Merge tag 'nds32-for-linus-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F) {
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201                 adap->flags &= ~FW_OK;
202         }
203 }
204
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209                          u32 mbox_addr)
210 {
211         for ( ; nflit; nflit--, mbox_addr += 8)
212                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220         struct fw_debug_cmd asrt;
221
222         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223         dev_alert(adap->pdev_dev,
224                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228
229 /**
230  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *      @adapter: the adapter
232  *      @cmd: the Firmware Mailbox Command or Reply
233  *      @size: command length in bytes
234  *      @access: the time (ms) needed to access the Firmware Mailbox
235  *      @execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238                            const __be64 *cmd, unsigned int size,
239                            int access, int execute)
240 {
241         struct mbox_cmd_log *log = adapter->mbox_log;
242         struct mbox_cmd *entry;
243         int i;
244
245         entry = mbox_cmd_log_entry(log, log->cursor++);
246         if (log->cursor == log->size)
247                 log->cursor = 0;
248
249         for (i = 0; i < size / 8; i++)
250                 entry->cmd[i] = be64_to_cpu(cmd[i]);
251         while (i < MBOX_LEN / 8)
252                 entry->cmd[i++] = 0;
253         entry->timestamp = jiffies;
254         entry->seqno = log->seqno++;
255         entry->access = access;
256         entry->execute = execute;
257 }
258
259 /**
260  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *      @adap: the adapter
262  *      @mbox: index of the mailbox to use
263  *      @cmd: the command to write
264  *      @size: command length in bytes
265  *      @rpl: where to optionally store the reply
266  *      @sleep_ok: if true we may sleep while awaiting command completion
267  *      @timeout: time to wait for command to finish before timing out
268  *
269  *      Sends the given command to FW through the selected mailbox and waits
270  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *      store the FW's reply to the command.  The command and its optional
272  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *      the response.  If sleeping is allowed we use progressive backoff
275  *      otherwise we spin.
276  *
277  *      The return value is 0 on success or a negative errno on failure.  A
278  *      failure can happen either because we are not able to execute the
279  *      command or FW executes it but signals an error.  In the latter case
280  *      the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283                             int size, void *rpl, bool sleep_ok, int timeout)
284 {
285         static const int delay[] = {
286                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287         };
288
289         struct mbox_list entry;
290         u16 access = 0;
291         u16 execute = 0;
292         u32 v;
293         u64 res;
294         int i, ms, delay_idx, ret;
295         const __be64 *p = cmd;
296         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298         __be64 cmd_rpl[MBOX_LEN / 8];
299         u32 pcie_fw;
300
301         if ((size & 15) || size > MBOX_LEN)
302                 return -EINVAL;
303
304         /*
305          * If the device is off-line, as in EEH, commands will time out.
306          * Fail them early so we don't waste time waiting.
307          */
308         if (adap->pdev->error_state != pci_channel_io_normal)
309                 return -EIO;
310
311         /* If we have a negative timeout, that implies that we can't sleep. */
312         if (timeout < 0) {
313                 sleep_ok = false;
314                 timeout = -timeout;
315         }
316
317         /* Queue ourselves onto the mailbox access list.  When our entry is at
318          * the front of the list, we have rights to access the mailbox.  So we
319          * wait [for a while] till we're at the front [or bail out with an
320          * EBUSY] ...
321          */
322         spin_lock_bh(&adap->mbox_lock);
323         list_add_tail(&entry.list, &adap->mlist.list);
324         spin_unlock_bh(&adap->mbox_lock);
325
326         delay_idx = 0;
327         ms = delay[0];
328
329         for (i = 0; ; i += ms) {
330                 /* If we've waited too long, return a busy indication.  This
331                  * really ought to be based on our initial position in the
332                  * mailbox access list but this is a start.  We very rearely
333                  * contend on access to the mailbox ...
334                  */
335                 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336                 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337                         spin_lock_bh(&adap->mbox_lock);
338                         list_del(&entry.list);
339                         spin_unlock_bh(&adap->mbox_lock);
340                         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341                         t4_record_mbox(adap, cmd, size, access, ret);
342                         return ret;
343                 }
344
345                 /* If we're at the head, break out and start the mailbox
346                  * protocol.
