_lock);
426                         return -FW_CMD_RETVAL_G((int)res);
427                 }
428         }
429
430         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431         t4_record_mbox(adap, cmd, size, access, ret);
432         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433                 *(const u8 *)cmd, mbox);
434         t4_report_fw_error(adap);
435         spin_lock_bh(&adap->mbox_lock);
436         list_del(&entry.list);
437         spin_unlock_bh(&adap->mbox_lock);
438         t4_fatal_err(adap);
439         return ret;
440 }
441
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443                     void *rpl, bool sleep_ok)
444 {
445         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446                                        FW_CMD_MAX_TIMEOUT);
447 }
448
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451         u32 edc_ecc_err_addr_reg;
452         u32 rdata_reg;
453
454         if (is_t4(adap->params.chip)) {
455                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456                 return 0;
457         }
458         if (idx != 0 && idx != 1) {
459                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460                 return 0;
461         }
462
463         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465
466         CH_WARN(adap,
467                 "edc%d err addr 0x%x: 0x%x.\n",
468                 idx, edc_ecc_err_addr_reg,
469                 t4_read_reg(adap, edc_ecc_err_addr_reg));
470         CH_WARN(adap,
471                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472                 rdata_reg,
473                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
474                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482
483         return 0;
484 }
485
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498                       u32 *mem_base, u32 *mem_aperture)
499 {
500         u32 edc_size, mc_size, mem_reg;
501
502         /* Offset into the region of memory which is being accessed
503          * MEM_EDC0 = 0
504          * MEM_EDC1 = 1
505          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507          * MEM_HMA  = 4
508          */
509         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510         if (mtype == MEM_HMA) {
511                 *mem_off = 2 * (edc_size * 1024 * 1024);
512         } else if (mtype != MEM_MC1) {
513                 *mem_off = (mtype * (edc_size * 1024 * 1024));
514         } else {
515                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516                                                       MA_EXT_MEMORY0_BAR_A));
517                 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518         }
519
520         /* Each PCI-E Memory Window is programmed with a window size -- or
521          * "aperture" -- which controls the granularity of its mapping onto
522          * adapter memory.  We need to grab that aperture in order to know
523          * how to use the specified window.  The window is also programmed
524          * with the base address of the Memory Window in BAR0's address
525          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526          * the address is relative to BAR0.
527          */
528         mem_reg = t4_read_reg(adap,
529                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530                                                   win));
531         /* a dead adapter will return 0xffffffff for PIO reads */
532         if (mem_reg == 0xffffffff)
533                 return -ENXIO;
534
535         *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536         *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537         if (is_t4(adap->params.chip))
538                 *mem_base -= adap->t4_bar0;
539
540         return 0;
541 }
542
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553         t4_write_reg(adap,
554                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555                      addr);
556         /* Read it back to ensure that changes propagate before we
557          * attempt to use the new value.
558          */
559         t4_read_reg(adap,
560                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574                            int dir)
575 {
576         union {
577                 u32 word;
578                 char byte[4];
579         } last;
580         unsigned char *bp;
581         int i;
582
583         if (dir == T4_MEMORY_READ) {
584                 last.word = le32_to_cpu((__force __le32)
585                                         t4_read_reg(adap, addr));
586                 for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587                         bp[i] = last.byte[i];
588         } else {
589                 last.word = *buf;
590                 for (i = off; i < 4; i++)
591                         last.byte[i] = 0;
592                 t4_write_reg(adap, addr,
593                              (__force u32)cpu_to_le32(last.word));
594         }
595 }
596
597 /**
598  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *      @adap: the adapter
600  *      @win: PCI-E Memory Window to use
601  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *      @addr: address within indicated memory type
603  *      @len: amount of memory to transfer
604  *      @hbuf: host memory buffer
605  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *      firmware memory address and host buffer must be aligned on 32-bit
609  *      boundaries; the length may be arbitrary.  The memory is transferred as
610  *      a raw byte sequence from/to the firmware's memory.  If this memory
611  *      contains data structures which contain multi-byte integers, it's the
612  *      caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615                  u32 len, void *hbuf, int dir)
616 {
617         u32 pos, offset, resid, memoffset;
618         u32 win_pf, mem_aperture, mem_base;
619         u32 *buf;
620         int ret;
621
622         /* Argument sanity checks ...
623          */
624         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625                 return -EINVAL;
626         buf = (u32 *)hbuf;
627
628         /* It's convenient to be able to handle lengths which aren't a
629          * multiple of 32-bits because we often end up transferring files to
630          * the firmware.  So we'll handle that by normalizing the length here
631          * and then handling any residual transfer at the end.
632          */
633         resid = len & 0x3;
634         len -= resid;
635
636         ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637                                 &mem_aperture);
638         if (ret)
639                 return ret;
640
641         /* Determine the PCIE_MEM_ACCESS_OFFSET */
642         addr = addr + memoffset;
643
644         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645
646         /* Calculate our initial PCI-E Memory Window Position and Offset into
647          * that Window.
648          */
649         pos = addr & ~(mem_aperture - 1);
650         offset = addr - pos;
651
652         /* Set up initial PCI-E Memory Window to cover the start of our
653          * transfer.
654          */
655         t4_memory_update_win(adap, win, pos | win_pf);
656
657         /* Transfer data to/from the adapter as long as there's an integral
658          * number of 32-bit transfers to complete.
659          *
660          * A note on Endianness issues:
661          *
662          * The "register" reads and writes below from/to the PCI-E Memory
663          * Window invoke the standard adapter Big-Endian to PCI-E Link
664          * Little-Endian "swizzel."  As a result, if we have the following
665          * data in adapter memory:
666          *
667          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668          *     Address:      i+0  i+1  i+2  i+3
669          *
670          * Then a read of the adapter memory via the PCI-E Memory Window
671          * will yield:
672          *
673          *     x = readl(i)
674          *         31                  0
675          *         [ b3 | b2 | b1 | b0 ]
676          *
677          * If this value is stored into local memory on a Little-Endian system
678          * it will show up correctly in local memory as:
679          *
680          *     ( ..., b0, b1, b2, b3, ... )
681          *
682          * But on a Big-Endian system, the store will show up in memory
683          * incorrectly swizzled as:
684          *
685          *     ( ..., b3, b2, b1, b0, ... )
686          *
687          * So we need to account for this in the reads and writes to the
688          * PCI-E Memory Window below by undoing the register read/write
689          * swizzels.
690          */
691         while (len > 0) {
692                 if (dir == T4_MEMORY_READ)
693                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694                                                 mem_base + offset));
695                 else
696                         t4_write_reg(adap, mem_base + offset,
697                                      (__force u32)cpu_to_le32(*buf++));
698                 offset += sizeof(__be32);
699                 len -= sizeof(__be32);
700
701                 /* If we've reached the end of our current window aperture,
702                  * move the PCI-E Memory Window on to the next.  Note that
703                  * doing this here after "len" may be 0 allows us to set up
704                  * the PCI-E Memory Window for a possible final residual
705                  * transfer below ...
706                  */
707                 if (offset == mem_aperture) {
708                         pos += mem_aperture;
709                         offset = 0;
710                         t4_memory_update_win(adap, win, pos | win_pf);
711                 }
712         }
713
714         /* If the original transfer had a length which wasn't a multiple of
715          * 32-bits, now's where we need to finish off the transfer of the
716          * residual amount.  The PCI-E Memory Window has already been moved
717          * above (if necessary) to cover this final transfer.
718          */
719         if (resid)
720                 t4_memory_rw_residual(adap, resid, mem_base + offset,
721                                       (u8 *)buf, dir);
722
723         return 0;
724 }
725
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733         u32 val, ldst_addrspace;
734
735         /* If fw_attach != 0, construct and send the Firmware LDST Command to
736          * retrieve the specified PCI-E Configuration Space register.
737          */
738         struct fw_ldst_cmd ldst_cmd;
739         int ret;
740
741         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744                                                FW_CMD_REQUEST_F |
745                                                FW_CMD_READ_F |
746                                                ldst_addrspace);
747         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749         ldst_cmd.u.pcie.ctrl_to_fn =
750                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751         ldst_cmd.u.pcie.r = reg;
752
753         /* If the LDST Command succeeds, return the result, otherwise
754          * fall through to reading it directly ourselves ...
755          */
756         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757                          &ldst_cmd);
758         if (ret == 0)
759                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760         else
761                 /* Read the desired Configuration Space register via the PCI-E
762                  * Backdoor mechanism.
763                  */
764                 t4_hw_pci_read_cfg4(adap, reg, &val);
765         return val;
766 }
767
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773                          u32 memwin_base)
774 {
775         u32 ret;
776
777         if (is_t4(adap->params.chip)) {
778                 u32 bar0;
779
780                 /* Truncation intentional: we only read the bottom 32-bits of
781                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782                  * mechanism to read BAR0 instead of using
783                  * pci_resource_start() because we could be operating from
784                  * within a Virtual Machine which is trapping our accesses to
785                  * our Configuration Space and we need to set up the PCI-E
786                  * Memory Window decoders with the actual addresses which will
787                  * be coming across the PCI-E link.
788                  */
789                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
790                 bar0 &= pci_mask;
791                 adap->t4_bar0 = bar0;
792
793                 ret = bar0 + memwin_base;
794         } else {
795                 /* For T5, only relative offset inside the PCIe BAR is passed */
796                 ret = memwin_base;
797         }
798         return ret;
799 }
800
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814         t4_write_reg(adap,
815                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816                      memwin_base | BIR_V(0) |
817                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818         t4_read_reg(adap,
819                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821
822 /**
823  *      t4_get_regs_len - return the size of the chips register set
824  *      @adapter: the adapter
825  *
826  *      Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831
832         switch (chip_version) {
833         case CHELSIO_T4:
834                 return T4_REGMAP_SIZE;
835
836         case CHELSIO_T5:
837         case CHELSIO_T6:
838                 return T5_REGMAP_SIZE;
839         }
840
841         dev_err(adapter->pdev_dev,
842                 "Unsupported chip version %d\n", chip_version);
843         return 0;
844 }
845
846 /**
847  *      t4_get_regs - read chip registers into provided buffer
848  *      @adap: the adapter
849  *      @buf: register buffer
850  *      @buf_size: size (in bytes) of register buffer
851  *
852  *      If the provided register buffer isn't large enough for the chip's
853  *      full register range, the register dump will be truncated to the
854  *      register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858         static const unsigned int t4_reg_ranges[] = {
859                 0x1008, 0x1108,
860                 0x1180, 0x1184,
861                 0x1190, 0x1194,
862                 0x11a0, 0x11a4,
863                 0x11b0, 0x11b4,
864                 0x11fc, 0x123c,
865                 0x1300, 0x173c,
866                 0x1800, 0x18fc,
867                 0x3000, 0x30d8,
868                 0x30e0, 0x30e4,
869                 0x30ec, 0x5910,
870                 0x5920, 0x5924,
871                 0x5960, 0x5960,
872                 0x5968, 0x5968,
873                 0x5970, 0x5970,
874                 0x5978, 0x5978,
875                 0x5980, 0x5980,
876                 0x5988, 0x5988,
877                 0x5990, 0x5990,
878                 0x5998, 0x5998,
879                 0x59a0, 0x59d4,
880                 0x5a00, 0x5ae0,
881                 0x5ae8, 0x5ae8,
882                 0x5af0, 0x5af0,
883                 0x5af8, 0x5af8,
884                 0x6000, 0x6098,
885                 0x6100, 0x6150,
886                 0x6200, 0x6208,
887                 0x6240, 0x6248,
888                 0x6280, 0x62b0,
889                 0x62c0, 0x6338,
890                 0x6370, 0x638c,
891                 0x6400, 0x643c,
892                 0x6500, 0x6524,
893                 0x6a00, 0x6a04,
894                 0x6a14, 0x6a38,
895                 0x6a60, 0x6a70,
896                 0x6a78, 0x6a78,
897                 0x6b00, 0x6b0c,
898                 0x6b1c, 0x6b84,
899                 0x6bf0, 0x6bf8,
900                 0x6c00, 0x6c0c,
901                 0x6c1c, 0x6c84,
902                 0x6cf0, 0x6cf8,
903                 0x6d00, 0x6d0c,
904                 0x6d1c, 0x6d84,
905                 0x6df0, 0x6df8,
906                 0x6e00, 0x6e0c,
907                 0x6e1c, 0x6e84,
908                 0x6ef0, 0x6ef8,
909                 0x6f00, 0x6f0c,
910                 0x6f1c, 0x6f84,
911                 0x6ff0, 0x6ff8,
912                 0x7000, 0x700c,
913                 0x701c, 0x7084,
914                 0x70f0, 0x70f8,
915                 0x7100, 0x710c,
916                 0x711c, 0x7184,
917                 0x71f0, 0x71f8,
918                 0x7200, 0x720c,
919                 0x721c, 0x7284,
920                 0x72f0, 0x72f8,
921                 0x7300, 0x730c,
922                 0x731c, 0x7384,
923                 0x73f0, 0x73f8,
924                 0x7400, 0x7450,
925                 0x7500, 0x7530,
926                 0x7600, 0x760c,
927                 0x7614, 0x761c,
928                 0x7680, 0x76cc,
929                 0x7700, 0x7798,
930                 0x77c0, 0x77fc,
931                 0x7900, 0x79fc,
932                 0x7b00, 0x7b58,
933                 0x7b60, 0x7b84,
934                 0x7b8c, 0x7c38,
935                 0x7d00, 0x7d38,
936                 0x7d40, 0x7d80,
937                 0x7d8c, 0x7ddc,
938                 0x7de4, 0x7e04,
939                 0x7e10, 0x7e1c,
940                 0x7e24, 0x7e38,
941                 0x7e40, 0x7e44,
942                 0x7e4c, 0x7e78,
943                 0x7e80, 0x7ea4,
944                 0x7eac, 0x7edc,
945                 0x7ee8, 0x7efc,
946                 0x8dc0, 0x8e04,
947                 0x8e10, 0x8e1c,
948                 0x8e30, 0x8e78,
949                 0x8ea0, 0x8eb8,
950                 0x8ec0, 0x8f6c,
951                 0x8fc0, 0x9008,
952                 0x9010, 0x9058,
953                 0x9060, 0x9060,
954                 0x9068, 0x9074,
955                 0x90fc, 0x90fc,
956                 0x9400, 0x9408,
957                 0x9410, 0x9458,
958                 0x9600, 0x9600,
959                 0x9608, 0x9638,
960                 0x9640, 0x96bc,
961                 0x9800, 0x9808,
962                 0x9820, 0x983c,
963                 0x9850, 0x9864,
964                 0x9c00, 0x9c6c,
965                 0x9c80, 0x9cec,
966                 0x9d00, 0x9d6c,
967                 0x9d80, 0x9dec,
968                 0x9e00, 0x9e6c,
969                 0x9e80, 0x9eec,
970                 0x9f00, 0x9f6c,
971                 0x9f80, 0x9fec,
972                 0xd004, 0xd004,
973                 0xd010, 0xd03c,
974                 0xdfc0, 0xdfe0,
975                 0xe000, 0xea7c,
976                 0xf000, 0x11110,
977                 0x11118, 0x11190,
978                 0x19040, 0x1906c,
979                 0x19078, 0x19080,
980                 0x1908c, 0x190e4,
981                 0x190f0, 0x190f8,
982                 0x19100, 0x19110,
983                 0x19120, 0x19124,
984                 0x19150, 0x19194,
985                 0x1919c, 0x191b0,
986                 0x191d0, 0x191e8,
987                 0x19238, 0x1924c,
988                 0x193f8, 0x1943c,
989                 0x1944c, 0x19474,
990                 0x19490, 0x194e0,
991                 0x194f0, 0x194f8,
992                 0x19800, 0x19c08,
993                 0x19c10, 0x19c90,
994                 0x19ca0, 0x19ce4,
995                 0x19cf0, 0x19d40,
996                 0x19d50, 0x19d94,
997                 0x19da0, 0x19de8,
998                 0x19df0, 0x19e40,
999                 0x19e50, 0x19e90,
1000                 0x19ea0, 0x19f4c,
1001                 0x1a000, 0x1a004,
1002                 0x1a010, 0x1a06c,
1003                 0x1a0b0, 0x1a0e4,
1004                 0x1a0ec, 0x1a0f4,
1005                 0x1a100, 0x1a108,
1006                 0x1a114, 0x1a120,
1007                 0x1a128, 0x1a130,
1008                 0x1a138, 0x1a138,
1009                 0x1a190, 0x1a1c4,
1010                 0x1a1fc, 0x1a1fc,
1011                 0x1e040, 0x1e04c,
1012                 0x1e284, 0x1e28c,
1013                 0x1e2c0, 0x1e2c0,
1014                 0x1e2e0, 0x1e2e0,
1015                 0x1e300, 0x1e384,
1016                 0x1e3c0, 0x1e3c8,
1017                 0x1e440, 0x1e44c,
1018                 0x1e684, 0x1e68c,
1019                 0x1e6c0, 0x1e6c0,
1020                 0x1e6e0, 0x1e6e0,
1021                 0x1e700, 0x1e784,
1022                 0x1e7c0, 0x1e7c8,
1023                 0x1e840, 0x1e84c,
1024                 0x1ea84, 0x1ea8c,
1025                 0x1eac0, 0x1eac0,
1026                 0x1eae0, 0x1eae0,
1027                 0x1eb00, 0x1eb84,
1028                 0x1ebc0, 0x1ebc8,
1029                 0x1ec40, 0x1ec4c,
1030                 0x1ee84, 0x1ee8c,
1031                 0x1eec0, 0x1eec0,
1032                 0x1eee0, 0x1eee0,
1033                 0x1ef00, 0x1ef84,
1034                 0x1efc0, 0x1efc8,
1035                 0x1f040, 0x1f04c,
1036                 0x1f284, 0x1f28c,
1037                 0x1f2c0, 0x1f2c0,
1038                 0x1f2e0, 0x1f2e0,
1039                 0x1f300, 0x1f384,
1040                 0x1f3c0, 0x1f3c8,
1041                 0x1f440, 0x1f44c,
1042                 0x1f684, 0x1f68c,
1043                 0x1f6c0, 0x1f6c0,
1044                 0x1f6e0, 0x1f6e0,
1045                 0x1f700, 0x1f784,
1046                 0x1f7c0, 0x1f7c8,
1047                 0x1f840, 0x1f84c,
1048                 0x1fa84, 0x1fa8c,
1049                 0x1fac0, 0x1fac0,
1050                 0x1fae0, 0x1fae0,
1051                 0x1fb00, 0x1fb84,
1052                 0x1fbc0, 0x1fbc8,
1053                 0x1fc40, 0x1fc4c,
1054                 0x1fe84, 0x1fe8c,
1055                 0x1fec0, 0x1fec0,
1056                 0x1fee0, 0x1fee0,
1057                 0x1ff00, 0x1ff84,
1058                 0x1ffc0, 0x1ffc8,
1059                 0x20000, 0x2002c,
1060                 0x20100, 0x2013c,
1061                 0x20190, 0x201a0,
1062                 0x201a8, 0x201b8,
1063                 0x201c4, 0x201c8,
1064                 0x20200, 0x20318,
1065                 0x20400, 0x204b4,
1066                 0x204c0, 0x20528,
1067                 0x20540, 0x20614,
1068                 0x21000, 0x21040,
1069                 0x2104c, 0x21060,
1070                 0x210c0, 0x210ec,
1071                 0x21200, 0x21268,
1072                 0x21270, 0x21284,
1073                 0x212fc, 0x21388,
1074                 0x21400, 0x21404,
1075                 0x21500, 0x21500,
1076                 0x21510, 0x21518,
1077                 0x2152c, 0x21530,
1078                 0x2153c, 0x2153c,
1079                 0x21550, 0x21554,
1080                 0x21600, 0x21600,
1081                 0x21608, 0x2161c,
1082                 0x21624, 0x21628,
1083                 0x21630, 0x21634,
1084                 0x2163c, 0x2163c,
1085                 0x21700, 0x2171c,
1086                 0x21780, 0x2178c,
1087                 0x21800, 0x21818,
1088                 0x21820, 0x21828,
1089                 0x21830, 0x21848,
1090                 0x21850, 0x21854,
1091                 0x21860, 0x21868,
1092                 0x21870, 0x21870,
1093                 0x21878, 0x21898,
1094                 0x218a0, 0x218a8,
1095                 0x218b0, 0x218c8,
1096                 0x218d0, 0x218d4,
1097                 0x218e0, 0x218e8,
1098                 0x218f0, 0x218f0,
1099                 0x218f8, 0x21a18,
1100                 0x21a20, 0x21a28,
1101                 0x21a30, 0x21a48,
1102                 0x21a50, 0x21a54,
1103                 0x21a60, 0x21a68,
1104                 0x21a70, 0x21a70,
1105                 0x21a78, 0x21a98,
1106                 0x21aa0, 0x21aa8,
1107                 0x21ab0, 0x21ac8,
1108                 0x21ad0, 0x21ad4,
1109                 0x21ae0, 0x21ae8,
1110                 0x21af0, 0x21af0,
1111                 0x21af8, 0x21c18,
1112                 0x21c20, 0x21c20,
1113                 0x21c28, 0x21c30,
1114                 0x21c38, 0x21c38,
1115                 0x21c80, 0x21c98,
1116                 0x21ca0, 0x21ca8,
1117                 0x21cb0, 0x21cc8,
1118                 0x21cd0, 0x21cd4,
1119                 0x21ce0, 0x21ce8,
1120                 0x21cf0, 0x21cf0,
1121                 0x21cf8, 0x21d7c,
1122                 0x21e00, 0x21e04,
1123                 0x22000, 0x2202c,
1124                 0x22100, 0x2213c,
1125                 0x22190, 0x221a0,
1126                 0x221a8, 0x221b8,
1127                 0x221c4, 0x221c8,
1128                 0x22200, 0x22318,
1129                 0x22400, 0x224b4,
1130                 0x224c0, 0x22528,
1131                 0x22540, 0x22614,
1132                 0x23000, 0x23040,
1133                 0x2304c, 0x23060,
1134                 0x230c0, 0x230ec,
1135                 0x23200, 0x23268,
1136                 0x23270, 0x23284,
1137                 0x232fc, 0x23388,
1138                 0x23400, 0x23404,
1139                 0x23500, 0x23500,
1140                 0x23510, 0x23518,
1141                 0x2352c, 0x23530,
1142                 0x2353c, 0x2353c,
1143                 0x23550, 0x23554,
1144                 0x23600, 0x23600,
1145                 0x23608, 0x2361c,
1146                 0x23624, 0x23628,
1147                 0x23630, 0x23634,
1148                 0x2363c, 0x2363c,
1149                 0x23700, 0x2371c,
1150                 0x23780, 0x2378c,
1151                 0x23800, 0x23818,
1152                 0x23820, 0x23828,
1153                 0x23830, 0x23848,
1154                 0x23850, 0x23854,
1155                 0x23860, 0x23868,
1156                 0x23870, 0x23870,
1157                 0x23878, 0x23898,
1158                 0x238a0, 0x238a8,
1159                 0x238b0, 0x238c8,
1160                 0x238d0, 0x238d4,
1161                 0x238e0, 0x238e8,
1162                 0x238f0, 0x238f0,
1163                 0x238f8, 0x23a18,
1164                 0x23a20, 0x23a28,
1165                 0x23a30, 0x23a48,
1166                 0x23a50, 0x23a54,
1167                 0x23a60, 0x23a68,
1168                 0x23a70, 0x23a70,
1169                 0x23a78, 0x23a98,
1170                 0x23aa0, 0x23aa8,
1171                 0x23ab0, 0x23ac8,
1172                 0x23ad0, 0x23ad4,
1173                 0x23ae0, 0x23ae8,
1174                 0x23af0, 0x23af0,
1175                 0x23af8, 0x23c18,
1176                 0x23c20, 0x23c20,
1177                 0x23c28, 0x23c30,
1178                 0x23c38, 0x23c38,
1179                 0x23c80, 0x23c98,
1180                 0x23ca0, 0x23ca8,
1181                 0x23cb0, 0x23cc8,
1182                 0x23cd0, 0x23cd4,
1183                 0x23ce0, 0x23ce8,
1184                 0x23cf0, 0x23cf0,
1185                 0x23cf8, 0x23d7c,
1186                 0x23e00, 0x23e04,
1187                 0x24000, 0x2402c,
1188                 0x24100, 0x2413c,
1189                 0x24190, 0x241a0,
1190                 0x241a8, 0x241b8,
1191                 0x241c4, 0x241c8,
1192                 0x24200, 0x24318,
1193                 0x24400, 0x244b4,
1194                 0x244c0, 0x24528,
1195                 0x24540, 0x24614,
1196                 0x25000, 0x25040,
1197                 0x2504c, 0x25060,
1198                 0x250c0, 0x250ec,
1199                 0x25200, 0x25268,
1200                 0x25270, 0x25284,
1201                 0x252fc, 0x25388,
1202                 0x25400, 0x25404,
1203                 0x25500, 0x25500,
1204                 0x25510, 0x25518,
1205                 0x2552c, 0x25530,
1206                 0x2553c, 0x2553c,
1207                 0x25550, 0x25554,
1208                 0x25600, 0x25600,
1209                 0x25608, 0x2561c,
1210                 0x25624, 0x25628,
1211                 0x25630, 0x25634,
1212                 0x2563c, 0x2563c,
1213                 0x25700, 0x2571c,
1214                 0x25780, 0x2578c,
1215                 0x25800, 0x25818,
1216                 0x25820, 0x25828,
1217                 0x25830, 0x25848,
1218                 0x25850, 0x25854,
1219                 0x25860, 0x25868,
1220                 0x25870, 0x25870,
1221                 0x25878, 0x25898,
1222                 0x258a0, 0x258a8,
1223                 0x258b0, 0x258c8,
1224                 0x258d0, 0x258d4,
1225                 0x258e0, 0x258e8,
1226                 0x258f0, 0x258f0,
1227                 0x258f8, 0x25a18,
1228                 0x25a20, 0x25a28,
1229                 0x25a30, 0x25a48,
1230                 0x25a50, 0x25a54,
1231                 0x25a60, 0x25a68,
1232                 0x25a70, 0x25a70,
1233                 0x25a78, 0x25a98,
1234                 0x25aa0, 0x25aa8,
1235                 0x25ab0, 0x25ac8,
1236                 0x25ad0, 0x25ad4,
1237                 0x25ae0, 0x25ae8,
1238                 0x25af0, 0x25af0,
1239                 0x25af8, 0x25c18,
1240                 0x25c20, 0x25c20,
1241                 0x25c28, 0x25c30,
1242                 0x25c38, 0x25c38,
1243                 0x25c80, 0x25c98,
1244                 0x25ca0, 0x25ca8,
1245                 0x25cb0, 0x25cc8,
1246                 0x25cd0, 0x25cd4,
1247                 0x25ce0, 0x25ce8,
1248                 0x25cf0, 0x25cf0,
1249                 0x25cf8, 0x25d7c,
1250                 0x25e00, 0x25e04,
1251                 0x26000, 0x2602c,
1252                 0x26100, 0x2613c,
1253                 0x26190, 0x261a0,
1254                 0x261a8, 0x261b8,
1255                 0x261c4, 0x261c8,
1256                 0x26200, 0x26318,
1257                 0x26400, 0x264b4,
1258                 0x264c0, 0x26528,
1259                 0x26540, 0x26614,
1260                 0x27000, 0x27040,
1261                 0x2704c, 0x27060,
1262                 0x270c0, 0x270ec,
1263                 0x27200, 0x27268,
1264                 0x27270, 0x27284,
1265                 0x272fc, 0x27388,
1266                 0x27400, 0x27404,
1267                 0x27500, 0x27500,
1268                 0x27510, 0x27518,
1269                 0x2752c, 0x27530,
1270                 0x2753c, 0x2753c,
1271                 0x27550, 0x27554,
1272                 0x27600, 0x27600,
1273                 0x27608, 0x2761c,
1274                 0x27624, 0x27628,
1275                 0x27630, 0x27634,
1276                 0x2763c, 0x2763c,
1277                 0x27700, 0x2771c,
1278                 0x27780, 0x2778c,
1279                 0x27800, 0x27818,
1280                 0x27820, 0x27828,
1281                 0x27830, 0x27848,
1282                 0x27850, 0x27854,
1283                 0x27860, 0x27868,
1284                 0x27870, 0x27870,
1285                 0x27878, 0x27898,
1286                 0x278a0, 0x278a8,
1287                 0x278b0, 0x278c8,
1288                 0x278d0, 0x278d4,
1289                 0x278e0, 0x278e8,
1290                 0x278f0, 0x278f0,
1291                 0x278f8, 0x27a18,
1292                 0x27a20, 0x27a28,
1293                 0x27a30, 0x27a48,
1294                 0x27a50, 0x27a54,
1295                 0x27a60, 0x27a68,
1296                 0x27a70, 0x27a70,
1297                 0x27a78, 0x27a98,
1298                 0x27aa0, 0x27aa8,
1299                 0x27ab0, 0x27ac8,
1300                 0x27ad0, 0x27ad4,
1301                 0x27ae0, 0x27ae8,
1302                 0x27af0, 0x27af0,
1303                 0x27af8, 0x27c18,
1304                 0x27c20, 0x27c20,
1305                 0x27c28, 0x27c30,
1306                 0x27c38, 0x27c38,
1307                 0x27c80, 0x27c98,
1308                 0x27ca0, 0x27ca8,
1309                 0x27cb0, 0x27cc8,
1310                 0x27cd0, 0x27cd4,
1311                 0x27ce0, 0x27ce8,
1312                 0x27cf0, 0x27cf0,
1313                 0x27cf8, 0x27d7c,
1314                 0x27e00, 0x27e04,
1315         };
1316
1317         static const unsigned int t5_reg_ranges[] = {
1318                 0x1008, 0x10c0,
1319                 0x10cc, 0x10f8,
1320                 0x1100, 0x1100,
1321                 0x110c, 0x1148,
1322                 0x1180, 0x1184,
1323                 0x1190, 0x1194,
1324                 0x11a0, 0x11a4,
1325                 0x11b0, 0x11b4,
1326                 0x11fc, 0x123c,
1327                 0x1280, 0x173c,
1328                 0x1800, 0x18fc,
1329                 0x3000, 0x3028,
1330                 0x3060, 0x30b0,
1331                 0x30b8, 0x30d8,
1332                 0x30e0, 0x30fc,
1333                 0x3140, 0x357c,
1334                 0x35a8, 0x35cc,
1335                 0x35ec, 0x35ec,
1336                 0x3600, 0x5624,
1337                 0x56cc, 0x56ec,
1338                 0x56f4, 0x5720,
1339                 0x5728, 0x575c,
1340                 0x580c, 0x5814,
1341                 0x5890, 0x589c,
1342                 0x58a4, 0x58ac,
1343                 0x58b8, 0x58bc,
1344                 0x5940, 0x59c8,
1345                 0x59d0, 0x59dc,
1346                 0x59fc, 0x5a18,
1347                 0x5a60, 0x5a70,
1348                 0x5a80, 0x5a9c,
1349                 0x5b94, 0x5bfc,
1350                 0x6000, 0x6020,
1351                 0x6028, 0x6040,
1352                 0x6058, 0x609c,
1353                 0x60a8, 0x614c,
1354                 0x7700, 0x7798,
1355                 0x77c0, 0x78fc,
1356                 0x7b00, 0x7b58,
1357                 0x7b60, 0x7b84,
1358                 0x7b8c, 0x7c54,
1359                 0x7d00, 0x7d38,
1360                 0x7d40, 0x7d80,
1361                 0x7d8c, 0x7ddc,
1362                 0x7de4, 0x7e04,
1363                 0x7e10, 0x7e1c,
1364                 0x7e24, 0x7e38,
1365                 0x7e40, 0x7e44,
1366                 0x7e4c, 0x7e78,
1367                 0x7e80, 0x7edc,
1368                 0x7ee8, 0x7efc,
1369                 0x8dc0, 0x8de0,
1370                 0x8df8, 0x8e04,
1371                 0x8e10, 0x8e84,
1372                 0x8ea0, 0x8f84,
1373                 0x8fc0, 0x9058,
1374                 0x9060, 0x9060,
1375                 0x9068, 0x90f8,
1376                 0x9400, 0x9408,
1377                 0x9410, 0x9470,
1378                 0x9600, 0x9600,
1379                 0x9608, 0x9638,
1380                 0x9640, 0x96f4,
1381                 0x9800, 0x9808,
1382                 0x9810, 0x9864,
1383                 0x9c00, 0x9c6c,
1384                 0x9c80, 0x9cec,
1385                 0x9d00, 0x9d6c,
1386                 0x9d80, 0x9dec,
1387                 0x9e00, 0x9e6c,
1388                 0x9e80, 0x9eec,
1389                 0x9f00, 0x9f6c,
1390                 0x9f80, 0xa020,
1391                 0xd000, 0xd004,
1392                 0xd010, 0xd03c,
1393                 0xdfc0, 0xdfe0,
1394                 0xe000, 0x1106c,
1395                 0x11074, 0x11088,
1396                 0x1109c, 0x1117c,
1397                 0x11190, 0x11204,
1398                 0x19040, 0x1906c,
1399                 0x19078, 0x19080,
1400                 0x1908c, 0x190e8,
1401                 0x190f0, 0x190f8,
1402                 0x19100, 0x19110,
1403                 0x19120, 0x19124,
1404                 0x19150, 0x19194,
1405                 0x1919c, 0x191b0,
1406                 0x191d0, 0x191e8,
1407                 0x19238, 0x19290,
1408                 0x193f8, 0x19428,
1409                 0x19430, 0x19444,
1410                 0x1944c, 0x1946c,
1411                 0x19474, 0x19474,
1412                 0x19490, 0x194cc,
1413                 0x194f0, 0x194f8,
1414                 0x19c00, 0x19c08,
1415                 0x19c10, 0x19c60,
1416                 0x19c94, 0x19ce4,
1417                 0x19cf0, 0x19d40,
1418                 0x19d50, 0x19d94,
1419                 0x19da0, 0x19de8,
1420                 0x19df0, 0x19e10,
1421                 0x19e50, 0x19e90,
1422                 0x19ea0, 0x19f24,
1423                 0x19f34, 0x19f34,
1424                 0x19f40, 0x19f50,
1425                 0x19f90, 0x19fb4,
1426                 0x19fc4, 0x19fe4,
1427                 0x1a000, 0x1a004,
1428                 0x1a010, 0x1a06c,
1429                 0x1a0b0, 0x1a0e4,
1430                 0x1a0ec, 0x1a0f8,
1431                 0x1a100, 0x1a108,
1432                 0x1a114, 0x1a130,
1433                 0x1a138, 0x1a1c4,
1434                 0x1a1fc, 0x1a1fc,
1435                 0x1e008, 0x1e00c,
1436                 0x1e040, 0x1e044,
1437                 0x1e04c, 0x1e04c,
1438                 0x1e284, 0x1e290,
1439                 0x1e2c0, 0x1e2c0,
1440                 0x1e2e0, 0x1e2e0,
1441                 0x1e300, 0x1e384,
1442                 0x1e3c0, 0x1e3c8,
1443                 0x1e408, 0x1e40c,
1444                 0x1e440, 0x1e444,
1445                 0x1e44c, 0x1e44c,
1446                 0x1e684, 0x1e690,
1447                 0x1e6c0, 0x1e6c0,
1448                 0x1e6e0, 0x1e6e0,
1449                 0x1e700, 0x1e784,
1450                 0x1e7c0, 0x1e7c8,
1451                 0x1e808, 0x1e80c,
1452                 0x1e840, 0x1e844,
1453                 0x1e84c, 0x1e84c,
1454                 0x1ea84, 0x1ea90,
1455                 0x1eac0, 0x1eac0,
1456                 0x1eae0, 0x1eae0,
1457                 0x1eb00, 0x1eb84,
1458                 0x1ebc0, 0x1ebc8,
1459                 0x1ec08, 0x1ec0c,
1460                 0x1ec40, 0x1ec44,
1461                 0x1ec4c, 0x1ec4c,
1462                 0x1ee84, 0x1ee90,
1463                 0x1eec0, 0x1eec0,
1464                 0x1eee0, 0x1eee0,
1465                 0x1ef00, 0x1ef84,
1466                 0x1efc0, 0x1efc8,
1467                 0x1f008, 0x1f00c,
1468                 0x1f040, 0x1f044,
1469                 0x1f04c, 0x1f04c,
1470                 0x1f284, 0x1f290,
1471                 0x1f2c0, 0x1f2c0,
1472                 0x1f2e0, 0x1f2e0,
1473                 0x1f300, 0x1f384,
1474                 0x1f3c0, 0x1f3c8,
1475                 0x1f408, 0x1f40c,
1476                 0x1f440, 0x1f444,
1477                 0x1f44c, 0x1f44c,
1478                 0x1f684, 0x1f690,
1479                 0x1f6c0, 0x1f6c0,
1480                 0x1f6e0, 0x1f6e0,
1481                 0x1f700, 0x1f784,
1482                 0x1f7c0, 0x1f7c8,
1483                 0x1f808, 0x1f80c,
1484                 0x1f840, 0x1f844,
1485                 0x1f84c, 0x1f84c,
1486                 0x1fa84, 0x1fa90,
1487                 0x1fac0, 0x1fac0,
1488                 0x1fae0, 0x1fae0,
1489                 0x1fb00, 0x1fb84,
1490                 0x1fbc0, 0x1fbc8,
1491                 0x1fc08, 0x1fc0c,
1492                 0x1fc40, 0x1fc44,
1493                 0x1fc4c, 0x1fc4c,
1494                 0x1fe84, 0x1fe90,
1495                 0x1fec0, 0x1fec0,
1496                 0x1fee0, 0x1fee0,
1497                 0x1ff00, 0x1ff84,
1498                 0x1ffc0, 0x1ffc8,
1499                 0x30000, 0x30030,
1500                 0x30100, 0x30144,
1501                 0x30190, 0x301a0,
1502                 0x301a8, 0x301b8,
1503                 0x301c4, 0x301c8,
1504                 0x301d0, 0x301d0,
1505                 0x30200, 0x30318,
1506                 0x30400, 0x304b4,
1507                 0x304c0, 0x3052c,
1508                 0x30540, 0x3061c,
1509                 0x30800, 0x30828,
1510                 0x30834, 0x30834,
1511                 0x308c0, 0x30908,
1512                 0x30910, 0x309ac,
1513                 0x30a00, 0x30a14,
1514                 0x30a1c, 0x30a2c,
1515                 0x30a44, 0x30a50,
1516                 0x30a74, 0x30a74,
1517                 0x30a7c, 0x30afc,
1518                 0x30b08, 0x30c24,
1519                 0x30d00, 0x30d00,
1520                 0x30d08, 0x30d14,
1521                 0x30d1c, 0x30d20,
1522                 0x30d3c, 0x30d3c,
1523                 0x30d48, 0x30d50,
1524                 0x31200, 0x3120c,
1525                 0x31220, 0x31220,
1526                 0x31240, 0x31240,
1527                 0x31600, 0x3160c,
1528                 0x31a00, 0x31a1c,
1529                 0x31e00, 0x31e20,
1530                 0x31e38, 0x31e3c,
1531                 0x31e80, 0x31e80,
1532                 0x31e88, 0x31ea8,
1533                 0x31eb0, 0x31eb4,
1534                 0x31ec8, 0x31ed4,
1535                 0x31fb8, 0x32004,
1536                 0x32200, 0x32200,
1537                 0x32208, 0x32240,
1538                 0x32248, 0x32280,
1539                 0x32288, 0x322c0,
1540                 0x322c8, 0x322fc,
1541                 0x32600, 0x32630,
1542                 0x32a00, 0x32abc,
1543                 0x32b00, 0x32b10,
1544                 0x32b20, 0x32b30,
1545                 0x32b40, 0x32b50,
1546                 0x32b60, 0x32b70,
1547                 0x33000, 0x33028,
1548                 0x33030, 0x33048,
1549                 0x33060, 0x33068,
1550                 0x33070, 0x3309c,
1551                 0x330f0, 0x33128,
1552                 0x33130, 0x33148,
1553                 0x33160, 0x33168,
1554                 0x33170, 0x3319c,
1555                 0x331f0, 0x33238,
1556                 0x33240, 0x33240,
1557                 0x33248, 0x33250,
1558                 0x3325c, 0x33264,
1559                 0x33270, 0x332b8,
1560                 0x332c0, 0x332e4,
1561                 0x332f8, 0x33338,
1562                 0x33340, 0x33340,
1563                 0x33348, 0x33350,
1564                 0x3335c, 0x33364,
1565                 0x33370, 0x333b8,
1566                 0x333c0, 0x333e4,
1567                 0x333f8, 0x33428,
1568                 0x33430, 0x33448,
1569                 0x33460, 0x33468,
