Merge tag 'netfs-fixes-20210621' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F) {
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201                 adap->flags &= ~CXGB4_FW_OK;
202         }
203 }
204
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209                          u32 mbox_addr)
210 {
211         for ( ; nflit; nflit--, mbox_addr += 8)
212                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220         struct fw_debug_cmd asrt;
221
222         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223         dev_alert(adap->pdev_dev,
224                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228
229 /**
230  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *      @adapter: the adapter
232  *      @cmd: the Firmware Mailbox Command or Reply
233  *      @size: command length in bytes
234  *      @access: the time (ms) needed to access the Firmware Mailbox
235  *      @execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238                            const __be64 *cmd, unsigned int size,
239                            int access, int execute)
240 {
241         struct mbox_cmd_log *log = adapter->mbox_log;
242         struct mbox_cmd *entry;
243         int i;
244
245         entry = mbox_cmd_log_entry(log, log->cursor++);
246         if (log->cursor == log->size)
247                 log->cursor = 0;
248
249         for (i = 0; i < size / 8; i++)
250                 entry->cmd[i] = be64_to_cpu(cmd[i]);
251         while (i < MBOX_LEN / 8)
252                 entry->cmd[i++] = 0;
253         entry->timestamp = jiffies;
254         entry->seqno = log->seqno++;
255         entry->access = access;
256         entry->execute = execute;
257 }
258
259 /**
260  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *      @adap: the adapter
262  *      @mbox: index of the mailbox to use
263  *      @cmd: the command to write
264  *      @size: command length in bytes
265  *      @rpl: where to optionally store the reply
266  *      @sleep_ok: if true we may sleep while awaiting command completion
267  *      @timeout: time to wait for command to finish before timing out
268  *
269  *      Sends the given command to FW through the selected mailbox and waits
270  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *      store the FW's reply to the command.  The command and its optional
272  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *      the response.  If sleeping is allowed we use progressive backoff
275  *      otherwise we spin.
276  *
277  *      The return value is 0 on success or a negative errno on failure.  A
278  *      failure can happen either because we are not able to execute the
279  *      command or FW executes it but signals an error.  In the latter case
280  *      the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283                             int size, void *rpl, bool sleep_ok, int timeout)
284 {
285         static const int delay[] = {
286                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287         };
288
289         struct mbox_list entry;
290         u16 access = 0;
291         u16 execute = 0;
292         u32 v;
293         u64 res;
294         int i, ms, delay_idx, ret;
295         const __be64 *p = cmd;
296         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298         __be64 cmd_rpl[MBOX_LEN / 8];
299         u32 pcie_fw;
300
301         if ((size & 15) || size > MBOX_LEN)
302                 return -EINVAL;
303
304         /*
305          * If the device is off-line, as in EEH, commands will time out.
306          * Fail them early so we don't waste time waiting.
307          */
308         if (adap->pdev->error_state != pci_channel_io_normal)
309                 return -EIO;
310
311         /* If we have a negative timeout, that implies that we can't sleep. */
312         if (timeout < 0) {
313                 sleep_ok = false;
314                 timeout = -timeout;
315         }
316
317         /* Queue ourselves onto the mailbox access list.  When our entry is at
318          * the front of the list, we have rights to access the mailbox.  So we
319          * wait [for a while] till we're at the front [or bail out with an
320          * EBUSY] ...
321          */
322         spin_lock_bh(&adap->mbox_lock);
323         list_add_tail(&entry.list, &adap->mlist.list);
324         spin_unlock_bh(&adap->mbox_lock);
325
326         delay_idx = 0;
327         ms = delay[0];
328
329         for (i = 0; ; i += ms) {
330                 /* If we've waited too long, return a busy indication.  This
331                  * really ought to be based on our initial position in the
332                  * mailbox access list but this is a start.  We very rarely
333                  * contend on access to the mailbox ...
334                  */
335                 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336                 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337                         spin_lock_bh(&adap->mbox_lock);
338                         list_del(&entry.list);
339                         spin_unlock_bh(&adap->mbox_lock);
340                         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341                         t4_record_mbox(adap, cmd, size, access, ret);
342                         return ret;
343                 }
344
345                 /* If we're at the head, break out and start the mailbox
346                  * protocol.
347                  */
348                 if (list_first_entry(&adap->mlist.list, struct mbox_list,
349                                      list) == &entry)
350                         break;
351
352                 /* Delay for a bit before checking again ... */
353                 if (sleep_ok) {
354                         ms = delay[delay_idx];  /* last element may repeat */
355                         if (delay_idx < ARRAY_SIZE(delay) - 1)
356                                 delay_idx++;
357                         msleep(ms);
358                 } else {
359                         mdelay(ms);
360                 }
361         }
362
363         /* Loop trying to get ownership of the mailbox.  Return an error
364          * if we can't gain ownership.
365          */
366         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369         if (v != MBOX_OWNER_DRV) {
370                 spin_lock_bh(&adap->mbox_lock);
371                 list_del(&entry.list);
372                 spin_unlock_bh(&adap->mbox_lock);
373                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374                 t4_record_mbox(adap, cmd, size, access, ret);
375                 return ret;
376         }
377
378         /* Copy in the new mailbox command and send it on its way ... */
379         t4_record_mbox(adap, cmd, size, access, 0);
380         for (i = 0; i < size; i += 8)
381                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382
383         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384         t4_read_reg(adap, ctl_reg);          /* flush write */
385
386         delay_idx = 0;
387         ms = delay[0];
388
389         for (i = 0;
390              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391              i < timeout;
392              i += ms) {
393                 if (sleep_ok) {
394                         ms = delay[delay_idx];  /* last element may repeat */
395                         if (delay_idx < ARRAY_SIZE(delay) - 1)
396                                 delay_idx++;
397                         msleep(ms);
398                 } else
399                         mdelay(ms);
400
401                 v = t4_read_reg(adap, ctl_reg);
402                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403                         if (!(v & MBMSGVALID_F)) {
404                                 t4_write_reg(adap, ctl_reg, 0);
405                                 continue;
406                         }
407
408                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409                         res = be64_to_cpu(cmd_rpl[0]);
410
411                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412                                 fw_asrt(adap, data_reg);
413                                 res = FW_CMD_RETVAL_V(EIO);
414                         } else if (rpl) {
415                                 memcpy(rpl, cmd_rpl, size);
416                         }
417
418                         t4_write_reg(adap, ctl_reg, 0);
419
420                         execute = i + ms;
421                         t4_record_mbox(adap, cmd_rpl,
422                                        MBOX_LEN, access, execute);
423                         spin_lock_bh(&adap->mbox_lock);
424                         list_del(&entry.list);
425                         spin_unlock_bh(&adap->mbox_lock);
426                         return -FW_CMD_RETVAL_G((int)res);
427                 }
428         }
429
430         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431         t4_record_mbox(adap, cmd, size, access, ret);
432         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433                 *(const u8 *)cmd, mbox);
434         t4_report_fw_error(adap);
435         spin_lock_bh(&adap->mbox_lock);
436         list_del(&entry.list);
437         spin_unlock_bh(&adap->mbox_lock);
438         t4_fatal_err(adap);
439         return ret;
440 }
441
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443                     void *rpl, bool sleep_ok)
444 {
445         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446                                        FW_CMD_MAX_TIMEOUT);
447 }
448
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451         u32 edc_ecc_err_addr_reg;
452         u32 rdata_reg;
453
454         if (is_t4(adap->params.chip)) {
455                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456                 return 0;
457         }
458         if (idx != 0 && idx != 1) {
459                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460                 return 0;
461         }
462
463         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465
466         CH_WARN(adap,
467                 "edc%d err addr 0x%x: 0x%x.\n",
468                 idx, edc_ecc_err_addr_reg,
469                 t4_read_reg(adap, edc_ecc_err_addr_reg));
470         CH_WARN(adap,
471                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472                 rdata_reg,
473                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
474                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482
483         return 0;
484 }
485
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498                       u32 *mem_base, u32 *mem_aperture)
499 {
500         u32 edc_size, mc_size, mem_reg;
501
502         /* Offset into the region of memory which is being accessed
503          * MEM_EDC0 = 0
504          * MEM_EDC1 = 1
505          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507          * MEM_HMA  = 4
508          */
509         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510         if (mtype == MEM_HMA) {
511                 *mem_off = 2 * (edc_size * 1024 * 1024);
512         } else if (mtype != MEM_MC1) {
513                 *mem_off = (mtype * (edc_size * 1024 * 1024));
514         } else {
515                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516                                                       MA_EXT_MEMORY0_BAR_A));
517                 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518         }
519
520         /* Each PCI-E Memory Window is programmed with a window size -- or
521          * "aperture" -- which controls the granularity of its mapping onto
522          * adapter memory.  We need to grab that aperture in order to know
523          * how to use the specified window.  The window is also programmed
524          * with the base address of the Memory Window in BAR0's address
525          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526          * the address is relative to BAR0.
527          */
528         mem_reg = t4_read_reg(adap,
529                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530                                                   win));
531         /* a dead adapter will return 0xffffffff for PIO reads */
532         if (mem_reg == 0xffffffff)
533                 return -ENXIO;
534
535         *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536         *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537         if (is_t4(adap->params.chip))
538                 *mem_base -= adap->t4_bar0;
539
540         return 0;
541 }
542
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553         t4_write_reg(adap,
554                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555                      addr);
556         /* Read it back to ensure that changes propagate before we
557          * attempt to use the new value.
558          */
559         t4_read_reg(adap,
560                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574                            int dir)
575 {
576         union {
577                 u32 word;
578                 char byte[4];
579         } last;
580         unsigned char *bp;
581         int i;
582
583         if (dir == T4_MEMORY_READ) {
584                 last.word = le32_to_cpu((__force __le32)
585                                         t4_read_reg(adap, addr));
586                 for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587                         bp[i] = last.byte[i];
588         } else {
589                 last.word = *buf;
590                 for (i = off; i < 4; i++)
591                         last.byte[i] = 0;
592                 t4_write_reg(adap, addr,
593                              (__force u32)cpu_to_le32(last.word));
594         }
595 }
596
597 /**
598  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *      @adap: the adapter
600  *      @win: PCI-E Memory Window to use
601  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *      @addr: address within indicated memory type
603  *      @len: amount of memory to transfer
604  *      @hbuf: host memory buffer
605  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *      firmware memory address and host buffer must be aligned on 32-bit
609  *      boundaries; the length may be arbitrary.  The memory is transferred as
610  *      a raw byte sequence from/to the firmware's memory.  If this memory
611  *      contains data structures which contain multi-byte integers, it's the
612  *      caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615                  u32 len, void *hbuf, int dir)
616 {
617         u32 pos, offset, resid, memoffset;
618         u32 win_pf, mem_aperture, mem_base;
619         u32 *buf;
620         int ret;
621
622         /* Argument sanity checks ...
623          */
624         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625                 return -EINVAL;
626         buf = (u32 *)hbuf;
627
628         /* It's convenient to be able to handle lengths which aren't a
629          * multiple of 32-bits because we often end up transferring files to
630          * the firmware.  So we'll handle that by normalizing the length here
631          * and then handling any residual transfer at the end.
632          */
633         resid = len & 0x3;
634         len -= resid;
635
636         ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637                                 &mem_aperture);
638         if (ret)
639                 return ret;
640
641         /* Determine the PCIE_MEM_ACCESS_OFFSET */
642         addr = addr + memoffset;
643
644         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645
646         /* Calculate our initial PCI-E Memory Window Position and Offset into
647          * that Window.
648          */
649         pos = addr & ~(mem_aperture - 1);
650         offset = addr - pos;
651
652         /* Set up initial PCI-E Memory Window to cover the start of our
653          * transfer.
654          */
655         t4_memory_update_win(adap, win, pos | win_pf);
656
657         /* Transfer data to/from the adapter as long as there's an integral
658          * number of 32-bit transfers to complete.
659          *
660          * A note on Endianness issues:
661          *
662          * The "register" reads and writes below from/to the PCI-E Memory
663          * Window invoke the standard adapter Big-Endian to PCI-E Link
664          * Little-Endian "swizzel."  As a result, if we have the following
665          * data in adapter memory:
666          *
667          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668          *     Address:      i+0  i+1  i+2  i+3
669          *
670          * Then a read of the adapter memory via the PCI-E Memory Window
671          * will yield:
672          *
673          *     x = readl(i)
674          *         31                  0
675          *         [ b3 | b2 | b1 | b0 ]
676          *
677          * If this value is stored into local memory on a Little-Endian system
678          * it will show up correctly in local memory as:
679          *
680          *     ( ..., b0, b1, b2, b3, ... )
681          *
682          * But on a Big-Endian system, the store will show up in memory
683          * incorrectly swizzled as:
684          *
685          *     ( ..., b3, b2, b1, b0, ... )
686          *
687          * So we need to account for this in the reads and writes to the
688          * PCI-E Memory Window below by undoing the register read/write
689          * swizzels.
690          */
691         while (len > 0) {
692                 if (dir == T4_MEMORY_READ)
693                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694                                                 mem_base + offset));
695                 else
696                         t4_write_reg(adap, mem_base + offset,
697                                      (__force u32)cpu_to_le32(*buf++));
698                 offset += sizeof(__be32);
699                 len -= sizeof(__be32);
700
701                 /* If we've reached the end of our current window aperture,
702                  * move the PCI-E Memory Window on to the next.  Note that
703                  * doing this here after "len" may be 0 allows us to set up
704                  * the PCI-E Memory Window for a possible final residual
705                  * transfer below ...
706                  */
707                 if (offset == mem_aperture) {
708                         pos += mem_aperture;
709                         offset = 0;
710                         t4_memory_update_win(adap, win, pos | win_pf);
711                 }
712         }
713
714         /* If the original transfer had a length which wasn't a multiple of
715          * 32-bits, now's where we need to finish off the transfer of the
716          * residual amount.  The PCI-E Memory Window has already been moved
717          * above (if necessary) to cover this final transfer.
718          */
719         if (resid)
720                 t4_memory_rw_residual(adap, resid, mem_base + offset,
721                                       (u8 *)buf, dir);
722
723         return 0;
724 }
725
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733         u32 val, ldst_addrspace;
734
735         /* If fw_attach != 0, construct and send the Firmware LDST Command to
736          * retrieve the specified PCI-E Configuration Space register.
737          */
738         struct fw_ldst_cmd ldst_cmd;
739         int ret;
740
741         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744                                                FW_CMD_REQUEST_F |
745                                                FW_CMD_READ_F |
746                                                ldst_addrspace);
747         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749         ldst_cmd.u.pcie.ctrl_to_fn =
750                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751         ldst_cmd.u.pcie.r = reg;
752
753         /* If the LDST Command succeeds, return the result, otherwise
754          * fall through to reading it directly ourselves ...
755          */
756         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757                          &ldst_cmd);
758         if (ret == 0)
759                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760         else
761                 /* Read the desired Configuration Space register via the PCI-E
762                  * Backdoor mechanism.
763                  */
764                 t4_hw_pci_read_cfg4(adap, reg, &val);
765         return val;
766 }
767
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773                          u32 memwin_base)
774 {
775         u32 ret;
776
777         if (is_t4(adap->params.chip)) {
778                 u32 bar0;
779
780                 /* Truncation intentional: we only read the bottom 32-bits of
781                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782                  * mechanism to read BAR0 instead of using
783                  * pci_resource_start() because we could be operating from
784                  * within a Virtual Machine which is trapping our accesses to
785                  * our Configuration Space and we need to set up the PCI-E
786                  * Memory Window decoders with the actual addresses which will
787                  * be coming across the PCI-E link.
788                  */
789                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
790                 bar0 &= pci_mask;
791                 adap->t4_bar0 = bar0;
792
793                 ret = bar0 + memwin_base;
794         } else {
795                 /* For T5, only relative offset inside the PCIe BAR is passed */
796                 ret = memwin_base;
797         }
798         return ret;
799 }
800
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814         t4_write_reg(adap,
815                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816                      memwin_base | BIR_V(0) |
817                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818         t4_read_reg(adap,
819                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821
822 /**
823  *      t4_get_regs_len - return the size of the chips register set
824  *      @adapter: the adapter
825  *
826  *      Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831
832         switch (chip_version) {
833         case CHELSIO_T4:
834                 return T4_REGMAP_SIZE;
835
836         case CHELSIO_T5:
837         case CHELSIO_T6:
838                 return T5_REGMAP_SIZE;
839         }
840
841         dev_err(adapter->pdev_dev,
842                 "Unsupported chip version %d\n", chip_version);
843         return 0;
844 }
845
846 /**
847  *      t4_get_regs - read chip registers into provided buffer
848  *      @adap: the adapter
849  *      @buf: register buffer
850  *      @buf_size: size (in bytes) of register buffer
851  *
852  *      If the provided register buffer isn't large enough for the chip's
853  *      full register range, the register dump will be truncated to the
854  *      register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858         static const unsigned int t4_reg_ranges[] = {
859                 0x1008, 0x1108,
860                 0x1180, 0x1184,
861                 0x1190, 0x1194,
862                 0x11a0, 0x11a4,
863                 0x11b0, 0x11b4,
864                 0x11fc, 0x123c,
865                 0x1300, 0x173c,
866                 0x1800, 0x18fc,
867                 0x3000, 0x30d8,
868                 0x30e0, 0x30e4,
869                 0x30ec, 0x5910,
870                 0x5920, 0x5924,
871                 0x5960, 0x5960,
872                 0x5968, 0x5968,
873                 0x5970, 0x5970,
874                 0x5978, 0x5978,
875                 0x5980, 0x5980,
876                 0x5988, 0x5988,
877                 0x5990, 0x5990,
878                 0x5998, 0x5998,
879                 0x59a0, 0x59d4,
880                 0x5a00, 0x5ae0,
881                 0x5ae8, 0x5ae8,
882                 0x5af0, 0x5af0,
883                 0x5af8, 0x5af8,
884                 0x6000, 0x6098,
885                 0x6100, 0x6150,
886                 0x6200, 0x6208,
887                 0x6240, 0x6248,
888                 0x6280, 0x62b0,
889                 0x62c0, 0x6338,
890                 0x6370, 0x638c,
891                 0x6400, 0x643c,
892                 0x6500, 0x6524,
893                 0x6a00, 0x6a04,
894                 0x6a14, 0x6a38,
895                 0x6a60, 0x6a70,
896                 0x6a78, 0x6a78,
897                 0x6b00, 0x6b0c,
898                 0x6b1c, 0x6b84,
899                 0x6bf0, 0x6bf8,
900                 0x6c00, 0x6c0c,
901                 0x6c1c, 0x6c84,
902                 0x6cf0, 0x6cf8,
903                 0x6d00, 0x6d0c,
904                 0x6d1c, 0x6d84,
905                 0x6df0, 0x6df8,
906                 0x6e00, 0x6e0c,
907                 0x6e1c, 0x6e84,
908                 0x6ef0, 0x6ef8,
909                 0x6f00, 0x6f0c,
910                 0x6f1c, 0x6f84,
911                 0x6ff0, 0x6ff8,
912                 0x7000, 0x700c,
913                 0x701c, 0x7084,
914                 0x70f0, 0x70f8,
915                 0x7100, 0x710c,
916                 0x711c, 0x7184,
917                 0x71f0, 0x71f8,
918                 0x7200, 0x720c,
919                 0x721c, 0x7284,
920                 0x72f0, 0x72f8,
921                 0x7300, 0x730c,
922                 0x731c, 0x7384,
923                 0x73f0, 0x73f8,
924                 0x7400, 0x7450,
925                 0x7500, 0x7530,
926                 0x7600, 0x760c,
927                 0x7614, 0x761c,
928                 0x7680, 0x76cc,
929                 0x7700, 0x7798,
930                 0x77c0, 0x77fc,
931                 0x7900, 0x79fc,
932                 0x7b00, 0x7b58,
933                 0x7b60, 0x7b84,
934                 0x7b8c, 0x7c38,
935                 0x7d00, 0x7d38,
936                 0x7d40, 0x7d80,
937                 0x7d8c, 0x7ddc,
938                 0x7de4, 0x7e04,
939                 0x7e10, 0x7e1c,
940                 0x7e24, 0x7e38,
941                 0x7e40, 0x7e44,
942                 0x7e4c, 0x7e78,
943                 0x7e80, 0x7ea4,
944                 0x7eac, 0x7edc,
945                 0x7ee8, 0x7efc,
946                 0x8dc0, 0x8e04,
947                 0x8e10, 0x8e1c,
948                 0x8e30, 0x8e78,
949                 0x8ea0, 0x8eb8,
950                 0x8ec0, 0x8f6c,
951                 0x8fc0, 0x9008,
952                 0x9010, 0x9058,
953                 0x9060, 0x9060,
954                 0x9068, 0x9074,
955                 0x90fc, 0x90fc,
956                 0x9400, 0x9408,
957                 0x9410, 0x9458,
958                 0x9600, 0x9600,
959                 0x9608, 0x9638,
960                 0x9640, 0x96bc,
961                 0x9800, 0x9808,
962                 0x9820, 0x983c,
963                 0x9850, 0x9864,
964                 0x9c00, 0x9c6c,
965                 0x9c80, 0x9cec,
966                 0x9d00, 0x9d6c,
967                 0x9d80, 0x9dec,
968                 0x9e00, 0x9e6c,
969                 0x9e80, 0x9eec,
970                 0x9f00, 0x9f6c,
971                 0x9f80, 0x9fec,
972                 0xd004, 0xd004,
973                 0xd010, 0xd03c,
974                 0xdfc0, 0xdfe0,
975                 0xe000, 0xea7c,
976                 0xf000, 0x11110,
977                 0x11118, 0x11190,
978                 0x19040, 0x1906c,
979                 0x19078, 0x19080,
980                 0x1908c, 0x190e4,
981                 0x190f0, 0x190f8,
982                 0x19100, 0x19110,
983                 0x19120, 0x19124,
984                 0x19150, 0x19194,
985                 0x1919c, 0x191b0,
986                 0x191d0, 0x191e8,
987                 0x19238, 0x1924c,
988                 0x193f8, 0x1943c,
989                 0x1944c, 0x19474,
990                 0x19490, 0x194e0,
991                 0x194f0, 0x194f8,
992                 0x19800, 0x19c08,
993                 0x19c10, 0x19c90,
994                 0x19ca0, 0x19ce4,
995                 0x19cf0, 0x19d40,
996                 0x19d50, 0x19d94,
997                 0x19da0, 0x19de8,
998                 0x19df0, 0x19e40,
999                 0x19e50, 0x19e90,
1000                 0x19ea0, 0x19f4c,
1001                 0x1a000, 0x1a004,
1002                 0x1a010, 0x1a06c,
1003                 0x1a0b0, 0x1a0e4,
1004                 0x1a0ec, 0x1a0f4,
1005                 0x1a100, 0x1a108,
1006                 0x1a114, 0x1a120,
1007                 0x1a128, 0x1a130,
1008                 0x1a138, 0x1a138,
1009                 0x1a190, 0x1a1c4,
1010                 0x1a1fc, 0x1a1fc,
1011                 0x1e040, 0x1e04c,
1012                 0x1e284, 0x1e28c,
1013                 0x1e2c0, 0x1e2c0,
1014                 0x1e2e0, 0x1e2e0,
1015                 0x1e300, 0x1e384,
1016                 0x1e3c0, 0x1e3c8,
1017                 0x1e440, 0x1e44c,
1018                 0x1e684, 0x1e68c,
1019                 0x1e6c0, 0x1e6c0,
1020                 0x1e6e0, 0x1e6e0,
1021                 0x1e700, 0x1e784,
1022                 0x1e7c0, 0x1e7c8,
1023                 0x1e840, 0x1e84c,
1024                 0x1ea84, 0x1ea8c,
1025                 0x1eac0, 0x1eac0,
1026                 0x1eae0, 0x1eae0,
1027                 0x1eb00, 0x1eb84,
1028                 0x1ebc0, 0x1ebc8,
1029                 0x1ec40, 0x1ec4c,
1030                 0x1ee84, 0x1ee8c,
1031                 0x1eec0, 0x1eec0,
1032                 0x1eee0, 0x1eee0,
1033                 0x1ef00, 0x1ef84,
1034                 0x1efc0, 0x1efc8,
1035                 0x1f040, 0x1f04c,
1036                 0x1f284, 0x1f28c,
1037                 0x1f2c0, 0x1f2c0,
1038                 0x1f2e0, 0x1f2e0,
1039                 0x1f300, 0x1f384,
1040                 0x1f3c0, 0x1f3c8,
1041                 0x1f440, 0x1f44c,
1042                 0x1f684, 0x1f68c,
1043                 0x1f6c0, 0x1f6c0,
1044                 0x1f6e0, 0x1f6e0,
1045                 0x1f700, 0x1f784,
1046                 0x1f7c0, 0x1f7c8,
1047                 0x1f840, 0x1f84c,
1048                 0x1fa84, 0x1fa8c,
1049                 0x1fac0, 0x1fac0,
1050                 0x1fae0, 0x1fae0,
1051                 0x1fb00, 0x1fb84,
1052                 0x1fbc0, 0x1fbc8,
1053                 0x1fc40, 0x1fc4c,
1054                 0x1fe84, 0x1fe8c,
1055                 0x1fec0, 0x1fec0,
1056                 0x1fee0, 0x1fee0,
1057                 0x1ff00, 0x1ff84,
1058                 0x1ffc0, 0x1ffc8,
1059                 0x20000, 0x2002c,
1060                 0x20100, 0x2013c,
1061                 0x20190, 0x201a0,
1062                 0x201a8, 0x201b8,
1063                 0x201c4, 0x201c8,
1064                 0x20200, 0x20318,
1065                 0x20400, 0x204b4,
1066                 0x204c0, 0x20528,
1067                 0x20540, 0x20614,
1068                 0x21000, 0x21040,
1069                 0x2104c, 0x21060,
1070                 0x210c0, 0x210ec,
1071                 0x21200, 0x21268,
1072                 0x21270, 0x21284,
1073                 0x212fc, 0x21388,
1074                 0x21400, 0x21404,
1075                 0x21500, 0x21500,
1076                 0x21510, 0x21518,
1077                 0x2152c, 0x21530,
1078                 0x2153c, 0x2153c,
1079                 0x21550, 0x21554,
1080                 0x21600, 0x21600,
1081                 0x21608, 0x2161c,
1082                 0x21624, 0x21628,
1083                 0x21630, 0x21634,
1084                 0x2163c, 0x2163c,
1085                 0x21700, 0x2171c,
1086                 0x21780, 0x2178c,
1087                 0x21800, 0x21818,
1088                 0x21820, 0x21828,
1089                 0x21830, 0x21848,
1090                 0x21850, 0x21854,
1091                 0x21860, 0x21868,
1092                 0x21870, 0x21870,
1093                 0x21878, 0x21898,
1094                 0x218a0, 0x218a8,
1095                 0x218b0, 0x218c8,
1096                 0x218d0, 0x218d4,
1097                 0x218e0, 0x218e8,
1098                 0x218f0, 0x218f0,
1099                 0x218f8, 0x21a18,
1100                 0x21a20, 0x21a28,
1101                 0x21a30, 0x21a48,
1102                 0x21a50, 0x21a54,
1103                 0x21a60, 0x21a68,
1104                 0x21a70, 0x21a70,
1105                 0x21a78, 0x21a98,
1106                 0x21aa0, 0x21aa8,
1107                 0x21ab0, 0x21ac8,
1108                 0x21ad0, 0x21ad4,
1109                 0x21ae0, 0x21ae8,
1110                 0x21af0, 0x21af0,
1111                 0x21af8, 0x21c18,
1112                 0x21c20, 0x21c20,
1113                 0x21c28, 0x21c30,
1114                 0x21c38, 0x21c38,
1115                 0x21c80, 0x21c98,
1116                 0x21ca0, 0x21ca8,
1117                 0x21cb0, 0x21cc8,
1118                 0x21cd0, 0x21cd4,
1119                 0x21ce0, 0x21ce8,
1120                 0x21cf0, 0x21cf0,
1121                 0x21cf8, 0x21d7c,
1122                 0x21e00, 0x21e04,
1123                 0x22000, 0x2202c,
1124                 0x22100, 0x2213c,
1125                 0x22190, 0x221a0,
1126                 0x221a8, 0x221b8,
1127                 0x221c4, 0x221c8,
1128                 0x22200, 0x22318,
1129                 0x22400, 0x224b4,
1130                 0x224c0, 0x22528,
1131                 0x22540, 0x22614,
1132                 0x23000, 0x23040,
1133                 0x2304c, 0x23060,
1134                 0x230c0, 0x230ec,
1135                 0x23200, 0x23268,
1136                 0x23270, 0x23284,
1137                 0x232fc, 0x23388,
1138                 0x23400, 0x23404,
1139                 0x23500, 0x23500,
1140                 0x23510, 0x23518,
1141                 0x2352c, 0x23530,
1142                 0x2353c, 0x2353c,
1143                 0x23550, 0x23554,
1144                 0x23600, 0x23600,
1145                 0x23608, 0x2361c,
1146                 0x23624, 0x23628,
1147                 0x23630, 0x23634,
1148                 0x2363c, 0x2363c,
1149                 0x23700, 0x2371c,
1150                 0x23780, 0x2378c,
1151                 0x23800, 0x23818,
1152                 0x23820, 0x23828,
1153                 0x23830, 0x23848,
1154                 0x23850, 0x23854,
1155                 0x23860, 0x23868,
1156                 0x23870, 0x23870,
1157                 0x23878, 0x23898,
1158                 0x238a0, 0x238a8,
1159                 0x238b0, 0x238c8,
1160                 0x238d0, 0x238d4,
1161                 0x238e0, 0x238e8,
1162                 0x238f0, 0x238f0,
1163                 0x238f8, 0x23a18,
1164                 0x23a20, 0x23a28,
1165                 0x23a30, 0x23a48,
1166                 0x23a50, 0x23a54,
1167                 0x23a60, 0x23a68,
1168                 0x23a70, 0x23a70,
1169                 0x23a78, 0x23a98,
1170                 0x23aa0, 0x23aa8,
1171                 0x23ab0, 0x23ac8,
1172                 0x23ad0, 0x23ad4,
1173                 0x23ae0, 0x23ae8,
1174                 0x23af0, 0x23af0,
1175                 0x23af8, 0x23c18,
1176                 0x23c20, 0x23c20,
1177                 0x23c28, 0x23c30,
1178                 0x23c38, 0x23c38,
1179                 0x23c80, 0x23c98,
1180                 0x23ca0, 0x23ca8,
1181                 0x23cb0, 0x23cc8,
1182                 0x23cd0, 0x23cd4,
1183                 0x23ce0, 0x23ce8,
1184                 0x23cf0, 0x23cf0,
1185                 0x23cf8, 0x23d7c,
1186                 0x23e00, 0x23e04,
1187                 0x24000, 0x2402c,
1188                 0x24100, 0x2413c,
1189                 0x24190, 0x241a0,
1190                 0x241a8, 0x241b8,
1191                 0x241c4, 0x241c8,
1192                 0x24200, 0x24318,
1193                 0x24400, 0x244b4,
1194                 0x244c0, 0x24528,
1195                 0x24540, 0x24614,
1196                 0x25000, 0x25040,
1197                 0x2504c, 0x25060,
1198                 0x250c0, 0x250ec,
1199                 0x25200, 0x25268,
1200                 0x25270, 0x25284,
1201                 0x252fc, 0x25388,
1202                 0x25400, 0x25404,
1203                 0x25500, 0x25500,
1204                 0x25510, 0x25518,
1205                 0x2552c, 0x25530,
1206                 0x2553c, 0x2553c,
1207                 0x25550, 0x25554,
1208                 0x25600, 0x25600,
1209                 0x25608, 0x2561c,
1210                 0x25624, 0x25628,
1211                 0x25630, 0x25634,
1212                 0x2563c, 0x2563c,
1213                 0x25700, 0x2571c,
1214                 0x25780, 0x2578c,
1215                 0x25800, 0x25818,
1216                 0x25820, 0x25828,
1217                 0x25830, 0x25848,
1218                 0x25850, 0x25854,
1219                 0x25860, 0x25868,
1220                 0x25870, 0x25870,
1221                 0x25878, 0x25898,
1222                 0x258a0, 0x258a8,
1223                 0x258b0, 0x258c8,
1224                 0x258d0, 0x258d4,
1225                 0x258e0, 0x258e8,
1226                 0x258f0, 0x258f0,
1227                 0x258f8, 0x25a18,
1228                 0x25a20, 0x25a28,
1229                 0x25a30, 0x25a48,
1230                 0x25a50, 0x25a54,
1231                 0x25a60, 0x25a68,
1232                 0x25a70, 0x25a70,
1233                 0x25a78, 0x25a98,
1234                 0x25aa0, 0x25aa8,
1235                 0x25ab0, 0x25ac8,
1236                 0x25ad0, 0x25ad4,
1237                 0x25ae0, 0x25ae8,
1238                 0x25af0, 0x25af0,
1239                 0x25af8, 0x25c18,
1240                 0x25c20, 0x25c20,
1241                 0x25c28, 0x25c30,
1242                 0x25c38, 0x25c38,
1243                 0x25c80, 0x25c98,
1244                 0x25ca0, 0x25ca8,
1245                 0x25cb0, 0x25cc8,
1246                 0x25cd0, 0x25cd4,
1247                 0x25ce0, 0x25ce8,
1248                 0x25cf0, 0x25cf0,
1249                 0x25cf8, 0x25d7c,
1250                 0x25e00, 0x25e04,
1251                 0x26000, 0x2602c,
1252                 0x26100, 0x2613c,
1253                 0x26190, 0x261a0,
1254                 0x261a8, 0x261b8,
1255                 0x261c4, 0x261c8,
1256                 0x26200, 0x26318,
1257                 0x26400, 0x264b4,
1258                 0x264c0, 0x26528,
1259                 0x26540, 0x26614,
1260                 0x27000, 0x27040,
1261                 0x2704c, 0x27060,
1262                 0x270c0, 0x270ec,
1263                 0x27200, 0x27268,
1264                 0x27270, 0x27284,
1265                 0x272fc, 0x27388,
1266                 0x27400, 0x27404,
1267                 0x27500, 0x27500,
1268                 0x27510, 0x27518,
1269                 0x2752c, 0x27530,
1270                 0x2753c, 0x2753c,
1271                 0x27550, 0x27554,
1272                 0x27600, 0x27600,
1273                 0x27608, 0x2761c,
1274                 0x27624, 0x27628,
1275                 0x27630, 0x27634,
1276                 0x2763c, 0x2763c,
1277                 0x27700, 0x2771c,
1278                 0x27780, 0x2778c,
1279                 0x27800, 0x27818,
1280                 0x27820, 0x27828,
1281                 0x27830, 0x27848,
1282                 0x27850, 0x27854,
1283                 0x27860, 0x27868,
1284                 0x27870, 0x27870,
1285                 0x27878, 0x27898,
1286                 0x278a0, 0x278a8,
1287                 0x278b0, 0x278c8,
1288                 0x278d0, 0x278d4,
1289                 0x278e0, 0x278e8,
1290                 0x278f0, 0x278f0,
1291                 0x278f8, 0x27a18,
1292                 0x27a20, 0x27a28,
1293                 0x27a30, 0x27a48,
1294                 0x27a50, 0x27a54,
1295                 0x27a60, 0x27a68,
1296                 0x27a70, 0x27a70,
1297                 0x27a78, 0x27a98,
1298                 0x27aa0, 0x27aa8,
1299                 0x27ab0, 0x27ac8,
1300                 0x27ad0, 0x27ad4,
1301                 0x27ae0, 0x27ae8,
1302                 0x27af0, 0x27af0,
1303                 0x27af8, 0x27c18,
1304                 0x27c20, 0x27c20,
1305                 0x27c28, 0x27c30,
1306                 0x27c38, 0x27c38,
1307                 0x27c80, 0x27c98,
1308                 0x27ca0, 0x27ca8,
1309                 0x27cb0, 0x27cc8,
1310                 0x27cd0, 0x27cd4,
1311                 0x27ce0, 0x27ce8,
1312                 0x27cf0, 0x27cf0,
1313                 0x27cf8, 0x27d7c,
1314                 0x27e00, 0x27e04,
1315         };
1316
1317         static const unsigned int t5_reg_ranges[] = {
1318                 0x1008, 0x10c0,
1319                 0x10cc, 0x10f8,
1320                 0x1100, 0x1100,
1321                 0x110c, 0x1148,
1322                 0x1180, 0x1184,
1323                 0x1190, 0x1194,
1324                 0x11a0, 0x11a4,
1325                 0x11b0, 0x11b4,
1326                 0x11fc, 0x123c,
1327                 0x1280, 0x173c,
1328                 0x1800, 0x18fc,
1329                 0x3000, 0x3028,
1330                 0x3060, 0x30b0,
1331                 0x30b8, 0x30d8,
1332                 0x30e0, 0x30fc,
1333                 0x3140, 0x357c,
1334                 0x35a8, 0x35cc,
1335                 0x35ec, 0x35ec,
1336                 0x3600, 0x5624,
1337                 0x56cc, 0x56ec,
1338                 0x56f4, 0x5720,
1339                 0x5728, 0x575c,
1340                 0x580c, 0x5814,
1341                 0x5890, 0x589c,
1342                 0x58a4, 0x58ac,
1343                 0x58b8, 0x58bc,
1344                 0x5940, 0x59c8,
1345                 0x59d0, 0x59dc,
1346                 0x59fc, 0x5a18,
1347                 0x5a60, 0x5a70,
1348                 0x5a80, 0x5a9c,
1349                 0x5b94, 0x5bfc,
1350                 0x6000, 0x6020,
1351                 0x6028, 0x6040,
1352                 0x6058, 0x609c,
1353                 0x60a8, 0x614c,
1354                 0x7700, 0x7798,
1355                 0x77c0, 0x78fc,
1356                 0x7b00, 0x7b58,
1357                 0x7b60, 0x7b84,
1358                 0x7b8c, 0x7c54,
1359                 0x7d00, 0x7d38,
1360                 0x7d40, 0x7d80,
1361                 0x7d8c, 0x7ddc,
1362                 0x7de4, 0x7e04,
1363                 0x7e10, 0x7e1c,
1364                 0x7e24, 0x7e38,
1365                 0x7e40, 0x7e44,
1366                 0x7e4c, 0x7e78,
1367                 0x7e80, 0x7edc,
1368                 0x7ee8, 0x7efc,
1369                 0x8dc0, 0x8de0,
1370                 0x8df8, 0x8e04,
1371                 0x8e10, 0x8e84,
1372                 0x8ea0, 0x8f84,
1373                 0x8fc0, 0x9058,
1374                 0x9060, 0x9060,
1375                 0x9068, 0x90f8,
1376                 0x9400, 0x9408,
1377                 0x9410, 0x9470,
1378                 0x9600, 0x9600,
1379                 0x9608, 0x9638,
1380                 0x9640, 0x96f4,
1381                 0x9800, 0x9808,
1382                 0x9810, 0x9864,
1383                 0x9c00, 0x9c6c,
1384                 0x9c80, 0x9cec,
1385                 0x9d00, 0x9d6c,
1386                 0x9d80, 0x9dec,
1387                 0x9e00, 0x9e6c,
1388                 0x9e80, 0x9eec,
1389                 0x9f00, 0x9f6c,
1390                 0x9f80, 0xa020,
1391                 0xd000, 0xd004,
1392                 0xd010, 0xd03c,
1393                 0xdfc0, 0xdfe0,
1394                 0xe000, 0x1106c,
1395                 0x11074, 0x11088,
1396                 0x1109c, 0x1117c,
1397                 0x11190, 0x11204,
1398                 0x19040, 0x1906c,
1399                 0x19078, 0x19080,
1400                 0x1908c, 0x190e8,
1401                 0x190f0, 0x190f8,
1402                 0x19100, 0x19110,
1403                 0x19120, 0x19124,
1404                 0x19150, 0x19194,
1405                 0x1919c, 0x191b0,
1406                 0x191d0, 0x191e8,
1407                 0x19238, 0x19290,
1408                 0x193f8, 0x19428,
1409                 0x19430, 0x19444,
1410                 0x1944c, 0x1946c,
1411                 0x19474, 0x19474,
1412                 0x19490, 0x194cc,
1413                 0x194f0, 0x194f8,
1414                 0x19c00, 0x19c08,
1415                 0x19c10, 0x19c60,
1416                 0x19c94, 0x19ce4,
1417                 0x19cf0, 0x19d40,
1418                 0x19d50, 0x19d94,
1419                 0x19da0, 0x19de8,
1420                 0x19df0, 0x19e10,
1421                 0x19e50, 0x19e90,
1422                 0x19ea0, 0x19f24,
1423                 0x19f34, 0x19f34,
1424                 0x19f40, 0x19f50,
1425                 0x19f90, 0x19fb4,
1426                 0x19fc4, 0x19fe4,
1427                 0x1a000, 0x1a004,
1428                 0x1a010, 0x1a06c,
1429                 0x1a0b0, 0x1a0e4,
1430                 0x1a0ec, 0x1a0f8,
1431                 0x1a100, 0x1a108,
1432                 0x1a114, 0x1a130,
1433                 0x1a138, 0x1a1c4,
1434                 0x1a1fc, 0x1a1fc,
1435                 0x1e008, 0x1e00c,
1436                 0x1e040, 0x1e044,
1437                 0x1e04c, 0x1e04c,
1438                 0x1e284, 0x1e290,
1439                 0x1e2c0, 0x1e2c0,
1440                 0x1e2e0, 0x1e2e0,
1441                 0x1e300, 0x1e384,
1442                 0x1e3c0, 0x1e3c8,
1443                 0x1e408, 0x1e40c,
1444                 0x1e440, 0x1e444,
1445                 0x1e44c, 0x1e44c,
1446                 0x1e684, 0x1e690,
1447                 0x1e6c0, 0x1e6c0,
1448                 0x1e6e0, 0x1e6e0,
1449                 0x1e700, 0x1e784,
1450                 0x1e7c0, 0x1e7c8,
1451                 0x1e808, 0x1e80c,
1452                 0x1e840, 0x1e844,
1453                 0x1e84c, 0x1e84c,
1454                 0x1ea84, 0x1ea90,
1455                 0x1eac0, 0x1eac0,