347                  */
348                 if (list_first_entry(&adap->mlist.list, struct mbox_list,
349                                      list) == &entry)
350                         break;
351
352                 /* Delay for a bit before checking again ... */
353                 if (sleep_ok) {
354                         ms = delay[delay_idx];  /* last element may repeat */
355                         if (delay_idx < ARRAY_SIZE(delay) - 1)
356                                 delay_idx++;
357                         msleep(ms);
358                 } else {
359                         mdelay(ms);
360                 }
361         }
362
363         /* Loop trying to get ownership of the mailbox.  Return an error
364          * if we can't gain ownership.
365          */
366         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369         if (v != MBOX_OWNER_DRV) {
370                 spin_lock_bh(&adap->mbox_lock);
371                 list_del(&entry.list);
372                 spin_unlock_bh(&adap->mbox_lock);
373                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374                 t4_record_mbox(adap, cmd, size, access, ret);
375                 return ret;
376         }
377
378         /* Copy in the new mailbox command and send it on its way ... */
379         t4_record_mbox(adap, cmd, size, access, 0);
380         for (i = 0; i < size; i += 8)
381                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382
383         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384         t4_read_reg(adap, ctl_reg);          /* flush write */
385
386         delay_idx = 0;
387         ms = delay[0];
388
389         for (i = 0;
390              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391              i < timeout;
392              i += ms) {
393                 if (sleep_ok) {
394                         ms = delay[delay_idx];  /* last element may repeat */
395                         if (delay_idx < ARRAY_SIZE(delay) - 1)
396                                 delay_idx++;
397                         msleep(ms);
398                 } else
399                         mdelay(ms);
400
401                 v = t4_read_reg(adap, ctl_reg);
402                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403                         if (!(v & MBMSGVALID_F)) {
404                                 t4_write_reg(adap, ctl_reg, 0);
405                                 continue;
406                         }
407
408                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409                         res = be64_to_cpu(cmd_rpl[0]);
410
411                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412                                 fw_asrt(adap, data_reg);
413                                 res = FW_CMD_RETVAL_V(EIO);
414                         } else if (rpl) {
415                                 memcpy(rpl, cmd_rpl, size);
416                         }
417
418                         t4_write_reg(adap, ctl_reg, 0);
419
420                         execute = i + ms;
421                         t4_record_mbox(adap, cmd_rpl,
422                                        MBOX_LEN, access, execute);
423                         spin_lock_bh(&adap->mbox_lock);
424                         list_del(&entry.list);
425                         spin_unlock_bh(&adap->mbox_lock);
426                         return -FW_CMD_RETVAL_G((int)res);
427                 }
428         }
429
430         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431         t4_record_mbox(adap, cmd, size, access, ret);
432         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433                 *(const u8 *)cmd, mbox);
434         t4_report_fw_error(adap);
435         spin_lock_bh(&adap->mbox_lock);
436         list_del(&entry.list);
437         spin_unlock_bh(&adap->mbox_lock);
438         t4_fatal_err(adap);
439         return ret;
440 }
441
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443                     void *rpl, bool sleep_ok)
444 {
445         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446                                        FW_CMD_MAX_TIMEOUT);
447 }
448
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451         u32 edc_ecc_err_addr_reg;
452         u32 rdata_reg;
453
454         if (is_t4(adap->params.chip)) {
455                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456                 return 0;
457         }
458         if (idx != 0 && idx != 1) {
459                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460                 return 0;
461         }
462
463         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465
466         CH_WARN(adap,
467                 "edc%d err addr 0x%x: 0x%x.\n",
468                 idx, edc_ecc_err_addr_reg,
469                 t4_read_reg(adap, edc_ecc_err_addr_reg));
470         CH_WARN(adap,
471                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472                 rdata_reg,
473                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
474                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482
483         return 0;
484 }
485
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498                       u32 *mem_base, u32 *mem_aperture)
499 {
500         u32 edc_size, mc_size, mem_reg;
501
502         /* Offset into the region of memory which is being accessed
503          * MEM_EDC0 = 0
504          * MEM_EDC1 = 1
505          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507          * MEM_HMA  = 4
508          */
509         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510         if (mtype == MEM_HMA) {
511                 *mem_off = 2 * (edc_size * 1024 * 1024);
512         } else if (mtype != MEM_MC1) {
513                 *mem_off = (mtype * (edc_size * 1024 * 1024));
514         } else {
515                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516                                                       MA_EXT_MEMORY0_BAR_A));
517                 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518         }
519
520         /* Each PCI-E Memory Window is programmed with a window size -- or
521          * "aperture" -- which controls the granularity of its mapping onto
522          * adapter memory.  We need to grab that aperture in order to know
523          * how to use the specified window.  The window is also programmed
524          * with the base address of the Memory Window in BAR0's address
525          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526          * the address is relative to BAR0.