1570                 0x33470, 0x3349c,
1571                 0x334f0, 0x33528,
1572                 0x33530, 0x33548,
1573                 0x33560, 0x33568,
1574                 0x33570, 0x3359c,
1575                 0x335f0, 0x33638,
1576                 0x33640, 0x33640,
1577                 0x33648, 0x33650,
1578                 0x3365c, 0x33664,
1579                 0x33670, 0x336b8,
1580                 0x336c0, 0x336e4,
1581                 0x336f8, 0x33738,
1582                 0x33740, 0x33740,
1583                 0x33748, 0x33750,
1584                 0x3375c, 0x33764,
1585                 0x33770, 0x337b8,
1586                 0x337c0, 0x337e4,
1587                 0x337f8, 0x337fc,
1588                 0x33814, 0x33814,
1589                 0x3382c, 0x3382c,
1590                 0x33880, 0x3388c,
1591                 0x338e8, 0x338ec,
1592                 0x33900, 0x33928,
1593                 0x33930, 0x33948,
1594                 0x33960, 0x33968,
1595                 0x33970, 0x3399c,
1596                 0x339f0, 0x33a38,
1597                 0x33a40, 0x33a40,
1598                 0x33a48, 0x33a50,
1599                 0x33a5c, 0x33a64,
1600                 0x33a70, 0x33ab8,
1601                 0x33ac0, 0x33ae4,
1602                 0x33af8, 0x33b10,
1603                 0x33b28, 0x33b28,
1604                 0x33b3c, 0x33b50,
1605                 0x33bf0, 0x33c10,
1606                 0x33c28, 0x33c28,
1607                 0x33c3c, 0x33c50,
1608                 0x33cf0, 0x33cfc,
1609                 0x34000, 0x34030,
1610                 0x34100, 0x34144,
1611                 0x34190, 0x341a0,
1612                 0x341a8, 0x341b8,
1613                 0x341c4, 0x341c8,
1614                 0x341d0, 0x341d0,
1615                 0x34200, 0x34318,
1616                 0x34400, 0x344b4,
1617                 0x344c0, 0x3452c,
1618                 0x34540, 0x3461c,
1619                 0x34800, 0x34828,
1620                 0x34834, 0x34834,
1621                 0x348c0, 0x34908,
1622                 0x34910, 0x349ac,
1623                 0x34a00, 0x34a14,
1624                 0x34a1c, 0x34a2c,
1625                 0x34a44, 0x34a50,
1626                 0x34a74, 0x34a74,
1627                 0x34a7c, 0x34afc,
1628                 0x34b08, 0x34c24,
1629                 0x34d00, 0x34d00,
1630                 0x34d08, 0x34d14,
1631                 0x34d1c, 0x34d20,
1632                 0x34d3c, 0x34d3c,
1633                 0x34d48, 0x34d50,
1634                 0x35200, 0x3520c,
1635                 0x35220, 0x35220,
1636                 0x35240, 0x35240,
1637                 0x35600, 0x3560c,
1638                 0x35a00, 0x35a1c,
1639                 0x35e00, 0x35e20,
1640                 0x35e38, 0x35e3c,
1641                 0x35e80, 0x35e80,
1642                 0x35e88, 0x35ea8,
1643                 0x35eb0, 0x35eb4,
1644                 0x35ec8, 0x35ed4,
1645                 0x35fb8, 0x36004,
1646                 0x36200, 0x36200,
1647                 0x36208, 0x36240,
1648                 0x36248, 0x36280,
1649                 0x36288, 0x362c0,
1650                 0x362c8, 0x362fc,
1651                 0x36600, 0x36630,
1652                 0x36a00, 0x36abc,
1653                 0x36b00, 0x36b10,
1654                 0x36b20, 0x36b30,
1655                 0x36b40, 0x36b50,
1656                 0x36b60, 0x36b70,
1657                 0x37000, 0x37028,
1658                 0x37030, 0x37048,
1659                 0x37060, 0x37068,
1660                 0x37070, 0x3709c,
1661                 0x370f0, 0x37128,
1662                 0x37130, 0x37148,
1663                 0x37160, 0x37168,
1664                 0x37170, 0x3719c,
1665                 0x371f0, 0x37238,
1666                 0x37240, 0x37240,
1667                 0x37248, 0x37250,
1668                 0x3725c, 0x37264,
1669                 0x37270, 0x372b8,
1670                 0x372c0, 0x372e4,
1671                 0x372f8, 0x37338,
1672                 0x37340, 0x37340,
1673                 0x37348, 0x37350,
1674                 0x3735c, 0x37364,
1675                 0x37370, 0x373b8,
1676                 0x373c0, 0x373e4,
1677                 0x373f8, 0x37428,
1678                 0x37430, 0x37448,
1679                 0x37460, 0x37468,
1680                 0x37470, 0x3749c,
1681                 0x374f0, 0x37528,
1682                 0x37530, 0x37548,
1683                 0x37560, 0x37568,
1684                 0x37570, 0x3759c,
1685                 0x375f0, 0x37638,
1686                 0x37640, 0x37640,
1687                 0x37648, 0x37650,
1688                 0x3765c, 0x37664,
1689                 0x37670, 0x376b8,
1690                 0x376c0, 0x376e4,
1691                 0x376f8, 0x37738,
1692                 0x37740, 0x37740,
1693                 0x37748, 0x37750,
1694                 0x3775c, 0x37764,
1695                 0x37770, 0x377b8,
1696                 0x377c0, 0x377e4,
1697                 0x377f8, 0x377fc,
1698                 0x37814, 0x37814,
1699                 0x3782c, 0x3782c,
1700                 0x37880, 0x3788c,
1701                 0x378e8, 0x378ec,
1702                 0x37900, 0x37928,
1703                 0x37930, 0x37948,
1704                 0x37960, 0x37968,
1705                 0x37970, 0x3799c,
1706                 0x379f0, 0x37a38,
1707                 0x37a40, 0x37a40,
1708                 0x37a48, 0x37a50,
1709                 0x37a5c, 0x37a64,
1710                 0x37a70, 0x37ab8,
1711                 0x37ac0, 0x37ae4,
1712                 0x37af8, 0x37b10,
1713                 0x37b28, 0x37b28,
1714                 0x37b3c, 0x37b50,
1715                 0x37bf0, 0x37c10,
1716                 0x37c28, 0x37c28,
1717                 0x37c3c, 0x37c50,
1718                 0x37cf0, 0x37cfc,
1719                 0x38000, 0x38030,
1720                 0x38100, 0x38144,
1721                 0x38190, 0x381a0,
1722                 0x381a8, 0x381b8,
1723                 0x381c4, 0x381c8,
1724                 0x381d0, 0x381d0,
1725                 0x38200, 0x38318,
1726                 0x38400, 0x384b4,
1727                 0x384c0, 0x3852c,
1728                 0x38540, 0x3861c,
1729                 0x38800, 0x38828,
1730                 0x38834, 0x38834,
1731                 0x388c0, 0x38908,
1732                 0x38910, 0x389ac,
1733                 0x38a00, 0x38a14,
1734                 0x38a1c, 0x38a2c,
1735                 0x38a44, 0x38a50,
1736                 0x38a74, 0x38a74,
1737                 0x38a7c, 0x38afc,
1738                 0x38b08, 0x38c24,
1739                 0x38d00, 0x38d00,
1740                 0x38d08, 0x38d14,
1741                 0x38d1c, 0x38d20,
1742                 0x38d3c, 0x38d3c,
1743                 0x38d48, 0x38d50,
1744                 0x39200, 0x3920c,
1745                 0x39220, 0x39220,
1746                 0x39240, 0x39240,
1747                 0x39600, 0x3960c,
1748                 0x39a00, 0x39a1c,
1749                 0x39e00, 0x39e20,
1750                 0x39e38, 0x39e3c,
1751                 0x39e80, 0x39e80,
1752                 0x39e88, 0x39ea8,
1753                 0x39eb0, 0x39eb4,
1754                 0x39ec8, 0x39ed4,
1755                 0x39fb8, 0x3a004,
1756                 0x3a200, 0x3a200,
1757                 0x3a208, 0x3a240,
1758                 0x3a248, 0x3a280,
1759                 0x3a288, 0x3a2c0,
1760                 0x3a2c8, 0x3a2fc,
1761                 0x3a600, 0x3a630,
1762                 0x3aa00, 0x3aabc,
1763                 0x3ab00, 0x3ab10,
1764                 0x3ab20, 0x3ab30,
1765                 0x3ab40, 0x3ab50,
1766                 0x3ab60, 0x3ab70,
1767                 0x3b000, 0x3b028,
1768                 0x3b030, 0x3b048,
1769                 0x3b060, 0x3b068,
1770                 0x3b070, 0x3b09c,
1771                 0x3b0f0, 0x3b128,
1772                 0x3b130, 0x3b148,
1773                 0x3b160, 0x3b168,
1774                 0x3b170, 0x3b19c,
1775                 0x3b1f0, 0x3b238,
1776                 0x3b240, 0x3b240,
1777                 0x3b248, 0x3b250,
1778                 0x3b25c, 0x3b264,
1779                 0x3b270, 0x3b2b8,
1780                 0x3b2c0, 0x3b2e4,
1781                 0x3b2f8, 0x3b338,
1782                 0x3b340, 0x3b340,
1783                 0x3b348, 0x3b350,
1784                 0x3b35c, 0x3b364,
1785                 0x3b370, 0x3b3b8,
1786                 0x3b3c0, 0x3b3e4,
1787                 0x3b3f8, 0x3b428,
1788                 0x3b430, 0x3b448,
1789                 0x3b460, 0x3b468,
1790                 0x3b470, 0x3b49c,
1791                 0x3b4f0, 0x3b528,
1792                 0x3b530, 0x3b548,
1793                 0x3b560, 0x3b568,
1794                 0x3b570, 0x3b59c,
1795                 0x3b5f0, 0x3b638,
1796                 0x3b640, 0x3b640,
1797                 0x3b648, 0x3b650,
1798                 0x3b65c, 0x3b664,
1799                 0x3b670, 0x3b6b8,
1800                 0x3b6c0, 0x3b6e4,
1801                 0x3b6f8, 0x3b738,
1802                 0x3b740, 0x3b740,
1803                 0x3b748, 0x3b750,
1804                 0x3b75c, 0x3b764,
1805                 0x3b770, 0x3b7b8,
1806                 0x3b7c0, 0x3b7e4,
1807                 0x3b7f8, 0x3b7fc,
1808                 0x3b814, 0x3b814,
1809                 0x3b82c, 0x3b82c,
1810                 0x3b880, 0x3b88c,
1811                 0x3b8e8, 0x3b8ec,
1812                 0x3b900, 0x3b928,
1813                 0x3b930, 0x3b948,
1814                 0x3b960, 0x3b968,
1815                 0x3b970, 0x3b99c,
1816                 0x3b9f0, 0x3ba38,
1817                 0x3ba40, 0x3ba40,
1818                 0x3ba48, 0x3ba50,
1819                 0x3ba5c, 0x3ba64,
1820                 0x3ba70, 0x3bab8,
1821                 0x3bac0, 0x3bae4,
1822                 0x3baf8, 0x3bb10,
1823                 0x3bb28, 0x3bb28,
1824                 0x3bb3c, 0x3bb50,
1825                 0x3bbf0, 0x3bc10,
1826                 0x3bc28, 0x3bc28,
1827                 0x3bc3c, 0x3bc50,
1828                 0x3bcf0, 0x3bcfc,
1829                 0x3c000, 0x3c030,
1830                 0x3c100, 0x3c144,
1831                 0x3c190, 0x3c1a0,
1832                 0x3c1a8, 0x3c1b8,
1833                 0x3c1c4, 0x3c1c8,
1834                 0x3c1d0, 0x3c1d0,
1835                 0x3c200, 0x3c318,
1836                 0x3c400, 0x3c4b4,
1837                 0x3c4c0, 0x3c52c,
1838                 0x3c540, 0x3c61c,
1839                 0x3c800, 0x3c828,
1840                 0x3c834, 0x3c834,
1841                 0x3c8c0, 0x3c908,
1842                 0x3c910, 0x3c9ac,
1843                 0x3ca00, 0x3ca14,
1844                 0x3ca1c, 0x3ca2c,
1845                 0x3ca44, 0x3ca50,
1846                 0x3ca74, 0x3ca74,
1847                 0x3ca7c, 0x3cafc,
1848                 0x3cb08, 0x3cc24,
1849                 0x3cd00, 0x3cd00,
1850                 0x3cd08, 0x3cd14,
1851                 0x3cd1c, 0x3cd20,
1852                 0x3cd3c, 0x3cd3c,
1853                 0x3cd48, 0x3cd50,
1854                 0x3d200, 0x3d20c,
1855                 0x3d220, 0x3d220,
1856                 0x3d240, 0x3d240,
1857                 0x3d600, 0x3d60c,
1858                 0x3da00, 0x3da1c,
1859                 0x3de00, 0x3de20,
1860                 0x3de38, 0x3de3c,
1861                 0x3de80, 0x3de80,
1862                 0x3de88, 0x3dea8,
1863                 0x3deb0, 0x3deb4,
1864                 0x3dec8, 0x3ded4,
1865                 0x3dfb8, 0x3e004,
1866                 0x3e200, 0x3e200,
1867                 0x3e208, 0x3e240,
1868                 0x3e248, 0x3e280,
1869                 0x3e288, 0x3e2c0,
1870                 0x3e2c8, 0x3e2fc,
1871                 0x3e600, 0x3e630,
1872                 0x3ea00, 0x3eabc,
1873                 0x3eb00, 0x3eb10,
1874                 0x3eb20, 0x3eb30,
1875                 0x3eb40, 0x3eb50,
1876                 0x3eb60, 0x3eb70,
1877                 0x3f000, 0x3f028,
1878                 0x3f030, 0x3f048,
1879                 0x3f060, 0x3f068,
1880                 0x3f070, 0x3f09c,
1881                 0x3f0f0, 0x3f128,
1882                 0x3f130, 0x3f148,
1883                 0x3f160, 0x3f168,
1884                 0x3f170, 0x3f19c,
1885                 0x3f1f0, 0x3f238,
1886                 0x3f240, 0x3f240,
1887                 0x3f248, 0x3f250,
1888                 0x3f25c, 0x3f264,
1889                 0x3f270, 0x3f2b8,
1890                 0x3f2c0, 0x3f2e4,
1891                 0x3f2f8, 0x3f338,
1892                 0x3f340, 0x3f340,
1893                 0x3f348, 0x3f350,
1894                 0x3f35c, 0x3f364,
1895                 0x3f370, 0x3f3b8,
1896                 0x3f3c0, 0x3f3e4,
1897                 0x3f3f8, 0x3f428,
1898                 0x3f430, 0x3f448,
1899                 0x3f460, 0x3f468,
1900                 0x3f470, 0x3f49c,
1901                 0x3f4f0, 0x3f528,
1902                 0x3f530, 0x3f548,
1903                 0x3f560, 0x3f568,
1904                 0x3f570, 0x3f59c,
1905                 0x3f5f0, 0x3f638,
1906                 0x3f640, 0x3f640,
1907                 0x3f648, 0x3f650,
1908                 0x3f65c, 0x3f664,
1909                 0x3f670, 0x3f6b8,
1910                 0x3f6c0, 0x3f6e4,
1911                 0x3f6f8, 0x3f738,
1912                 0x3f740, 0x3f740,
1913                 0x3f748, 0x3f750,
1914                 0x3f75c, 0x3f764,
1915                 0x3f770, 0x3f7b8,
1916                 0x3f7c0, 0x3f7e4,
1917                 0x3f7f8, 0x3f7fc,
1918                 0x3f814, 0x3f814,
1919                 0x3f82c, 0x3f82c,
1920                 0x3f880, 0x3f88c,
1921                 0x3f8e8, 0x3f8ec,
1922                 0x3f900, 0x3f928,
1923                 0x3f930, 0x3f948,
1924                 0x3f960, 0x3f968,
1925                 0x3f970, 0x3f99c,
1926                 0x3f9f0, 0x3fa38,
1927                 0x3fa40, 0x3fa40,
1928                 0x3fa48, 0x3fa50,
1929                 0x3fa5c, 0x3fa64,
1930                 0x3fa70, 0x3fab8,
1931                 0x3fac0, 0x3fae4,
1932                 0x3faf8, 0x3fb10,
1933                 0x3fb28, 0x3fb28,
1934                 0x3fb3c, 0x3fb50,
1935                 0x3fbf0, 0x3fc10,
1936                 0x3fc28, 0x3fc28,
1937                 0x3fc3c, 0x3fc50,
1938                 0x3fcf0, 0x3fcfc,
1939                 0x40000, 0x4000c,
1940                 0x40040, 0x40050,
1941                 0x40060, 0x40068,
1942                 0x4007c, 0x4008c,
1943                 0x40094, 0x400b0,
1944                 0x400c0, 0x40144,
1945                 0x40180, 0x4018c,
1946                 0x40200, 0x40254,
1947                 0x40260, 0x40264,
1948                 0x40270, 0x40288,
1949                 0x40290, 0x40298,
1950                 0x402ac, 0x402c8,
1951                 0x402d0, 0x402e0,
1952                 0x402f0, 0x402f0,
1953                 0x40300, 0x4033c,
1954                 0x403f8, 0x403fc,
1955                 0x41304, 0x413c4,
1956                 0x41400, 0x4140c,
1957                 0x41414, 0x4141c,
1958                 0x41480, 0x414d0,
1959                 0x44000, 0x44054,
1960                 0x4405c, 0x44078,
1961                 0x440c0, 0x44174,
1962                 0x44180, 0x441ac,
1963                 0x441b4, 0x441b8,
1964                 0x441c0, 0x44254,
1965                 0x4425c, 0x44278,
1966                 0x442c0, 0x44374,
1967                 0x44380, 0x443ac,
1968                 0x443b4, 0x443b8,
1969                 0x443c0, 0x44454,
1970                 0x4445c, 0x44478,
1971                 0x444c0, 0x44574,
1972                 0x44580, 0x445ac,
1973                 0x445b4, 0x445b8,
1974                 0x445c0, 0x44654,
1975                 0x4465c, 0x44678,
1976                 0x446c0, 0x44774,
1977                 0x44780, 0x447ac,
1978                 0x447b4, 0x447b8,
1979                 0x447c0, 0x44854,
1980                 0x4485c, 0x44878,
1981                 0x448c0, 0x44974,
1982                 0x44980, 0x449ac,
1983                 0x449b4, 0x449b8,
1984                 0x449c0, 0x449fc,
1985                 0x45000, 0x45004,
1986                 0x45010, 0x45030,
1987                 0x45040, 0x45060,
1988                 0x45068, 0x45068,
1989                 0x45080, 0x45084,
1990                 0x450a0, 0x450b0,
1991                 0x45200, 0x45204,
1992                 0x45210, 0x45230,
1993                 0x45240, 0x45260,
1994                 0x45268, 0x45268,
1995                 0x45280, 0x45284,
1996                 0x452a0, 0x452b0,
1997                 0x460c0, 0x460e4,
1998                 0x47000, 0x4703c,
1999                 0x47044, 0x4708c,
2000                 0x47200, 0x47250,
2001                 0x47400, 0x47408,
2002                 0x47414, 0x47420,
2003                 0x47600, 0x47618,
2004                 0x47800, 0x47814,
2005                 0x48000, 0x4800c,
2006                 0x48040, 0x48050,
2007                 0x48060, 0x48068,
2008                 0x4807c, 0x4808c,
2009                 0x48094, 0x480b0,
2010                 0x480c0, 0x48144,
2011                 0x48180, 0x4818c,
2012                 0x48200, 0x48254,
2013                 0x48260, 0x48264,
2014                 0x48270, 0x48288,
2015                 0x48290, 0x48298,
2016                 0x482ac, 0x482c8,
2017                 0x482d0, 0x482e0,
2018                 0x482f0, 0x482f0,
2019                 0x48300, 0x4833c,
2020                 0x483f8, 0x483fc,
2021                 0x49304, 0x493c4,
2022                 0x49400, 0x4940c,
2023                 0x49414, 0x4941c,
2024                 0x49480, 0x494d0,
2025                 0x4c000, 0x4c054,
2026                 0x4c05c, 0x4c078,
2027                 0x4c0c0, 0x4c174,
2028                 0x4c180, 0x4c1ac,
2029                 0x4c1b4, 0x4c1b8,
2030                 0x4c1c0, 0x4c254,
2031                 0x4c25c, 0x4c278,
2032                 0x4c2c0, 0x4c374,
2033                 0x4c380, 0x4c3ac,
2034                 0x4c3b4, 0x4c3b8,
2035                 0x4c3c0, 0x4c454,
2036                 0x4c45c, 0x4c478,
2037                 0x4c4c0, 0x4c574,
2038                 0x4c580, 0x4c5ac,
2039                 0x4c5b4, 0x4c5b8,
2040                 0x4c5c0, 0x4c654,
2041                 0x4c65c, 0x4c678,
2042                 0x4c6c0, 0x4c774,
2043                 0x4c780, 0x4c7ac,
2044                 0x4c7b4, 0x4c7b8,
2045                 0x4c7c0, 0x4c854,
2046                 0x4c85c, 0x4c878,
2047                 0x4c8c0, 0x4c974,
2048                 0x4c980, 0x4c9ac,
2049                 0x4c9b4, 0x4c9b8,
2050                 0x4c9c0, 0x4c9fc,
2051                 0x4d000, 0x4d004,
2052                 0x4d010, 0x4d030,
2053                 0x4d040, 0x4d060,
2054                 0x4d068, 0x4d068,
2055                 0x4d080, 0x4d084,
2056                 0x4d0a0, 0x4d0b0,
2057                 0x4d200, 0x4d204,
2058                 0x4d210, 0x4d230,
2059                 0x4d240, 0x4d260,
2060                 0x4d268, 0x4d268,
2061                 0x4d280, 0x4d284,
2062                 0x4d2a0, 0x4d2b0,
2063                 0x4e0c0, 0x4e0e4,
2064                 0x4f000, 0x4f03c,
2065                 0x4f044, 0x4f08c,
2066                 0x4f200, 0x4f250,
2067                 0x4f400, 0x4f408,
2068                 0x4f414, 0x4f420,
2069                 0x4f600, 0x4f618,
2070                 0x4f800, 0x4f814,
2071                 0x50000, 0x50084,
2072                 0x50090, 0x500cc,
2073                 0x50400, 0x50400,
2074                 0x50800, 0x50884,
2075                 0x50890, 0x508cc,
2076                 0x50c00, 0x50c00,
2077                 0x51000, 0x5101c,
2078                 0x51300, 0x51308,
2079         };
2080
2081         static const unsigned int t6_reg_ranges[] = {
2082                 0x1008, 0x101c,
2083                 0x1024, 0x10a8,
2084                 0x10b4, 0x10f8,
2085                 0x1100, 0x1114,
2086                 0x111c, 0x112c,
2087                 0x1138, 0x113c,
2088                 0x1144, 0x114c,
2089                 0x1180, 0x1184,
2090                 0x1190, 0x1194,
2091                 0x11a0, 0x11a4,
2092                 0x11b0, 0x11b4,
2093                 0x11fc, 0x123c,
2094                 0x1254, 0x1274,
2095                 0x1280, 0x133c,
2096                 0x1800, 0x18fc,
2097                 0x3000, 0x302c,
2098                 0x3060, 0x30b0,
2099                 0x30b8, 0x30d8,
2100                 0x30e0, 0x30fc,
2101                 0x3140, 0x357c,
2102                 0x35a8, 0x35cc,
2103                 0x35ec, 0x35ec,
2104                 0x3600, 0x5624,
2105                 0x56cc, 0x56ec,
2106                 0x56f4, 0x5720,
2107                 0x5728, 0x575c,
2108                 0x580c, 0x5814,
2109                 0x5890, 0x589c,
2110                 0x58a4, 0x58ac,
2111                 0x58b8, 0x58bc,
2112                 0x5940, 0x595c,
2113                 0x5980, 0x598c,
2114                 0x59b0, 0x59c8,
2115                 0x59d0, 0x59dc,
2116                 0x59fc, 0x5a18,
2117                 0x5a60, 0x5a6c,
2118                 0x5a80, 0x5a8c,
2119                 0x5a94, 0x5a9c,
2120                 0x5b94, 0x5bfc,
2121                 0x5c10, 0x5e48,
2122                 0x5e50, 0x5e94,
2123                 0x5ea0, 0x5eb0,
2124                 0x5ec0, 0x5ec0,
2125                 0x5ec8, 0x5ed0,
2126                 0x5ee0, 0x5ee0,
2127                 0x5ef0, 0x5ef0,
2128                 0x5f00, 0x5f00,
2129                 0x6000, 0x6020,
2130                 0x6028, 0x6040,
2131                 0x6058, 0x609c,
2132                 0x60a8, 0x619c,
2133                 0x7700, 0x7798,
2134                 0x77c0, 0x7880,
2135                 0x78cc, 0x78fc,
2136                 0x7b00, 0x7b58,
2137                 0x7b60, 0x7b84,
2138                 0x7b8c, 0x7c54,
2139                 0x7d00, 0x7d38,
2140                 0x7d40, 0x7d84,
2141                 0x7d8c, 0x7ddc,
2142                 0x7de4, 0x7e04,
2143                 0x7e10, 0x7e1c,
2144                 0x7e24, 0x7e38,
2145                 0x7e40, 0x7e44,
2146                 0x7e4c, 0x7e78,
2147                 0x7e80, 0x7edc,
2148                 0x7ee8, 0x7efc,
2149                 0x8dc0, 0x8de4,
2150                 0x8df8, 0x8e04,
2151                 0x8e10, 0x8e84,
2152                 0x8ea0, 0x8f88,
2153                 0x8fb8, 0x9058,
2154                 0x9060, 0x9060,
2155                 0x9068, 0x90f8,
2156                 0x9100, 0x9124,
2157                 0x9400, 0x9470,
2158                 0x9600, 0x9600,
2159                 0x9608, 0x9638,
2160                 0x9640, 0x9704,
2161                 0x9710, 0x971c,
2162                 0x9800, 0x9808,
2163                 0x9810, 0x9864,
2164                 0x9c00, 0x9c6c,
2165                 0x9c80, 0x9cec,
2166                 0x9d00, 0x9d6c,
2167                 0x9d80, 0x9dec,
2168                 0x9e00, 0x9e6c,
2169                 0x9e80, 0x9eec,
2170                 0x9f00, 0x9f6c,
2171                 0x9f80, 0xa020,
2172                 0xd000, 0xd03c,
2173                 0xd100, 0xd118,
2174                 0xd200, 0xd214,
2175                 0xd220, 0xd234,
2176                 0xd240, 0xd254,
2177                 0xd260, 0xd274,
2178                 0xd280, 0xd294,
2179                 0xd2a0, 0xd2b4,
2180                 0xd2c0, 0xd2d4,
2181                 0xd2e0, 0xd2f4,
2182                 0xd300, 0xd31c,
2183                 0xdfc0, 0xdfe0,
2184                 0xe000, 0xf008,
2185                 0xf010, 0xf018,
2186                 0xf020, 0xf028,
2187                 0x11000, 0x11014,
2188                 0x11048, 0x1106c,
2189                 0x11074, 0x11088,
2190                 0x11098, 0x11120,
2191                 0x1112c, 0x1117c,
2192                 0x11190, 0x112e0,
2193                 0x11300, 0x1130c,
2194                 0x12000, 0x1206c,
2195                 0x19040, 0x1906c,
2196                 0x19078, 0x19080,
2197                 0x1908c, 0x190e8,
2198                 0x190f0, 0x190f8,
2199                 0x19100, 0x19110,
2200                 0x19120, 0x19124,
2201                 0x19150, 0x19194,
2202                 0x1919c, 0x191b0,
2203                 0x191d0, 0x191e8,
2204                 0x19238, 0x19290,
2205                 0x192a4, 0x192b0,
2206                 0x192bc, 0x192bc,
2207                 0x19348, 0x1934c,
2208                 0x193f8, 0x19418,
2209                 0x19420, 0x19428,
2210                 0x19430, 0x19444,
2211                 0x1944c, 0x1946c,
2212                 0x19474, 0x19474,
2213                 0x19490, 0x194cc,
2214                 0x194f0, 0x194f8,
2215                 0x19c00, 0x19c48,
2216                 0x19c50, 0x19c80,
2217                 0x19c94, 0x19c98,
2218                 0x19ca0, 0x19cbc,
2219                 0x19ce4, 0x19ce4,
2220                 0x19cf0, 0x19cf8,
2221                 0x19d00, 0x19d28,
2222                 0x19d50, 0x19d78,
2223                 0x19d94, 0x19d98,
2224                 0x19da0, 0x19dc8,
2225                 0x19df0, 0x19e10,
2226                 0x19e50, 0x19e6c,
2227                 0x19ea0, 0x19ebc,
2228                 0x19ec4, 0x19ef4,
2229                 0x19f04, 0x19f2c,
2230                 0x19f34, 0x19f34,
2231                 0x19f40, 0x19f50,
2232                 0x19f90, 0x19fac,
2233                 0x19fc4, 0x19fc8,
2234                 0x19fd0, 0x19fe4,
2235                 0x1a000, 0x1a004,
2236                 0x1a010, 0x1a06c,
2237                 0x1a0b0, 0x1a0e4,
2238                 0x1a0ec, 0x1a0f8,
2239                 0x1a100, 0x1a108,
2240                 0x1a114, 0x1a130,
2241                 0x1a138, 0x1a1c4,
2242                 0x1a1fc, 0x1a1fc,
2243                 0x1e008, 0x1e00c,
2244                 0x1e040, 0x1e044,
2245                 0x1e04c, 0x1e04c,
2246                 0x1e284, 0x1e290,
2247                 0x1e2c0, 0x1e2c0,
2248                 0x1e2e0, 0x1e2e0,
2249                 0x1e300, 0x1e384,
2250                 0x1e3c0, 0x1e3c8,
2251                 0x1e408, 0x1e40c,
2252                 0x1e440, 0x1e444,
2253                 0x1e44c, 0x1e44c,
2254                 0x1e684, 0x1e690,
2255                 0x1e6c0, 0x1e6c0,
2256                 0x1e6e0, 0x1e6e0,
2257                 0x1e700, 0x1e784,
2258                 0x1e7c0, 0x1e7c8,
2259                 0x1e808, 0x1e80c,
2260                 0x1e840, 0x1e844,
2261                 0x1e84c, 0x1e84c,
2262                 0x1ea84, 0x1ea90,
2263                 0x1eac0, 0x1eac0,
2264                 0x1eae0, 0x1eae0,
2265                 0x1eb00, 0x1eb84,
2266                 0x1ebc0, 0x1ebc8,
2267                 0x1ec08, 0x1ec0c,
2268                 0x1ec40, 0x1ec44,
2269                 0x1ec4c, 0x1ec4c,
2270                 0x1ee84, 0x1ee90,
2271                 0x1eec0, 0x1eec0,
2272                 0x1eee0, 0x1eee0,
2273                 0x1ef00, 0x1ef84,
2274                 0x1efc0, 0x1efc8,
2275                 0x1f008, 0x1f00c,
2276                 0x1f040, 0x1f044,
2277                 0x1f04c, 0x1f04c,
2278                 0x1f284, 0x1f290,
2279                 0x1f2c0, 0x1f2c0,
2280                 0x1f2e0, 0x1f2e0,
2281                 0x1f300, 0x1f384,
2282                 0x1f3c0, 0x1f3c8,
2283                 0x1f408, 0x1f40c,
2284                 0x1f440, 0x1f444,
2285                 0x1f44c, 0x1f44c,
2286                 0x1f684, 0x1f690,
2287                 0x1f6c0, 0x1f6c0,
2288                 0x1f6e0, 0x1f6e0,
2289                 0x1f700, 0x1f784,
2290                 0x1f7c0, 0x1f7c8,
2291                 0x1f808, 0x1f80c,
2292                 0x1f840, 0x1f844,
2293                 0x1f84c, 0x1f84c,
2294                 0x1fa84, 0x1fa90,
2295                 0x1fac0, 0x1fac0,
2296                 0x1fae0, 0x1fae0,
2297                 0x1fb00, 0x1fb84,
2298                 0x1fbc0, 0x1fbc8,
2299                 0x1fc08, 0x1fc0c,
2300                 0x1fc40, 0x1fc44,
2301                 0x1fc4c, 0x1fc4c,
2302                 0x1fe84, 0x1fe90,
2303                 0x1fec0, 0x1fec0,
2304                 0x1fee0, 0x1fee0,
2305                 0x1ff00, 0x1ff84,
2306                 0x1ffc0, 0x1ffc8,
2307                 0x30000, 0x30030,
2308                 0x30100, 0x30168,
2309                 0x30190, 0x301a0,
2310                 0x301a8, 0x301b8,
2311                 0x301c4, 0x301c8,
2312                 0x301d0, 0x301d0,
2313                 0x30200, 0x30320,
2314                 0x30400, 0x304b4,
2315                 0x304c0, 0x3052c,
2316                 0x30540, 0x3061c,
2317                 0x30800, 0x308a0,
2318                 0x308c0, 0x30908,
2319                 0x30910, 0x309b8,
2320                 0x30a00, 0x30a04,
2321                 0x30a0c, 0x30a14,
2322                 0x30a1c, 0x30a2c,
2323                 0x30a44, 0x30a50,
2324                 0x30a74, 0x30a74,
2325                 0x30a7c, 0x30afc,
2326                 0x30b08, 0x30c24,
2327                 0x30d00, 0x30d14,
2328                 0x30d1c, 0x30d3c,
2329                 0x30d44, 0x30d4c,
2330                 0x30d54, 0x30d74,
2331                 0x30d7c, 0x30d7c,
2332                 0x30de0, 0x30de0,
2333                 0x30e00, 0x30ed4,
2334                 0x30f00, 0x30fa4,
2335                 0x30fc0, 0x30fc4,
2336                 0x31000, 0x31004,
2337                 0x31080, 0x310fc,
2338                 0x31208, 0x31220,
2339                 0x3123c, 0x31254,
2340                 0x31300, 0x31300,
2341                 0x31308, 0x3131c,
2342                 0x31338, 0x3133c,
2343                 0x31380, 0x31380,
2344                 0x31388, 0x313a8,
2345                 0x313b4, 0x313b4,
2346                 0x31400, 0x31420,
2347                 0x31438, 0x3143c,
2348                 0x31480, 0x31480,
2349                 0x314a8, 0x314a8,
2350                 0x314b0, 0x314b4,
2351                 0x314c8, 0x314d4,
2352                 0x31a40, 0x31a4c,
2353                 0x31af0, 0x31b20,
2354                 0x31b38, 0x31b3c,
2355                 0x31b80, 0x31b80,
2356                 0x31ba8, 0x31ba8,
2357                 0x31bb0, 0x31bb4,
2358                 0x31bc8, 0x31bd4,
2359                 0x32140, 0x3218c,
2360                 0x321f0, 0x321f4,
2361                 0x32200, 0x32200,
2362                 0x32218, 0x32218,
2363                 0x32400, 0x32400,
2364                 0x32408, 0x3241c,
2365                 0x32618, 0x32620,
2366                 0x32664, 0x32664,
2367                 0x326a8, 0x326a8,
2368                 0x326ec, 0x326ec,
2369                 0x32a00, 0x32abc,
2370                 0x32b00, 0x32b18,
2371                 0x32b20, 0x32b38,
2372                 0x32b40, 0x32b58,
2373                 0x32b60, 0x32b78,
2374                 0x32c00, 0x32c00,
2375                 0x32c08, 0x32c3c,
2376                 0x33000, 0x3302c,
2377                 0x33034, 0x33050,
2378                 0x33058, 0x33058,
2379                 0x33060, 0x3308c,
2380                 0x3309c, 0x330ac,
2381                 0x330c0, 0x330c0,
2382                 0x330c8, 0x330d0,
2383                 0x330d8, 0x330e0,
2384                 0x330ec, 0x3312c,
2385                 0x33134, 0x33150,
2386                 0x33158, 0x33158,
2387                 0x33160, 0x3318c,
2388                 0x3319c, 0x331ac,
2389                 0x331c0, 0x331c0,
2390                 0x331c8, 0x331d0,
2391                 0x331d8, 0x331e0,
2392                 0x331ec, 0x33290,
2393                 0x33298, 0x332c4,
2394                 0x332e4, 0x33390,
2395                 0x33398, 0x333c4,
2396                 0x333e4, 0x3342c,
2397                 0x33434, 0x33450,
2398                 0x33458, 0x33458,
2399                 0x33460, 0x3348c,
2400                 0x3349c, 0x334ac,
2401                 0x334c0, 0x334c0,
2402                 0x334c8, 0x334d0,
2403                 0x334d8, 0x334e0,
2404                 0x334ec, 0x3352c,
2405                 0x33534, 0x33550,
2406                 0x33558, 0x33558,
2407                 0x33560, 0x3358c,
2408                 0x3359c, 0x335ac,
2409                 0x335c0, 0x335c0,
2410                 0x335c8, 0x335d0,
2411                 0x335d8, 0x335e0,
2412                 0x335ec, 0x33690,
2413                 0x33698, 0x336c4,
2414                 0x336e4, 0x33790,
2415                 0x33798, 0x337c4,
2416                 0x337e4, 0x337fc,
2417                 0x33814, 0x33814,
2418                 0x33854, 0x33868,
2419                 0x33880, 0x3388c,
2420                 0x338c0, 0x338d0,
2421                 0x338e8, 0x338ec,
2422                 0x33900, 0x3392c,
2423                 0x33934, 0x33950,
2424                 0x33958, 0x33958,
2425                 0x33960, 0x3398c,
2426                 0x3399c, 0x339ac,
2427                 0x339c0, 0x339c0,
2428                 0x339c8, 0x339d0,
2429                 0x339d8, 0x339e0,
2430                 0x339ec, 0x33a90,
2431                 0x33a98, 0x33ac4,
2432                 0x33ae4, 0x33b10,
2433                 0x33b24, 0x33b28,
2434                 0x33b38, 0x33b50,
2435                 0x33bf0, 0x33c10,
2436                 0x33c24, 0x33c28,
2437                 0x33c38, 0x33c50,
2438                 0x33cf0, 0x33cfc,
2439                 0x34000, 0x34030,
2440                 0x34100, 0x34168,
2441                 0x34190, 0x341a0,
2442                 0x341a8, 0x341b8,
2443                 0x341c4, 0x341c8,
2444                 0x341d0, 0x341d0,
2445                 0x34200, 0x34320,
2446                 0x34400, 0x344b4,
2447                 0x344c0, 0x3452c,
2448                 0x34540, 0x3461c,
2449                 0x34800, 0x348a0,
2450                 0x348c0, 0x34908,
2451                 0x34910, 0x349b8,
2452                 0x34a00, 0x34a04,
2453                 0x34a0c, 0x34a14,
2454                 0x34a1c, 0x34a2c,
2455                 0x34a44, 0x34a50,
2456                 0x34a74, 0x34a74,
2457                 0x34a7c, 0x34afc,
2458                 0x34b08, 0x34c24,
2459                 0x34d00, 0x34d14,
2460                 0x34d1c, 0x34d3c,
2461                 0x34d44, 0x34d4c,
2462                 0x34d54, 0x34d74,
2463                 0x34d7c, 0x34d7c,
2464                 0x34de0, 0x34de0,
2465                 0x34e00, 0x34ed4,
2466                 0x34f00, 0x34fa4,
2467                 0x34fc0, 0x34fc4,
2468                 0x35000, 0x35004,
2469                 0x35080, 0x350fc,
2470                 0x35208, 0x35220,
2471                 0x3523c, 0x35254,
2472                 0x35300, 0x35300,
2473                 0x35308, 0x3531c,
2474                 0x35338, 0x3533c,
2475                 0x35380, 0x35380,
2476                 0x35388, 0x353a8,
2477                 0x353b4, 0x353b4,
2478                 0x35400, 0x35420,
2479                 0x35438, 0x3543c,
2480                 0x35480, 0x35480,
2481                 0x354a8, 0x354a8,
2482                 0x354b0, 0x354b4,
2483                 0x354c8, 0x354d4,
2484                 0x35a40, 0x35a4c,
2485                 0x35af0, 0x35b20,
2486                 0x35b38, 0x35b3c,
2487                 0x35b80, 0x35b80,
2488                 0x35ba8, 0x35ba8,
2489                 0x35bb0, 0x35bb4,
2490                 0x35bc8, 0x35bd4,
2491                 0x36140, 0x3618c,
2492                 0x361f0, 0x361f4,
2493                 0x36200, 0x36200,
2494                 0x36218, 0x36218,
2495                 0x36400, 0x36400,
2496                 0x36408, 0x3641c,
2497                 0x36618, 0x36620,
2498                 0x36664, 0x36664,
2499                 0x366a8, 0x366a8,
2500                 0x366ec, 0x366ec,
2501                 0x36a00, 0x36abc,
2502                 0x36b00, 0x36b18,
2503                 0x36b20, 0x36b38,
2504                 0x36b40, 0x36b58,
2505                 0x36b60, 0x36b78,
2506                 0x36c00, 0x36c00,
2507                 0x36c08, 0x36c3c,
2508                 0x37000, 0x3702c,
2509                 0x37034, 0x37050,
2510                 0x37058, 0x37058,
2511                 0x37060, 0x3708c,
2512                 0x3709c, 0x370ac,
2513                 0x370c0, 0x370c0,
2514                 0x370c8, 0x370d0,
2515                 0x370d8, 0x370e0,
2516                 0x370ec, 0x3712c,
2517                 0x37134, 0x37150,
2518                 0x37158, 0x37158,
2519                 0x37160, 0x3718c,
2520                 0x3719c, 0x371ac,
2521                 0x371c0, 0x371c0,
2522                 0x371c8, 0x371d0,
2523                 0x371d8, 0x371e0,
2524                 0x371ec, 0x37290,
2525                 0x37298, 0x372c4,
2526                 0x372e4, 0x37390,
2527                 0x37398, 0x373c4,
2528                 0x373e4, 0x3742c,
2529                 0x37434, 0x37450,
2530                 0x37458, 0x37458,
2531                 0x37460, 0x3748c,
2532                 0x3749c, 0x374ac,
2533                 0x374c0, 0x374c0,
2534                 0x374c8, 0x374d0,
2535                 0x374d8, 0x374e0,
2536                 0x374ec, 0x3752c,
2537                 0x37534, 0x37550,
2538                 0x37558, 0x37558,
2539                 0x37560, 0x3758c,
2540                 0x3759c, 0x375ac,
2541                 0x375c0, 0x375c0,
2542                 0x375c8, 0x375d0,
2543                 0x375d8, 0x375e0,
2544                 0x375ec, 0x37690,
2545                 0x37698, 0x376c4,
2546                 0x376e4, 0x37790,
2547                 0x37798, 0x377c4,
2548                 0x377e4, 0x377fc,
2549                 0x37814, 0x37814,
2550                 0x37854, 0x37868,
2551                 0x37880, 0x3788c,
2552                 0x378c0, 0x378d0,
2553                 0x378e8, 0x378ec,
2554                 0x37900, 0x3792c,
2555                 0x37934, 0x37950,
2556                 0x37958, 0x37958,
2557                 0x37960, 0x3798c,
2558                 0x3799c, 0x379ac,
2559                 0x379c0, 0x379c0,
2560                 0x379c8, 0x379d0,
2561                 0x379d8, 0x379e0,
2562                 0x379ec, 0x37a90,
2563                 0x37a98, 0x37ac4,
2564                 0x37ae4, 0x37b10,
2565                 0x37b24, 0x37b28,
2566                 0x37b38, 0x37b50,
2567                 0x37bf0, 0x37c10,
2568                 0x37c24, 0x37c28,
2569                 0x37c38, 0x37c50,
2570                 0x37cf0, 0x37cfc,
2571                 0x40040, 0x40040,
2572                 0x40080, 0x40084,
2573                 0x40100, 0x40100,
2574                 0x40140, 0x401bc,
2575                 0x40200, 0x40214,
2576                 0x40228, 0x40228,
2577                 0x40240, 0x40258,
2578                 0x40280, 0x40280,
2579                 0x40304, 0x40304,
2580                 0x40330, 0x4033c,
2581                 0x41304, 0x413c8,
2582                 0x413d0, 0x413dc,
2583                 0x413f0, 0x413f0,
2584                 0x41400, 0x4140c,
2585                 0x41414, 0x4141c,
2586                 0x41480, 0x414d0,
2587                 0x44000, 0x4407c,
2588                 0x440c0, 0x441ac,
2589                 0x441b4, 0x4427c,
2590                 0x442c0, 0x443ac,
2591                 0x443b4, 0x4447c,
2592                 0x444c0, 0x445ac,
2593                 0x445b4, 0x4467c,
2594                 0x446c0, 0x447ac,
2595                 0x447b4, 0x4487c,
2596                 0x448c0, 0x449ac,
2597                 0x449b4, 0x44a7c,
2598                 0x44ac0, 0x44bac,
2599                 0x44bb4, 0x44c7c,
2600                 0x44cc0, 0x44dac,
2601                 0x44db4, 0x44e7c,
2602                 0x44ec0, 0x44fac,
2603                 0x44fb4, 0x4507c,
2604                 0x450c0, 0x451ac,
2605                 0x451b4, 0x451fc,
2606                 0x45800, 0x45804,
2607                 0x45810, 0x45830,
2608                 0x45840, 0x45860,
2609                 0x45868, 0x45868,
2610                 0x45880, 0x45884,
2611                 0x458a0, 0x458b0,
2612                 0x45a00, 0x45a04,
2613                 0x45a10, 0x45a30,
2614                 0x45a40, 0x45a60,
2615                 0x45a68, 0x45a68,
2616                 0x45a80, 0x45a84,
2617                 0x45aa0, 0x45ab0,
2618                 0x460c0, 0x460e4,
2619                 0x47000, 0x4703c,
2620                 0x47044, 0x4708c,
2621                 0x47200, 0x47250,
2622                 0x47400, 0x47408,
2623                 0x47414, 0x47420,
2624                 0x47600, 0x47618,
2625                 0x47800, 0x47814,
2626                 0x47820, 0x4782c,
2627                 0x50000, 0x50084,
2628                 0x50090, 0x500cc,
2629                 0x50300, 0x50384,
2630                 0x50400, 0x50400,
2631                 0x50800, 0x50884,
2632                 0x50890, 0x508cc,
2633                 0x50b00, 0x50b84,
2634                 0x50c00, 0x50c00,
2635                 0x51000, 0x51020,
2636                 0x51028, 0x510b0,
2637                 0x51300, 0x51324,
2638         };
2639
2640         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641         const unsigned int *reg_ranges;
2642         int reg_ranges_size, range;
2643         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644
2645         /* Select the right set of register ranges to dump depending on the
2646          * adapter chip type.