1456                 0x1eae0, 0x1eae0,
1457                 0x1eb00, 0x1eb84,
1458                 0x1ebc0, 0x1ebc8,
1459                 0x1ec08, 0x1ec0c,
1460                 0x1ec40, 0x1ec44,
1461                 0x1ec4c, 0x1ec4c,
1462                 0x1ee84, 0x1ee90,
1463                 0x1eec0, 0x1eec0,
1464                 0x1eee0, 0x1eee0,
1465                 0x1ef00, 0x1ef84,
1466                 0x1efc0, 0x1efc8,
1467                 0x1f008, 0x1f00c,
1468                 0x1f040, 0x1f044,
1469                 0x1f04c, 0x1f04c,
1470                 0x1f284, 0x1f290,
1471                 0x1f2c0, 0x1f2c0,
1472                 0x1f2e0, 0x1f2e0,
1473                 0x1f300, 0x1f384,
1474                 0x1f3c0, 0x1f3c8,
1475                 0x1f408, 0x1f40c,
1476                 0x1f440, 0x1f444,
1477                 0x1f44c, 0x1f44c,
1478                 0x1f684, 0x1f690,
1479                 0x1f6c0, 0x1f6c0,
1480                 0x1f6e0, 0x1f6e0,
1481                 0x1f700, 0x1f784,
1482                 0x1f7c0, 0x1f7c8,
1483                 0x1f808, 0x1f80c,
1484                 0x1f840, 0x1f844,
1485                 0x1f84c, 0x1f84c,
1486                 0x1fa84, 0x1fa90,
1487                 0x1fac0, 0x1fac0,
1488                 0x1fae0, 0x1fae0,
1489                 0x1fb00, 0x1fb84,
1490                 0x1fbc0, 0x1fbc8,
1491                 0x1fc08, 0x1fc0c,
1492                 0x1fc40, 0x1fc44,
1493                 0x1fc4c, 0x1fc4c,
1494                 0x1fe84, 0x1fe90,
1495                 0x1fec0, 0x1fec0,
1496                 0x1fee0, 0x1fee0,
1497                 0x1ff00, 0x1ff84,
1498                 0x1ffc0, 0x1ffc8,
1499                 0x30000, 0x30030,
1500                 0x30100, 0x30144,
1501                 0x30190, 0x301a0,
1502                 0x301a8, 0x301b8,
1503                 0x301c4, 0x301c8,
1504                 0x301d0, 0x301d0,
1505                 0x30200, 0x30318,
1506                 0x30400, 0x304b4,
1507                 0x304c0, 0x3052c,
1508                 0x30540, 0x3061c,
1509                 0x30800, 0x30828,
1510                 0x30834, 0x30834,
1511                 0x308c0, 0x30908,
1512                 0x30910, 0x309ac,
1513                 0x30a00, 0x30a14,
1514                 0x30a1c, 0x30a2c,
1515                 0x30a44, 0x30a50,
1516                 0x30a74, 0x30a74,
1517                 0x30a7c, 0x30afc,
1518                 0x30b08, 0x30c24,
1519                 0x30d00, 0x30d00,
1520                 0x30d08, 0x30d14,
1521                 0x30d1c, 0x30d20,
1522                 0x30d3c, 0x30d3c,
1523                 0x30d48, 0x30d50,
1524                 0x31200, 0x3120c,
1525                 0x31220, 0x31220,
1526                 0x31240, 0x31240,
1527                 0x31600, 0x3160c,
1528                 0x31a00, 0x31a1c,
1529                 0x31e00, 0x31e20,
1530                 0x31e38, 0x31e3c,
1531                 0x31e80, 0x31e80,
1532                 0x31e88, 0x31ea8,
1533                 0x31eb0, 0x31eb4,
1534                 0x31ec8, 0x31ed4,
1535                 0x31fb8, 0x32004,
1536                 0x32200, 0x32200,
1537                 0x32208, 0x32240,
1538                 0x32248, 0x32280,
1539                 0x32288, 0x322c0,
1540                 0x322c8, 0x322fc,
1541                 0x32600, 0x32630,
1542                 0x32a00, 0x32abc,
1543                 0x32b00, 0x32b10,
1544                 0x32b20, 0x32b30,
1545                 0x32b40, 0x32b50,
1546                 0x32b60, 0x32b70,
1547                 0x33000, 0x33028,
1548                 0x33030, 0x33048,
1549                 0x33060, 0x33068,
1550                 0x33070, 0x3309c,
1551                 0x330f0, 0x33128,
1552                 0x33130, 0x33148,
1553                 0x33160, 0x33168,
1554                 0x33170, 0x3319c,
1555                 0x331f0, 0x33238,
1556                 0x33240, 0x33240,
1557                 0x33248, 0x33250,
1558                 0x3325c, 0x33264,
1559                 0x33270, 0x332b8,
1560                 0x332c0, 0x332e4,
1561                 0x332f8, 0x33338,
1562                 0x33340, 0x33340,
1563                 0x33348, 0x33350,
1564                 0x3335c, 0x33364,
1565                 0x33370, 0x333b8,
1566                 0x333c0, 0x333e4,
1567                 0x333f8, 0x33428,
1568                 0x33430, 0x33448,
1569                 0x33460, 0x33468,
1570                 0x33470, 0x3349c,
1571                 0x334f0, 0x33528,
1572                 0x33530, 0x33548,
1573                 0x33560, 0x33568,
1574                 0x33570, 0x3359c,
1575                 0x335f0, 0x33638,
1576                 0x33640, 0x33640,
1577                 0x33648, 0x33650,
1578                 0x3365c, 0x33664,
1579                 0x33670, 0x336b8,
1580                 0x336c0, 0x336e4,
1581                 0x336f8, 0x33738,
1582                 0x33740, 0x33740,
1583                 0x33748, 0x33750,
1584                 0x3375c, 0x33764,
1585                 0x33770, 0x337b8,
1586                 0x337c0, 0x337e4,
1587                 0x337f8, 0x337fc,
1588                 0x33814, 0x33814,
1589                 0x3382c, 0x3382c,
1590                 0x33880, 0x3388c,
1591                 0x338e8, 0x338ec,
1592                 0x33900, 0x33928,
1593                 0x33930, 0x33948,
1594                 0x33960, 0x33968,
1595                 0x33970, 0x3399c,
1596                 0x339f0, 0x33a38,
1597                 0x33a40, 0x33a40,
1598                 0x33a48, 0x33a50,
1599                 0x33a5c, 0x33a64,
1600                 0x33a70, 0x33ab8,
1601                 0x33ac0, 0x33ae4,
1602                 0x33af8, 0x33b10,
1603                 0x33b28, 0x33b28,
1604                 0x33b3c, 0x33b50,
1605                 0x33bf0, 0x33c10,
1606                 0x33c28, 0x33c28,
1607                 0x33c3c, 0x33c50,
1608                 0x33cf0, 0x33cfc,
1609                 0x34000, 0x34030,
1610                 0x34100, 0x34144,
1611                 0x34190, 0x341a0,
1612                 0x341a8, 0x341b8,
1613                 0x341c4, 0x341c8,
1614                 0x341d0, 0x341d0,
1615                 0x34200, 0x34318,
1616                 0x34400, 0x344b4,
1617                 0x344c0, 0x3452c,
1618                 0x34540, 0x3461c,
1619                 0x34800, 0x34828,
1620                 0x34834, 0x34834,
1621                 0x348c0, 0x34908,
1622                 0x34910, 0x349ac,
1623                 0x34a00, 0x34a14,
1624                 0x34a1c, 0x34a2c,
1625                 0x34a44, 0x34a50,
1626                 0x34a74, 0x34a74,
1627                 0x34a7c, 0x34afc,
1628                 0x34b08, 0x34c24,
1629                 0x34d00, 0x34d00,
1630                 0x34d08, 0x34d14,
1631                 0x34d1c, 0x34d20,
1632                 0x34d3c, 0x34d3c,
1633                 0x34d48, 0x34d50,
1634                 0x35200, 0x3520c,
1635                 0x35220, 0x35220,
1636                 0x35240, 0x35240,
1637                 0x35600, 0x3560c,
1638                 0x35a00, 0x35a1c,
1639                 0x35e00, 0x35e20,
1640                 0x35e38, 0x35e3c,
1641                 0x35e80, 0x35e80,
1642                 0x35e88, 0x35ea8,
1643                 0x35eb0, 0x35eb4,
1644                 0x35ec8, 0x35ed4,
1645                 0x35fb8, 0x36004,
1646                 0x36200, 0x36200,
1647                 0x36208, 0x36240,
1648                 0x36248, 0x36280,
1649                 0x36288, 0x362c0,
1650                 0x362c8, 0x362fc,
1651                 0x36600, 0x36630,
1652                 0x36a00, 0x36abc,
1653                 0x36b00, 0x36b10,
1654                 0x36b20, 0x36b30,
1655                 0x36b40, 0x36b50,
1656                 0x36b60, 0x36b70,
1657                 0x37000, 0x37028,
1658                 0x37030, 0x37048,
1659                 0x37060, 0x37068,
1660                 0x37070, 0x3709c,
1661                 0x370f0, 0x37128,
1662                 0x37130, 0x37148,
1663                 0x37160, 0x37168,
1664                 0x37170, 0x3719c,
1665                 0x371f0, 0x37238,
1666                 0x37240, 0x37240,
1667                 0x37248, 0x37250,
1668                 0x3725c, 0x37264,
1669                 0x37270, 0x372b8,
1670                 0x372c0, 0x372e4,
1671                 0x372f8, 0x37338,
1672                 0x37340, 0x37340,
1673                 0x37348, 0x37350,
1674                 0x3735c, 0x37364,
1675                 0x37370, 0x373b8,
1676                 0x373c0, 0x373e4,
1677                 0x373f8, 0x37428,
1678                 0x37430, 0x37448,
1679                 0x37460, 0x37468,
1680                 0x37470, 0x3749c,
1681                 0x374f0, 0x37528,
1682                 0x37530, 0x37548,
1683                 0x37560, 0x37568,
1684                 0x37570, 0x3759c,
1685                 0x375f0, 0x37638,
1686                 0x37640, 0x37640,
1687                 0x37648, 0x37650,
1688                 0x3765c, 0x37664,
1689                 0x37670, 0x376b8,
1690                 0x376c0, 0x376e4,
1691                 0x376f8, 0x37738,
1692                 0x37740, 0x37740,
1693                 0x37748, 0x37750,
1694                 0x3775c, 0x37764,
1695                 0x37770, 0x377b8,
1696                 0x377c0, 0x377e4,
1697                 0x377f8, 0x377fc,
1698                 0x37814, 0x37814,
1699                 0x3782c, 0x3782c,
1700                 0x37880, 0x3788c,
1701                 0x378e8, 0x378ec,
1702                 0x37900, 0x37928,
1703                 0x37930, 0x37948,
1704                 0x37960, 0x37968,
1705                 0x37970, 0x3799c,
1706                 0x379f0, 0x37a38,
1707                 0x37a40, 0x37a40,
1708                 0x37a48, 0x37a50,
1709                 0x37a5c, 0x37a64,
1710                 0x37a70, 0x37ab8,
1711                 0x37ac0, 0x37ae4,
1712                 0x37af8, 0x37b10,
1713                 0x37b28, 0x37b28,
1714                 0x37b3c, 0x37b50,
1715                 0x37bf0, 0x37c10,
1716                 0x37c28, 0x37c28,
1717                 0x37c3c, 0x37c50,
1718                 0x37cf0, 0x37cfc,
1719                 0x38000, 0x38030,
1720                 0x38100, 0x38144,
1721                 0x38190, 0x381a0,
1722                 0x381a8, 0x381b8,
1723                 0x381c4, 0x381c8,
1724                 0x381d0, 0x381d0,
1725                 0x38200, 0x38318,
1726                 0x38400, 0x384b4,
1727                 0x384c0, 0x3852c,
1728                 0x38540, 0x3861c,
1729                 0x38800, 0x38828,
1730                 0x38834, 0x38834,
1731                 0x388c0, 0x38908,
1732                 0x38910, 0x389ac,
1733                 0x38a00, 0x38a14,
1734                 0x38a1c, 0x38a2c,
1735                 0x38a44, 0x38a50,
1736                 0x38a74, 0x38a74,
1737                 0x38a7c, 0x38afc,
1738                 0x38b08, 0x38c24,
1739                 0x38d00, 0x38d00,
1740                 0x38d08, 0x38d14,
1741                 0x38d1c, 0x38d20,
1742                 0x38d3c, 0x38d3c,
1743                 0x38d48, 0x38d50,
1744                 0x39200, 0x3920c,
1745                 0x39220, 0x39220,
1746                 0x39240, 0x39240,
1747                 0x39600, 0x3960c,
1748                 0x39a00, 0x39a1c,
1749                 0x39e00, 0x39e20,
1750                 0x39e38, 0x39e3c,
1751                 0x39e80, 0x39e80,
1752                 0x39e88, 0x39ea8,
1753                 0x39eb0, 0x39eb4,
1754                 0x39ec8, 0x39ed4,
1755                 0x39fb8, 0x3a004,
1756                 0x3a200, 0x3a200,
1757                 0x3a208, 0x3a240,
1758                 0x3a248, 0x3a280,
1759                 0x3a288, 0x3a2c0,
1760                 0x3a2c8, 0x3a2fc,
1761                 0x3a600, 0x3a630,
1762                 0x3aa00, 0x3aabc,
1763                 0x3ab00, 0x3ab10,
1764                 0x3ab20, 0x3ab30,
1765                 0x3ab40, 0x3ab50,
1766                 0x3ab60, 0x3ab70,
1767                 0x3b000, 0x3b028,
1768                 0x3b030, 0x3b048,
1769                 0x3b060, 0x3b068,
1770                 0x3b070, 0x3b09c,
1771                 0x3b0f0, 0x3b128,
1772                 0x3b130, 0x3b148,
1773                 0x3b160, 0x3b168,
1774                 0x3b170, 0x3b19c,
1775                 0x3b1f0, 0x3b238,
1776                 0x3b240, 0x3b240,
1777                 0x3b248, 0x3b250,
1778                 0x3b25c, 0x3b264,
1779                 0x3b270, 0x3b2b8,
1780                 0x3b2c0, 0x3b2e4,
1781                 0x3b2f8, 0x3b338,
1782                 0x3b340, 0x3b340,
1783                 0x3b348, 0x3b350,
1784                 0x3b35c, 0x3b364,
1785                 0x3b370, 0x3b3b8,
1786                 0x3b3c0, 0x3b3e4,
1787                 0x3b3f8, 0x3b428,
1788                 0x3b430, 0x3b448,
1789                 0x3b460, 0x3b468,
1790                 0x3b470, 0x3b49c,
1791                 0x3b4f0, 0x3b528,
1792                 0x3b530, 0x3b548,
1793                 0x3b560, 0x3b568,
1794                 0x3b570, 0x3b59c,
1795                 0x3b5f0, 0x3b638,
1796                 0x3b640, 0x3b640,
1797                 0x3b648, 0x3b650,
1798                 0x3b65c, 0x3b664,
1799                 0x3b670, 0x3b6b8,
1800                 0x3b6c0, 0x3b6e4,
1801                 0x3b6f8, 0x3b738,
1802                 0x3b740, 0x3b740,
1803                 0x3b748, 0x3b750,
1804                 0x3b75c, 0x3b764,
1805                 0x3b770, 0x3b7b8,
1806                 0x3b7c0, 0x3b7e4,
1807                 0x3b7f8, 0x3b7fc,
1808                 0x3b814, 0x3b814,
1809                 0x3b82c, 0x3b82c,
1810                 0x3b880, 0x3b88c,
1811                 0x3b8e8, 0x3b8ec,
1812                 0x3b900, 0x3b928,
1813                 0x3b930, 0x3b948,
1814                 0x3b960, 0x3b968,
1815                 0x3b970, 0x3b99c,
1816                 0x3b9f0, 0x3ba38,
1817                 0x3ba40, 0x3ba40,
1818                 0x3ba48, 0x3ba50,
1819                 0x3ba5c, 0x3ba64,
1820                 0x3ba70, 0x3bab8,
1821                 0x3bac0, 0x3bae4,
1822                 0x3baf8, 0x3bb10,
1823                 0x3bb28, 0x3bb28,
1824                 0x3bb3c, 0x3bb50,
1825                 0x3bbf0, 0x3bc10,
1826                 0x3bc28, 0x3bc28,
1827                 0x3bc3c, 0x3bc50,
1828                 0x3bcf0, 0x3bcfc,
1829                 0x3c000, 0x3c030,
1830                 0x3c100, 0x3c144,
1831                 0x3c190, 0x3c1a0,
1832                 0x3c1a8, 0x3c1b8,
1833                 0x3c1c4, 0x3c1c8,
1834                 0x3c1d0, 0x3c1d0,
1835                 0x3c200, 0x3c318,
1836                 0x3c400, 0x3c4b4,
1837                 0x3c4c0, 0x3c52c,
1838                 0x3c540, 0x3c61c,
1839                 0x3c800, 0x3c828,
1840                 0x3c834, 0x3c834,
1841                 0x3c8c0, 0x3c908,
1842                 0x3c910, 0x3c9ac,
1843                 0x3ca00, 0x3ca14,
1844                 0x3ca1c, 0x3ca2c,
1845                 0x3ca44, 0x3ca50,
1846                 0x3ca74, 0x3ca74,
1847                 0x3ca7c, 0x3cafc,
1848                 0x3cb08, 0x3cc24,
1849                 0x3cd00, 0x3cd00,
1850                 0x3cd08, 0x3cd14,
1851                 0x3cd1c, 0x3cd20,
1852                 0x3cd3c, 0x3cd3c,
1853                 0x3cd48, 0x3cd50,
1854                 0x3d200, 0x3d20c,
1855                 0x3d220, 0x3d220,
1856                 0x3d240, 0x3d240,
1857                 0x3d600, 0x3d60c,
1858                 0x3da00, 0x3da1c,
1859                 0x3de00, 0x3de20,
1860                 0x3de38, 0x3de3c,
1861                 0x3de80, 0x3de80,
1862                 0x3de88, 0x3dea8,
1863                 0x3deb0, 0x3deb4,
1864                 0x3dec8, 0x3ded4,
1865                 0x3dfb8, 0x3e004,
1866                 0x3e200, 0x3e200,
1867                 0x3e208, 0x3e240,
1868                 0x3e248, 0x3e280,
1869                 0x3e288, 0x3e2c0,
1870                 0x3e2c8, 0x3e2fc,
1871                 0x3e600, 0x3e630,
1872                 0x3ea00, 0x3eabc,
1873                 0x3eb00, 0x3eb10,
1874                 0x3eb20, 0x3eb30,
1875                 0x3eb40, 0x3eb50,
1876                 0x3eb60, 0x3eb70,
1877                 0x3f000, 0x3f028,
1878                 0x3f030, 0x3f048,
1879                 0x3f060, 0x3f068,
1880                 0x3f070, 0x3f09c,
1881                 0x3f0f0, 0x3f128,
1882                 0x3f130, 0x3f148,
1883                 0x3f160, 0x3f168,
1884                 0x3f170, 0x3f19c,
1885                 0x3f1f0, 0x3f238,
1886                 0x3f240, 0x3f240,
1887                 0x3f248, 0x3f250,
1888                 0x3f25c, 0x3f264,
1889                 0x3f270, 0x3f2b8,
1890                 0x3f2c0, 0x3f2e4,
1891                 0x3f2f8, 0x3f338,
1892                 0x3f340, 0x3f340,
1893                 0x3f348, 0x3f350,
1894                 0x3f35c, 0x3f364,
1895                 0x3f370, 0x3f3b8,
1896                 0x3f3c0, 0x3f3e4,
1897                 0x3f3f8, 0x3f428,
1898                 0x3f430, 0x3f448,
1899                 0x3f460, 0x3f468,
1900                 0x3f470, 0x3f49c,
1901                 0x3f4f0, 0x3f528,
1902                 0x3f530, 0x3f548,
1903                 0x3f560, 0x3f568,
1904                 0x3f570, 0x3f59c,
1905                 0x3f5f0, 0x3f638,
1906                 0x3f640, 0x3f640,
1907                 0x3f648, 0x3f650,
1908                 0x3f65c, 0x3f664,
1909                 0x3f670, 0x3f6b8,
1910                 0x3f6c0, 0x3f6e4,
1911                 0x3f6f8, 0x3f738,
1912                 0x3f740, 0x3f740,
1913                 0x3f748, 0x3f750,
1914                 0x3f75c, 0x3f764,
1915                 0x3f770, 0x3f7b8,
1916                 0x3f7c0, 0x3f7e4,
1917                 0x3f7f8, 0x3f7fc,
1918                 0x3f814, 0x3f814,
1919                 0x3f82c, 0x3f82c,
1920                 0x3f880, 0x3f88c,
1921                 0x3f8e8, 0x3f8ec,
1922                 0x3f900, 0x3f928,
1923                 0x3f930, 0x3f948,
1924                 0x3f960, 0x3f968,
1925                 0x3f970, 0x3f99c,
1926                 0x3f9f0, 0x3fa38,
1927                 0x3fa40, 0x3fa40,
1928                 0x3fa48, 0x3fa50,
1929                 0x3fa5c, 0x3fa64,
1930                 0x3fa70, 0x3fab8,
1931                 0x3fac0, 0x3fae4,
1932                 0x3faf8, 0x3fb10,
1933                 0x3fb28, 0x3fb28,
1934                 0x3fb3c, 0x3fb50,
1935                 0x3fbf0, 0x3fc10,
1936                 0x3fc28, 0x3fc28,
1937                 0x3fc3c, 0x3fc50,
1938                 0x3fcf0, 0x3fcfc,
1939                 0x40000, 0x4000c,
1940                 0x40040, 0x40050,
1941                 0x40060, 0x40068,
1942                 0x4007c, 0x4008c,
1943                 0x40094, 0x400b0,
1944                 0x400c0, 0x40144,
1945                 0x40180, 0x4018c,
1946                 0x40200, 0x40254,
1947                 0x40260, 0x40264,
1948                 0x40270, 0x40288,
1949                 0x40290, 0x40298,
1950                 0x402ac, 0x402c8,
1951                 0x402d0, 0x402e0,
1952                 0x402f0, 0x402f0,
1953                 0x40300, 0x4033c,
1954                 0x403f8, 0x403fc,
1955                 0x41304, 0x413c4,
1956                 0x41400, 0x4140c,
1957                 0x41414, 0x4141c,
1958                 0x41480, 0x414d0,
1959                 0x44000, 0x44054,
1960                 0x4405c, 0x44078,
1961                 0x440c0, 0x44174,
1962                 0x44180, 0x441ac,
1963                 0x441b4, 0x441b8,
1964                 0x441c0, 0x44254,
1965                 0x4425c, 0x44278,
1966                 0x442c0, 0x44374,
1967                 0x44380, 0x443ac,
1968                 0x443b4, 0x443b8,
1969                 0x443c0, 0x44454,
1970                 0x4445c, 0x44478,
1971                 0x444c0, 0x44574,
1972                 0x44580, 0x445ac,
1973                 0x445b4, 0x445b8,
1974                 0x445c0, 0x44654,
1975                 0x4465c, 0x44678,
1976                 0x446c0, 0x44774,
1977                 0x44780, 0x447ac,
1978                 0x447b4, 0x447b8,
1979                 0x447c0, 0x44854,
1980                 0x4485c, 0x44878,
1981                 0x448c0, 0x44974,
1982                 0x44980, 0x449ac,
1983                 0x449b4, 0x449b8,
1984                 0x449c0, 0x449fc,
1985                 0x45000, 0x45004,
1986                 0x45010, 0x45030,
1987                 0x45040, 0x45060,
1988                 0x45068, 0x45068,
1989                 0x45080, 0x45084,
1990                 0x450a0, 0x450b0,
1991                 0x45200, 0x45204,
1992                 0x45210, 0x45230,
1993                 0x45240, 0x45260,
1994                 0x45268, 0x45268,
1995                 0x45280, 0x45284,
1996                 0x452a0, 0x452b0,
1997                 0x460c0, 0x460e4,
1998                 0x47000, 0x4703c,
1999                 0x47044, 0x4708c,
2000                 0x47200, 0x47250,
2001                 0x47400, 0x47408,
2002                 0x47414, 0x47420,
2003                 0x47600, 0x47618,
2004                 0x47800, 0x47814,
2005                 0x48000, 0x4800c,
2006                 0x48040, 0x48050,
2007                 0x48060, 0x48068,
2008                 0x4807c, 0x4808c,
2009                 0x48094, 0x480b0,
2010                 0x480c0, 0x48144,
2011                 0x48180, 0x4818c,
2012                 0x48200, 0x48254,
2013                 0x48260, 0x48264,
2014                 0x48270, 0x48288,
2015                 0x48290, 0x48298,
2016                 0x482ac, 0x482c8,
2017                 0x482d0, 0x482e0,
2018                 0x482f0, 0x482f0,
2019                 0x48300, 0x4833c,
2020                 0x483f8, 0x483fc,
2021                 0x49304, 0x493c4,
2022                 0x49400, 0x4940c,
2023                 0x49414, 0x4941c,
2024                 0x49480, 0x494d0,
2025                 0x4c000, 0x4c054,
2026                 0x4c05c, 0x4c078,
2027                 0x4c0c0, 0x4c174,
2028                 0x4c180, 0x4c1ac,
2029                 0x4c1b4, 0x4c1b8,
2030                 0x4c1c0, 0x4c254,
2031                 0x4c25c, 0x4c278,
2032                 0x4c2c0, 0x4c374,
2033                 0x4c380, 0x4c3ac,
2034                 0x4c3b4, 0x4c3b8,
2035                 0x4c3c0, 0x4c454,
2036                 0x4c45c, 0x4c478,
2037                 0x4c4c0, 0x4c574,
2038                 0x4c580, 0x4c5ac,
2039                 0x4c5b4, 0x4c5b8,
2040                 0x4c5c0, 0x4c654,
2041                 0x4c65c, 0x4c678,
2042                 0x4c6c0, 0x4c774,
2043                 0x4c780, 0x4c7ac,
2044                 0x4c7b4, 0x4c7b8,
2045                 0x4c7c0, 0x4c854,
2046                 0x4c85c, 0x4c878,
2047                 0x4c8c0, 0x4c974,
2048                 0x4c980, 0x4c9ac,
2049                 0x4c9b4, 0x4c9b8,
2050                 0x4c9c0, 0x4c9fc,
2051                 0x4d000, 0x4d004,
2052                 0x4d010, 0x4d030,
2053                 0x4d040, 0x4d060,
2054                 0x4d068, 0x4d068,
2055                 0x4d080, 0x4d084,
2056                 0x4d0a0, 0x4d0b0,
2057                 0x4d200, 0x4d204,
2058                 0x4d210, 0x4d230,
2059                 0x4d240, 0x4d260,
2060                 0x4d268, 0x4d268,
2061                 0x4d280, 0x4d284,
2062                 0x4d2a0, 0x4d2b0,
2063                 0x4e0c0, 0x4e0e4,
2064                 0x4f000, 0x4f03c,
2065                 0x4f044, 0x4f08c,
2066                 0x4f200, 0x4f250,
2067                 0x4f400, 0x4f408,
2068                 0x4f414, 0x4f420,
2069                 0x4f600, 0x4f618,
2070                 0x4f800, 0x4f814,
2071                 0x50000, 0x50084,
2072                 0x50090, 0x500cc,
2073                 0x50400, 0x50400,
2074                 0x50800, 0x50884,
2075                 0x50890, 0x508cc,
2076                 0x50c00, 0x50c00,
2077                 0x51000, 0x5101c,
2078                 0x51300, 0x51308,
2079         };
2080
2081         static const unsigned int t6_reg_ranges[] = {
2082                 0x1008, 0x101c,
2083                 0x1024, 0x10a8,
2084                 0x10b4, 0x10f8,
2085                 0x1100, 0x1114,
2086                 0x111c, 0x112c,
2087                 0x1138, 0x113c,
2088                 0x1144, 0x114c,
2089                 0x1180, 0x1184,
2090                 0x1190, 0x1194,
2091                 0x11a0, 0x11a4,
2092                 0x11b0, 0x11b4,
2093                 0x11fc, 0x123c,
2094                 0x1254, 0x1274,
2095                 0x1280, 0x133c,
2096                 0x1800, 0x18fc,
2097                 0x3000, 0x302c,
2098                 0x3060, 0x30b0,
2099                 0x30b8, 0x30d8,
2100                 0x30e0, 0x30fc,
2101                 0x3140, 0x357c,
2102                 0x35a8, 0x35cc,
2103                 0x35ec, 0x35ec,
2104                 0x3600, 0x5624,
2105                 0x56cc, 0x56ec,
2106                 0x56f4, 0x5720,
2107                 0x5728, 0x575c,
2108                 0x580c, 0x5814,
2109                 0x5890, 0x589c,
2110                 0x58a4, 0x58ac,
2111                 0x58b8, 0x58bc,
2112                 0x5940, 0x595c,
2113                 0x5980, 0x598c,
2114                 0x59b0, 0x59c8,
2115                 0x59d0, 0x59dc,
2116                 0x59fc, 0x5a18,
2117                 0x5a60, 0x5a6c,
2118                 0x5a80, 0x5a8c,
2119                 0x5a94, 0x5a9c,
2120                 0x5b94, 0x5bfc,
2121                 0x5c10, 0x5e48,
2122                 0x5e50, 0x5e94,
2123                 0x5ea0, 0x5eb0,
2124                 0x5ec0, 0x5ec0,
2125                 0x5ec8, 0x5ed0,
2126                 0x5ee0, 0x5ee0,
2127                 0x5ef0, 0x5ef0,
2128                 0x5f00, 0x5f00,
2129                 0x6000, 0x6020,
2130                 0x6028, 0x6040,
2131                 0x6058, 0x609c,
2132                 0x60a8, 0x619c,
2133                 0x7700, 0x7798,
2134                 0x77c0, 0x7880,
2135                 0x78cc, 0x78fc,
2136                 0x7b00, 0x7b58,
2137                 0x7b60, 0x7b84,
2138                 0x7b8c, 0x7c54,
2139                 0x7d00, 0x7d38,
2140                 0x7d40, 0x7d84,
2141                 0x7d8c, 0x7ddc,
2142                 0x7de4, 0x7e04,
2143                 0x7e10, 0x7e1c,
2144                 0x7e24, 0x7e38,
2145                 0x7e40, 0x7e44,
2146                 0x7e4c, 0x7e78,
2147                 0x7e80, 0x7edc,
2148                 0x7ee8, 0x7efc,
2149                 0x8dc0, 0x8de4,
2150                 0x8df8, 0x8e04,
2151                 0x8e10, 0x8e84,
2152                 0x8ea0, 0x8f88,
2153                 0x8fb8, 0x9058,
2154                 0x9060, 0x9060,
2155                 0x9068, 0x90f8,
2156                 0x9100, 0x9124,
2157                 0x9400, 0x9470,
2158                 0x9600, 0x9600,
2159                 0x9608, 0x9638,
2160                 0x9640, 0x9704,
2161                 0x9710, 0x971c,
2162                 0x9800, 0x9808,
2163                 0x9810, 0x9864,
2164                 0x9c00, 0x9c6c,
2165                 0x9c80, 0x9cec,
2166                 0x9d00, 0x9d6c,
2167                 0x9d80, 0x9dec,
2168                 0x9e00, 0x9e6c,
2169                 0x9e80, 0x9eec,
2170                 0x9f00, 0x9f6c,
2171                 0x9f80, 0xa020,
2172                 0xd000, 0xd03c,
2173                 0xd100, 0xd118,
2174                 0xd200, 0xd214,
2175                 0xd220, 0xd234,
2176                 0xd240, 0xd254,
2177                 0xd260, 0xd274,
2178                 0xd280, 0xd294,
2179                 0xd2a0, 0xd2b4,
2180                 0xd2c0, 0xd2d4,
2181                 0xd2e0, 0xd2f4,
2182                 0xd300, 0xd31c,
2183                 0xdfc0, 0xdfe0,
2184                 0xe000, 0xf008,
2185                 0xf010, 0xf018,
2186                 0xf020, 0xf028,
2187                 0x11000, 0x11014,
2188                 0x11048, 0x1106c,
2189                 0x11074, 0x11088,
2190                 0x11098, 0x11120,
2191                 0x1112c, 0x1117c,
2192                 0x11190, 0x112e0,
2193                 0x11300, 0x1130c,
2194                 0x12000, 0x1206c,
2195                 0x19040, 0x1906c,
2196                 0x19078, 0x19080,
2197                 0x1908c, 0x190e8,
2198                 0x190f0, 0x190f8,
2199                 0x19100, 0x19110,
2200                 0x19120, 0x19124,
2201                 0x19150, 0x19194,
2202                 0x1919c, 0x191b0,
2203                 0x191d0, 0x191e8,
2204                 0x19238, 0x19290,
2205                 0x192a4, 0x192b0,
2206                 0x192bc, 0x192bc,
2207                 0x19348, 0x1934c,
2208                 0x193f8, 0x19418,
2209                 0x19420, 0x19428,
2210                 0x19430, 0x19444,
2211                 0x1944c, 0x1946c,
2212                 0x19474, 0x19474,
2213                 0x19490, 0x194cc,
2214                 0x194f0, 0x194f8,
2215                 0x19c00, 0x19c48,
2216                 0x19c50, 0x19c80,
2217                 0x19c94, 0x19c98,
2218                 0x19ca0, 0x19cbc,
2219                 0x19ce4, 0x19ce4,
2220                 0x19cf0, 0x19cf8,
2221                 0x19d00, 0x19d28,
2222                 0x19d50, 0x19d78,
2223                 0x19d94, 0x19d98,
2224                 0x19da0, 0x19dc8,
2225                 0x19df0, 0x19e10,
2226                 0x19e50, 0x19e6c,
2227                 0x19ea0, 0x19ebc,
2228                 0x19ec4, 0x19ef4,
2229                 0x19f04, 0x19f2c,
2230                 0x19f34, 0x19f34,
2231                 0x19f40, 0x19f50,
2232                 0x19f90, 0x19fac,
2233                 0x19fc4, 0x19fc8,
2234                 0x19fd0, 0x19fe4,
2235                 0x1a000, 0x1a004,
2236                 0x1a010, 0x1a06c,
2237                 0x1a0b0, 0x1a0e4,
2238                 0x1a0ec, 0x1a0f8,
2239                 0x1a100, 0x1a108,
2240                 0x1a114, 0x1a130,
2241                 0x1a138, 0x1a1c4,
2242                 0x1a1fc, 0x1a1fc,
2243                 0x1e008, 0x1e00c,
2244                 0x1e040, 0x1e044,
2245                 0x1e04c, 0x1e04c,
2246                 0x1e284, 0x1e290,
2247                 0x1e2c0, 0x1e2c0,
2248                 0x1e2e0, 0x1e2e0,
2249                 0x1e300, 0x1e384,
2250                 0x1e3c0, 0x1e3c8,
2251                 0x1e408, 0x1e40c,
2252                 0x1e440, 0x1e444,
2253                 0x1e44c, 0x1e44c,
2254                 0x1e684, 0x1e690,
2255                 0x1e6c0, 0x1e6c0,
2256                 0x1e6e0, 0x1e6e0,
2257                 0x1e700, 0x1e784,
2258                 0x1e7c0, 0x1e7c8,
2259                 0x1e808, 0x1e80c,
2260                 0x1e840, 0x1e844,
2261                 0x1e84c, 0x1e84c,
2262                 0x1ea84, 0x1ea90,
2263                 0x1eac0, 0x1eac0,
2264                 0x1eae0, 0x1eae0,
2265                 0x1eb00, 0x1eb84,
2266                 0x1ebc0, 0x1ebc8,
2267                 0x1ec08, 0x1ec0c,
2268                 0x1ec40, 0x1ec44,
2269                 0x1ec4c, 0x1ec4c,
2270                 0x1ee84, 0x1ee90,
2271                 0x1eec0, 0x1eec0,
2272                 0x1eee0, 0x1eee0,
2273                 0x1ef00, 0x1ef84,
2274                 0x1efc0, 0x1efc8,
2275                 0x1f008, 0x1f00c,
2276                 0x1f040, 0x1f044,
2277                 0x1f04c, 0x1f04c,
2278                 0x1f284, 0x1f290,
2279                 0x1f2c0, 0x1f2c0,
2280                 0x1f2e0, 0x1f2e0,
2281                 0x1f300, 0x1f384,
2282                 0x1f3c0, 0x1f3c8,
2283                 0x1f408, 0x1f40c,
2284                 0x1f440, 0x1f444,
2285                 0x1f44c, 0x1f44c,
2286                 0x1f684, 0x1f690,
2287                 0x1f6c0, 0x1f6c0,
2288                 0x1f6e0, 0x1f6e0,
2289                 0x1f700, 0x1f784,
2290                 0x1f7c0, 0x1f7c8,
2291                 0x1f808, 0x1f80c,
2292                 0x1f840, 0x1f844,
2293                 0x1f84c, 0x1f84c,
2294                 0x1fa84, 0x1fa90,
2295                 0x1fac0, 0x1fac0,
2296                 0x1fae0, 0x1fae0,
2297                 0x1fb00, 0x1fb84,
2298                 0x1fbc0, 0x1fbc8,
2299                 0x1fc08, 0x1fc0c,
2300                 0x1fc40, 0x1fc44,
2301                 0x1fc4c, 0x1fc4c,
2302                 0x1fe84, 0x1fe90,
2303                 0x1fec0, 0x1fec0,
2304                 0x1fee0, 0x1fee0,
2305                 0x1ff00, 0x1ff84,
2306                 0x1ffc0, 0x1ffc8,
2307                 0x30000, 0x30030,
2308                 0x30100, 0x30168,
2309                 0x30190, 0x301a0,
2310                 0x301a8, 0x301b8,
2311                 0x301c4, 0x301c8,
2312                 0x301d0, 0x301d0,
2313                 0x30200, 0x30320,
2314                 0x30400, 0x304b4,
2315                 0x304c0, 0x3052c,
2316                 0x30540, 0x3061c,
2317                 0x30800, 0x308a0,
2318                 0x308c0, 0x30908,
2319                 0x30910, 0x309b8,
2320                 0x30a00, 0x30a04,
2321                 0x30a0c, 0x30a14,
2322                 0x30a1c, 0x30a2c,
2323                 0x30a44, 0x30a50,
2324                 0x30a74, 0x30a74,
2325                 0x30a7c, 0x30afc,
2326                 0x30b08, 0x30c24,
2327                 0x30d00, 0x30d14,
2328                 0x30d1c, 0x30d3c,
2329                 0x30d44, 0x30d4c,
2330                 0x30d54, 0x30d74,
2331                 0x30d7c, 0x30d7c,
2332                 0x30de0, 0x30de0,
2333                 0x30e00, 0x30ed4,
2334                 0x30f00, 0x30fa4,
2335                 0x30fc0, 0x30fc4,
2336                 0x31000, 0x31004,
2337                 0x31080, 0x310fc,
2338                 0x31208, 0x31220,
2339                 0x3123c, 0x31254,
2340                 0x31300, 0x31300,
2341                 0x31308, 0x3131c,
2342                 0x31338, 0x3133c,
2343                 0x31380, 0x31380,
2344                 0x31388, 0x313a8,
2345                 0x313b4, 0x313b4,
2346                 0x31400, 0x31420,
2347                 0x31438, 0x3143c,
2348                 0x31480, 0x31480,
2349                 0x314a8, 0x314a8,
2350                 0x314b0, 0x314b4,
2351                 0x314c8, 0x314d4,
2352                 0x31a40, 0x31a4c,
2353                 0x31af0, 0x31b20,
2354                 0x31b38, 0x31b3c,
2355                 0x31b80, 0x31b80,
2356                 0x31ba8, 0x31ba8,
2357                 0x31bb0, 0x31bb4,
2358                 0x31bc8, 0x31bd4,
2359                 0x32140, 0x3218c,
2360                 0x321f0, 0x321f4,
2361                 0x32200, 0x32200,
2362                 0x32218, 0x32218,
2363                 0x32400, 0x32400,
2364                 0x32408, 0x3241c,
2365                 0x32618, 0x32620,
2366                 0x32664, 0x32664,
2367                 0x326a8, 0x326a8,
2368                 0x326ec, 0x326ec,
2369                 0x32a00, 0x32abc,
2370                 0x32b00, 0x32b18,
2371                 0x32b20, 0x32b38,
2372                 0x32b40, 0x32b58,
2373                 0x32b60, 0x32b78,
2374                 0x32c00, 0x32c00,
2375                 0x32c08, 0x32c3c,
2376                 0x33000, 0x3302c,
2377                 0x33034, 0x33050,
2378                 0x33058, 0x33058,
2379                 0x33060, 0x3308c,
2380                 0x3309c, 0x330ac,
2381                 0x330c0, 0x330c0,
2382                 0x330c8, 0x330d0,
2383                 0x330d8, 0x330e0,
2384                 0x330ec, 0x3312c,
2385                 0x33134, 0x33150,
2386                 0x33158, 0x33158,
2387                 0x33160, 0x3318c,
2388                 0x3319c, 0x331ac,
2389                 0x331c0, 0x331c0,
2390                 0x331c8, 0x331d0,
2391                 0x331d8, 0x331e0,
2392                 0x331ec, 0x33290,
2393                 0x33298, 0x332c4,
2394                 0x332e4, 0x33390,
2395                 0x33398, 0x333c4,
2396                 0x333e4, 0x3342c,
2397                 0x33434, 0x33450,
2398                 0x33458, 0x33458,
2399                 0x33460, 0x3348c,
2400                 0x3349c, 0x334ac,
2401                 0x334c0, 0x334c0,
2402                 0x334c8, 0x334d0,
2403                 0x334d8, 0x334e0,
2404                 0x334ec, 0x3352c,
2405                 0x33534, 0x33550,
2406                 0x33558, 0x33558,
2407                 0x33560, 0x3358c,
2408                 0x3359c, 0x335ac,
2409                 0x335c0, 0x335c0,
2410                 0x335c8, 0x335d0,
2411                 0x335d8, 0x335e0,
2412                 0x335ec, 0x33690,
2413                 0x33698, 0x336c4,
2414                 0x336e4, 0x33790,
2415                 0x33798, 0x337c4,
2416                 0x337e4, 0x337fc,
2417                 0x33814, 0x33814,
2418                 0x33854, 0x33868,
2419                 0x33880, 0x3388c,
2420                 0x338c0, 0x338d0,
2421                 0x338e8, 0x338ec,
2422                 0x33900, 0x3392c,
2423                 0x33934, 0x33950,
2424                 0x33958, 0x33958,
2425                 0x33960, 0x3398c,
2426                 0x3399c, 0x339ac,
2427                 0x339c0, 0x339c0,
2428                 0x339c8, 0x339d0,
2429                 0x339d8, 0x339e0,
2430                 0x339ec, 0x33a90,
2431                 0x33a98, 0x33ac4,
2432                 0x33ae4, 0x33b10,
2433                 0x33b24, 0x33b28,
2434                 0x33b38, 0x33b50,
2435                 0x33bf0, 0x33c10,
2436                 0x33c24, 0x33c28,
2437                 0x33c38, 0x33c50,
2438                 0x33cf0, 0x33cfc,
2439                 0x34000, 0x34030,
2440                 0x34100, 0x34168,
2441                 0x34190, 0x341a0,
2442                 0x341a8, 0x341b8,
2443                 0x341c4, 0x341c8,
2444                 0x341d0, 0x341d0,
2445                 0x34200, 0x34320,
2446                 0x34400, 0x344b4,
2447                 0x344c0, 0x3452c,
2448                 0x34540, 0x3461c,
2449                 0x34800, 0x348a0,
2450                 0x348c0, 0x34908,
2451                 0x34910, 0x349b8,
2452                 0x34a00, 0x34a04,
2453                 0x34a0c, 0x34a14,
2454                 0x34a1c, 0x34a2c,
2455                 0x34a44, 0x34a50,
2456                 0x34a74, 0x34a74,
2457                 0x34a7c, 0x34afc,
2458                 0x34b08, 0x34c24,
2459                 0x34d00, 0x34d14,
2460                 0x34d1c, 0x34d3c,
2461                 0x34d44, 0x34d4c,
2462                 0x34d54, 0x34d74,
2463                 0x34d7c, 0x34d7c,
2464                 0x34de0, 0x34de0,
2465                 0x34e00, 0x34ed4,
2466                 0x34f00, 0x34fa4,
2467                 0x34fc0, 0x34fc4,
2468                 0x35000, 0x35004,
2469                 0x35080, 0x350fc,
2470                 0x35208, 0x35220,
2471                 0x3523c, 0x35254,
2472                 0x35300, 0x35300,
2473                 0x35308, 0x3531c,
2474                 0x35338, 0x3533c,
2475                 0x35380, 0x35380,
2476                 0x35388, 0x353a8,
2477                 0x353b4, 0x353b4,
2478                 0x35400, 0x35420,
2479                 0x35438, 0x3543c,
2480                 0x35480, 0x35480,
2481                 0x354a8, 0x354a8,
2482                 0x354b0, 0x354b4,
2483                 0x354c8, 0x354d4,
2484                 0x35a40, 0x35a4c,
2485                 0x35af0, 0x35b20,
2486                 0x35b38, 0x35b3c,
2487                 0x35b80, 0x35b80,
2488                 0x35ba8, 0x35ba8,
2489                 0x35bb0, 0x35bb4,
2490                 0x35bc8, 0x35bd4,
2491                 0x36140, 0x3618c,
2492                 0x361f0, 0x361f4,
2493                 0x36200, 0x36200,
2494                 0x36218, 0x36218,
2495                 0x36400, 0x36400,
2496                 0x36408, 0x3641c,
2497                 0x36618, 0x36620,
2498                 0x36664, 0x36664,
2499                 0x366a8, 0x366a8,
2500                 0x366ec, 0x366ec,
2501                 0x36a00, 0x36abc,
2502                 0x36b00, 0x36b18,
2503                 0x36b20, 0x36b38,
2504                 0x36b40, 0x36b58,
2505                 0x36b60, 0x36b78,
2506                 0x36c00, 0x36c00,
2507                 0x36c08, 0x36c3c,
2508                 0x37000, 0x3702c,
2509                 0x37034, 0x37050,
2510                 0x37058, 0x37058,
2511                 0x37060, 0x3708c,
2512                 0x3709c, 0x370ac,
2513                 0x370c0, 0x370c0,
2514                 0x370c8, 0x370d0,
2515                 0x370d8, 0x370e0,
2516                 0x370ec, 0x3712c,
2517                 0x37134, 0x37150,
2518                 0x37158, 0x37158,
2519                 0x37160, 0x3718c,
2520                 0x3719c, 0x371ac,
2521                 0x371c0, 0x371c0,
2522                 0x371c8, 0x371d0,
2523                 0x371d8, 0x371e0,
2524                 0x371ec, 0x37290,
2525                 0x37298, 0x372c4,
2526                 0x372e4, 0x37390,
2527                 0x37398, 0x373c4,
2528                 0x373e4, 0x3742c,
2529                 0x37434, 0x37450,
2530                 0x37458, 0x37458,
2531                 0x37460, 0x3748c,
2532                 0x3749c, 0x374ac,
2533                 0x374c0, 0x374c0,
2534                 0x374c8, 0x374d0,
2535                 0x374d8, 0x374e0,
2536                 0x374ec, 0x3752c,
2537                 0x37534, 0x37550,
2538                 0x37558, 0x37558,
2539                 0x37560, 0x3758c,
2540                 0x3759c, 0x375ac,
2541                 0x375c0, 0x375c0,
2542                 0x375c8, 0x375d0,
2543                 0x375d8, 0x375e0,
2544                 0x375ec, 0x37690,
2545                 0x37698, 0x376c4,
2546                 0x376e4, 0x37790,
2547                 0x37798, 0x377c4,
2548                 0x377e4, 0x377fc,
2549                 0x37814, 0x37814,
2550                 0x37854, 0x37868,
2551                 0x37880, 0x3788c,
2552                 0x378c0, 0x378d0,
2553                 0x378e8, 0x378ec,
2554                 0x37900, 0x3792c,
2555                 0x37934, 0x37950,
2556                 0x37958, 0x37958,
2557                 0x37960, 0x3798c,
2558                 0x3799c, 0x379ac,
2559                 0x379c0, 0x379c0,
2560                 0x379c8, 0x379d0,
2561                 0x379d8, 0x379e0,
2562                 0x379ec, 0x37a90,
2563                 0x37a98, 0x37ac4,
2564                 0x37ae4, 0x37b10,
2565                 0x37b24, 0x37b28,
2566                 0x37b38, 0x37b50,
2567                 0x37bf0, 0x37c10,
2568                 0x37c24, 0x37c28,
2569                 0x37c38, 0x37c50,
2570                 0x37cf0, 0x37cfc,
2571                 0x40040, 0x40040,
2572                 0x40080, 0x40084,
2573                 0x40100, 0x40100,
2574                 0x40140, 0x401bc,
2575                 0x40200, 0x40214,
2576                 0x40228, 0x40228,
2577                 0x40240, 0x40258,
2578                 0x40280, 0x40280,
2579                 0x40304, 0x40304,
2580                 0x40330, 0x4033c,
2581                 0x41304, 0x413c8,
2582                 0x413d0, 0x413dc,
2583                 0x413f0, 0x413f0,
2584                 0x41400, 0x4140c,
2585                 0x41414, 0x4141c,
2586                 0x41480, 0x414d0,
2587                 0x44000, 0x4407c,
2588                 0x440c0, 0x441ac,
2589                 0x441b4, 0x4427c,
2590                 0x442c0, 0x443ac,
2591                 0x443b4, 0x4447c,
2592                 0x444c0, 0x445ac,
2593                 0x445b4, 0x4467c,
2594                 0x446c0, 0x447ac,
2595                 0x447b4, 0x4487c,
2596                 0x448c0, 0x449ac,
2597                 0x449b4, 0x44a7c,
2598                 0x44ac0, 0x44bac,
2599                 0x44bb4, 0x44c7c,
2600                 0x44cc0, 0x44dac,
2601                 0x44db4, 0x44e7c,
2602                 0x44ec0, 0x44fac,
2603                 0x44fb4, 0x4507c,
2604                 0x450c0, 0x451ac,
2605                 0x451b4, 0x451fc,
2606                 0x45800, 0x45804,
2607                 0x45810, 0x45830,
2608                 0x45840, 0x45860,
2609                 0x45868, 0x45868,
2610                 0x45880, 0x45884,
2611                 0x458a0, 0x458b0,
2612                 0x45a00, 0x45a04,
2613                 0x45a10, 0x45a30,
2614                 0x45a40, 0x45a60,
2615                 0x45a68, 0x45a68,
2616                 0x45a80, 0x45a84,
2617                 0x45aa0, 0x45ab0,
2618                 0x460c0, 0x460e4,
2619                 0x47000, 0x4703c,
2620                 0x47044, 0x4708c,
2621                 0x47200, 0x47250,
2622                 0x47400, 0x47408,
2623                 0x47414, 0x47420,
2624                 0x47600, 0x47618,
2625                 0x47800, 0x47814,
2626                 0x47820, 0x4782c,
2627                 0x50000, 0x50084,
2628                 0x50090, 0x500cc,
2629                 0x50300, 0x50384,
2630                 0x50400, 0x50400,
2631                 0x50800, 0x50884,
2632                 0x50890, 0x508cc,
2633                 0x50b00, 0x50b84,
2634                 0x50c00, 0x50c00,
2635                 0x51000, 0x51020,
2636                 0x51028, 0x510b0,
2637                 0x51300, 0x51324,
2638         };
2639
2640         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641         const unsigned int *reg_ranges;
2642         int reg_ranges_size, range;
2643         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644
2645         /* Select the right set of register ranges to dump depending on the
2646          * adapter chip type.