527          */
528         mem_reg = t4_read_reg(adap,
529                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530                                                   win));
531         /* a dead adapter will return 0xffffffff for PIO reads */
532         if (mem_reg == 0xffffffff)
533                 return -ENXIO;
534
535         *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536         *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537         if (is_t4(adap->params.chip))
538                 *mem_base -= adap->t4_bar0;
539
540         return 0;
541 }
542
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553         t4_write_reg(adap,
554                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555                      addr);
556         /* Read it back to ensure that changes propagate before we
557          * attempt to use the new value.
558          */
559         t4_read_reg(adap,
560                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574                            int dir)
575 {
576         union {
577                 u32 word;
578                 char byte[4];
579         } last;
580         unsigned char *bp;
581         int i;
582
583         if (dir == T4_MEMORY_READ) {
584                 last.word = le32_to_cpu((__force __le32)
585                                         t4_read_reg(adap, addr));
586                 for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587                         bp[i] = last.byte[i];
588         } else {
589                 last.word = *buf;
590                 for (i = off; i < 4; i++)
591                         last.byte[i] = 0;
592                 t4_write_reg(adap, addr,
593                              (__force u32)cpu_to_le32(last.word));
594         }
595 }
596
597 /**
598  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *      @adap: the adapter
600  *      @win: PCI-E Memory Window to use
601  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *      @addr: address within indicated memory type
603  *      @len: amount of memory to transfer
604  *      @hbuf: host memory buffer
605  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *      firmware memory address and host buffer must be aligned on 32-bit
609  *      boudaries; the length may be arbitrary.  The memory is transferred as
610  *      a raw byte sequence from/to the firmware's memory.  If this memory
611  *      contains data structures which contain multi-byte integers, it's the
612  *      caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615                  u32 len, void *hbuf, int dir)
616 {
617         u32 pos, offset, resid, memoffset;
618         u32 win_pf, mem_aperture, mem_base;
619         u32 *buf;
620         int ret;
621
622         /* Argument sanity checks ...
623          */
624         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625                 return -EINVAL;
626         buf = (u32 *)hbuf;
627
628         /* It's convenient to be able to handle lengths which aren't a
629          * multiple of 32-bits because we often end up transferring files to
630          * the firmware.  So we'll handle that by normalizing the length here
631          * and then handling any residual transfer at the end.
632          */
633         resid = len & 0x3;
634         len -= resid;
635
636         ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637                                 &mem_aperture);
638         if (ret)
639                 return ret;
640
641         /* Determine the PCIE_MEM_ACCESS_OFFSET */
642         addr = addr + memoffset;
643
644         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645
646         /* Calculate our initial PCI-E Memory Window Position and Offset into
647          * that Window.
648          */
649         pos = addr & ~(mem_aperture - 1);
650         offset = addr - pos;
651
652         /* Set up initial PCI-E Memory Window to cover the start of our
653          * transfer.
654          */
655         t4_memory_update_win(adap, win, pos | win_pf);
656
657         /* Transfer data to/from the adapter as long as there's an integral
658          * number of 32-bit transfers to complete.