2647          */
2648         switch (chip_version) {
2649         case CHELSIO_T4:
2650                 reg_ranges = t4_reg_ranges;
2651                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652                 break;
2653
2654         case CHELSIO_T5:
2655                 reg_ranges = t5_reg_ranges;
2656                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657                 break;
2658
2659         case CHELSIO_T6:
2660                 reg_ranges = t6_reg_ranges;
2661                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662                 break;
2663
2664         default:
2665                 dev_err(adap->pdev_dev,
2666                         "Unsupported chip version %d\n", chip_version);
2667                 return;
2668         }
2669
2670         /* Clear the register buffer and insert the appropriate register
2671          * values selected by the above register ranges.
2672          */
2673         memset(buf, 0, buf_size);
2674         for (range = 0; range < reg_ranges_size; range += 2) {
2675                 unsigned int reg = reg_ranges[range];
2676                 unsigned int last_reg = reg_ranges[range + 1];
2677                 u32 *bufp = (u32 *)((char *)buf + reg);
2678
2679                 /* Iterate across the register range filling in the register
2680                  * buffer but don't write past the end of the register buffer.
2681                  */
2682                 while (reg <= last_reg && bufp < buf_end) {
2683                         *bufp++ = t4_read_reg(adap, reg);
2684                         reg += sizeof(u32);
2685                 }
2686         }
2687 }
2688
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713         fn *= sz;
2714         if (phys_addr < 1024)
2715                 return phys_addr + (31 << 10);
2716         if (phys_addr < 1024 + fn)
2717                 return 31744 - fn + phys_addr - 1024;
2718         if (phys_addr < EEPROMSIZE)
2719                 return phys_addr - 1024 - fn;
2720         return -EINVAL;
2721 }
2722
2723 /**
2724  *      t4_seeprom_wp - enable/disable EEPROM write protection
2725  *      @adapter: the adapter
2726  *      @enable: whether to enable or disable write protection
2727  *
2728  *      Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732         unsigned int v = enable ? 0xc : 0;
2733         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734         return ret < 0 ? ret : 0;
2735 }
2736
2737 /**
2738  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *      @adapter: adapter to read
2740  *      @p: where to store the parameters
2741  *
2742  *      Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746         int i, ret = 0, addr;
2747         int ec, sn, pn, na;
2748         u8 *vpd, csum, base_val = 0;
2749         unsigned int vpdr_len, kw_offset, id_len;
2750
2751         vpd = vmalloc(VPD_LEN);
2752         if (!vpd)
2753                 return -ENOMEM;
2754
2755         /* Card information normally starts at VPD_BASE but early cards had
2756          * it at 0.
2757          */
2758         ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2759         if (ret < 0)
2760                 goto out;
2761
2762         addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2763
2764         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2765         if (ret < 0)
2766                 goto out;
2767
2768         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2769                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2770                 ret = -EINVAL;
2771                 goto out;
2772         }
2773
2774         id_len = pci_vpd_lrdt_size(vpd);
2775         if (id_len > ID_LEN)
2776                 id_len = ID_LEN;
2777
2778         i = pci_vpd_find_tag(vpd, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2779         if (i < 0) {
2780                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2781                 ret = -EINVAL;
2782                 goto out;
2783         }
2784
2785         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2786         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2787         if (vpdr_len + kw_offset > VPD_LEN) {
2788                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2789                 ret = -EINVAL;
2790                 goto out;
2791         }
2792
2793 #define FIND_VPD_KW(var, name) do { \
2794         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2795         if (var < 0) { \
2796                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2797                 ret = -EINVAL; \
2798                 goto out; \
2799         } \
2800         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2801 } while (0)
2802
2803         FIND_VPD_KW(i, "RV");
2804         for (csum = 0; i >= 0; i--)
2805                 csum += vpd[i];
2806
2807         if (csum) {
2808                 dev_err(adapter->pdev_dev,
2809                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2810                 ret = -EINVAL;
2811                 goto out;
2812         }
2813
2814         FIND_VPD_KW(ec, "EC");
2815         FIND_VPD_KW(sn, "SN");
2816         FIND_VPD_KW(pn, "PN");
2817         FIND_VPD_KW(na, "NA");
2818 #undef FIND_VPD_KW
2819
2820         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2821         strim(p->id);
2822         memcpy(p->ec, vpd + ec, EC_LEN);
2823         strim(p->ec);
2824         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2825         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2826         strim(p->sn);
2827         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2828         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2829         strim(p->pn);
2830         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2831         strim((char *)p->na);
2832
2833 out:
2834         vfree(vpd);
2835         return ret < 0 ? ret : 0;
2836 }
2837
2838 /**
2839  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2840  *      @adapter: adapter to read
2841  *      @p: where to store the parameters
2842  *
2843  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2844  *      Clock.  This can only be called after a connection to the firmware
2845  *      is established.
2846  */
2847 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2848 {
2849         u32 cclk_param, cclk_val;
2850         int ret;
2851
2852         /* Grab the raw VPD parameters.
2853          */
2854         ret = t4_get_raw_vpd_params(adapter, p);
2855         if (ret)
2856                 return ret;
2857
2858         /* Ask firmware for the Core Clock since it knows how to translate the
2859          * Reference Clock ('V2') VPD field into a Core Clock value ...
2860          */
2861         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2862                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2863         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2864                               1, &cclk_param, &cclk_val);
2865
2866         if (ret)
2867                 return ret;
2868         p->cclk = cclk_val;
2869
2870         return 0;
2871 }
2872
2873 /**
2874  *      t4_get_pfres - retrieve VF resource limits
2875  *      @adapter: the adapter
2876  *
2877  *      Retrieves configured resource limits and capabilities for a physical
2878  *      function.  The results are stored in @adapter->pfres.
2879  */
2880 int t4_get_pfres(struct adapter *adapter)
2881 {
2882         struct pf_resources *pfres = &adapter->params.pfres;
2883         struct fw_pfvf_cmd cmd, rpl;
2884         int v;
2885         u32 word;
2886
2887         /* Execute PFVF Read command to get VF resource limits; bail out early
2888          * with error on command failure.
2889          */
2890         memset(&cmd, 0, sizeof(cmd));
2891         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2892                                     FW_CMD_REQUEST_F |
2893                                     FW_CMD_READ_F |
2894                                     FW_PFVF_CMD_PFN_V(adapter->pf) |
2895                                     FW_PFVF_CMD_VFN_V(0));
2896         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2897         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2898         if (v != FW_SUCCESS)
2899                 return v;
2900
2901         /* Extract PF resource limits and return success.
2902          */
2903         word = be32_to_cpu(rpl.niqflint_niq);
2904         pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2905         pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2906
2907         word = be32_to_cpu(rpl.type_to_neq);
2908         pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2909         pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2910
2911         word = be32_to_cpu(rpl.tc_to_nexactf);
2912         pfres->tc = FW_PFVF_CMD_TC_G(word);
2913         pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2914         pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2915
2916         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2917         pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2918         pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2919         pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2920
2921         return 0;
2922 }
2923
2924 /* serial flash and firmware constants */
2925 enum {
2926         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2927
2928         /* flash command opcodes */
2929         SF_PROG_PAGE    = 2,          /* program page */
2930         SF_WR_DISABLE   = 4,          /* disable writes */
2931         SF_RD_STATUS    = 5,          /* read status register */
2932         SF_WR_ENABLE    = 6,          /* enable writes */
2933         SF_RD_DATA_FAST = 0xb,        /* read flash */
2934         SF_RD_ID        = 0x9f,       /* read ID */
2935         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2936 };
2937
2938 /**
2939  *      sf1_read - read data from the serial flash
2940  *      @adapter: the adapter
2941  *      @byte_cnt: number of bytes to read
2942  *      @cont: whether another operation will be chained
2943  *      @lock: whether to lock SF for PL access only
2944  *      @valp: where to store the read data
2945  *
2946  *      Reads up to 4 bytes of data from the serial flash.  The location of
2947  *      the read needs to be specified prior to calling this by issuing the
2948  *      appropriate commands to the serial flash.
2949  */
2950 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2951                     int lock, u32 *valp)
2952 {
2953         int ret;
2954
2955         if (!byte_cnt || byte_cnt > 4)
2956                 return -EINVAL;
2957         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2958                 return -EBUSY;
2959         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2960                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2961         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2962         if (!ret)
2963                 *valp = t4_read_reg(adapter, SF_DATA_A);
2964         return ret;
2965 }
2966
2967 /**
2968  *      sf1_write - write data to the serial flash
2969  *      @adapter: the adapter
2970  *      @byte_cnt: number of bytes to write
2971  *      @cont: whether another operation will be chained
2972  *      @lock: whether to lock SF for PL access only
2973  *      @val: value to write
2974  *
2975  *      Writes up to 4 bytes of data to the serial flash.  The location of
2976  *      the write needs to be specified prior to calling this by issuing the
2977  *      appropriate commands to the serial flash.
2978  */
2979 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2980                      int lock, u32 val)
2981 {
2982         if (!byte_cnt || byte_cnt > 4)
2983                 return -EINVAL;
2984         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2985                 return -EBUSY;
2986         t4_write_reg(adapter, SF_DATA_A, val);
2987         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2988                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2989         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2990 }
2991
2992 /**
2993  *      flash_wait_op - wait for a flash operation to complete
2994  *      @adapter: the adapter
2995  *      @attempts: max number of polls of the status register
2996  *      @delay: delay between polls in ms
2997  *
2998  *      Wait for a flash operation to complete by polling the status register.
2999  */
3000 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3001 {
3002         int ret;
3003         u32 status;
3004
3005         while (1) {
3006                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3007                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3008                         return ret;
3009                 if (!(status & 1))
3010                         return 0;
3011                 if (--attempts == 0)
3012                         return -EAGAIN;
3013                 if (delay)
3014                         msleep(delay);
3015         }
3016 }
3017
3018 /**
3019  *      t4_read_flash - read words from serial flash
3020  *      @adapter: the adapter
3021  *      @addr: the start address for the read
3022  *      @nwords: how many 32-bit words to read
3023  *      @data: where to store the read data
3024  *      @byte_oriented: whether to store data as bytes or as words
3025  *
3026  *      Read the specified number of 32-bit words from the serial flash.
3027  *      If @byte_oriented is set the read data is stored as a byte array
3028  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3029  *      natural endianness.
3030  */
3031 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3032                   unsigned int nwords, u32 *data, int byte_oriented)
3033 {
3034         int ret;
3035
3036         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3037                 return -EINVAL;
3038
3039         addr = swab32(addr) | SF_RD_DATA_FAST;
3040
3041         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3042             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3043                 return ret;
3044
3045         for ( ; nwords; nwords--, data++) {
3046                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3047                 if (nwords == 1)
3048                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3049                 if (ret)
3050                         return ret;
3051                 if (byte_oriented)
3052                         *data = (__force __u32)(cpu_to_be32(*data));
3053         }
3054         return 0;
3055 }
3056
3057 /**
3058  *      t4_write_flash - write up to a page of data to the serial flash
3059  *      @adapter: the adapter
3060  *      @addr: the start address to write
3061  *      @n: length of data to write in bytes
3062  *      @data: the data to write
3063  *
3064  *      Writes up to a page of data (256 bytes) to the serial flash starting
3065  *      at the given address.  All the data must be written to the same page.
3066  */
3067 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3068                           unsigned int n, const u8 *data)
3069 {
3070         int ret;
3071         u32 buf[64];
3072         unsigned int i, c, left, val, offset = addr & 0xff;
3073
3074         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3075                 return -EINVAL;
3076
3077         val = swab32(addr) | SF_PROG_PAGE;
3078
3079         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3080             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3081                 goto unlock;
3082
3083         for (left = n; left; left -= c) {
3084                 c = min(left, 4U);
3085                 for (val = 0, i = 0; i < c; ++i)
3086                         val = (val << 8) + *data++;
3087
3088                 ret = sf1_write(adapter, c, c != left, 1, val);
3089                 if (ret)
3090                         goto unlock;
3091         }
3092         ret = flash_wait_op(adapter, 8, 1);
3093         if (ret)
3094                 goto unlock;
3095
3096         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3097
3098         /* Read the page to verify the write succeeded */
3099         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3100         if (ret)
3101                 return ret;
3102
3103         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3104                 dev_err(adapter->pdev_dev,
3105                         "failed to correctly write the flash page at %#x\n",
3106                         addr);
3107                 return -EIO;
3108         }
3109         return 0;
3110
3111 unlock:
3112         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3113         return ret;
3114 }
3115
3116 /**
3117  *      t4_get_fw_version - read the firmware version
3118  *      @adapter: the adapter
3119  *      @vers: where to place the version
3120  *
3121  *      Reads the FW version from flash.
3122  */
3123 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3124 {
3125         return t4_read_flash(adapter, FLASH_FW_START +
3126                              offsetof(struct fw_hdr, fw_ver), 1,
3127                              vers, 0);
3128 }
3129
3130 /**
3131  *      t4_get_bs_version - read the firmware bootstrap version
3132  *      @adapter: the adapter
3133  *      @vers: where to place the version
3134  *
3135  *      Reads the FW Bootstrap version from flash.
3136  */
3137 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3138 {
3139         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3140                              offsetof(struct fw_hdr, fw_ver), 1,
3141                              vers, 0);
3142 }
3143
3144 /**
3145  *      t4_get_tp_version - read the TP microcode version
3146  *      @adapter: the adapter
3147  *      @vers: where to place the version
3148  *
3149  *      Reads the TP microcode version from flash.
3150  */
3151 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3152 {
3153         return t4_read_flash(adapter, FLASH_FW_START +
3154                              offsetof(struct fw_hdr, tp_microcode_ver),
3155                              1, vers, 0);
3156 }
3157
3158 /**
3159  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3160  *      @adap: the adapter
3161  *      @vers: where to place the version
3162  *
3163  *      Reads the Expansion ROM header from FLASH and returns the version
3164  *      number (if present) through the @vers return value pointer.  We return
3165  *      this in the Firmware Version Format since it's convenient.  Return
3166  *      0 on success, -ENOENT if no Expansion ROM is present.
3167  */
3168 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3169 {
3170         struct exprom_header {
3171                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3172                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3173         } *hdr;
3174         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3175                                            sizeof(u32))];
3176         int ret;
3177
3178         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3179                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3180                             0);
3181         if (ret)
3182                 return ret;
3183
3184         hdr = (struct exprom_header *)exprom_header_buf;
3185         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3186                 return -ENOENT;
3187
3188         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3189                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3190                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3191                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3192         return 0;
3193 }
3194
3195 /**
3196  *      t4_get_vpd_version - return the VPD version
3197  *      @adapter: the adapter
3198  *      @vers: where to place the version
3199  *
3200  *      Reads the VPD via the Firmware interface (thus this can only be called
3201  *      once we're ready to issue Firmware commands).  The format of the
3202  *      VPD version is adapter specific.  Returns 0 on success, an error on
3203  *      failure.
3204  *
3205  *      Note that early versions of the Firmware didn't include the ability
3206  *      to retrieve the VPD version, so we zero-out the return-value parameter
3207  *      in that case to avoid leaving it with garbage in it.
3208  *
3209  *      Also note that the Firmware will return its cached copy of the VPD
3210  *      Revision ID, not the actual Revision ID as written in the Serial
3211  *      EEPROM.  This is only an issue if a new VPD has been written and the
3212  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3213  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3214  *      if the Host Driver will be performing a full adapter initialization.
3215  */
3216 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3217 {
3218         u32 vpdrev_param;
3219         int ret;
3220
3221         vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3222                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3223         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3224                               1, &vpdrev_param, vers);
3225         if (ret)
3226                 *vers = 0;
3227         return ret;
3228 }
3229
3230 /**
3231  *      t4_get_scfg_version - return the Serial Configuration version
3232  *      @adapter: the adapter
3233  *      @vers: where to place the version
3234  *
3235  *      Reads the Serial Configuration Version via the Firmware interface
3236  *      (thus this can only be called once we're ready to issue Firmware
3237  *      commands).  The format of the Serial Configuration version is
3238  *      adapter specific.  Returns 0 on success, an error on failure.
3239  *
3240  *      Note that early versions of the Firmware didn't include the ability
3241  *      to retrieve the Serial Configuration version, so we zero-out the
3242  *      return-value parameter in that case to avoid leaving it with
3243  *      garbage in it.
3244  *
3245  *      Also note that the Firmware will return its cached copy of the Serial
3246  *      Initialization Revision ID, not the actual Revision ID as written in
3247  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3248  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3249  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3250  *      been issued if the Host Driver will be performing a full adapter
3251  *      initialization.
3252  */
3253 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3254 {
3255         u32 scfgrev_param;
3256         int ret;
3257
3258         scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3259                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3260         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3261                               1, &scfgrev_param, vers);
3262         if (ret)
3263                 *vers = 0;
3264         return ret;
3265 }
3266
3267 /**
3268  *      t4_get_version_info - extract various chip/firmware version information
3269  *      @adapter: the adapter
3270  *
3271  *      Reads various chip/firmware version numbers and stores them into the
3272  *      adapter Adapter Parameters structure.  If any of the efforts fails
3273  *      the first failure will be returned, but all of the version numbers
3274  *      will be read.
3275  */
3276 int t4_get_version_info(struct adapter *adapter)
3277 {
3278         int ret = 0;
3279
3280         #define FIRST_RET(__getvinfo) \
3281         do { \
3282                 int __ret = __getvinfo; \
3283                 if (__ret && !ret) \
3284                         ret = __ret; \
3285         } while (0)
3286
3287         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3288         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3289         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3290         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3291         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3292         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3293
3294         #undef FIRST_RET
3295         return ret;
3296 }
3297
3298 /**
3299  *      t4_dump_version_info - dump all of the adapter configuration IDs
3300  *      @adapter: the adapter
3301  *
3302  *      Dumps all of the various bits of adapter configuration version/revision
3303  *      IDs information.  This is typically called at some point after
3304  *      t4_get_version_info() has been called.
3305  */
3306 void t4_dump_version_info(struct adapter *adapter)
3307 {
3308         /* Device information */
3309         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3310                  adapter->params.vpd.id,
3311                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
3312         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3313                  adapter->params.vpd.sn, adapter->params.vpd.pn);
3314
3315         /* Firmware Version */
3316         if (!adapter->params.fw_vers)
3317                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3318         else
3319                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3320                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3321                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3322                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3323                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3324
3325         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3326          * Firmware, so dev_info() is more appropriate here.)
3327          */
3328         if (!adapter->params.bs_vers)
3329                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3330         else
3331                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3332                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3333                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3334                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3335                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3336
3337         /* TP Microcode Version */
3338         if (!adapter->params.tp_vers)
3339                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3340         else
3341                 dev_info(adapter->pdev_dev,
3342                          "TP Microcode version: %u.%u.%u.%u\n",
3343                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3344                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3345                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3346                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3347
3348         /* Expansion ROM version */
3349         if (!adapter->params.er_vers)
3350                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3351         else
3352                 dev_info(adapter->pdev_dev,
3353                          "Expansion ROM version: %u.%u.%u.%u\n",
3354                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3355                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3356                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3357                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3358
3359         /* Serial Configuration version */
3360         dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3361                  adapter->params.scfg_vers);
3362
3363         /* VPD Version */
3364         dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3365                  adapter->params.vpd_vers);
3366 }
3367
3368 /**
3369  *      t4_check_fw_version - check if the FW is supported with this driver
3370  *      @adap: the adapter
3371  *
3372  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3373  *      if there's exact match, a negative error if the version could not be
3374  *      read or there's a major version mismatch
3375  */
3376 int t4_check_fw_version(struct adapter *adap)
3377 {
3378         int i, ret, major, minor, micro;
3379         int exp_major, exp_minor, exp_micro;
3380         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3381
3382         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3383         /* Try multiple times before returning error */
3384         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3385                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3386
3387         if (ret)
3388                 return ret;
3389
3390         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3391         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3392         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3393
3394         switch (chip_version) {
3395         case CHELSIO_T4:
3396                 exp_major = T4FW_MIN_VERSION_MAJOR;
3397                 exp_minor = T4FW_MIN_VERSION_MINOR;
3398                 exp_micro = T4FW_MIN_VERSION_MICRO;
3399                 break;
3400         case CHELSIO_T5:
3401                 exp_major = T5FW_MIN_VERSION_MAJOR;
3402                 exp_minor = T5FW_MIN_VERSION_MINOR;
3403                 exp_micro = T5FW_MIN_VERSION_MICRO;
3404                 break;
3405         case CHELSIO_T6:
3406                 exp_major = T6FW_MIN_VERSION_MAJOR;
3407                 exp_minor = T6FW_MIN_VERSION_MINOR;
3408                 exp_micro = T6FW_MIN_VERSION_MICRO;
3409                 break;
3410         default:
3411                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3412                         adap->chip);
3413                 return -EINVAL;
3414         }
3415
3416         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3417             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3418                 dev_err(adap->pdev_dev,
3419                         "Card has firmware version %u.%u.%u, minimum "
3420                         "supported firmware is %u.%u.%u.\n", major, minor,
3421                         micro, exp_major, exp_minor, exp_micro);
3422                 return -EFAULT;
3423         }
3424         return 0;
3425 }
3426
3427 /* Is the given firmware API compatible with the one the driver was compiled
3428  * with?
3429  */
3430 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3431 {
3432
3433         /* short circuit if it's the exact same firmware version */
3434         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3435                 return 1;
3436
3437 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3438         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3439             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3440                 return 1;
3441 #undef SAME_INTF
3442
3443         return 0;
3444 }
3445
3446 /* The firmware in the filesystem is usable, but should it be installed?
3447  * This routine explains itself in detail if it indicates the filesystem
3448  * firmware should be installed.
3449  */
3450 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3451                                 int k, int c)
3452 {
3453         const char *reason;
3454
3455         if (!card_fw_usable) {
3456                 reason = "incompatible or unusable";
3457                 goto install;
3458         }
3459
3460         if (k > c) {
3461                 reason = "older than the version supported with this driver";
3462                 goto install;
3463         }
3464
3465         return 0;
3466
3467 install:
3468         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3469                 "installing firmware %u.%u.%u.%u on card.\n",
3470                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3471                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3472                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3473                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3474
3475         return 1;
3476 }
3477
3478 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3479                const u8 *fw_data, unsigned int fw_size,
3480                struct fw_hdr *card_fw, enum dev_state state,
3481                int *reset)
3482 {
3483         int ret, card_fw_usable, fs_fw_usable;
3484         const struct fw_hdr *fs_fw;
3485         const struct fw_hdr *drv_fw;
3486
3487         drv_fw = &fw_info->fw_hdr;
3488
3489         /* Read the header of the firmware on the card */
3490         ret = t4_read_flash(adap, FLASH_FW_START,
3491                             sizeof(*card_fw) / sizeof(uint32_t),
3492                             (uint32_t *)card_fw, 1);
3493         if (ret == 0) {
3494                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3495         } else {
3496                 dev_err(adap->pdev_dev,
3497                         "Unable to read card's firmware header: %d\n", ret);
3498                 card_fw_usable = 0;
3499         }
3500
3501         if (fw_data != NULL) {
3502                 fs_fw = (const void *)fw_data;
3503                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3504         } else {
3505                 fs_fw = NULL;
3506                 fs_fw_usable = 0;
3507         }
3508
3509         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3510             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3511                 /* Common case: the firmware on the card is an exact match and
3512                  * the filesystem one is an exact match too, or the filesystem
3513                  * one is absent/incompatible.
3514                  */
3515         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3516                    should_install_fs_fw(adap, card_fw_usable,
3517                                         be32_to_cpu(fs_fw->fw_ver),
3518                                         be32_to_cpu(card_fw->fw_ver))) {
3519                 ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3520                                     fw_size, 0);
3521                 if (ret != 0) {
3522                         dev_err(adap->pdev_dev,
3523                                 "failed to install firmware: %d\n", ret);
3524                         goto bye;
3525                 }
3526
3527                 /* Installed successfully, update the cached header too. */
3528                 *card_fw = *fs_fw;
3529                 card_fw_usable = 1;
3530                 *reset = 0;     /* already reset as part of load_fw */
3531         }
3532
3533         if (!card_fw_usable) {
3534                 uint32_t d, c, k;
3535
3536                 d = be32_to_cpu(drv_fw->fw_ver);
3537                 c = be32_to_cpu(card_fw->fw_ver);
3538                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3539
3540                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3541                         "chip state %d, "
3542                         "driver compiled with %d.%d.%d.%d, "
3543                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3544                         state,
3545                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3546                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3547                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3548                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3549                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3550                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3551                 ret = -EINVAL;
3552                 goto bye;
3553         }
3554
3555         /* We're using whatever's on the card and it's known to be good. */
3556         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3557         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3558
3559 bye:
3560         return ret;
3561 }
3562
3563 /**
3564  *      t4_flash_erase_sectors - erase a range of flash sectors
3565  *      @adapter: the adapter
3566  *      @start: the first sector to erase
3567  *      @end: the last sector to erase
3568  *
3569  *      Erases the sectors in the given inclusive range.
3570  */
3571 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3572 {
3573         int ret = 0;
3574
3575         if (end >= adapter->params.sf_nsec)
3576                 return -EINVAL;
3577
3578         while (start <= end) {
3579                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3580                     (ret = sf1_write(adapter, 4, 0, 1,
3581                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3582                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3583                         dev_err(adapter->pdev_dev,
3584                                 "erase of flash sector %d failed, error %d\n",
3585                                 start, ret);
3586                         break;
3587                 }
3588                 start++;
3589         }
3590         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3591         return ret;
3592 }
3593
3594 /**
3595  *      t4_flash_cfg_addr - return the address of the flash configuration file
3596  *      @adapter: the adapter
3597  *
3598  *      Return the address within the flash where the Firmware Configuration
3599  *      File is stored.
3600  */
3601 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3602 {
3603         if (adapter->params.sf_size == 0x100000)
3604                 return FLASH_FPGA_CFG_START;
3605         else
3606                 return FLASH_CFG_START;
3607 }
3608
3609 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3610  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3611  * and emit an error message for mismatched firmware to save our caller the
3612  * effort ...
3613  */
3614 static bool t4_fw_matches_chip(const struct adapter *adap,
3615                                const struct fw_hdr *hdr)
3616 {
3617         /* The expression below will return FALSE for any unsupported adapter
3618          * which will keep us "honest" in the future ...
3619          */
3620         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3621             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3622             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3623                 return true;
3624
3625         dev_err(adap->pdev_dev,
3626                 "FW image (%d) is not suitable for this adapter (%d)\n",
3627                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3628         return false;
3629 }
3630
3631 /**
3632  *      t4_load_fw - download firmware
3633  *      @adap: the adapter
3634  *      @fw_data: the firmware image to write
3635  *      @size: image size
3636  *
3637  *      Write the supplied firmware image to the card's serial flash.
3638  */
3639 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3640 {
3641         u32 csum;
3642         int ret, addr;
3643         unsigned int i;
3644         u8 first_page[SF_PAGE_SIZE];
3645         const __be32 *p = (const __be32 *)fw_data;
3646         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3647         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3648         unsigned int fw_start_sec = FLASH_FW_START_SEC;
3649         unsigned int fw_size = FLASH_FW_MAX_SIZE;
3650         unsigned int fw_start = FLASH_FW_START;
3651
3652         if (!size) {
3653                 dev_err(adap->pdev_dev, "FW image has no data\n");
3654                 return -EINVAL;
3655         }
3656         if (size & 511) {
3657                 dev_err(adap->pdev_dev,
3658                         "FW image size not multiple of 512 bytes\n");
3659                 return -EINVAL;
3660         }
3661         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3662                 dev_err(adap->pdev_dev,
3663                         "FW image size differs from size in FW header\n");
3664                 return -EINVAL;
3665         }
3666         if (size > fw_size) {
3667                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3668                         fw_size);
3669                 return -EFBIG;
3670         }
3671         if (!t4_fw_matches_chip(adap, hdr))
3672                 return -EINVAL;
3673
3674         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3675                 csum += be32_to_cpu(p[i]);
3676
3677         if (csum != 0xffffffff) {
3678                 dev_err(adap->pdev_dev,
3679                         "corrupted firmware image, checksum %#x\n", csum);
3680                 return -EINVAL;
3681         }
3682
3683         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3684         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3685         if (ret)
3686                 goto out;
3687
3688         /*
3689          * We write the correct version at the end so the driver can see a bad
3690          * version if the FW write fails.  Start by writing a copy of the
3691          * first page with a bad version.
3692          */
3693         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3694         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3695         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3696         if (ret)
3697                 goto out;
3698
3699         addr = fw_start;
3700         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3701                 addr += SF_PAGE_SIZE;
3702                 fw_data += SF_PAGE_SIZE;
3703                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3704                 if (ret)
3705                         goto out;
3706         }
3707
3708         ret = t4_write_flash(adap,
3709                              fw_start + offsetof(struct fw_hdr, fw_ver),
3710                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3711 out:
3712         if (ret)
3713                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3714                         ret);
3715         else
3716                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3717         return ret;
3718 }
3719
3720 /**
3721  *      t4_phy_fw_ver - return current PHY firmware version
3722  *      @adap: the adapter
3723  *      @phy_fw_ver: return value buffer for PHY firmware version
3724  *
3725  *      Returns the current version of external PHY firmware on the
3726  *      adapter.
3727  */
3728 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3729 {
3730         u32 param, val;
3731         int ret;
3732
3733         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3734                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3735                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3736                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3737         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3738                               &param, &val);
3739         if (ret)
3740                 return ret;
3741         *phy_fw_ver = val;
3742         return 0;
3743 }
3744
3745 /**
3746  *      t4_load_phy_fw - download port PHY firmware
3747  *      @adap: the adapter
3748  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3749  *      @phy_fw_version: function to check PHY firmware versions
3750  *      @phy_fw_data: the PHY firmware image to write
3751  *      @phy_fw_size: image size
3752  *
3753  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3754  *      @phy_fw_version is supplied, then it will be used to determine if
3755  *      it's necessary to perform the transfer by comparing the version
3756  *      of any existing adapter PHY firmware with that of the passed in
3757  *      PHY firmware image.
3758  *
3759  *      A negative error number will be returned if an error occurs.  If
3760  *      version number support is available and there's no need to upgrade
3761  *      the firmware, 0 will be returned.  If firmware is successfully
3762  *      transferred to the adapter, 1 will be returned.
3763  *
3764  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3765  *      a result, a RESET of the adapter would cause that RAM to lose its
3766  *      contents.  Thus, loading PHY firmware on such adapters must happen
3767  *      after any FW_RESET_CMDs ...
3768  */
3769 int t4_load_phy_fw(struct adapter *adap, int win,
3770                    int (*phy_fw_version)(const u8 *, size_t),
3771                    const u8 *phy_fw_data, size_t phy_fw_size)
3772 {
3773         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3774         unsigned long mtype = 0, maddr = 0;
3775         u32 param, val;
3776         int ret;
3777
3778         /* If we have version number support, then check to see if the adapter
3779          * already has up-to-date PHY firmware loaded.
3780          */
3781         if (phy_fw_version) {
3782                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3783                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3784                 if (ret < 0)
3785                         return ret;
3786
3787                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3788                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3789                                 "version %#x\n", cur_phy_fw_ver);
3790                         return 0;
3791                 }
3792         }
3793
3794         /* Ask the firmware where it wants us to copy the PHY firmware image.
3795          * The size of the file requires a special version of the READ command
3796          * which will pass the file size via the values field in PARAMS_CMD and
3797          * retrieve the return value from firmware and place it in the same
3798          * buffer values
3799          */
3800         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3801                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3802                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3803                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3804         val = phy_fw_size;
3805         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3806                                  &param, &val, 1, true);
3807         if (ret < 0)
3808                 return ret;
3809         mtype = val >> 8;
3810         maddr = (val & 0xff) << 16;
3811
3812         /* Copy the supplied PHY Firmware image to the adapter memory location
3813          * allocated by the adapter firmware.
3814          */
3815         ret = t4_memory_rw(adap, win, mtype, maddr,
3816                            phy_fw_size, (__be32 *)phy_fw_data,
3817                            T4_MEMORY_WRITE);
3818         if (ret)
3819                 return ret;
3820
3821         /* Tell the firmware that the PHY firmware image has been written to
3822          * RAM and it can now start copying it over to the PHYs.  The chip
3823          * firmware will RESET the affected PHYs as part of this operation
3824          * leaving them running the new PHY firmware image.
3825          */
3826         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3827                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3828                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3829                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3830         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3831                                     &param, &val, 30000);
3832
3833         /* If we have version number support, then check to see that the new
3834          * firmware got loaded properly.
3835          */
3836         if (phy_fw_version) {
3837                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3838                 if (ret < 0)
3839                         return ret;
3840
3841                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3842                         CH_WARN(adap, "PHY Firmware did not update: "
3843                                 "version on adapter %#x, "
3844                                 "version flashed %#x\n",
3845                                 cur_phy_fw_ver, new_phy_fw_vers);
3846                         return -ENXIO;
3847                 }
3848         }
3849
3850         return 1;
3851 }
3852
3853 /**
3854  *      t4_fwcache - firmware cache operation
3855  *      @adap: the adapter
3856  *      @op  : the operation (flush or flush and invalidate)
3857  */
3858 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3859 {
3860         struct fw_params_cmd c;
3861
3862         memset(&c, 0, sizeof(c));
3863         c.op_to_vfn =
3864                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3865                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3866                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3867                             FW_PARAMS_CMD_VFN_V(0));
3868         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3869         c.param[0].mnem =
3870                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3871                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3872         c.param[0].val = cpu_to_be32(op);
3873
3874         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3875 }
3876
3877 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3878                         unsigned int *pif_req_wrptr,
3879                         unsigned int *pif_rsp_wrptr)
3880 {
3881         int i, j;
3882         u32 cfg, val, req, rsp;
3883
3884         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3885         if (cfg & LADBGEN_F)
3886                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3887
3888         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3889         req = POLADBGWRPTR_G(val);
3890         rsp = PILADBGWRPTR_G(val);
3891         if (pif_req_wrptr)
3892                 *pif_req_wrptr = req;
3893         if (pif_rsp_wrptr)
3894                 *pif_rsp_wrptr = rsp;
3895
3896         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3897                 for (j = 0; j < 6; j++) {
3898                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3899                                      PILADBGRDPTR_V(rsp));
3900                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3901                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3902                         req++;
3903                         rsp++;
3904                 }
3905                 req = (req + 2) & POLADBGRDPTR_M;
3906                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3907         }
3908         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3909 }
3910
3911 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3912 {
3913         u32 cfg;
3914         int i, j, idx;
3915
3916         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3917         if (cfg & LADBGEN_F)
3918                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3919
3920         for (i = 0; i < CIM_MALA_SIZE; i++) {
3921                 for (j = 0; j < 5; j++) {
3922                         idx = 8 * i + j;
3923                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3924                                      PILADBGRDPTR_V(idx));
3925                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3926                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3927                 }
3928         }
3929         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3930 }
3931
3932 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3933 {
3934         unsigned int i, j;
3935
3936         for (i = 0; i < 8; i++) {
3937                 u32 *p = la_buf + i;
3938
3939                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3940                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3941                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3942                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3943                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3944         }
3945 }
3946
3947 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3948  * Capabilities which we control with separate controls -- see, for instance,
3949  * Pause Frames and Forward Error Correction.  In order to determine what the
3950  * full set of Advertised Port Capabilities are, the base Advertised Port
3951  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3952  * Port Capabilities associated with those other controls.  See
3953  * t4_link_acaps() for how this is done.