2647          */
2648         switch (chip_version) {
2649         case CHELSIO_T4:
2650                 reg_ranges = t4_reg_ranges;
2651                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652                 break;
2653
2654         case CHELSIO_T5:
2655                 reg_ranges = t5_reg_ranges;
2656                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657                 break;
2658
2659         case CHELSIO_T6:
2660                 reg_ranges = t6_reg_ranges;
2661                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662                 break;
2663
2664         default:
2665                 dev_err(adap->pdev_dev,
2666                         "Unsupported chip version %d\n", chip_version);
2667                 return;
2668         }
2669
2670         /* Clear the register buffer and insert the appropriate register
2671          * values selected by the above register ranges.
2672          */
2673         memset(buf, 0, buf_size);
2674         for (range = 0; range < reg_ranges_size; range += 2) {
2675                 unsigned int reg = reg_ranges[range];
2676                 unsigned int last_reg = reg_ranges[range + 1];
2677                 u32 *bufp = (u32 *)((char *)buf + reg);
2678
2679                 /* Iterate across the register range filling in the register
2680                  * buffer but don't write past the end of the register buffer.
2681                  */
2682                 while (reg <= last_reg && bufp < buf_end) {
2683                         *bufp++ = t4_read_reg(adap, reg);
2684                         reg += sizeof(u32);
2685                 }
2686         }
2687 }
2688
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713         fn *= sz;
2714         if (phys_addr < 1024)
2715                 return phys_addr + (31 << 10);
2716         if (phys_addr < 1024 + fn)
2717                 return 31744 - fn + phys_addr - 1024;
2718         if (phys_addr < EEPROMSIZE)
2719                 return phys_addr - 1024 - fn;
2720         return -EINVAL;
2721 }
2722
2723 /**
2724  *      t4_seeprom_wp - enable/disable EEPROM write protection
2725  *      @adapter: the adapter
2726  *      @enable: whether to enable or disable write protection
2727  *
2728  *      Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732         unsigned int v = enable ? 0xc : 0;
2733         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734         return ret < 0 ? ret : 0;
2735 }
2736
2737 /**
2738  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *      @adapter: adapter to read
2740  *      @p: where to store the parameters
2741  *
2742  *      Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746         int i, ret = 0, addr;
2747         int ec, sn, pn, na;
2748         u8 *vpd, csum, base_val = 0;
2749         unsigned int vpdr_len, kw_offset, id_len;
2750
2751         vpd = vmalloc(VPD_LEN);
2752         if (!vpd)
2753                 return -ENOMEM;
2754
2755         /* Card information normally starts at VPD_BASE but early cards had
2756          * it at 0.
2757          */
2758         ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2759         if (ret < 0)
2760                 goto out;
2761
2762         addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2763
2764         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2765         if (ret < 0)
2766                 goto out;
2767
2768         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2769                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2770                 ret = -EINVAL;
2771                 goto out;
2772         }
2773
2774         id_len = pci_vpd_lrdt_size(vpd);
2775         if (id_len > ID_LEN)
2776                 id_len = ID_LEN;
2777
2778         i = pci_vpd_find_tag(vpd, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2779         if (i < 0) {
2780                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2781                 ret = -EINVAL;
2782                 goto out;
2783         }
2784
2785         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2786         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2787         if (vpdr_len + kw_offset > VPD_LEN) {
2788                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2789                 ret = -EINVAL;
2790                 goto out;
2791         }
2792
2793 #define FIND_VPD_KW(var, name) do { \
2794         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2795         if (var < 0) { \
2796                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2797                 ret = -EINVAL; \
2798                 goto out; \
2799         } \
2800         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2801 } while (0)
2802
2803         FIND_VPD_KW(i, "RV");
2804         for (csum = 0; i >= 0; i--)
2805                 csum += vpd[i];
2806
2807         if (csum) {
2808                 dev_err(adapter->pdev_dev,
2809                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2810                 ret = -EINVAL;
2811                 goto out;
2812         }
2813
2814         FIND_VPD_KW(ec, "EC");
2815         FIND_VPD_KW(sn, "SN");
2816         FIND_VPD_KW(pn, "PN");
2817         FIND_VPD_KW(na, "NA");
2818 #undef FIND_VPD_KW
2819
2820         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2821         strim(p->id);
2822         memcpy(p->ec, vpd + ec, EC_LEN);
2823         strim(p->ec);
2824         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2825         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2826         strim(p->sn);
2827         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2828         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2829         strim(p->pn);
2830         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2831         strim((char *)p->na);
2832
2833 out:
2834         vfree(vpd);
2835         return ret < 0 ? ret : 0;
2836 }
2837
2838 /**
2839  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2840  *      @adapter: adapter to read
2841  *      @p: where to store the parameters
2842  *
2843  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2844  *      Clock.  This can only be called after a connection to the firmware
2845  *      is established.
2846  */
2847 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2848 {
2849         u32 cclk_param, cclk_val;
2850         int ret;
2851
2852         /* Grab the raw VPD parameters.
2853          */
2854         ret = t4_get_raw_vpd_params(adapter, p);
2855         if (ret)
2856                 return ret;
2857
2858         /* Ask firmware for the Core Clock since it knows how to translate the
2859          * Reference Clock ('V2') VPD field into a Core Clock value ...
2860          */
2861         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2862                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2863         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2864                               1, &cclk_param, &cclk_val);
2865
2866         if (ret)
2867                 return ret;
2868         p->cclk = cclk_val;
2869
2870         return 0;
2871 }
2872
2873 /**
2874  *      t4_get_pfres - retrieve VF resource limits
2875  *      @adapter: the adapter
2876  *
2877  *      Retrieves configured resource limits and capabilities for a physical
2878  *      function.  The results are stored in @adapter->pfres.
2879  */
2880 int t4_get_pfres(struct adapter *adapter)
2881 {
2882         struct pf_resources *pfres = &adapter->params.pfres;
2883         struct fw_pfvf_cmd cmd, rpl;
2884         int v;
2885         u32 word;
2886
2887         /* Execute PFVF Read command to get VF resource limits; bail out early
2888          * with error on command failure.
2889          */
2890         memset(&cmd, 0, sizeof(cmd));
2891         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2892                                     FW_CMD_REQUEST_F |
2893                                     FW_CMD_READ_F |
2894                                     FW_PFVF_CMD_PFN_V(adapter->pf) |
2895                                     FW_PFVF_CMD_VFN_V(0));
2896         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2897         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2898         if (v != FW_SUCCESS)
2899                 return v;
2900
2901         /* Extract PF resource limits and return success.
2902          */
2903         word = be32_to_cpu(rpl.niqflint_niq);
2904         pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2905         pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2906
2907         word = be32_to_cpu(rpl.type_to_neq);
2908         pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2909         pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2910
2911         word = be32_to_cpu(rpl.tc_to_nexactf);
2912         pfres->tc = FW_PFVF_CMD_TC_G(word);
2913         pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2914         pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2915
2916         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2917         pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2918         pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2919         pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2920
2921         return 0;
2922 }
2923
2924 /* serial flash and firmware constants */
2925 enum {
2926         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2927
2928         /* flash command opcodes */
2929         SF_PROG_PAGE    = 2,          /* program page */
2930         SF_WR_DISABLE   = 4,          /* disable writes */
2931         SF_RD_STATUS    = 5,          /* read status register */
2932         SF_WR_ENABLE    = 6,          /* enable writes */
2933         SF_RD_DATA_FAST = 0xb,        /* read flash */
2934         SF_RD_ID        = 0x9f,       /* read ID */
2935         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2936 };
2937
2938 /**
2939  *      sf1_read - read data from the serial flash
2940  *      @adapter: the adapter
2941  *      @byte_cnt: number of bytes to read
2942  *      @cont: whether another operation will be chained
2943  *      @lock: whether to lock SF for PL access only
2944  *      @valp: where to store the read data
2945  *
2946  *      Reads up to 4 bytes of data from the serial flash.  The location of
2947  *      the read needs to be specified prior to calling this by issuing the
2948  *      appropriate commands to the serial flash.
2949  */
2950 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2951                     int lock, u32 *valp)
2952 {
2953         int ret;
2954
2955         if (!byte_cnt || byte_cnt > 4)
2956                 return -EINVAL;
2957         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2958                 return -EBUSY;
2959         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2960                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2961         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2962         if (!ret)
2963                 *valp = t4_read_reg(adapter, SF_DATA_A);
2964         return ret;
2965 }
2966
2967 /**
2968  *      sf1_write - write data to the serial flash
2969  *      @adapter: the adapter
2970  *      @byte_cnt: number of bytes to write
2971  *      @cont: whether another operation will be chained
2972  *      @lock: whether to lock SF for PL access only
2973  *      @val: value to write
2974  *
2975  *      Writes up to 4 bytes of data to the serial flash.  The location of
2976  *      the write needs to be specified prior to calling this by issuing the
2977  *      appropriate commands to the serial flash.
2978  */
2979 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2980                      int lock, u32 val)
2981 {
2982         if (!byte_cnt || byte_cnt > 4)
2983                 return -EINVAL;
2984         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2985                 return -EBUSY;
2986         t4_write_reg(adapter, SF_DATA_A, val);
2987         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2988                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2989         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2990 }
2991
2992 /**
2993  *      flash_wait_op - wait for a flash operation to complete
2994  *      @adapter: the adapter
2995  *      @attempts: max number of polls of the status register
2996  *      @delay: delay between polls in ms
2997  *
2998  *      Wait for a flash operation to complete by polling the status register.
2999  */
3000 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3001 {
3002         int ret;
3003         u32 status;
3004
3005         while (1) {
3006                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3007                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3008                         return ret;
3009                 if (!(status & 1))
3010                         return 0;
3011                 if (--attempts == 0)
3012                         return -EAGAIN;
3013                 if (delay)
3014                         msleep(delay);
3015         }
3016 }
3017
3018 /**
3019  *      t4_read_flash - read words from serial flash
3020  *      @adapter: the adapter
3021  *      @addr: the start address for the read
3022  *      @nwords: how many 32-bit words to read
3023  *      @data: where to store the read data
3024  *      @byte_oriented: whether to store data as bytes or as words
3025  *
3026  *      Read the specified number of 32-bit words from the serial flash.
3027  *      If @byte_oriented is set the read data is stored as a byte array
3028  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3029  *      natural endianness.
3030  */
3031 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3032                   unsigned int nwords, u32 *data, int byte_oriented)
3033 {
3034         int ret;
3035
3036         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3037                 return -EINVAL;
3038
3039         addr = swab32(addr) | SF_RD_DATA_FAST;
3040
3041         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3042             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3043                 return ret;
3044
3045         for ( ; nwords; nwords--, data++) {
3046                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3047                 if (nwords == 1)
3048                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3049                 if (ret)
3050                         return ret;
3051                 if (byte_oriented)
3052                         *data = (__force __u32)(cpu_to_be32(*data));
3053         }
3054         return 0;
3055 }
3056
3057 /**
3058  *      t4_write_flash - write up to a page of data to the serial flash
3059  *      @adapter: the adapter
3060  *      @addr: the start address to write
3061  *      @n: length of data to write in bytes
3062  *      @data: the data to write
3063  *      @byte_oriented: whether to store data as bytes or as words
3064  *
3065  *      Writes up to a page of data (256 bytes) to the serial flash starting
3066  *      at the given address.  All the data must be written to the same page.
3067  *      If @byte_oriented is set the write data is stored as byte stream
3068  *      (i.e. matches what on disk), otherwise in big-endian.
3069  */
3070 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3071                           unsigned int n, const u8 *data, bool byte_oriented)
3072 {
3073         unsigned int i, c, left, val, offset = addr & 0xff;
3074         u32 buf[64];
3075         int ret;
3076
3077         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3078                 return -EINVAL;
3079
3080         val = swab32(addr) | SF_PROG_PAGE;
3081
3082         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3083             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3084                 goto unlock;
3085
3086         for (left = n; left; left -= c, data += c) {
3087                 c = min(left, 4U);
3088                 for (val = 0, i = 0; i < c; ++i) {
3089                         if (byte_oriented)
3090                                 val = (val << 8) + data[i];
3091                         else
3092                                 val = (val << 8) + data[c - i - 1];
3093                 }
3094
3095                 ret = sf1_write(adapter, c, c != left, 1, val);
3096                 if (ret)
3097                         goto unlock;
3098         }
3099         ret = flash_wait_op(adapter, 8, 1);
3100         if (ret)
3101                 goto unlock;
3102
3103         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3104
3105         /* Read the page to verify the write succeeded */
3106         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3107                             byte_oriented);
3108         if (ret)
3109                 return ret;
3110
3111         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3112                 dev_err(adapter->pdev_dev,
3113                         "failed to correctly write the flash page at %#x\n",
3114                         addr);
3115                 return -EIO;
3116         }
3117         return 0;
3118
3119 unlock:
3120         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3121         return ret;
3122 }
3123
3124 /**
3125  *      t4_get_fw_version - read the firmware version
3126  *      @adapter: the adapter
3127  *      @vers: where to place the version
3128  *
3129  *      Reads the FW version from flash.
3130  */
3131 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3132 {
3133         return t4_read_flash(adapter, FLASH_FW_START +
3134                              offsetof(struct fw_hdr, fw_ver), 1,
3135                              vers, 0);
3136 }
3137
3138 /**
3139  *      t4_get_bs_version - read the firmware bootstrap version
3140  *      @adapter: the adapter
3141  *      @vers: where to place the version
3142  *
3143  *      Reads the FW Bootstrap version from flash.
3144  */
3145 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3146 {
3147         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3148                              offsetof(struct fw_hdr, fw_ver), 1,
3149                              vers, 0);
3150 }
3151
3152 /**
3153  *      t4_get_tp_version - read the TP microcode version
3154  *      @adapter: the adapter
3155  *      @vers: where to place the version
3156  *
3157  *      Reads the TP microcode version from flash.
3158  */
3159 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3160 {
3161         return t4_read_flash(adapter, FLASH_FW_START +
3162                              offsetof(struct fw_hdr, tp_microcode_ver),
3163                              1, vers, 0);
3164 }
3165
3166 /**
3167  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3168  *      @adap: the adapter
3169  *      @vers: where to place the version
3170  *
3171  *      Reads the Expansion ROM header from FLASH and returns the version
3172  *      number (if present) through the @vers return value pointer.  We return
3173  *      this in the Firmware Version Format since it's convenient.  Return
3174  *      0 on success, -ENOENT if no Expansion ROM is present.
3175  */
3176 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3177 {
3178         struct exprom_header {
3179                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3180                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3181         } *hdr;
3182         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3183                                            sizeof(u32))];
3184         int ret;
3185
3186         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3187                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3188                             0);
3189         if (ret)
3190                 return ret;
3191
3192         hdr = (struct exprom_header *)exprom_header_buf;
3193         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3194                 return -ENOENT;
3195
3196         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3197                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3198                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3199                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3200         return 0;
3201 }
3202
3203 /**
3204  *      t4_get_vpd_version - return the VPD version
3205  *      @adapter: the adapter
3206  *      @vers: where to place the version
3207  *
3208  *      Reads the VPD via the Firmware interface (thus this can only be called
3209  *      once we're ready to issue Firmware commands).  The format of the
3210  *      VPD version is adapter specific.  Returns 0 on success, an error on
3211  *      failure.
3212  *
3213  *      Note that early versions of the Firmware didn't include the ability
3214  *      to retrieve the VPD version, so we zero-out the return-value parameter
3215  *      in that case to avoid leaving it with garbage in it.
3216  *
3217  *      Also note that the Firmware will return its cached copy of the VPD
3218  *      Revision ID, not the actual Revision ID as written in the Serial
3219  *      EEPROM.  This is only an issue if a new VPD has been written and the
3220  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3221  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3222  *      if the Host Driver will be performing a full adapter initialization.
3223  */
3224 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3225 {
3226         u32 vpdrev_param;
3227         int ret;
3228
3229         vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3230                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3231         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3232                               1, &vpdrev_param, vers);
3233         if (ret)
3234                 *vers = 0;
3235         return ret;
3236 }
3237
3238 /**
3239  *      t4_get_scfg_version - return the Serial Configuration version
3240  *      @adapter: the adapter
3241  *      @vers: where to place the version
3242  *
3243  *      Reads the Serial Configuration Version via the Firmware interface
3244  *      (thus this can only be called once we're ready to issue Firmware
3245  *      commands).  The format of the Serial Configuration version is
3246  *      adapter specific.  Returns 0 on success, an error on failure.
3247  *
3248  *      Note that early versions of the Firmware didn't include the ability
3249  *      to retrieve the Serial Configuration version, so we zero-out the
3250  *      return-value parameter in that case to avoid leaving it with
3251  *      garbage in it.
3252  *
3253  *      Also note that the Firmware will return its cached copy of the Serial
3254  *      Initialization Revision ID, not the actual Revision ID as written in
3255  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3256  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3257  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3258  *      been issued if the Host Driver will be performing a full adapter
3259  *      initialization.
3260  */
3261 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3262 {
3263         u32 scfgrev_param;
3264         int ret;
3265
3266         scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3267                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3268         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3269                               1, &scfgrev_param, vers);
3270         if (ret)
3271                 *vers = 0;
3272         return ret;
3273 }
3274
3275 /**
3276  *      t4_get_version_info - extract various chip/firmware version information
3277  *      @adapter: the adapter
3278  *
3279  *      Reads various chip/firmware version numbers and stores them into the
3280  *      adapter Adapter Parameters structure.  If any of the efforts fails
3281  *      the first failure will be returned, but all of the version numbers
3282  *      will be read.
3283  */
3284 int t4_get_version_info(struct adapter *adapter)
3285 {
3286         int ret = 0;
3287
3288         #define FIRST_RET(__getvinfo) \
3289         do { \
3290                 int __ret = __getvinfo; \
3291                 if (__ret && !ret) \
3292                         ret = __ret; \
3293         } while (0)
3294
3295         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3296         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3297         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3298         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3299         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3300         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3301
3302         #undef FIRST_RET
3303         return ret;
3304 }
3305
3306 /**
3307  *      t4_dump_version_info - dump all of the adapter configuration IDs
3308  *      @adapter: the adapter
3309  *
3310  *      Dumps all of the various bits of adapter configuration version/revision
3311  *      IDs information.  This is typically called at some point after
3312  *      t4_get_version_info() has been called.
3313  */
3314 void t4_dump_version_info(struct adapter *adapter)
3315 {
3316         /* Device information */
3317         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3318                  adapter->params.vpd.id,
3319                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
3320         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3321                  adapter->params.vpd.sn, adapter->params.vpd.pn);
3322
3323         /* Firmware Version */
3324         if (!adapter->params.fw_vers)
3325                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3326         else
3327                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3328                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3329                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3330                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3331                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3332
3333         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3334          * Firmware, so dev_info() is more appropriate here.)
3335          */
3336         if (!adapter->params.bs_vers)
3337                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3338         else
3339                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3340                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3341                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3342                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3343                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3344
3345         /* TP Microcode Version */
3346         if (!adapter->params.tp_vers)
3347                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3348         else
3349                 dev_info(adapter->pdev_dev,
3350                          "TP Microcode version: %u.%u.%u.%u\n",
3351                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3352                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3353                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3354                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3355
3356         /* Expansion ROM version */
3357         if (!adapter->params.er_vers)
3358                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3359         else
3360                 dev_info(adapter->pdev_dev,
3361                          "Expansion ROM version: %u.%u.%u.%u\n",
3362                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3363                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3364                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3365                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3366
3367         /* Serial Configuration version */
3368         dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3369                  adapter->params.scfg_vers);
3370
3371         /* VPD Version */
3372         dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3373                  adapter->params.vpd_vers);
3374 }
3375
3376 /**
3377  *      t4_check_fw_version - check if the FW is supported with this driver
3378  *      @adap: the adapter
3379  *
3380  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3381  *      if there's exact match, a negative error if the version could not be
3382  *      read or there's a major version mismatch
3383  */
3384 int t4_check_fw_version(struct adapter *adap)
3385 {
3386         int i, ret, major, minor, micro;
3387         int exp_major, exp_minor, exp_micro;
3388         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3389
3390         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3391         /* Try multiple times before returning error */
3392         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3393                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3394
3395         if (ret)
3396                 return ret;
3397
3398         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3399         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3400         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3401
3402         switch (chip_version) {
3403         case CHELSIO_T4:
3404                 exp_major = T4FW_MIN_VERSION_MAJOR;
3405                 exp_minor = T4FW_MIN_VERSION_MINOR;
3406                 exp_micro = T4FW_MIN_VERSION_MICRO;
3407                 break;
3408         case CHELSIO_T5:
3409                 exp_major = T5FW_MIN_VERSION_MAJOR;
3410                 exp_minor = T5FW_MIN_VERSION_MINOR;
3411                 exp_micro = T5FW_MIN_VERSION_MICRO;
3412                 break;
3413         case CHELSIO_T6:
3414                 exp_major = T6FW_MIN_VERSION_MAJOR;
3415                 exp_minor = T6FW_MIN_VERSION_MINOR;
3416                 exp_micro = T6FW_MIN_VERSION_MICRO;
3417                 break;
3418         default:
3419                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3420                         adap->chip);
3421                 return -EINVAL;
3422         }
3423
3424         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3425             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3426                 dev_err(adap->pdev_dev,
3427                         "Card has firmware version %u.%u.%u, minimum "
3428                         "supported firmware is %u.%u.%u.\n", major, minor,
3429                         micro, exp_major, exp_minor, exp_micro);
3430                 return -EFAULT;
3431         }
3432         return 0;
3433 }
3434
3435 /* Is the given firmware API compatible with the one the driver was compiled
3436  * with?
3437  */
3438 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3439 {
3440
3441         /* short circuit if it's the exact same firmware version */
3442         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3443                 return 1;
3444
3445 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3446         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3447             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3448                 return 1;
3449 #undef SAME_INTF
3450
3451         return 0;
3452 }
3453
3454 /* The firmware in the filesystem is usable, but should it be installed?
3455  * This routine explains itself in detail if it indicates the filesystem
3456  * firmware should be installed.
3457  */
3458 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3459                                 int k, int c)
3460 {
3461         const char *reason;
3462
3463         if (!card_fw_usable) {
3464                 reason = "incompatible or unusable";
3465                 goto install;
3466         }
3467
3468         if (k > c) {
3469                 reason = "older than the version supported with this driver";
3470                 goto install;
3471         }
3472
3473         return 0;
3474
3475 install:
3476         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3477                 "installing firmware %u.%u.%u.%u on card.\n",
3478                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3479                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3480                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3481                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3482
3483         return 1;
3484 }
3485
3486 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3487                const u8 *fw_data, unsigned int fw_size,
3488                struct fw_hdr *card_fw, enum dev_state state,
3489                int *reset)
3490 {
3491         int ret, card_fw_usable, fs_fw_usable;
3492         const struct fw_hdr *fs_fw;
3493         const struct fw_hdr *drv_fw;
3494
3495         drv_fw = &fw_info->fw_hdr;
3496
3497         /* Read the header of the firmware on the card */
3498         ret = t4_read_flash(adap, FLASH_FW_START,
3499                             sizeof(*card_fw) / sizeof(uint32_t),
3500                             (uint32_t *)card_fw, 1);
3501         if (ret == 0) {
3502                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3503         } else {
3504                 dev_err(adap->pdev_dev,
3505                         "Unable to read card's firmware header: %d\n", ret);
3506                 card_fw_usable = 0;
3507         }
3508
3509         if (fw_data != NULL) {
3510                 fs_fw = (const void *)fw_data;
3511                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3512         } else {
3513                 fs_fw = NULL;
3514                 fs_fw_usable = 0;
3515         }
3516
3517         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3518             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3519                 /* Common case: the firmware on the card is an exact match and
3520                  * the filesystem one is an exact match too, or the filesystem
3521                  * one is absent/incompatible.
3522                  */
3523         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3524                    should_install_fs_fw(adap, card_fw_usable,
3525                                         be32_to_cpu(fs_fw->fw_ver),
3526                                         be32_to_cpu(card_fw->fw_ver))) {
3527                 ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3528                                     fw_size, 0);
3529                 if (ret != 0) {
3530                         dev_err(adap->pdev_dev,
3531                                 "failed to install firmware: %d\n", ret);
3532                         goto bye;
3533                 }
3534
3535                 /* Installed successfully, update the cached header too. */
3536                 *card_fw = *fs_fw;
3537                 card_fw_usable = 1;
3538                 *reset = 0;     /* already reset as part of load_fw */
3539         }
3540
3541         if (!card_fw_usable) {
3542                 uint32_t d, c, k;
3543
3544                 d = be32_to_cpu(drv_fw->fw_ver);
3545                 c = be32_to_cpu(card_fw->fw_ver);
3546                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3547
3548                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3549                         "chip state %d, "
3550                         "driver compiled with %d.%d.%d.%d, "
3551                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3552                         state,
3553                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3554                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3555                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3556                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3557                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3558                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3559                 ret = -EINVAL;
3560                 goto bye;
3561         }
3562
3563         /* We're using whatever's on the card and it's known to be good. */
3564         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3565         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3566
3567 bye:
3568         return ret;
3569 }
3570
3571 /**
3572  *      t4_flash_erase_sectors - erase a range of flash sectors
3573  *      @adapter: the adapter
3574  *      @start: the first sector to erase
3575  *      @end: the last sector to erase
3576  *
3577  *      Erases the sectors in the given inclusive range.
3578  */
3579 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3580 {
3581         int ret = 0;
3582
3583         if (end >= adapter->params.sf_nsec)
3584                 return -EINVAL;
3585
3586         while (start <= end) {
3587                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3588                     (ret = sf1_write(adapter, 4, 0, 1,
3589                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3590                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3591                         dev_err(adapter->pdev_dev,
3592                                 "erase of flash sector %d failed, error %d\n",
3593                                 start, ret);
3594                         break;
3595                 }
3596                 start++;
3597         }
3598         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3599         return ret;
3600 }
3601
3602 /**
3603  *      t4_flash_cfg_addr - return the address of the flash configuration file
3604  *      @adapter: the adapter
3605  *
3606  *      Return the address within the flash where the Firmware Configuration
3607  *      File is stored.
3608  */
3609 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3610 {
3611         if (adapter->params.sf_size == 0x100000)
3612                 return FLASH_FPGA_CFG_START;
3613         else
3614                 return FLASH_CFG_START;
3615 }
3616
3617 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3618  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3619  * and emit an error message for mismatched firmware to save our caller the
3620  * effort ...
3621  */
3622 static bool t4_fw_matches_chip(const struct adapter *adap,
3623                                const struct fw_hdr *hdr)
3624 {
3625         /* The expression below will return FALSE for any unsupported adapter
3626          * which will keep us "honest" in the future ...
3627          */
3628         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3629             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3630             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3631                 return true;
3632
3633         dev_err(adap->pdev_dev,
3634                 "FW image (%d) is not suitable for this adapter (%d)\n",
3635                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3636         return false;
3637 }
3638
3639 /**
3640  *      t4_load_fw - download firmware
3641  *      @adap: the adapter
3642  *      @fw_data: the firmware image to write
3643  *      @size: image size
3644  *
3645  *      Write the supplied firmware image to the card's serial flash.
3646  */
3647 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3648 {
3649         u32 csum;
3650         int ret, addr;
3651         unsigned int i;
3652         u8 first_page[SF_PAGE_SIZE];
3653         const __be32 *p = (const __be32 *)fw_data;
3654         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3655         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3656         unsigned int fw_start_sec = FLASH_FW_START_SEC;
3657         unsigned int fw_size = FLASH_FW_MAX_SIZE;
3658         unsigned int fw_start = FLASH_FW_START;
3659
3660         if (!size) {
3661                 dev_err(adap->pdev_dev, "FW image has no data\n");
3662                 return -EINVAL;
3663         }
3664         if (size & 511) {
3665                 dev_err(adap->pdev_dev,
3666                         "FW image size not multiple of 512 bytes\n");
3667                 return -EINVAL;
3668         }
3669         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3670                 dev_err(adap->pdev_dev,
3671                         "FW image size differs from size in FW header\n");
3672                 return -EINVAL;
3673         }
3674         if (size > fw_size) {
3675                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3676                         fw_size);
3677                 return -EFBIG;
3678         }
3679         if (!t4_fw_matches_chip(adap, hdr))
3680                 return -EINVAL;
3681
3682         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3683                 csum += be32_to_cpu(p[i]);
3684
3685         if (csum != 0xffffffff) {
3686                 dev_err(adap->pdev_dev,
3687                         "corrupted firmware image, checksum %#x\n", csum);
3688                 return -EINVAL;
3689         }
3690
3691         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3692         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3693         if (ret)
3694                 goto out;
3695
3696         /*
3697          * We write the correct version at the end so the driver can see a bad
3698          * version if the FW write fails.  Start by writing a copy of the
3699          * first page with a bad version.
3700          */
3701         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3702         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3703         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3704         if (ret)
3705                 goto out;
3706
3707         addr = fw_start;
3708         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3709                 addr += SF_PAGE_SIZE;
3710                 fw_data += SF_PAGE_SIZE;
3711                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3712                 if (ret)
3713                         goto out;
3714         }
3715
3716         ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3717                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3718                              true);
3719 out:
3720         if (ret)
3721                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3722                         ret);
3723         else
3724                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3725         return ret;
3726 }
3727
3728 /**
3729  *      t4_phy_fw_ver - return current PHY firmware version
3730  *      @adap: the adapter
3731  *      @phy_fw_ver: return value buffer for PHY firmware version
3732  *
3733  *      Returns the current version of external PHY firmware on the
3734  *      adapter.
3735  */
3736 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3737 {
3738         u32 param, val;
3739         int ret;
3740
3741         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3742                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3743                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3744                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3745         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3746                               &param, &val);
3747         if (ret)
3748                 return ret;
3749         *phy_fw_ver = val;
3750         return 0;
3751 }
3752
3753 /**
3754  *      t4_load_phy_fw - download port PHY firmware
3755  *      @adap: the adapter
3756  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3757  *      @phy_fw_version: function to check PHY firmware versions
3758  *      @phy_fw_data: the PHY firmware image to write
3759  *      @phy_fw_size: image size
3760  *
3761  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3762  *      @phy_fw_version is supplied, then it will be used to determine if
3763  *      it's necessary to perform the transfer by comparing the version
3764  *      of any existing adapter PHY firmware with that of the passed in
3765  *      PHY firmware image.