659          *
660          * A note on Endianness issues:
661          *
662          * The "register" reads and writes below from/to the PCI-E Memory
663          * Window invoke the standard adapter Big-Endian to PCI-E Link
664          * Little-Endian "swizzel."  As a result, if we have the following
665          * data in adapter memory:
666          *
667          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668          *     Address:      i+0  i+1  i+2  i+3
669          *
670          * Then a read of the adapter memory via the PCI-E Memory Window
671          * will yield:
672          *
673          *     x = readl(i)
674          *         31                  0
675          *         [ b3 | b2 | b1 | b0 ]
676          *
677          * If this value is stored into local memory on a Little-Endian system
678          * it will show up correctly in local memory as:
679          *
680          *     ( ..., b0, b1, b2, b3, ... )
681          *
682          * But on a Big-Endian system, the store will show up in memory
683          * incorrectly swizzled as:
684          *
685          *     ( ..., b3, b2, b1, b0, ... )
686          *
687          * So we need to account for this in the reads and writes to the
688          * PCI-E Memory Window below by undoing the register read/write
689          * swizzels.
690          */
691         while (len > 0) {
692                 if (dir == T4_MEMORY_READ)
693                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694                                                 mem_base + offset));
695                 else
696                         t4_write_reg(adap, mem_base + offset,
697                                      (__force u32)cpu_to_le32(*buf++));
698                 offset += sizeof(__be32);
699                 len -= sizeof(__be32);
700
701                 /* If we've reached the end of our current window aperture,
702                  * move the PCI-E Memory Window on to the next.  Note that
703                  * doing this here after "len" may be 0 allows us to set up
704                  * the PCI-E Memory Window for a possible final residual
705                  * transfer below ...
706                  */
707                 if (offset == mem_aperture) {
708                         pos += mem_aperture;
709                         offset = 0;
710                         t4_memory_update_win(adap, win, pos | win_pf);
711                 }
712         }
713
714         /* If the original transfer had a length which wasn't a multiple of
715          * 32-bits, now's where we need to finish off the transfer of the
716          * residual amount.  The PCI-E Memory Window has already been moved
717          * above (if necessary) to cover this final transfer.
718          */
719         if (resid)
720                 t4_memory_rw_residual(adap, resid, mem_base + offset,
721                                       (u8 *)buf, dir);
722
723         return 0;
724 }
725
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733         u32 val, ldst_addrspace;
734
735         /* If fw_attach != 0, construct and send the Firmware LDST Command to
736          * retrieve the specified PCI-E Configuration Space register.
737          */
738         struct fw_ldst_cmd ldst_cmd;
739         int ret;
740
741         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744                                                FW_CMD_REQUEST_F |
745                                                FW_CMD_READ_F |
746                                                ldst_addrspace);
747         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749         ldst_cmd.u.pcie.ctrl_to_fn =
750                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751         ldst_cmd.u.pcie.r = reg;
752
753         /* If the LDST Command succeeds, return the result, otherwise
754          * fall through to reading it directly ourselves ...
755          */
756         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757                          &ldst_cmd);
758         if (ret == 0)
759                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760         else
761                 /* Read the desired Configuration Space register via the PCI-E
762                  * Backdoor mechanism.
763                  */
764                 t4_hw_pci_read_cfg4(adap, reg, &val);
765         return val;
766 }
767
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773                          u32 memwin_base)
774 {
775         u32 ret;
776
777         if (is_t4(adap->params.chip)) {
778                 u32 bar0;
779
780                 /* Truncation intentional: we only read the bottom 32-bits of
781                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782                  * mechanism to read BAR0 instead of using
783                  * pci_resource_start() because we could be operating from
784                  * within a Virtual Machine which is trapping our accesses to
785                  * our Configuration Space and we need to set up the PCI-E
786                  * Memory Window decoders with the actual addresses which will
787                  * be coming across the PCI-E link.