3954  */
3955 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3956                      FW_PORT_CAP32_ANEG)
3957
3958 /**
3959  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3960  *      @caps16: a 16-bit Port Capabilities value
3961  *
3962  *      Returns the equivalent 32-bit Port Capabilities value.
3963  */
3964 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3965 {
3966         fw_port_cap32_t caps32 = 0;
3967
3968         #define CAP16_TO_CAP32(__cap) \
3969                 do { \
3970                         if (caps16 & FW_PORT_CAP_##__cap) \
3971                                 caps32 |= FW_PORT_CAP32_##__cap; \
3972                 } while (0)
3973
3974         CAP16_TO_CAP32(SPEED_100M);
3975         CAP16_TO_CAP32(SPEED_1G);
3976         CAP16_TO_CAP32(SPEED_25G);
3977         CAP16_TO_CAP32(SPEED_10G);
3978         CAP16_TO_CAP32(SPEED_40G);
3979         CAP16_TO_CAP32(SPEED_100G);
3980         CAP16_TO_CAP32(FC_RX);
3981         CAP16_TO_CAP32(FC_TX);
3982         CAP16_TO_CAP32(ANEG);
3983         CAP16_TO_CAP32(FORCE_PAUSE);
3984         CAP16_TO_CAP32(MDIAUTO);
3985         CAP16_TO_CAP32(MDISTRAIGHT);
3986         CAP16_TO_CAP32(FEC_RS);
3987         CAP16_TO_CAP32(FEC_BASER_RS);
3988         CAP16_TO_CAP32(802_3_PAUSE);
3989         CAP16_TO_CAP32(802_3_ASM_DIR);
3990
3991         #undef CAP16_TO_CAP32
3992
3993         return caps32;
3994 }
3995
3996 /**
3997  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3998  *      @caps32: a 32-bit Port Capabilities value
3999  *
4000  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
4001  *      not all 32-bit Port Capabilities can be represented in the 16-bit
4002  *      Port Capabilities and some fields/values may not make it.
4003  */
4004 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4005 {
4006         fw_port_cap16_t caps16 = 0;
4007
4008         #define CAP32_TO_CAP16(__cap) \
4009                 do { \
4010                         if (caps32 & FW_PORT_CAP32_##__cap) \
4011                                 caps16 |= FW_PORT_CAP_##__cap; \
4012                 } while (0)
4013
4014         CAP32_TO_CAP16(SPEED_100M);
4015         CAP32_TO_CAP16(SPEED_1G);
4016         CAP32_TO_CAP16(SPEED_10G);
4017         CAP32_TO_CAP16(SPEED_25G);
4018         CAP32_TO_CAP16(SPEED_40G);
4019         CAP32_TO_CAP16(SPEED_100G);
4020         CAP32_TO_CAP16(FC_RX);
4021         CAP32_TO_CAP16(FC_TX);
4022         CAP32_TO_CAP16(802_3_PAUSE);
4023         CAP32_TO_CAP16(802_3_ASM_DIR);
4024         CAP32_TO_CAP16(ANEG);
4025         CAP32_TO_CAP16(FORCE_PAUSE);
4026         CAP32_TO_CAP16(MDIAUTO);
4027         CAP32_TO_CAP16(MDISTRAIGHT);
4028         CAP32_TO_CAP16(FEC_RS);
4029         CAP32_TO_CAP16(FEC_BASER_RS);
4030
4031         #undef CAP32_TO_CAP16
4032
4033         return caps16;
4034 }
4035
4036 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4037 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4038 {
4039         enum cc_pause cc_pause = 0;
4040
4041         if (fw_pause & FW_PORT_CAP32_FC_RX)
4042                 cc_pause |= PAUSE_RX;
4043         if (fw_pause & FW_PORT_CAP32_FC_TX)
4044                 cc_pause |= PAUSE_TX;
4045
4046         return cc_pause;
4047 }
4048
4049 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4050 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4051 {
4052         /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4053          * commands, etc.
4054          */
4055         fw_port_cap32_t fw_pause = 0;
4056
4057         if (cc_pause & PAUSE_RX)
4058                 fw_pause |= FW_PORT_CAP32_FC_RX;
4059         if (cc_pause & PAUSE_TX)
4060                 fw_pause |= FW_PORT_CAP32_FC_TX;
4061         if (!(cc_pause & PAUSE_AUTONEG))
4062                 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4063
4064         /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4065          * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4066          * Note that these bits are ignored in L1 Configure commands.
4067          */
4068         if (cc_pause & PAUSE_RX) {
4069                 if (cc_pause & PAUSE_TX)
4070                         fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4071                 else
4072                         fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4073                                     FW_PORT_CAP32_802_3_PAUSE;
4074         } else if (cc_pause & PAUSE_TX) {
4075                 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4076         }
4077
4078         return fw_pause;
4079 }
4080
4081 /* Translate Firmware Forward Error Correction specification to Common Code */
4082 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4083 {
4084         enum cc_fec cc_fec = 0;
4085
4086         if (fw_fec & FW_PORT_CAP32_FEC_RS)
4087                 cc_fec |= FEC_RS;
4088         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4089                 cc_fec |= FEC_BASER_RS;
4090
4091         return cc_fec;
4092 }
4093
4094 /* Translate Common Code Forward Error Correction specification to Firmware */
4095 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4096 {
4097         fw_port_cap32_t fw_fec = 0;
4098
4099         if (cc_fec & FEC_RS)
4100                 fw_fec |= FW_PORT_CAP32_FEC_RS;
4101         if (cc_fec & FEC_BASER_RS)
4102                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4103
4104         return fw_fec;
4105 }
4106
4107 /**
4108  *      t4_link_acaps - compute Link Advertised Port Capabilities
4109  *      @adapter: the adapter
4110  *      @port: the Port ID
4111  *      @lc: the Port's Link Configuration
4112  *
4113  *      Synthesize the Advertised Port Capabilities we'll be using based on
4114  *      the base Advertised Port Capabilities (which have been filtered by
4115  *      ADVERT_MASK) plus the individual controls for things like Pause
4116  *      Frames, Forward Error Correction, MDI, etc.
4117  */
4118 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4119                               struct link_config *lc)
4120 {
4121         fw_port_cap32_t fw_fc, fw_fec, acaps;
4122         unsigned int fw_mdi;
4123         char cc_fec;
4124
4125         fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4126
4127         /* Convert driver coding of Pause Frame Flow Control settings into the
4128          * Firmware's API.
4129          */
4130         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4131
4132         /* Convert Common Code Forward Error Control settings into the
4133          * Firmware's API.  If the current Requested FEC has "Automatic"
4134          * (IEEE 802.3) specified, then we use whatever the Firmware
4135          * sent us as part of its IEEE 802.3-based interpretation of
4136          * the Transceiver Module EPROM FEC parameters.  Otherwise we
4137          * use whatever is in the current Requested FEC settings.
4138          */
4139         if (lc->requested_fec & FEC_AUTO)
4140                 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4141         else
4142                 cc_fec = lc->requested_fec;
4143         fw_fec = cc_to_fwcap_fec(cc_fec);
4144
4145         /* Figure out what our Requested Port Capabilities are going to be.
4146          * Note parallel structure in t4_handle_get_port_info() and
4147          * init_link_config().
4148          */
4149         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4150                 acaps = lc->acaps | fw_fc | fw_fec;
4151                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4152                 lc->fec = cc_fec;
4153         } else if (lc->autoneg == AUTONEG_DISABLE) {
4154                 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4155                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4156                 lc->fec = cc_fec;
4157         } else {
4158                 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4159         }
4160
4161         /* Some Requested Port Capabilities are trivially wrong if they exceed
4162          * the Physical Port Capabilities.  We can check that here and provide
4163          * moderately useful feedback in the system log.
4164          *
4165          * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4166          * we need to exclude this from this check in order to maintain
4167          * compatibility ...
4168          */
4169         if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4170                 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4171                         acaps, lc->pcaps);
4172                 return -EINVAL;
4173         }
4174
4175         return acaps;
4176 }
4177
4178 /**
4179  *      t4_link_l1cfg_core - apply link configuration to MAC/PHY
4180  *      @adapter: the adapter
4181  *      @mbox: the Firmware Mailbox to use
4182  *      @port: the Port ID
4183  *      @lc: the Port's Link Configuration
4184  *      @sleep_ok: if true we may sleep while awaiting command completion
4185  *      @timeout: time to wait for command to finish before timing out
4186  *              (negative implies @sleep_ok=false)
4187  *
4188  *      Set up a port's MAC and PHY according to a desired link configuration.
4189  *      - If the PHY can auto-negotiate first decide what to advertise, then
4190  *        enable/disable auto-negotiation as desired, and reset.
4191  *      - If the PHY does not auto-negotiate just reset it.
4192  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4193  *        otherwise do it later based on the outcome of auto-negotiation.
4194  */
4195 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4196                        unsigned int port, struct link_config *lc,
4197                        u8 sleep_ok, int timeout)
4198 {
4199         unsigned int fw_caps = adapter->params.fw_caps_support;
4200         struct fw_port_cmd cmd;
4201         fw_port_cap32_t rcap;
4202         int ret;
4203
4204         if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4205             lc->autoneg == AUTONEG_ENABLE) {
4206                 return -EINVAL;
4207         }
4208
4209         /* Compute our Requested Port Capabilities and send that on to the
4210          * Firmware.
4211          */
4212         rcap = t4_link_acaps(adapter, port, lc);
4213         memset(&cmd, 0, sizeof(cmd));
4214         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4215                                        FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4216                                        FW_PORT_CMD_PORTID_V(port));
4217         cmd.action_to_len16 =
4218                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4219                                                  ? FW_PORT_ACTION_L1_CFG
4220                                                  : FW_PORT_ACTION_L1_CFG32) |
4221                                                  FW_LEN16(cmd));
4222         if (fw_caps == FW_CAPS16)
4223                 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4224         else
4225                 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4226
4227         ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4228                                       sleep_ok, timeout);
4229
4230         /* Unfortunately, even if the Requested Port Capabilities "fit" within
4231          * the Physical Port Capabilities, some combinations of features may
4232          * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4233          * Error Correction.  So if the Firmware rejects the L1 Configure
4234          * request, flag that here.
4235          */
4236         if (ret) {
4237                 dev_err(adapter->pdev_dev,
4238                         "Requested Port Capabilities %#x rejected, error %d\n",
4239                         rcap, -ret);
4240                 return ret;
4241         }
4242         return 0;
4243 }
4244
4245 /**
4246  *      t4_restart_aneg - restart autonegotiation
4247  *      @adap: the adapter
4248  *      @mbox: mbox to use for the FW command
4249  *      @port: the port id
4250  *
4251  *      Restarts autonegotiation for the selected port.
4252  */
4253 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4254 {
4255         unsigned int fw_caps = adap->params.fw_caps_support;
4256         struct fw_port_cmd c;
4257
4258         memset(&c, 0, sizeof(c));
4259         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4260                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4261                                      FW_PORT_CMD_PORTID_V(port));
4262         c.action_to_len16 =
4263                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4264                                                  ? FW_PORT_ACTION_L1_CFG
4265                                                  : FW_PORT_ACTION_L1_CFG32) |
4266                             FW_LEN16(c));
4267         if (fw_caps == FW_CAPS16)
4268                 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4269         else
4270                 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4271         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4272 }
4273
4274 typedef void (*int_handler_t)(struct adapter *adap);
4275
4276 struct intr_info {
4277         unsigned int mask;       /* bits to check in interrupt status */
4278         const char *msg;         /* message to print or NULL */
4279         short stat_idx;          /* stat counter to increment or -1 */
4280         unsigned short fatal;    /* whether the condition reported is fatal */
4281         int_handler_t int_handler; /* platform-specific int handler */
4282 };
4283
4284 /**
4285  *      t4_handle_intr_status - table driven interrupt handler
4286  *      @adapter: the adapter that generated the interrupt
4287  *      @reg: the interrupt status register to process
4288  *      @acts: table of interrupt actions
4289  *
4290  *      A table driven interrupt handler that applies a set of masks to an
4291  *      interrupt status word and performs the corresponding actions if the
4292  *      interrupts described by the mask have occurred.  The actions include
4293  *      optionally emitting a warning or alert message.  The table is terminated
4294  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4295  *      conditions.
4296  */
4297 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4298                                  const struct intr_info *acts)
4299 {
4300         int fatal = 0;
4301         unsigned int mask = 0;
4302         unsigned int status = t4_read_reg(adapter, reg);
4303
4304         for ( ; acts->mask; ++acts) {
4305                 if (!(status & acts->mask))
4306                         continue;
4307                 if (acts->fatal) {
4308                         fatal++;
4309                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4310                                   status & acts->mask);
4311                 } else if (acts->msg && printk_ratelimit())
4312                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4313                                  status & acts->mask);
4314                 if (acts->int_handler)
4315                         acts->int_handler(adapter);
4316                 mask |= acts->mask;
4317         }
4318         status &= mask;
4319         if (status)                           /* clear processed interrupts */
4320                 t4_write_reg(adapter, reg, status);
4321         return fatal;
4322 }
4323
4324 /*
4325  * Interrupt handler for the PCIE module.
4326  */
4327 static void pcie_intr_handler(struct adapter *adapter)
4328 {
4329         static const struct intr_info sysbus_intr_info[] = {
4330                 { RNPP_F, "RXNP array parity error", -1, 1 },
4331                 { RPCP_F, "RXPC array parity error", -1, 1 },
4332                 { RCIP_F, "RXCIF array parity error", -1, 1 },
4333                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
4334                 { RFTP_F, "RXFT array parity error", -1, 1 },
4335                 { 0 }
4336         };
4337         static const struct intr_info pcie_port_intr_info[] = {
4338                 { TPCP_F, "TXPC array parity error", -1, 1 },
4339                 { TNPP_F, "TXNP array parity error", -1, 1 },
4340                 { TFTP_F, "TXFT array parity error", -1, 1 },
4341                 { TCAP_F, "TXCA array parity error", -1, 1 },
4342                 { TCIP_F, "TXCIF array parity error", -1, 1 },
4343                 { RCAP_F, "RXCA array parity error", -1, 1 },
4344                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
4345                 { RDPE_F, "Rx data parity error", -1, 1 },
4346                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4347                 { 0 }
4348         };
4349         static const struct intr_info pcie_intr_info[] = {
4350                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4351                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4352                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4353                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4354                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4355                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4356                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4357                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4358                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4359                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4360                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4361                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4362                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4363                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4364                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4365                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4366                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4367                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4368                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4369                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4370                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4371                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4372                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4373                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4374                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4375                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4376                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4377                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4378                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4379                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4380                   -1, 0 },
4381                 { 0 }
4382         };
4383
4384         static struct intr_info t5_pcie_intr_info[] = {
4385                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
4386                   -1, 1 },
4387                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4388                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4389                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4390                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4391                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4392                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4393                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4394                   -1, 1 },
4395                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4396                   -1, 1 },
4397                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4398                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4399                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4400                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4401                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
4402                   -1, 1 },
4403                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4404                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4405                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4406                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4407                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4408                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4409                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4410                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4411                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4412                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4413                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4414                   -1, 1 },
4415                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4416                   -1, 1 },
4417                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4418                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4419                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4420                 { READRSPERR_F, "Outbound read error", -1, 0 },
4421                 { 0 }
4422         };
4423
4424         int fat;
4425
4426         if (is_t4(adapter->params.chip))
4427                 fat = t4_handle_intr_status(adapter,
4428                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4429                                 sysbus_intr_info) +
4430                         t4_handle_intr_status(adapter,
4431                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4432                                         pcie_port_intr_info) +
4433                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4434                                               pcie_intr_info);
4435         else
4436                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4437                                             t5_pcie_intr_info);
4438
4439         if (fat)
4440                 t4_fatal_err(adapter);
4441 }
4442
4443 /*
4444  * TP interrupt handler.
4445  */
4446 static void tp_intr_handler(struct adapter *adapter)
4447 {
4448         static const struct intr_info tp_intr_info[] = {
4449                 { 0x3fffffff, "TP parity error", -1, 1 },
4450                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4451                 { 0 }
4452         };
4453
4454         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4455                 t4_fatal_err(adapter);
4456 }
4457
4458 /*
4459  * SGE interrupt handler.
4460  */
4461 static void sge_intr_handler(struct adapter *adapter)
4462 {
4463         u32 v = 0, perr;
4464         u32 err;
4465
4466         static const struct intr_info sge_intr_info[] = {
4467                 { ERR_CPL_EXCEED_IQE_SIZE_F,
4468                   "SGE received CPL exceeding IQE size", -1, 1 },
4469                 { ERR_INVALID_CIDX_INC_F,
4470                   "SGE GTS CIDX increment too large", -1, 0 },
4471                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4472                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4473                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4474                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
4475                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4476                   0 },
4477                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4478                   0 },
4479                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4480                   0 },
4481                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4482                   0 },
4483                 { ERR_ING_CTXT_PRIO_F,
4484                   "SGE too many priority ingress contexts", -1, 0 },
4485                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4486                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4487                 { 0 }
4488         };
4489
4490         static struct intr_info t4t5_sge_intr_info[] = {
4491                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4492                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4493                 { ERR_EGR_CTXT_PRIO_F,
4494                   "SGE too many priority egress contexts", -1, 0 },
4495                 { 0 }
4496         };
4497
4498         perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4499         if (perr) {
4500                 v |= perr;
4501                 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4502                           perr);
4503         }
4504
4505         perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4506         if (perr) {
4507                 v |= perr;
4508                 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4509                           perr);
4510         }
4511
4512         if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4513                 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4514                 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4515                 perr &= ~ERR_T_RXCRC_F;
4516                 if (perr) {
4517                         v |= perr;
4518                         dev_alert(adapter->pdev_dev,
4519                                   "SGE Cause5 Parity Error %#x\n", perr);
4520                 }
4521         }
4522
4523         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4524         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4525                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4526                                            t4t5_sge_intr_info);
4527
4528         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4529         if (err & ERROR_QID_VALID_F) {
4530                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4531                         ERROR_QID_G(err));
4532                 if (err & UNCAPTURED_ERROR_F)
4533                         dev_err(adapter->pdev_dev,
4534                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
4535                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4536                              UNCAPTURED_ERROR_F);
4537         }
4538
4539         if (v != 0)
4540                 t4_fatal_err(adapter);
4541 }
4542
4543 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4544                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4545 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4546                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4547
4548 /*
4549  * CIM interrupt handler.
4550  */
4551 static void cim_intr_handler(struct adapter *adapter)
4552 {
4553         static const struct intr_info cim_intr_info[] = {
4554                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4555                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4556                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4557                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4558                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4559                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4560                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4561                 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4562                 { 0 }
4563         };
4564         static const struct intr_info cim_upintr_info[] = {
4565                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4566                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4567                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4568                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4569                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4570                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4571                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4572                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4573                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4574                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4575                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4576                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4577                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4578                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4579                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4580                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4581                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4582                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4583                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4584                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4585                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4586                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4587                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4588                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4589                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4590                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4591                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4592                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4593                 { 0 }
4594         };
4595
4596         u32 val, fw_err;
4597         int fat;
4598
4599         fw_err = t4_read_reg(adapter, PCIE_FW_A);
4600         if (fw_err & PCIE_FW_ERR_F)
4601                 t4_report_fw_error(adapter);
4602
4603         /* When the Firmware detects an internal error which normally
4604          * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4605          * in order to make sure the Host sees the Firmware Crash.  So
4606          * if we have a Timer0 interrupt and don't see a Firmware Crash,
4607          * ignore the Timer0 interrupt.
4608          */
4609
4610         val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4611         if (val & TIMER0INT_F)
4612                 if (!(fw_err & PCIE_FW_ERR_F) ||
4613                     (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4614                         t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4615                                      TIMER0INT_F);
4616
4617         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4618                                     cim_intr_info) +
4619               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4620                                     cim_upintr_info);
4621         if (fat)
4622                 t4_fatal_err(adapter);
4623 }
4624
4625 /*
4626  * ULP RX interrupt handler.
4627  */
4628 static void ulprx_intr_handler(struct adapter *adapter)
4629 {
4630         static const struct intr_info ulprx_intr_info[] = {
4631                 { 0x1800000, "ULPRX context error", -1, 1 },
4632                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4633                 { 0 }
4634         };
4635
4636         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4637                 t4_fatal_err(adapter);
4638 }
4639
4640 /*
4641  * ULP TX interrupt handler.
4642  */
4643 static void ulptx_intr_handler(struct adapter *adapter)
4644 {
4645         static const struct intr_info ulptx_intr_info[] = {
4646                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4647                   0 },
4648                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4649                   0 },
4650                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4651                   0 },
4652                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4653                   0 },
4654                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4655                 { 0 }
4656         };
4657
4658         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4659                 t4_fatal_err(adapter);
4660 }
4661
4662 /*
4663  * PM TX interrupt handler.
4664  */
4665 static void pmtx_intr_handler(struct adapter *adapter)
4666 {
4667         static const struct intr_info pmtx_intr_info[] = {
4668                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4669                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4670                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4671                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4672                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4673                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4674                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4675                   -1, 1 },
4676                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4677                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4678                 { 0 }
4679         };
4680
4681         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4682                 t4_fatal_err(adapter);
4683 }
4684
4685 /*
4686  * PM RX interrupt handler.
4687  */
4688 static void pmrx_intr_handler(struct adapter *adapter)
4689 {
4690         static const struct intr_info pmrx_intr_info[] = {
4691                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4692                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4693                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4694                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4695                   -1, 1 },
4696                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4697                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4698                 { 0 }
4699         };
4700
4701         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4702                 t4_fatal_err(adapter);
4703 }
4704
4705 /*
4706  * CPL switch interrupt handler.
4707  */
4708 static void cplsw_intr_handler(struct adapter *adapter)
4709 {
4710         static const struct intr_info cplsw_intr_info[] = {
4711                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4712                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4713                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4714                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4715                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4716                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4717                 { 0 }
4718         };
4719
4720         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4721                 t4_fatal_err(adapter);
4722 }
4723
4724 /*
4725  * LE interrupt handler.
4726  */
4727 static void le_intr_handler(struct adapter *adap)
4728 {
4729         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4730         static const struct intr_info le_intr_info[] = {
4731                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4732                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4733                 { PARITYERR_F, "LE parity error", -1, 1 },
4734                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4735                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4736                 { 0 }
4737         };
4738
4739         static struct intr_info t6_le_intr_info[] = {
4740                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4741                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4742                 { CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4743                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4744                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4745                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4746                 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4747                 { 0 }
4748         };
4749
4750         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4751                                   (chip <= CHELSIO_T5) ?
4752                                   le_intr_info : t6_le_intr_info))
4753                 t4_fatal_err(adap);
4754 }
4755
4756 /*
4757  * MPS interrupt handler.
4758  */
4759 static void mps_intr_handler(struct adapter *adapter)
4760 {
4761         static const struct intr_info mps_rx_intr_info[] = {
4762                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4763                 { 0 }
4764         };
4765         static const struct intr_info mps_tx_intr_info[] = {
4766                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4767                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4768                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4769                   -1, 1 },
4770                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4771                   -1, 1 },
4772                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4773                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4774                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4775                 { 0 }
4776         };
4777         static const struct intr_info t6_mps_tx_intr_info[] = {
4778                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4779                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4780                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4781                   -1, 1 },
4782                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4783                   -1, 1 },
4784                 /* MPS Tx Bubble is normal for T6 */
4785                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4786                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4787                 { 0 }
4788         };
4789         static const struct intr_info mps_trc_intr_info[] = {
4790                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4791                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4792                   -1, 1 },
4793                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4794                 { 0 }
4795         };
4796         static const struct intr_info mps_stat_sram_intr_info[] = {
4797                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4798                 { 0 }
4799         };
4800         static const struct intr_info mps_stat_tx_intr_info[] = {
4801                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4802                 { 0 }
4803         };
4804         static const struct intr_info mps_stat_rx_intr_info[] = {
4805                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4806                 { 0 }
4807         };
4808         static const struct intr_info mps_cls_intr_info[] = {
4809                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4810                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4811                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4812                 { 0 }
4813         };
4814
4815         int fat;
4816
4817         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4818                                     mps_rx_intr_info) +
4819               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4820                                     is_t6(adapter->params.chip)
4821                                     ? t6_mps_tx_intr_info
4822                                     : mps_tx_intr_info) +
4823               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4824                                     mps_trc_intr_info) +
4825               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4826                                     mps_stat_sram_intr_info) +
4827               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4828                                     mps_stat_tx_intr_info) +
4829               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4830                                     mps_stat_rx_intr_info) +
4831               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4832                                     mps_cls_intr_info);
4833
4834         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4835         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4836         if (fat)
4837                 t4_fatal_err(adapter);
4838 }
4839
4840 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4841                       ECC_UE_INT_CAUSE_F)
4842
4843 /*
4844  * EDC/MC interrupt handler.
4845  */
4846 static void mem_intr_handler(struct adapter *adapter, int idx)
4847 {
4848         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4849
4850         unsigned int addr, cnt_addr, v;
4851
4852         if (idx <= MEM_EDC1) {
4853                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4854                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4855         } else if (idx == MEM_MC) {
4856                 if (is_t4(adapter->params.chip)) {
4857                         addr = MC_INT_CAUSE_A;
4858                         cnt_addr = MC_ECC_STATUS_A;
4859                 } else {
4860                         addr = MC_P_INT_CAUSE_A;
4861                         cnt_addr = MC_P_ECC_STATUS_A;
4862                 }
4863         } else {
4864                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4865                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4866         }
4867
4868         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4869         if (v & PERR_INT_CAUSE_F)
4870                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4871                           name[idx]);
4872         if (v & ECC_CE_INT_CAUSE_F) {
4873                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4874
4875                 t4_edc_err_read(adapter, idx);
4876
4877                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4878                 if (printk_ratelimit())
4879                         dev_warn(adapter->pdev_dev,
4880                                  "%u %s correctable ECC data error%s\n",
4881                                  cnt, name[idx], cnt > 1 ? "s" : "");
4882         }
4883         if (v & ECC_UE_INT_CAUSE_F)
4884                 dev_alert(adapter->pdev_dev,
4885                           "%s uncorrectable ECC data error\n", name[idx]);
4886
4887         t4_write_reg(adapter, addr, v);
4888         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4889                 t4_fatal_err(adapter);
4890 }
4891
4892 /*
4893  * MA interrupt handler.
4894  */
4895 static void ma_intr_handler(struct adapter *adap)
4896 {
4897         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4898
4899         if (status & MEM_PERR_INT_CAUSE_F) {
4900                 dev_alert(adap->pdev_dev,
4901                           "MA parity error, parity status %#x\n",
4902                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4903                 if (is_t5(adap->params.chip))
4904                         dev_alert(adap->pdev_dev,
4905                                   "MA parity error, parity status %#x\n",
4906                                   t4_read_reg(adap,
4907                                               MA_PARITY_ERROR_STATUS2_A));
4908         }
4909         if (status & MEM_WRAP_INT_CAUSE_F) {
4910                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4911                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4912                           "client %u to address %#x\n",
4913                           MEM_WRAP_CLIENT_NUM_G(v),
4914                           MEM_WRAP_ADDRESS_G(v) << 4);
4915         }
4916         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4917         t4_fatal_err(adap);
4918 }
4919
4920 /*
4921  * SMB interrupt handler.
4922  */
4923 static void smb_intr_handler(struct adapter *adap)
4924 {
4925         static const struct intr_info smb_intr_info[] = {
4926                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4927                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4928                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4929                 { 0 }
4930         };
4931
4932         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4933                 t4_fatal_err(adap);
4934 }
4935
4936 /*
4937  * NC-SI interrupt handler.
4938  */
4939 static void ncsi_intr_handler(struct adapter *adap)
4940 {
4941         static const struct intr_info ncsi_intr_info[] = {
4942                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4943                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4944                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4945                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4946                 { 0 }
4947         };
4948
4949         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4950                 t4_fatal_err(adap);
4951 }
4952
4953 /*
4954  * XGMAC interrupt handler.
4955  */
4956 static void xgmac_intr_handler(struct adapter *adap, int port)
4957 {
4958         u32 v, int_cause_reg;
4959
4960         if (is_t4(adap->params.chip))
4961                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4962         else
4963                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4964
4965         v = t4_read_reg(adap, int_cause_reg);
4966
4967         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4968         if (!v)
4969                 return;
4970
4971         if (v & TXFIFO_PRTY_ERR_F)
4972                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4973                           port);
4974         if (v & RXFIFO_PRTY_ERR_F)
4975                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4976                           port);
4977         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4978         t4_fatal_err(adap);
4979 }
4980
4981 /*
4982  * PL interrupt handler.
4983  */
4984 static void pl_intr_handler(struct adapter *adap)
4985 {
4986         static const struct intr_info pl_intr_info[] = {
4987                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4988                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4989                 { 0 }
4990         };
4991
4992         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4993                 t4_fatal_err(adap);
4994 }
4995
4996 #define PF_INTR_MASK (PFSW_F)
4997 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4998                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4999                 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5000
5001 /**
5002  *      t4_slow_intr_handler - control path interrupt handler
5003  *      @adapter: the adapter
5004  *
5005  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5006  *      The designation 'slow' is because it involves register reads, while
5007  *      data interrupts typically don't involve any MMIOs.
5008  */
5009 int t4_slow_intr_handler(struct adapter *adapter)
5010 {
5011         /* There are rare cases where a PL_INT_CAUSE bit may end up getting
5012          * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5013          * easiest just to mask that case here.
5014          */
5015         u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5016         u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5017         u32 cause = raw_cause & enable;
5018
5019         if (!(cause & GLBL_INTR_MASK))
5020                 return 0;
5021         if (cause & CIM_F)
5022                 cim_intr_handler(adapter);
5023         if (cause & MPS_F)
5024                 mps_intr_handler(adapter);
5025         if (cause & NCSI_F)
5026                 ncsi_intr_handler(adapter);
5027         if (cause & PL_F)
5028                 pl_intr_handler(adapter);
5029         if (cause & SMB_F)
5030                 smb_intr_handler(adapter);
5031         if (cause & XGMAC0_F)
5032                 xgmac_intr_handler(adapter, 0);
5033         if (cause & XGMAC1_F)
5034                 xgmac_intr_handler(adapter, 1);
5035         if (cause & XGMAC_KR0_F)
5036                 xgmac_intr_handler(adapter, 2);
5037         if (cause & XGMAC_KR1_F)
5038                 xgmac_intr_handler(adapter, 3);
5039         if (cause & PCIE_F)
5040                 pcie_intr_handler(adapter);
5041         if (cause & MC_F)
5042                 mem_intr_handler(adapter, MEM_MC);
5043         if (is_t5(adapter->params.chip) && (cause & MC1_F))
5044                 mem_intr_handler(adapter, MEM_MC1);
5045         if (cause & EDC0_F)
5046                 mem_intr_handler(adapter, MEM_EDC0);
5047         if (cause & EDC1_F)
5048                 mem_intr_handler(adapter, MEM_EDC1);
5049         if (cause & LE_F)
5050                 le_intr_handler(adapter);
5051         if (cause & TP_F)
5052                 tp_intr_handler(adapter);
5053         if (cause & MA_F)
5054                 ma_intr_handler(adapter);
5055         if (cause & PM_TX_F)
5056                 pmtx_intr_handler(adapter);
5057         if (cause & PM_RX_F)
5058                 pmrx_intr_handler(adapter);
5059         if (cause & ULP_RX_F)
5060                 ulprx_intr_handler(adapter);
5061         if (cause & CPL_SWITCH_F)
5062                 cplsw_intr_handler(adapter);
5063         if (cause & SGE_F)
5064                 sge_intr_handler(adapter);
5065         if (cause & ULP_TX_F)
5066                 ulptx_intr_handler(adapter);
5067
5068         /* Clear the interrupts just processed for which we are the master. */
5069         t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5070         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5071         return 1;
5072 }
5073
5074 /**
5075  *      t4_intr_enable - enable interrupts
5076  *      @adapter: the adapter whose interrupts should be enabled
5077  *
5078  *      Enable PF-specific interrupts for the calling function and the top-level
5079  *      interrupt concentrator for global interrupts.  Interrupts are already
5080  *      enabled at each module, here we just enable the roots of the interrupt
5081  *      hierarchies.
5082  *
5083  *      Note: this function should be called only when the driver manages
5084  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5085  *      function at a time should be doing this.
5086  */
5087 void t4_intr_enable(struct adapter *adapter)
5088 {
5089         u32 val = 0;
5090         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5091         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5092                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5093
5094         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5095                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5096         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5097                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5098                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5099                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5100                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5101                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5102                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5103         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5104         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5105 }
5106
5107 /**
5108  *      t4_intr_disable - disable interrupts
5109  *      @adapter: the adapter whose interrupts should be disabled
5110  *
5111  *      Disable interrupts.  We only disable the top-level interrupt
5112  *      concentrators.  The caller must be a PCI function managing global
5113  *      interrupts.
5114  */
5115 void t4_intr_disable(struct adapter *adapter)
5116 {
5117         u32 whoami, pf;
5118
5119         if (pci_channel_offline(adapter->pdev))
5120                 return;
5121
5122         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5123         pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5124                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5125
5126         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5127         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5128 }
5129
5130 unsigned int t4_chip_rss_size(struct adapter *adap)
5131 {
5132         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5133                 return RSS_NENTRIES;
5134         else
5135                 return T6_RSS_NENTRIES;
5136 }
5137
5138 /**
5139  *      t4_config_rss_range - configure a portion of the RSS mapping table
5140  *      @adapter: the adapter
5141  *      @mbox: mbox to use for the FW command
5142  *      @viid: virtual interface whose RSS subtable is to be written
5143  *      @start: start entry in the table to write
5144  *      @n: how many table entries to write
5145  *      @rspq: values for the response queue lookup table
5146  *      @nrspq: number of values in @rspq
5147  *
5148  *      Programs the selected part of the VI's RSS mapping table with the
5149  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5150  *      until the full table range is populated.
5151  *
5152  *      The caller must ensure the values in @rspq are in the range allowed for
5153  *      @viid.
5154  */
5155 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5156                         int start, int n, const u16 *rspq, unsigned int nrspq)
5157 {
5158         int ret;
5159         const u16 *rsp = rspq;
5160         const u16 *rsp_end = rspq + nrspq;
5161         struct fw_rss_ind_tbl_cmd cmd;
5162
5163         memset(&cmd, 0, sizeof(cmd));
5164         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5165                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5166                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
5167         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5168
5169         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5170         while (n > 0) {
5171                 int nq = min(n, 32);
5172                 __be32 *qp = &cmd.iq0_to_iq2;
5173
5174                 cmd.niqid = cpu_to_be16(nq);
5175                 cmd.startidx = cpu_to_be16(start);
5176
5177                 start += nq;
5178                 n -= nq;
5179
5180                 while (nq > 0) {
5181                         unsigned int v;
5182
5183                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5184                         if (++rsp >= rsp_end)
5185                                 rsp = rspq;
5186                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5187                         if (++rsp >= rsp_end)
5188                                 rsp = rspq;
5189                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5190                         if (++rsp >= rsp_end)
5191                                 rsp = rspq;
5192
5193                         *qp++ = cpu_to_be32(v);
5194                         nq -= 3;
5195                 }
5196
5197                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5198                 if (ret)
5199                         return ret;
5200         }
5201         return 0;
5202 }
5203
5204 /**
5205  *      t4_config_glbl_rss - configure the global RSS mode
5206  *      @adapter: the adapter
5207  *      @mbox: mbox to use for the FW command
5208  *      @mode: global RSS mode
5209  *      @flags: mode-specific flags
5210  *
5211  *      Sets the global RSS mode.
5212  */
5213 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5214                        unsigned int flags)
5215 {
5216         struct fw_rss_glb_config_cmd c;
5217
5218         memset(&c, 0, sizeof(c));
5219         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5220                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5221         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5222         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5223                 c.u.manual.mode_pkd =
5224                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5225         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5226                 c.u.basicvirtual.mode_pkd =
5227                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5228                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5229         } else
5230                 return -EINVAL;
5231         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5232 }
5233
5234 /**
5235  *      t4_config_vi_rss - configure per VI RSS settings
5236  *      @adapter: the adapter
5237  *      @mbox: mbox to use for the FW command
5238  *      @viid: the VI id
5239  *      @flags: RSS flags
5240  *      @defq: id of the default RSS queue for the VI.
5241  *
5242  *      Configures VI-specific RSS properties.
5243  */
5244 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5245                      unsigned int flags, unsigned int defq)
5246 {
5247         struct fw_rss_vi_config_cmd c;
5248
5249         memset(&c, 0, sizeof(c));
5250         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5251                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5252                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5253         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5254         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5255                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5256         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5257 }
5258
5259 /* Read an RSS table row */
5260 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5261 {
5262         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5263         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5264                                    5, 0, val);
5265 }
5266
5267 /**
5268  *      t4_read_rss - read the contents of the RSS mapping table
5269  *      @adapter: the adapter
5270  *      @map: holds the contents of the RSS mapping table
5271  *
5272  *      Reads the contents of the RSS hash->queue mapping table.
5273  */
5274 int t4_read_rss(struct adapter *adapter, u16 *map)
5275 {
5276         int i, ret, nentries;
5277         u32 val;
5278
5279         nentries = t4_chip_rss_size(adapter);
5280         for (i = 0; i < nentries / 2; ++i) {
5281                 ret = rd_rss_row(adapter, i, &val);
5282                 if (ret)
5283                         return ret;
5284                 *map++ = LKPTBLQUEUE0_G(val);
5285                 *map++ = LKPTBLQUEUE1_G(val);
5286         }
5287         return 0;
5288 }
5289
5290 static unsigned int t4_use_ldst(struct adapter *adap)
5291 {
5292         return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5293 }
5294
5295 /**
5296  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5297  * @adap: the adapter
5298  * @cmd: TP fw ldst address space type
5299  * @vals: where the indirect register values are stored/written
5300  * @nregs: how many indirect registers to read/write
5301  * @start_index: index of first indirect register to read/write
5302  * @rw: Read (1) or Write (0)
5303  * @sleep_ok: if true we may sleep while awaiting command completion
5304  *
5305  * Access TP indirect registers through LDST
5306  */
5307 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5308                             unsigned int nregs, unsigned int start_index,
5309                             unsigned int rw, bool sleep_ok)
5310 {
5311         int ret = 0;
5312         unsigned int i;
5313         struct fw_ldst_cmd c;
5314
5315         for (i = 0; i < nregs; i++) {
5316                 memset(&c, 0, sizeof(c));
5317                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5318                                                 FW_CMD_REQUEST_F |
5319                                                 (rw ? FW_CMD_READ_F :
5320                                                       FW_CMD_WRITE_F) |
5321                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
5322                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5323
5324                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5325                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5326                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5327                                       sleep_ok);
5328                 if (ret)
5329                         return ret;
5330
5331                 if (rw)
5332                         vals[i] = be32_to_cpu(c.u.addrval.val);
5333         }
5334         return 0;
5335 }
5336
5337 /**
5338  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5339  * @adap: the adapter
5340  * @reg_addr: Address Register
5341  * @reg_data: Data register
5342  * @buff: where the indirect register values are stored/written
5343  * @nregs: how many indirect registers to read/write
5344  * @start_index: index of first indirect register to read/write
5345  * @rw: READ(1) or WRITE(0)
5346  * @sleep_ok: if true we may sleep while awaiting command completion
5347  *
5348  * Read/Write TP indirect registers through LDST if possible.