3766  *
3767  *      A negative error number will be returned if an error occurs.  If
3768  *      version number support is available and there's no need to upgrade
3769  *      the firmware, 0 will be returned.  If firmware is successfully
3770  *      transferred to the adapter, 1 will be returned.
3771  *
3772  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3773  *      a result, a RESET of the adapter would cause that RAM to lose its
3774  *      contents.  Thus, loading PHY firmware on such adapters must happen
3775  *      after any FW_RESET_CMDs ...
3776  */
3777 int t4_load_phy_fw(struct adapter *adap, int win,
3778                    int (*phy_fw_version)(const u8 *, size_t),
3779                    const u8 *phy_fw_data, size_t phy_fw_size)
3780 {
3781         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3782         unsigned long mtype = 0, maddr = 0;
3783         u32 param, val;
3784         int ret;
3785
3786         /* If we have version number support, then check to see if the adapter
3787          * already has up-to-date PHY firmware loaded.
3788          */
3789         if (phy_fw_version) {
3790                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3791                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3792                 if (ret < 0)
3793                         return ret;
3794
3795                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3796                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3797                                 "version %#x\n", cur_phy_fw_ver);
3798                         return 0;
3799                 }
3800         }
3801
3802         /* Ask the firmware where it wants us to copy the PHY firmware image.
3803          * The size of the file requires a special version of the READ command
3804          * which will pass the file size via the values field in PARAMS_CMD and
3805          * retrieve the return value from firmware and place it in the same
3806          * buffer values
3807          */
3808         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3809                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3810                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3811                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3812         val = phy_fw_size;
3813         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3814                                  &param, &val, 1, true);
3815         if (ret < 0)
3816                 return ret;
3817         mtype = val >> 8;
3818         maddr = (val & 0xff) << 16;
3819
3820         /* Copy the supplied PHY Firmware image to the adapter memory location
3821          * allocated by the adapter firmware.
3822          */
3823         spin_lock_bh(&adap->win0_lock);
3824         ret = t4_memory_rw(adap, win, mtype, maddr,
3825                            phy_fw_size, (__be32 *)phy_fw_data,
3826                            T4_MEMORY_WRITE);
3827         spin_unlock_bh(&adap->win0_lock);
3828         if (ret)
3829                 return ret;
3830
3831         /* Tell the firmware that the PHY firmware image has been written to
3832          * RAM and it can now start copying it over to the PHYs.  The chip
3833          * firmware will RESET the affected PHYs as part of this operation
3834          * leaving them running the new PHY firmware image.
3835          */
3836         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3837                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3838                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3839                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3840         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3841                                     &param, &val, 30000);
3842
3843         /* If we have version number support, then check to see that the new
3844          * firmware got loaded properly.
3845          */
3846         if (phy_fw_version) {
3847                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3848                 if (ret < 0)
3849                         return ret;
3850
3851                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3852                         CH_WARN(adap, "PHY Firmware did not update: "
3853                                 "version on adapter %#x, "
3854                                 "version flashed %#x\n",
3855                                 cur_phy_fw_ver, new_phy_fw_vers);
3856                         return -ENXIO;
3857                 }
3858         }
3859
3860         return 1;
3861 }
3862
3863 /**
3864  *      t4_fwcache - firmware cache operation
3865  *      @adap: the adapter
3866  *      @op  : the operation (flush or flush and invalidate)
3867  */
3868 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3869 {
3870         struct fw_params_cmd c;
3871
3872         memset(&c, 0, sizeof(c));
3873         c.op_to_vfn =
3874                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3875                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3876                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3877                             FW_PARAMS_CMD_VFN_V(0));
3878         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3879         c.param[0].mnem =
3880                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3881                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3882         c.param[0].val = cpu_to_be32(op);
3883
3884         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3885 }
3886
3887 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3888                         unsigned int *pif_req_wrptr,
3889                         unsigned int *pif_rsp_wrptr)
3890 {
3891         int i, j;
3892         u32 cfg, val, req, rsp;
3893
3894         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3895         if (cfg & LADBGEN_F)
3896                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3897
3898         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3899         req = POLADBGWRPTR_G(val);
3900         rsp = PILADBGWRPTR_G(val);
3901         if (pif_req_wrptr)
3902                 *pif_req_wrptr = req;
3903         if (pif_rsp_wrptr)
3904                 *pif_rsp_wrptr = rsp;
3905
3906         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3907                 for (j = 0; j < 6; j++) {
3908                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3909                                      PILADBGRDPTR_V(rsp));
3910                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3911                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3912                         req++;
3913                         rsp++;
3914                 }
3915                 req = (req + 2) & POLADBGRDPTR_M;
3916                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3917         }
3918         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3919 }
3920
3921 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3922 {
3923         u32 cfg;
3924         int i, j, idx;
3925
3926         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3927         if (cfg & LADBGEN_F)
3928                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3929
3930         for (i = 0; i < CIM_MALA_SIZE; i++) {
3931                 for (j = 0; j < 5; j++) {
3932                         idx = 8 * i + j;
3933                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3934                                      PILADBGRDPTR_V(idx));
3935                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3936                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3937                 }
3938         }
3939         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3940 }
3941
3942 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3943 {
3944         unsigned int i, j;
3945
3946         for (i = 0; i < 8; i++) {
3947                 u32 *p = la_buf + i;
3948
3949                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3950                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3951                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3952                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3953                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3954         }
3955 }
3956
3957 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3958  * Capabilities which we control with separate controls -- see, for instance,
3959  * Pause Frames and Forward Error Correction.  In order to determine what the
3960  * full set of Advertised Port Capabilities are, the base Advertised Port
3961  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3962  * Port Capabilities associated with those other controls.  See
3963  * t4_link_acaps() for how this is done.
3964  */
3965 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3966                      FW_PORT_CAP32_ANEG)
3967
3968 /**
3969  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3970  *      @caps16: a 16-bit Port Capabilities value
3971  *
3972  *      Returns the equivalent 32-bit Port Capabilities value.
3973  */
3974 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3975 {
3976         fw_port_cap32_t caps32 = 0;
3977
3978         #define CAP16_TO_CAP32(__cap) \
3979                 do { \
3980                         if (caps16 & FW_PORT_CAP_##__cap) \
3981                                 caps32 |= FW_PORT_CAP32_##__cap; \
3982                 } while (0)
3983
3984         CAP16_TO_CAP32(SPEED_100M);
3985         CAP16_TO_CAP32(SPEED_1G);
3986         CAP16_TO_CAP32(SPEED_25G);
3987         CAP16_TO_CAP32(SPEED_10G);
3988         CAP16_TO_CAP32(SPEED_40G);
3989         CAP16_TO_CAP32(SPEED_100G);
3990         CAP16_TO_CAP32(FC_RX);
3991         CAP16_TO_CAP32(FC_TX);
3992         CAP16_TO_CAP32(ANEG);
3993         CAP16_TO_CAP32(FORCE_PAUSE);
3994         CAP16_TO_CAP32(MDIAUTO);
3995         CAP16_TO_CAP32(MDISTRAIGHT);
3996         CAP16_TO_CAP32(FEC_RS);
3997         CAP16_TO_CAP32(FEC_BASER_RS);
3998         CAP16_TO_CAP32(802_3_PAUSE);
3999         CAP16_TO_CAP32(802_3_ASM_DIR);
4000
4001         #undef CAP16_TO_CAP32
4002
4003         return caps32;
4004 }
4005
4006 /**
4007  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4008  *      @caps32: a 32-bit Port Capabilities value
4009  *
4010  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
4011  *      not all 32-bit Port Capabilities can be represented in the 16-bit
4012  *      Port Capabilities and some fields/values may not make it.
4013  */
4014 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4015 {
4016         fw_port_cap16_t caps16 = 0;
4017
4018         #define CAP32_TO_CAP16(__cap) \
4019                 do { \
4020                         if (caps32 & FW_PORT_CAP32_##__cap) \
4021                                 caps16 |= FW_PORT_CAP_##__cap; \
4022                 } while (0)
4023
4024         CAP32_TO_CAP16(SPEED_100M);
4025         CAP32_TO_CAP16(SPEED_1G);
4026         CAP32_TO_CAP16(SPEED_10G);
4027         CAP32_TO_CAP16(SPEED_25G);
4028         CAP32_TO_CAP16(SPEED_40G);
4029         CAP32_TO_CAP16(SPEED_100G);
4030         CAP32_TO_CAP16(FC_RX);
4031         CAP32_TO_CAP16(FC_TX);
4032         CAP32_TO_CAP16(802_3_PAUSE);
4033         CAP32_TO_CAP16(802_3_ASM_DIR);
4034         CAP32_TO_CAP16(ANEG);
4035         CAP32_TO_CAP16(FORCE_PAUSE);
4036         CAP32_TO_CAP16(MDIAUTO);
4037         CAP32_TO_CAP16(MDISTRAIGHT);
4038         CAP32_TO_CAP16(FEC_RS);
4039         CAP32_TO_CAP16(FEC_BASER_RS);
4040
4041         #undef CAP32_TO_CAP16
4042
4043         return caps16;
4044 }
4045
4046 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4047 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4048 {
4049         enum cc_pause cc_pause = 0;
4050
4051         if (fw_pause & FW_PORT_CAP32_FC_RX)
4052                 cc_pause |= PAUSE_RX;
4053         if (fw_pause & FW_PORT_CAP32_FC_TX)
4054                 cc_pause |= PAUSE_TX;
4055
4056         return cc_pause;
4057 }
4058
4059 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4060 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4061 {
4062         /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4063          * commands, etc.
4064          */
4065         fw_port_cap32_t fw_pause = 0;
4066
4067         if (cc_pause & PAUSE_RX)
4068                 fw_pause |= FW_PORT_CAP32_FC_RX;
4069         if (cc_pause & PAUSE_TX)
4070                 fw_pause |= FW_PORT_CAP32_FC_TX;
4071         if (!(cc_pause & PAUSE_AUTONEG))
4072                 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4073
4074         /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4075          * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4076          * Note that these bits are ignored in L1 Configure commands.
4077          */
4078         if (cc_pause & PAUSE_RX) {
4079                 if (cc_pause & PAUSE_TX)
4080                         fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4081                 else
4082                         fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4083                                     FW_PORT_CAP32_802_3_PAUSE;
4084         } else if (cc_pause & PAUSE_TX) {
4085                 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4086         }
4087
4088         return fw_pause;
4089 }
4090
4091 /* Translate Firmware Forward Error Correction specification to Common Code */
4092 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4093 {
4094         enum cc_fec cc_fec = 0;
4095
4096         if (fw_fec & FW_PORT_CAP32_FEC_RS)
4097                 cc_fec |= FEC_RS;
4098         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4099                 cc_fec |= FEC_BASER_RS;
4100
4101         return cc_fec;
4102 }
4103
4104 /* Translate Common Code Forward Error Correction specification to Firmware */
4105 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4106 {
4107         fw_port_cap32_t fw_fec = 0;
4108
4109         if (cc_fec & FEC_RS)
4110                 fw_fec |= FW_PORT_CAP32_FEC_RS;
4111         if (cc_fec & FEC_BASER_RS)
4112                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4113
4114         return fw_fec;
4115 }
4116
4117 /**
4118  *      t4_link_acaps - compute Link Advertised Port Capabilities
4119  *      @adapter: the adapter
4120  *      @port: the Port ID
4121  *      @lc: the Port's Link Configuration
4122  *
4123  *      Synthesize the Advertised Port Capabilities we'll be using based on
4124  *      the base Advertised Port Capabilities (which have been filtered by
4125  *      ADVERT_MASK) plus the individual controls for things like Pause
4126  *      Frames, Forward Error Correction, MDI, etc.
4127  */
4128 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4129                               struct link_config *lc)
4130 {
4131         fw_port_cap32_t fw_fc, fw_fec, acaps;
4132         unsigned int fw_mdi;
4133         char cc_fec;
4134
4135         fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4136
4137         /* Convert driver coding of Pause Frame Flow Control settings into the
4138          * Firmware's API.
4139          */
4140         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4141
4142         /* Convert Common Code Forward Error Control settings into the
4143          * Firmware's API.  If the current Requested FEC has "Automatic"
4144          * (IEEE 802.3) specified, then we use whatever the Firmware
4145          * sent us as part of its IEEE 802.3-based interpretation of
4146          * the Transceiver Module EPROM FEC parameters.  Otherwise we
4147          * use whatever is in the current Requested FEC settings.
4148          */
4149         if (lc->requested_fec & FEC_AUTO)
4150                 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4151         else
4152                 cc_fec = lc->requested_fec;
4153         fw_fec = cc_to_fwcap_fec(cc_fec);
4154
4155         /* Figure out what our Requested Port Capabilities are going to be.
4156          * Note parallel structure in t4_handle_get_port_info() and
4157          * init_link_config().
4158          */
4159         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4160                 acaps = lc->acaps | fw_fc | fw_fec;
4161                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4162                 lc->fec = cc_fec;
4163         } else if (lc->autoneg == AUTONEG_DISABLE) {
4164                 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4165                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4166                 lc->fec = cc_fec;
4167         } else {
4168                 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4169         }
4170
4171         /* Some Requested Port Capabilities are trivially wrong if they exceed
4172          * the Physical Port Capabilities.  We can check that here and provide
4173          * moderately useful feedback in the system log.
4174          *
4175          * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4176          * we need to exclude this from this check in order to maintain
4177          * compatibility ...
4178          */
4179         if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4180                 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4181                         acaps, lc->pcaps);
4182                 return -EINVAL;
4183         }
4184
4185         return acaps;
4186 }
4187
4188 /**
4189  *      t4_link_l1cfg_core - apply link configuration to MAC/PHY
4190  *      @adapter: the adapter
4191  *      @mbox: the Firmware Mailbox to use
4192  *      @port: the Port ID
4193  *      @lc: the Port's Link Configuration
4194  *      @sleep_ok: if true we may sleep while awaiting command completion
4195  *      @timeout: time to wait for command to finish before timing out
4196  *              (negative implies @sleep_ok=false)
4197  *
4198  *      Set up a port's MAC and PHY according to a desired link configuration.
4199  *      - If the PHY can auto-negotiate first decide what to advertise, then
4200  *        enable/disable auto-negotiation as desired, and reset.
4201  *      - If the PHY does not auto-negotiate just reset it.
4202  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4203  *        otherwise do it later based on the outcome of auto-negotiation.
4204  */
4205 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4206                        unsigned int port, struct link_config *lc,
4207                        u8 sleep_ok, int timeout)
4208 {
4209         unsigned int fw_caps = adapter->params.fw_caps_support;
4210         struct fw_port_cmd cmd;
4211         fw_port_cap32_t rcap;
4212         int ret;
4213
4214         if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4215             lc->autoneg == AUTONEG_ENABLE) {
4216                 return -EINVAL;
4217         }
4218
4219         /* Compute our Requested Port Capabilities and send that on to the
4220          * Firmware.
4221          */
4222         rcap = t4_link_acaps(adapter, port, lc);
4223         memset(&cmd, 0, sizeof(cmd));
4224         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4225                                        FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4226                                        FW_PORT_CMD_PORTID_V(port));
4227         cmd.action_to_len16 =
4228                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4229                                                  ? FW_PORT_ACTION_L1_CFG
4230                                                  : FW_PORT_ACTION_L1_CFG32) |
4231                                                  FW_LEN16(cmd));
4232         if (fw_caps == FW_CAPS16)
4233                 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4234         else
4235                 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4236
4237         ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4238                                       sleep_ok, timeout);
4239
4240         /* Unfortunately, even if the Requested Port Capabilities "fit" within
4241          * the Physical Port Capabilities, some combinations of features may
4242          * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4243          * Error Correction.  So if the Firmware rejects the L1 Configure
4244          * request, flag that here.
4245          */
4246         if (ret) {
4247                 dev_err(adapter->pdev_dev,
4248                         "Requested Port Capabilities %#x rejected, error %d\n",
4249                         rcap, -ret);
4250                 return ret;
4251         }
4252         return 0;
4253 }
4254
4255 /**
4256  *      t4_restart_aneg - restart autonegotiation
4257  *      @adap: the adapter
4258  *      @mbox: mbox to use for the FW command
4259  *      @port: the port id
4260  *
4261  *      Restarts autonegotiation for the selected port.
4262  */
4263 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4264 {
4265         unsigned int fw_caps = adap->params.fw_caps_support;
4266         struct fw_port_cmd c;
4267
4268         memset(&c, 0, sizeof(c));
4269         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4270                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4271                                      FW_PORT_CMD_PORTID_V(port));
4272         c.action_to_len16 =
4273                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4274                                                  ? FW_PORT_ACTION_L1_CFG
4275                                                  : FW_PORT_ACTION_L1_CFG32) |
4276                             FW_LEN16(c));
4277         if (fw_caps == FW_CAPS16)
4278                 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4279         else
4280                 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4281         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4282 }
4283
4284 typedef void (*int_handler_t)(struct adapter *adap);
4285
4286 struct intr_info {
4287         unsigned int mask;       /* bits to check in interrupt status */
4288         const char *msg;         /* message to print or NULL */
4289         short stat_idx;          /* stat counter to increment or -1 */
4290         unsigned short fatal;    /* whether the condition reported is fatal */
4291         int_handler_t int_handler; /* platform-specific int handler */
4292 };
4293
4294 /**
4295  *      t4_handle_intr_status - table driven interrupt handler
4296  *      @adapter: the adapter that generated the interrupt
4297  *      @reg: the interrupt status register to process
4298  *      @acts: table of interrupt actions
4299  *
4300  *      A table driven interrupt handler that applies a set of masks to an
4301  *      interrupt status word and performs the corresponding actions if the
4302  *      interrupts described by the mask have occurred.  The actions include
4303  *      optionally emitting a warning or alert message.  The table is terminated
4304  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4305  *      conditions.
4306  */
4307 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4308                                  const struct intr_info *acts)
4309 {
4310         int fatal = 0;
4311         unsigned int mask = 0;
4312         unsigned int status = t4_read_reg(adapter, reg);
4313
4314         for ( ; acts->mask; ++acts) {
4315                 if (!(status & acts->mask))
4316                         continue;
4317                 if (acts->fatal) {
4318                         fatal++;
4319                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4320                                   status & acts->mask);
4321                 } else if (acts->msg && printk_ratelimit())
4322                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4323                                  status & acts->mask);
4324                 if (acts->int_handler)
4325                         acts->int_handler(adapter);
4326                 mask |= acts->mask;
4327         }
4328         status &= mask;
4329         if (status)                           /* clear processed interrupts */
4330                 t4_write_reg(adapter, reg, status);
4331         return fatal;
4332 }
4333
4334 /*
4335  * Interrupt handler for the PCIE module.
4336  */
4337 static void pcie_intr_handler(struct adapter *adapter)
4338 {
4339         static const struct intr_info sysbus_intr_info[] = {
4340                 { RNPP_F, "RXNP array parity error", -1, 1 },
4341                 { RPCP_F, "RXPC array parity error", -1, 1 },
4342                 { RCIP_F, "RXCIF array parity error", -1, 1 },
4343                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
4344                 { RFTP_F, "RXFT array parity error", -1, 1 },
4345                 { 0 }
4346         };
4347         static const struct intr_info pcie_port_intr_info[] = {
4348                 { TPCP_F, "TXPC array parity error", -1, 1 },
4349                 { TNPP_F, "TXNP array parity error", -1, 1 },
4350                 { TFTP_F, "TXFT array parity error", -1, 1 },
4351                 { TCAP_F, "TXCA array parity error", -1, 1 },
4352                 { TCIP_F, "TXCIF array parity error", -1, 1 },
4353                 { RCAP_F, "RXCA array parity error", -1, 1 },
4354                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
4355                 { RDPE_F, "Rx data parity error", -1, 1 },
4356                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4357                 { 0 }
4358         };
4359         static const struct intr_info pcie_intr_info[] = {
4360                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4361                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4362                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4363                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4364                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4365                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4366                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4367                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4368                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4369                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4370                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4371                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4372                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4373                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4374                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4375                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4376                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4377                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4378                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4379                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4380                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4381                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4382                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4383                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4384                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4385                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4386                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4387                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4388                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4389                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4390                   -1, 0 },
4391                 { 0 }
4392         };
4393
4394         static struct intr_info t5_pcie_intr_info[] = {
4395                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
4396                   -1, 1 },
4397                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4398                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4399                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4400                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4401                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4402                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4403                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4404                   -1, 1 },
4405                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4406                   -1, 1 },
4407                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4408                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4409                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4410                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4411                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
4412                   -1, 1 },
4413                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4414                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4415                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4416                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4417                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4418                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4419                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4420                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4421                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4422                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4423                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4424                   -1, 1 },
4425                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4426                   -1, 1 },
4427                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4428                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4429                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4430                 { READRSPERR_F, "Outbound read error", -1, 0 },
4431                 { 0 }
4432         };
4433
4434         int fat;
4435
4436         if (is_t4(adapter->params.chip))
4437                 fat = t4_handle_intr_status(adapter,
4438                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4439                                 sysbus_intr_info) +
4440                         t4_handle_intr_status(adapter,
4441                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4442                                         pcie_port_intr_info) +
4443                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4444                                               pcie_intr_info);
4445         else
4446                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4447                                             t5_pcie_intr_info);
4448
4449         if (fat)
4450                 t4_fatal_err(adapter);
4451 }
4452
4453 /*
4454  * TP interrupt handler.
4455  */
4456 static void tp_intr_handler(struct adapter *adapter)
4457 {
4458         static const struct intr_info tp_intr_info[] = {
4459                 { 0x3fffffff, "TP parity error", -1, 1 },
4460                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4461                 { 0 }
4462         };
4463
4464         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4465                 t4_fatal_err(adapter);
4466 }
4467
4468 /*
4469  * SGE interrupt handler.
4470  */
4471 static void sge_intr_handler(struct adapter *adapter)
4472 {
4473         u32 v = 0, perr;
4474         u32 err;
4475
4476         static const struct intr_info sge_intr_info[] = {
4477                 { ERR_CPL_EXCEED_IQE_SIZE_F,
4478                   "SGE received CPL exceeding IQE size", -1, 1 },
4479                 { ERR_INVALID_CIDX_INC_F,
4480                   "SGE GTS CIDX increment too large", -1, 0 },
4481                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4482                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4483                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4484                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
4485                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4486                   0 },
4487                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4488                   0 },
4489                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4490                   0 },
4491                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4492                   0 },
4493                 { ERR_ING_CTXT_PRIO_F,
4494                   "SGE too many priority ingress contexts", -1, 0 },
4495                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4496                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4497                 { 0 }
4498         };
4499
4500         static struct intr_info t4t5_sge_intr_info[] = {
4501                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4502                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4503                 { ERR_EGR_CTXT_PRIO_F,
4504                   "SGE too many priority egress contexts", -1, 0 },
4505                 { 0 }
4506         };
4507
4508         perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4509         if (perr) {
4510                 v |= perr;
4511                 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4512                           perr);
4513         }
4514
4515         perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4516         if (perr) {
4517                 v |= perr;
4518                 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4519                           perr);
4520         }
4521
4522         if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4523                 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4524                 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4525                 perr &= ~ERR_T_RXCRC_F;
4526                 if (perr) {
4527                         v |= perr;
4528                         dev_alert(adapter->pdev_dev,
4529                                   "SGE Cause5 Parity Error %#x\n", perr);
4530                 }
4531         }
4532
4533         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4534         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4535                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4536                                            t4t5_sge_intr_info);
4537
4538         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4539         if (err & ERROR_QID_VALID_F) {
4540                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4541                         ERROR_QID_G(err));
4542                 if (err & UNCAPTURED_ERROR_F)
4543                         dev_err(adapter->pdev_dev,
4544                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
4545                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4546                              UNCAPTURED_ERROR_F);
4547         }
4548
4549         if (v != 0)
4550                 t4_fatal_err(adapter);
4551 }
4552
4553 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4554                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4555 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4556                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4557
4558 /*
4559  * CIM interrupt handler.
4560  */
4561 static void cim_intr_handler(struct adapter *adapter)
4562 {
4563         static const struct intr_info cim_intr_info[] = {
4564                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4565                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4566                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4567                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4568                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4569                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4570                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4571                 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4572                 { 0 }
4573         };
4574         static const struct intr_info cim_upintr_info[] = {
4575                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4576                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4577                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4578                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4579                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4580                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4581                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4582                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4583                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4584                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4585                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4586                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4587                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4588                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4589                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4590                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4591                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4592                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4593                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4594                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4595                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4596                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4597                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4598                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4599                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4600                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4601                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4602                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4603                 { 0 }
4604         };
4605
4606         u32 val, fw_err;
4607         int fat;
4608
4609         fw_err = t4_read_reg(adapter, PCIE_FW_A);
4610         if (fw_err & PCIE_FW_ERR_F)
4611                 t4_report_fw_error(adapter);
4612
4613         /* When the Firmware detects an internal error which normally
4614          * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4615          * in order to make sure the Host sees the Firmware Crash.  So
4616          * if we have a Timer0 interrupt and don't see a Firmware Crash,
4617          * ignore the Timer0 interrupt.
4618          */
4619
4620         val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4621         if (val & TIMER0INT_F)
4622                 if (!(fw_err & PCIE_FW_ERR_F) ||
4623                     (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4624                         t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4625                                      TIMER0INT_F);
4626
4627         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4628                                     cim_intr_info) +
4629               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4630                                     cim_upintr_info);
4631         if (fat)
4632                 t4_fatal_err(adapter);
4633 }
4634
4635 /*
4636  * ULP RX interrupt handler.
4637  */
4638 static void ulprx_intr_handler(struct adapter *adapter)
4639 {
4640         static const struct intr_info ulprx_intr_info[] = {
4641                 { 0x1800000, "ULPRX context error", -1, 1 },
4642                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4643                 { 0 }
4644         };
4645
4646         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4647                 t4_fatal_err(adapter);
4648 }
4649
4650 /*
4651  * ULP TX interrupt handler.
4652  */
4653 static void ulptx_intr_handler(struct adapter *adapter)
4654 {
4655         static const struct intr_info ulptx_intr_info[] = {
4656                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4657                   0 },
4658                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4659                   0 },
4660                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4661                   0 },
4662                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4663                   0 },
4664                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4665                 { 0 }
4666         };
4667
4668         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4669                 t4_fatal_err(adapter);
4670 }
4671
4672 /*
4673  * PM TX interrupt handler.
4674  */
4675 static void pmtx_intr_handler(struct adapter *adapter)
4676 {
4677         static const struct intr_info pmtx_intr_info[] = {
4678                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4679                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4680                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4681                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4682                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4683                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4684                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4685                   -1, 1 },
4686                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4687                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4688                 { 0 }
4689         };
4690
4691         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4692                 t4_fatal_err(adapter);
4693 }
4694
4695 /*
4696  * PM RX interrupt handler.
4697  */
4698 static void pmrx_intr_handler(struct adapter *adapter)
4699 {
4700         static const struct intr_info pmrx_intr_info[] = {
4701                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4702                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4703                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4704                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4705                   -1, 1 },
4706                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4707                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4708                 { 0 }
4709         };
4710
4711         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4712                 t4_fatal_err(adapter);
4713 }
4714
4715 /*
4716  * CPL switch interrupt handler.
4717  */
4718 static void cplsw_intr_handler(struct adapter *adapter)
4719 {
4720         static const struct intr_info cplsw_intr_info[] = {
4721                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4722                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4723                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4724                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4725                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4726                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4727                 { 0 }
4728         };
4729
4730         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4731                 t4_fatal_err(adapter);
4732 }
4733
4734 /*
4735  * LE interrupt handler.
4736  */
4737 static void le_intr_handler(struct adapter *adap)
4738 {
4739         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4740         static const struct intr_info le_intr_info[] = {
4741                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4742                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4743                 { PARITYERR_F, "LE parity error", -1, 1 },
4744                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4745                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4746                 { 0 }
4747         };
4748
4749         static struct intr_info t6_le_intr_info[] = {
4750                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4751                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4752                 { CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4753                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4754                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4755                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4756                 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4757                 { 0 }
4758         };
4759
4760         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4761                                   (chip <= CHELSIO_T5) ?
4762                                   le_intr_info : t6_le_intr_info))
4763                 t4_fatal_err(adap);
4764 }
4765
4766 /*
4767  * MPS interrupt handler.
4768  */
4769 static void mps_intr_handler(struct adapter *adapter)
4770 {
4771         static const struct intr_info mps_rx_intr_info[] = {
4772                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4773                 { 0 }
4774         };
4775         static const struct intr_info mps_tx_intr_info[] = {
4776                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4777                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4778                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4779                   -1, 1 },
4780                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4781                   -1, 1 },
4782                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4783                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4784                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4785                 { 0 }
4786         };
4787         static const struct intr_info t6_mps_tx_intr_info[] = {
4788                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4789                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4790                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4791                   -1, 1 },
4792                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4793                   -1, 1 },
4794                 /* MPS Tx Bubble is normal for T6 */
4795                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4796                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4797                 { 0 }
4798         };
4799         static const struct intr_info mps_trc_intr_info[] = {
4800                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4801                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4802                   -1, 1 },
4803                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4804                 { 0 }
4805         };
4806         static const struct intr_info mps_stat_sram_intr_info[] = {
4807                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4808                 { 0 }
4809         };
4810         static const struct intr_info mps_stat_tx_intr_info[] = {
4811                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4812                 { 0 }
4813         };
4814         static const struct intr_info mps_stat_rx_intr_info[] = {
4815                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4816                 { 0 }
4817         };
4818         static const struct intr_info mps_cls_intr_info[] = {
4819                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4820                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4821                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4822                 { 0 }
4823         };
4824
4825         int fat;
4826
4827         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4828                                     mps_rx_intr_info) +
4829               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4830                                     is_t6(adapter->params.chip)
4831                                     ? t6_mps_tx_intr_info
4832                                     : mps_tx_intr_info) +
4833               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4834                                     mps_trc_intr_info) +
4835               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4836                                     mps_stat_sram_intr_info) +
4837               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4838                                     mps_stat_tx_intr_info) +
4839               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4840                                     mps_stat_rx_intr_info) +
4841               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4842                                     mps_cls_intr_info);
4843
4844         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4845         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4846         if (fat)
4847                 t4_fatal_err(adapter);
4848 }
4849
4850 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4851                       ECC_UE_INT_CAUSE_F)
4852
4853 /*
4854  * EDC/MC interrupt handler.
4855  */
4856 static void mem_intr_handler(struct adapter *adapter, int idx)
4857 {
4858         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4859
4860         unsigned int addr, cnt_addr, v;
4861
4862         if (idx <= MEM_EDC1) {
4863                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4864                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4865         } else if (idx == MEM_MC) {
4866                 if (is_t4(adapter->params.chip)) {
4867                         addr = MC_INT_CAUSE_A;
4868                         cnt_addr = MC_ECC_STATUS_A;
4869                 } else {
4870                         addr = MC_P_INT_CAUSE_A;
4871                         cnt_addr = MC_P_ECC_STATUS_A;
4872                 }
4873         } else {
4874                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4875                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4876         }
4877
4878         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4879         if (v & PERR_INT_CAUSE_F)
4880                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4881                           name[idx]);
4882         if (v & ECC_CE_INT_CAUSE_F) {
4883                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4884
4885                 t4_edc_err_read(adapter, idx);
4886
4887                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4888                 if (printk_ratelimit())
4889                         dev_warn(adapter->pdev_dev,
4890                                  "%u %s correctable ECC data error%s\n",
4891                                  cnt, name[idx], cnt > 1 ? "s" : "");
4892         }
4893         if (v & ECC_UE_INT_CAUSE_F)
4894                 dev_alert(adapter->pdev_dev,
4895                           "%s uncorrectable ECC data error\n", name[idx]);
4896
4897         t4_write_reg(adapter, addr, v);
4898         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4899                 t4_fatal_err(adapter);
4900 }
4901
4902 /*
4903  * MA interrupt handler.
4904  */
4905 static void ma_intr_handler(struct adapter *adap)
4906 {
4907         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4908
4909         if (status & MEM_PERR_INT_CAUSE_F) {
4910                 dev_alert(adap->pdev_dev,
4911                           "MA parity error, parity status %#x\n",
4912                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4913                 if (is_t5(adap->params.chip))
4914                         dev_alert(adap->pdev_dev,
4915                                   "MA parity error, parity status %#x\n",
4916                                   t4_read_reg(adap,
4917                                               MA_PARITY_ERROR_STATUS2_A));
4918         }
4919         if (status & MEM_WRAP_INT_CAUSE_F) {
4920                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4921                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4922                           "client %u to address %#x\n",
4923                           MEM_WRAP_CLIENT_NUM_G(v),
4924                           MEM_WRAP_ADDRESS_G(v) << 4);
4925         }
4926         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4927         t4_fatal_err(adap);
4928 }
4929
4930 /*
4931  * SMB interrupt handler.
4932  */
4933 static void smb_intr_handler(struct adapter *adap)
4934 {
4935         static const struct intr_info smb_intr_info[] = {
4936                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4937                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4938                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4939                 { 0 }
4940         };
4941
4942         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4943                 t4_fatal_err(adap);
4944 }
4945
4946 /*
4947  * NC-SI interrupt handler.
4948  */
4949 static void ncsi_intr_handler(struct adapter *adap)
4950 {
4951         static const struct intr_info ncsi_intr_info[] = {
4952                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4953                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4954                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4955                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4956                 { 0 }
4957         };
4958
4959         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4960                 t4_fatal_err(adap);
4961 }
4962
4963 /*
4964  * XGMAC interrupt handler.
4965  */
4966 static void xgmac_intr_handler(struct adapter *adap, int port)
4967 {
4968         u32 v, int_cause_reg;
4969
4970         if (is_t4(adap->params.chip))
4971                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4972         else
4973                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4974
4975         v = t4_read_reg(adap, int_cause_reg);
4976
4977         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4978         if (!v)
4979                 return;
4980
4981         if (v & TXFIFO_PRTY_ERR_F)
4982                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4983                           port);
4984         if (v & RXFIFO_PRTY_ERR_F)
4985                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4986                           port);
4987         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4988         t4_fatal_err(adap);
4989 }
4990
4991 /*
4992  * PL interrupt handler.
4993  */
4994 static void pl_intr_handler(struct adapter *adap)
4995 {
4996         static const struct intr_info pl_intr_info[] = {
4997                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4998                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4999                 { 0 }
5000         };
5001
5002         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
5003                 t4_fatal_err(adap);
5004 }
5005
5006 #define PF_INTR_MASK (PFSW_F)
5007 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5008                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5009                 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5010
5011 /**
5012  *      t4_slow_intr_handler - control path interrupt handler
5013  *      @adapter: the adapter
5014  *
5015  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5016  *      The designation 'slow' is because it involves register reads, while
5017  *      data interrupts typically don't involve any MMIOs.
5018  */
5019 int t4_slow_intr_handler(struct adapter *adapter)
5020 {
5021         /* There are rare cases where a PL_INT_CAUSE bit may end up getting
5022          * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5023          * easiest just to mask that case here.
5024          */
5025         u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5026         u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5027         u32 cause = raw_cause & enable;
5028
5029         if (!(cause & GLBL_INTR_MASK))
5030                 return 0;
5031         if (cause & CIM_F)
5032                 cim_intr_handler(adapter);
5033         if (cause & MPS_F)
5034                 mps_intr_handler(adapter);
5035         if (cause & NCSI_F)
5036                 ncsi_intr_handler(adapter);
5037         if (cause & PL_F)
5038                 pl_intr_handler(adapter);
5039         if (cause & SMB_F)
5040                 smb_intr_handler(adapter);
5041         if (cause & XGMAC0_F)
5042                 xgmac_intr_handler(adapter, 0);
5043         if (cause & XGMAC1_F)
5044                 xgmac_intr_handler(adapter, 1);
5045         if (cause & XGMAC_KR0_F)
5046                 xgmac_intr_handler(adapter, 2);
5047         if (cause & XGMAC_KR1_F)
5048                 xgmac_intr_handler(adapter, 3);
5049         if (cause & PCIE_F)
5050                 pcie_intr_handler(adapter);
5051         if (cause & MC_F)
5052                 mem_intr_handler(adapter, MEM_MC);
5053         if (is_t5(adapter->params.chip) && (cause & MC1_F))
5054                 mem_intr_handler(adapter, MEM_MC1);
5055         if (cause & EDC0_F)
5056                 mem_intr_handler(adapter, MEM_EDC0);
5057         if (cause & EDC1_F)
5058                 mem_intr_handler(adapter, MEM_EDC1);
5059         if (cause & LE_F)
5060                 le_intr_handler(adapter);
5061         if (cause & TP_F)
5062                 tp_intr_handler(adapter);
5063         if (cause & MA_F)
5064                 ma_intr_handler(adapter);
5065         if (cause & PM_TX_F)
5066                 pmtx_intr_handler(adapter);
5067         if (cause & PM_RX_F)
5068                 pmrx_intr_handler(adapter);
5069         if (cause & ULP_RX_F)
5070                 ulprx_intr_handler(adapter);
5071         if (cause & CPL_SWITCH_F)
5072                 cplsw_intr_handler(adapter);
5073         if (cause & SGE_F)
5074                 sge_intr_handler(adapter);
5075         if (cause & ULP_TX_F)
5076                 ulptx_intr_handler(adapter);
5077
5078         /* Clear the interrupts just processed for which we are the master. */
5079         t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5080         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5081         return 1;
5082 }
5083
5084 /**
5085  *      t4_intr_enable - enable interrupts
5086  *      @adapter: the adapter whose interrupts should be enabled
5087  *
5088  *      Enable PF-specific interrupts for the calling function and the top-level
5089  *      interrupt concentrator for global interrupts.  Interrupts are already
5090  *      enabled at each module, here we just enable the roots of the interrupt
5091  *      hierarchies.
5092  *
5093  *      Note: this function should be called only when the driver manages
5094  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5095  *      function at a time should be doing this.
5096  */
5097 void t4_intr_enable(struct adapter *adapter)
5098 {
5099         u32 val = 0;
5100         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5101         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5102                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5103
5104         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5105                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5106         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5107                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5108                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5109                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5110                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5111                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5112                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5113         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5114         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5115 }
5116
5117 /**
5118  *      t4_intr_disable - disable interrupts
5119  *      @adapter: the adapter whose interrupts should be disabled
5120  *
5121  *      Disable interrupts.  We only disable the top-level interrupt
5122  *      concentrators.  The caller must be a PCI function managing global
5123  *      interrupts.
5124  */
5125 void t4_intr_disable(struct adapter *adapter)
5126 {
5127         u32 whoami, pf;
5128
5129         if (pci_channel_offline(adapter->pdev))
5130                 return;
5131
5132         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5133         pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5134                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5135
5136         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5137         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5138 }
5139
5140 unsigned int t4_chip_rss_size(struct adapter *adap)
5141 {
5142         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5143                 return RSS_NENTRIES;
5144         else
5145                 return T6_RSS_NENTRIES;
5146 }
5147
5148 /**
5149  *      t4_config_rss_range - configure a portion of the RSS mapping table
5150  *      @adapter: the adapter
5151  *      @mbox: mbox to use for the FW command
5152  *      @viid: virtual interface whose RSS subtable is to be written
5153  *      @start: start entry in the table to write
5154  *      @n: how many table entries to write
5155  *      @rspq: values for the response queue lookup table
5156  *      @nrspq: number of values in @rspq
5157  *
5158  *      Programs the selected part of the VI's RSS mapping table with the
5159  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5160  *      until the full table range is populated.
5161  *
5162  *      The caller must ensure the values in @rspq are in the range allowed for
5163  *      @viid.
5164  */
5165 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5166                         int start, int n, const u16 *rspq, unsigned int nrspq)
5167 {
5168         int ret;
5169         const u16 *rsp = rspq;
5170         const u16 *rsp_end = rspq + nrspq;
5171         struct fw_rss_ind_tbl_cmd cmd;
5172
5173         memset(&cmd, 0, sizeof(cmd));
5174         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5175                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5176                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
5177         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5178
5179         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5180         while (n > 0) {
5181                 int nq = min(n, 32);
5182                 __be32 *qp = &cmd.iq0_to_iq2;
5183
5184                 cmd.niqid = cpu_to_be16(nq);
5185                 cmd.startidx = cpu_to_be16(start);
5186
5187                 start += nq;
5188                 n -= nq;
5189
5190                 while (nq > 0) {
5191                         unsigned int v;
5192
5193                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5194                         if (++rsp >= rsp_end)
5195                                 rsp = rspq;
5196                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5197                         if (++rsp >= rsp_end)
5198                                 rsp = rspq;
5199                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5200                         if (++rsp >= rsp_end)
5201                                 rsp = rspq;
5202
5203                         *qp++ = cpu_to_be32(v);
5204                         nq -= 3;
5205                 }
5206
5207                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5208                 if (ret)
5209                         return ret;
5210         }
5211         return 0;
5212 }
5213
5214 /**
5215  *      t4_config_glbl_rss - configure the global RSS mode
5216  *      @adapter: the adapter
5217  *      @mbox: mbox to use for the FW command
5218  *      @mode: global RSS mode
5219  *      @flags: mode-specific flags
5220  *
5221  *      Sets the global RSS mode.