788                  */
789                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
790                 bar0 &= pci_mask;
791                 adap->t4_bar0 = bar0;
792
793                 ret = bar0 + memwin_base;
794         } else {
795                 /* For T5, only relative offset inside the PCIe BAR is passed */
796                 ret = memwin_base;
797         }
798         return ret;
799 }
800
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814         t4_write_reg(adap,
815                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816                      memwin_base | BIR_V(0) |
817                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818         t4_read_reg(adap,
819                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821
822 /**
823  *      t4_get_regs_len - return the size of the chips register set
824  *      @adapter: the adapter
825  *
826  *      Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831
832         switch (chip_version) {
833         case CHELSIO_T4:
834                 return T4_REGMAP_SIZE;
835
836         case CHELSIO_T5:
837         case CHELSIO_T6:
838                 return T5_REGMAP_SIZE;
839         }
840
841         dev_err(adapter->pdev_dev,
842                 "Unsupported chip version %d\n", chip_version);
843         return 0;
844 }
845
846 /**
847  *      t4_get_regs - read chip registers into provided buffer
848  *      @adap: the adapter
849  *      @buf: register buffer
850  *      @buf_size: size (in bytes) of register buffer
851  *
852  *      If the provided register buffer isn't large enough for the chip's
853  *      full register range, the register dump will be truncated to the
854  *      register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858         static const unsigned int t4_reg_ranges[] = {
859                 0x1008, 0x1108,
860                 0x1180, 0x1184,
861                 0x1190, 0x1194,
862                 0x11a0, 0x11a4,
863                 0x11b0, 0x11b4,
864                 0x11fc, 0x123c,
865                 0x1300, 0x173c,
866                 0x1800, 0x18fc,
867                 0x3000, 0x30d8,
868                 0x30e0, 0x30e4,
869                 0x30ec, 0x5910,
870                 0x5920, 0x5924,
871                 0x5960, 0x5960,
872                 0x5968, 0x5968,
873                 0x5970, 0x5970,
874                 0x5978, 0x5978,
875                 0x5980, 0x5980,
876                 0x5988, 0x5988,
877                 0x5990, 0x5990,
878                 0x5998, 0x5998,
879                 0x59a0, 0x59d4,
880                 0x5a00, 0x5ae0,
881                 0x5ae8, 0x5ae8,
882                 0x5af0, 0x5af0,
883                 0x5af8, 0x5af8,
884                 0x6000, 0x6098,
885                 0x6100, 0x6150,
886                 0x6200, 0x6208,
887                 0x6240, 0x6248,
888                 0x6280, 0x62b0,
889                 0x62c0, 0x6338,
890                 0x6370, 0x638c,
891                 0x6400, 0x643c,
892                 0x6500, 0x6524,
893                 0x6a00, 0x6a04,
894                 0x6a14, 0x6a38,
895                 0x6a60, 0x6a70,
896                 0x6a78, 0x6a78,
897                 0x6b00, 0x6b0c,
898                 0x6b1c, 0x6b84,
899                 0x6bf0, 0x6bf8,
900                 0x6c00, 0x6c0c,
901                 0x6c1c, 0x6c84,
902                 0x6cf0, 0x6cf8,
903                 0x6d00, 0x6d0c,
904                 0x6d1c, 0x6d84,
905                 0x6df0, 0x6df8,
906                 0x6e00, 0x6e0c,
907                 0x6e1c, 0x6e84,
908                 0x6ef0, 0x6ef8,
909                 0x6f00, 0x6f0c,
910                 0x6f1c, 0x6f84,
911                 0x6ff0, 0x6ff8,
912                 0x7000, 0x700c,