5349  * Else, use backdoor access
5350  **/
5351 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5352                               u32 *buff, u32 nregs, u32 start_index, int rw,
5353                               bool sleep_ok)
5354 {
5355         int rc = -EINVAL;
5356         int cmd;
5357
5358         switch (reg_addr) {
5359         case TP_PIO_ADDR_A:
5360                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5361                 break;
5362         case TP_TM_PIO_ADDR_A:
5363                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5364                 break;
5365         case TP_MIB_INDEX_A:
5366                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5367                 break;
5368         default:
5369                 goto indirect_access;
5370         }
5371
5372         if (t4_use_ldst(adap))
5373                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5374                                       sleep_ok);
5375
5376 indirect_access:
5377
5378         if (rc) {
5379                 if (rw)
5380                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5381                                          start_index);
5382                 else
5383                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5384                                           start_index);
5385         }
5386 }
5387
5388 /**
5389  * t4_tp_pio_read - Read TP PIO registers
5390  * @adap: the adapter
5391  * @buff: where the indirect register values are written
5392  * @nregs: how many indirect registers to read
5393  * @start_index: index of first indirect register to read
5394  * @sleep_ok: if true we may sleep while awaiting command completion
5395  *
5396  * Read TP PIO Registers
5397  **/
5398 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5399                     u32 start_index, bool sleep_ok)
5400 {
5401         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5402                           start_index, 1, sleep_ok);
5403 }
5404
5405 /**
5406  * t4_tp_pio_write - Write TP PIO registers
5407  * @adap: the adapter
5408  * @buff: where the indirect register values are stored
5409  * @nregs: how many indirect registers to write
5410  * @start_index: index of first indirect register to write
5411  * @sleep_ok: if true we may sleep while awaiting command completion
5412  *
5413  * Write TP PIO Registers
5414  **/
5415 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5416                             u32 start_index, bool sleep_ok)
5417 {
5418         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5419                           start_index, 0, sleep_ok);
5420 }
5421
5422 /**
5423  * t4_tp_tm_pio_read - Read TP TM PIO registers
5424  * @adap: the adapter
5425  * @buff: where the indirect register values are written
5426  * @nregs: how many indirect registers to read
5427  * @start_index: index of first indirect register to read
5428  * @sleep_ok: if true we may sleep while awaiting command completion
5429  *
5430  * Read TP TM PIO Registers
5431  **/
5432 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5433                        u32 start_index, bool sleep_ok)
5434 {
5435         t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5436                           nregs, start_index, 1, sleep_ok);
5437 }
5438
5439 /**
5440  * t4_tp_mib_read - Read TP MIB registers
5441  * @adap: the adapter
5442  * @buff: where the indirect register values are written
5443  * @nregs: how many indirect registers to read
5444  * @start_index: index of first indirect register to read
5445  * @sleep_ok: if true we may sleep while awaiting command completion
5446  *
5447  * Read TP MIB Registers
5448  **/
5449 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5450                     bool sleep_ok)
5451 {
5452         t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5453                           start_index, 1, sleep_ok);
5454 }
5455
5456 /**
5457  *      t4_read_rss_key - read the global RSS key
5458  *      @adap: the adapter
5459  *      @key: 10-entry array holding the 320-bit RSS key
5460  *      @sleep_ok: if true we may sleep while awaiting command completion
5461  *
5462  *      Reads the global 320-bit RSS key.
5463  */
5464 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5465 {
5466         t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5467 }
5468
5469 /**
5470  *      t4_write_rss_key - program one of the RSS keys
5471  *      @adap: the adapter
5472  *      @key: 10-entry array holding the 320-bit RSS key
5473  *      @idx: which RSS key to write
5474  *      @sleep_ok: if true we may sleep while awaiting command completion
5475  *
5476  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5477  *      0..15 the corresponding entry in the RSS key table is written,
5478  *      otherwise the global RSS key is written.
5479  */
5480 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5481                       bool sleep_ok)
5482 {
5483         u8 rss_key_addr_cnt = 16;
5484         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5485
5486         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5487          * allows access to key addresses 16-63 by using KeyWrAddrX
5488          * as index[5:4](upper 2) into key table
5489          */
5490         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5491             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5492                 rss_key_addr_cnt = 32;
5493
5494         t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5495
5496         if (idx >= 0 && idx < rss_key_addr_cnt) {
5497                 if (rss_key_addr_cnt > 16)
5498                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5499                                      KEYWRADDRX_V(idx >> 4) |
5500                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
5501                 else
5502                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5503                                      KEYWRADDR_V(idx) | KEYWREN_F);
5504         }
5505 }
5506
5507 /**
5508  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5509  *      @adapter: the adapter
5510  *      @index: the entry in the PF RSS table to read
5511  *      @valp: where to store the returned value
5512  *      @sleep_ok: if true we may sleep while awaiting command completion
5513  *
5514  *      Reads the PF RSS Configuration Table at the specified index and returns
5515  *      the value found there.
5516  */
5517 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5518                            u32 *valp, bool sleep_ok)
5519 {
5520         t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5521 }
5522
5523 /**
5524  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5525  *      @adapter: the adapter
5526  *      @index: the entry in the VF RSS table to read
5527  *      @vfl: where to store the returned VFL
5528  *      @vfh: where to store the returned VFH
5529  *      @sleep_ok: if true we may sleep while awaiting command completion
5530  *
5531  *      Reads the VF RSS Configuration Table at the specified index and returns
5532  *      the (VFL, VFH) values found there.
5533  */
5534 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5535                            u32 *vfl, u32 *vfh, bool sleep_ok)
5536 {
5537         u32 vrt, mask, data;
5538
5539         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5540                 mask = VFWRADDR_V(VFWRADDR_M);
5541                 data = VFWRADDR_V(index);
5542         } else {
5543                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5544                  data = T6_VFWRADDR_V(index);
5545         }
5546
5547         /* Request that the index'th VF Table values be read into VFL/VFH.
5548          */
5549         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5550         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5551         vrt |= data | VFRDEN_F;
5552         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5553
5554         /* Grab the VFL/VFH values ...
5555          */
5556         t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5557         t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5558 }
5559
5560 /**
5561  *      t4_read_rss_pf_map - read PF RSS Map
5562  *      @adapter: the adapter
5563  *      @sleep_ok: if true we may sleep while awaiting command completion
5564  *
5565  *      Reads the PF RSS Map register and returns its value.
5566  */
5567 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5568 {
5569         u32 pfmap;
5570
5571         t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5572         return pfmap;
5573 }
5574
5575 /**
5576  *      t4_read_rss_pf_mask - read PF RSS Mask
5577  *      @adapter: the adapter
5578  *      @sleep_ok: if true we may sleep while awaiting command completion
5579  *
5580  *      Reads the PF RSS Mask register and returns its value.
5581  */
5582 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5583 {
5584         u32 pfmask;
5585
5586         t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5587         return pfmask;
5588 }
5589
5590 /**
5591  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5592  *      @adap: the adapter
5593  *      @v4: holds the TCP/IP counter values
5594  *      @v6: holds the TCP/IPv6 counter values
5595  *      @sleep_ok: if true we may sleep while awaiting command completion
5596  *
5597  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5598  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5599  */
5600 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5601                          struct tp_tcp_stats *v6, bool sleep_ok)
5602 {
5603         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5604
5605 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5606 #define STAT(x)     val[STAT_IDX(x)]
5607 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5608
5609         if (v4) {
5610                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5611                                TP_MIB_TCP_OUT_RST_A, sleep_ok);
5612                 v4->tcp_out_rsts = STAT(OUT_RST);
5613                 v4->tcp_in_segs  = STAT64(IN_SEG);
5614                 v4->tcp_out_segs = STAT64(OUT_SEG);
5615                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5616         }
5617         if (v6) {
5618                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5619                                TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5620                 v6->tcp_out_rsts = STAT(OUT_RST);
5621                 v6->tcp_in_segs  = STAT64(IN_SEG);
5622                 v6->tcp_out_segs = STAT64(OUT_SEG);
5623                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5624         }
5625 #undef STAT64
5626 #undef STAT
5627 #undef STAT_IDX
5628 }
5629
5630 /**
5631  *      t4_tp_get_err_stats - read TP's error MIB counters
5632  *      @adap: the adapter
5633  *      @st: holds the counter values
5634  *      @sleep_ok: if true we may sleep while awaiting command completion
5635  *
5636  *      Returns the values of TP's error counters.
5637  */
5638 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5639                          bool sleep_ok)
5640 {
5641         int nchan = adap->params.arch.nchan;
5642
5643         t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5644                        sleep_ok);
5645         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5646                        sleep_ok);
5647         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5648                        sleep_ok);
5649         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5650                        TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5651         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5652                        TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5653         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5654                        sleep_ok);
5655         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5656                        TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5657         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5658                        TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5659         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5660                        sleep_ok);
5661 }
5662
5663 /**
5664  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5665  *      @adap: the adapter
5666  *      @st: holds the counter values
5667  *      @sleep_ok: if true we may sleep while awaiting command completion
5668  *
5669  *      Returns the values of TP's CPL counters.
5670  */
5671 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5672                          bool sleep_ok)
5673 {
5674         int nchan = adap->params.arch.nchan;
5675
5676         t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5677
5678         t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5679 }
5680
5681 /**
5682  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5683  *      @adap: the adapter
5684  *      @st: holds the counter values
5685  *      @sleep_ok: if true we may sleep while awaiting command completion
5686  *
5687  *      Returns the values of TP's RDMA counters.
5688  */
5689 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5690                           bool sleep_ok)
5691 {
5692         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5693                        sleep_ok);
5694 }
5695
5696 /**
5697  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5698  *      @adap: the adapter
5699  *      @idx: the port index
5700  *      @st: holds the counter values
5701  *      @sleep_ok: if true we may sleep while awaiting command completion
5702  *
5703  *      Returns the values of TP's FCoE counters for the selected port.
5704  */
5705 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5706                        struct tp_fcoe_stats *st, bool sleep_ok)
5707 {
5708         u32 val[2];
5709
5710         t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5711                        sleep_ok);
5712
5713         t4_tp_mib_read(adap, &st->frames_drop, 1,
5714                        TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5715
5716         t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5717                        sleep_ok);
5718
5719         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5720 }
5721
5722 /**
5723  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5724  *      @adap: the adapter
5725  *      @st: holds the counter values
5726  *      @sleep_ok: if true we may sleep while awaiting command completion
5727  *
5728  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5729  */
5730 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5731                       bool sleep_ok)
5732 {
5733         u32 val[4];
5734
5735         t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5736         st->frames = val[0];
5737         st->drops = val[1];
5738         st->octets = ((u64)val[2] << 32) | val[3];
5739 }
5740
5741 /**
5742  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5743  *      @adap: the adapter
5744  *      @mtus: where to store the MTU values
5745  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5746  *
5747  *      Reads the HW path MTU table.
5748  */
5749 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5750 {
5751         u32 v;
5752         int i;
5753
5754         for (i = 0; i < NMTUS; ++i) {
5755                 t4_write_reg(adap, TP_MTU_TABLE_A,
5756                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
5757                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5758                 mtus[i] = MTUVALUE_G(v);
5759                 if (mtu_log)
5760                         mtu_log[i] = MTUWIDTH_G(v);
5761         }
5762 }
5763
5764 /**
5765  *      t4_read_cong_tbl - reads the congestion control table
5766  *      @adap: the adapter
5767  *      @incr: where to store the alpha values
5768  *
5769  *      Reads the additive increments programmed into the HW congestion
5770  *      control table.
5771  */
5772 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5773 {
5774         unsigned int mtu, w;
5775
5776         for (mtu = 0; mtu < NMTUS; ++mtu)
5777                 for (w = 0; w < NCCTRL_WIN; ++w) {
5778                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5779                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5780                         incr[mtu][w] = (u16)t4_read_reg(adap,
5781                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5782                 }
5783 }
5784
5785 /**
5786  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5787  *      @adap: the adapter
5788  *      @addr: the indirect TP register address
5789  *      @mask: specifies the field within the register to modify
5790  *      @val: new value for the field
5791  *
5792  *      Sets a field of an indirect TP register to the given value.
5793  */
5794 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5795                             unsigned int mask, unsigned int val)
5796 {
5797         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5798         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5799         t4_write_reg(adap, TP_PIO_DATA_A, val);
5800 }
5801
5802 /**
5803  *      init_cong_ctrl - initialize congestion control parameters
5804  *      @a: the alpha values for congestion control
5805  *      @b: the beta values for congestion control
5806  *
5807  *      Initialize the congestion control parameters.
5808  */
5809 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5810 {
5811         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5812         a[9] = 2;
5813         a[10] = 3;
5814         a[11] = 4;
5815         a[12] = 5;
5816         a[13] = 6;
5817         a[14] = 7;
5818         a[15] = 8;
5819         a[16] = 9;
5820         a[17] = 10;
5821         a[18] = 14;
5822         a[19] = 17;
5823         a[20] = 21;
5824         a[21] = 25;
5825         a[22] = 30;
5826         a[23] = 35;
5827         a[24] = 45;
5828         a[25] = 60;
5829         a[26] = 80;
5830         a[27] = 100;
5831         a[28] = 200;
5832         a[29] = 300;
5833         a[30] = 400;
5834         a[31] = 500;
5835
5836         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5837         b[9] = b[10] = 1;
5838         b[11] = b[12] = 2;
5839         b[13] = b[14] = b[15] = b[16] = 3;
5840         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5841         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5842         b[28] = b[29] = 6;
5843         b[30] = b[31] = 7;
5844 }
5845
5846 /* The minimum additive increment value for the congestion control table */
5847 #define CC_MIN_INCR 2U
5848
5849 /**
5850  *      t4_load_mtus - write the MTU and congestion control HW tables
5851  *      @adap: the adapter
5852  *      @mtus: the values for the MTU table
5853  *      @alpha: the values for the congestion control alpha parameter
5854  *      @beta: the values for the congestion control beta parameter
5855  *
5856  *      Write the HW MTU table with the supplied MTUs and the high-speed
5857  *      congestion control table with the supplied alpha, beta, and MTUs.
5858  *      We write the two tables together because the additive increments
5859  *      depend on the MTUs.
5860  */
5861 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5862                   const unsigned short *alpha, const unsigned short *beta)
5863 {
5864         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5865                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5866                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5867                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5868         };
5869
5870         unsigned int i, w;
5871
5872         for (i = 0; i < NMTUS; ++i) {
5873                 unsigned int mtu = mtus[i];
5874                 unsigned int log2 = fls(mtu);
5875
5876                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5877                         log2--;
5878                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5879                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5880
5881                 for (w = 0; w < NCCTRL_WIN; ++w) {
5882                         unsigned int inc;
5883
5884                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5885                                   CC_MIN_INCR);
5886
5887                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5888                                      (w << 16) | (beta[w] << 13) | inc);
5889                 }
5890         }
5891 }
5892
5893 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5894  * clocks.  The formula is
5895  *
5896  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5897  *
5898  * which is equivalent to
5899  *
5900  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5901  */
5902 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5903 {
5904         u64 v = bytes256 * adap->params.vpd.cclk;
5905
5906         return v * 62 + v / 2;
5907 }
5908
5909 /**
5910  *      t4_get_chan_txrate - get the current per channel Tx rates
5911  *      @adap: the adapter
5912  *      @nic_rate: rates for NIC traffic
5913  *      @ofld_rate: rates for offloaded traffic
5914  *
5915  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5916  *      for each channel.
5917  */
5918 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5919 {
5920         u32 v;
5921
5922         v = t4_read_reg(adap, TP_TX_TRATE_A);
5923         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5924         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5925         if (adap->params.arch.nchan == NCHAN) {
5926                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5927                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5928         }
5929
5930         v = t4_read_reg(adap, TP_TX_ORATE_A);
5931         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5932         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5933         if (adap->params.arch.nchan == NCHAN) {
5934                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5935                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5936         }
5937 }
5938
5939 /**
5940  *      t4_set_trace_filter - configure one of the tracing filters
5941  *      @adap: the adapter
5942  *      @tp: the desired trace filter parameters
5943  *      @idx: which filter to configure
5944  *      @enable: whether to enable or disable the filter
5945  *
5946  *      Configures one of the tracing filters available in HW.  If @enable is
5947  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5948  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5949  */
5950 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5951                         int idx, int enable)
5952 {
5953         int i, ofst = idx * 4;
5954         u32 data_reg, mask_reg, cfg;
5955
5956         if (!enable) {
5957                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5958                 return 0;
5959         }
5960
5961         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5962         if (cfg & TRCMULTIFILTER_F) {
5963                 /* If multiple tracers are enabled, then maximum
5964                  * capture size is 2.5KB (FIFO size of a single channel)
5965                  * minus 2 flits for CPL_TRACE_PKT header.
5966                  */
5967                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5968                         return -EINVAL;
5969         } else {
5970                 /* If multiple tracers are disabled, to avoid deadlocks
5971                  * maximum packet capture size of 9600 bytes is recommended.
5972                  * Also in this mode, only trace0 can be enabled and running.
5973                  */
5974                 if (tp->snap_len > 9600 || idx)
5975                         return -EINVAL;
5976         }
5977
5978         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5979             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5980             tp->min_len > TFMINPKTSIZE_M)
5981                 return -EINVAL;
5982
5983         /* stop the tracer we'll be changing */
5984         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5985
5986         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5987         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5988         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5989
5990         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5991                 t4_write_reg(adap, data_reg, tp->data[i]);
5992                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5993         }
5994         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5995                      TFCAPTUREMAX_V(tp->snap_len) |
5996                      TFMINPKTSIZE_V(tp->min_len));
5997         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5998                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5999                      (is_t4(adap->params.chip) ?
6000                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6001                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
6002                      T5_TFINVERTMATCH_V(tp->invert)));
6003
6004         return 0;
6005 }
6006
6007 /**
6008  *      t4_get_trace_filter - query one of the tracing filters
6009  *      @adap: the adapter
6010  *      @tp: the current trace filter parameters
6011  *      @idx: which trace filter to query
6012  *      @enabled: non-zero if the filter is enabled
6013  *
6014  *      Returns the current settings of one of the HW tracing filters.
6015  */
6016 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6017                          int *enabled)
6018 {
6019         u32 ctla, ctlb;
6020         int i, ofst = idx * 4;
6021         u32 data_reg, mask_reg;
6022
6023         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6024         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6025
6026         if (is_t4(adap->params.chip)) {
6027                 *enabled = !!(ctla & TFEN_F);
6028                 tp->port =  TFPORT_G(ctla);
6029                 tp->invert = !!(ctla & TFINVERTMATCH_F);
6030         } else {
6031                 *enabled = !!(ctla & T5_TFEN_F);
6032                 tp->port = T5_TFPORT_G(ctla);
6033                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6034         }
6035         tp->snap_len = TFCAPTUREMAX_G(ctlb);
6036         tp->min_len = TFMINPKTSIZE_G(ctlb);
6037         tp->skip_ofst = TFOFFSET_G(ctla);
6038         tp->skip_len = TFLENGTH_G(ctla);
6039
6040         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6041         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6042         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6043
6044         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6045                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6046                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6047         }
6048 }
6049
6050 /**
6051  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6052  *      @adap: the adapter
6053  *      @cnt: where to store the count statistics
6054  *      @cycles: where to store the cycle statistics
6055  *
6056  *      Returns performance statistics from PMTX.
6057  */
6058 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6059 {
6060         int i;
6061         u32 data[2];
6062
6063         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6064                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6065                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6066                 if (is_t4(adap->params.chip)) {
6067                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6068                 } else {
6069                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6070                                          PM_TX_DBG_DATA_A, data, 2,
6071                                          PM_TX_DBG_STAT_MSB_A);
6072                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6073                 }
6074         }
6075 }
6076
6077 /**
6078  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6079  *      @adap: the adapter
6080  *      @cnt: where to store the count statistics
6081  *      @cycles: where to store the cycle statistics
6082  *
6083  *      Returns performance statistics from PMRX.
6084  */
6085 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6086 {
6087         int i;
6088         u32 data[2];
6089
6090         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6091                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6092                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6093                 if (is_t4(adap->params.chip)) {
6094                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6095                 } else {
6096                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6097                                          PM_RX_DBG_DATA_A, data, 2,
6098                                          PM_RX_DBG_STAT_MSB_A);
6099                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6100                 }
6101         }
6102 }
6103
6104 /**
6105  *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6106  *      @adapter: the adapter
6107  *      @pidx: the port index
6108  *
6109  *      Computes and returns a bitmap indicating which MPS buffer groups are
6110  *      associated with the given Port.  Bit i is set if buffer group i is
6111  *      used by the Port.
6112  */
6113 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6114                                               int pidx)
6115 {
6116         unsigned int chip_version, nports;
6117
6118         chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6119         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6120
6121         switch (chip_version) {
6122         case CHELSIO_T4:
6123         case CHELSIO_T5:
6124                 switch (nports) {
6125                 case 1: return 0xf;
6126                 case 2: return 3 << (2 * pidx);
6127                 case 4: return 1 << pidx;
6128                 }
6129                 break;
6130
6131         case CHELSIO_T6:
6132                 switch (nports) {
6133                 case 2: return 1 << (2 * pidx);
6134                 }
6135                 break;
6136         }
6137
6138         dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6139                 chip_version, nports);
6140
6141         return 0;
6142 }
6143
6144 /**
6145  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6146  *      @adapter: the adapter
6147  *      @pidx: the port index
6148  *
6149  *      Returns a bitmap indicating which MPS buffer groups are associated
6150  *      with the given Port.  Bit i is set if buffer group i is used by the
6151  *      Port.
6152  */
6153 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6154 {
6155         u8 *mps_bg_map;
6156         unsigned int nports;
6157
6158         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6159         if (pidx >= nports) {
6160                 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6161                         pidx, nports);
6162                 return 0;
6163         }
6164
6165         /* If we've already retrieved/computed this, just return the result.
6166          */
6167         mps_bg_map = adapter->params.mps_bg_map;
6168         if (mps_bg_map[pidx])
6169                 return mps_bg_map[pidx];
6170
6171         /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6172          * If we're talking to such Firmware, let it tell us.  If the new
6173          * API isn't supported, revert back to old hardcoded way.  The value
6174          * obtained from Firmware is encoded in below format:
6175          *
6176          * val = (( MPSBGMAP[Port 3] << 24 ) |
6177          *        ( MPSBGMAP[Port 2] << 16 ) |
6178          *        ( MPSBGMAP[Port 1] <<  8 ) |
6179          *        ( MPSBGMAP[Port 0] <<  0 ))
6180          */
6181         if (adapter->flags & CXGB4_FW_OK) {
6182                 u32 param, val;
6183                 int ret;
6184
6185                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6186                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6187                 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6188                                          0, 1, &param, &val);
6189                 if (!ret) {
6190                         int p;
6191
6192                         /* Store the BG Map for all of the Ports in order to
6193                          * avoid more calls to the Firmware in the future.
6194                          */
6195                         for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6196                                 mps_bg_map[p] = val & 0xff;
6197
6198                         return mps_bg_map[pidx];
6199                 }
6200         }
6201
6202         /* Either we're not talking to the Firmware or we're dealing with
6203          * older Firmware which doesn't support the new API to get the MPS
6204          * Buffer Group Map.  Fall back to computing it ourselves.
6205          */
6206         mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6207         return mps_bg_map[pidx];
6208 }
6209
6210 /**
6211  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6212  *      @adapter: the adapter
6213  *      @pidx: the port index
6214  */
6215 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6216 {
6217         unsigned int nports;
6218         u32 param, val = 0;
6219         int ret;
6220
6221         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6222         if (pidx >= nports) {
6223                 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6224                         pidx, nports);
6225                 return 0;
6226         }
6227
6228         /* FW version >= 1.16.44.0 can determine E2C channel map using
6229          * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6230          */
6231         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6232                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6233         ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6234                                  0, 1, &param, &val);
6235         if (!ret)
6236                 return (val >> (8 * pidx)) & 0xff;
6237
6238         return 0;
6239 }
6240
6241 /**
6242  *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6243  *      @adap: the adapter
6244  *      @pidx: the port index
6245  *
6246  *      Returns a bitmap indicating which TP Ingress Channels are associated
6247  *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6248  *      the Port.
6249  */
6250 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6251 {
6252         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6253         unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6254
6255         if (pidx >= nports) {
6256                 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6257                          pidx, nports);
6258                 return 0;
6259         }
6260
6261         switch (chip_version) {
6262         case CHELSIO_T4:
6263         case CHELSIO_T5:
6264                 /* Note that this happens to be the same values as the MPS
6265                  * Buffer Group Map for these Chips.  But we replicate the code
6266                  * here because they're really separate concepts.
6267                  */
6268                 switch (nports) {
6269                 case 1: return 0xf;
6270                 case 2: return 3 << (2 * pidx);
6271                 case 4: return 1 << pidx;
6272                 }
6273                 break;
6274
6275         case CHELSIO_T6:
6276                 switch (nports) {
6277                 case 1:
6278                 case 2: return 1 << pidx;
6279                 }
6280                 break;
6281         }
6282
6283         dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6284                 chip_version, nports);
6285         return 0;
6286 }
6287
6288 /**
6289  *      t4_get_port_type_description - return Port Type string description
6290  *      @port_type: firmware Port Type enumeration
6291  */
6292 const char *t4_get_port_type_description(enum fw_port_type port_type)
6293 {
6294         static const char *const port_type_description[] = {
6295                 "Fiber_XFI",
6296                 "Fiber_XAUI",
6297                 "BT_SGMII",
6298                 "BT_XFI",
6299                 "BT_XAUI",
6300                 "KX4",
6301                 "CX4",
6302                 "KX",
6303                 "KR",
6304                 "SFP",
6305                 "BP_AP",
6306                 "BP4_AP",
6307                 "QSFP_10G",
6308                 "QSA",
6309                 "QSFP",
6310                 "BP40_BA",
6311                 "KR4_100G",
6312                 "CR4_QSFP",
6313                 "CR_QSFP",
6314                 "CR2_QSFP",
6315                 "SFP28",
6316                 "KR_SFP28",
6317                 "KR_XLAUI"
6318         };
6319
6320         if (port_type < ARRAY_SIZE(port_type_description))
6321                 return port_type_description[port_type];
6322         return "UNKNOWN";
6323 }
6324
6325 /**
6326  *      t4_get_port_stats_offset - collect port stats relative to a previous
6327  *                                 snapshot
6328  *      @adap: The adapter
6329  *      @idx: The port
6330  *      @stats: Current stats to fill
6331  *      @offset: Previous stats snapshot
6332  */
6333 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6334                               struct port_stats *stats,
6335                               struct port_stats *offset)
6336 {
6337         u64 *s, *o;
6338         int i;
6339
6340         t4_get_port_stats(adap, idx, stats);
6341         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6342                         i < (sizeof(struct port_stats) / sizeof(u64));
6343                         i++, s++, o++)
6344                 *s -= *o;
6345 }
6346
6347 /**
6348  *      t4_get_port_stats - collect port statistics
6349  *      @adap: the adapter
6350  *      @idx: the port index
6351  *      @p: the stats structure to fill
6352  *
6353  *      Collect statistics related to the given port from HW.
6354  */
6355 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6356 {
6357         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6358         u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6359
6360 #define GET_STAT(name) \
6361         t4_read_reg64(adap, \
6362         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6363         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6364 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6365
6366         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6367         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6368         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6369         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6370         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6371         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6372         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6373         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6374         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6375         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6376         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6377         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6378         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6379         p->tx_drop             = GET_STAT(TX_PORT_DROP);
6380         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6381         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6382         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6383         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6384         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6385         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6386         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6387         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6388         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6389
6390         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6391                 if (stat_ctl & COUNTPAUSESTATTX_F)
6392                         p->tx_frames_64 -= p->tx_pause;
6393                 if (stat_ctl & COUNTPAUSEMCTX_F)
6394                         p->tx_mcast_frames -= p->tx_pause;
6395         }
6396         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6397         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6398         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6399         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6400         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6401         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6402         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6403         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6404         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6405         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6406         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6407         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6408         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6409         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6410         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6411         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6412         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6413         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6414         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6415         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6416         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6417         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6418         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6419         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6420         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6421         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6422         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6423
6424         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6425                 if (stat_ctl & COUNTPAUSESTATRX_F)
6426                         p->rx_frames_64 -= p->rx_pause;
6427                 if (stat_ctl & COUNTPAUSEMCRX_F)
6428                         p->rx_mcast_frames -= p->rx_pause;
6429         }
6430
6431         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6432         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6433         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6434         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6435         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6436         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6437         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6438         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6439
6440 #undef GET_STAT
6441 #undef GET_STAT_COM
6442 }
6443
6444 /**
6445  *      t4_get_lb_stats - collect loopback port statistics
6446  *      @adap: the adapter
6447  *      @idx: the loopback port index
6448  *      @p: the stats structure to fill
6449  *
6450  *      Return HW statistics for the given loopback port.
6451  */
6452 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6453 {
6454         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6455
6456 #define GET_STAT(name) \
6457         t4_read_reg64(adap, \
6458         (is_t4(adap->params.chip) ? \
6459         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6460         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6461 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6462
6463         p->octets           = GET_STAT(BYTES);
6464         p->frames           = GET_STAT(FRAMES);
6465         p->bcast_frames     = GET_STAT(BCAST);
6466         p->mcast_frames     = GET_STAT(MCAST);
6467         p->ucast_frames     = GET_STAT(UCAST);
6468         p->error_frames     = GET_STAT(ERROR);
6469
6470         p->frames_64        = GET_STAT(64B);
6471         p->frames_65_127    = GET_STAT(65B_127B);
6472         p->frames_128_255   = GET_STAT(128B_255B);
6473         p->frames_256_511   = GET_STAT(256B_511B);
6474         p->frames_512_1023  = GET_STAT(512B_1023B);
6475         p->frames_1024_1518 = GET_STAT(1024B_1518B);
6476         p->frames_1519_max  = GET_STAT(1519B_MAX);
6477         p->drop             = GET_STAT(DROP_FRAMES);
6478
6479         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6480         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6481         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6482         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6483         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6484         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6485         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6486         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6487
6488 #undef GET_STAT
6489 #undef GET_STAT_COM
6490 }
6491
6492 /*     t4_mk_filtdelwr - create a delete filter WR
6493  *     @ftid: the filter ID
6494  *     @wr: the filter work request to populate
6495  *     @qid: ingress queue to receive the delete notification
6496  *
6497  *     Creates a filter work request to delete the supplied filter.  If @qid is
6498  *     negative the delete notification is suppressed.
6499  */
6500 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6501 {
6502         memset(wr, 0, sizeof(*wr));
6503         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6504         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6505         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6506                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
6507         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6508         if (qid >= 0)
6509                 wr->rx_chan_rx_rpl_iq =
6510                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6511 }
6512
6513 #define INIT_CMD(var, cmd, rd_wr) do { \
6514         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6515                                         FW_CMD_REQUEST_F | \
6516                                         FW_CMD_##rd_wr##_F); \
6517         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6518 } while (0)
6519
6520 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6521                           u32 addr, u32 val)
6522 {
6523         u32 ldst_addrspace;
6524         struct fw_ldst_cmd c;
6525
6526         memset(&c, 0, sizeof(c));
6527         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6528         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6529                                         FW_CMD_REQUEST_F |
6530                                         FW_CMD_WRITE_F |
6531                                         ldst_addrspace);
6532         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6533         c.u.addrval.addr = cpu_to_be32(addr);
6534         c.u.addrval.val = cpu_to_be32(val);
6535
6536         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6537 }
6538
6539 /**
6540  *      t4_mdio_rd - read a PHY register through MDIO
6541  *      @adap: the adapter
6542  *      @mbox: mailbox to use for the FW command
6543  *      @phy_addr: the PHY address
6544  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6545  *      @reg: the register to read
6546  *      @valp: where to store the value
6547  *
6548  *      Issues a FW command through the given mailbox to read a PHY register.
6549  */
6550 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6551                unsigned int mmd, unsigned int reg, u16 *valp)
6552 {
6553         int ret;
6554         u32 ldst_addrspace;
6555         struct fw_ldst_cmd c;
6556
6557         memset(&c, 0, sizeof(c));
6558         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6559         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6560                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6561                                         ldst_addrspace);
6562         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6563         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6564                                          FW_LDST_CMD_MMD_V(mmd));
6565         c.u.mdio.raddr = cpu_to_be16(reg);
6566
6567         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6568         if (ret == 0)
6569                 *valp = be16_to_cpu(c.u.mdio.rval);
6570         return ret;
6571 }
6572
6573 /**
6574  *      t4_mdio_wr - write a PHY register through MDIO
6575  *      @adap: the adapter
6576  *      @mbox: mailbox to use for the FW command
6577  *      @phy_addr: the PHY address
6578  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6579  *      @reg: the register to write
6580  *      @val: value to write
6581  *
6582  *      Issues a FW command through the given mailbox to write a PHY register.
6583  */
6584 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6585                unsigned int mmd, unsigned int reg, u16 val)
6586 {
6587         u32 ldst_addrspace;
6588         struct fw_ldst_cmd c;
6589
6590         memset(&c, 0, sizeof(c));
6591         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6592         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6593                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6594                                         ldst_addrspace);
6595         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6596         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6597                                          FW_LDST_CMD_MMD_V(mmd));
6598         c.u.mdio.raddr = cpu_to_be16(reg);
6599         c.u.mdio.rval = cpu_to_be16(val);
6600
6601         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6602 }
6603
6604 /**
6605  *      t4_sge_decode_idma_state - decode the idma state
6606  *      @adapter: the adapter
6607  *      @state: the state idma is stuck in
6608  */
6609 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6610 {
6611         static const char * const t4_decode[] = {
6612                 "IDMA_IDLE",
6613                 "IDMA_PUSH_MORE_CPL_FIFO",
6614                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6615                 "Not used",
6616                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6617                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6618                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6619                 "IDMA_SEND_FIFO_TO_IMSG",
6620                 "IDMA_FL_REQ_DATA_FL_PREP",
6621                 "IDMA_FL_REQ_DATA_FL",
6622                 "IDMA_FL_DROP",
6623                 "IDMA_FL_H_REQ_HEADER_FL",
6624                 "IDMA_FL_H_SEND_PCIEHDR",
6625                 "IDMA_FL_H_PUSH_CPL_FIFO",
6626                 "IDMA_FL_H_SEND_CPL",
6627                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6628                 "IDMA_FL_H_SEND_IP_HDR",
6629                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6630                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6631                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6632                 "IDMA_FL_D_SEND_PCIEHDR",
6633                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6634                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6635                 "IDMA_FL_SEND_PCIEHDR",
6636                 "IDMA_FL_PUSH_CPL_FIFO",
6637                 "IDMA_FL_SEND_CPL",
6638                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6639                 "IDMA_FL_SEND_PAYLOAD",
6640                 "IDMA_FL_REQ_NEXT_DATA_FL",
6641                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6642                 "IDMA_FL_SEND_PADDING",
6643                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6644                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6645                 "IDMA_FL_REQ_DATAFL_DONE",
6646                 "IDMA_FL_REQ_HEADERFL_DONE",
6647         };
6648         static const char * const t5_decode[] = {
6649                 "IDMA_IDLE",
6650                 "IDMA_ALMOST_IDLE",
6651                 "IDMA_PUSH_MORE_CPL_FIFO",
6652                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6653                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6654                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6655                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6656                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6657                 "IDMA_SEND_FIFO_TO_IMSG",
6658                 "IDMA_FL_REQ_DATA_FL",
6659                 "IDMA_FL_DROP",
6660                 "IDMA_FL_DROP_SEND_INC",
6661                 "IDMA_FL_H_REQ_HEADER_FL",
6662                 "IDMA_FL_H_SEND_PCIEHDR",
6663                 "IDMA_FL_H_PUSH_CPL_FIFO",
6664                 "IDMA_FL_H_SEND_CPL",
6665                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6666                 "IDMA_FL_H_SEND_IP_HDR",
6667                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6668                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6669                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6670                 "IDMA_FL_D_SEND_PCIEHDR",
6671                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6672                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6673                 "IDMA_FL_SEND_PCIEHDR",
6674                 "IDMA_FL_PUSH_CPL_FIFO",
6675                 "IDMA_FL_SEND_CPL",
6676                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6677                 "IDMA_FL_SEND_PAYLOAD",
6678                 "IDMA_FL_REQ_NEXT_DATA_FL",
6679                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6680                 "IDMA_FL_SEND_PADDING",
6681                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6682         };
6683         static const char * const t6_decode[] = {
6684                 "IDMA_IDLE",
6685                 "IDMA_PUSH_MORE_CPL_FIFO",
6686                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6687                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6688                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6689                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6690                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6691                 "IDMA_FL_REQ_DATA_FL",
6692                 "IDMA_FL_DROP",
6693                 "IDMA_FL_DROP_SEND_INC",
6694                 "IDMA_FL_H_REQ_HEADER_FL",
6695                 "IDMA_FL_H_SEND_PCIEHDR",
6696                 "IDMA_FL_H_PUSH_CPL_FIFO",
6697                 "IDMA_FL_H_SEND_CPL",
6698                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6699                 "IDMA_FL_H_SEND_IP_HDR",
6700                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6701                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6702                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6703                 "IDMA_FL_D_SEND_PCIEHDR",
6704                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6705                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6706                 "IDMA_FL_SEND_PCIEHDR",
6707                 "IDMA_FL_PUSH_CPL_FIFO",
6708                 "IDMA_FL_SEND_CPL",
6709                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6710                 "IDMA_FL_SEND_PAYLOAD",
6711                 "IDMA_FL_REQ_NEXT_DATA_FL",
6712                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6713                 "IDMA_FL_SEND_PADDING",
6714                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6715         };
6716         static const u32 sge_regs[] = {
6717                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6718                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6719                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6720         };
6721         const char **sge_idma_decode;
6722         int sge_idma_decode_nstates;
6723         int i;
6724         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6725
6726         /* Select the right set of decode strings to dump depending on the
6727          * adapter chip type.
6728          */
6729         switch (chip_version) {
6730         case CHELSIO_T4:
6731                 sge_idma_decode = (const char **)t4_decode;
6732                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6733                 break;
6734
6735         case CHELSIO_T5:
6736                 sge_idma_decode = (const char **)t5_decode;
6737                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6738                 break;
6739
6740         case CHELSIO_T6:
6741                 sge_idma_decode = (const char **)t6_decode;
6742                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6743                 break;
6744
6745         default:
6746                 dev_err(adapter->pdev_dev,
6747                         "Unsupported chip version %d\n", chip_version);
6748                 return;
6749         }
6750
6751         if (is_t4(adapter->params.chip)) {
6752                 sge_idma_decode = (const char **)t4_decode;
6753                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6754         } else {
6755                 sge_idma_decode = (const char **)t5_decode;
6756                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6757         }
6758
6759         if (state < sge_idma_decode_nstates)
6760                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6761         else
6762                 CH_WARN(adapter, "idma state %d unknown\n", state);
6763
6764         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6765                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6766                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6767 }
6768
6769 /**
6770  *      t4_sge_ctxt_flush - flush the SGE context cache
6771  *      @adap: the adapter
6772  *      @mbox: mailbox to use for the FW command
6773  *      @ctxt_type: Egress or Ingress
6774  *
6775  *      Issues a FW command through the given mailbox to flush the
6776  *      SGE context cache.
6777  */
6778 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6779 {
6780         int ret;
6781         u32 ldst_addrspace;
6782         struct fw_ldst_cmd c;
6783
6784         memset(&c, 0, sizeof(c));
6785         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6786                                                  FW_LDST_ADDRSPC_SGE_EGRC :
6787                                                  FW_LDST_ADDRSPC_SGE_INGC);
6788         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6789                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6790                                         ldst_addrspace);
6791         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6792         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6793
6794         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6795         return ret;
6796 }
6797
6798 /**
6799  *      t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6800  *      @adap: the adapter
6801  *      @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6802  *      @dbqtimers: SGE Doorbell Queue Timer table
6803  *
6804  *      Reads the SGE Doorbell Queue Timer values into the provided table.
6805  *      Returns 0 on success (Firmware and Hardware support this feature),
6806  *      an error on failure.