5222  */
5223 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5224                        unsigned int flags)
5225 {
5226         struct fw_rss_glb_config_cmd c;
5227
5228         memset(&c, 0, sizeof(c));
5229         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5230                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5231         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5232         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5233                 c.u.manual.mode_pkd =
5234                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5235         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5236                 c.u.basicvirtual.mode_pkd =
5237                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5238                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5239         } else
5240                 return -EINVAL;
5241         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5242 }
5243
5244 /**
5245  *      t4_config_vi_rss - configure per VI RSS settings
5246  *      @adapter: the adapter
5247  *      @mbox: mbox to use for the FW command
5248  *      @viid: the VI id
5249  *      @flags: RSS flags
5250  *      @defq: id of the default RSS queue for the VI.
5251  *
5252  *      Configures VI-specific RSS properties.
5253  */
5254 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5255                      unsigned int flags, unsigned int defq)
5256 {
5257         struct fw_rss_vi_config_cmd c;
5258
5259         memset(&c, 0, sizeof(c));
5260         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5261                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5262                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5263         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5264         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5265                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5266         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5267 }
5268
5269 /* Read an RSS table row */
5270 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5271 {
5272         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5273         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5274                                    5, 0, val);
5275 }
5276
5277 /**
5278  *      t4_read_rss - read the contents of the RSS mapping table
5279  *      @adapter: the adapter
5280  *      @map: holds the contents of the RSS mapping table
5281  *
5282  *      Reads the contents of the RSS hash->queue mapping table.
5283  */
5284 int t4_read_rss(struct adapter *adapter, u16 *map)
5285 {
5286         int i, ret, nentries;
5287         u32 val;
5288
5289         nentries = t4_chip_rss_size(adapter);
5290         for (i = 0; i < nentries / 2; ++i) {
5291                 ret = rd_rss_row(adapter, i, &val);
5292                 if (ret)
5293                         return ret;
5294                 *map++ = LKPTBLQUEUE0_G(val);
5295                 *map++ = LKPTBLQUEUE1_G(val);
5296         }
5297         return 0;
5298 }
5299
5300 static unsigned int t4_use_ldst(struct adapter *adap)
5301 {
5302         return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5303 }
5304
5305 /**
5306  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5307  * @adap: the adapter
5308  * @cmd: TP fw ldst address space type
5309  * @vals: where the indirect register values are stored/written
5310  * @nregs: how many indirect registers to read/write
5311  * @start_index: index of first indirect register to read/write
5312  * @rw: Read (1) or Write (0)
5313  * @sleep_ok: if true we may sleep while awaiting command completion
5314  *
5315  * Access TP indirect registers through LDST
5316  */
5317 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5318                             unsigned int nregs, unsigned int start_index,
5319                             unsigned int rw, bool sleep_ok)
5320 {
5321         int ret = 0;
5322         unsigned int i;
5323         struct fw_ldst_cmd c;
5324
5325         for (i = 0; i < nregs; i++) {
5326                 memset(&c, 0, sizeof(c));
5327                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5328                                                 FW_CMD_REQUEST_F |
5329                                                 (rw ? FW_CMD_READ_F :
5330                                                       FW_CMD_WRITE_F) |
5331                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
5332                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5333
5334                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5335                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5336                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5337                                       sleep_ok);
5338                 if (ret)
5339                         return ret;
5340
5341                 if (rw)
5342                         vals[i] = be32_to_cpu(c.u.addrval.val);
5343         }
5344         return 0;
5345 }
5346
5347 /**
5348  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5349  * @adap: the adapter
5350  * @reg_addr: Address Register
5351  * @reg_data: Data register
5352  * @buff: where the indirect register values are stored/written
5353  * @nregs: how many indirect registers to read/write
5354  * @start_index: index of first indirect register to read/write
5355  * @rw: READ(1) or WRITE(0)
5356  * @sleep_ok: if true we may sleep while awaiting command completion
5357  *
5358  * Read/Write TP indirect registers through LDST if possible.
5359  * Else, use backdoor access
5360  **/
5361 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5362                               u32 *buff, u32 nregs, u32 start_index, int rw,
5363                               bool sleep_ok)
5364 {
5365         int rc = -EINVAL;
5366         int cmd;
5367
5368         switch (reg_addr) {
5369         case TP_PIO_ADDR_A:
5370                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5371                 break;
5372         case TP_TM_PIO_ADDR_A:
5373                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5374                 break;
5375         case TP_MIB_INDEX_A:
5376                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5377                 break;
5378         default:
5379                 goto indirect_access;
5380         }
5381
5382         if (t4_use_ldst(adap))
5383                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5384                                       sleep_ok);
5385
5386 indirect_access:
5387
5388         if (rc) {
5389                 if (rw)
5390                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5391                                          start_index);
5392                 else
5393                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5394                                           start_index);
5395         }
5396 }
5397
5398 /**
5399  * t4_tp_pio_read - Read TP PIO registers
5400  * @adap: the adapter
5401  * @buff: where the indirect register values are written
5402  * @nregs: how many indirect registers to read
5403  * @start_index: index of first indirect register to read
5404  * @sleep_ok: if true we may sleep while awaiting command completion
5405  *
5406  * Read TP PIO Registers
5407  **/
5408 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5409                     u32 start_index, bool sleep_ok)
5410 {
5411         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5412                           start_index, 1, sleep_ok);
5413 }
5414
5415 /**
5416  * t4_tp_pio_write - Write TP PIO registers
5417  * @adap: the adapter
5418  * @buff: where the indirect register values are stored
5419  * @nregs: how many indirect registers to write
5420  * @start_index: index of first indirect register to write
5421  * @sleep_ok: if true we may sleep while awaiting command completion
5422  *
5423  * Write TP PIO Registers
5424  **/
5425 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5426                             u32 start_index, bool sleep_ok)
5427 {
5428         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5429                           start_index, 0, sleep_ok);
5430 }
5431
5432 /**
5433  * t4_tp_tm_pio_read - Read TP TM PIO registers
5434  * @adap: the adapter
5435  * @buff: where the indirect register values are written
5436  * @nregs: how many indirect registers to read
5437  * @start_index: index of first indirect register to read
5438  * @sleep_ok: if true we may sleep while awaiting command completion
5439  *
5440  * Read TP TM PIO Registers
5441  **/
5442 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5443                        u32 start_index, bool sleep_ok)
5444 {
5445         t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5446                           nregs, start_index, 1, sleep_ok);
5447 }
5448
5449 /**
5450  * t4_tp_mib_read - Read TP MIB registers
5451  * @adap: the adapter
5452  * @buff: where the indirect register values are written
5453  * @nregs: how many indirect registers to read
5454  * @start_index: index of first indirect register to read
5455  * @sleep_ok: if true we may sleep while awaiting command completion
5456  *
5457  * Read TP MIB Registers
5458  **/
5459 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5460                     bool sleep_ok)
5461 {
5462         t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5463                           start_index, 1, sleep_ok);
5464 }
5465
5466 /**
5467  *      t4_read_rss_key - read the global RSS key
5468  *      @adap: the adapter
5469  *      @key: 10-entry array holding the 320-bit RSS key
5470  *      @sleep_ok: if true we may sleep while awaiting command completion
5471  *
5472  *      Reads the global 320-bit RSS key.
5473  */
5474 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5475 {
5476         t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5477 }
5478
5479 /**
5480  *      t4_write_rss_key - program one of the RSS keys
5481  *      @adap: the adapter
5482  *      @key: 10-entry array holding the 320-bit RSS key
5483  *      @idx: which RSS key to write
5484  *      @sleep_ok: if true we may sleep while awaiting command completion
5485  *
5486  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5487  *      0..15 the corresponding entry in the RSS key table is written,
5488  *      otherwise the global RSS key is written.
5489  */
5490 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5491                       bool sleep_ok)
5492 {
5493         u8 rss_key_addr_cnt = 16;
5494         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5495
5496         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5497          * allows access to key addresses 16-63 by using KeyWrAddrX
5498          * as index[5:4](upper 2) into key table
5499          */
5500         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5501             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5502                 rss_key_addr_cnt = 32;
5503
5504         t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5505
5506         if (idx >= 0 && idx < rss_key_addr_cnt) {
5507                 if (rss_key_addr_cnt > 16)
5508                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5509                                      KEYWRADDRX_V(idx >> 4) |
5510                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
5511                 else
5512                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5513                                      KEYWRADDR_V(idx) | KEYWREN_F);
5514         }
5515 }
5516
5517 /**
5518  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5519  *      @adapter: the adapter
5520  *      @index: the entry in the PF RSS table to read
5521  *      @valp: where to store the returned value
5522  *      @sleep_ok: if true we may sleep while awaiting command completion
5523  *
5524  *      Reads the PF RSS Configuration Table at the specified index and returns
5525  *      the value found there.
5526  */
5527 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5528                            u32 *valp, bool sleep_ok)
5529 {
5530         t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5531 }
5532
5533 /**
5534  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5535  *      @adapter: the adapter
5536  *      @index: the entry in the VF RSS table to read
5537  *      @vfl: where to store the returned VFL
5538  *      @vfh: where to store the returned VFH
5539  *      @sleep_ok: if true we may sleep while awaiting command completion
5540  *
5541  *      Reads the VF RSS Configuration Table at the specified index and returns
5542  *      the (VFL, VFH) values found there.
5543  */
5544 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5545                            u32 *vfl, u32 *vfh, bool sleep_ok)
5546 {
5547         u32 vrt, mask, data;
5548
5549         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5550                 mask = VFWRADDR_V(VFWRADDR_M);
5551                 data = VFWRADDR_V(index);
5552         } else {
5553                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5554                  data = T6_VFWRADDR_V(index);
5555         }
5556
5557         /* Request that the index'th VF Table values be read into VFL/VFH.
5558          */
5559         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5560         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5561         vrt |= data | VFRDEN_F;
5562         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5563
5564         /* Grab the VFL/VFH values ...
5565          */
5566         t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5567         t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5568 }
5569
5570 /**
5571  *      t4_read_rss_pf_map - read PF RSS Map
5572  *      @adapter: the adapter
5573  *      @sleep_ok: if true we may sleep while awaiting command completion
5574  *
5575  *      Reads the PF RSS Map register and returns its value.
5576  */
5577 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5578 {
5579         u32 pfmap;
5580
5581         t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5582         return pfmap;
5583 }
5584
5585 /**
5586  *      t4_read_rss_pf_mask - read PF RSS Mask
5587  *      @adapter: the adapter
5588  *      @sleep_ok: if true we may sleep while awaiting command completion
5589  *
5590  *      Reads the PF RSS Mask register and returns its value.
5591  */
5592 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5593 {
5594         u32 pfmask;
5595
5596         t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5597         return pfmask;
5598 }
5599
5600 /**
5601  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5602  *      @adap: the adapter
5603  *      @v4: holds the TCP/IP counter values
5604  *      @v6: holds the TCP/IPv6 counter values
5605  *      @sleep_ok: if true we may sleep while awaiting command completion
5606  *
5607  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5608  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5609  */
5610 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5611                          struct tp_tcp_stats *v6, bool sleep_ok)
5612 {
5613         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5614
5615 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5616 #define STAT(x)     val[STAT_IDX(x)]
5617 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5618
5619         if (v4) {
5620                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5621                                TP_MIB_TCP_OUT_RST_A, sleep_ok);
5622                 v4->tcp_out_rsts = STAT(OUT_RST);
5623                 v4->tcp_in_segs  = STAT64(IN_SEG);
5624                 v4->tcp_out_segs = STAT64(OUT_SEG);
5625                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5626         }
5627         if (v6) {
5628                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5629                                TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5630                 v6->tcp_out_rsts = STAT(OUT_RST);
5631                 v6->tcp_in_segs  = STAT64(IN_SEG);
5632                 v6->tcp_out_segs = STAT64(OUT_SEG);
5633                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5634         }
5635 #undef STAT64
5636 #undef STAT
5637 #undef STAT_IDX
5638 }
5639
5640 /**
5641  *      t4_tp_get_err_stats - read TP's error MIB counters
5642  *      @adap: the adapter
5643  *      @st: holds the counter values
5644  *      @sleep_ok: if true we may sleep while awaiting command completion
5645  *
5646  *      Returns the values of TP's error counters.
5647  */
5648 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5649                          bool sleep_ok)
5650 {
5651         int nchan = adap->params.arch.nchan;
5652
5653         t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5654                        sleep_ok);
5655         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5656                        sleep_ok);
5657         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5658                        sleep_ok);
5659         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5660                        TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5661         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5662                        TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5663         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5664                        sleep_ok);
5665         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5666                        TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5667         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5668                        TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5669         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5670                        sleep_ok);
5671 }
5672
5673 /**
5674  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5675  *      @adap: the adapter
5676  *      @st: holds the counter values
5677  *      @sleep_ok: if true we may sleep while awaiting command completion
5678  *
5679  *      Returns the values of TP's CPL counters.
5680  */
5681 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5682                          bool sleep_ok)
5683 {
5684         int nchan = adap->params.arch.nchan;
5685
5686         t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5687
5688         t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5689 }
5690
5691 /**
5692  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5693  *      @adap: the adapter
5694  *      @st: holds the counter values
5695  *      @sleep_ok: if true we may sleep while awaiting command completion
5696  *
5697  *      Returns the values of TP's RDMA counters.
5698  */
5699 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5700                           bool sleep_ok)
5701 {
5702         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5703                        sleep_ok);
5704 }
5705
5706 /**
5707  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5708  *      @adap: the adapter
5709  *      @idx: the port index
5710  *      @st: holds the counter values
5711  *      @sleep_ok: if true we may sleep while awaiting command completion
5712  *
5713  *      Returns the values of TP's FCoE counters for the selected port.
5714  */
5715 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5716                        struct tp_fcoe_stats *st, bool sleep_ok)
5717 {
5718         u32 val[2];
5719
5720         t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5721                        sleep_ok);
5722
5723         t4_tp_mib_read(adap, &st->frames_drop, 1,
5724                        TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5725
5726         t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5727                        sleep_ok);
5728
5729         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5730 }
5731
5732 /**
5733  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5734  *      @adap: the adapter
5735  *      @st: holds the counter values
5736  *      @sleep_ok: if true we may sleep while awaiting command completion
5737  *
5738  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5739  */
5740 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5741                       bool sleep_ok)
5742 {
5743         u32 val[4];
5744
5745         t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5746         st->frames = val[0];
5747         st->drops = val[1];
5748         st->octets = ((u64)val[2] << 32) | val[3];
5749 }
5750
5751 /**
5752  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5753  *      @adap: the adapter
5754  *      @mtus: where to store the MTU values
5755  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5756  *
5757  *      Reads the HW path MTU table.
5758  */
5759 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5760 {
5761         u32 v;
5762         int i;
5763
5764         for (i = 0; i < NMTUS; ++i) {
5765                 t4_write_reg(adap, TP_MTU_TABLE_A,
5766                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
5767                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5768                 mtus[i] = MTUVALUE_G(v);
5769                 if (mtu_log)
5770                         mtu_log[i] = MTUWIDTH_G(v);
5771         }
5772 }
5773
5774 /**
5775  *      t4_read_cong_tbl - reads the congestion control table
5776  *      @adap: the adapter
5777  *      @incr: where to store the alpha values
5778  *
5779  *      Reads the additive increments programmed into the HW congestion
5780  *      control table.
5781  */
5782 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5783 {
5784         unsigned int mtu, w;
5785
5786         for (mtu = 0; mtu < NMTUS; ++mtu)
5787                 for (w = 0; w < NCCTRL_WIN; ++w) {
5788                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5789                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5790                         incr[mtu][w] = (u16)t4_read_reg(adap,
5791                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5792                 }
5793 }
5794
5795 /**
5796  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5797  *      @adap: the adapter
5798  *      @addr: the indirect TP register address
5799  *      @mask: specifies the field within the register to modify
5800  *      @val: new value for the field
5801  *
5802  *      Sets a field of an indirect TP register to the given value.
5803  */
5804 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5805                             unsigned int mask, unsigned int val)
5806 {
5807         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5808         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5809         t4_write_reg(adap, TP_PIO_DATA_A, val);
5810 }
5811
5812 /**
5813  *      init_cong_ctrl - initialize congestion control parameters
5814  *      @a: the alpha values for congestion control
5815  *      @b: the beta values for congestion control
5816  *
5817  *      Initialize the congestion control parameters.
5818  */
5819 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5820 {
5821         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5822         a[9] = 2;
5823         a[10] = 3;
5824         a[11] = 4;
5825         a[12] = 5;
5826         a[13] = 6;
5827         a[14] = 7;
5828         a[15] = 8;
5829         a[16] = 9;
5830         a[17] = 10;
5831         a[18] = 14;
5832         a[19] = 17;
5833         a[20] = 21;
5834         a[21] = 25;
5835         a[22] = 30;
5836         a[23] = 35;
5837         a[24] = 45;
5838         a[25] = 60;
5839         a[26] = 80;
5840         a[27] = 100;
5841         a[28] = 200;
5842         a[29] = 300;
5843         a[30] = 400;
5844         a[31] = 500;
5845
5846         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5847         b[9] = b[10] = 1;
5848         b[11] = b[12] = 2;
5849         b[13] = b[14] = b[15] = b[16] = 3;
5850         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5851         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5852         b[28] = b[29] = 6;
5853         b[30] = b[31] = 7;
5854 }
5855
5856 /* The minimum additive increment value for the congestion control table */
5857 #define CC_MIN_INCR 2U
5858
5859 /**
5860  *      t4_load_mtus - write the MTU and congestion control HW tables
5861  *      @adap: the adapter
5862  *      @mtus: the values for the MTU table
5863  *      @alpha: the values for the congestion control alpha parameter
5864  *      @beta: the values for the congestion control beta parameter
5865  *
5866  *      Write the HW MTU table with the supplied MTUs and the high-speed
5867  *      congestion control table with the supplied alpha, beta, and MTUs.
5868  *      We write the two tables together because the additive increments
5869  *      depend on the MTUs.
5870  */
5871 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5872                   const unsigned short *alpha, const unsigned short *beta)
5873 {
5874         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5875                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5876                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5877                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5878         };
5879
5880         unsigned int i, w;
5881
5882         for (i = 0; i < NMTUS; ++i) {
5883                 unsigned int mtu = mtus[i];
5884                 unsigned int log2 = fls(mtu);
5885
5886                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5887                         log2--;
5888                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5889                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5890
5891                 for (w = 0; w < NCCTRL_WIN; ++w) {
5892                         unsigned int inc;
5893
5894                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5895                                   CC_MIN_INCR);
5896
5897                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5898                                      (w << 16) | (beta[w] << 13) | inc);
5899                 }
5900         }
5901 }
5902
5903 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5904  * clocks.  The formula is
5905  *
5906  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5907  *
5908  * which is equivalent to
5909  *
5910  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5911  */
5912 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5913 {
5914         u64 v = bytes256 * adap->params.vpd.cclk;
5915
5916         return v * 62 + v / 2;
5917 }
5918
5919 /**
5920  *      t4_get_chan_txrate - get the current per channel Tx rates
5921  *      @adap: the adapter
5922  *      @nic_rate: rates for NIC traffic
5923  *      @ofld_rate: rates for offloaded traffic
5924  *
5925  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5926  *      for each channel.
5927  */
5928 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5929 {
5930         u32 v;
5931
5932         v = t4_read_reg(adap, TP_TX_TRATE_A);
5933         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5934         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5935         if (adap->params.arch.nchan == NCHAN) {
5936                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5937                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5938         }
5939
5940         v = t4_read_reg(adap, TP_TX_ORATE_A);
5941         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5942         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5943         if (adap->params.arch.nchan == NCHAN) {
5944                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5945                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5946         }
5947 }
5948
5949 /**
5950  *      t4_set_trace_filter - configure one of the tracing filters
5951  *      @adap: the adapter
5952  *      @tp: the desired trace filter parameters
5953  *      @idx: which filter to configure
5954  *      @enable: whether to enable or disable the filter
5955  *
5956  *      Configures one of the tracing filters available in HW.  If @enable is
5957  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5958  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5959  */
5960 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5961                         int idx, int enable)
5962 {
5963         int i, ofst = idx * 4;
5964         u32 data_reg, mask_reg, cfg;
5965
5966         if (!enable) {
5967                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5968                 return 0;
5969         }
5970
5971         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5972         if (cfg & TRCMULTIFILTER_F) {
5973                 /* If multiple tracers are enabled, then maximum
5974                  * capture size is 2.5KB (FIFO size of a single channel)
5975                  * minus 2 flits for CPL_TRACE_PKT header.
5976                  */
5977                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5978                         return -EINVAL;
5979         } else {
5980                 /* If multiple tracers are disabled, to avoid deadlocks
5981                  * maximum packet capture size of 9600 bytes is recommended.
5982                  * Also in this mode, only trace0 can be enabled and running.
5983                  */
5984                 if (tp->snap_len > 9600 || idx)
5985                         return -EINVAL;
5986         }
5987
5988         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5989             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5990             tp->min_len > TFMINPKTSIZE_M)
5991                 return -EINVAL;
5992
5993         /* stop the tracer we'll be changing */
5994         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5995
5996         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5997         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5998         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5999
6000         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6001                 t4_write_reg(adap, data_reg, tp->data[i]);
6002                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6003         }
6004         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
6005                      TFCAPTUREMAX_V(tp->snap_len) |
6006                      TFMINPKTSIZE_V(tp->min_len));
6007         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6008                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6009                      (is_t4(adap->params.chip) ?
6010                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6011                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
6012                      T5_TFINVERTMATCH_V(tp->invert)));
6013
6014         return 0;
6015 }
6016
6017 /**
6018  *      t4_get_trace_filter - query one of the tracing filters
6019  *      @adap: the adapter
6020  *      @tp: the current trace filter parameters
6021  *      @idx: which trace filter to query
6022  *      @enabled: non-zero if the filter is enabled
6023  *
6024  *      Returns the current settings of one of the HW tracing filters.
6025  */
6026 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6027                          int *enabled)
6028 {
6029         u32 ctla, ctlb;
6030         int i, ofst = idx * 4;
6031         u32 data_reg, mask_reg;
6032
6033         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6034         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6035
6036         if (is_t4(adap->params.chip)) {
6037                 *enabled = !!(ctla & TFEN_F);
6038                 tp->port =  TFPORT_G(ctla);
6039                 tp->invert = !!(ctla & TFINVERTMATCH_F);
6040         } else {
6041                 *enabled = !!(ctla & T5_TFEN_F);
6042                 tp->port = T5_TFPORT_G(ctla);
6043                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6044         }
6045         tp->snap_len = TFCAPTUREMAX_G(ctlb);
6046         tp->min_len = TFMINPKTSIZE_G(ctlb);
6047         tp->skip_ofst = TFOFFSET_G(ctla);
6048         tp->skip_len = TFLENGTH_G(ctla);
6049
6050         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6051         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6052         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6053
6054         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6055                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6056                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6057         }
6058 }
6059
6060 /**
6061  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6062  *      @adap: the adapter
6063  *      @cnt: where to store the count statistics
6064  *      @cycles: where to store the cycle statistics
6065  *
6066  *      Returns performance statistics from PMTX.
6067  */
6068 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6069 {
6070         int i;
6071         u32 data[2];
6072
6073         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6074                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6075                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6076                 if (is_t4(adap->params.chip)) {
6077                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6078                 } else {
6079                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6080                                          PM_TX_DBG_DATA_A, data, 2,
6081                                          PM_TX_DBG_STAT_MSB_A);
6082                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6083                 }
6084         }
6085 }
6086
6087 /**
6088  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6089  *      @adap: the adapter
6090  *      @cnt: where to store the count statistics
6091  *      @cycles: where to store the cycle statistics
6092  *
6093  *      Returns performance statistics from PMRX.
6094  */
6095 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6096 {
6097         int i;
6098         u32 data[2];
6099
6100         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6101                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6102                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6103                 if (is_t4(adap->params.chip)) {
6104                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6105                 } else {
6106                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6107                                          PM_RX_DBG_DATA_A, data, 2,
6108                                          PM_RX_DBG_STAT_MSB_A);
6109                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6110                 }
6111         }
6112 }
6113
6114 /**
6115  *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6116  *      @adapter: the adapter
6117  *      @pidx: the port index
6118  *
6119  *      Computes and returns a bitmap indicating which MPS buffer groups are
6120  *      associated with the given Port.  Bit i is set if buffer group i is
6121  *      used by the Port.
6122  */
6123 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6124                                               int pidx)
6125 {
6126         unsigned int chip_version, nports;
6127
6128         chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6129         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6130
6131         switch (chip_version) {
6132         case CHELSIO_T4:
6133         case CHELSIO_T5:
6134                 switch (nports) {
6135                 case 1: return 0xf;
6136                 case 2: return 3 << (2 * pidx);
6137                 case 4: return 1 << pidx;
6138                 }
6139                 break;
6140
6141         case CHELSIO_T6:
6142                 switch (nports) {
6143                 case 2: return 1 << (2 * pidx);
6144                 }
6145                 break;
6146         }
6147
6148         dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6149                 chip_version, nports);
6150
6151         return 0;
6152 }
6153
6154 /**
6155  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6156  *      @adapter: the adapter
6157  *      @pidx: the port index
6158  *
6159  *      Returns a bitmap indicating which MPS buffer groups are associated
6160  *      with the given Port.  Bit i is set if buffer group i is used by the
6161  *      Port.
6162  */
6163 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6164 {
6165         u8 *mps_bg_map;
6166         unsigned int nports;
6167
6168         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6169         if (pidx >= nports) {
6170                 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6171                         pidx, nports);
6172                 return 0;
6173         }
6174
6175         /* If we've already retrieved/computed this, just return the result.
6176          */
6177         mps_bg_map = adapter->params.mps_bg_map;
6178         if (mps_bg_map[pidx])
6179                 return mps_bg_map[pidx];
6180
6181         /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6182          * If we're talking to such Firmware, let it tell us.  If the new
6183          * API isn't supported, revert back to old hardcoded way.  The value
6184          * obtained from Firmware is encoded in below format:
6185          *
6186          * val = (( MPSBGMAP[Port 3] << 24 ) |
6187          *        ( MPSBGMAP[Port 2] << 16 ) |
6188          *        ( MPSBGMAP[Port 1] <<  8 ) |
6189          *        ( MPSBGMAP[Port 0] <<  0 ))
6190          */
6191         if (adapter->flags & CXGB4_FW_OK) {
6192                 u32 param, val;
6193                 int ret;
6194
6195                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6196                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6197                 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6198                                          0, 1, &param, &val);
6199                 if (!ret) {
6200                         int p;
6201
6202                         /* Store the BG Map for all of the Ports in order to
6203                          * avoid more calls to the Firmware in the future.
6204                          */
6205                         for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6206                                 mps_bg_map[p] = val & 0xff;
6207
6208                         return mps_bg_map[pidx];
6209                 }
6210         }
6211
6212         /* Either we're not talking to the Firmware or we're dealing with
6213          * older Firmware which doesn't support the new API to get the MPS
6214          * Buffer Group Map.  Fall back to computing it ourselves.
6215          */
6216         mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6217         return mps_bg_map[pidx];
6218 }
6219
6220 /**
6221  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6222  *      @adapter: the adapter
6223  *      @pidx: the port index
6224  */
6225 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6226 {
6227         unsigned int nports;
6228         u32 param, val = 0;
6229         int ret;
6230
6231         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6232         if (pidx >= nports) {
6233                 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6234                         pidx, nports);
6235                 return 0;
6236         }
6237
6238         /* FW version >= 1.16.44.0 can determine E2C channel map using
6239          * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6240          */
6241         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6242                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6243         ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6244                                  0, 1, &param, &val);
6245         if (!ret)
6246                 return (val >> (8 * pidx)) & 0xff;
6247
6248         return 0;
6249 }
6250
6251 /**
6252  *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6253  *      @adap: the adapter
6254  *      @pidx: the port index
6255  *
6256  *      Returns a bitmap indicating which TP Ingress Channels are associated
6257  *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6258  *      the Port.
6259  */
6260 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6261 {
6262         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6263         unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6264
6265         if (pidx >= nports) {
6266                 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6267                          pidx, nports);
6268                 return 0;
6269         }
6270
6271         switch (chip_version) {
6272         case CHELSIO_T4:
6273         case CHELSIO_T5:
6274                 /* Note that this happens to be the same values as the MPS
6275                  * Buffer Group Map for these Chips.  But we replicate the code
6276                  * here because they're really separate concepts.
6277                  */
6278                 switch (nports) {
6279                 case 1: return 0xf;
6280                 case 2: return 3 << (2 * pidx);
6281                 case 4: return 1 << pidx;
6282                 }
6283                 break;
6284
6285         case CHELSIO_T6:
6286                 switch (nports) {
6287                 case 1:
6288                 case 2: return 1 << pidx;
6289                 }
6290                 break;
6291         }
6292
6293         dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6294                 chip_version, nports);
6295         return 0;
6296 }
6297
6298 /**
6299  *      t4_get_port_type_description - return Port Type string description
6300  *      @port_type: firmware Port Type enumeration
6301  */
6302 const char *t4_get_port_type_description(enum fw_port_type port_type)
6303 {
6304         static const char *const port_type_description[] = {
6305                 "Fiber_XFI",
6306                 "Fiber_XAUI",
6307                 "BT_SGMII",
6308                 "BT_XFI",
6309                 "BT_XAUI",
6310                 "KX4",
6311                 "CX4",
6312                 "KX",
6313                 "KR",
6314                 "SFP",
6315                 "BP_AP",
6316                 "BP4_AP",
6317                 "QSFP_10G",
6318                 "QSA",
6319                 "QSFP",
6320                 "BP40_BA",
6321                 "KR4_100G",
6322                 "CR4_QSFP",
6323                 "CR_QSFP",
6324                 "CR2_QSFP",
6325                 "SFP28",
6326                 "KR_SFP28",
6327                 "KR_XLAUI"
6328         };
6329
6330         if (port_type < ARRAY_SIZE(port_type_description))
6331                 return port_type_description[port_type];
6332         return "UNKNOWN";
6333 }
6334
6335 /**
6336  *      t4_get_port_stats_offset - collect port stats relative to a previous
6337  *                                 snapshot
6338  *      @adap: The adapter
6339  *      @idx: The port
6340  *      @stats: Current stats to fill
6341  *      @offset: Previous stats snapshot
6342  */
6343 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6344                               struct port_stats *stats,
6345                               struct port_stats *offset)
6346 {
6347         u64 *s, *o;
6348         int i;
6349
6350         t4_get_port_stats(adap, idx, stats);
6351         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6352                         i < (sizeof(struct port_stats) / sizeof(u64));
6353                         i++, s++, o++)
6354                 *s -= *o;
6355 }
6356
6357 /**
6358  *      t4_get_port_stats - collect port statistics
6359  *      @adap: the adapter
6360  *      @idx: the port index
6361  *      @p: the stats structure to fill
6362  *
6363  *      Collect statistics related to the given port from HW.
6364  */
6365 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6366 {
6367         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6368         u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6369
6370 #define GET_STAT(name) \
6371         t4_read_reg64(adap, \
6372         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6373         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6374 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6375
6376         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6377         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6378         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6379         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6380         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6381         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6382         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6383         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6384         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6385         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6386         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6387         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6388         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6389         p->tx_drop             = GET_STAT(TX_PORT_DROP);
6390         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6391         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6392         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6393         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6394         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6395         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6396         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6397         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6398         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6399
6400         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6401                 if (stat_ctl & COUNTPAUSESTATTX_F)
6402                         p->tx_frames_64 -= p->tx_pause;
6403                 if (stat_ctl & COUNTPAUSEMCTX_F)
6404                         p->tx_mcast_frames -= p->tx_pause;
6405         }
6406         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6407         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6408         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6409         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6410         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6411         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6412         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6413         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6414         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6415         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6416         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6417         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6418         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6419         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6420         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6421         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6422         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6423         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6424         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6425         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6426         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6427         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6428         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6429         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6430         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6431         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6432         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6433
6434         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6435                 if (stat_ctl & COUNTPAUSESTATRX_F)
6436                         p->rx_frames_64 -= p->rx_pause;
6437                 if (stat_ctl & COUNTPAUSEMCRX_F)
6438                         p->rx_mcast_frames -= p->rx_pause;
6439         }
6440
6441         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6442         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6443         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6444         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6445         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6446         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6447         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6448         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6449
6450 #undef GET_STAT
6451 #undef GET_STAT_COM
6452 }
6453
6454 /**
6455  *      t4_get_lb_stats - collect loopback port statistics
6456  *      @adap: the adapter
6457  *      @idx: the loopback port index
6458  *      @p: the stats structure to fill
6459  *
6460  *      Return HW statistics for the given loopback port.
6461  */
6462 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6463 {
6464         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6465
6466 #define GET_STAT(name) \
6467         t4_read_reg64(adap, \
6468         (is_t4(adap->params.chip) ? \
6469         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6470         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6471 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6472
6473         p->octets           = GET_STAT(BYTES);
6474         p->frames           = GET_STAT(FRAMES);
6475         p->bcast_frames     = GET_STAT(BCAST);
6476         p->mcast_frames     = GET_STAT(MCAST);
6477         p->ucast_frames     = GET_STAT(UCAST);
6478         p->error_frames     = GET_STAT(ERROR);
6479
6480         p->frames_64        = GET_STAT(64B);
6481         p->frames_65_127    = GET_STAT(65B_127B);
6482         p->frames_128_255   = GET_STAT(128B_255B);
6483         p->frames_256_511   = GET_STAT(256B_511B);
6484         p->frames_512_1023  = GET_STAT(512B_1023B);
6485         p->frames_1024_1518 = GET_STAT(1024B_1518B);
6486         p->frames_1519_max  = GET_STAT(1519B_MAX);
6487         p->drop             = GET_STAT(DROP_FRAMES);
6488
6489         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6490         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6491         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6492         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6493         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6494         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6495         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6496         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6497
6498 #undef GET_STAT
6499 #undef GET_STAT_COM
6500 }
6501
6502 /*     t4_mk_filtdelwr - create a delete filter WR
6503  *     @ftid: the filter ID
6504  *     @wr: the filter work request to populate
6505  *     @qid: ingress queue to receive the delete notification
6506  *
6507  *     Creates a filter work request to delete the supplied filter.  If @qid is
6508  *     negative the delete notification is suppressed.
6509  */
6510 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6511 {
6512         memset(wr, 0, sizeof(*wr));
6513         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6514         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6515         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6516                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
6517         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6518         if (qid >= 0)
6519                 wr->rx_chan_rx_rpl_iq =
6520                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6521 }
6522
6523 #define INIT_CMD(var, cmd, rd_wr) do { \
6524         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6525                                         FW_CMD_REQUEST_F | \
6526                                         FW_CMD_##rd_wr##_F); \
6527         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6528 } while (0)
6529
6530 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6531                           u32 addr, u32 val)
6532 {
6533         u32 ldst_addrspace;
6534         struct fw_ldst_cmd c;
6535
6536         memset(&c, 0, sizeof(c));
6537         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6538         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6539                                         FW_CMD_REQUEST_F |
6540                                         FW_CMD_WRITE_F |
6541                                         ldst_addrspace);
6542         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6543         c.u.addrval.addr = cpu_to_be32(addr);
6544         c.u.addrval.val = cpu_to_be32(val);
6545
6546         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6547 }
6548
6549 /**
6550  *      t4_mdio_rd - read a PHY register through MDIO
6551  *      @adap: the adapter
6552  *      @mbox: mailbox to use for the FW command
6553  *      @phy_addr: the PHY address
6554  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6555  *      @reg: the register to read
6556  *      @valp: where to store the value
6557  *
6558  *      Issues a FW command through the given mailbox to read a PHY register.
6559  */
6560 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6561                unsigned int mmd, unsigned int reg, u16 *valp)
6562 {
6563         int ret;
6564         u32 ldst_addrspace;
6565         struct fw_ldst_cmd c;
6566
6567         memset(&c, 0, sizeof(c));
6568         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6569         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6570                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6571                                         ldst_addrspace);
6572         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6573         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6574                                          FW_LDST_CMD_MMD_V(mmd));
6575         c.u.mdio.raddr = cpu_to_be16(reg);
6576
6577         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6578         if (ret == 0)
6579                 *valp = be16_to_cpu(c.u.mdio.rval);
6580         return ret;
6581 }
6582
6583 /**
6584  *      t4_mdio_wr - write a PHY register through MDIO
6585  *      @adap: the adapter
6586  *      @mbox: mailbox to use for the FW command
6587  *      @phy_addr: the PHY address
6588  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6589  *      @reg: the register to write
6590  *      @val: value to write
6591  *
6592  *      Issues a FW command through the given mailbox to write a PHY register.
6593  */
6594 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6595                unsigned int mmd, unsigned int reg, u16 val)
6596 {
6597         u32 ldst_addrspace;
6598         struct fw_ldst_cmd c;
6599
6600         memset(&c, 0, sizeof(c));
6601         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6602         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6603                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6604                                         ldst_addrspace);
6605         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6606         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6607                                          FW_LDST_CMD_MMD_V(mmd));
6608         c.u.mdio.raddr = cpu_to_be16(reg);
6609         c.u.mdio.rval = cpu_to_be16(val);
6610
6611         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6612 }
6613
6614 /**
6615  *      t4_sge_decode_idma_state - decode the idma state
6616  *      @adapter: the adapter
6617  *      @state: the state idma is stuck in
6618  */
6619 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6620 {
6621         static const char * const t4_decode[] = {
6622                 "IDMA_IDLE",
6623                 "IDMA_PUSH_MORE_CPL_FIFO",
6624                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6625                 "Not used",
6626                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6627                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6628                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6629                 "IDMA_SEND_FIFO_TO_IMSG",
6630                 "IDMA_FL_REQ_DATA_FL_PREP",
6631                 "IDMA_FL_REQ_DATA_FL",
6632                 "IDMA_FL_DROP",
6633                 "IDMA_FL_H_REQ_HEADER_FL",
6634                 "IDMA_FL_H_SEND_PCIEHDR",
6635                 "IDMA_FL_H_PUSH_CPL_FIFO",
6636                 "IDMA_FL_H_SEND_CPL",
6637                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6638                 "IDMA_FL_H_SEND_IP_HDR",
6639                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6640                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6641                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6642                 "IDMA_FL_D_SEND_PCIEHDR",
6643                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6644                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6645                 "IDMA_FL_SEND_PCIEHDR",
6646                 "IDMA_FL_PUSH_CPL_FIFO",
6647                 "IDMA_FL_SEND_CPL",
6648                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6649                 "IDMA_FL_SEND_PAYLOAD",
6650                 "IDMA_FL_REQ_NEXT_DATA_FL",
6651                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6652                 "IDMA_FL_SEND_PADDING",
6653                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6654                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6655                 "IDMA_FL_REQ_DATAFL_DONE",
6656                 "IDMA_FL_REQ_HEADERFL_DONE",
6657         };
6658         static const char * const t5_decode[] = {
6659                 "IDMA_IDLE",
6660                 "IDMA_ALMOST_IDLE",
6661                 "IDMA_PUSH_MORE_CPL_FIFO",
6662                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6663                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6664                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6665                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6666                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6667                 "IDMA_SEND_FIFO_TO_IMSG",
6668                 "IDMA_FL_REQ_DATA_FL",
6669                 "IDMA_FL_DROP",
6670                 "IDMA_FL_DROP_SEND_INC",
6671                 "IDMA_FL_H_REQ_HEADER_FL",
6672                 "IDMA_FL_H_SEND_PCIEHDR",
6673                 "IDMA_FL_H_PUSH_CPL_FIFO",
6674                 "IDMA_FL_H_SEND_CPL",
6675                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6676                 "IDMA_FL_H_SEND_IP_HDR",
6677                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6678                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6679                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6680                 "IDMA_FL_D_SEND_PCIEHDR",
6681                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6682                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6683                 "IDMA_FL_SEND_PCIEHDR",
6684                 "IDMA_FL_PUSH_CPL_FIFO",
6685                 "IDMA_FL_SEND_CPL",
6686                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6687                 "IDMA_FL_SEND_PAYLOAD",
6688                 "IDMA_FL_REQ_NEXT_DATA_FL",
6689                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6690                 "IDMA_FL_SEND_PADDING",
6691                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6692         };
6693         static const char * const t6_decode[] = {
6694                 "IDMA_IDLE",
6695                 "IDMA_PUSH_MORE_CPL_FIFO",
6696                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6697                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6698                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6699                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6700                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6701                 "IDMA_FL_REQ_DATA_FL",
6702                 "IDMA_FL_DROP",
6703                 "IDMA_FL_DROP_SEND_INC",
6704                 "IDMA_FL_H_REQ_HEADER_FL",
6705                 "IDMA_FL_H_SEND_PCIEHDR",
6706                 "IDMA_FL_H_PUSH_CPL_FIFO",
6707                 "IDMA_FL_H_SEND_CPL",
6708                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6709                 "IDMA_FL_H_SEND_IP_HDR",
6710                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6711                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6712                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6713                 "IDMA_FL_D_SEND_PCIEHDR",
6714                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6715                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6716                 "IDMA_FL_SEND_PCIEHDR",
6717                 "IDMA_FL_PUSH_CPL_FIFO",
6718                 "IDMA_FL_SEND_CPL",
6719                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6720                 "IDMA_FL_SEND_PAYLOAD",
6721                 "IDMA_FL_REQ_NEXT_DATA_FL",
6722                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6723                 "IDMA_FL_SEND_PADDING",
6724                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6725         };
6726         static const u32 sge_regs[] = {
6727                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6728                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6729                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6730         };
6731         const char **sge_idma_decode;
6732         int sge_idma_decode_nstates;
6733         int i;
6734         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6735
6736         /* Select the right set of decode strings to dump depending on the
6737          * adapter chip type.