913                 0x701c, 0x7084,
914                 0x70f0, 0x70f8,
915                 0x7100, 0x710c,
916                 0x711c, 0x7184,
917                 0x71f0, 0x71f8,
918                 0x7200, 0x720c,
919                 0x721c, 0x7284,
920                 0x72f0, 0x72f8,
921                 0x7300, 0x730c,
922                 0x731c, 0x7384,
923                 0x73f0, 0x73f8,
924                 0x7400, 0x7450,
925                 0x7500, 0x7530,
926                 0x7600, 0x760c,
927                 0x7614, 0x761c,
928                 0x7680, 0x76cc,
929                 0x7700, 0x7798,
930                 0x77c0, 0x77fc,
931                 0x7900, 0x79fc,
932                 0x7b00, 0x7b58,
933                 0x7b60, 0x7b84,
934                 0x7b8c, 0x7c38,
935                 0x7d00, 0x7d38,
936                 0x7d40, 0x7d80,
937                 0x7d8c, 0x7ddc,
938                 0x7de4, 0x7e04,
939                 0x7e10, 0x7e1c,
940                 0x7e24, 0x7e38,
941                 0x7e40, 0x7e44,
942                 0x7e4c, 0x7e78,
943                 0x7e80, 0x7ea4,
944                 0x7eac, 0x7edc,
945                 0x7ee8, 0x7efc,
946                 0x8dc0, 0x8e04,
947                 0x8e10, 0x8e1c,
948                 0x8e30, 0x8e78,
949                 0x8ea0, 0x8eb8,
950                 0x8ec0, 0x8f6c,
951                 0x8fc0, 0x9008,
952                 0x9010, 0x9058,
953                 0x9060, 0x9060,
954                 0x9068, 0x9074,
955                 0x90fc, 0x90fc,
956                 0x9400, 0x9408,
957                 0x9410, 0x9458,
958                 0x9600, 0x9600,
959                 0x9608, 0x9638,
960                 0x9640, 0x96bc,
961                 0x9800, 0x9808,
962                 0x9820, 0x983c,
963                 0x9850, 0x9864,
964                 0x9c00, 0x9c6c,
965                 0x9c80, 0x9cec,
966                 0x9d00, 0x9d6c,
967                 0x9d80, 0x9dec,
968                 0x9e00, 0x9e6c,
969                 0x9e80, 0x9eec,
970                 0x9f00, 0x9f6c,
971                 0x9f80, 0x9fec,
972                 0xd004, 0xd004,
973                 0xd010, 0xd03c,
974                 0xdfc0, 0xdfe0,
975                 0xe000, 0xea7c,
976                 0xf000, 0x11110,
977                 0x11118, 0x11190,
978                 0x19040, 0x1906c,
979                 0x19078, 0x19080,
980                 0x1908c, 0x190e4,
981                 0x190f0, 0x190f8,
982                 0x19100, 0x19110,
983                 0x19120, 0x19124,
984                 0x19150, 0x19194,
985                 0x1919c, 0x191b0,
986                 0x191d0, 0x191e8,
987                 0x19238, 0x1924c,
988                 0x193f8, 0x1943c,
989                 0x1944c, 0x19474,
990                 0x19490, 0x194e0,
991                 0x194f0, 0x194f8,
992                 0x19800, 0x19c08,
993                 0x19c10, 0x19c90,
994                 0x19ca0, 0x19ce4,
995                 0x19cf0, 0x19d40,
996                 0x19d50, 0x19d94,
997                 0x19da0, 0x19de8,
998                 0x19df0, 0x19e40,
999                 0x19e50, 0x19e90,
1000                 0x19ea0, 0x19f4c,
1001                 0x1a000, 0x1a004,
1002                 0x1a010, 0x1a06c,
1003                 0x1a0b0, 0x1a0e4,
1004                 0x1a0ec, 0x1a0f4,
1005                 0x1a100, 0x1a108,
1006                 0x1a114, 0x1a120,
1007                 0x1a128, 0x1a130,
1008                 0x1a138, 0x1a138,
1009                 0x1a190, 0x1a1c4,
1010                 0x1a1fc, 0x1a1fc,
1011                 0x1e040, 0x1e04c,
1012                 0x1e284, 0x1e28c,
1013                 0x1e2c0, 0x1e2c0,
1014                 0x1e2e0, 0x1e2e0,