6807  */
6808 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6809                           u16 *dbqtimers)
6810 {
6811         int ret, dbqtimerix;
6812
6813         ret = 0;
6814         dbqtimerix = 0;
6815         while (dbqtimerix < ndbqtimers) {
6816                 int nparams, param;
6817                 u32 params[7], vals[7];
6818
6819                 nparams = ndbqtimers - dbqtimerix;
6820                 if (nparams > ARRAY_SIZE(params))
6821                         nparams = ARRAY_SIZE(params);
6822
6823                 for (param = 0; param < nparams; param++)
6824                         params[param] =
6825                           (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6826                            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6827                            FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6828                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6829                                       nparams, params, vals);
6830                 if (ret)
6831                         break;
6832
6833                 for (param = 0; param < nparams; param++)
6834                         dbqtimers[dbqtimerix++] = vals[param];
6835         }
6836         return ret;
6837 }
6838
6839 /**
6840  *      t4_fw_hello - establish communication with FW
6841  *      @adap: the adapter
6842  *      @mbox: mailbox to use for the FW command
6843  *      @evt_mbox: mailbox to receive async FW events
6844  *      @master: specifies the caller's willingness to be the device master
6845  *      @state: returns the current device state (if non-NULL)
6846  *
6847  *      Issues a command to establish communication with FW.  Returns either
6848  *      an error (negative integer) or the mailbox of the Master PF.
6849  */
6850 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6851                 enum dev_master master, enum dev_state *state)
6852 {
6853         int ret;
6854         struct fw_hello_cmd c;
6855         u32 v;
6856         unsigned int master_mbox;
6857         int retries = FW_CMD_HELLO_RETRIES;
6858
6859 retry:
6860         memset(&c, 0, sizeof(c));
6861         INIT_CMD(c, HELLO, WRITE);
6862         c.err_to_clearinit = cpu_to_be32(
6863                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6864                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6865                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6866                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
6867                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6868                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6869                 FW_HELLO_CMD_CLEARINIT_F);
6870
6871         /*
6872          * Issue the HELLO command to the firmware.  If it's not successful
6873          * but indicates that we got a "busy" or "timeout" condition, retry
6874          * the HELLO until we exhaust our retry limit.  If we do exceed our
6875          * retry limit, check to see if the firmware left us any error
6876          * information and report that if so.
6877          */
6878         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6879         if (ret < 0) {
6880                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6881                         goto retry;
6882                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6883                         t4_report_fw_error(adap);
6884                 return ret;
6885         }
6886
6887         v = be32_to_cpu(c.err_to_clearinit);
6888         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6889         if (state) {
6890                 if (v & FW_HELLO_CMD_ERR_F)
6891                         *state = DEV_STATE_ERR;
6892                 else if (v & FW_HELLO_CMD_INIT_F)
6893                         *state = DEV_STATE_INIT;
6894                 else
6895                         *state = DEV_STATE_UNINIT;
6896         }
6897
6898         /*
6899          * If we're not the Master PF then we need to wait around for the
6900          * Master PF Driver to finish setting up the adapter.
6901          *
6902          * Note that we also do this wait if we're a non-Master-capable PF and
6903          * there is no current Master PF; a Master PF may show up momentarily
6904          * and we wouldn't want to fail pointlessly.  (This can happen when an
6905          * OS loads lots of different drivers rapidly at the same time).  In
6906          * this case, the Master PF returned by the firmware will be
6907          * PCIE_FW_MASTER_M so the test below will work ...
6908          */
6909         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6910             master_mbox != mbox) {
6911                 int waiting = FW_CMD_HELLO_TIMEOUT;
6912
6913                 /*
6914                  * Wait for the firmware to either indicate an error or
6915                  * initialized state.  If we see either of these we bail out
6916                  * and report the issue to the caller.  If we exhaust the
6917                  * "hello timeout" and we haven't exhausted our retries, try
6918                  * again.  Otherwise bail with a timeout error.
6919                  */
6920                 for (;;) {
6921                         u32 pcie_fw;
6922
6923                         msleep(50);
6924                         waiting -= 50;
6925
6926                         /*
6927                          * If neither Error nor Initialized are indicated
6928                          * by the firmware keep waiting till we exhaust our
6929                          * timeout ... and then retry if we haven't exhausted
6930                          * our retries ...
6931                          */
6932                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6933                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6934                                 if (waiting <= 0) {
6935                                         if (retries-- > 0)
6936                                                 goto retry;
6937
6938                                         return -ETIMEDOUT;
6939                                 }
6940                                 continue;
6941                         }
6942
6943                         /*
6944                          * We either have an Error or Initialized condition
6945                          * report errors preferentially.
6946                          */
6947                         if (state) {
6948                                 if (pcie_fw & PCIE_FW_ERR_F)
6949                                         *state = DEV_STATE_ERR;
6950                                 else if (pcie_fw & PCIE_FW_INIT_F)
6951                                         *state = DEV_STATE_INIT;
6952                         }
6953
6954                         /*
6955                          * If we arrived before a Master PF was selected and
6956                          * there's not a valid Master PF, grab its identity
6957                          * for our caller.
6958                          */
6959                         if (master_mbox == PCIE_FW_MASTER_M &&
6960                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
6961                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6962                         break;
6963                 }
6964         }
6965
6966         return master_mbox;
6967 }
6968
6969 /**
6970  *      t4_fw_bye - end communication with FW
6971  *      @adap: the adapter
6972  *      @mbox: mailbox to use for the FW command
6973  *
6974  *      Issues a command to terminate communication with FW.
6975  */
6976 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6977 {
6978         struct fw_bye_cmd c;
6979
6980         memset(&c, 0, sizeof(c));
6981         INIT_CMD(c, BYE, WRITE);
6982         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6983 }
6984
6985 /**
6986  *      t4_init_cmd - ask FW to initialize the device
6987  *      @adap: the adapter
6988  *      @mbox: mailbox to use for the FW command
6989  *
6990  *      Issues a command to FW to partially initialize the device.  This
6991  *      performs initialization that generally doesn't depend on user input.
6992  */
6993 int t4_early_init(struct adapter *adap, unsigned int mbox)
6994 {
6995         struct fw_initialize_cmd c;
6996
6997         memset(&c, 0, sizeof(c));
6998         INIT_CMD(c, INITIALIZE, WRITE);
6999         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7000 }
7001
7002 /**
7003  *      t4_fw_reset - issue a reset to FW
7004  *      @adap: the adapter
7005  *      @mbox: mailbox to use for the FW command
7006  *      @reset: specifies the type of reset to perform
7007  *
7008  *      Issues a reset command of the specified type to FW.
7009  */
7010 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7011 {
7012         struct fw_reset_cmd c;
7013
7014         memset(&c, 0, sizeof(c));
7015         INIT_CMD(c, RESET, WRITE);
7016         c.val = cpu_to_be32(reset);
7017         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7018 }
7019
7020 /**
7021  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7022  *      @adap: the adapter
7023  *      @mbox: mailbox to use for the FW RESET command (if desired)
7024  *      @force: force uP into RESET even if FW RESET command fails
7025  *
7026  *      Issues a RESET command to firmware (if desired) with a HALT indication
7027  *      and then puts the microprocessor into RESET state.  The RESET command
7028  *      will only be issued if a legitimate mailbox is provided (mbox <=
7029  *      PCIE_FW_MASTER_M).
7030  *
7031  *      This is generally used in order for the host to safely manipulate the
7032  *      adapter without fear of conflicting with whatever the firmware might
7033  *      be doing.  The only way out of this state is to RESTART the firmware
7034  *      ...
7035  */
7036 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7037 {
7038         int ret = 0;
7039
7040         /*
7041          * If a legitimate mailbox is provided, issue a RESET command
7042          * with a HALT indication.
7043          */
7044         if (mbox <= PCIE_FW_MASTER_M) {
7045                 struct fw_reset_cmd c;
7046
7047                 memset(&c, 0, sizeof(c));
7048                 INIT_CMD(c, RESET, WRITE);
7049                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7050                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7051                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7052         }
7053
7054         /*
7055          * Normally we won't complete the operation if the firmware RESET
7056          * command fails but if our caller insists we'll go ahead and put the
7057          * uP into RESET.  This can be useful if the firmware is hung or even
7058          * missing ...  We'll have to take the risk of putting the uP into
7059          * RESET without the cooperation of firmware in that case.
7060          *
7061          * We also force the firmware's HALT flag to be on in case we bypassed
7062          * the firmware RESET command above or we're dealing with old firmware
7063          * which doesn't have the HALT capability.  This will serve as a flag
7064          * for the incoming firmware to know that it's coming out of a HALT
7065          * rather than a RESET ... if it's new enough to understand that ...
7066          */
7067         if (ret == 0 || force) {
7068                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7069                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7070                                  PCIE_FW_HALT_F);
7071         }
7072
7073         /*
7074          * And we always return the result of the firmware RESET command
7075          * even when we force the uP into RESET ...
7076          */
7077         return ret;
7078 }
7079
7080 /**
7081  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7082  *      @adap: the adapter
7083  *      @mbox: mailbox to use for the FW command
7084  *      @reset: if we want to do a RESET to restart things
7085  *
7086  *      Restart firmware previously halted by t4_fw_halt().  On successful
7087  *      return the previous PF Master remains as the new PF Master and there
7088  *      is no need to issue a new HELLO command, etc.
7089  *
7090  *      We do this in two ways:
7091  *
7092  *       1. If we're dealing with newer firmware we'll simply want to take
7093  *          the chip's microprocessor out of RESET.  This will cause the
7094  *          firmware to start up from its start vector.  And then we'll loop
7095  *          until the firmware indicates it's started again (PCIE_FW.HALT
7096  *          reset to 0) or we timeout.
7097  *
7098  *       2. If we're dealing with older firmware then we'll need to RESET
7099  *          the chip since older firmware won't recognize the PCIE_FW.HALT
7100  *          flag and automatically RESET itself on startup.
7101  */
7102 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7103 {
7104         if (reset) {
7105                 /*
7106                  * Since we're directing the RESET instead of the firmware
7107                  * doing it automatically, we need to clear the PCIE_FW.HALT
7108                  * bit.
7109                  */
7110                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7111
7112                 /*
7113                  * If we've been given a valid mailbox, first try to get the
7114                  * firmware to do the RESET.  If that works, great and we can
7115                  * return success.  Otherwise, if we haven't been given a
7116                  * valid mailbox or the RESET command failed, fall back to
7117                  * hitting the chip with a hammer.
7118                  */
7119                 if (mbox <= PCIE_FW_MASTER_M) {
7120                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7121                         msleep(100);
7122                         if (t4_fw_reset(adap, mbox,
7123                                         PIORST_F | PIORSTMODE_F) == 0)
7124                                 return 0;
7125                 }
7126
7127                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7128                 msleep(2000);
7129         } else {
7130                 int ms;
7131
7132                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7133                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7134                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7135                                 return 0;
7136                         msleep(100);
7137                         ms += 100;
7138                 }
7139                 return -ETIMEDOUT;
7140         }
7141         return 0;
7142 }
7143
7144 /**
7145  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7146  *      @adap: the adapter
7147  *      @mbox: mailbox to use for the FW RESET command (if desired)
7148  *      @fw_data: the firmware image to write
7149  *      @size: image size
7150  *      @force: force upgrade even if firmware doesn't cooperate
7151  *
7152  *      Perform all of the steps necessary for upgrading an adapter's
7153  *      firmware image.  Normally this requires the cooperation of the
7154  *      existing firmware in order to halt all existing activities
7155  *      but if an invalid mailbox token is passed in we skip that step
7156  *      (though we'll still put the adapter microprocessor into RESET in
7157  *      that case).
7158  *
7159  *      On successful return the new firmware will have been loaded and
7160  *      the adapter will have been fully RESET losing all previous setup
7161  *      state.  On unsuccessful return the adapter may be completely hosed ...
7162  *      positive errno indicates that the adapter is ~probably~ intact, a
7163  *      negative errno indicates that things are looking bad ...
7164  */
7165 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7166                   const u8 *fw_data, unsigned int size, int force)
7167 {
7168         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7169         int reset, ret;
7170
7171         if (!t4_fw_matches_chip(adap, fw_hdr))
7172                 return -EINVAL;
7173
7174         /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7175          * set wont be sent when we are flashing FW.
7176          */
7177         adap->flags &= ~CXGB4_FW_OK;
7178
7179         ret = t4_fw_halt(adap, mbox, force);
7180         if (ret < 0 && !force)
7181                 goto out;
7182
7183         ret = t4_load_fw(adap, fw_data, size);
7184         if (ret < 0)
7185                 goto out;
7186
7187         /*
7188          * If there was a Firmware Configuration File stored in FLASH,
7189          * there's a good chance that it won't be compatible with the new
7190          * Firmware.  In order to prevent difficult to diagnose adapter
7191          * initialization issues, we clear out the Firmware Configuration File
7192          * portion of the FLASH .  The user will need to re-FLASH a new
7193          * Firmware Configuration File which is compatible with the new
7194          * Firmware if that's desired.
7195          */
7196         (void)t4_load_cfg(adap, NULL, 0);
7197
7198         /*
7199          * Older versions of the firmware don't understand the new
7200          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7201          * restart.  So for newly loaded older firmware we'll have to do the
7202          * RESET for it so it starts up on a clean slate.  We can tell if
7203          * the newly loaded firmware will handle this right by checking
7204          * its header flags to see if it advertises the capability.
7205          */
7206         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7207         ret = t4_fw_restart(adap, mbox, reset);
7208
7209         /* Grab potentially new Firmware Device Log parameters so we can see
7210          * how healthy the new Firmware is.  It's okay to contact the new
7211          * Firmware for these parameters even though, as far as it's
7212          * concerned, we've never said "HELLO" to it ...
7213          */
7214         (void)t4_init_devlog_params(adap);
7215 out:
7216         adap->flags |= CXGB4_FW_OK;
7217         return ret;
7218 }
7219
7220 /**
7221  *      t4_fl_pkt_align - return the fl packet alignment
7222  *      @adap: the adapter
7223  *
7224  *      T4 has a single field to specify the packing and padding boundary.
7225  *      T5 onwards has separate fields for this and hence the alignment for
7226  *      next packet offset is maximum of these two.
7227  *
7228  */
7229 int t4_fl_pkt_align(struct adapter *adap)
7230 {
7231         u32 sge_control, sge_control2;
7232         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7233
7234         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7235
7236         /* T4 uses a single control field to specify both the PCIe Padding and
7237          * Packing Boundary.  T5 introduced the ability to specify these
7238          * separately.  The actual Ingress Packet Data alignment boundary
7239          * within Packed Buffer Mode is the maximum of these two
7240          * specifications.  (Note that it makes no real practical sense to
7241          * have the Padding Boundary be larger than the Packing Boundary but you
7242          * could set the chip up that way and, in fact, legacy T4 code would
7243          * end doing this because it would initialize the Padding Boundary and
7244          * leave the Packing Boundary initialized to 0 (16 bytes).)
7245          * Padding Boundary values in T6 starts from 8B,
7246          * where as it is 32B for T4 and T5.
7247          */
7248         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7249                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7250         else
7251                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7252
7253         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7254
7255         fl_align = ingpadboundary;
7256         if (!is_t4(adap->params.chip)) {
7257                 /* T5 has a weird interpretation of one of the PCIe Packing
7258                  * Boundary values.  No idea why ...
7259                  */
7260                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7261                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7262                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7263                         ingpackboundary = 16;
7264                 else
7265                         ingpackboundary = 1 << (ingpackboundary +
7266                                                 INGPACKBOUNDARY_SHIFT_X);
7267
7268                 fl_align = max(ingpadboundary, ingpackboundary);
7269         }
7270         return fl_align;
7271 }
7272
7273 /**
7274  *      t4_fixup_host_params - fix up host-dependent parameters
7275  *      @adap: the adapter
7276  *      @page_size: the host's Base Page Size
7277  *      @cache_line_size: the host's Cache Line Size
7278  *
7279  *      Various registers in T4 contain values which are dependent on the
7280  *      host's Base Page and Cache Line Sizes.  This function will fix all of
7281  *      those registers with the appropriate values as passed in ...
7282  */
7283 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7284                          unsigned int cache_line_size)
7285 {
7286         unsigned int page_shift = fls(page_size) - 1;
7287         unsigned int sge_hps = page_shift - 10;
7288         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7289         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7290         unsigned int fl_align_log = fls(fl_align) - 1;
7291
7292         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7293                      HOSTPAGESIZEPF0_V(sge_hps) |
7294                      HOSTPAGESIZEPF1_V(sge_hps) |
7295                      HOSTPAGESIZEPF2_V(sge_hps) |
7296                      HOSTPAGESIZEPF3_V(sge_hps) |
7297                      HOSTPAGESIZEPF4_V(sge_hps) |
7298                      HOSTPAGESIZEPF5_V(sge_hps) |
7299                      HOSTPAGESIZEPF6_V(sge_hps) |
7300                      HOSTPAGESIZEPF7_V(sge_hps));
7301
7302         if (is_t4(adap->params.chip)) {
7303                 t4_set_reg_field(adap, SGE_CONTROL_A,
7304                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7305                                  EGRSTATUSPAGESIZE_F,
7306                                  INGPADBOUNDARY_V(fl_align_log -
7307                                                   INGPADBOUNDARY_SHIFT_X) |
7308                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7309         } else {
7310                 unsigned int pack_align;
7311                 unsigned int ingpad, ingpack;
7312
7313                 /* T5 introduced the separation of the Free List Padding and
7314                  * Packing Boundaries.  Thus, we can select a smaller Padding
7315                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
7316                  * Bandwidth, and use a Packing Boundary which is large enough
7317                  * to avoid false sharing between CPUs, etc.
7318                  *
7319                  * For the PCI Link, the smaller the Padding Boundary the
7320                  * better.  For the Memory Controller, a smaller Padding
7321                  * Boundary is better until we cross under the Memory Line
7322                  * Size (the minimum unit of transfer to/from Memory).  If we
7323                  * have a Padding Boundary which is smaller than the Memory
7324                  * Line Size, that'll involve a Read-Modify-Write cycle on the
7325                  * Memory Controller which is never good.
7326                  */
7327
7328                 /* We want the Packing Boundary to be based on the Cache Line
7329                  * Size in order to help avoid False Sharing performance
7330                  * issues between CPUs, etc.  We also want the Packing
7331                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7332                  * get best performance when the Packing Boundary is a
7333                  * multiple of the Maximum Payload Size.
7334                  */
7335                 pack_align = fl_align;
7336                 if (pci_is_pcie(adap->pdev)) {
7337                         unsigned int mps, mps_log;
7338                         u16 devctl;
7339
7340                         /* The PCIe Device Control Maximum Payload Size field
7341                          * [bits 7:5] encodes sizes as powers of 2 starting at
7342                          * 128 bytes.
7343                          */
7344                         pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7345                                                   &devctl);
7346                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7347                         mps = 1 << mps_log;
7348                         if (mps > pack_align)
7349                                 pack_align = mps;
7350                 }
7351
7352                 /* N.B. T5/T6 have a crazy special interpretation of the "0"
7353                  * value for the Packing Boundary.  This corresponds to 16
7354                  * bytes instead of the expected 32 bytes.  So if we want 32
7355                  * bytes, the best we can really do is 64 bytes ...
7356                  */
7357                 if (pack_align <= 16) {
7358                         ingpack = INGPACKBOUNDARY_16B_X;
7359                         fl_align = 16;
7360                 } else if (pack_align == 32) {
7361                         ingpack = INGPACKBOUNDARY_64B_X;
7362                         fl_align = 64;
7363                 } else {
7364                         unsigned int pack_align_log = fls(pack_align) - 1;
7365
7366                         ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7367                         fl_align = pack_align;
7368                 }
7369
7370                 /* Use the smallest Ingress Padding which isn't smaller than
7371                  * the Memory Controller Read/Write Size.  We'll take that as
7372                  * being 8 bytes since we don't know of any system with a
7373                  * wider Memory Controller Bus Width.
7374                  */
7375                 if (is_t5(adap->params.chip))
7376                         ingpad = INGPADBOUNDARY_32B_X;
7377                 else
7378                         ingpad = T6_INGPADBOUNDARY_8B_X;
7379
7380                 t4_set_reg_field(adap, SGE_CONTROL_A,
7381                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7382                                  EGRSTATUSPAGESIZE_F,
7383                                  INGPADBOUNDARY_V(ingpad) |
7384                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7385                 t4_set_reg_field(adap, SGE_CONTROL2_A,
7386                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7387                                  INGPACKBOUNDARY_V(ingpack));
7388         }
7389         /*
7390          * Adjust various SGE Free List Host Buffer Sizes.
7391          *
7392          * This is something of a crock since we're using fixed indices into
7393          * the array which are also known by the sge.c code and the T4
7394          * Firmware Configuration File.  We need to come up with a much better
7395          * approach to managing this array.  For now, the first four entries
7396          * are:
7397          *
7398          *   0: Host Page Size
7399          *   1: 64KB
7400          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7401          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7402          *
7403          * For the single-MTU buffers in unpacked mode we need to include
7404          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7405          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7406          * Padding boundary.  All of these are accommodated in the Factory
7407          * Default Firmware Configuration File but we need to adjust it for
7408          * this host's cache line size.
7409          */
7410         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7411         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7412                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7413                      & ~(fl_align-1));
7414         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7415                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7416                      & ~(fl_align-1));
7417
7418         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7419
7420         return 0;
7421 }
7422
7423 /**
7424  *      t4_fw_initialize - ask FW to initialize the device
7425  *      @adap: the adapter
7426  *      @mbox: mailbox to use for the FW command
7427  *
7428  *      Issues a command to FW to partially initialize the device.  This
7429  *      performs initialization that generally doesn't depend on user input.
7430  */
7431 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7432 {
7433         struct fw_initialize_cmd c;
7434
7435         memset(&c, 0, sizeof(c));
7436         INIT_CMD(c, INITIALIZE, WRITE);
7437         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7438 }
7439
7440 /**
7441  *      t4_query_params_rw - query FW or device parameters
7442  *      @adap: the adapter
7443  *      @mbox: mailbox to use for the FW command
7444  *      @pf: the PF
7445  *      @vf: the VF
7446  *      @nparams: the number of parameters
7447  *      @params: the parameter names
7448  *      @val: the parameter values
7449  *      @rw: Write and read flag
7450  *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7451  *
7452  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7453  *      queried at once.
7454  */
7455 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7456                        unsigned int vf, unsigned int nparams, const u32 *params,
7457                        u32 *val, int rw, bool sleep_ok)
7458 {
7459         int i, ret;
7460         struct fw_params_cmd c;
7461         __be32 *p = &c.param[0].mnem;
7462
7463         if (nparams > 7)
7464                 return -EINVAL;
7465
7466         memset(&c, 0, sizeof(c));
7467         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7468                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
7469                                   FW_PARAMS_CMD_PFN_V(pf) |
7470                                   FW_PARAMS_CMD_VFN_V(vf));
7471         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7472
7473         for (i = 0; i < nparams; i++) {
7474                 *p++ = cpu_to_be32(*params++);
7475                 if (rw)
7476                         *p = cpu_to_be32(*(val + i));
7477                 p++;
7478         }
7479
7480         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7481         if (ret == 0)
7482                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7483                         *val++ = be32_to_cpu(*p);
7484         return ret;
7485 }
7486
7487 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7488                     unsigned int vf, unsigned int nparams, const u32 *params,
7489                     u32 *val)
7490 {
7491         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7492                                   true);
7493 }
7494
7495 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7496                        unsigned int vf, unsigned int nparams, const u32 *params,
7497                        u32 *val)
7498 {
7499         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7500                                   false);
7501 }
7502
7503 /**
7504  *      t4_set_params_timeout - sets FW or device parameters
7505  *      @adap: the adapter
7506  *      @mbox: mailbox to use for the FW command
7507  *      @pf: the PF
7508  *      @vf: the VF
7509  *      @nparams: the number of parameters
7510  *      @params: the parameter names
7511  *      @val: the parameter values
7512  *      @timeout: the timeout time
7513  *
7514  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7515  *      specified at once.
7516  */
7517 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7518                           unsigned int pf, unsigned int vf,
7519                           unsigned int nparams, const u32 *params,
7520                           const u32 *val, int timeout)
7521 {
7522         struct fw_params_cmd c;
7523         __be32 *p = &c.param[0].mnem;
7524
7525         if (nparams > 7)
7526                 return -EINVAL;
7527
7528         memset(&c, 0, sizeof(c));
7529         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7530                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7531                                   FW_PARAMS_CMD_PFN_V(pf) |
7532                                   FW_PARAMS_CMD_VFN_V(vf));
7533         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7534
7535         while (nparams--) {
7536                 *p++ = cpu_to_be32(*params++);
7537                 *p++ = cpu_to_be32(*val++);
7538         }
7539
7540         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7541 }
7542
7543 /**
7544  *      t4_set_params - sets FW or device parameters
7545  *      @adap: the adapter
7546  *      @mbox: mailbox to use for the FW command
7547  *      @pf: the PF
7548  *      @vf: the VF
7549  *      @nparams: the number of parameters
7550  *      @params: the parameter names
7551  *      @val: the parameter values
7552  *
7553  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7554  *      specified at once.
7555  */
7556 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7557                   unsigned int vf, unsigned int nparams, const u32 *params,
7558                   const u32 *val)
7559 {
7560         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7561                                      FW_CMD_MAX_TIMEOUT);
7562 }
7563
7564 /**
7565  *      t4_cfg_pfvf - configure PF/VF resource limits
7566  *      @adap: the adapter
7567  *      @mbox: mailbox to use for the FW command
7568  *      @pf: the PF being configured
7569  *      @vf: the VF being configured
7570  *      @txq: the max number of egress queues
7571  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7572  *      @rxqi: the max number of interrupt-capable ingress queues
7573  *      @rxq: the max number of interruptless ingress queues
7574  *      @tc: the PCI traffic class
7575  *      @vi: the max number of virtual interfaces
7576  *      @cmask: the channel access rights mask for the PF/VF
7577  *      @pmask: the port access rights mask for the PF/VF
7578  *      @nexact: the maximum number of exact MPS filters
7579  *      @rcaps: read capabilities
7580  *      @wxcaps: write/execute capabilities
7581  *
7582  *      Configures resource limits and capabilities for a physical or virtual
7583  *      function.
7584  */
7585 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7586                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7587                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7588                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7589                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7590 {
7591         struct fw_pfvf_cmd c;
7592
7593         memset(&c, 0, sizeof(c));
7594         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7595                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7596                                   FW_PFVF_CMD_VFN_V(vf));
7597         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7598         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7599                                      FW_PFVF_CMD_NIQ_V(rxq));
7600         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7601                                     FW_PFVF_CMD_PMASK_V(pmask) |
7602                                     FW_PFVF_CMD_NEQ_V(txq));
7603         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7604                                       FW_PFVF_CMD_NVI_V(vi) |
7605                                       FW_PFVF_CMD_NEXACTF_V(nexact));
7606         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7607                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7608                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7609         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7610 }
7611
7612 /**
7613  *      t4_alloc_vi - allocate a virtual interface
7614  *      @adap: the adapter
7615  *      @mbox: mailbox to use for the FW command
7616  *      @port: physical port associated with the VI
7617  *      @pf: the PF owning the VI
7618  *      @vf: the VF owning the VI
7619  *      @nmac: number of MAC addresses needed (1 to 5)
7620  *      @mac: the MAC addresses of the VI
7621  *      @rss_size: size of RSS table slice associated with this VI
7622  *      @vivld: the destination to store the VI Valid value.
7623  *      @vin: the destination to store the VIN value.
7624  *
7625  *      Allocates a virtual interface for the given physical port.  If @mac is
7626  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7627  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7628  *      stored consecutively so the space needed is @nmac * 6 bytes.
7629  *      Returns a negative error number or the non-negative VI id.
7630  */
7631 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7632                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7633                 unsigned int *rss_size, u8 *vivld, u8 *vin)
7634 {
7635         int ret;
7636         struct fw_vi_cmd c;
7637
7638         memset(&c, 0, sizeof(c));
7639         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7640                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7641                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7642         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7643         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7644         c.nmac = nmac - 1;
7645
7646         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7647         if (ret)
7648                 return ret;
7649
7650         if (mac) {
7651                 memcpy(mac, c.mac, sizeof(c.mac));
7652                 switch (nmac) {
7653                 case 5:
7654                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7655                         fallthrough;
7656                 case 4:
7657                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7658                         fallthrough;
7659                 case 3:
7660                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7661                         fallthrough;
7662                 case 2:
7663                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7664                 }
7665         }
7666         if (rss_size)
7667                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7668
7669         if (vivld)
7670                 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7671
7672         if (vin)
7673                 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7674
7675         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7676 }
7677
7678 /**
7679  *      t4_free_vi - free a virtual interface
7680  *      @adap: the adapter
7681  *      @mbox: mailbox to use for the FW command
7682  *      @pf: the PF owning the VI
7683  *      @vf: the VF owning the VI
7684  *      @viid: virtual interface identifiler
7685  *
7686  *      Free a previously allocated virtual interface.
7687  */
7688 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7689                unsigned int vf, unsigned int viid)
7690 {
7691         struct fw_vi_cmd c;
7692
7693         memset(&c, 0, sizeof(c));
7694         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7695                                   FW_CMD_REQUEST_F |
7696                                   FW_CMD_EXEC_F |
7697                                   FW_VI_CMD_PFN_V(pf) |
7698                                   FW_VI_CMD_VFN_V(vf));
7699         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7700         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7701
7702         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7703 }
7704
7705 /**
7706  *      t4_set_rxmode - set Rx properties of a virtual interface
7707  *      @adap: the adapter
7708  *      @mbox: mailbox to use for the FW command
7709  *      @viid: the VI id
7710  *      @viid_mirror: the mirror VI id
7711  *      @mtu: the new MTU or -1
7712  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7713  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7714  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7715  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7716  *      @sleep_ok: if true we may sleep while awaiting command completion
7717  *
7718  *      Sets Rx properties of a virtual interface.
7719  */
7720 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7721                   unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7722                   int bcast, int vlanex, bool sleep_ok)
7723 {
7724         struct fw_vi_rxmode_cmd c, c_mirror;
7725         int ret;
7726
7727         /* convert to FW values */
7728         if (mtu < 0)
7729                 mtu = FW_RXMODE_MTU_NO_CHG;
7730         if (promisc < 0)
7731                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7732         if (all_multi < 0)
7733                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7734         if (bcast < 0)
7735                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7736         if (vlanex < 0)
7737                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7738
7739         memset(&c, 0, sizeof(c));
7740         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7741                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7742                                    FW_VI_RXMODE_CMD_VIID_V(viid));
7743         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7744         c.mtu_to_vlanexen =
7745                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7746                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7747                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7748                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7749                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7750
7751         if (viid_mirror) {
7752                 memcpy(&c_mirror, &c, sizeof(c_mirror));
7753                 c_mirror.op_to_viid =
7754                         cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7755                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7756                                     FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7757         }
7758
7759         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7760         if (ret)
7761                 return ret;
7762
7763         if (viid_mirror)
7764                 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7765                                       NULL, sleep_ok);
7766
7767         return ret;
7768 }
7769
7770 /**
7771  *      t4_free_encap_mac_filt - frees MPS entry at given index
7772  *      @adap: the adapter
7773  *      @viid: the VI id
7774  *      @idx: index of MPS entry to be freed
7775  *      @sleep_ok: call is allowed to sleep
7776  *
7777  *      Frees the MPS entry at supplied index
7778  *
7779  *      Returns a negative error number or zero on success
7780  */
7781 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7782                            int idx, bool sleep_ok)
7783 {
7784         struct fw_vi_mac_exact *p;
7785         u8 addr[] = {0, 0, 0, 0, 0, 0};
7786         struct fw_vi_mac_cmd c;
7787         int ret = 0;
7788         u32 exact;
7789
7790         memset(&c, 0, sizeof(c));
7791         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7792                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7793                                    FW_CMD_EXEC_V(0) |
7794                                    FW_VI_MAC_CMD_VIID_V(viid));
7795         exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7796         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7797                                           exact |
7798                                           FW_CMD_LEN16_V(1));
7799         p = c.u.exact;
7800         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7801                                       FW_VI_MAC_CMD_IDX_V(idx));
7802         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7803         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7804         return ret;
7805 }
7806
7807 /**
7808  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7809  *      @adap: the adapter
7810  *      @viid: the VI id
7811  *      @addr: the MAC address
7812  *      @mask: the mask
7813  *      @idx: index of the entry in mps tcam
7814  *      @lookup_type: MAC address for inner (1) or outer (0) header
7815  *      @port_id: the port index
7816  *      @sleep_ok: call is allowed to sleep
7817  *
7818  *      Removes the mac entry at the specified index using raw mac interface.
7819  *
7820  *      Returns a negative error number on failure.
7821  */
7822 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7823                          const u8 *addr, const u8 *mask, unsigned int idx,
7824                          u8 lookup_type, u8 port_id, bool sleep_ok)
7825 {
7826         struct fw_vi_mac_cmd c;
7827         struct fw_vi_mac_raw *p = &c.u.raw;
7828         u32 val;
7829
7830         memset(&c, 0, sizeof(c));
7831         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7832                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7833                                    FW_CMD_EXEC_V(0) |
7834                                    FW_VI_MAC_CMD_VIID_V(viid));
7835         val = FW_CMD_LEN16_V(1) |
7836               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7837         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7838                                           FW_CMD_LEN16_V(val));
7839
7840         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7841                                      FW_VI_MAC_ID_BASED_FREE);
7842
7843         /* Lookup Type. Outer header: 0, Inner header: 1 */
7844         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7845                                    DATAPORTNUM_V(port_id));
7846         /* Lookup mask and port mask */
7847         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7848                                     DATAPORTNUM_V(DATAPORTNUM_M));
7849
7850         /* Copy the address and the mask */
7851         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7852         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7853
7854         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7855 }
7856
7857 /**
7858  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7859  *      @adap: the adapter
7860  *      @viid: the VI id
7861  *      @addr: the MAC address
7862  *      @mask: the mask
7863  *      @vni: the VNI id for the tunnel protocol
7864  *      @vni_mask: mask for the VNI id
7865  *      @dip_hit: to enable DIP match for the MPS entry
7866  *      @lookup_type: MAC address for inner (1) or outer (0) header
7867  *      @sleep_ok: call is allowed to sleep
7868  *
7869  *      Allocates an MPS entry with specified MAC address and VNI value.
7870  *
7871  *      Returns a negative error number or the allocated index for this mac.
7872  */
7873 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7874                             const u8 *addr, const u8 *mask, unsigned int vni,
7875                             unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7876                             bool sleep_ok)
7877 {
7878         struct fw_vi_mac_cmd c;
7879         struct fw_vi_mac_vni *p = c.u.exact_vni;
7880         int ret = 0;
7881         u32 val;
7882
7883         memset(&c, 0, sizeof(c));
7884         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7885                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7886                                    FW_VI_MAC_CMD_VIID_V(viid));
7887         val = FW_CMD_LEN16_V(1) |
7888               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7889         c.freemacs_to_len16 = cpu_to_be32(val);
7890         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7891                                       FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7892         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7893         memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7894
7895         p->lookup_type_to_vni =
7896                 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7897                             FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7898                             FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7899         p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7900         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7901         if (ret == 0)
7902                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7903         return ret;
7904 }
7905
7906 /**
7907  *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7908  *      @adap: the adapter
7909  *      @viid: the VI id
7910  *      @addr: the MAC address
7911  *      @mask: the mask
7912  *      @idx: index at which to add this entry
7913  *      @lookup_type: MAC address for inner (1) or outer (0) header
7914  *      @port_id: the port index
7915  *      @sleep_ok: call is allowed to sleep
7916  *
7917  *      Adds the mac entry at the specified index using raw mac interface.
7918  *
7919  *      Returns a negative error number or the allocated index for this mac.
7920  */
7921 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7922                           const u8 *addr, const u8 *mask, unsigned int idx,
7923                           u8 lookup_type, u8 port_id, bool sleep_ok)
7924 {
7925         int ret = 0;
7926         struct fw_vi_mac_cmd c;
7927         struct fw_vi_mac_raw *p = &c.u.raw;
7928         u32 val;
7929
7930         memset(&c, 0, sizeof(c));
7931         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7932                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7933                                    FW_VI_MAC_CMD_VIID_V(viid));
7934         val = FW_CMD_LEN16_V(1) |
7935               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7936         c.freemacs_to_len16 = cpu_to_be32(val);
7937
7938         /* Specify that this is an inner mac address */
7939         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7940
7941         /* Lookup Type. Outer header: 0, Inner header: 1 */
7942         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7943                                    DATAPORTNUM_V(port_id));
7944         /* Lookup mask and port mask */
7945         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7946                                     DATAPORTNUM_V(DATAPORTNUM_M));
7947
7948         /* Copy the address and the mask */
7949         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7950         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7951
7952         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7953         if (ret == 0) {
7954                 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7955                 if (ret != idx)
7956                         ret = -ENOMEM;
7957         }
7958
7959         return ret;
7960 }
7961
7962 /**
7963  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7964  *      @adap: the adapter
7965  *      @mbox: mailbox to use for the FW command
7966  *      @viid: the VI id
7967  *      @free: if true any existing filters for this VI id are first removed
7968  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7969  *      @addr: the MAC address(es)
7970  *      @idx: where to store the index of each allocated filter
7971  *      @hash: pointer to hash address filter bitmap
7972  *      @sleep_ok: call is allowed to sleep
7973  *
7974  *      Allocates an exact-match filter for each of the supplied addresses and
7975  *      sets it to the corresponding address.  If @idx is not %NULL it should
7976  *      have at least @naddr entries, each of which will be set to the index of
7977  *      the filter allocated for the corresponding MAC address.  If a filter
7978  *      could not be allocated for an address its index is set to 0xffff.
7979  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7980  *      are hashed and update the hash filter bitmap pointed at by @hash.
7981  *
7982  *      Returns a negative error number or the number of filters allocated.
7983  */
7984 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7985                       unsigned int viid, bool free, unsigned int naddr,
7986                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7987 {
7988         int offset, ret = 0;
7989         struct fw_vi_mac_cmd c;
7990         unsigned int nfilters = 0;
7991         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7992         unsigned int rem = naddr;
7993
7994         if (naddr > max_naddr)
7995                 return -EINVAL;
7996
7997         for (offset = 0; offset < naddr ; /**/) {
7998                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7999                                          rem : ARRAY_SIZE(c.u.exact));
8000                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8001                                                      u.exact[fw_naddr]), 16);
8002                 struct fw_vi_mac_exact *p;
8003                 int i;
8004
8005                 memset(&c, 0, sizeof(c));
8006                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8007                                            FW_CMD_REQUEST_F |
8008                                            FW_CMD_WRITE_F |
8009                                            FW_CMD_EXEC_V(free) |
8010                                            FW_VI_MAC_CMD_VIID_V(viid));
8011                 c.freemacs_to_len16 =
8012                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8013                                     FW_CMD_LEN16_V(len16));
8014
8015                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8016                         p->valid_to_idx =
8017                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8018                                             FW_VI_MAC_CMD_IDX_V(
8019                                                     FW_VI_MAC_ADD_MAC));
8020                         memcpy(p->macaddr, addr[offset + i],
8021                                sizeof(p->macaddr));
8022                 }
8023
8024                 /* It's okay if we run out of space in our MAC address arena.
8025                  * Some of the addresses we submit may get stored so we need
8026                  * to run through the reply to see what the results were ...
8027                  */
8028                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8029                 if (ret && ret != -FW_ENOMEM)
8030                         break;
8031
8032                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8033                         u16 index = FW_VI_MAC_CMD_IDX_G(
8034                                         be16_to_cpu(p->valid_to_idx));
8035
8036                         if (idx)
8037                                 idx[offset + i] = (index >= max_naddr ?
8038                                                    0xffff : index);
8039                         if (index < max_naddr)
8040                                 nfilters++;
8041                         else if (hash)
8042                                 *hash |= (1ULL <<
8043                                           hash_mac_addr(addr[offset + i]));
8044                 }
8045
8046                 free = false;
8047                 offset += fw_naddr;
8048                 rem -= fw_naddr;
8049         }
8050
8051         if (ret == 0 || ret == -FW_ENOMEM)
8052                 ret = nfilters;
8053         return ret;
8054 }
8055
8056 /**
8057  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
8058  *      @adap: the adapter
8059  *      @mbox: mailbox to use for the FW command
8060  *      @viid: the VI id
8061  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8062  *      @addr: the MAC address(es)
8063  *      @sleep_ok: call is allowed to sleep
8064  *
8065  *      Frees the exact-match filter for each of the supplied addresses
8066  *
8067  *      Returns a negative error number or the number of filters freed.
8068  */
8069 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8070                      unsigned int viid, unsigned int naddr,
8071                      const u8 **addr, bool sleep_ok)
8072 {
8073         int offset, ret = 0;
8074         struct fw_vi_mac_cmd c;
8075         unsigned int nfilters = 0;
8076         unsigned int max_naddr = is_t4(adap->params.chip) ?