6738          */
6739         switch (chip_version) {
6740         case CHELSIO_T4:
6741                 sge_idma_decode = (const char **)t4_decode;
6742                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6743                 break;
6744
6745         case CHELSIO_T5:
6746                 sge_idma_decode = (const char **)t5_decode;
6747                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6748                 break;
6749
6750         case CHELSIO_T6:
6751                 sge_idma_decode = (const char **)t6_decode;
6752                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6753                 break;
6754
6755         default:
6756                 dev_err(adapter->pdev_dev,
6757                         "Unsupported chip version %d\n", chip_version);
6758                 return;
6759         }
6760
6761         if (is_t4(adapter->params.chip)) {
6762                 sge_idma_decode = (const char **)t4_decode;
6763                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6764         } else {
6765                 sge_idma_decode = (const char **)t5_decode;
6766                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6767         }
6768
6769         if (state < sge_idma_decode_nstates)
6770                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6771         else
6772                 CH_WARN(adapter, "idma state %d unknown\n", state);
6773
6774         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6775                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6776                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6777 }
6778
6779 /**
6780  *      t4_sge_ctxt_flush - flush the SGE context cache
6781  *      @adap: the adapter
6782  *      @mbox: mailbox to use for the FW command
6783  *      @ctxt_type: Egress or Ingress
6784  *
6785  *      Issues a FW command through the given mailbox to flush the
6786  *      SGE context cache.
6787  */
6788 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6789 {
6790         int ret;
6791         u32 ldst_addrspace;
6792         struct fw_ldst_cmd c;
6793
6794         memset(&c, 0, sizeof(c));
6795         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6796                                                  FW_LDST_ADDRSPC_SGE_EGRC :
6797                                                  FW_LDST_ADDRSPC_SGE_INGC);
6798         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6799                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6800                                         ldst_addrspace);
6801         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6802         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6803
6804         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6805         return ret;
6806 }
6807
6808 /**
6809  *      t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6810  *      @adap: the adapter
6811  *      @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6812  *      @dbqtimers: SGE Doorbell Queue Timer table
6813  *
6814  *      Reads the SGE Doorbell Queue Timer values into the provided table.
6815  *      Returns 0 on success (Firmware and Hardware support this feature),
6816  *      an error on failure.
6817  */
6818 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6819                           u16 *dbqtimers)
6820 {
6821         int ret, dbqtimerix;
6822
6823         ret = 0;
6824         dbqtimerix = 0;
6825         while (dbqtimerix < ndbqtimers) {
6826                 int nparams, param;
6827                 u32 params[7], vals[7];
6828
6829                 nparams = ndbqtimers - dbqtimerix;
6830                 if (nparams > ARRAY_SIZE(params))
6831                         nparams = ARRAY_SIZE(params);
6832
6833                 for (param = 0; param < nparams; param++)
6834                         params[param] =
6835                           (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6836                            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6837                            FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6838                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6839                                       nparams, params, vals);
6840                 if (ret)
6841                         break;
6842
6843                 for (param = 0; param < nparams; param++)
6844                         dbqtimers[dbqtimerix++] = vals[param];
6845         }
6846         return ret;
6847 }
6848
6849 /**
6850  *      t4_fw_hello - establish communication with FW
6851  *      @adap: the adapter
6852  *      @mbox: mailbox to use for the FW command
6853  *      @evt_mbox: mailbox to receive async FW events
6854  *      @master: specifies the caller's willingness to be the device master
6855  *      @state: returns the current device state (if non-NULL)
6856  *
6857  *      Issues a command to establish communication with FW.  Returns either
6858  *      an error (negative integer) or the mailbox of the Master PF.
6859  */
6860 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6861                 enum dev_master master, enum dev_state *state)
6862 {
6863         int ret;
6864         struct fw_hello_cmd c;
6865         u32 v;
6866         unsigned int master_mbox;
6867         int retries = FW_CMD_HELLO_RETRIES;
6868
6869 retry:
6870         memset(&c, 0, sizeof(c));
6871         INIT_CMD(c, HELLO, WRITE);
6872         c.err_to_clearinit = cpu_to_be32(
6873                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6874                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6875                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6876                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
6877                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6878                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6879                 FW_HELLO_CMD_CLEARINIT_F);
6880
6881         /*
6882          * Issue the HELLO command to the firmware.  If it's not successful
6883          * but indicates that we got a "busy" or "timeout" condition, retry
6884          * the HELLO until we exhaust our retry limit.  If we do exceed our
6885          * retry limit, check to see if the firmware left us any error
6886          * information and report that if so.
6887          */
6888         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6889         if (ret < 0) {
6890                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6891                         goto retry;
6892                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6893                         t4_report_fw_error(adap);
6894                 return ret;
6895         }
6896
6897         v = be32_to_cpu(c.err_to_clearinit);
6898         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6899         if (state) {
6900                 if (v & FW_HELLO_CMD_ERR_F)
6901                         *state = DEV_STATE_ERR;
6902                 else if (v & FW_HELLO_CMD_INIT_F)
6903                         *state = DEV_STATE_INIT;
6904                 else
6905                         *state = DEV_STATE_UNINIT;
6906         }
6907
6908         /*
6909          * If we're not the Master PF then we need to wait around for the
6910          * Master PF Driver to finish setting up the adapter.
6911          *
6912          * Note that we also do this wait if we're a non-Master-capable PF and
6913          * there is no current Master PF; a Master PF may show up momentarily
6914          * and we wouldn't want to fail pointlessly.  (This can happen when an
6915          * OS loads lots of different drivers rapidly at the same time).  In
6916          * this case, the Master PF returned by the firmware will be
6917          * PCIE_FW_MASTER_M so the test below will work ...
6918          */
6919         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6920             master_mbox != mbox) {
6921                 int waiting = FW_CMD_HELLO_TIMEOUT;
6922
6923                 /*
6924                  * Wait for the firmware to either indicate an error or
6925                  * initialized state.  If we see either of these we bail out
6926                  * and report the issue to the caller.  If we exhaust the
6927                  * "hello timeout" and we haven't exhausted our retries, try
6928                  * again.  Otherwise bail with a timeout error.
6929                  */
6930                 for (;;) {
6931                         u32 pcie_fw;
6932
6933                         msleep(50);
6934                         waiting -= 50;
6935
6936                         /*
6937                          * If neither Error nor Initialized are indicated
6938                          * by the firmware keep waiting till we exhaust our
6939                          * timeout ... and then retry if we haven't exhausted
6940                          * our retries ...
6941                          */
6942                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6943                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6944                                 if (waiting <= 0) {
6945                                         if (retries-- > 0)
6946                                                 goto retry;
6947
6948                                         return -ETIMEDOUT;
6949                                 }
6950                                 continue;
6951                         }
6952
6953                         /*
6954                          * We either have an Error or Initialized condition
6955                          * report errors preferentially.
6956                          */
6957                         if (state) {
6958                                 if (pcie_fw & PCIE_FW_ERR_F)
6959                                         *state = DEV_STATE_ERR;
6960                                 else if (pcie_fw & PCIE_FW_INIT_F)
6961                                         *state = DEV_STATE_INIT;
6962                         }
6963
6964                         /*
6965                          * If we arrived before a Master PF was selected and
6966                          * there's not a valid Master PF, grab its identity
6967                          * for our caller.
6968                          */
6969                         if (master_mbox == PCIE_FW_MASTER_M &&
6970                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
6971                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6972                         break;
6973                 }
6974         }
6975
6976         return master_mbox;
6977 }
6978
6979 /**
6980  *      t4_fw_bye - end communication with FW
6981  *      @adap: the adapter
6982  *      @mbox: mailbox to use for the FW command
6983  *
6984  *      Issues a command to terminate communication with FW.
6985  */
6986 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6987 {
6988         struct fw_bye_cmd c;
6989
6990         memset(&c, 0, sizeof(c));
6991         INIT_CMD(c, BYE, WRITE);
6992         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6993 }
6994
6995 /**
6996  *      t4_init_cmd - ask FW to initialize the device
6997  *      @adap: the adapter
6998  *      @mbox: mailbox to use for the FW command
6999  *
7000  *      Issues a command to FW to partially initialize the device.  This
7001  *      performs initialization that generally doesn't depend on user input.
7002  */
7003 int t4_early_init(struct adapter *adap, unsigned int mbox)
7004 {
7005         struct fw_initialize_cmd c;
7006
7007         memset(&c, 0, sizeof(c));
7008         INIT_CMD(c, INITIALIZE, WRITE);
7009         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7010 }
7011
7012 /**
7013  *      t4_fw_reset - issue a reset to FW
7014  *      @adap: the adapter
7015  *      @mbox: mailbox to use for the FW command
7016  *      @reset: specifies the type of reset to perform
7017  *
7018  *      Issues a reset command of the specified type to FW.
7019  */
7020 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7021 {
7022         struct fw_reset_cmd c;
7023
7024         memset(&c, 0, sizeof(c));
7025         INIT_CMD(c, RESET, WRITE);
7026         c.val = cpu_to_be32(reset);
7027         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7028 }
7029
7030 /**
7031  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7032  *      @adap: the adapter
7033  *      @mbox: mailbox to use for the FW RESET command (if desired)
7034  *      @force: force uP into RESET even if FW RESET command fails
7035  *
7036  *      Issues a RESET command to firmware (if desired) with a HALT indication
7037  *      and then puts the microprocessor into RESET state.  The RESET command
7038  *      will only be issued if a legitimate mailbox is provided (mbox <=
7039  *      PCIE_FW_MASTER_M).
7040  *
7041  *      This is generally used in order for the host to safely manipulate the
7042  *      adapter without fear of conflicting with whatever the firmware might
7043  *      be doing.  The only way out of this state is to RESTART the firmware
7044  *      ...
7045  */
7046 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7047 {
7048         int ret = 0;
7049
7050         /*
7051          * If a legitimate mailbox is provided, issue a RESET command
7052          * with a HALT indication.
7053          */
7054         if (mbox <= PCIE_FW_MASTER_M) {
7055                 struct fw_reset_cmd c;
7056
7057                 memset(&c, 0, sizeof(c));
7058                 INIT_CMD(c, RESET, WRITE);
7059                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7060                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7061                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7062         }
7063
7064         /*
7065          * Normally we won't complete the operation if the firmware RESET
7066          * command fails but if our caller insists we'll go ahead and put the
7067          * uP into RESET.  This can be useful if the firmware is hung or even
7068          * missing ...  We'll have to take the risk of putting the uP into
7069          * RESET without the cooperation of firmware in that case.
7070          *
7071          * We also force the firmware's HALT flag to be on in case we bypassed
7072          * the firmware RESET command above or we're dealing with old firmware
7073          * which doesn't have the HALT capability.  This will serve as a flag
7074          * for the incoming firmware to know that it's coming out of a HALT
7075          * rather than a RESET ... if it's new enough to understand that ...
7076          */
7077         if (ret == 0 || force) {
7078                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7079                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7080                                  PCIE_FW_HALT_F);
7081         }
7082
7083         /*
7084          * And we always return the result of the firmware RESET command
7085          * even when we force the uP into RESET ...
7086          */
7087         return ret;
7088 }
7089
7090 /**
7091  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7092  *      @adap: the adapter
7093  *      @mbox: mailbox to use for the FW command
7094  *      @reset: if we want to do a RESET to restart things
7095  *
7096  *      Restart firmware previously halted by t4_fw_halt().  On successful
7097  *      return the previous PF Master remains as the new PF Master and there
7098  *      is no need to issue a new HELLO command, etc.
7099  *
7100  *      We do this in two ways:
7101  *
7102  *       1. If we're dealing with newer firmware we'll simply want to take
7103  *          the chip's microprocessor out of RESET.  This will cause the
7104  *          firmware to start up from its start vector.  And then we'll loop
7105  *          until the firmware indicates it's started again (PCIE_FW.HALT
7106  *          reset to 0) or we timeout.
7107  *
7108  *       2. If we're dealing with older firmware then we'll need to RESET
7109  *          the chip since older firmware won't recognize the PCIE_FW.HALT
7110  *          flag and automatically RESET itself on startup.
7111  */
7112 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7113 {
7114         if (reset) {
7115                 /*
7116                  * Since we're directing the RESET instead of the firmware
7117                  * doing it automatically, we need to clear the PCIE_FW.HALT
7118                  * bit.
7119                  */
7120                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7121
7122                 /*
7123                  * If we've been given a valid mailbox, first try to get the
7124                  * firmware to do the RESET.  If that works, great and we can
7125                  * return success.  Otherwise, if we haven't been given a
7126                  * valid mailbox or the RESET command failed, fall back to
7127                  * hitting the chip with a hammer.
7128                  */
7129                 if (mbox <= PCIE_FW_MASTER_M) {
7130                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7131                         msleep(100);
7132                         if (t4_fw_reset(adap, mbox,
7133                                         PIORST_F | PIORSTMODE_F) == 0)
7134                                 return 0;
7135                 }
7136
7137                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7138                 msleep(2000);
7139         } else {
7140                 int ms;
7141
7142                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7143                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7144                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7145                                 return 0;
7146                         msleep(100);
7147                         ms += 100;
7148                 }
7149                 return -ETIMEDOUT;
7150         }
7151         return 0;
7152 }
7153
7154 /**
7155  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7156  *      @adap: the adapter
7157  *      @mbox: mailbox to use for the FW RESET command (if desired)
7158  *      @fw_data: the firmware image to write
7159  *      @size: image size
7160  *      @force: force upgrade even if firmware doesn't cooperate
7161  *
7162  *      Perform all of the steps necessary for upgrading an adapter's
7163  *      firmware image.  Normally this requires the cooperation of the
7164  *      existing firmware in order to halt all existing activities
7165  *      but if an invalid mailbox token is passed in we skip that step
7166  *      (though we'll still put the adapter microprocessor into RESET in
7167  *      that case).
7168  *
7169  *      On successful return the new firmware will have been loaded and
7170  *      the adapter will have been fully RESET losing all previous setup
7171  *      state.  On unsuccessful return the adapter may be completely hosed ...
7172  *      positive errno indicates that the adapter is ~probably~ intact, a
7173  *      negative errno indicates that things are looking bad ...
7174  */
7175 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7176                   const u8 *fw_data, unsigned int size, int force)
7177 {
7178         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7179         int reset, ret;
7180
7181         if (!t4_fw_matches_chip(adap, fw_hdr))
7182                 return -EINVAL;
7183
7184         /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7185          * set wont be sent when we are flashing FW.
7186          */
7187         adap->flags &= ~CXGB4_FW_OK;
7188
7189         ret = t4_fw_halt(adap, mbox, force);
7190         if (ret < 0 && !force)
7191                 goto out;
7192
7193         ret = t4_load_fw(adap, fw_data, size);
7194         if (ret < 0)
7195                 goto out;
7196
7197         /*
7198          * If there was a Firmware Configuration File stored in FLASH,
7199          * there's a good chance that it won't be compatible with the new
7200          * Firmware.  In order to prevent difficult to diagnose adapter
7201          * initialization issues, we clear out the Firmware Configuration File
7202          * portion of the FLASH .  The user will need to re-FLASH a new
7203          * Firmware Configuration File which is compatible with the new
7204          * Firmware if that's desired.
7205          */
7206         (void)t4_load_cfg(adap, NULL, 0);
7207
7208         /*
7209          * Older versions of the firmware don't understand the new
7210          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7211          * restart.  So for newly loaded older firmware we'll have to do the
7212          * RESET for it so it starts up on a clean slate.  We can tell if
7213          * the newly loaded firmware will handle this right by checking
7214          * its header flags to see if it advertises the capability.
7215          */
7216         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7217         ret = t4_fw_restart(adap, mbox, reset);
7218
7219         /* Grab potentially new Firmware Device Log parameters so we can see
7220          * how healthy the new Firmware is.  It's okay to contact the new
7221          * Firmware for these parameters even though, as far as it's
7222          * concerned, we've never said "HELLO" to it ...
7223          */
7224         (void)t4_init_devlog_params(adap);
7225 out:
7226         adap->flags |= CXGB4_FW_OK;
7227         return ret;
7228 }
7229
7230 /**
7231  *      t4_fl_pkt_align - return the fl packet alignment
7232  *      @adap: the adapter
7233  *
7234  *      T4 has a single field to specify the packing and padding boundary.
7235  *      T5 onwards has separate fields for this and hence the alignment for
7236  *      next packet offset is maximum of these two.
7237  *
7238  */
7239 int t4_fl_pkt_align(struct adapter *adap)
7240 {
7241         u32 sge_control, sge_control2;
7242         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7243
7244         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7245
7246         /* T4 uses a single control field to specify both the PCIe Padding and
7247          * Packing Boundary.  T5 introduced the ability to specify these
7248          * separately.  The actual Ingress Packet Data alignment boundary
7249          * within Packed Buffer Mode is the maximum of these two
7250          * specifications.  (Note that it makes no real practical sense to
7251          * have the Padding Boundary be larger than the Packing Boundary but you
7252          * could set the chip up that way and, in fact, legacy T4 code would
7253          * end doing this because it would initialize the Padding Boundary and
7254          * leave the Packing Boundary initialized to 0 (16 bytes).)
7255          * Padding Boundary values in T6 starts from 8B,
7256          * where as it is 32B for T4 and T5.
7257          */
7258         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7259                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7260         else
7261                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7262
7263         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7264
7265         fl_align = ingpadboundary;
7266         if (!is_t4(adap->params.chip)) {
7267                 /* T5 has a weird interpretation of one of the PCIe Packing
7268                  * Boundary values.  No idea why ...
7269                  */
7270                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7271                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7272                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7273                         ingpackboundary = 16;
7274                 else
7275                         ingpackboundary = 1 << (ingpackboundary +
7276                                                 INGPACKBOUNDARY_SHIFT_X);
7277
7278                 fl_align = max(ingpadboundary, ingpackboundary);
7279         }
7280         return fl_align;
7281 }
7282
7283 /**
7284  *      t4_fixup_host_params - fix up host-dependent parameters
7285  *      @adap: the adapter
7286  *      @page_size: the host's Base Page Size
7287  *      @cache_line_size: the host's Cache Line Size
7288  *
7289  *      Various registers in T4 contain values which are dependent on the
7290  *      host's Base Page and Cache Line Sizes.  This function will fix all of
7291  *      those registers with the appropriate values as passed in ...
7292  */
7293 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7294                          unsigned int cache_line_size)
7295 {
7296         unsigned int page_shift = fls(page_size) - 1;
7297         unsigned int sge_hps = page_shift - 10;
7298         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7299         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7300         unsigned int fl_align_log = fls(fl_align) - 1;
7301
7302         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7303                      HOSTPAGESIZEPF0_V(sge_hps) |
7304                      HOSTPAGESIZEPF1_V(sge_hps) |
7305                      HOSTPAGESIZEPF2_V(sge_hps) |
7306                      HOSTPAGESIZEPF3_V(sge_hps) |
7307                      HOSTPAGESIZEPF4_V(sge_hps) |
7308                      HOSTPAGESIZEPF5_V(sge_hps) |
7309                      HOSTPAGESIZEPF6_V(sge_hps) |
7310                      HOSTPAGESIZEPF7_V(sge_hps));
7311
7312         if (is_t4(adap->params.chip)) {
7313                 t4_set_reg_field(adap, SGE_CONTROL_A,
7314                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7315                                  EGRSTATUSPAGESIZE_F,
7316                                  INGPADBOUNDARY_V(fl_align_log -
7317                                                   INGPADBOUNDARY_SHIFT_X) |
7318                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7319         } else {
7320                 unsigned int pack_align;
7321                 unsigned int ingpad, ingpack;
7322
7323                 /* T5 introduced the separation of the Free List Padding and
7324                  * Packing Boundaries.  Thus, we can select a smaller Padding
7325                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
7326                  * Bandwidth, and use a Packing Boundary which is large enough
7327                  * to avoid false sharing between CPUs, etc.
7328                  *
7329                  * For the PCI Link, the smaller the Padding Boundary the
7330                  * better.  For the Memory Controller, a smaller Padding
7331                  * Boundary is better until we cross under the Memory Line
7332                  * Size (the minimum unit of transfer to/from Memory).  If we
7333                  * have a Padding Boundary which is smaller than the Memory
7334                  * Line Size, that'll involve a Read-Modify-Write cycle on the
7335                  * Memory Controller which is never good.
7336                  */
7337
7338                 /* We want the Packing Boundary to be based on the Cache Line
7339                  * Size in order to help avoid False Sharing performance
7340                  * issues between CPUs, etc.  We also want the Packing
7341                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7342                  * get best performance when the Packing Boundary is a
7343                  * multiple of the Maximum Payload Size.
7344                  */
7345                 pack_align = fl_align;
7346                 if (pci_is_pcie(adap->pdev)) {
7347                         unsigned int mps, mps_log;
7348                         u16 devctl;
7349
7350                         /* The PCIe Device Control Maximum Payload Size field
7351                          * [bits 7:5] encodes sizes as powers of 2 starting at
7352                          * 128 bytes.
7353                          */
7354                         pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7355                                                   &devctl);
7356                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7357                         mps = 1 << mps_log;
7358                         if (mps > pack_align)
7359                                 pack_align = mps;
7360                 }
7361
7362                 /* N.B. T5/T6 have a crazy special interpretation of the "0"
7363                  * value for the Packing Boundary.  This corresponds to 16
7364                  * bytes instead of the expected 32 bytes.  So if we want 32
7365                  * bytes, the best we can really do is 64 bytes ...
7366                  */
7367                 if (pack_align <= 16) {
7368                         ingpack = INGPACKBOUNDARY_16B_X;
7369                         fl_align = 16;
7370                 } else if (pack_align == 32) {
7371                         ingpack = INGPACKBOUNDARY_64B_X;
7372                         fl_align = 64;
7373                 } else {
7374                         unsigned int pack_align_log = fls(pack_align) - 1;
7375
7376                         ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7377                         fl_align = pack_align;
7378                 }
7379
7380                 /* Use the smallest Ingress Padding which isn't smaller than
7381                  * the Memory Controller Read/Write Size.  We'll take that as
7382                  * being 8 bytes since we don't know of any system with a
7383                  * wider Memory Controller Bus Width.
7384                  */
7385                 if (is_t5(adap->params.chip))
7386                         ingpad = INGPADBOUNDARY_32B_X;
7387                 else
7388                         ingpad = T6_INGPADBOUNDARY_8B_X;
7389
7390                 t4_set_reg_field(adap, SGE_CONTROL_A,
7391                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7392                                  EGRSTATUSPAGESIZE_F,
7393                                  INGPADBOUNDARY_V(ingpad) |
7394                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7395                 t4_set_reg_field(adap, SGE_CONTROL2_A,
7396                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7397                                  INGPACKBOUNDARY_V(ingpack));
7398         }
7399         /*
7400          * Adjust various SGE Free List Host Buffer Sizes.
7401          *
7402          * This is something of a crock since we're using fixed indices into
7403          * the array which are also known by the sge.c code and the T4
7404          * Firmware Configuration File.  We need to come up with a much better
7405          * approach to managing this array.  For now, the first four entries
7406          * are:
7407          *
7408          *   0: Host Page Size
7409          *   1: 64KB
7410          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7411          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7412          *
7413          * For the single-MTU buffers in unpacked mode we need to include
7414          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7415          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7416          * Padding boundary.  All of these are accommodated in the Factory
7417          * Default Firmware Configuration File but we need to adjust it for
7418          * this host's cache line size.
7419          */
7420         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7421         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7422                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7423                      & ~(fl_align-1));
7424         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7425                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7426                      & ~(fl_align-1));
7427
7428         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7429
7430         return 0;
7431 }
7432
7433 /**
7434  *      t4_fw_initialize - ask FW to initialize the device
7435  *      @adap: the adapter
7436  *      @mbox: mailbox to use for the FW command
7437  *
7438  *      Issues a command to FW to partially initialize the device.  This
7439  *      performs initialization that generally doesn't depend on user input.
7440  */
7441 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7442 {
7443         struct fw_initialize_cmd c;
7444
7445         memset(&c, 0, sizeof(c));
7446         INIT_CMD(c, INITIALIZE, WRITE);
7447         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7448 }
7449
7450 /**
7451  *      t4_query_params_rw - query FW or device parameters
7452  *      @adap: the adapter
7453  *      @mbox: mailbox to use for the FW command
7454  *      @pf: the PF
7455  *      @vf: the VF
7456  *      @nparams: the number of parameters
7457  *      @params: the parameter names
7458  *      @val: the parameter values
7459  *      @rw: Write and read flag
7460  *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7461  *
7462  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7463  *      queried at once.
7464  */
7465 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7466                        unsigned int vf, unsigned int nparams, const u32 *params,
7467                        u32 *val, int rw, bool sleep_ok)
7468 {
7469         int i, ret;
7470         struct fw_params_cmd c;
7471         __be32 *p = &c.param[0].mnem;
7472
7473         if (nparams > 7)
7474                 return -EINVAL;
7475
7476         memset(&c, 0, sizeof(c));
7477         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7478                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
7479                                   FW_PARAMS_CMD_PFN_V(pf) |
7480                                   FW_PARAMS_CMD_VFN_V(vf));
7481         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7482
7483         for (i = 0; i < nparams; i++) {
7484                 *p++ = cpu_to_be32(*params++);
7485                 if (rw)
7486                         *p = cpu_to_be32(*(val + i));
7487                 p++;
7488         }
7489
7490         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7491         if (ret == 0)
7492                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7493                         *val++ = be32_to_cpu(*p);
7494         return ret;
7495 }
7496
7497 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7498                     unsigned int vf, unsigned int nparams, const u32 *params,
7499                     u32 *val)
7500 {
7501         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7502                                   true);
7503 }
7504
7505 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7506                        unsigned int vf, unsigned int nparams, const u32 *params,
7507                        u32 *val)
7508 {
7509         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7510                                   false);
7511 }
7512
7513 /**
7514  *      t4_set_params_timeout - sets FW or device parameters
7515  *      @adap: the adapter
7516  *      @mbox: mailbox to use for the FW command
7517  *      @pf: the PF
7518  *      @vf: the VF
7519  *      @nparams: the number of parameters
7520  *      @params: the parameter names
7521  *      @val: the parameter values
7522  *      @timeout: the timeout time
7523  *
7524  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7525  *      specified at once.
7526  */
7527 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7528                           unsigned int pf, unsigned int vf,
7529                           unsigned int nparams, const u32 *params,
7530                           const u32 *val, int timeout)
7531 {
7532         struct fw_params_cmd c;
7533         __be32 *p = &c.param[0].mnem;
7534
7535         if (nparams > 7)
7536                 return -EINVAL;
7537
7538         memset(&c, 0, sizeof(c));
7539         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7540                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7541                                   FW_PARAMS_CMD_PFN_V(pf) |
7542                                   FW_PARAMS_CMD_VFN_V(vf));
7543         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7544
7545         while (nparams--) {
7546                 *p++ = cpu_to_be32(*params++);
7547                 *p++ = cpu_to_be32(*val++);
7548         }
7549
7550         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7551 }
7552
7553 /**
7554  *      t4_set_params - sets FW or device parameters
7555  *      @adap: the adapter
7556  *      @mbox: mailbox to use for the FW command
7557  *      @pf: the PF
7558  *      @vf: the VF
7559  *      @nparams: the number of parameters
7560  *      @params: the parameter names
7561  *      @val: the parameter values
7562  *
7563  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7564  *      specified at once.
7565  */
7566 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7567                   unsigned int vf, unsigned int nparams, const u32 *params,
7568                   const u32 *val)
7569 {
7570         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7571                                      FW_CMD_MAX_TIMEOUT);
7572 }
7573
7574 /**
7575  *      t4_cfg_pfvf - configure PF/VF resource limits
7576  *      @adap: the adapter
7577  *      @mbox: mailbox to use for the FW command
7578  *      @pf: the PF being configured
7579  *      @vf: the VF being configured
7580  *      @txq: the max number of egress queues
7581  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7582  *      @rxqi: the max number of interrupt-capable ingress queues
7583  *      @rxq: the max number of interruptless ingress queues
7584  *      @tc: the PCI traffic class
7585  *      @vi: the max number of virtual interfaces
7586  *      @cmask: the channel access rights mask for the PF/VF
7587  *      @pmask: the port access rights mask for the PF/VF
7588  *      @nexact: the maximum number of exact MPS filters
7589  *      @rcaps: read capabilities
7590  *      @wxcaps: write/execute capabilities
7591  *
7592  *      Configures resource limits and capabilities for a physical or virtual
7593  *      function.
7594  */
7595 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7596                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7597                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7598                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7599                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7600 {
7601         struct fw_pfvf_cmd c;
7602
7603         memset(&c, 0, sizeof(c));
7604         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7605                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7606                                   FW_PFVF_CMD_VFN_V(vf));
7607         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7608         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7609                                      FW_PFVF_CMD_NIQ_V(rxq));
7610         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7611                                     FW_PFVF_CMD_PMASK_V(pmask) |
7612                                     FW_PFVF_CMD_NEQ_V(txq));
7613         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7614                                       FW_PFVF_CMD_NVI_V(vi) |
7615                                       FW_PFVF_CMD_NEXACTF_V(nexact));
7616         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7617                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7618                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7619         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7620 }
7621
7622 /**
7623  *      t4_alloc_vi - allocate a virtual interface
7624  *      @adap: the adapter
7625  *      @mbox: mailbox to use for the FW command
7626  *      @port: physical port associated with the VI
7627  *      @pf: the PF owning the VI
7628  *      @vf: the VF owning the VI
7629  *      @nmac: number of MAC addresses needed (1 to 5)
7630  *      @mac: the MAC addresses of the VI
7631  *      @rss_size: size of RSS table slice associated with this VI
7632  *      @vivld: the destination to store the VI Valid value.
7633  *      @vin: the destination to store the VIN value.
7634  *
7635  *      Allocates a virtual interface for the given physical port.  If @mac is
7636  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7637  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7638  *      stored consecutively so the space needed is @nmac * 6 bytes.
7639  *      Returns a negative error number or the non-negative VI id.
7640  */
7641 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7642                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7643                 unsigned int *rss_size, u8 *vivld, u8 *vin)
7644 {
7645         int ret;
7646         struct fw_vi_cmd c;
7647
7648         memset(&c, 0, sizeof(c));
7649         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7650                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7651                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7652         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7653         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7654         c.nmac = nmac - 1;
7655
7656         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7657         if (ret)
7658                 return ret;
7659
7660         if (mac) {
7661                 memcpy(mac, c.mac, sizeof(c.mac));
7662                 switch (nmac) {
7663                 case 5:
7664                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7665                         fallthrough;
7666                 case 4:
7667                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7668                         fallthrough;
7669                 case 3:
7670                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7671                         fallthrough;
7672                 case 2:
7673                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7674                 }
7675         }
7676         if (rss_size)
7677                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7678
7679         if (vivld)
7680                 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7681
7682         if (vin)
7683                 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7684
7685         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7686 }
7687
7688 /**
7689  *      t4_free_vi - free a virtual interface
7690  *      @adap: the adapter
7691  *      @mbox: mailbox to use for the FW command
7692  *      @pf: the PF owning the VI
7693  *      @vf: the VF owning the VI
7694  *      @viid: virtual interface identifiler
7695  *
7696  *      Free a previously allocated virtual interface.
7697  */
7698 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7699                unsigned int vf, unsigned int viid)
7700 {
7701         struct fw_vi_cmd c;
7702
7703         memset(&c, 0, sizeof(c));
7704         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7705                                   FW_CMD_REQUEST_F |
7706                                   FW_CMD_EXEC_F |
7707                                   FW_VI_CMD_PFN_V(pf) |
7708                                   FW_VI_CMD_VFN_V(vf));
7709         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7710         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7711
7712         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7713 }
7714
7715 /**
7716  *      t4_set_rxmode - set Rx properties of a virtual interface
7717  *      @adap: the adapter
7718  *      @mbox: mailbox to use for the FW command
7719  *      @viid: the VI id
7720  *      @viid_mirror: the mirror VI id
7721  *      @mtu: the new MTU or -1
7722  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7723  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7724  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7725  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7726  *      @sleep_ok: if true we may sleep while awaiting command completion
7727  *
7728  *      Sets Rx properties of a virtual interface.
7729  */
7730 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7731                   unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7732                   int bcast, int vlanex, bool sleep_ok)
7733 {
7734         struct fw_vi_rxmode_cmd c, c_mirror;
7735         int ret;
7736
7737         /* convert to FW values */
7738         if (mtu < 0)
7739                 mtu = FW_RXMODE_MTU_NO_CHG;
7740         if (promisc < 0)
7741                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7742         if (all_multi < 0)
7743                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7744         if (bcast < 0)
7745                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7746         if (vlanex < 0)
7747                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7748
7749         memset(&c, 0, sizeof(c));
7750         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7751                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7752                                    FW_VI_RXMODE_CMD_VIID_V(viid));
7753         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7754         c.mtu_to_vlanexen =
7755                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7756                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7757                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7758                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7759                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7760
7761         if (viid_mirror) {
7762                 memcpy(&c_mirror, &c, sizeof(c_mirror));
7763                 c_mirror.op_to_viid =
7764                         cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7765                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7766                                     FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7767         }
7768
7769         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7770         if (ret)
7771                 return ret;
7772
7773         if (viid_mirror)
7774                 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7775                                       NULL, sleep_ok);
7776
7777         return ret;
7778 }
7779
7780 /**
7781  *      t4_free_encap_mac_filt - frees MPS entry at given index
7782  *      @adap: the adapter
7783  *      @viid: the VI id
7784  *      @idx: index of MPS entry to be freed
7785  *      @sleep_ok: call is allowed to sleep
7786  *
7787  *      Frees the MPS entry at supplied index
7788  *
7789  *      Returns a negative error number or zero on success
7790  */
7791 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7792                            int idx, bool sleep_ok)
7793 {
7794         struct fw_vi_mac_exact *p;
7795         u8 addr[] = {0, 0, 0, 0, 0, 0};
7796         struct fw_vi_mac_cmd c;
7797         int ret = 0;
7798         u32 exact;
7799
7800         memset(&c, 0, sizeof(c));
7801         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7802                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7803                                    FW_CMD_EXEC_V(0) |
7804                                    FW_VI_MAC_CMD_VIID_V(viid));
7805         exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7806         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7807                                           exact |
7808                                           FW_CMD_LEN16_V(1));
7809         p = c.u.exact;
7810         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7811                                       FW_VI_MAC_CMD_IDX_V(idx));
7812         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7813         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7814         return ret;
7815 }
7816
7817 /**
7818  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7819  *      @adap: the adapter
7820  *      @viid: the VI id
7821  *      @addr: the MAC address
7822  *      @mask: the mask
7823  *      @idx: index of the entry in mps tcam
7824  *      @lookup_type: MAC address for inner (1) or outer (0) header
7825  *      @port_id: the port index
7826  *      @sleep_ok: call is allowed to sleep
7827  *
7828  *      Removes the mac entry at the specified index using raw mac interface.
7829  *
7830  *      Returns a negative error number on failure.
7831  */
7832 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7833                          const u8 *addr, const u8 *mask, unsigned int idx,
7834                          u8 lookup_type, u8 port_id, bool sleep_ok)
7835 {
7836         struct fw_vi_mac_cmd c;
7837         struct fw_vi_mac_raw *p = &c.u.raw;
7838         u32 val;
7839
7840         memset(&c, 0, sizeof(c));
7841         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7842                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7843                                    FW_CMD_EXEC_V(0) |
7844                                    FW_VI_MAC_CMD_VIID_V(viid));
7845         val = FW_CMD_LEN16_V(1) |
7846               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7847         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7848                                           FW_CMD_LEN16_V(val));
7849
7850         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7851                                      FW_VI_MAC_ID_BASED_FREE);
7852
7853         /* Lookup Type. Outer header: 0, Inner header: 1 */
7854         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7855                                    DATAPORTNUM_V(port_id));
7856         /* Lookup mask and port mask */
7857         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7858                                     DATAPORTNUM_V(DATAPORTNUM_M));
7859
7860         /* Copy the address and the mask */
7861         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7862         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7863
7864         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7865 }
7866
7867 /**
7868  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7869  *      @adap: the adapter
7870  *      @viid: the VI id
7871  *      @addr: the MAC address
7872  *      @mask: the mask
7873  *      @vni: the VNI id for the tunnel protocol
7874  *      @vni_mask: mask for the VNI id
7875  *      @dip_hit: to enable DIP match for the MPS entry
7876  *      @lookup_type: MAC address for inner (1) or outer (0) header
7877  *      @sleep_ok: call is allowed to sleep
7878  *
7879  *      Allocates an MPS entry with specified MAC address and VNI value.
7880  *
7881  *      Returns a negative error number or the allocated index for this mac.
7882  */
7883 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7884                             const u8 *addr, const u8 *mask, unsigned int vni,
7885                             unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7886                             bool sleep_ok)
7887 {
7888         struct fw_vi_mac_cmd c;
7889         struct fw_vi_mac_vni *p = c.u.exact_vni;
7890         int ret = 0;
7891         u32 val;
7892
7893         memset(&c, 0, sizeof(c));
7894         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7895                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7896                                    FW_VI_MAC_CMD_VIID_V(viid));
7897         val = FW_CMD_LEN16_V(1) |
7898               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7899         c.freemacs_to_len16 = cpu_to_be32(val);
7900         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7901                                       FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7902         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7903         memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7904
7905         p->lookup_type_to_vni =
7906                 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7907                             FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7908                             FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7909         p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7910         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7911         if (ret == 0)
7912                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7913         return ret;
7914 }
7915
7916 /**
7917  *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7918  *      @adap: the adapter
7919  *      @viid: the VI id
7920  *      @addr: the MAC address
7921  *      @mask: the mask
7922  *      @idx: index at which to add this entry
7923  *      @lookup_type: MAC address for inner (1) or outer (0) header
7924  *      @port_id: the port index
7925  *      @sleep_ok: call is allowed to sleep
7926  *
7927  *      Adds the mac entry at the specified index using raw mac interface.
7928  *
7929  *      Returns a negative error number or the allocated index for this mac.
7930  */
7931 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7932                           const u8 *addr, const u8 *mask, unsigned int idx,
7933                           u8 lookup_type, u8 port_id, bool sleep_ok)
7934 {
7935         int ret = 0;
7936         struct fw_vi_mac_cmd c;
7937         struct fw_vi_mac_raw *p = &c.u.raw;
7938         u32 val;
7939
7940         memset(&c, 0, sizeof(c));
7941         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7942                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7943                                    FW_VI_MAC_CMD_VIID_V(viid));
7944         val = FW_CMD_LEN16_V(1) |
7945               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7946         c.freemacs_to_len16 = cpu_to_be32(val);
7947
7948         /* Specify that this is an inner mac address */
7949         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7950
7951         /* Lookup Type. Outer header: 0, Inner header: 1 */
7952         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7953                                    DATAPORTNUM_V(port_id));
7954         /* Lookup mask and port mask */
7955         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7956                                     DATAPORTNUM_V(DATAPORTNUM_M));
7957
7958         /* Copy the address and the mask */
7959         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7960         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7961
7962         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7963         if (ret == 0) {
7964                 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7965                 if (ret != idx)
7966                         ret = -ENOMEM;
7967         }
7968
7969         return ret;
7970 }
7971
7972 /**
7973  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7974  *      @adap: the adapter
7975  *      @mbox: mailbox to use for the FW command
7976  *      @viid: the VI id
7977  *      @free: if true any existing filters for this VI id are first removed
7978  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7979  *      @addr: the MAC address(es)
7980  *      @idx: where to store the index of each allocated filter
7981  *      @hash: pointer to hash address filter bitmap
7982  *      @sleep_ok: call is allowed to sleep
7983  *
7984  *      Allocates an exact-match filter for each of the supplied addresses and
7985  *      sets it to the corresponding address.  If @idx is not %NULL it should
7986  *      have at least @naddr entries, each of which will be set to the index of
7987  *      the filter allocated for the corresponding MAC address.  If a filter
7988  *      could not be allocated for an address its index is set to 0xffff.
7989  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7990  *      are hashed and update the hash filter bitmap pointed at by @hash.
7991  *
7992  *      Returns a negative error number or the number of filters allocated.
7993  */
7994 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7995                       unsigned int viid, bool free, unsigned int naddr,
7996                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7997 {
7998         int offset, ret = 0;
7999         struct fw_vi_mac_cmd c;
8000         unsigned int nfilters = 0;
8001         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
8002         unsigned int rem = naddr;
8003
8004         if (naddr > max_naddr)
8005                 return -EINVAL;
8006
8007         for (offset = 0; offset < naddr ; /**/) {
8008                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
8009                                          rem : ARRAY_SIZE(c.u.exact));
8010                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8011                                                      u.exact[fw_naddr]), 16);
8012                 struct fw_vi_mac_exact *p;
8013                 int i;
8014
8015                 memset(&c, 0, sizeof(c));
8016                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8017                                            FW_CMD_REQUEST_F |
8018                                            FW_CMD_WRITE_F |
8019                                            FW_CMD_EXEC_V(free) |
8020                                            FW_VI_MAC_CMD_VIID_V(viid));
8021                 c.freemacs_to_len16 =
8022                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8023                                     FW_CMD_LEN16_V(len16));
8024
8025                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8026                         p->valid_to_idx =
8027                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8028                                             FW_VI_MAC_CMD_IDX_V(
8029                                                     FW_VI_MAC_ADD_MAC));
8030                         memcpy(p->macaddr, addr[offset + i],
8031                                sizeof(p->macaddr));
8032                 }
8033
8034                 /* It's okay if we run out of space in our MAC address arena.