1015                 0x1e300, 0x1e384,
1016                 0x1e3c0, 0x1e3c8,
1017                 0x1e440, 0x1e44c,
1018                 0x1e684, 0x1e68c,
1019                 0x1e6c0, 0x1e6c0,
1020                 0x1e6e0, 0x1e6e0,
1021                 0x1e700, 0x1e784,
1022                 0x1e7c0, 0x1e7c8,
1023                 0x1e840, 0x1e84c,
1024                 0x1ea84, 0x1ea8c,
1025                 0x1eac0, 0x1eac0,
1026                 0x1eae0, 0x1eae0,
1027                 0x1eb00, 0x1eb84,
1028                 0x1ebc0, 0x1ebc8,
1029                 0x1ec40, 0x1ec4c,
1030                 0x1ee84, 0x1ee8c,
1031                 0x1eec0, 0x1eec0,
1032                 0x1eee0, 0x1eee0,
1033                 0x1ef00, 0x1ef84,
1034                 0x1efc0, 0x1efc8,
1035                 0x1f040, 0x1f04c,
1036                 0x1f284, 0x1f28c,
1037                 0x1f2c0, 0x1f2c0,
1038                 0x1f2e0, 0x1f2e0,
1039                 0x1f300, 0x1f384,
1040                 0x1f3c0, 0x1f3c8,
1041                 0x1f440, 0x1f44c,
1042                 0x1f684, 0x1f68c,
1043                 0x1f6c0, 0x1f6c0,
1044                 0x1f6e0, 0x1f6e0,
1045                 0x1f700, 0x1f784,
1046                 0x1f7c0, 0x1f7c8,
1047                 0x1f840, 0x1f84c,
1048                 0x1fa84, 0x1fa8c,
1049                 0x1fac0, 0x1fac0,
1050                 0x1fae0, 0x1fae0,
1051                 0x1fb00, 0x1fb84,
1052                 0x1fbc0, 0x1fbc8,
1053                 0x1fc40, 0x1fc4c,
1054                 0x1fe84, 0x1fe8c,
1055                 0x1fec0, 0x1fec0,
1056                 0x1fee0, 0x1fee0,
1057                 0x1ff00, 0x1ff84,
1058                 0x1ffc0, 0x1ffc8,
1059                 0x20000, 0x2002c,
1060                 0x20100, 0x2013c,
1061                 0x20190, 0x201a0,
1062                 0x201a8, 0x201b8,
1063                 0x201c4, 0x201c8,
1064                 0x20200, 0x20318,
1065                 0x20400, 0x204b4,
1066                 0x204c0, 0x20528,
1067                 0x20540, 0x20614,
1068                 0x21000, 0x21040,
1069                 0x2104c, 0x21060,
1070                 0x210c0, 0x210ec,
1071                 0x21200, 0x21268,
1072                 0x21270, 0x21284,
1073                 0x212fc, 0x21388,
1074                 0x21400, 0x21404,
1075                 0x21500, 0x21500,
1076                 0x21510, 0x21518,
1077                 0x2152c, 0x21530,
1078                 0x2153c, 0x2153c,
1079                 0x21550, 0x21554,
1080                 0x21600, 0x21600,
1081                 0x21608, 0x2161c,
1082                 0x21624, 0x21628,
1083                 0x21630, 0x21634,
1084                 0x2163c, 0x2163c,
1085                 0x21700, 0x2171c,
1086                 0x21780, 0x2178c,
1087                 0x21800, 0x21818,
1088                 0x21820, 0x21828,
1089                 0x21830, 0x21848,
1090                 0x21850, 0x21854,
1091                 0x21860, 0x21868,
1092                 0x21870, 0x21870,
1093                 0x21878, 0x21898,
1094                 0x218a0, 0x218a8,
1095                 0x218b0, 0x218c8,
1096                 0x218d0, 0x218d4,
1097                 0x218e0, 0x218e8,
1098                 0x218f0, 0x218f0,
1099                 0x218f8, 0x21a18,
1100                 0x21a20, 0x21a28,
1101                 0x21a30, 0x21a48,
1102                 0x21a50, 0x21a54,
1103                 0x21a60, 0x21a68,
1104                 0x21a70, 0x21a70,
1105                 0x21a78, 0x21a98,
1106                 0x21aa0, 0x21aa8,
1107                 0x21ab0, 0x21ac8,
1108                 0x21ad0, 0x21ad4,
1109                 0x21ae0, 0x21ae8,
1110                 0x21af0, 0x21af0,
1111                 0x21af8, 0x21c18,