8077                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
8078                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8079         unsigned int rem = naddr;
8080
8081         if (naddr > max_naddr)
8082                 return -EINVAL;
8083
8084         for (offset = 0; offset < (int)naddr ; /**/) {
8085                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8086                                          ? rem
8087                                          : ARRAY_SIZE(c.u.exact));
8088                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8089                                                      u.exact[fw_naddr]), 16);
8090                 struct fw_vi_mac_exact *p;
8091                 int i;
8092
8093                 memset(&c, 0, sizeof(c));
8094                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8095                                      FW_CMD_REQUEST_F |
8096                                      FW_CMD_WRITE_F |
8097                                      FW_CMD_EXEC_V(0) |
8098                                      FW_VI_MAC_CMD_VIID_V(viid));
8099                 c.freemacs_to_len16 =
8100                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8101                                             FW_CMD_LEN16_V(len16));
8102
8103                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8104                         p->valid_to_idx = cpu_to_be16(
8105                                 FW_VI_MAC_CMD_VALID_F |
8106                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8107                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8108                 }
8109
8110                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8111                 if (ret)
8112                         break;
8113
8114                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8115                         u16 index = FW_VI_MAC_CMD_IDX_G(
8116                                                 be16_to_cpu(p->valid_to_idx));
8117
8118                         if (index < max_naddr)
8119                                 nfilters++;
8120                 }
8121
8122                 offset += fw_naddr;
8123                 rem -= fw_naddr;
8124         }
8125
8126         if (ret == 0)
8127                 ret = nfilters;
8128         return ret;
8129 }
8130
8131 /**
8132  *      t4_change_mac - modifies the exact-match filter for a MAC address
8133  *      @adap: the adapter
8134  *      @mbox: mailbox to use for the FW command
8135  *      @viid: the VI id
8136  *      @idx: index of existing filter for old value of MAC address, or -1
8137  *      @addr: the new MAC address value
8138  *      @persist: whether a new MAC allocation should be persistent
8139  *      @smt_idx: the destination to store the new SMT index.
8140  *
8141  *      Modifies an exact-match filter and sets it to the new MAC address.
8142  *      Note that in general it is not possible to modify the value of a given
8143  *      filter so the generic way to modify an address filter is to free the one
8144  *      being used by the old address value and allocate a new filter for the
8145  *      new address value.  @idx can be -1 if the address is a new addition.
8146  *
8147  *      Returns a negative error number or the index of the filter with the new
8148  *      MAC value.
8149  */
8150 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8151                   int idx, const u8 *addr, bool persist, u8 *smt_idx)
8152 {
8153         int ret, mode;
8154         struct fw_vi_mac_cmd c;
8155         struct fw_vi_mac_exact *p = c.u.exact;
8156         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8157
8158         if (idx < 0)                             /* new allocation */
8159                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8160         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8161
8162         memset(&c, 0, sizeof(c));
8163         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8164                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8165                                    FW_VI_MAC_CMD_VIID_V(viid));
8166         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8167         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8168                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8169                                       FW_VI_MAC_CMD_IDX_V(idx));
8170         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8171
8172         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8173         if (ret == 0) {
8174                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8175                 if (ret >= max_mac_addr)
8176                         ret = -ENOMEM;
8177                 if (smt_idx) {
8178                         if (adap->params.viid_smt_extn_support) {
8179                                 *smt_idx = FW_VI_MAC_CMD_SMTID_G
8180                                                     (be32_to_cpu(c.op_to_viid));
8181                         } else {
8182                                 /* In T4/T5, SMT contains 256 SMAC entries
8183                                  * organized in 128 rows of 2 entries each.
8184                                  * In T6, SMT contains 256 SMAC entries in
8185                                  * 256 rows.
8186                                  */
8187                                 if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8188                                                                      CHELSIO_T5)
8189                                         *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8190                                 else
8191                                         *smt_idx = (viid & FW_VIID_VIN_M);
8192                         }
8193                 }
8194         }
8195         return ret;
8196 }
8197
8198 /**
8199  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8200  *      @adap: the adapter
8201  *      @mbox: mailbox to use for the FW command
8202  *      @viid: the VI id
8203  *      @ucast: whether the hash filter should also match unicast addresses
8204  *      @vec: the value to be written to the hash filter
8205  *      @sleep_ok: call is allowed to sleep
8206  *
8207  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8208  */
8209 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8210                      bool ucast, u64 vec, bool sleep_ok)
8211 {
8212         struct fw_vi_mac_cmd c;
8213
8214         memset(&c, 0, sizeof(c));
8215         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8216                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8217                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8218         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8219                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8220                                           FW_CMD_LEN16_V(1));
8221         c.u.hash.hashvec = cpu_to_be64(vec);
8222         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8223 }
8224
8225 /**
8226  *      t4_enable_vi_params - enable/disable a virtual interface
8227  *      @adap: the adapter
8228  *      @mbox: mailbox to use for the FW command
8229  *      @viid: the VI id
8230  *      @rx_en: 1=enable Rx, 0=disable Rx
8231  *      @tx_en: 1=enable Tx, 0=disable Tx
8232  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8233  *
8234  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8235  *      only makes sense when enabling a Virtual Interface ...
8236  */
8237 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8238                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8239 {
8240         struct fw_vi_enable_cmd c;
8241
8242         memset(&c, 0, sizeof(c));
8243         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8244                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8245                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8246         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8247                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8248                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8249                                      FW_LEN16(c));
8250         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8251 }
8252
8253 /**
8254  *      t4_enable_vi - enable/disable a virtual interface
8255  *      @adap: the adapter
8256  *      @mbox: mailbox to use for the FW command
8257  *      @viid: the VI id
8258  *      @rx_en: 1=enable Rx, 0=disable Rx
8259  *      @tx_en: 1=enable Tx, 0=disable Tx
8260  *
8261  *      Enables/disables a virtual interface.
8262  */
8263 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8264                  bool rx_en, bool tx_en)
8265 {
8266         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8267 }
8268
8269 /**
8270  *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8271  *      @adap: the adapter
8272  *      @mbox: mailbox to use for the FW command
8273  *      @pi: the Port Information structure
8274  *      @rx_en: 1=enable Rx, 0=disable Rx
8275  *      @tx_en: 1=enable Tx, 0=disable Tx
8276  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8277  *
8278  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8279  *      Enable only makes sense when enabling a Virtual Interface ...
8280  *      If the Virtual Interface enable/disable operation is successful,
8281  *      we notify the OS-specific code of a potential Link Status change
8282  *      via the OS Contract API t4_os_link_changed().
8283  */
8284 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8285                         struct port_info *pi,
8286                         bool rx_en, bool tx_en, bool dcb_en)
8287 {
8288         int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8289                                       rx_en, tx_en, dcb_en);
8290         if (ret)
8291                 return ret;
8292         t4_os_link_changed(adap, pi->port_id,
8293                            rx_en && tx_en && pi->link_cfg.link_ok);
8294         return 0;
8295 }
8296
8297 /**
8298  *      t4_identify_port - identify a VI's port by blinking its LED
8299  *      @adap: the adapter
8300  *      @mbox: mailbox to use for the FW command
8301  *      @viid: the VI id
8302  *      @nblinks: how many times to blink LED at 2.5 Hz
8303  *
8304  *      Identifies a VI's port by blinking its LED.
8305  */
8306 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8307                      unsigned int nblinks)
8308 {
8309         struct fw_vi_enable_cmd c;
8310
8311         memset(&c, 0, sizeof(c));
8312         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8313                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8314                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8315         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8316         c.blinkdur = cpu_to_be16(nblinks);
8317         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8318 }
8319
8320 /**
8321  *      t4_iq_stop - stop an ingress queue and its FLs
8322  *      @adap: the adapter
8323  *      @mbox: mailbox to use for the FW command
8324  *      @pf: the PF owning the queues
8325  *      @vf: the VF owning the queues
8326  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8327  *      @iqid: ingress queue id
8328  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8329  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8330  *
8331  *      Stops an ingress queue and its associated FLs, if any.  This causes
8332  *      any current or future data/messages destined for these queues to be
8333  *      tossed.
8334  */
8335 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8336                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8337                unsigned int fl0id, unsigned int fl1id)
8338 {
8339         struct fw_iq_cmd c;
8340
8341         memset(&c, 0, sizeof(c));
8342         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8343                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8344                                   FW_IQ_CMD_VFN_V(vf));
8345         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8346         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8347         c.iqid = cpu_to_be16(iqid);
8348         c.fl0id = cpu_to_be16(fl0id);
8349         c.fl1id = cpu_to_be16(fl1id);
8350         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8351 }
8352
8353 /**
8354  *      t4_iq_free - free an ingress queue and its FLs
8355  *      @adap: the adapter
8356  *      @mbox: mailbox to use for the FW command
8357  *      @pf: the PF owning the queues
8358  *      @vf: the VF owning the queues
8359  *      @iqtype: the ingress queue type
8360  *      @iqid: ingress queue id
8361  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8362  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8363  *
8364  *      Frees an ingress queue and its associated FLs, if any.
8365  */
8366 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8367                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8368                unsigned int fl0id, unsigned int fl1id)
8369 {
8370         struct fw_iq_cmd c;
8371
8372         memset(&c, 0, sizeof(c));
8373         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8374                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8375                                   FW_IQ_CMD_VFN_V(vf));
8376         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8377         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8378         c.iqid = cpu_to_be16(iqid);
8379         c.fl0id = cpu_to_be16(fl0id);
8380         c.fl1id = cpu_to_be16(fl1id);
8381         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8382 }
8383
8384 /**
8385  *      t4_eth_eq_free - free an Ethernet egress queue
8386  *      @adap: the adapter
8387  *      @mbox: mailbox to use for the FW command
8388  *      @pf: the PF owning the queue
8389  *      @vf: the VF owning the queue
8390  *      @eqid: egress queue id
8391  *
8392  *      Frees an Ethernet egress queue.
8393  */
8394 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8395                    unsigned int vf, unsigned int eqid)
8396 {
8397         struct fw_eq_eth_cmd c;
8398
8399         memset(&c, 0, sizeof(c));
8400         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8401                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8402                                   FW_EQ_ETH_CMD_PFN_V(pf) |
8403                                   FW_EQ_ETH_CMD_VFN_V(vf));
8404         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8405         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8406         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8407 }
8408
8409 /**
8410  *      t4_ctrl_eq_free - free a control egress queue
8411  *      @adap: the adapter
8412  *      @mbox: mailbox to use for the FW command
8413  *      @pf: the PF owning the queue
8414  *      @vf: the VF owning the queue
8415  *      @eqid: egress queue id
8416  *
8417  *      Frees a control egress queue.
8418  */
8419 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8420                     unsigned int vf, unsigned int eqid)
8421 {
8422         struct fw_eq_ctrl_cmd c;
8423
8424         memset(&c, 0, sizeof(c));
8425         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8426                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8427                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
8428                                   FW_EQ_CTRL_CMD_VFN_V(vf));
8429         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8430         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8431         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8432 }
8433
8434 /**
8435  *      t4_ofld_eq_free - free an offload egress queue
8436  *      @adap: the adapter
8437  *      @mbox: mailbox to use for the FW command
8438  *      @pf: the PF owning the queue
8439  *      @vf: the VF owning the queue
8440  *      @eqid: egress queue id
8441  *
8442  *      Frees a control egress queue.
8443  */
8444 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8445                     unsigned int vf, unsigned int eqid)
8446 {
8447         struct fw_eq_ofld_cmd c;
8448
8449         memset(&c, 0, sizeof(c));
8450         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8451                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8452                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
8453                                   FW_EQ_OFLD_CMD_VFN_V(vf));
8454         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8455         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8456         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8457 }
8458
8459 /**
8460  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8461  *      @link_down_rc: Link Down Reason Code
8462  *
8463  *      Returns a string representation of the Link Down Reason Code.
8464  */
8465 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8466 {
8467         static const char * const reason[] = {
8468                 "Link Down",
8469                 "Remote Fault",
8470                 "Auto-negotiation Failure",
8471                 "Reserved",
8472                 "Insufficient Airflow",
8473                 "Unable To Determine Reason",
8474                 "No RX Signal Detected",
8475                 "Reserved",
8476         };
8477
8478         if (link_down_rc >= ARRAY_SIZE(reason))
8479                 return "Bad Reason Code";
8480
8481         return reason[link_down_rc];
8482 }
8483
8484 /* Return the highest speed set in the port capabilities, in Mb/s. */
8485 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8486 {
8487         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8488                 do { \
8489                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8490                                 return __speed; \
8491                 } while (0)
8492
8493         TEST_SPEED_RETURN(400G, 400000);
8494         TEST_SPEED_RETURN(200G, 200000);
8495         TEST_SPEED_RETURN(100G, 100000);
8496         TEST_SPEED_RETURN(50G,   50000);
8497         TEST_SPEED_RETURN(40G,   40000);
8498         TEST_SPEED_RETURN(25G,   25000);
8499         TEST_SPEED_RETURN(10G,   10000);
8500         TEST_SPEED_RETURN(1G,     1000);
8501         TEST_SPEED_RETURN(100M,    100);
8502
8503         #undef TEST_SPEED_RETURN
8504
8505         return 0;
8506 }
8507
8508 /**
8509  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8510  *      @acaps: advertised Port Capabilities
8511  *
8512  *      Get the highest speed for the port from the advertised Port
8513  *      Capabilities.  It will be either the highest speed from the list of
8514  *      speeds or whatever user has set using ethtool.
8515  */
8516 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8517 {
8518         #define TEST_SPEED_RETURN(__caps_speed) \
8519                 do { \
8520                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8521                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8522                 } while (0)
8523
8524         TEST_SPEED_RETURN(400G);
8525         TEST_SPEED_RETURN(200G);
8526         TEST_SPEED_RETURN(100G);
8527         TEST_SPEED_RETURN(50G);
8528         TEST_SPEED_RETURN(40G);
8529         TEST_SPEED_RETURN(25G);
8530         TEST_SPEED_RETURN(10G);
8531         TEST_SPEED_RETURN(1G);
8532         TEST_SPEED_RETURN(100M);
8533
8534         #undef TEST_SPEED_RETURN
8535
8536         return 0;
8537 }
8538
8539 /**
8540  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8541  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8542  *
8543  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8544  *      32-bit Port Capabilities value.
8545  */
8546 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8547 {
8548         fw_port_cap32_t linkattr = 0;
8549
8550         /* Unfortunately the format of the Link Status in the old
8551          * 16-bit Port Information message isn't the same as the
8552          * 16-bit Port Capabilities bitfield used everywhere else ...
8553          */
8554         if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8555                 linkattr |= FW_PORT_CAP32_FC_RX;
8556         if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8557                 linkattr |= FW_PORT_CAP32_FC_TX;
8558         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8559                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8560         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8561                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8562         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8563                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8564         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8565                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8566         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8567                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8568         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8569                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8570
8571         return linkattr;
8572 }
8573
8574 /**
8575  *      t4_handle_get_port_info - process a FW reply message
8576  *      @pi: the port info
8577  *      @rpl: start of the FW message
8578  *
8579  *      Processes a GET_PORT_INFO FW reply message.
8580  */
8581 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8582 {
8583         const struct fw_port_cmd *cmd = (const void *)rpl;
8584         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8585         struct link_config *lc = &pi->link_cfg;
8586         struct adapter *adapter = pi->adapter;
8587         unsigned int speed, fc, fec, adv_fc;
8588         enum fw_port_module_type mod_type;
8589         int action, link_ok, linkdnrc;
8590         enum fw_port_type port_type;
8591
8592         /* Extract the various fields from the Port Information message.
8593          */
8594         action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8595         switch (action) {
8596         case FW_PORT_ACTION_GET_PORT_INFO: {
8597                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8598
8599                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8600                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8601                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8602                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8603                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8604                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8605                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8606                 linkattr = lstatus_to_fwcap(lstatus);
8607                 break;
8608         }
8609
8610         case FW_PORT_ACTION_GET_PORT_INFO32: {
8611                 u32 lstatus32;
8612
8613                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8614                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8615                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8616                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8617                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8618                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8619                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
8620                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8621                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8622                 break;
8623         }
8624
8625         default:
8626                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8627                         be32_to_cpu(cmd->action_to_len16));
8628                 return;
8629         }
8630
8631         fec = fwcap_to_cc_fec(acaps);
8632         adv_fc = fwcap_to_cc_pause(acaps);
8633         fc = fwcap_to_cc_pause(linkattr);
8634         speed = fwcap_to_speed(linkattr);
8635
8636         /* Reset state for communicating new Transceiver Module status and
8637          * whether the OS-dependent layer wants us to redo the current
8638          * "sticky" L1 Configure Link Parameters.
8639          */
8640         lc->new_module = false;
8641         lc->redo_l1cfg = false;
8642
8643         if (mod_type != pi->mod_type) {
8644                 /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8645                  * various fundamental Port Capabilities which used to be
8646                  * immutable can now change radically.  We can now have
8647                  * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8648                  * all change based on what Transceiver Module is inserted.
8649                  * So we need to record the Physical "Port" Capabilities on
8650                  * every Transceiver Module change.
8651                  */
8652                 lc->pcaps = pcaps;
8653
8654                 /* When a new Transceiver Module is inserted, the Firmware
8655                  * will examine its i2c EPROM to determine its type and
8656                  * general operating parameters including things like Forward
8657                  * Error Control, etc.  Various IEEE 802.3 standards dictate
8658                  * how to interpret these i2c values to determine default
8659                  * "sutomatic" settings.  We record these for future use when
8660                  * the user explicitly requests these standards-based values.
8661                  */
8662                 lc->def_acaps = acaps;
8663
8664                 /* Some versions of the early T6 Firmware "cheated" when
8665                  * handling different Transceiver Modules by changing the
8666                  * underlaying Port Type reported to the Host Drivers.  As
8667                  * such we need to capture whatever Port Type the Firmware
8668                  * sends us and record it in case it's different from what we
8669                  * were told earlier.  Unfortunately, since Firmware is
8670                  * forever, we'll need to keep this code here forever, but in
8671                  * later T6 Firmware it should just be an assignment of the
8672                  * same value already recorded.
8673                  */
8674                 pi->port_type = port_type;
8675
8676                 /* Record new Module Type information.
8677                  */
8678                 pi->mod_type = mod_type;
8679
8680                 /* Let the OS-dependent layer know if we have a new
8681                  * Transceiver Module inserted.
8682                  */
8683                 lc->new_module = t4_is_inserted_mod_type(mod_type);
8684
8685                 t4_os_portmod_changed(adapter, pi->port_id);
8686         }
8687
8688         if (link_ok != lc->link_ok || speed != lc->speed ||
8689             fc != lc->fc || adv_fc != lc->advertised_fc ||
8690             fec != lc->fec) {
8691                 /* something changed */
8692                 if (!link_ok && lc->link_ok) {
8693                         lc->link_down_rc = linkdnrc;
8694                         dev_warn_ratelimited(adapter->pdev_dev,
8695                                              "Port %d link down, reason: %s\n",
8696                                              pi->tx_chan,
8697                                              t4_link_down_rc_str(linkdnrc));
8698                 }
8699                 lc->link_ok = link_ok;
8700                 lc->speed = speed;
8701                 lc->advertised_fc = adv_fc;
8702                 lc->fc = fc;
8703                 lc->fec = fec;
8704
8705                 lc->lpacaps = lpacaps;
8706                 lc->acaps = acaps & ADVERT_MASK;
8707
8708                 /* If we're not physically capable of Auto-Negotiation, note
8709                  * this as Auto-Negotiation disabled.  Otherwise, we track
8710                  * what Auto-Negotiation settings we have.  Note parallel
8711                  * structure in t4_link_l1cfg_core() and init_link_config().
8712                  */
8713                 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8714                         lc->autoneg = AUTONEG_DISABLE;
8715                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8716                         lc->autoneg = AUTONEG_ENABLE;
8717                 } else {
8718                         /* When Autoneg is disabled, user needs to set
8719                          * single speed.
8720                          * Similar to cxgb4_ethtool.c: set_link_ksettings
8721                          */
8722                         lc->acaps = 0;
8723                         lc->speed_caps = fwcap_to_fwspeed(acaps);
8724                         lc->autoneg = AUTONEG_DISABLE;
8725                 }
8726
8727                 t4_os_link_changed(adapter, pi->port_id, link_ok);
8728         }
8729
8730         /* If we have a new Transceiver Module and the OS-dependent code has
8731          * told us that it wants us to redo whatever "sticky" L1 Configuration
8732          * Link Parameters are set, do that now.
8733          */
8734         if (lc->new_module && lc->redo_l1cfg) {
8735                 struct link_config old_lc;
8736                 int ret;
8737
8738                 /* Save the current L1 Configuration and restore it if an
8739                  * error occurs.  We probably should fix the l1_cfg*()
8740                  * routines not to change the link_config when an error
8741                  * occurs ...
8742                  */
8743                 old_lc = *lc;
8744                 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8745                 if (ret) {
8746                         *lc = old_lc;
8747                         dev_warn(adapter->pdev_dev,
8748                                  "Attempt to update new Transceiver Module settings failed\n");
8749                 }
8750         }
8751         lc->new_module = false;
8752         lc->redo_l1cfg = false;
8753 }
8754
8755 /**
8756  *      t4_update_port_info - retrieve and update port information if changed
8757  *      @pi: the port_info
8758  *
8759  *      We issue a Get Port Information Command to the Firmware and, if
8760  *      successful, we check to see if anything is different from what we
8761  *      last recorded and update things accordingly.
8762  */
8763 int t4_update_port_info(struct port_info *pi)
8764 {
8765         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8766         struct fw_port_cmd port_cmd;
8767         int ret;
8768
8769         memset(&port_cmd, 0, sizeof(port_cmd));
8770         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8771                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8772                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8773         port_cmd.action_to_len16 = cpu_to_be32(
8774                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8775                                      ? FW_PORT_ACTION_GET_PORT_INFO
8776                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
8777                 FW_LEN16(port_cmd));
8778         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8779                          &port_cmd, sizeof(port_cmd), &port_cmd);
8780         if (ret)
8781                 return ret;
8782
8783         t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8784         return 0;
8785 }
8786
8787 /**
8788  *      t4_get_link_params - retrieve basic link parameters for given port
8789  *      @pi: the port
8790  *      @link_okp: value return pointer for link up/down
8791  *      @speedp: value return pointer for speed (Mb/s)
8792  *      @mtup: value return pointer for mtu
8793  *
8794  *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8795  *      and MTU for a specified port.  A negative error is returned on
8796  *      failure; 0 on success.
8797  */
8798 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8799                        unsigned int *speedp, unsigned int *mtup)
8800 {
8801         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8802         unsigned int action, link_ok, mtu;
8803         struct fw_port_cmd port_cmd;
8804         fw_port_cap32_t linkattr;
8805         int ret;
8806
8807         memset(&port_cmd, 0, sizeof(port_cmd));
8808         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8809                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8810                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8811         action = (fw_caps == FW_CAPS16
8812                   ? FW_PORT_ACTION_GET_PORT_INFO
8813                   : FW_PORT_ACTION_GET_PORT_INFO32);
8814         port_cmd.action_to_len16 = cpu_to_be32(
8815                 FW_PORT_CMD_ACTION_V(action) |
8816                 FW_LEN16(port_cmd));
8817         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8818                          &port_cmd, sizeof(port_cmd), &port_cmd);
8819         if (ret)
8820                 return ret;
8821
8822         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8823                 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8824
8825                 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8826                 linkattr = lstatus_to_fwcap(lstatus);
8827                 mtu = be16_to_cpu(port_cmd.u.info.mtu);
8828         } else {
8829                 u32 lstatus32 =
8830                            be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8831
8832                 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8833                 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8834                 mtu = FW_PORT_CMD_MTU32_G(
8835                         be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8836         }
8837
8838         if (link_okp)
8839                 *link_okp = link_ok;
8840         if (speedp)
8841                 *speedp = fwcap_to_speed(linkattr);
8842         if (mtup)
8843                 *mtup = mtu;
8844
8845         return 0;
8846 }
8847
8848 /**
8849  *      t4_handle_fw_rpl - process a FW reply message
8850  *      @adap: the adapter
8851  *      @rpl: start of the FW message
8852  *
8853  *      Processes a FW message, such as link state change messages.
8854  */
8855 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8856 {
8857         u8 opcode = *(const u8 *)rpl;
8858
8859         /* This might be a port command ... this simplifies the following
8860          * conditionals ...  We can get away with pre-dereferencing
8861          * action_to_len16 because it's in the first 16 bytes and all messages
8862          * will be at least that long.
8863          */
8864         const struct fw_port_cmd *p = (const void *)rpl;
8865         unsigned int action =
8866                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8867
8868         if (opcode == FW_PORT_CMD &&
8869             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8870              action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8871                 int i;
8872                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8873                 struct port_info *pi = NULL;
8874
8875                 for_each_port(adap, i) {
8876                         pi = adap2pinfo(adap, i);
8877                         if (pi->tx_chan == chan)
8878                                 break;
8879                 }
8880
8881                 t4_handle_get_port_info(pi, rpl);
8882         } else {
8883                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8884                          opcode);
8885                 return -EINVAL;
8886         }
8887         return 0;
8888 }
8889
8890 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8891 {
8892         u16 val;
8893
8894         if (pci_is_pcie(adapter->pdev)) {
8895                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8896                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8897                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8898         }
8899 }
8900
8901 /**
8902  *      init_link_config - initialize a link's SW state
8903  *      @lc: pointer to structure holding the link state
8904  *      @pcaps: link Port Capabilities
8905  *      @acaps: link current Advertised Port Capabilities
8906  *
8907  *      Initializes the SW state maintained for each link, including the link's
8908  *      capabilities and default speed/flow-control/autonegotiation settings.
8909  */
8910 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8911                              fw_port_cap32_t acaps)
8912 {
8913         lc->pcaps = pcaps;
8914         lc->def_acaps = acaps;
8915         lc->lpacaps = 0;
8916         lc->speed_caps = 0;
8917         lc->speed = 0;
8918         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8919
8920         /* For Forward Error Control, we default to whatever the Firmware
8921          * tells us the Link is currently advertising.
8922          */
8923         lc->requested_fec = FEC_AUTO;
8924         lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8925
8926         /* If the Port is capable of Auto-Negtotiation, initialize it as
8927          * "enabled" and copy over all of the Physical Port Capabilities
8928          * to the Advertised Port Capabilities.  Otherwise mark it as
8929          * Auto-Negotiate disabled and select the highest supported speed
8930          * for the link.  Note parallel structure in t4_link_l1cfg_core()
8931          * and t4_handle_get_port_info().
8932          */
8933         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8934                 lc->acaps = lc->pcaps & ADVERT_MASK;
8935                 lc->autoneg = AUTONEG_ENABLE;
8936                 lc->requested_fc |= PAUSE_AUTONEG;
8937         } else {
8938                 lc->acaps = 0;
8939                 lc->autoneg = AUTONEG_DISABLE;
8940                 lc->speed_caps = fwcap_to_fwspeed(acaps);
8941         }
8942 }
8943
8944 #define CIM_PF_NOACCESS 0xeeeeeeee
8945
8946 int t4_wait_dev_ready(void __iomem *regs)
8947 {
8948         u32 whoami;
8949
8950         whoami = readl(regs + PL_WHOAMI_A);
8951         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8952                 return 0;
8953
8954         msleep(500);
8955         whoami = readl(regs + PL_WHOAMI_A);
8956         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8957 }
8958
8959 struct flash_desc {
8960         u32 vendor_and_model_id;
8961         u32 size_mb;
8962 };
8963
8964 static int t4_get_flash_params(struct adapter *adap)
8965 {
8966         /* Table for non-Numonix supported flash parts.  Numonix parts are left
8967          * to the preexisting code.  All flash parts have 64KB sectors.
8968          */
8969         static struct flash_desc supported_flash[] = {
8970                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8971         };
8972
8973         unsigned int part, manufacturer;
8974         unsigned int density, size = 0;
8975         u32 flashid = 0;
8976         int ret;
8977
8978         /* Issue a Read ID Command to the Flash part.  We decode supported
8979          * Flash parts and their sizes from this.  There's a newer Query
8980          * Command which can retrieve detailed geometry information but many
8981          * Flash parts don't support it.
8982          */
8983
8984         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8985         if (!ret)
8986                 ret = sf1_read(adap, 3, 0, 1, &flashid);
8987         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8988         if (ret)
8989                 return ret;
8990
8991         /* Check to see if it's one of our non-standard supported Flash parts.
8992          */
8993         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8994                 if (supported_flash[part].vendor_and_model_id == flashid) {
8995                         adap->params.sf_size = supported_flash[part].size_mb;
8996                         adap->params.sf_nsec =
8997                                 adap->params.sf_size / SF_SEC_SIZE;
8998                         goto found;
8999                 }
9000
9001         /* Decode Flash part size.  The code below looks repetitive with
9002          * common encodings, but that's not guaranteed in the JEDEC
9003          * specification for the Read JEDEC ID command.  The only thing that
9004          * we're guaranteed by the JEDEC specification is where the
9005          * Manufacturer ID is in the returned result.  After that each
9006          * Manufacturer ~could~ encode things completely differently.
9007          * Note, all Flash parts must have 64KB sectors.
9008          */
9009         manufacturer = flashid & 0xff;
9010         switch (manufacturer) {
9011         case 0x20: { /* Micron/Numonix */
9012                 /* This Density -> Size decoding table is taken from Micron
9013                  * Data Sheets.
9014                  */
9015                 density = (flashid >> 16) & 0xff;
9016                 switch (density) {
9017                 case 0x14: /* 1MB */
9018                         size = 1 << 20;
9019                         break;
9020                 case 0x15: /* 2MB */
9021                         size = 1 << 21;
9022                         break;
9023                 case 0x16: /* 4MB */
9024                         size = 1 << 22;
9025                         break;
9026                 case 0x17: /* 8MB */
9027                         size = 1 << 23;
9028                         break;
9029                 case 0x18: /* 16MB */
9030                         size = 1 << 24;
9031                         break;
9032                 case 0x19: /* 32MB */
9033                         size = 1 << 25;
9034                         break;
9035                 case 0x20: /* 64MB */
9036                         size = 1 << 26;
9037                         break;
9038                 case 0x21: /* 128MB */
9039                         size = 1 << 27;
9040                         break;
9041                 case 0x22: /* 256MB */
9042                         size = 1 << 28;
9043                         break;
9044                 }
9045                 break;
9046         }
9047         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9048                 /* This Density -> Size decoding table is taken from ISSI
9049                  * Data Sheets.
9050                  */
9051                 density = (flashid >> 16) & 0xff;
9052                 switch (density) {
9053                 case 0x16: /* 32 MB */
9054                         size = 1 << 25;
9055                         break;
9056                 case 0x17: /* 64MB */
9057                         size = 1 << 26;
9058                         break;
9059                 }
9060                 break;
9061         }
9062         case 0xc2: { /* Macronix */
9063                 /* This Density -> Size decoding table is taken from Macronix
9064                  * Data Sheets.
9065                  */
9066                 density = (flashid >> 16) & 0xff;
9067                 switch (density) {
9068                 case 0x17: /* 8MB */
9069                         size = 1 << 23;
9070                         break;
9071                 case 0x18: /* 16MB */
9072                         size = 1 << 24;
9073                         break;
9074                 }
9075                 break;
9076         }
9077         case 0xef: { /* Winbond */
9078                 /* This Density -> Size decoding table is taken from Winbond
9079                  * Data Sheets.
9080                  */
9081                 density = (flashid >> 16) & 0xff;
9082                 switch (density) {
9083                 case 0x17: /* 8MB */
9084                         size = 1 << 23;
9085                         break;
9086                 case 0x18: /* 16MB */
9087                         size = 1 << 24;
9088                         break;
9089                 }
9090                 break;
9091         }
9092         }
9093
9094         /* If we didn't recognize the FLASH part, that's no real issue: the
9095          * Hardware/Software contract says that Hardware will _*ALWAYS*_
9096          * use a FLASH part which is at least 4MB in size and has 64KB
9097          * sectors.  The unrecognized FLASH part is likely to be much larger
9098          * than 4MB, but that's all we really need.
9099          */
9100         if (size == 0) {
9101                 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9102                          flashid);
9103                 size = 1 << 22;
9104         }
9105
9106         /* Store decoded Flash size and fall through into vetting code. */
9107         adap->params.sf_size = size;
9108         adap->params.sf_nsec = size / SF_SEC_SIZE;
9109
9110 found:
9111         if (adap->params.sf_size < FLASH_MIN_SIZE)
9112                 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9113                          flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9114         return 0;
9115 }
9116
9117 /**
9118  *      t4_prep_adapter - prepare SW and HW for operation
9119  *      @adapter: the adapter
9120  *
9121  *      Initialize adapter SW state for the various HW modules, set initial
9122  *      values for some adapter tunables, take PHYs out of reset, and
9123  *      initialize the MDIO interface.
9124  */
9125 int t4_prep_adapter(struct adapter *adapter)
9126 {
9127         int ret, ver;
9128         uint16_t device_id;
9129         u32 pl_rev;
9130
9131         get_pci_mode(adapter, &adapter->params.pci);
9132         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9133
9134         ret = t4_get_flash_params(adapter);
9135         if (ret < 0) {
9136                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9137                 return ret;
9138         }
9139
9140         /* Retrieve adapter's device ID
9141          */
9142         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9143         ver = device_id >> 12;
9144         adapter->params.chip = 0;
9145         switch (ver) {
9146         case CHELSIO_T4:
9147                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9148                 adapter->params.arch.sge_fl_db = DBPRIO_F;
9149                 adapter->params.arch.mps_tcam_size =
9150                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
9151                 adapter->params.arch.mps_rplc_size = 128;
9152                 adapter->params.arch.nchan = NCHAN;
9153                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9154                 adapter->params.arch.vfcount = 128;
9155                 /* Congestion map is for 4 channels so that
9156                  * MPS can have 4 priority per port.
9157                  */
9158                 adapter->params.arch.cng_ch_bits_log = 2;
9159                 break;
9160         case CHELSIO_T5:
9161                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9162                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9163                 adapter->params.arch.mps_tcam_size =
9164                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9165                 adapter->params.arch.mps_rplc_size = 128;
9166                 adapter->params.arch.nchan = NCHAN;
9167                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9168                 adapter->params.arch.vfcount = 128;
9169                 adapter->params.arch.cng_ch_bits_log = 2;
9170                 break;
9171         case CHELSIO_T6:
9172                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9173                 adapter->params.arch.sge_fl_db = 0;
9174                 adapter->params.arch.mps_tcam_size =
9175                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9176                 adapter->params.arch.mps_rplc_size = 256;
9177                 adapter->params.arch.nchan = 2;
9178                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9179                 adapter->params.arch.vfcount = 256;
9180                 /* Congestion map will be for 2 channels so that
9181                  * MPS can have 8 priority per port.
9182                  */
9183                 adapter->params.arch.cng_ch_bits_log = 3;
9184                 break;
9185         default:
9186                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9187                         device_id);
9188                 return -EINVAL;
9189         }
9190
9191         adapter->params.cim_la_size = CIMLA_SIZE;
9192         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9193
9194         /*
9195          * Default port for debugging in case we can't reach FW.
9196          */
9197         adapter->params.nports = 1;
9198         adapter->params.portvec = 1;
9199         adapter->params.vpd.cclk = 50000;
9200
9201         /* Set PCIe completion timeout to 4 seconds. */
9202         pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9203                                            PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9204         return 0;
9205 }
9206
9207 /**
9208  *      t4_shutdown_adapter - shut down adapter, host & wire
9209  *      @adapter: the adapter
9210  *
9211  *      Perform an emergency shutdown of the adapter and stop it from
9212  *      continuing any further communication on the ports or DMA to the
9213  *      host.  This is typically used when the adapter and/or firmware
9214  *      have crashed and we want to prevent any further accidental
9215  *      communication with the rest of the world.  This will also force
9216  *      the port Link Status to go down -- if register writes work --
9217  *      which should help our peers figure out that we're down.
9218  */
9219 int t4_shutdown_adapter(struct adapter *adapter)
9220 {
9221         int port;
9222
9223         t4_intr_disable(adapter);
9224         t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9225         for_each_port(adapter, port) {
9226                 u32 a_port_cfg = is_t4(adapter->params.chip) ?
9227                                        PORT_REG(port, XGMAC_PORT_CFG_A) :
9228                                        T5_PORT_REG(port, MAC_PORT_CFG_A);
9229
9230                 t4_write_reg(adapter, a_port_cfg,
9231                              t4_read_reg(adapter, a_port_cfg)
9232                              & ~SIGNAL_DET_V(1));
9233         }
9234         t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9235
9236         return 0;
9237 }
9238
9239 /**
9240  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9241  *      @adapter: the adapter
9242  *      @qid: the Queue ID
9243  *      @qtype: the Ingress or Egress type for @qid
9244  *      @user: true if this request is for a user mode queue
9245  *      @pbar2_qoffset: BAR2 Queue Offset
9246  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9247  *
9248  *      Returns the BAR2 SGE Queue Registers information associated with the
9249  *      indicated Absolute Queue ID.  These are passed back in return value
9250  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9251  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9252  *
9253  *      This may return an error which indicates that BAR2 SGE Queue
9254  *      registers aren't available.  If an error is not returned, then the
9255  *      following values are returned:
9256  *
9257  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9258  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9259  *
9260  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9261  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9262  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9263  *      then these "Inferred Queue ID" register may not be used.
9264  */
9265 int t4_bar2_sge_qregs(struct adapter *adapter,
9266                       unsigned int qid,
9267                       enum t4_bar2_qtype qtype,
9268                       int user,
9269                       u64 *pbar2_qoffset,
9270                       unsigned int *pbar2_qid)
9271 {
9272         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9273         u64 bar2_page_offset, bar2_qoffset;
9274         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9275
9276         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9277         if (!user && is_t4(adapter->params.chip))
9278                 return -EINVAL;
9279
9280         /* Get our SGE Page Size parameters.
9281          */
9282         page_shift = adapter->params.sge.hps + 10;
9283         page_size = 1 << page_shift;
9284
9285         /* Get the right Queues per Page parameters for our Queue.
9286          */
9287         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9288                      ? adapter->params.sge.eq_qpp
9289                      : adapter->params.sge.iq_qpp);
9290         qpp_mask = (1 << qpp_shift) - 1;
9291
9292         /*  Calculate the basics of the BAR2 SGE Queue register area:
9293          *  o The BAR2 page the Queue registers will be in.
9294          *  o The BAR2 Queue ID.
9295          *  o The BAR2 Queue ID Offset into the BAR2 page.
9296          */
9297         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9298         bar2_qid = qid & qpp_mask;
9299         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9300
9301         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9302          * hardware will infer the Absolute Queue ID simply from the writes to
9303          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9304          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9305          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9306          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9307          * from the BAR2 Page and BAR2 Queue ID.
9308          *
9309          * One important censequence of this is that some BAR2 SGE registers
9310          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9311          * there.  But other registers synthesize the SGE Queue ID purely
9312          * from the writes to the registers -- the Write Combined Doorbell
9313          * Buffer is a good example.  These BAR2 SGE Registers are only
9314          * available for those BAR2 SGE Register areas where the SGE Absolute
9315          * Queue ID can be inferred from simple writes.
9316          */
9317         bar2_qoffset = bar2_page_offset;
9318         bar2_qinferred = (bar2_qid_offset < page_size);
9319         if (bar2_qinferred) {
9320                 bar2_qoffset += bar2_qid_offset;
9321                 bar2_qid = 0;
9322         }
9323
9324         *pbar2_qoffset = bar2_qoffset;
9325         *pbar2_qid = bar2_qid;
9326         return 0;
9327 }
9328
9329 /**
9330  *      t4_init_devlog_params - initialize adapter->params.devlog
9331  *      @adap: the adapter
9332  *
9333  *      Initialize various fields of the adapter's Firmware Device Log
9334  *      Parameters structure.
9335  */
9336 int t4_init_devlog_params(struct adapter *adap)
9337 {
9338         struct devlog_params *dparams = &adap->params.devlog;
9339         u32 pf_dparams;
9340         unsigned int devlog_meminfo;
9341         struct fw_devlog_cmd devlog_cmd;
9342         int ret;
9343
9344         /* If we're dealing with newer firmware, the Device Log Parameters
9345          * are stored in a designated register which allows us to access the
9346          * Device Log even if we can't talk to the firmware.