8035                  * Some of the addresses we submit may get stored so we need
8036                  * to run through the reply to see what the results were ...
8037                  */
8038                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8039                 if (ret && ret != -FW_ENOMEM)
8040                         break;
8041
8042                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8043                         u16 index = FW_VI_MAC_CMD_IDX_G(
8044                                         be16_to_cpu(p->valid_to_idx));
8045
8046                         if (idx)
8047                                 idx[offset + i] = (index >= max_naddr ?
8048                                                    0xffff : index);
8049                         if (index < max_naddr)
8050                                 nfilters++;
8051                         else if (hash)
8052                                 *hash |= (1ULL <<
8053                                           hash_mac_addr(addr[offset + i]));
8054                 }
8055
8056                 free = false;
8057                 offset += fw_naddr;
8058                 rem -= fw_naddr;
8059         }
8060
8061         if (ret == 0 || ret == -FW_ENOMEM)
8062                 ret = nfilters;
8063         return ret;
8064 }
8065
8066 /**
8067  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
8068  *      @adap: the adapter
8069  *      @mbox: mailbox to use for the FW command
8070  *      @viid: the VI id
8071  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8072  *      @addr: the MAC address(es)
8073  *      @sleep_ok: call is allowed to sleep
8074  *
8075  *      Frees the exact-match filter for each of the supplied addresses
8076  *
8077  *      Returns a negative error number or the number of filters freed.
8078  */
8079 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8080                      unsigned int viid, unsigned int naddr,
8081                      const u8 **addr, bool sleep_ok)
8082 {
8083         int offset, ret = 0;
8084         struct fw_vi_mac_cmd c;
8085         unsigned int nfilters = 0;
8086         unsigned int max_naddr = is_t4(adap->params.chip) ?
8087                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
8088                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8089         unsigned int rem = naddr;
8090
8091         if (naddr > max_naddr)
8092                 return -EINVAL;
8093
8094         for (offset = 0; offset < (int)naddr ; /**/) {
8095                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8096                                          ? rem
8097                                          : ARRAY_SIZE(c.u.exact));
8098                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8099                                                      u.exact[fw_naddr]), 16);
8100                 struct fw_vi_mac_exact *p;
8101                 int i;
8102
8103                 memset(&c, 0, sizeof(c));
8104                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8105                                      FW_CMD_REQUEST_F |
8106                                      FW_CMD_WRITE_F |
8107                                      FW_CMD_EXEC_V(0) |
8108                                      FW_VI_MAC_CMD_VIID_V(viid));
8109                 c.freemacs_to_len16 =
8110                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8111                                             FW_CMD_LEN16_V(len16));
8112
8113                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8114                         p->valid_to_idx = cpu_to_be16(
8115                                 FW_VI_MAC_CMD_VALID_F |
8116                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8117                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8118                 }
8119
8120                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8121                 if (ret)
8122                         break;
8123
8124                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8125                         u16 index = FW_VI_MAC_CMD_IDX_G(
8126                                                 be16_to_cpu(p->valid_to_idx));
8127
8128                         if (index < max_naddr)
8129                                 nfilters++;
8130                 }
8131
8132                 offset += fw_naddr;
8133                 rem -= fw_naddr;
8134         }
8135
8136         if (ret == 0)
8137                 ret = nfilters;
8138         return ret;
8139 }
8140
8141 /**
8142  *      t4_change_mac - modifies the exact-match filter for a MAC address
8143  *      @adap: the adapter
8144  *      @mbox: mailbox to use for the FW command
8145  *      @viid: the VI id
8146  *      @idx: index of existing filter for old value of MAC address, or -1
8147  *      @addr: the new MAC address value
8148  *      @persist: whether a new MAC allocation should be persistent
8149  *      @smt_idx: the destination to store the new SMT index.
8150  *
8151  *      Modifies an exact-match filter and sets it to the new MAC address.
8152  *      Note that in general it is not possible to modify the value of a given
8153  *      filter so the generic way to modify an address filter is to free the one
8154  *      being used by the old address value and allocate a new filter for the
8155  *      new address value.  @idx can be -1 if the address is a new addition.
8156  *
8157  *      Returns a negative error number or the index of the filter with the new
8158  *      MAC value.
8159  */
8160 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8161                   int idx, const u8 *addr, bool persist, u8 *smt_idx)
8162 {
8163         int ret, mode;
8164         struct fw_vi_mac_cmd c;
8165         struct fw_vi_mac_exact *p = c.u.exact;
8166         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8167
8168         if (idx < 0)                             /* new allocation */
8169                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8170         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8171
8172         memset(&c, 0, sizeof(c));
8173         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8174                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8175                                    FW_VI_MAC_CMD_VIID_V(viid));
8176         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8177         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8178                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8179                                       FW_VI_MAC_CMD_IDX_V(idx));
8180         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8181
8182         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8183         if (ret == 0) {
8184                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8185                 if (ret >= max_mac_addr)
8186                         ret = -ENOMEM;
8187                 if (smt_idx) {
8188                         if (adap->params.viid_smt_extn_support) {
8189                                 *smt_idx = FW_VI_MAC_CMD_SMTID_G
8190                                                     (be32_to_cpu(c.op_to_viid));
8191                         } else {
8192                                 /* In T4/T5, SMT contains 256 SMAC entries
8193                                  * organized in 128 rows of 2 entries each.
8194                                  * In T6, SMT contains 256 SMAC entries in
8195                                  * 256 rows.
8196                                  */
8197                                 if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8198                                                                      CHELSIO_T5)
8199                                         *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8200                                 else
8201                                         *smt_idx = (viid & FW_VIID_VIN_M);
8202                         }
8203                 }
8204         }
8205         return ret;
8206 }
8207
8208 /**
8209  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8210  *      @adap: the adapter
8211  *      @mbox: mailbox to use for the FW command
8212  *      @viid: the VI id
8213  *      @ucast: whether the hash filter should also match unicast addresses
8214  *      @vec: the value to be written to the hash filter
8215  *      @sleep_ok: call is allowed to sleep
8216  *
8217  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8218  */
8219 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8220                      bool ucast, u64 vec, bool sleep_ok)
8221 {
8222         struct fw_vi_mac_cmd c;
8223
8224         memset(&c, 0, sizeof(c));
8225         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8226                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8227                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8228         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8229                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8230                                           FW_CMD_LEN16_V(1));
8231         c.u.hash.hashvec = cpu_to_be64(vec);
8232         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8233 }
8234
8235 /**
8236  *      t4_enable_vi_params - enable/disable a virtual interface
8237  *      @adap: the adapter
8238  *      @mbox: mailbox to use for the FW command
8239  *      @viid: the VI id
8240  *      @rx_en: 1=enable Rx, 0=disable Rx
8241  *      @tx_en: 1=enable Tx, 0=disable Tx
8242  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8243  *
8244  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8245  *      only makes sense when enabling a Virtual Interface ...
8246  */
8247 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8248                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8249 {
8250         struct fw_vi_enable_cmd c;
8251
8252         memset(&c, 0, sizeof(c));
8253         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8254                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8255                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8256         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8257                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8258                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8259                                      FW_LEN16(c));
8260         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8261 }
8262
8263 /**
8264  *      t4_enable_vi - enable/disable a virtual interface
8265  *      @adap: the adapter
8266  *      @mbox: mailbox to use for the FW command
8267  *      @viid: the VI id
8268  *      @rx_en: 1=enable Rx, 0=disable Rx
8269  *      @tx_en: 1=enable Tx, 0=disable Tx
8270  *
8271  *      Enables/disables a virtual interface.
8272  */
8273 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8274                  bool rx_en, bool tx_en)
8275 {
8276         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8277 }
8278
8279 /**
8280  *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8281  *      @adap: the adapter
8282  *      @mbox: mailbox to use for the FW command
8283  *      @pi: the Port Information structure
8284  *      @rx_en: 1=enable Rx, 0=disable Rx
8285  *      @tx_en: 1=enable Tx, 0=disable Tx
8286  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8287  *
8288  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8289  *      Enable only makes sense when enabling a Virtual Interface ...
8290  *      If the Virtual Interface enable/disable operation is successful,
8291  *      we notify the OS-specific code of a potential Link Status change
8292  *      via the OS Contract API t4_os_link_changed().
8293  */
8294 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8295                         struct port_info *pi,
8296                         bool rx_en, bool tx_en, bool dcb_en)
8297 {
8298         int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8299                                       rx_en, tx_en, dcb_en);
8300         if (ret)
8301                 return ret;
8302         t4_os_link_changed(adap, pi->port_id,
8303                            rx_en && tx_en && pi->link_cfg.link_ok);
8304         return 0;
8305 }
8306
8307 /**
8308  *      t4_identify_port - identify a VI's port by blinking its LED
8309  *      @adap: the adapter
8310  *      @mbox: mailbox to use for the FW command
8311  *      @viid: the VI id
8312  *      @nblinks: how many times to blink LED at 2.5 Hz
8313  *
8314  *      Identifies a VI's port by blinking its LED.
8315  */
8316 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8317                      unsigned int nblinks)
8318 {
8319         struct fw_vi_enable_cmd c;
8320
8321         memset(&c, 0, sizeof(c));
8322         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8323                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8324                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8325         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8326         c.blinkdur = cpu_to_be16(nblinks);
8327         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8328 }
8329
8330 /**
8331  *      t4_iq_stop - stop an ingress queue and its FLs
8332  *      @adap: the adapter
8333  *      @mbox: mailbox to use for the FW command
8334  *      @pf: the PF owning the queues
8335  *      @vf: the VF owning the queues
8336  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8337  *      @iqid: ingress queue id
8338  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8339  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8340  *
8341  *      Stops an ingress queue and its associated FLs, if any.  This causes
8342  *      any current or future data/messages destined for these queues to be
8343  *      tossed.
8344  */
8345 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8346                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8347                unsigned int fl0id, unsigned int fl1id)
8348 {
8349         struct fw_iq_cmd c;
8350
8351         memset(&c, 0, sizeof(c));
8352         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8353                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8354                                   FW_IQ_CMD_VFN_V(vf));
8355         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8356         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8357         c.iqid = cpu_to_be16(iqid);
8358         c.fl0id = cpu_to_be16(fl0id);
8359         c.fl1id = cpu_to_be16(fl1id);
8360         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8361 }
8362
8363 /**
8364  *      t4_iq_free - free an ingress queue and its FLs
8365  *      @adap: the adapter
8366  *      @mbox: mailbox to use for the FW command
8367  *      @pf: the PF owning the queues
8368  *      @vf: the VF owning the queues
8369  *      @iqtype: the ingress queue type
8370  *      @iqid: ingress queue id
8371  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8372  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8373  *
8374  *      Frees an ingress queue and its associated FLs, if any.
8375  */
8376 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8377                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8378                unsigned int fl0id, unsigned int fl1id)
8379 {
8380         struct fw_iq_cmd c;
8381
8382         memset(&c, 0, sizeof(c));
8383         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8384                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8385                                   FW_IQ_CMD_VFN_V(vf));
8386         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8387         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8388         c.iqid = cpu_to_be16(iqid);
8389         c.fl0id = cpu_to_be16(fl0id);
8390         c.fl1id = cpu_to_be16(fl1id);
8391         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8392 }
8393
8394 /**
8395  *      t4_eth_eq_free - free an Ethernet egress queue
8396  *      @adap: the adapter
8397  *      @mbox: mailbox to use for the FW command
8398  *      @pf: the PF owning the queue
8399  *      @vf: the VF owning the queue
8400  *      @eqid: egress queue id
8401  *
8402  *      Frees an Ethernet egress queue.
8403  */
8404 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8405                    unsigned int vf, unsigned int eqid)
8406 {
8407         struct fw_eq_eth_cmd c;
8408
8409         memset(&c, 0, sizeof(c));
8410         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8411                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8412                                   FW_EQ_ETH_CMD_PFN_V(pf) |
8413                                   FW_EQ_ETH_CMD_VFN_V(vf));
8414         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8415         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8416         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8417 }
8418
8419 /**
8420  *      t4_ctrl_eq_free - free a control egress queue
8421  *      @adap: the adapter
8422  *      @mbox: mailbox to use for the FW command
8423  *      @pf: the PF owning the queue
8424  *      @vf: the VF owning the queue
8425  *      @eqid: egress queue id
8426  *
8427  *      Frees a control egress queue.
8428  */
8429 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8430                     unsigned int vf, unsigned int eqid)
8431 {
8432         struct fw_eq_ctrl_cmd c;
8433
8434         memset(&c, 0, sizeof(c));
8435         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8436                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8437                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
8438                                   FW_EQ_CTRL_CMD_VFN_V(vf));
8439         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8440         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8441         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8442 }
8443
8444 /**
8445  *      t4_ofld_eq_free - free an offload egress queue
8446  *      @adap: the adapter
8447  *      @mbox: mailbox to use for the FW command
8448  *      @pf: the PF owning the queue
8449  *      @vf: the VF owning the queue
8450  *      @eqid: egress queue id
8451  *
8452  *      Frees a control egress queue.
8453  */
8454 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8455                     unsigned int vf, unsigned int eqid)
8456 {
8457         struct fw_eq_ofld_cmd c;
8458
8459         memset(&c, 0, sizeof(c));
8460         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8461                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8462                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
8463                                   FW_EQ_OFLD_CMD_VFN_V(vf));
8464         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8465         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8466         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8467 }
8468
8469 /**
8470  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8471  *      @link_down_rc: Link Down Reason Code
8472  *
8473  *      Returns a string representation of the Link Down Reason Code.
8474  */
8475 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8476 {
8477         static const char * const reason[] = {
8478                 "Link Down",
8479                 "Remote Fault",
8480                 "Auto-negotiation Failure",
8481                 "Reserved",
8482                 "Insufficient Airflow",
8483                 "Unable To Determine Reason",
8484                 "No RX Signal Detected",
8485                 "Reserved",
8486         };
8487
8488         if (link_down_rc >= ARRAY_SIZE(reason))
8489                 return "Bad Reason Code";
8490
8491         return reason[link_down_rc];
8492 }
8493
8494 /* Return the highest speed set in the port capabilities, in Mb/s. */
8495 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8496 {
8497         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8498                 do { \
8499                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8500                                 return __speed; \
8501                 } while (0)
8502
8503         TEST_SPEED_RETURN(400G, 400000);
8504         TEST_SPEED_RETURN(200G, 200000);
8505         TEST_SPEED_RETURN(100G, 100000);
8506         TEST_SPEED_RETURN(50G,   50000);
8507         TEST_SPEED_RETURN(40G,   40000);
8508         TEST_SPEED_RETURN(25G,   25000);
8509         TEST_SPEED_RETURN(10G,   10000);
8510         TEST_SPEED_RETURN(1G,     1000);
8511         TEST_SPEED_RETURN(100M,    100);
8512
8513         #undef TEST_SPEED_RETURN
8514
8515         return 0;
8516 }
8517
8518 /**
8519  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8520  *      @acaps: advertised Port Capabilities
8521  *
8522  *      Get the highest speed for the port from the advertised Port
8523  *      Capabilities.  It will be either the highest speed from the list of
8524  *      speeds or whatever user has set using ethtool.
8525  */
8526 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8527 {
8528         #define TEST_SPEED_RETURN(__caps_speed) \
8529                 do { \
8530                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8531                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8532                 } while (0)
8533
8534         TEST_SPEED_RETURN(400G);
8535         TEST_SPEED_RETURN(200G);
8536         TEST_SPEED_RETURN(100G);
8537         TEST_SPEED_RETURN(50G);
8538         TEST_SPEED_RETURN(40G);
8539         TEST_SPEED_RETURN(25G);
8540         TEST_SPEED_RETURN(10G);
8541         TEST_SPEED_RETURN(1G);
8542         TEST_SPEED_RETURN(100M);
8543
8544         #undef TEST_SPEED_RETURN
8545
8546         return 0;
8547 }
8548
8549 /**
8550  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8551  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8552  *
8553  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8554  *      32-bit Port Capabilities value.
8555  */
8556 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8557 {
8558         fw_port_cap32_t linkattr = 0;
8559
8560         /* Unfortunately the format of the Link Status in the old
8561          * 16-bit Port Information message isn't the same as the
8562          * 16-bit Port Capabilities bitfield used everywhere else ...
8563          */
8564         if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8565                 linkattr |= FW_PORT_CAP32_FC_RX;
8566         if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8567                 linkattr |= FW_PORT_CAP32_FC_TX;
8568         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8569                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8570         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8571                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8572         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8573                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8574         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8575                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8576         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8577                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8578         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8579                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8580
8581         return linkattr;
8582 }
8583
8584 /**
8585  *      t4_handle_get_port_info - process a FW reply message
8586  *      @pi: the port info
8587  *      @rpl: start of the FW message
8588  *
8589  *      Processes a GET_PORT_INFO FW reply message.
8590  */
8591 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8592 {
8593         const struct fw_port_cmd *cmd = (const void *)rpl;
8594         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8595         struct link_config *lc = &pi->link_cfg;
8596         struct adapter *adapter = pi->adapter;
8597         unsigned int speed, fc, fec, adv_fc;
8598         enum fw_port_module_type mod_type;
8599         int action, link_ok, linkdnrc;
8600         enum fw_port_type port_type;
8601
8602         /* Extract the various fields from the Port Information message.
8603          */
8604         action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8605         switch (action) {
8606         case FW_PORT_ACTION_GET_PORT_INFO: {
8607                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8608
8609                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8610                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8611                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8612                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8613                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8614                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8615                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8616                 linkattr = lstatus_to_fwcap(lstatus);
8617                 break;
8618         }
8619
8620         case FW_PORT_ACTION_GET_PORT_INFO32: {
8621                 u32 lstatus32;
8622
8623                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8624                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8625                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8626                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8627                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8628                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8629                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
8630                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8631                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8632                 break;
8633         }
8634
8635         default:
8636                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8637                         be32_to_cpu(cmd->action_to_len16));
8638                 return;
8639         }
8640
8641         fec = fwcap_to_cc_fec(acaps);
8642         adv_fc = fwcap_to_cc_pause(acaps);
8643         fc = fwcap_to_cc_pause(linkattr);
8644         speed = fwcap_to_speed(linkattr);
8645
8646         /* Reset state for communicating new Transceiver Module status and
8647          * whether the OS-dependent layer wants us to redo the current
8648          * "sticky" L1 Configure Link Parameters.
8649          */
8650         lc->new_module = false;
8651         lc->redo_l1cfg = false;
8652
8653         if (mod_type != pi->mod_type) {
8654                 /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8655                  * various fundamental Port Capabilities which used to be
8656                  * immutable can now change radically.  We can now have
8657                  * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8658                  * all change based on what Transceiver Module is inserted.
8659                  * So we need to record the Physical "Port" Capabilities on
8660                  * every Transceiver Module change.
8661                  */
8662                 lc->pcaps = pcaps;
8663
8664                 /* When a new Transceiver Module is inserted, the Firmware
8665                  * will examine its i2c EPROM to determine its type and
8666                  * general operating parameters including things like Forward
8667                  * Error Control, etc.  Various IEEE 802.3 standards dictate
8668                  * how to interpret these i2c values to determine default
8669                  * "sutomatic" settings.  We record these for future use when
8670                  * the user explicitly requests these standards-based values.
8671                  */
8672                 lc->def_acaps = acaps;
8673
8674                 /* Some versions of the early T6 Firmware "cheated" when
8675                  * handling different Transceiver Modules by changing the
8676                  * underlaying Port Type reported to the Host Drivers.  As
8677                  * such we need to capture whatever Port Type the Firmware
8678                  * sends us and record it in case it's different from what we
8679                  * were told earlier.  Unfortunately, since Firmware is
8680                  * forever, we'll need to keep this code here forever, but in
8681                  * later T6 Firmware it should just be an assignment of the
8682                  * same value already recorded.
8683                  */
8684                 pi->port_type = port_type;
8685
8686                 /* Record new Module Type information.
8687                  */
8688                 pi->mod_type = mod_type;
8689
8690                 /* Let the OS-dependent layer know if we have a new
8691                  * Transceiver Module inserted.
8692                  */
8693                 lc->new_module = t4_is_inserted_mod_type(mod_type);
8694
8695                 t4_os_portmod_changed(adapter, pi->port_id);
8696         }
8697
8698         if (link_ok != lc->link_ok || speed != lc->speed ||
8699             fc != lc->fc || adv_fc != lc->advertised_fc ||
8700             fec != lc->fec) {
8701                 /* something changed */
8702                 if (!link_ok && lc->link_ok) {
8703                         lc->link_down_rc = linkdnrc;
8704                         dev_warn_ratelimited(adapter->pdev_dev,
8705                                              "Port %d link down, reason: %s\n",
8706                                              pi->tx_chan,
8707                                              t4_link_down_rc_str(linkdnrc));
8708                 }
8709                 lc->link_ok = link_ok;
8710                 lc->speed = speed;
8711                 lc->advertised_fc = adv_fc;
8712                 lc->fc = fc;
8713                 lc->fec = fec;
8714
8715                 lc->lpacaps = lpacaps;
8716                 lc->acaps = acaps & ADVERT_MASK;
8717
8718                 /* If we're not physically capable of Auto-Negotiation, note
8719                  * this as Auto-Negotiation disabled.  Otherwise, we track
8720                  * what Auto-Negotiation settings we have.  Note parallel
8721                  * structure in t4_link_l1cfg_core() and init_link_config().
8722                  */
8723                 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8724                         lc->autoneg = AUTONEG_DISABLE;
8725                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8726                         lc->autoneg = AUTONEG_ENABLE;
8727                 } else {
8728                         /* When Autoneg is disabled, user needs to set
8729                          * single speed.
8730                          * Similar to cxgb4_ethtool.c: set_link_ksettings
8731                          */
8732                         lc->acaps = 0;
8733                         lc->speed_caps = fwcap_to_fwspeed(acaps);
8734                         lc->autoneg = AUTONEG_DISABLE;
8735                 }
8736
8737                 t4_os_link_changed(adapter, pi->port_id, link_ok);
8738         }
8739
8740         /* If we have a new Transceiver Module and the OS-dependent code has
8741          * told us that it wants us to redo whatever "sticky" L1 Configuration
8742          * Link Parameters are set, do that now.
8743          */
8744         if (lc->new_module && lc->redo_l1cfg) {
8745                 struct link_config old_lc;
8746                 int ret;
8747
8748                 /* Save the current L1 Configuration and restore it if an
8749                  * error occurs.  We probably should fix the l1_cfg*()
8750                  * routines not to change the link_config when an error
8751                  * occurs ...
8752                  */
8753                 old_lc = *lc;
8754                 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8755                 if (ret) {
8756                         *lc = old_lc;
8757                         dev_warn(adapter->pdev_dev,
8758                                  "Attempt to update new Transceiver Module settings failed\n");
8759                 }
8760         }
8761         lc->new_module = false;
8762         lc->redo_l1cfg = false;
8763 }
8764
8765 /**
8766  *      t4_update_port_info - retrieve and update port information if changed
8767  *      @pi: the port_info
8768  *
8769  *      We issue a Get Port Information Command to the Firmware and, if
8770  *      successful, we check to see if anything is different from what we
8771  *      last recorded and update things accordingly.
8772  */
8773 int t4_update_port_info(struct port_info *pi)
8774 {
8775         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8776         struct fw_port_cmd port_cmd;
8777         int ret;
8778
8779         memset(&port_cmd, 0, sizeof(port_cmd));
8780         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8781                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8782                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8783         port_cmd.action_to_len16 = cpu_to_be32(
8784                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8785                                      ? FW_PORT_ACTION_GET_PORT_INFO
8786                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
8787                 FW_LEN16(port_cmd));
8788         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8789                          &port_cmd, sizeof(port_cmd), &port_cmd);
8790         if (ret)
8791                 return ret;
8792
8793         t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8794         return 0;
8795 }
8796
8797 /**
8798  *      t4_get_link_params - retrieve basic link parameters for given port
8799  *      @pi: the port
8800  *      @link_okp: value return pointer for link up/down
8801  *      @speedp: value return pointer for speed (Mb/s)
8802  *      @mtup: value return pointer for mtu
8803  *
8804  *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8805  *      and MTU for a specified port.  A negative error is returned on
8806  *      failure; 0 on success.
8807  */
8808 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8809                        unsigned int *speedp, unsigned int *mtup)
8810 {
8811         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8812         unsigned int action, link_ok, mtu;
8813         struct fw_port_cmd port_cmd;
8814         fw_port_cap32_t linkattr;
8815         int ret;
8816
8817         memset(&port_cmd, 0, sizeof(port_cmd));
8818         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8819                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8820                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8821         action = (fw_caps == FW_CAPS16
8822                   ? FW_PORT_ACTION_GET_PORT_INFO
8823                   : FW_PORT_ACTION_GET_PORT_INFO32);
8824         port_cmd.action_to_len16 = cpu_to_be32(
8825                 FW_PORT_CMD_ACTION_V(action) |
8826                 FW_LEN16(port_cmd));
8827         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8828                          &port_cmd, sizeof(port_cmd), &port_cmd);
8829         if (ret)
8830                 return ret;
8831
8832         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8833                 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8834
8835                 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8836                 linkattr = lstatus_to_fwcap(lstatus);
8837                 mtu = be16_to_cpu(port_cmd.u.info.mtu);
8838         } else {
8839                 u32 lstatus32 =
8840                            be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8841
8842                 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8843                 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8844                 mtu = FW_PORT_CMD_MTU32_G(
8845                         be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8846         }
8847
8848         if (link_okp)
8849                 *link_okp = link_ok;
8850         if (speedp)
8851                 *speedp = fwcap_to_speed(linkattr);
8852         if (mtup)
8853                 *mtup = mtu;
8854
8855         return 0;
8856 }
8857
8858 /**
8859  *      t4_handle_fw_rpl - process a FW reply message
8860  *      @adap: the adapter
8861  *      @rpl: start of the FW message
8862  *
8863  *      Processes a FW message, such as link state change messages.
8864  */
8865 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8866 {
8867         u8 opcode = *(const u8 *)rpl;
8868
8869         /* This might be a port command ... this simplifies the following
8870          * conditionals ...  We can get away with pre-dereferencing
8871          * action_to_len16 because it's in the first 16 bytes and all messages
8872          * will be at least that long.
8873          */
8874         const struct fw_port_cmd *p = (const void *)rpl;
8875         unsigned int action =
8876                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8877
8878         if (opcode == FW_PORT_CMD &&
8879             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8880              action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8881                 int i;
8882                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8883                 struct port_info *pi = NULL;
8884
8885                 for_each_port(adap, i) {
8886                         pi = adap2pinfo(adap, i);
8887                         if (pi->tx_chan == chan)
8888                                 break;
8889                 }
8890
8891                 t4_handle_get_port_info(pi, rpl);
8892         } else {
8893                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8894                          opcode);
8895                 return -EINVAL;
8896         }
8897         return 0;
8898 }
8899
8900 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8901 {
8902         u16 val;
8903
8904         if (pci_is_pcie(adapter->pdev)) {
8905                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8906                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8907                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8908         }
8909 }
8910
8911 /**
8912  *      init_link_config - initialize a link's SW state
8913  *      @lc: pointer to structure holding the link state
8914  *      @pcaps: link Port Capabilities
8915  *      @acaps: link current Advertised Port Capabilities
8916  *
8917  *      Initializes the SW state maintained for each link, including the link's
8918  *      capabilities and default speed/flow-control/autonegotiation settings.
8919  */
8920 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8921                              fw_port_cap32_t acaps)
8922 {
8923         lc->pcaps = pcaps;
8924         lc->def_acaps = acaps;
8925         lc->lpacaps = 0;
8926         lc->speed_caps = 0;
8927         lc->speed = 0;
8928         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8929
8930         /* For Forward Error Control, we default to whatever the Firmware
8931          * tells us the Link is currently advertising.
8932          */
8933         lc->requested_fec = FEC_AUTO;
8934         lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8935
8936         /* If the Port is capable of Auto-Negtotiation, initialize it as
8937          * "enabled" and copy over all of the Physical Port Capabilities
8938          * to the Advertised Port Capabilities.  Otherwise mark it as
8939          * Auto-Negotiate disabled and select the highest supported speed
8940          * for the link.  Note parallel structure in t4_link_l1cfg_core()
8941          * and t4_handle_get_port_info().
8942          */
8943         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8944                 lc->acaps = lc->pcaps & ADVERT_MASK;
8945                 lc->autoneg = AUTONEG_ENABLE;
8946                 lc->requested_fc |= PAUSE_AUTONEG;
8947         } else {
8948                 lc->acaps = 0;
8949                 lc->autoneg = AUTONEG_DISABLE;
8950                 lc->speed_caps = fwcap_to_fwspeed(acaps);
8951         }
8952 }
8953
8954 #define CIM_PF_NOACCESS 0xeeeeeeee
8955
8956 int t4_wait_dev_ready(void __iomem *regs)
8957 {
8958         u32 whoami;
8959
8960         whoami = readl(regs + PL_WHOAMI_A);
8961         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8962                 return 0;
8963
8964         msleep(500);
8965         whoami = readl(regs + PL_WHOAMI_A);
8966         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8967 }
8968
8969 struct flash_desc {
8970         u32 vendor_and_model_id;
8971         u32 size_mb;
8972 };
8973
8974 static int t4_get_flash_params(struct adapter *adap)
8975 {
8976         /* Table for non-Numonix supported flash parts.  Numonix parts are left
8977          * to the preexisting code.  All flash parts have 64KB sectors.
8978          */
8979         static struct flash_desc supported_flash[] = {
8980                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8981         };
8982
8983         unsigned int part, manufacturer;
8984         unsigned int density, size = 0;
8985         u32 flashid = 0;
8986         int ret;
8987
8988         /* Issue a Read ID Command to the Flash part.  We decode supported
8989          * Flash parts and their sizes from this.  There's a newer Query
8990          * Command which can retrieve detailed geometry information but many
8991          * Flash parts don't support it.
8992          */
8993
8994         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8995         if (!ret)
8996                 ret = sf1_read(adap, 3, 0, 1, &flashid);
8997         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8998         if (ret)
8999                 return ret;
9000
9001         /* Check to see if it's one of our non-standard supported Flash parts.
9002          */
9003         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9004                 if (supported_flash[part].vendor_and_model_id == flashid) {
9005                         adap->params.sf_size = supported_flash[part].size_mb;
9006                         adap->params.sf_nsec =
9007                                 adap->params.sf_size / SF_SEC_SIZE;
9008                         goto found;
9009                 }
9010
9011         /* Decode Flash part size.  The code below looks repetitive with
9012          * common encodings, but that's not guaranteed in the JEDEC
9013          * specification for the Read JEDEC ID command.  The only thing that
9014          * we're guaranteed by the JEDEC specification is where the
9015          * Manufacturer ID is in the returned result.  After that each
9016          * Manufacturer ~could~ encode things completely differently.
9017          * Note, all Flash parts must have 64KB sectors.
9018          */
9019         manufacturer = flashid & 0xff;
9020         switch (manufacturer) {
9021         case 0x20: { /* Micron/Numonix */
9022                 /* This Density -> Size decoding table is taken from Micron
9023                  * Data Sheets.
9024                  */
9025                 density = (flashid >> 16) & 0xff;
9026                 switch (density) {
9027                 case 0x14: /* 1MB */
9028                         size = 1 << 20;
9029                         break;
9030                 case 0x15: /* 2MB */
9031                         size = 1 << 21;
9032                         break;
9033                 case 0x16: /* 4MB */
9034                         size = 1 << 22;
9035                         break;
9036                 case 0x17: /* 8MB */
9037                         size = 1 << 23;
9038                         break;
9039                 case 0x18: /* 16MB */
9040                         size = 1 << 24;
9041                         break;
9042                 case 0x19: /* 32MB */
9043                         size = 1 << 25;
9044                         break;
9045                 case 0x20: /* 64MB */
9046                         size = 1 << 26;
9047                         break;
9048                 case 0x21: /* 128MB */
9049                         size = 1 << 27;
9050                         break;
9051                 case 0x22: /* 256MB */
9052                         size = 1 << 28;
9053                         break;
9054                 }
9055                 break;
9056         }
9057         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9058                 /* This Density -> Size decoding table is taken from ISSI
9059                  * Data Sheets.
9060                  */
9061                 density = (flashid >> 16) & 0xff;
9062                 switch (density) {
9063                 case 0x16: /* 32 MB */
9064                         size = 1 << 25;
9065                         break;
9066                 case 0x17: /* 64MB */
9067                         size = 1 << 26;
9068                         break;
9069                 }
9070                 break;
9071         }
9072         case 0xc2: { /* Macronix */
9073                 /* This Density -> Size decoding table is taken from Macronix
9074                  * Data Sheets.
9075                  */
9076                 density = (flashid >> 16) & 0xff;
9077                 switch (density) {
9078                 case 0x17: /* 8MB */
9079                         size = 1 << 23;
9080                         break;
9081                 case 0x18: /* 16MB */
9082                         size = 1 << 24;
9083                         break;
9084                 }
9085                 break;
9086         }
9087         case 0xef: { /* Winbond */
9088                 /* This Density -> Size decoding table is taken from Winbond
9089                  * Data Sheets.
9090                  */
9091                 density = (flashid >> 16) & 0xff;
9092                 switch (density) {
9093                 case 0x17: /* 8MB */
9094                         size = 1 << 23;
9095                         break;
9096                 case 0x18: /* 16MB */
9097                         size = 1 << 24;
9098                         break;
9099                 }
9100                 break;
9101         }
9102         }
9103
9104         /* If we didn't recognize the FLASH part, that's no real issue: the
9105          * Hardware/Software contract says that Hardware will _*ALWAYS*_
9106          * use a FLASH part which is at least 4MB in size and has 64KB
9107          * sectors.  The unrecognized FLASH part is likely to be much larger
9108          * than 4MB, but that's all we really need.
9109          */
9110         if (size == 0) {
9111                 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9112                          flashid);
9113                 size = 1 << 22;
9114         }
9115
9116         /* Store decoded Flash size and fall through into vetting code. */
9117         adap->params.sf_size = size;
9118         adap->params.sf_nsec = size / SF_SEC_SIZE;
9119
9120 found:
9121         if (adap->params.sf_size < FLASH_MIN_SIZE)
9122                 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9123                          flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9124         return 0;
9125 }
9126
9127 /**
9128  *      t4_prep_adapter - prepare SW and HW for operation
9129  *      @adapter: the adapter
9130  *
9131  *      Initialize adapter SW state for the various HW modules, set initial
9132  *      values for some adapter tunables, take PHYs out of reset, and
9133  *      initialize the MDIO interface.
9134  */
9135 int t4_prep_adapter(struct adapter *adapter)
9136 {
9137         int ret, ver;
9138         uint16_t device_id;
9139         u32 pl_rev;
9140
9141         get_pci_mode(adapter, &adapter->params.pci);
9142         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9143
9144         ret = t4_get_flash_params(adapter);
9145         if (ret < 0) {
9146                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9147                 return ret;
9148         }
9149
9150         /* Retrieve adapter's device ID
9151          */
9152         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9153         ver = device_id >> 12;
9154         adapter->params.chip = 0;
9155         switch (ver) {
9156         case CHELSIO_T4:
9157                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9158                 adapter->params.arch.sge_fl_db = DBPRIO_F;
9159                 adapter->params.arch.mps_tcam_size =
9160                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
9161                 adapter->params.arch.mps_rplc_size = 128;
9162                 adapter->params.arch.nchan = NCHAN;
9163                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9164                 adapter->params.arch.vfcount = 128;
9165                 /* Congestion map is for 4 channels so that
9166                  * MPS can have 4 priority per port.
9167                  */
9168                 adapter->params.arch.cng_ch_bits_log = 2;
9169                 break;
9170         case CHELSIO_T5:
9171                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9172                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9173                 adapter->params.arch.mps_tcam_size =
9174                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9175                 adapter->params.arch.mps_rplc_size = 128;
9176                 adapter->params.arch.nchan = NCHAN;
9177                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9178                 adapter->params.arch.vfcount = 128;
9179                 adapter->params.arch.cng_ch_bits_log = 2;
9180                 break;
9181         case CHELSIO_T6:
9182                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9183                 adapter->params.arch.sge_fl_db = 0;
9184                 adapter->params.arch.mps_tcam_size =
9185                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9186                 adapter->params.arch.mps_rplc_size = 256;
9187                 adapter->params.arch.nchan = 2;
9188                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9189                 adapter->params.arch.vfcount = 256;
9190                 /* Congestion map will be for 2 channels so that
9191                  * MPS can have 8 priority per port.
9192                  */
9193                 adapter->params.arch.cng_ch_bits_log = 3;
9194                 break;
9195         default:
9196                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9197                         device_id);
9198                 return -EINVAL;
9199         }
9200
9201         adapter->params.cim_la_size = CIMLA_SIZE;
9202         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9203
9204         /*
9205          * Default port for debugging in case we can't reach FW.
9206          */
9207         adapter->params.nports = 1;
9208         adapter->params.portvec = 1;
9209         adapter->params.vpd.cclk = 50000;
9210
9211         /* Set PCIe completion timeout to 4 seconds. */
9212         pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9213                                            PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9214         return 0;
9215 }
9216
9217 /**
9218  *      t4_shutdown_adapter - shut down adapter, host & wire
9219  *      @adapter: the adapter
9220  *
9221  *      Perform an emergency shutdown of the adapter and stop it from
9222  *      continuing any further communication on the ports or DMA to the
9223  *      host.  This is typically used when the adapter and/or firmware
9224  *      have crashed and we want to prevent any further accidental
9225  *      communication with the rest of the world.  This will also force
9226  *      the port Link Status to go down -- if register writes work --
9227  *      which should help our peers figure out that we're down.
9228  */
9229 int t4_shutdown_adapter(struct adapter *adapter)
9230 {
9231         int port;
9232
9233         t4_intr_disable(adapter);
9234         t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9235         for_each_port(adapter, port) {
9236                 u32 a_port_cfg = is_t4(adapter->params.chip) ?
9237                                        PORT_REG(port, XGMAC_PORT_CFG_A) :
9238                                        T5_PORT_REG(port, MAC_PORT_CFG_A);
9239
9240                 t4_write_reg(adapter, a_port_cfg,
9241                              t4_read_reg(adapter, a_port_cfg)
9242                              & ~SIGNAL_DET_V(1));
9243         }
9244         t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9245
9246         return 0;
9247 }
9248
9249 /**
9250  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9251  *      @adapter: the adapter
9252  *      @qid: the Queue ID
9253  *      @qtype: the Ingress or Egress type for @qid
9254  *      @user: true if this request is for a user mode queue
9255  *      @pbar2_qoffset: BAR2 Queue Offset
9256  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9257  *
9258  *      Returns the BAR2 SGE Queue Registers information associated with the
9259  *      indicated Absolute Queue ID.  These are passed back in return value
9260  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9261  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9262  *
9263  *      This may return an error which indicates that BAR2 SGE Queue
9264  *      registers aren't available.  If an error is not returned, then the
9265  *      following values are returned:
9266  *
9267  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9268  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9269  *
9270  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9271  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9272  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9273  *      then these "Inferred Queue ID" register may not be used.
9274  */
9275 int t4_bar2_sge_qregs(struct adapter *adapter,
9276                       unsigned int qid,
9277                       enum t4_bar2_qtype qtype,
9278                       int user,
9279                       u64 *pbar2_qoffset,
9280                       unsigned int *pbar2_qid)
9281 {
9282         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9283         u64 bar2_page_offset, bar2_qoffset;
9284         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9285
9286         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9287         if (!user && is_t4(adapter->params.chip))
9288                 return -EINVAL;
9289
9290         /* Get our SGE Page Size parameters.
9291          */
9292         page_shift = adapter->params.sge.hps + 10;
9293         page_size = 1 << page_shift;
9294
9295         /* Get the right Queues per Page parameters for our Queue.
9296          */
9297         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9298                      ? adapter->params.sge.eq_qpp
9299                      : adapter->params.sge.iq_qpp);
9300         qpp_mask = (1 << qpp_shift) - 1;
9301
9302         /*  Calculate the basics of the BAR2 SGE Queue register area:
9303          *  o The BAR2 page the Queue registers will be in.
9304          *  o The BAR2 Queue ID.
9305          *  o The BAR2 Queue ID Offset into the BAR2 page.
9306          */
9307         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9308         bar2_qid = qid & qpp_mask;
9309         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9310
9311         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9312          * hardware will infer the Absolute Queue ID simply from the writes to
9313          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9314          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9315          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9316          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9317          * from the BAR2 Page and BAR2 Queue ID.
9318          *
9319          * One important censequence of this is that some BAR2 SGE registers
9320          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9321          * there.  But other registers synthesize the SGE Queue ID purely
9322          * from the writes to the registers -- the Write Combined Doorbell
9323          * Buffer is a good example.  These BAR2 SGE Registers are only
9324          * available for those BAR2 SGE Register areas where the SGE Absolute
9325          * Queue ID can be inferred from simple writes.
9326          */
9327         bar2_qoffset = bar2_page_offset;
9328         bar2_qinferred = (bar2_qid_offset < page_size);
9329         if (bar2_qinferred) {
9330                 bar2_qoffset += bar2_qid_offset;
9331                 bar2_qid = 0;
9332         }
9333
9334         *pbar2_qoffset = bar2_qoffset;
9335         *pbar2_qid = bar2_qid;
9336         return 0;
9337 }
9338
9339 /**
9340  *      t4_init_devlog_params - initialize adapter->params.devlog
9341  *      @adap: the adapter
9342  *
9343  *      Initialize various fields of the adapter's Firmware Device Log
9344  *      Parameters structure.