9347          */
9348         pf_dparams =
9349                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9350         if (pf_dparams) {
9351                 unsigned int nentries, nentries128;
9352
9353                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9354                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9355
9356                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9357                 nentries = (nentries128 + 1) * 128;
9358                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9359
9360                 return 0;
9361         }
9362
9363         /* Otherwise, ask the firmware for it's Device Log Parameters.
9364          */
9365         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9366         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9367                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
9368         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9369         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9370                          &devlog_cmd);
9371         if (ret)
9372                 return ret;
9373
9374         devlog_meminfo =
9375                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9376         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9377         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9378         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9379
9380         return 0;
9381 }
9382
9383 /**
9384  *      t4_init_sge_params - initialize adap->params.sge
9385  *      @adapter: the adapter
9386  *
9387  *      Initialize various fields of the adapter's SGE Parameters structure.
9388  */
9389 int t4_init_sge_params(struct adapter *adapter)
9390 {
9391         struct sge_params *sge_params = &adapter->params.sge;
9392         u32 hps, qpp;
9393         unsigned int s_hps, s_qpp;
9394
9395         /* Extract the SGE Page Size for our PF.
9396          */
9397         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9398         s_hps = (HOSTPAGESIZEPF0_S +
9399                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9400         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9401
9402         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9403          */
9404         s_qpp = (QUEUESPERPAGEPF0_S +
9405                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9406         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9407         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9408         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9409         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9410
9411         return 0;
9412 }
9413
9414 /**
9415  *      t4_init_tp_params - initialize adap->params.tp
9416  *      @adap: the adapter
9417  *      @sleep_ok: if true we may sleep while awaiting command completion
9418  *
9419  *      Initialize various fields of the adapter's TP Parameters structure.
9420  */
9421 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9422 {
9423         u32 param, val, v;
9424         int chan, ret;
9425
9426
9427         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9428         adap->params.tp.tre = TIMERRESOLUTION_G(v);
9429         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9430
9431         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9432         for (chan = 0; chan < NCHAN; chan++)
9433                 adap->params.tp.tx_modq[chan] = chan;
9434
9435         /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9436          * Configuration.
9437          */
9438         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9439                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9440                  FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9441
9442         /* Read current value */
9443         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9444                               &param, &val);
9445         if (ret == 0) {
9446                 dev_info(adap->pdev_dev,
9447                          "Current filter mode/mask 0x%x:0x%x\n",
9448                          FW_PARAMS_PARAM_FILTER_MODE_G(val),
9449                          FW_PARAMS_PARAM_FILTER_MASK_G(val));
9450                 adap->params.tp.vlan_pri_map =
9451                         FW_PARAMS_PARAM_FILTER_MODE_G(val);
9452                 adap->params.tp.filter_mask =
9453                         FW_PARAMS_PARAM_FILTER_MASK_G(val);
9454         } else {
9455                 dev_info(adap->pdev_dev,
9456                          "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9457
9458                 /* Incase of older-fw (which doesn't expose the api
9459                  * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9460                  * the fw api) combination, fall-back to older method of reading
9461                  * the filter mode from indirect-register
9462                  */
9463                 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9464                                TP_VLAN_PRI_MAP_A, sleep_ok);
9465
9466                 /* With the older-fw and newer-driver combination we might run
9467                  * into an issue when user wants to use hash filter region but
9468                  * the filter_mask is zero, in this case filter_mask validation
9469                  * is tough. To avoid that we set the filter_mask same as filter
9470                  * mode, which will behave exactly as the older way of ignoring
9471                  * the filter mask validation.
9472                  */
9473                 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9474         }
9475
9476         t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9477                        TP_INGRESS_CONFIG_A, sleep_ok);
9478
9479         /* For T6, cache the adapter's compressed error vector
9480          * and passing outer header info for encapsulated packets.
9481          */
9482         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9483                 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9484                 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9485         }
9486
9487         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9488          * shift positions of several elements of the Compressed Filter Tuple
9489          * for this adapter which we need frequently ...
9490          */
9491         adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9492         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9493         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9494         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9495         adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9496         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9497                                                                PROTOCOL_F);
9498         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9499                                                                 ETHERTYPE_F);
9500         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9501                                                                MACMATCH_F);
9502         adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9503                                                                 MPSHITTYPE_F);
9504         adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9505                                                            FRAGMENTATION_F);
9506
9507         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9508          * represents the presence of an Outer VLAN instead of a VNIC ID.
9509          */
9510         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9511                 adap->params.tp.vnic_shift = -1;
9512
9513         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9514         adap->params.tp.hash_filter_mask = v;
9515         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9516         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9517         return 0;
9518 }
9519
9520 /**
9521  *      t4_filter_field_shift - calculate filter field shift
9522  *      @adap: the adapter
9523  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9524  *
9525  *      Return the shift position of a filter field within the Compressed
9526  *      Filter Tuple.  The filter field is specified via its selection bit
9527  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9528  */
9529 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9530 {
9531         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9532         unsigned int sel;
9533         int field_shift;
9534
9535         if ((filter_mode & filter_sel) == 0)
9536                 return -1;
9537
9538         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9539                 switch (filter_mode & sel) {
9540                 case FCOE_F:
9541                         field_shift += FT_FCOE_W;
9542                         break;
9543                 case PORT_F:
9544                         field_shift += FT_PORT_W;
9545                         break;
9546                 case VNIC_ID_F:
9547                         field_shift += FT_VNIC_ID_W;
9548                         break;
9549                 case VLAN_F:
9550                         field_shift += FT_VLAN_W;
9551                         break;
9552                 case TOS_F:
9553                         field_shift += FT_TOS_W;
9554                         break;
9555                 case PROTOCOL_F:
9556                         field_shift += FT_PROTOCOL_W;
9557                         break;
9558                 case ETHERTYPE_F:
9559                         field_shift += FT_ETHERTYPE_W;
9560                         break;
9561                 case MACMATCH_F:
9562                         field_shift += FT_MACMATCH_W;
9563                         break;
9564                 case MPSHITTYPE_F:
9565                         field_shift += FT_MPSHITTYPE_W;
9566                         break;
9567                 case FRAGMENTATION_F:
9568                         field_shift += FT_FRAGMENTATION_W;
9569                         break;
9570                 }
9571         }
9572         return field_shift;
9573 }
9574
9575 int t4_init_rss_mode(struct adapter *adap, int mbox)
9576 {
9577         int i, ret;
9578         struct fw_rss_vi_config_cmd rvc;
9579
9580         memset(&rvc, 0, sizeof(rvc));
9581
9582         for_each_port(adap, i) {
9583                 struct port_info *p = adap2pinfo(adap, i);
9584
9585                 rvc.op_to_viid =
9586                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9587                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
9588                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9589                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9590                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9591                 if (ret)
9592                         return ret;
9593                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9594         }
9595         return 0;
9596 }
9597
9598 /**
9599  *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9600  *      @pi: the port_info
9601  *      @mbox: mailbox to use for the FW command
9602  *      @port: physical port associated with the VI
9603  *      @pf: the PF owning the VI
9604  *      @vf: the VF owning the VI
9605  *      @mac: the MAC address of the VI
9606  *
9607  *      Allocates a virtual interface for the given physical port.  If @mac is
9608  *      not %NULL it contains the MAC address of the VI as assigned by FW.
9609  *      @mac should be large enough to hold an Ethernet address.
9610  *      Returns < 0 on error.
9611  */
9612 int t4_init_portinfo(struct port_info *pi, int mbox,
9613                      int port, int pf, int vf, u8 mac[])
9614 {
9615         struct adapter *adapter = pi->adapter;
9616         unsigned int fw_caps = adapter->params.fw_caps_support;
9617         struct fw_port_cmd cmd;
9618         unsigned int rss_size;
9619         enum fw_port_type port_type;
9620         int mdio_addr;
9621         fw_port_cap32_t pcaps, acaps;
9622         u8 vivld = 0, vin = 0;
9623         int ret;
9624
9625         /* If we haven't yet determined whether we're talking to Firmware
9626          * which knows the new 32-bit Port Capabilities, it's time to find
9627          * out now.  This will also tell new Firmware to send us Port Status
9628          * Updates using the new 32-bit Port Capabilities version of the
9629          * Port Information message.
9630          */
9631         if (fw_caps == FW_CAPS_UNKNOWN) {
9632                 u32 param, val;
9633
9634                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9635                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9636                 val = 1;
9637                 ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9638                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9639                 adapter->params.fw_caps_support = fw_caps;
9640         }
9641
9642         memset(&cmd, 0, sizeof(cmd));
9643         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9644                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
9645                                        FW_PORT_CMD_PORTID_V(port));
9646         cmd.action_to_len16 = cpu_to_be32(
9647                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9648                                      ? FW_PORT_ACTION_GET_PORT_INFO
9649                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
9650                 FW_LEN16(cmd));
9651         ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9652         if (ret)
9653                 return ret;
9654
9655         /* Extract the various fields from the Port Information message.
9656          */
9657         if (fw_caps == FW_CAPS16) {
9658                 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9659
9660                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9661                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9662                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9663                              : -1);
9664                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9665                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9666         } else {
9667                 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9668
9669                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9670                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9671                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9672                              : -1);
9673                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9674                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
9675         }
9676
9677         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9678                           &vivld, &vin);
9679         if (ret < 0)
9680                 return ret;
9681
9682         pi->viid = ret;
9683         pi->tx_chan = port;
9684         pi->lport = port;
9685         pi->rss_size = rss_size;
9686         pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9687
9688         /* If fw supports returning the VIN as part of FW_VI_CMD,
9689          * save the returned values.
9690          */
9691         if (adapter->params.viid_smt_extn_support) {
9692                 pi->vivld = vivld;
9693                 pi->vin = vin;
9694         } else {
9695                 /* Retrieve the values from VIID */
9696                 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9697                 pi->vin =  FW_VIID_VIN_G(pi->viid);
9698         }
9699
9700         pi->port_type = port_type;
9701         pi->mdio_addr = mdio_addr;
9702         pi->mod_type = FW_PORT_MOD_TYPE_NA;
9703
9704         init_link_config(&pi->link_cfg, pcaps, acaps);
9705         return 0;
9706 }
9707
9708 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9709 {
9710         u8 addr[6];
9711         int ret, i, j = 0;
9712
9713         for_each_port(adap, i) {
9714                 struct port_info *pi = adap2pinfo(adap, i);
9715
9716                 while ((adap->params.portvec & (1 << j)) == 0)
9717                         j++;
9718
9719                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9720                 if (ret)
9721                         return ret;
9722
9723                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9724                 j++;
9725         }
9726         return 0;
9727 }
9728
9729 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9730                         u16 *mirror_viid)
9731 {
9732         int ret;
9733
9734         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9735                           NULL, NULL);
9736         if (ret < 0)
9737                 return ret;
9738
9739         if (mirror_viid)
9740                 *mirror_viid = ret;
9741
9742         return 0;
9743 }
9744
9745 /**
9746  *      t4_read_cimq_cfg - read CIM queue configuration
9747  *      @adap: the adapter
9748  *      @base: holds the queue base addresses in bytes
9749  *      @size: holds the queue sizes in bytes
9750  *      @thres: holds the queue full thresholds in bytes
9751  *
9752  *      Returns the current configuration of the CIM queues, starting with
9753  *      the IBQs, then the OBQs.
9754  */
9755 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9756 {
9757         unsigned int i, v;
9758         int cim_num_obq = is_t4(adap->params.chip) ?
9759                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9760
9761         for (i = 0; i < CIM_NUM_IBQ; i++) {
9762                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9763                              QUENUMSELECT_V(i));
9764                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9765                 /* value is in 256-byte units */
9766                 *base++ = CIMQBASE_G(v) * 256;
9767                 *size++ = CIMQSIZE_G(v) * 256;
9768                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9769         }
9770         for (i = 0; i < cim_num_obq; i++) {
9771                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9772                              QUENUMSELECT_V(i));
9773                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9774                 /* value is in 256-byte units */
9775                 *base++ = CIMQBASE_G(v) * 256;
9776                 *size++ = CIMQSIZE_G(v) * 256;
9777         }
9778 }
9779
9780 /**
9781  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9782  *      @adap: the adapter
9783  *      @qid: the queue index
9784  *      @data: where to store the queue contents
9785  *      @n: capacity of @data in 32-bit words
9786  *
9787  *      Reads the contents of the selected CIM queue starting at address 0 up
9788  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9789  *      error and the number of 32-bit words actually read on success.
9790  */
9791 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9792 {
9793         int i, err, attempts;
9794         unsigned int addr;
9795         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9796
9797         if (qid > 5 || (n & 3))
9798                 return -EINVAL;
9799
9800         addr = qid * nwords;
9801         if (n > nwords)
9802                 n = nwords;
9803
9804         /* It might take 3-10ms before the IBQ debug read access is allowed.
9805          * Wait for 1 Sec with a delay of 1 usec.
9806          */
9807         attempts = 1000000;
9808
9809         for (i = 0; i < n; i++, addr++) {
9810                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9811                              IBQDBGEN_F);
9812                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9813                                       attempts, 1);
9814                 if (err)
9815                         return err;
9816                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9817         }
9818         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9819         return i;
9820 }
9821
9822 /**
9823  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9824  *      @adap: the adapter
9825  *      @qid: the queue index
9826  *      @data: where to store the queue contents
9827  *      @n: capacity of @data in 32-bit words
9828  *
9829  *      Reads the contents of the selected CIM queue starting at address 0 up
9830  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9831  *      error and the number of 32-bit words actually read on success.
9832  */
9833 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9834 {
9835         int i, err;
9836         unsigned int addr, v, nwords;
9837         int cim_num_obq = is_t4(adap->params.chip) ?
9838                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9839
9840         if ((qid > (cim_num_obq - 1)) || (n & 3))
9841                 return -EINVAL;
9842
9843         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9844                      QUENUMSELECT_V(qid));
9845         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9846
9847         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9848         nwords = CIMQSIZE_G(v) * 64;  /* same */
9849         if (n > nwords)
9850                 n = nwords;
9851
9852         for (i = 0; i < n; i++, addr++) {
9853                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9854                              OBQDBGEN_F);
9855                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9856                                       2, 1);
9857                 if (err)
9858                         return err;
9859                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9860         }
9861         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9862         return i;
9863 }
9864
9865 /**
9866  *      t4_cim_read - read a block from CIM internal address space
9867  *      @adap: the adapter
9868  *      @addr: the start address within the CIM address space
9869  *      @n: number of words to read
9870  *      @valp: where to store the result
9871  *
9872  *      Reads a block of 4-byte words from the CIM intenal address space.
9873  */
9874 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9875                 unsigned int *valp)
9876 {
9877         int ret = 0;
9878
9879         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9880                 return -EBUSY;
9881
9882         for ( ; !ret && n--; addr += 4) {
9883                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9884                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9885                                       0, 5, 2);
9886                 if (!ret)
9887                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9888         }
9889         return ret;
9890 }
9891
9892 /**
9893  *      t4_cim_write - write a block into CIM internal address space
9894  *      @adap: the adapter
9895  *      @addr: the start address within the CIM address space
9896  *      @n: number of words to write
9897  *      @valp: set of values to write
9898  *
9899  *      Writes a block of 4-byte words into the CIM intenal address space.
9900  */
9901 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9902                  const unsigned int *valp)
9903 {
9904         int ret = 0;
9905
9906         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9907                 return -EBUSY;
9908
9909         for ( ; !ret && n--; addr += 4) {
9910                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9911                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9912                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9913                                       0, 5, 2);
9914         }
9915         return ret;
9916 }
9917
9918 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9919                          unsigned int val)
9920 {
9921         return t4_cim_write(adap, addr, 1, &val);
9922 }
9923
9924 /**
9925  *      t4_cim_read_la - read CIM LA capture buffer
9926  *      @adap: the adapter
9927  *      @la_buf: where to store the LA data
9928  *      @wrptr: the HW write pointer within the capture buffer
9929  *
9930  *      Reads the contents of the CIM LA buffer with the most recent entry at
9931  *      the end of the returned data and with the entry at @wrptr first.
9932  *      We try to leave the LA in the running state we find it in.
9933  */
9934 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9935 {
9936         int i, ret;
9937         unsigned int cfg, val, idx;
9938
9939         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9940         if (ret)
9941                 return ret;
9942
9943         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9944                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9945                 if (ret)
9946                         return ret;
9947         }
9948
9949         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9950         if (ret)
9951                 goto restart;
9952
9953         idx = UPDBGLAWRPTR_G(val);
9954         if (wrptr)
9955                 *wrptr = idx;
9956
9957         for (i = 0; i < adap->params.cim_la_size; i++) {
9958                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9959                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9960                 if (ret)
9961                         break;
9962                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9963                 if (ret)
9964                         break;
9965                 if (val & UPDBGLARDEN_F) {
9966                         ret = -ETIMEDOUT;
9967                         break;
9968                 }
9969                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9970                 if (ret)
9971                         break;
9972
9973                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9974                  * identify the 32-bit portion of the full 312-bit data
9975                  */
9976                 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9977                         idx = (idx & 0xff0) + 0x10;
9978                 else
9979                         idx++;
9980                 /* address can't exceed 0xfff */
9981                 idx &= UPDBGLARDPTR_M;
9982         }
9983 restart:
9984         if (cfg & UPDBGLAEN_F) {
9985                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9986                                       cfg & ~UPDBGLARDEN_F);
9987                 if (!ret)
9988                         ret = r;
9989         }
9990         return ret;
9991 }
9992
9993 /**
9994  *      t4_tp_read_la - read TP LA capture buffer
9995  *      @adap: the adapter
9996  *      @la_buf: where to store the LA data
9997  *      @wrptr: the HW write pointer within the capture buffer
9998  *
9999  *      Reads the contents of the TP LA buffer with the most recent entry at
10000  *      the end of the returned data and with the entry at @wrptr first.
10001  *      We leave the LA in the running state we find it in.
10002  */
10003 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10004 {
10005         bool last_incomplete;
10006         unsigned int i, cfg, val, idx;
10007
10008         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10009         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
10010                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10011                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10012
10013         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10014         idx = DBGLAWPTR_G(val);
10015         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10016         if (last_incomplete)
10017                 idx = (idx + 1) & DBGLARPTR_M;
10018         if (wrptr)
10019                 *wrptr = idx;
10020
10021         val &= 0xffff;
10022         val &= ~DBGLARPTR_V(DBGLARPTR_M);
10023         val |= adap->params.tp.la_mask;
10024
10025         for (i = 0; i < TPLA_SIZE; i++) {
10026                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10027                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10028                 idx = (idx + 1) & DBGLARPTR_M;
10029         }
10030
10031         /* Wipe out last entry if it isn't valid */
10032         if (last_incomplete)
10033                 la_buf[TPLA_SIZE - 1] = ~0ULL;
10034
10035         if (cfg & DBGLAENABLE_F)                    /* restore running state */
10036                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10037                              cfg | adap->params.tp.la_mask);
10038 }
10039
10040 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10041  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10042  * state for more than the Warning Threshold then we'll issue a warning about
10043  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10044  * appears to be hung every Warning Repeat second till the situation clears.
10045  * If the situation clears, we'll note that as well.
10046  */
10047 #define SGE_IDMA_WARN_THRESH 1
10048 #define SGE_IDMA_WARN_REPEAT 300
10049
10050 /**
10051  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10052  *      @adapter: the adapter
10053  *      @idma: the adapter IDMA Monitor state
10054  *
10055  *      Initialize the state of an SGE Ingress DMA Monitor.
10056  */
10057 void t4_idma_monitor_init(struct adapter *adapter,
10058                           struct sge_idma_monitor_state *idma)
10059 {
10060         /* Initialize the state variables for detecting an SGE Ingress DMA
10061          * hang.  The SGE has internal counters which count up on each clock
10062          * tick whenever the SGE finds its Ingress DMA State Engines in the
10063          * same state they were on the previous clock tick.  The clock used is
10064          * the Core Clock so we have a limit on the maximum "time" they can
10065          * record; typically a very small number of seconds.  For instance,
10066          * with a 600MHz Core Clock, we can only count up to a bit more than
10067          * 7s.  So we'll synthesize a larger counter in order to not run the
10068          * risk of having the "timers" overflow and give us the flexibility to
10069          * maintain a Hung SGE State Machine of our own which operates across
10070          * a longer time frame.
10071          */
10072         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10073         idma->idma_stalled[0] = 0;
10074         idma->idma_stalled[1] = 0;
10075 }
10076
10077 /**
10078  *      t4_idma_monitor - monitor SGE Ingress DMA state
10079  *      @adapter: the adapter
10080  *      @idma: the adapter IDMA Monitor state
10081  *      @hz: number of ticks/second
10082  *      @ticks: number of ticks since the last IDMA Monitor call
10083  */
10084 void t4_idma_monitor(struct adapter *adapter,
10085                      struct sge_idma_monitor_state *idma,
10086                      int hz, int ticks)
10087 {
10088         int i, idma_same_state_cnt[2];
10089
10090          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10091           * are counters inside the SGE which count up on each clock when the
10092           * SGE finds its Ingress DMA State Engines in the same states they
10093           * were in the previous clock.  The counters will peg out at
10094           * 0xffffffff without wrapping around so once they pass the 1s
10095           * threshold they'll stay above that till the IDMA state changes.
10096           */
10097         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10098         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10099         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10100
10101         for (i = 0; i < 2; i++) {
10102                 u32 debug0, debug11;
10103
10104                 /* If the Ingress DMA Same State Counter ("timer") is less
10105                  * than 1s, then we can reset our synthesized Stall Timer and
10106                  * continue.  If we have previously emitted warnings about a
10107                  * potential stalled Ingress Queue, issue a note indicating
10108                  * that the Ingress Queue has resumed forward progress.
10109                  */
10110                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10111                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10112                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10113                                          "resumed after %d seconds\n",
10114                                          i, idma->idma_qid[i],
10115                                          idma->idma_stalled[i] / hz);
10116                         idma->idma_stalled[i] = 0;
10117                         continue;
10118                 }
10119
10120                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10121                  * domain.  The first time we get here it'll be because we
10122                  * passed the 1s Threshold; each additional time it'll be
10123                  * because the RX Timer Callback is being fired on its regular
10124                  * schedule.
10125                  *
10126                  * If the stall is below our Potential Hung Ingress Queue
10127                  * Warning Threshold, continue.
10128                  */
10129                 if (idma->idma_stalled[i] == 0) {
10130                         idma->idma_stalled[i] = hz;
10131                         idma->idma_warn[i] = 0;
10132                 } else {
10133                         idma->idma_stalled[i] += ticks;
10134                         idma->idma_warn[i] -= ticks;
10135                 }
10136
10137                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10138                         continue;
10139
10140                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10141                  */
10142                 if (idma->idma_warn[i] > 0)
10143                         continue;
10144                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10145
10146                 /* Read and save the SGE IDMA State and Queue ID information.
10147                  * We do this every time in case it changes across time ...
10148                  * can't be too careful ...
10149                  */
10150                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10151                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10152                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10153
10154                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10155                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10156                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10157
10158                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10159                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10160                          i, idma->idma_qid[i], idma->idma_state[i],
10161                          idma->idma_stalled[i] / hz,
10162                          debug0, debug11);
10163                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10164         }
10165 }
10166
10167 /**
10168  *      t4_load_cfg - download config file
10169  *      @adap: the adapter
10170  *      @cfg_data: the cfg text file to write
10171  *      @size: text file size
10172  *
10173  *      Write the supplied config text file to the card's serial flash.
10174  */
10175 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10176 {
10177         int ret, i, n, cfg_addr;
10178         unsigned int addr;
10179         unsigned int flash_cfg_start_sec;
10180         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10181
10182         cfg_addr = t4_flash_cfg_addr(adap);
10183         if (cfg_addr < 0)
10184                 return cfg_addr;
10185
10186         addr = cfg_addr;
10187         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10188
10189         if (size > FLASH_CFG_MAX_SIZE) {
10190                 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10191                         FLASH_CFG_MAX_SIZE);
10192                 return -EFBIG;
10193         }
10194
10195         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10196                          sf_sec_size);
10197         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10198                                      flash_cfg_start_sec + i - 1);
10199         /* If size == 0 then we're simply erasing the FLASH sectors associated
10200          * with the on-adapter Firmware Configuration File.
10201          */
10202         if (ret || size == 0)
10203                 goto out;
10204
10205         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10206         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10207                 if ((size - i) <  SF_PAGE_SIZE)
10208                         n = size - i;
10209                 else
10210                         n = SF_PAGE_SIZE;
10211                 ret = t4_write_flash(adap, addr, n, cfg_data);
10212                 if (ret)
10213                         goto out;
10214
10215                 addr += SF_PAGE_SIZE;
10216                 cfg_data += SF_PAGE_SIZE;
10217         }
10218
10219 out:
10220         if (ret)
10221                 dev_err(adap->pdev_dev, "config file %s failed %d\n",
10222                         (size == 0 ? "clear" : "download"), ret);
10223         return ret;
10224 }
10225
10226 /**
10227  *      t4_set_vf_mac - Set MAC address for the specified VF
10228  *      @adapter: The adapter
10229  *      @vf: one of the VFs instantiated by the specified PF
10230  *      @naddr: the number of MAC addresses
10231  *      @addr: the MAC address(es) to be set to the specified VF
10232  */
10233 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10234                       unsigned int naddr, u8 *addr)
10235 {
10236         struct fw_acl_mac_cmd cmd;
10237
10238         memset(&cmd, 0, sizeof(cmd));
10239         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10240                                     FW_CMD_REQUEST_F |
10241                                     FW_CMD_WRITE_F |
10242                                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10243                                     FW_ACL_MAC_CMD_VFN_V(vf));
10244
10245         /* Note: Do not enable the ACL */
10246         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10247         cmd.nmac = naddr;
10248
10249         switch (adapter->pf) {
10250         case 3:
10251                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10252                 break;
10253         case 2:
10254                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10255                 break;
10256         case 1:
10257                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10258                 break;
10259         case 0:
10260                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10261                 break;
10262         }
10263
10264         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10265 }
10266
10267 /**
10268  * t4_read_pace_tbl - read the pace table
10269  * @adap: the adapter
10270  * @pace_vals: holds the returned values
10271  *
10272  * Returns the values of TP's pace table in microseconds.
10273  */
10274 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10275 {
10276         unsigned int i, v;
10277
10278         for (i = 0; i < NTX_SCHED; i++) {
10279                 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10280                 v = t4_read_reg(adap, TP_PACE_TABLE_A);
10281                 pace_vals[i] = dack_ticks_to_usec(adap, v);
10282         }
10283 }
10284
10285 /**
10286  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10287  * @adap: the adapter
10288  * @sched: the scheduler index
10289  * @kbps: the byte rate in Kbps
10290  * @ipg: the interpacket delay in tenths of nanoseconds
10291  * @sleep_ok: if true we may sleep while awaiting command completion
10292  *
10293  * Return the current configuration of a HW Tx scheduler.
10294  */
10295 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10296                      unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10297 {
10298         unsigned int v, addr, bpt, cpt;
10299
10300         if (kbps) {
10301                 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10302                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10303                 if (sched & 1)
10304                         v >>= 16;
10305                 bpt = (v >> 8) & 0xff;
10306                 cpt = v & 0xff;
10307                 if (!cpt) {
10308                         *kbps = 0;      /* scheduler disabled */
10309                 } else {
10310                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10311                         *kbps = (v * bpt) / 125;
10312                 }
10313         }
10314         if (ipg) {
10315                 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10316                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10317                 if (sched & 1)
10318                         v >>= 16;
10319                 v &= 0xffff;
10320                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
10321         }
10322 }
10323
10324 /* t4_sge_ctxt_rd - read an SGE context through FW
10325  * @adap: the adapter
10326  * @mbox: mailbox to use for the FW command
10327  * @cid: the context id
10328  * @ctype: the context type
10329  * @data: where to store the context data
10330  *
10331  * Issues a FW command through the given mailbox to read an SGE context.
10332  */
10333 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10334                    enum ctxt_type ctype, u32 *data)
10335 {
10336         struct fw_ldst_cmd c;
10337         int ret;
10338
10339         if (ctype == CTXT_FLM)
10340                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10341         else
10342                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10343
10344         memset(&c, 0, sizeof(c));
10345         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10346                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
10347                                         FW_LDST_CMD_ADDRSPACE_V(ret));
10348         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10349         c.u.idctxt.physid = cpu_to_be32(cid);
10350
10351         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10352         if (ret == 0) {
10353                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10354                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10355                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10356                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10357                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10358                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10359         }
10360         return ret;
10361 }
10362
10363 /**
10364  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10365  * @adap: the adapter
10366  * @cid: the context id
10367  * @ctype: the context type
10368  * @data: where to store the context data
10369  *
10370  * Reads an SGE context directly, bypassing FW.  This is only for
10371  * debugging when FW is unavailable.
10372  */
10373 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10374                       enum ctxt_type ctype, u32 *data)
10375 {
10376         int i, ret;
10377
10378         t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10379         ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10380         if (!ret)
10381                 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10382                         *data++ = t4_read_reg(adap, i);
10383         return ret;
10384 }
10385
10386 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10387                     u8 rateunit, u8 ratemode, u8 channel, u8 class,
10388                     u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10389                     u16 burstsize)
10390 {
10391         struct fw_sched_cmd cmd;
10392
10393         memset(&cmd, 0, sizeof(cmd));
10394         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10395                                       FW_CMD_REQUEST_F |
10396                                       FW_CMD_WRITE_F);
10397         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10398
10399         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10400         cmd.u.params.type = type;
10401         cmd.u.params.level = level;
10402         cmd.u.params.mode = mode;
10403         cmd.u.params.ch = channel;
10404         cmd.u.params.cl = class;
10405         cmd.u.params.unit = rateunit;
10406         cmd.u.params.rate = ratemode;
10407         cmd.u.params.min = cpu_to_be32(minrate);
10408         cmd.u.params.max = cpu_to_be32(maxrate);
10409         cmd.u.params.weight = cpu_to_be16(weight);
10410         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10411         cmd.u.params.burstsize = cpu_to_be16(burstsize);
10412
10413         return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10414                                NULL, 1);
10415 }
10416
10417 /**
10418  *      t4_i2c_rd - read I2C data from adapter
10419  *      @adap: the adapter
10420  *      @mbox: mailbox to use for the FW command
10421  *      @port: Port number if per-port device; <0 if not
10422  *      @devid: per-port device ID or absolute device ID
10423  *      @offset: byte offset into device I2C space
10424  *      @len: byte length of I2C space data
10425  *      @buf: buffer in which to return I2C data
10426  *
10427  *      Reads the I2C data from the indicated device and location.
10428  */
10429 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10430               unsigned int devid, unsigned int offset,
10431               unsigned int len, u8 *buf)
10432 {
10433         struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10434         unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10435         int ret = 0;
10436
10437         if (len > I2C_PAGE_SIZE)
10438                 return -EINVAL;
10439
10440         /* Dont allow reads that spans multiple pages */
10441         if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10442                 return -EINVAL;
10443
10444         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10445         ldst_cmd.op_to_addrspace =
10446                 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10447                             FW_CMD_REQUEST_F |
10448                             FW_CMD_READ_F |
10449                             FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10450         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10451         ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10452         ldst_cmd.u.i2c.did = devid;
10453
10454         while (len > 0) {
10455                 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10456
10457                 ldst_cmd.u.i2c.boffset = offset;
10458                 ldst_cmd.u.i2c.blen = i2c_len;
10459
10460                 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10461                                  &ldst_rpl);
10462                 if (ret)
10463                         break;
10464
10465                 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10466                 offset += i2c_len;
10467                 buf += i2c_len;
10468                 len -= i2c_len;
10469         }
10470
10471         return ret;
10472 }
10473
10474 /**
10475  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10476  *      @adap: the adapter
10477  *      @mbox: mailbox to use for the FW command
10478  *      @vf: one of the VFs instantiated by the specified PF
10479  *      @vlan: The vlanid to be set
10480  */
10481 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10482                     u16 vlan)
10483 {
10484         struct fw_acl_vlan_cmd vlan_cmd;
10485         unsigned int enable;
10486
10487         enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10488         memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10489         vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10490                                          FW_CMD_REQUEST_F |
10491                                          FW_CMD_WRITE_F |
10492                                          FW_CMD_EXEC_F |
10493                                          FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10494                                          FW_ACL_VLAN_CMD_VFN_V(vf));
10495         vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10496         /* Drop all packets that donot match vlan id */
10497         vlan_cmd.dropnovlan_fm = (enable
10498                                   ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10499                                      FW_ACL_VLAN_CMD_FM_F) : 0);
10500         if (enable != 0) {
10501                 vlan_cmd.nvlan = 1;
10502                 vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10503         }
10504
10505         return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10506 }
10507
10508 /**
10509  *      modify_device_id - Modifies the device ID of the Boot BIOS image
10510  *      @device_id: the device ID to write.
10511  *      @boot_data: the boot image to modify.
10512  *
10513  *      Write the supplied device ID to the boot BIOS image.
10514  */
10515 static void modify_device_id(int device_id, u8 *boot_data)
10516 {
10517         struct cxgb4_pcir_data *pcir_header;
10518         struct legacy_pci_rom_hdr *header;
10519         u8 *cur_header = boot_data;
10520         u16 pcir_offset;
10521
10522          /* Loop through all chained images and change the device ID's */
10523         do {
10524                 header = (struct legacy_pci_rom_hdr *)cur_header;
10525                 pcir_offset = le16_to_cpu(header->pcir_offset);
10526                 pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10527                               pcir_offset);
10528
10529                 /**
10530                  * Only modify the Device ID if code type is Legacy or HP.
10531                  * 0x00: Okay to modify
10532                  * 0x01: FCODE. Do not modify
10533                  * 0x03: Okay to modify
10534                  * 0x04-0xFF: Do not modify
10535                  */
10536                 if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10537                         u8 csum = 0;
10538                         int i;
10539
10540                         /**
10541                          * Modify Device ID to match current adatper
10542                          */
10543                         pcir_header->device_id = cpu_to_le16(device_id);
10544
10545                         /**
10546                          * Set checksum temporarily to 0.
10547                          * We will recalculate it later.
10548                          */
10549                         header->cksum = 0x0;
10550
10551                         /**
10552                          * Calculate and update checksum
10553                          */
10554                         for (i = 0; i < (header->size512 * 512); i++)
10555                                 csum += cur_header[i];
10556
10557                         /**
10558                          * Invert summed value to create the checksum
10559                          * Writing new checksum value directly to the boot data
10560                          */
10561                         cur_header[7] = -csum;
10562
10563                 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10564                         /**
10565                          * Modify Device ID to match current adatper
10566                          */
10567                         pcir_header->device_id = cpu_to_le16(device_id);
10568                 }
10569
10570                 /**
10571                  * Move header pointer up to the next image in the ROM.
10572                  */
10573                 cur_header += header->size512 * 512;
10574         } while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10575 }
10576
10577 /**
10578  *      t4_load_boot - download boot flash
10579  *      @adap: the adapter
10580  *      @boot_data: the boot image to write
10581  *      @boot_addr: offset in flash to write boot_data
10582  *      @size: image size
10583  *
10584  *      Write the supplied boot image to the card's serial flash.
10585  *      The boot image has the following sections: a 28-byte header and the
10586  *      boot image.
10587  */
10588 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10589                  unsigned int boot_addr, unsigned int size)
10590 {
10591         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10592         unsigned int boot_sector = (boot_addr * 1024);
10593         struct cxgb4_pci_exp_rom_header *header;
10594         struct cxgb4_pcir_data *pcir_header;
10595         int pcir_offset;
10596         unsigned int i;
10597         u16 device_id;
10598         int ret, addr;
10599
10600         /**
10601          * Make sure the boot image does not encroach on the firmware region
10602          */
10603         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10604                 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10605                 return -EFBIG;
10606         }
10607
10608         /* Get boot header */
10609         header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10610         pcir_offset = le16_to_cpu(header->pcir_offset);
10611         /* PCIR Data Structure */
10612         pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10613
10614         /**
10615          * Perform some primitive sanity testing to avoid accidentally
10616          * writing garbage over the boot sectors.  We ought to check for
10617          * more but it's not worth it for now ...
10618          */
10619         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10620                 dev_err(adap->pdev_dev, "boot image too small/large\n");
10621                 return -EFBIG;
10622         }
10623
10624         if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10625                 dev_err(adap->pdev_dev, "Boot image missing signature\n");
10626                 return -EINVAL;
10627         }
10628
10629         /* Check PCI header signature */
10630         if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10631                 dev_err(adap->pdev_dev, "PCI header missing signature\n");
10632                 return -EINVAL;
10633         }
10634
10635         /* Check Vendor ID matches Chelsio ID*/
10636         if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10637                 dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10638                 return -EINVAL;
10639         }
10640
10641         /**
10642          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10643          * and Boot configuration data sections. These 3 boot sections span
10644          * sectors 0 to 7 in flash and live right before the FW image location.
10645          */
10646         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10647         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10648                                      (boot_sector >> 16) + i - 1);
10649
10650         /**
10651          * If size == 0 then we're simply erasing the FLASH sectors associated
10652          * with the on-adapter option ROM file
10653          */
10654         if (ret || size == 0)
10655                 goto out;
10656         /* Retrieve adapter's device ID */
10657         pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10658        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10659         device_id = device_id & 0xf0ff;
10660
10661          /* Check PCIE Device ID */
10662         if (le16_to_cpu(pcir_header->device_id) != device_id) {
10663                 /**
10664                  * Change the device ID in the Boot BIOS image to match
10665                  * the Device ID of the current adapter.
10666                  */
10667                 modify_device_id(device_id, boot_data);
10668         }
10669
10670         /**
10671          * Skip over the first SF_PAGE_SIZE worth of data and write it after
10672          * we finish copying the rest of the boot image. This will ensure
10673          * that the BIOS boot header will only be written if the boot image
10674          * was written in full.
10675          */
10676         addr = boot_sector;
10677         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10678                 addr += SF_PAGE_SIZE;
10679                 boot_data += SF_PAGE_SIZE;
10680                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data);
10681                 if (ret)
10682                         goto out;
10683         }
10684
10685         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10686                              (const u8 *)header);
10687
10688 out:
10689         if (ret)
10690                 dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10691                         ret);
10692         return ret;
10693 }
10694
10695 /**
10696  *      t4_flash_bootcfg_addr - return the address of the flash
10697  *      optionrom configuration
10698  *      @adapter: the adapter
10699  *
10700  *      Return the address within the flash where the OptionROM Configuration
10701  *      is stored, or an error if the device FLASH is too small to contain
10702  *      a OptionROM Configuration.
10703  */
10704 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10705 {
10706         /**
10707          * If the device FLASH isn't large enough to hold a Firmware
10708          * Configuration File, return an error.
10709          */
10710         if (adapter->params.sf_size <
10711             FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10712                 return -ENOSPC;
10713
10714         return FLASH_BOOTCFG_START;
10715 }
10716
10717 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10718 {
10719         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10720         struct cxgb4_bootcfg_data *header;
10721         unsigned int flash_cfg_start_sec;
10722         unsigned int addr, npad;
10723         int ret, i, n, cfg_addr;
10724
10725         cfg_addr = t4_flash_bootcfg_addr(adap);
10726         if (cfg_addr < 0)
10727                 return cfg_addr;
10728
10729         addr = cfg_addr;
10730         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10731
10732         if (size > FLASH_BOOTCFG_MAX_SIZE) {
10733                 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10734                         FLASH_BOOTCFG_MAX_SIZE);
10735                 return -EFBIG;
10736         }
10737
10738         header = (struct cxgb4_bootcfg_data *)cfg_data;
10739         if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10740                 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10741                 ret = -EINVAL;
10742                 goto out;
10743         }
10744
10745         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10746                          sf_sec_size);
10747         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10748                                      flash_cfg_start_sec + i - 1);
10749
10750         /**
10751          * If size == 0 then we're simply erasing the FLASH sectors associated
10752          * with the on-adapter OptionROM Configuration File.
10753          */
10754         if (ret || size == 0)
10755                 goto out;
10756
10757         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10758         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10759                 n = min_t(u32, size - i, SF_PAGE_SIZE);
10760
10761                 ret = t4_write_flash(adap, addr, n, cfg_data);
10762                 if (ret)
10763                         goto out;
10764
10765                 addr += SF_PAGE_SIZE;
10766                 cfg_data += SF_PAGE_SIZE;
10767         }
10768
10769         npad = ((size + 4 - 1) & ~3) - size;
10770         for (i = 0; i < npad; i++) {
10771                 u8 data = 0;
10772
10773                 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data);
10774                 if (ret)
10775                         goto out;
10776         }
10777
10778 out:
10779         if (ret)
10780                 dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10781                         (size == 0 ? "clear" : "download"), ret);
10782         return ret;
10783 }