9345  */
9346 int t4_init_devlog_params(struct adapter *adap)
9347 {
9348         struct devlog_params *dparams = &adap->params.devlog;
9349         u32 pf_dparams;
9350         unsigned int devlog_meminfo;
9351         struct fw_devlog_cmd devlog_cmd;
9352         int ret;
9353
9354         /* If we're dealing with newer firmware, the Device Log Parameters
9355          * are stored in a designated register which allows us to access the
9356          * Device Log even if we can't talk to the firmware.
9357          */
9358         pf_dparams =
9359                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9360         if (pf_dparams) {
9361                 unsigned int nentries, nentries128;
9362
9363                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9364                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9365
9366                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9367                 nentries = (nentries128 + 1) * 128;
9368                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9369
9370                 return 0;
9371         }
9372
9373         /* Otherwise, ask the firmware for it's Device Log Parameters.
9374          */
9375         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9376         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9377                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
9378         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9379         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9380                          &devlog_cmd);
9381         if (ret)
9382                 return ret;
9383
9384         devlog_meminfo =
9385                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9386         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9387         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9388         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9389
9390         return 0;
9391 }
9392
9393 /**
9394  *      t4_init_sge_params - initialize adap->params.sge
9395  *      @adapter: the adapter
9396  *
9397  *      Initialize various fields of the adapter's SGE Parameters structure.
9398  */
9399 int t4_init_sge_params(struct adapter *adapter)
9400 {
9401         struct sge_params *sge_params = &adapter->params.sge;
9402         u32 hps, qpp;
9403         unsigned int s_hps, s_qpp;
9404
9405         /* Extract the SGE Page Size for our PF.
9406          */
9407         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9408         s_hps = (HOSTPAGESIZEPF0_S +
9409                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9410         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9411
9412         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9413          */
9414         s_qpp = (QUEUESPERPAGEPF0_S +
9415                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9416         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9417         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9418         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9419         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9420
9421         return 0;
9422 }
9423
9424 /**
9425  *      t4_init_tp_params - initialize adap->params.tp
9426  *      @adap: the adapter
9427  *      @sleep_ok: if true we may sleep while awaiting command completion
9428  *
9429  *      Initialize various fields of the adapter's TP Parameters structure.
9430  */
9431 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9432 {
9433         u32 param, val, v;
9434         int chan, ret;
9435
9436
9437         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9438         adap->params.tp.tre = TIMERRESOLUTION_G(v);
9439         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9440
9441         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9442         for (chan = 0; chan < NCHAN; chan++)
9443                 adap->params.tp.tx_modq[chan] = chan;
9444
9445         /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9446          * Configuration.
9447          */
9448         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9449                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9450                  FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9451
9452         /* Read current value */
9453         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9454                               &param, &val);
9455         if (ret == 0) {
9456                 dev_info(adap->pdev_dev,
9457                          "Current filter mode/mask 0x%x:0x%x\n",
9458                          FW_PARAMS_PARAM_FILTER_MODE_G(val),
9459                          FW_PARAMS_PARAM_FILTER_MASK_G(val));
9460                 adap->params.tp.vlan_pri_map =
9461                         FW_PARAMS_PARAM_FILTER_MODE_G(val);
9462                 adap->params.tp.filter_mask =
9463                         FW_PARAMS_PARAM_FILTER_MASK_G(val);
9464         } else {
9465                 dev_info(adap->pdev_dev,
9466                          "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9467
9468                 /* Incase of older-fw (which doesn't expose the api
9469                  * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9470                  * the fw api) combination, fall-back to older method of reading
9471                  * the filter mode from indirect-register
9472                  */
9473                 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9474                                TP_VLAN_PRI_MAP_A, sleep_ok);
9475
9476                 /* With the older-fw and newer-driver combination we might run
9477                  * into an issue when user wants to use hash filter region but
9478                  * the filter_mask is zero, in this case filter_mask validation
9479                  * is tough. To avoid that we set the filter_mask same as filter
9480                  * mode, which will behave exactly as the older way of ignoring
9481                  * the filter mask validation.
9482                  */
9483                 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9484         }
9485
9486         t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9487                        TP_INGRESS_CONFIG_A, sleep_ok);
9488
9489         /* For T6, cache the adapter's compressed error vector
9490          * and passing outer header info for encapsulated packets.
9491          */
9492         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9493                 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9494                 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9495         }
9496
9497         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9498          * shift positions of several elements of the Compressed Filter Tuple
9499          * for this adapter which we need frequently ...
9500          */
9501         adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9502         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9503         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9504         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9505         adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9506         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9507                                                                PROTOCOL_F);
9508         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9509                                                                 ETHERTYPE_F);
9510         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9511                                                                MACMATCH_F);
9512         adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9513                                                                 MPSHITTYPE_F);
9514         adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9515                                                            FRAGMENTATION_F);
9516
9517         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9518          * represents the presence of an Outer VLAN instead of a VNIC ID.
9519          */
9520         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9521                 adap->params.tp.vnic_shift = -1;
9522
9523         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9524         adap->params.tp.hash_filter_mask = v;
9525         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9526         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9527         return 0;
9528 }
9529
9530 /**
9531  *      t4_filter_field_shift - calculate filter field shift
9532  *      @adap: the adapter
9533  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9534  *
9535  *      Return the shift position of a filter field within the Compressed
9536  *      Filter Tuple.  The filter field is specified via its selection bit
9537  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9538  */
9539 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9540 {
9541         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9542         unsigned int sel;
9543         int field_shift;
9544
9545         if ((filter_mode & filter_sel) == 0)
9546                 return -1;
9547
9548         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9549                 switch (filter_mode & sel) {
9550                 case FCOE_F:
9551                         field_shift += FT_FCOE_W;
9552                         break;
9553                 case PORT_F:
9554                         field_shift += FT_PORT_W;
9555                         break;
9556                 case VNIC_ID_F:
9557                         field_shift += FT_VNIC_ID_W;
9558                         break;
9559                 case VLAN_F:
9560                         field_shift += FT_VLAN_W;
9561                         break;
9562                 case TOS_F:
9563                         field_shift += FT_TOS_W;
9564                         break;
9565                 case PROTOCOL_F:
9566                         field_shift += FT_PROTOCOL_W;
9567                         break;
9568                 case ETHERTYPE_F:
9569                         field_shift += FT_ETHERTYPE_W;
9570                         break;
9571                 case MACMATCH_F:
9572                         field_shift += FT_MACMATCH_W;
9573                         break;
9574                 case MPSHITTYPE_F:
9575                         field_shift += FT_MPSHITTYPE_W;
9576                         break;
9577                 case FRAGMENTATION_F:
9578                         field_shift += FT_FRAGMENTATION_W;
9579                         break;
9580                 }
9581         }
9582         return field_shift;
9583 }
9584
9585 int t4_init_rss_mode(struct adapter *adap, int mbox)
9586 {
9587         int i, ret;
9588         struct fw_rss_vi_config_cmd rvc;
9589
9590         memset(&rvc, 0, sizeof(rvc));
9591
9592         for_each_port(adap, i) {
9593                 struct port_info *p = adap2pinfo(adap, i);
9594
9595                 rvc.op_to_viid =
9596                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9597                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
9598                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9599                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9600                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9601                 if (ret)
9602                         return ret;
9603                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9604         }
9605         return 0;
9606 }
9607
9608 /**
9609  *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9610  *      @pi: the port_info
9611  *      @mbox: mailbox to use for the FW command
9612  *      @port: physical port associated with the VI
9613  *      @pf: the PF owning the VI
9614  *      @vf: the VF owning the VI
9615  *      @mac: the MAC address of the VI
9616  *
9617  *      Allocates a virtual interface for the given physical port.  If @mac is
9618  *      not %NULL it contains the MAC address of the VI as assigned by FW.
9619  *      @mac should be large enough to hold an Ethernet address.
9620  *      Returns < 0 on error.
9621  */
9622 int t4_init_portinfo(struct port_info *pi, int mbox,
9623                      int port, int pf, int vf, u8 mac[])
9624 {
9625         struct adapter *adapter = pi->adapter;
9626         unsigned int fw_caps = adapter->params.fw_caps_support;
9627         struct fw_port_cmd cmd;
9628         unsigned int rss_size;
9629         enum fw_port_type port_type;
9630         int mdio_addr;
9631         fw_port_cap32_t pcaps, acaps;
9632         u8 vivld = 0, vin = 0;
9633         int ret;
9634
9635         /* If we haven't yet determined whether we're talking to Firmware
9636          * which knows the new 32-bit Port Capabilities, it's time to find
9637          * out now.  This will also tell new Firmware to send us Port Status
9638          * Updates using the new 32-bit Port Capabilities version of the
9639          * Port Information message.
9640          */
9641         if (fw_caps == FW_CAPS_UNKNOWN) {
9642                 u32 param, val;
9643
9644                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9645                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9646                 val = 1;
9647                 ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9648                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9649                 adapter->params.fw_caps_support = fw_caps;
9650         }
9651
9652         memset(&cmd, 0, sizeof(cmd));
9653         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9654                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
9655                                        FW_PORT_CMD_PORTID_V(port));
9656         cmd.action_to_len16 = cpu_to_be32(
9657                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9658                                      ? FW_PORT_ACTION_GET_PORT_INFO
9659                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
9660                 FW_LEN16(cmd));
9661         ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9662         if (ret)
9663                 return ret;
9664
9665         /* Extract the various fields from the Port Information message.
9666          */
9667         if (fw_caps == FW_CAPS16) {
9668                 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9669
9670                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9671                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9672                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9673                              : -1);
9674                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9675                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9676         } else {
9677                 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9678
9679                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9680                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9681                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9682                              : -1);
9683                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9684                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
9685         }
9686
9687         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9688                           &vivld, &vin);
9689         if (ret < 0)
9690                 return ret;
9691
9692         pi->viid = ret;
9693         pi->tx_chan = port;
9694         pi->lport = port;
9695         pi->rss_size = rss_size;
9696         pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9697
9698         /* If fw supports returning the VIN as part of FW_VI_CMD,
9699          * save the returned values.
9700          */
9701         if (adapter->params.viid_smt_extn_support) {
9702                 pi->vivld = vivld;
9703                 pi->vin = vin;
9704         } else {
9705                 /* Retrieve the values from VIID */
9706                 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9707                 pi->vin =  FW_VIID_VIN_G(pi->viid);
9708         }
9709
9710         pi->port_type = port_type;
9711         pi->mdio_addr = mdio_addr;
9712         pi->mod_type = FW_PORT_MOD_TYPE_NA;
9713
9714         init_link_config(&pi->link_cfg, pcaps, acaps);
9715         return 0;
9716 }
9717
9718 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9719 {
9720         u8 addr[6];
9721         int ret, i, j = 0;
9722
9723         for_each_port(adap, i) {
9724                 struct port_info *pi = adap2pinfo(adap, i);
9725
9726                 while ((adap->params.portvec & (1 << j)) == 0)
9727                         j++;
9728
9729                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9730                 if (ret)
9731                         return ret;
9732
9733                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9734                 j++;
9735         }
9736         return 0;
9737 }
9738
9739 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9740                         u16 *mirror_viid)
9741 {
9742         int ret;
9743
9744         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9745                           NULL, NULL);
9746         if (ret < 0)
9747                 return ret;
9748
9749         if (mirror_viid)
9750                 *mirror_viid = ret;
9751
9752         return 0;
9753 }
9754
9755 /**
9756  *      t4_read_cimq_cfg - read CIM queue configuration
9757  *      @adap: the adapter
9758  *      @base: holds the queue base addresses in bytes
9759  *      @size: holds the queue sizes in bytes
9760  *      @thres: holds the queue full thresholds in bytes
9761  *
9762  *      Returns the current configuration of the CIM queues, starting with
9763  *      the IBQs, then the OBQs.
9764  */
9765 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9766 {
9767         unsigned int i, v;
9768         int cim_num_obq = is_t4(adap->params.chip) ?
9769                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9770
9771         for (i = 0; i < CIM_NUM_IBQ; i++) {
9772                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9773                              QUENUMSELECT_V(i));
9774                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9775                 /* value is in 256-byte units */
9776                 *base++ = CIMQBASE_G(v) * 256;
9777                 *size++ = CIMQSIZE_G(v) * 256;
9778                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9779         }
9780         for (i = 0; i < cim_num_obq; i++) {
9781                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9782                              QUENUMSELECT_V(i));
9783                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9784                 /* value is in 256-byte units */
9785                 *base++ = CIMQBASE_G(v) * 256;
9786                 *size++ = CIMQSIZE_G(v) * 256;
9787         }
9788 }
9789
9790 /**
9791  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9792  *      @adap: the adapter
9793  *      @qid: the queue index
9794  *      @data: where to store the queue contents
9795  *      @n: capacity of @data in 32-bit words
9796  *
9797  *      Reads the contents of the selected CIM queue starting at address 0 up
9798  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9799  *      error and the number of 32-bit words actually read on success.
9800  */
9801 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9802 {
9803         int i, err, attempts;
9804         unsigned int addr;
9805         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9806
9807         if (qid > 5 || (n & 3))
9808                 return -EINVAL;
9809
9810         addr = qid * nwords;
9811         if (n > nwords)
9812                 n = nwords;
9813
9814         /* It might take 3-10ms before the IBQ debug read access is allowed.
9815          * Wait for 1 Sec with a delay of 1 usec.
9816          */
9817         attempts = 1000000;
9818
9819         for (i = 0; i < n; i++, addr++) {
9820                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9821                              IBQDBGEN_F);
9822                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9823                                       attempts, 1);
9824                 if (err)
9825                         return err;
9826                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9827         }
9828         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9829         return i;
9830 }
9831
9832 /**
9833  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9834  *      @adap: the adapter
9835  *      @qid: the queue index
9836  *      @data: where to store the queue contents
9837  *      @n: capacity of @data in 32-bit words
9838  *
9839  *      Reads the contents of the selected CIM queue starting at address 0 up
9840  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9841  *      error and the number of 32-bit words actually read on success.
9842  */
9843 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9844 {
9845         int i, err;
9846         unsigned int addr, v, nwords;
9847         int cim_num_obq = is_t4(adap->params.chip) ?
9848                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9849
9850         if ((qid > (cim_num_obq - 1)) || (n & 3))
9851                 return -EINVAL;
9852
9853         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9854                      QUENUMSELECT_V(qid));
9855         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9856
9857         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9858         nwords = CIMQSIZE_G(v) * 64;  /* same */
9859         if (n > nwords)
9860                 n = nwords;
9861
9862         for (i = 0; i < n; i++, addr++) {
9863                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9864                              OBQDBGEN_F);
9865                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9866                                       2, 1);
9867                 if (err)
9868                         return err;
9869                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9870         }
9871         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9872         return i;
9873 }
9874
9875 /**
9876  *      t4_cim_read - read a block from CIM internal address space
9877  *      @adap: the adapter
9878  *      @addr: the start address within the CIM address space
9879  *      @n: number of words to read
9880  *      @valp: where to store the result
9881  *
9882  *      Reads a block of 4-byte words from the CIM intenal address space.
9883  */
9884 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9885                 unsigned int *valp)
9886 {
9887         int ret = 0;
9888
9889         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9890                 return -EBUSY;
9891
9892         for ( ; !ret && n--; addr += 4) {
9893                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9894                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9895                                       0, 5, 2);
9896                 if (!ret)
9897                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9898         }
9899         return ret;
9900 }
9901
9902 /**
9903  *      t4_cim_write - write a block into CIM internal address space
9904  *      @adap: the adapter
9905  *      @addr: the start address within the CIM address space
9906  *      @n: number of words to write
9907  *      @valp: set of values to write
9908  *
9909  *      Writes a block of 4-byte words into the CIM intenal address space.
9910  */
9911 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9912                  const unsigned int *valp)
9913 {
9914         int ret = 0;
9915
9916         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9917                 return -EBUSY;
9918
9919         for ( ; !ret && n--; addr += 4) {
9920                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9921                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9922                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9923                                       0, 5, 2);
9924         }
9925         return ret;
9926 }
9927
9928 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9929                          unsigned int val)
9930 {
9931         return t4_cim_write(adap, addr, 1, &val);
9932 }
9933
9934 /**
9935  *      t4_cim_read_la - read CIM LA capture buffer
9936  *      @adap: the adapter
9937  *      @la_buf: where to store the LA data
9938  *      @wrptr: the HW write pointer within the capture buffer
9939  *
9940  *      Reads the contents of the CIM LA buffer with the most recent entry at
9941  *      the end of the returned data and with the entry at @wrptr first.
9942  *      We try to leave the LA in the running state we find it in.
9943  */
9944 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9945 {
9946         int i, ret;
9947         unsigned int cfg, val, idx;
9948
9949         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9950         if (ret)
9951                 return ret;
9952
9953         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9954                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9955                 if (ret)
9956                         return ret;
9957         }
9958
9959         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9960         if (ret)
9961                 goto restart;
9962
9963         idx = UPDBGLAWRPTR_G(val);
9964         if (wrptr)
9965                 *wrptr = idx;
9966
9967         for (i = 0; i < adap->params.cim_la_size; i++) {
9968                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9969                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9970                 if (ret)
9971                         break;
9972                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9973                 if (ret)
9974                         break;
9975                 if (val & UPDBGLARDEN_F) {
9976                         ret = -ETIMEDOUT;
9977                         break;
9978                 }
9979                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9980                 if (ret)
9981                         break;
9982
9983                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9984                  * identify the 32-bit portion of the full 312-bit data
9985                  */
9986                 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9987                         idx = (idx & 0xff0) + 0x10;
9988                 else
9989                         idx++;
9990                 /* address can't exceed 0xfff */
9991                 idx &= UPDBGLARDPTR_M;
9992         }
9993 restart:
9994         if (cfg & UPDBGLAEN_F) {
9995                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9996                                       cfg & ~UPDBGLARDEN_F);
9997                 if (!ret)
9998                         ret = r;
9999         }
10000         return ret;
10001 }
10002
10003 /**
10004  *      t4_tp_read_la - read TP LA capture buffer
10005  *      @adap: the adapter
10006  *      @la_buf: where to store the LA data
10007  *      @wrptr: the HW write pointer within the capture buffer
10008  *
10009  *      Reads the contents of the TP LA buffer with the most recent entry at
10010  *      the end of the returned data and with the entry at @wrptr first.
10011  *      We leave the LA in the running state we find it in.
10012  */
10013 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10014 {
10015         bool last_incomplete;
10016         unsigned int i, cfg, val, idx;
10017
10018         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10019         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
10020                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10021                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10022
10023         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10024         idx = DBGLAWPTR_G(val);
10025         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10026         if (last_incomplete)
10027                 idx = (idx + 1) & DBGLARPTR_M;
10028         if (wrptr)
10029                 *wrptr = idx;
10030
10031         val &= 0xffff;
10032         val &= ~DBGLARPTR_V(DBGLARPTR_M);
10033         val |= adap->params.tp.la_mask;
10034
10035         for (i = 0; i < TPLA_SIZE; i++) {
10036                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10037                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10038                 idx = (idx + 1) & DBGLARPTR_M;
10039         }
10040
10041         /* Wipe out last entry if it isn't valid */
10042         if (last_incomplete)
10043                 la_buf[TPLA_SIZE - 1] = ~0ULL;
10044
10045         if (cfg & DBGLAENABLE_F)                    /* restore running state */
10046                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10047                              cfg | adap->params.tp.la_mask);
10048 }
10049
10050 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10051  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10052  * state for more than the Warning Threshold then we'll issue a warning about
10053  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10054  * appears to be hung every Warning Repeat second till the situation clears.
10055  * If the situation clears, we'll note that as well.
10056  */
10057 #define SGE_IDMA_WARN_THRESH 1
10058 #define SGE_IDMA_WARN_REPEAT 300
10059
10060 /**
10061  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10062  *      @adapter: the adapter
10063  *      @idma: the adapter IDMA Monitor state
10064  *
10065  *      Initialize the state of an SGE Ingress DMA Monitor.
10066  */
10067 void t4_idma_monitor_init(struct adapter *adapter,
10068                           struct sge_idma_monitor_state *idma)
10069 {
10070         /* Initialize the state variables for detecting an SGE Ingress DMA
10071          * hang.  The SGE has internal counters which count up on each clock
10072          * tick whenever the SGE finds its Ingress DMA State Engines in the
10073          * same state they were on the previous clock tick.  The clock used is
10074          * the Core Clock so we have a limit on the maximum "time" they can
10075          * record; typically a very small number of seconds.  For instance,
10076          * with a 600MHz Core Clock, we can only count up to a bit more than
10077          * 7s.  So we'll synthesize a larger counter in order to not run the
10078          * risk of having the "timers" overflow and give us the flexibility to
10079          * maintain a Hung SGE State Machine of our own which operates across
10080          * a longer time frame.
10081          */
10082         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10083         idma->idma_stalled[0] = 0;
10084         idma->idma_stalled[1] = 0;
10085 }
10086
10087 /**
10088  *      t4_idma_monitor - monitor SGE Ingress DMA state
10089  *      @adapter: the adapter
10090  *      @idma: the adapter IDMA Monitor state
10091  *      @hz: number of ticks/second
10092  *      @ticks: number of ticks since the last IDMA Monitor call
10093  */
10094 void t4_idma_monitor(struct adapter *adapter,
10095                      struct sge_idma_monitor_state *idma,
10096                      int hz, int ticks)
10097 {
10098         int i, idma_same_state_cnt[2];
10099
10100          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10101           * are counters inside the SGE which count up on each clock when the
10102           * SGE finds its Ingress DMA State Engines in the same states they
10103           * were in the previous clock.  The counters will peg out at
10104           * 0xffffffff without wrapping around so once they pass the 1s
10105           * threshold they'll stay above that till the IDMA state changes.
10106           */
10107         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10108         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10109         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10110
10111         for (i = 0; i < 2; i++) {
10112                 u32 debug0, debug11;
10113
10114                 /* If the Ingress DMA Same State Counter ("timer") is less
10115                  * than 1s, then we can reset our synthesized Stall Timer and
10116                  * continue.  If we have previously emitted warnings about a
10117                  * potential stalled Ingress Queue, issue a note indicating
10118                  * that the Ingress Queue has resumed forward progress.
10119                  */
10120                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10121                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10122                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10123                                          "resumed after %d seconds\n",
10124                                          i, idma->idma_qid[i],
10125                                          idma->idma_stalled[i] / hz);
10126                         idma->idma_stalled[i] = 0;
10127                         continue;
10128                 }
10129
10130                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10131                  * domain.  The first time we get here it'll be because we
10132                  * passed the 1s Threshold; each additional time it'll be
10133                  * because the RX Timer Callback is being fired on its regular
10134                  * schedule.
10135                  *
10136                  * If the stall is below our Potential Hung Ingress Queue
10137                  * Warning Threshold, continue.
10138                  */
10139                 if (idma->idma_stalled[i] == 0) {
10140                         idma->idma_stalled[i] = hz;
10141                         idma->idma_warn[i] = 0;
10142                 } else {
10143                         idma->idma_stalled[i] += ticks;
10144                         idma->idma_warn[i] -= ticks;
10145                 }
10146
10147                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10148                         continue;
10149
10150                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10151                  */
10152                 if (idma->idma_warn[i] > 0)
10153                         continue;
10154                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10155
10156                 /* Read and save the SGE IDMA State and Queue ID information.
10157                  * We do this every time in case it changes across time ...
10158                  * can't be too careful ...
10159                  */
10160                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10161                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10162                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10163
10164                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10165                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10166                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10167
10168                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10169                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10170                          i, idma->idma_qid[i], idma->idma_state[i],
10171                          idma->idma_stalled[i] / hz,
10172                          debug0, debug11);
10173                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10174         }
10175 }
10176
10177 /**
10178  *      t4_load_cfg - download config file
10179  *      @adap: the adapter
10180  *      @cfg_data: the cfg text file to write
10181  *      @size: text file size
10182  *
10183  *      Write the supplied config text file to the card's serial flash.
10184  */
10185 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10186 {
10187         int ret, i, n, cfg_addr;
10188         unsigned int addr;
10189         unsigned int flash_cfg_start_sec;
10190         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10191
10192         cfg_addr = t4_flash_cfg_addr(adap);
10193         if (cfg_addr < 0)
10194                 return cfg_addr;
10195
10196         addr = cfg_addr;
10197         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10198
10199         if (size > FLASH_CFG_MAX_SIZE) {
10200                 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10201                         FLASH_CFG_MAX_SIZE);
10202                 return -EFBIG;
10203         }
10204
10205         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10206                          sf_sec_size);
10207         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10208                                      flash_cfg_start_sec + i - 1);
10209         /* If size == 0 then we're simply erasing the FLASH sectors associated
10210          * with the on-adapter Firmware Configuration File.
10211          */
10212         if (ret || size == 0)
10213                 goto out;
10214
10215         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10216         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10217                 if ((size - i) <  SF_PAGE_SIZE)
10218                         n = size - i;
10219                 else
10220                         n = SF_PAGE_SIZE;
10221                 ret = t4_write_flash(adap, addr, n, cfg_data, true);
10222                 if (ret)
10223                         goto out;
10224
10225                 addr += SF_PAGE_SIZE;
10226                 cfg_data += SF_PAGE_SIZE;
10227         }
10228
10229 out:
10230         if (ret)
10231                 dev_err(adap->pdev_dev, "config file %s failed %d\n",
10232                         (size == 0 ? "clear" : "download"), ret);
10233         return ret;
10234 }
10235
10236 /**
10237  *      t4_set_vf_mac - Set MAC address for the specified VF
10238  *      @adapter: The adapter
10239  *      @vf: one of the VFs instantiated by the specified PF
10240  *      @naddr: the number of MAC addresses
10241  *      @addr: the MAC address(es) to be set to the specified VF
10242  */
10243 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10244                       unsigned int naddr, u8 *addr)
10245 {
10246         struct fw_acl_mac_cmd cmd;
10247
10248         memset(&cmd, 0, sizeof(cmd));
10249         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10250                                     FW_CMD_REQUEST_F |
10251                                     FW_CMD_WRITE_F |
10252                                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10253                                     FW_ACL_MAC_CMD_VFN_V(vf));
10254
10255         /* Note: Do not enable the ACL */
10256         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10257         cmd.nmac = naddr;
10258
10259         switch (adapter->pf) {
10260         case 3:
10261                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10262                 break;
10263         case 2:
10264                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10265                 break;
10266         case 1:
10267                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10268                 break;
10269         case 0:
10270                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10271                 break;
10272         }
10273
10274         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10275 }
10276
10277 /**
10278  * t4_read_pace_tbl - read the pace table
10279  * @adap: the adapter
10280  * @pace_vals: holds the returned values
10281  *
10282  * Returns the values of TP's pace table in microseconds.
10283  */
10284 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10285 {
10286         unsigned int i, v;
10287
10288         for (i = 0; i < NTX_SCHED; i++) {
10289                 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10290                 v = t4_read_reg(adap, TP_PACE_TABLE_A);
10291                 pace_vals[i] = dack_ticks_to_usec(adap, v);
10292         }
10293 }
10294
10295 /**
10296  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10297  * @adap: the adapter
10298  * @sched: the scheduler index
10299  * @kbps: the byte rate in Kbps
10300  * @ipg: the interpacket delay in tenths of nanoseconds
10301  * @sleep_ok: if true we may sleep while awaiting command completion
10302  *
10303  * Return the current configuration of a HW Tx scheduler.
10304  */
10305 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10306                      unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10307 {
10308         unsigned int v, addr, bpt, cpt;
10309
10310         if (kbps) {
10311                 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10312                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10313                 if (sched & 1)
10314                         v >>= 16;
10315                 bpt = (v >> 8) & 0xff;
10316                 cpt = v & 0xff;
10317                 if (!cpt) {
10318                         *kbps = 0;      /* scheduler disabled */
10319                 } else {
10320                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10321                         *kbps = (v * bpt) / 125;
10322                 }
10323         }
10324         if (ipg) {
10325                 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10326                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10327                 if (sched & 1)
10328                         v >>= 16;
10329                 v &= 0xffff;
10330                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
10331         }
10332 }
10333
10334 /* t4_sge_ctxt_rd - read an SGE context through FW
10335  * @adap: the adapter
10336  * @mbox: mailbox to use for the FW command
10337  * @cid: the context id
10338  * @ctype: the context type
10339  * @data: where to store the context data
10340  *
10341  * Issues a FW command through the given mailbox to read an SGE context.
10342  */
10343 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10344                    enum ctxt_type ctype, u32 *data)
10345 {
10346         struct fw_ldst_cmd c;
10347         int ret;
10348
10349         if (ctype == CTXT_FLM)
10350                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10351         else
10352                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10353
10354         memset(&c, 0, sizeof(c));
10355         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10356                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
10357                                         FW_LDST_CMD_ADDRSPACE_V(ret));
10358         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10359         c.u.idctxt.physid = cpu_to_be32(cid);
10360
10361         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10362         if (ret == 0) {
10363                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10364                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10365                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10366                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10367                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10368                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10369         }
10370         return ret;
10371 }
10372
10373 /**
10374  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10375  * @adap: the adapter
10376  * @cid: the context id
10377  * @ctype: the context type
10378  * @data: where to store the context data
10379  *
10380  * Reads an SGE context directly, bypassing FW.  This is only for
10381  * debugging when FW is unavailable.
10382  */
10383 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10384                       enum ctxt_type ctype, u32 *data)
10385 {
10386         int i, ret;
10387
10388         t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10389         ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10390         if (!ret)
10391                 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10392                         *data++ = t4_read_reg(adap, i);
10393         return ret;
10394 }
10395
10396 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10397                     u8 rateunit, u8 ratemode, u8 channel, u8 class,
10398                     u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10399                     u16 burstsize)
10400 {
10401         struct fw_sched_cmd cmd;
10402
10403         memset(&cmd, 0, sizeof(cmd));
10404         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10405                                       FW_CMD_REQUEST_F |
10406                                       FW_CMD_WRITE_F);
10407         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10408
10409         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10410         cmd.u.params.type = type;
10411         cmd.u.params.level = level;
10412         cmd.u.params.mode = mode;
10413         cmd.u.params.ch = channel;
10414         cmd.u.params.cl = class;
10415         cmd.u.params.unit = rateunit;
10416         cmd.u.params.rate = ratemode;
10417         cmd.u.params.min = cpu_to_be32(minrate);
10418         cmd.u.params.max = cpu_to_be32(maxrate);
10419         cmd.u.params.weight = cpu_to_be16(weight);
10420         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10421         cmd.u.params.burstsize = cpu_to_be16(burstsize);
10422
10423         return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10424                                NULL, 1);
10425 }
10426
10427 /**
10428  *      t4_i2c_rd - read I2C data from adapter
10429  *      @adap: the adapter
10430  *      @mbox: mailbox to use for the FW command
10431  *      @port: Port number if per-port device; <0 if not
10432  *      @devid: per-port device ID or absolute device ID
10433  *      @offset: byte offset into device I2C space
10434  *      @len: byte length of I2C space data
10435  *      @buf: buffer in which to return I2C data
10436  *
10437  *      Reads the I2C data from the indicated device and location.
10438  */
10439 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10440               unsigned int devid, unsigned int offset,
10441               unsigned int len, u8 *buf)
10442 {
10443         struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10444         unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10445         int ret = 0;
10446
10447         if (len > I2C_PAGE_SIZE)
10448                 return -EINVAL;
10449
10450         /* Dont allow reads that spans multiple pages */
10451         if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10452                 return -EINVAL;
10453
10454         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10455         ldst_cmd.op_to_addrspace =
10456                 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10457                             FW_CMD_REQUEST_F |
10458                             FW_CMD_READ_F |
10459                             FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10460         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10461         ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10462         ldst_cmd.u.i2c.did = devid;
10463
10464         while (len > 0) {
10465                 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10466
10467                 ldst_cmd.u.i2c.boffset = offset;
10468                 ldst_cmd.u.i2c.blen = i2c_len;
10469
10470                 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10471                                  &ldst_rpl);
10472                 if (ret)
10473                         break;
10474
10475                 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10476                 offset += i2c_len;
10477                 buf += i2c_len;
10478                 len -= i2c_len;
10479         }
10480
10481         return ret;
10482 }
10483
10484 /**
10485  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10486  *      @adap: the adapter
10487  *      @mbox: mailbox to use for the FW command
10488  *      @vf: one of the VFs instantiated by the specified PF
10489  *      @vlan: The vlanid to be set
10490  */
10491 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10492                     u16 vlan)
10493 {
10494         struct fw_acl_vlan_cmd vlan_cmd;
10495         unsigned int enable;
10496
10497         enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10498         memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10499         vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10500                                          FW_CMD_REQUEST_F |
10501                                          FW_CMD_WRITE_F |
10502                                          FW_CMD_EXEC_F |
10503                                          FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10504                                          FW_ACL_VLAN_CMD_VFN_V(vf));
10505         vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10506         /* Drop all packets that donot match vlan id */
10507         vlan_cmd.dropnovlan_fm = (enable
10508                                   ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10509                                      FW_ACL_VLAN_CMD_FM_F) : 0);
10510         if (enable != 0) {
10511                 vlan_cmd.nvlan = 1;
10512                 vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10513         }
10514
10515         return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10516 }
10517
10518 /**
10519  *      modify_device_id - Modifies the device ID of the Boot BIOS image
10520  *      @device_id: the device ID to write.
10521  *      @boot_data: the boot image to modify.
10522  *
10523  *      Write the supplied device ID to the boot BIOS image.
10524  */
10525 static void modify_device_id(int device_id, u8 *boot_data)
10526 {
10527         struct cxgb4_pcir_data *pcir_header;
10528         struct legacy_pci_rom_hdr *header;
10529         u8 *cur_header = boot_data;
10530         u16 pcir_offset;
10531
10532          /* Loop through all chained images and change the device ID's */
10533         do {
10534                 header = (struct legacy_pci_rom_hdr *)cur_header;
10535                 pcir_offset = le16_to_cpu(header->pcir_offset);
10536                 pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10537                               pcir_offset);
10538
10539                 /**
10540                  * Only modify the Device ID if code type is Legacy or HP.
10541                  * 0x00: Okay to modify
10542                  * 0x01: FCODE. Do not modify
10543                  * 0x03: Okay to modify
10544                  * 0x04-0xFF: Do not modify
10545                  */
10546                 if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10547                         u8 csum = 0;
10548                         int i;
10549
10550                         /**
10551                          * Modify Device ID to match current adatper
10552                          */
10553                         pcir_header->device_id = cpu_to_le16(device_id);
10554
10555                         /**
10556                          * Set checksum temporarily to 0.
10557                          * We will recalculate it later.
10558                          */
10559                         header->cksum = 0x0;
10560
10561                         /**
10562                          * Calculate and update checksum
10563                          */
10564                         for (i = 0; i < (header->size512 * 512); i++)
10565                                 csum += cur_header[i];
10566
10567                         /**
10568                          * Invert summed value to create the checksum
10569                          * Writing new checksum value directly to the boot data
10570                          */
10571                         cur_header[7] = -csum;
10572
10573                 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10574                         /**
10575                          * Modify Device ID to match current adatper
10576                          */
10577                         pcir_header->device_id = cpu_to_le16(device_id);
10578                 }
10579
10580                 /**
10581                  * Move header pointer up to the next image in the ROM.
10582                  */
10583                 cur_header += header->size512 * 512;
10584         } while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10585 }
10586
10587 /**
10588  *      t4_load_boot - download boot flash
10589  *      @adap: the adapter
10590  *      @boot_data: the boot image to write
10591  *      @boot_addr: offset in flash to write boot_data
10592  *      @size: image size
10593  *
10594  *      Write the supplied boot image to the card's serial flash.
10595  *      The boot image has the following sections: a 28-byte header and the
10596  *      boot image.
10597  */
10598 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10599                  unsigned int boot_addr, unsigned int size)
10600 {
10601         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10602         unsigned int boot_sector = (boot_addr * 1024);
10603         struct cxgb4_pci_exp_rom_header *header;
10604         struct cxgb4_pcir_data *pcir_header;
10605         int pcir_offset;
10606         unsigned int i;
10607         u16 device_id;
10608         int ret, addr;
10609
10610         /**
10611          * Make sure the boot image does not encroach on the firmware region
10612          */
10613         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10614                 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10615                 return -EFBIG;
10616         }
10617
10618         /* Get boot header */
10619         header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10620         pcir_offset = le16_to_cpu(header->pcir_offset);
10621         /* PCIR Data Structure */
10622         pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10623
10624         /**
10625          * Perform some primitive sanity testing to avoid accidentally
10626          * writing garbage over the boot sectors.  We ought to check for
10627          * more but it's not worth it for now ...
10628          */
10629         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10630                 dev_err(adap->pdev_dev, "boot image too small/large\n");
10631                 return -EFBIG;
10632         }
10633
10634         if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10635                 dev_err(adap->pdev_dev, "Boot image missing signature\n");
10636                 return -EINVAL;
10637         }
10638
10639         /* Check PCI header signature */
10640         if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10641                 dev_err(adap->pdev_dev, "PCI header missing signature\n");
10642                 return -EINVAL;
10643         }
10644
10645         /* Check Vendor ID matches Chelsio ID*/
10646         if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10647                 dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10648                 return -EINVAL;
10649         }
10650
10651         /**
10652          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10653          * and Boot configuration data sections. These 3 boot sections span
10654          * sectors 0 to 7 in flash and live right before the FW image location.
10655          */
10656         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10657         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10658                                      (boot_sector >> 16) + i - 1);
10659
10660         /**
10661          * If size == 0 then we're simply erasing the FLASH sectors associated
10662          * with the on-adapter option ROM file
10663          */
10664         if (ret || size == 0)
10665                 goto out;
10666         /* Retrieve adapter's device ID */
10667         pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10668        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10669         device_id = device_id & 0xf0ff;
10670
10671          /* Check PCIE Device ID */
10672         if (le16_to_cpu(pcir_header->device_id) != device_id) {
10673                 /**
10674                  * Change the device ID in the Boot BIOS image to match
10675                  * the Device ID of the current adapter.
10676                  */
10677                 modify_device_id(device_id, boot_data);
10678         }
10679
10680         /**
10681          * Skip over the first SF_PAGE_SIZE worth of data and write it after
10682          * we finish copying the rest of the boot image. This will ensure
10683          * that the BIOS boot header will only be written if the boot image
10684          * was written in full.
10685          */
10686         addr = boot_sector;
10687         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10688                 addr += SF_PAGE_SIZE;
10689                 boot_data += SF_PAGE_SIZE;
10690                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10691                                      false);
10692                 if (ret)
10693                         goto out;
10694         }
10695
10696         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10697                              (const u8 *)header, false);
10698
10699 out:
10700         if (ret)
10701                 dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10702                         ret);
10703         return ret;
10704 }
10705
10706 /**
10707  *      t4_flash_bootcfg_addr - return the address of the flash
10708  *      optionrom configuration
10709  *      @adapter: the adapter
10710  *
10711  *      Return the address within the flash where the OptionROM Configuration
10712  *      is stored, or an error if the device FLASH is too small to contain
10713  *      a OptionROM Configuration.
10714  */
10715 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10716 {
10717         /**
10718          * If the device FLASH isn't large enough to hold a Firmware
10719          * Configuration File, return an error.
10720          */
10721         if (adapter->params.sf_size <
10722             FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10723                 return -ENOSPC;
10724
10725         return FLASH_BOOTCFG_START;
10726 }
10727
10728 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10729 {
10730         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10731         struct cxgb4_bootcfg_data *header;
10732         unsigned int flash_cfg_start_sec;
10733         unsigned int addr, npad;
10734         int ret, i, n, cfg_addr;
10735
10736         cfg_addr = t4_flash_bootcfg_addr(adap);
10737         if (cfg_addr < 0)
10738                 return cfg_addr;
10739
10740         addr = cfg_addr;
10741         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10742
10743         if (size > FLASH_BOOTCFG_MAX_SIZE) {
10744                 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10745                         FLASH_BOOTCFG_MAX_SIZE);
10746                 return -EFBIG;
10747         }
10748
10749         header = (struct cxgb4_bootcfg_data *)cfg_data;
10750         if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10751                 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10752                 ret = -EINVAL;
10753                 goto out;
10754         }
10755
10756         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10757                          sf_sec_size);
10758         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10759                                      flash_cfg_start_sec + i - 1);
10760
10761         /**
10762          * If size == 0 then we're simply erasing the FLASH sectors associated
10763          * with the on-adapter OptionROM Configuration File.
10764          */
10765         if (ret || size == 0)
10766                 goto out;
10767
10768         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10769         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10770                 n = min_t(u32, size - i, SF_PAGE_SIZE);
10771
10772                 ret = t4_write_flash(adap, addr, n, cfg_data, false);
10773                 if (ret)
10774                         goto out;
10775
10776                 addr += SF_PAGE_SIZE;
10777                 cfg_data += SF_PAGE_SIZE;
10778         }
10779
10780         npad = ((size + 4 - 1) & ~3) - size;
10781         for (i = 0; i < npad; i++) {
10782                 u8 data = 0;
10783
10784                 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10785                                      false);
10786                 if (ret)
10787                         goto out;
10788         }
10789
10790 out:
10791         if (ret)
10792                 dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10793                         (size == 0 ? "clear" : "download"), ret);
10794         return ret;
10795 }