1112                 0x21c20, 0x21c20,
1113                 0x21c28, 0x21c30,
1114                 0x21c38, 0x21c38,
1115                 0x21c80, 0x21c98,
1116                 0x21ca0, 0x21ca8,
1117                 0x21cb0, 0x21cc8,
1118                 0x21cd0, 0x21cd4,
1119                 0x21ce0, 0x21ce8,
1120                 0x21cf0, 0x21cf0,
1121                 0x21cf8, 0x21d7c,
1122                 0x21e00, 0x21e04,
1123                 0x22000, 0x2202c,
1124                 0x22100, 0x2213c,
1125                 0x22190, 0x221a0,
1126                 0x221a8, 0x221b8,
1127                 0x221c4, 0x221c8,
1128                 0x22200, 0x22318,
1129                 0x22400, 0x224b4,
1130                 0x224c0, 0x22528,
1131                 0x22540, 0x22614,
1132                 0x23000, 0x23040,
1133                 0x2304c, 0x23060,
1134                 0x230c0, 0x230ec,
1135                 0x23200, 0x23268,
1136                 0x23270, 0x23284,
1137                 0x232fc, 0x23388,
1138                 0x23400, 0x23404,
1139                 0x23500, 0x23500,
1140                 0x23510, 0x23518,
1141                 0x2352c, 0x23530,
1142                 0x2353c, 0x2353c,
1143                 0x23550, 0x23554,
1144                 0x23600, 0x23600,
1145                 0x23608, 0x2361c,
1146                 0x23624, 0x23628,
1147                 0x23630, 0x23634,
1148                 0x2363c, 0x2363c,
1149                 0x23700, 0x2371c,
1150                 0x23780, 0x2378c,
1151                 0x23800, 0x23818,
1152                 0x23820, 0x23828,
1153                 0x23830, 0x23848,
1154                 0x23850, 0x23854,
1155                 0x23860, 0x23868,
1156                 0x23870, 0x23870,
1157                 0x23878, 0x23898,
1158                 0x238a0, 0x238a8,
1159                 0x238b0, 0x238c8,
1160                 0x238d0, 0x238d4,
1161                 0x238e0, 0x238e8,
1162                 0x238f0, 0x238f0,
1163                 0x238f8, 0x23a18,
1164                 0x23a20, 0x23a28,
1165                 0x23a30, 0x23a48,
1166                 0x23a50, 0x23a54,
1167                 0x23a60, 0x23a68,
1168                 0x23a70, 0x23a70,
1169                 0x23a78, 0x23a98,
1170                 0x23aa0, 0x23aa8,
1171                 0x23ab0, 0x23ac8,
1172                 0x23ad0, 0x23ad4,
1173                 0x23ae0, 0x23ae8,
1174                 0x23af0, 0x23af0,
1175                 0x23af8, 0x23c18,
1176                 0x23c20, 0x23c20,
1177                 0x23c28, 0x23c30,
1178                 0x23c38, 0x23c38,
1179                 0x23c80, 0x23c98,
1180                 0x23ca0, 0x23ca8,
1181                 0x23cb0, 0x23cc8,
1182                 0x23cd0, 0x23cd4,
1183                 0x23ce0, 0x23ce8,
1184                 0x23cf0, 0x23cf0,
1185                 0x23cf8, 0x23d7c,
1186                 0x23e00, 0x23e04,
1187                 0x24000, 0x2402c,
1188                 0x24100, 0x2413c,
1189                 0x24190, 0x241a0,
1190                 0x241a8, 0x241b8,
1191                 0x241c4, 0x241c8,
1192                 0x24200, 0x24318,
1193                 0x24400, 0x244b4,
1194                 0x244c0, 0x24528,
1195                 0x24540, 0x24614,
1196                 0x25000, 0x25040,
1197                 0x2504c, 0x25060,
1198                 0x250c0, 0x250ec,
1199                 0x25200, 0x25268,
1200                 0x25270, 0x25284,
1201                 0x252fc, 0x25388,
1202                 0x25400, 0x25404,
1203                 0x25500, 0x25500,
1204                 0x25510, 0x25518,
1205                 0x2552c, 0x25530,
1206                 0x2553c, 0x2553c,
1207                 0x25550, 0x25554,
1208                 0x25600, 0x25600,
1209                 0x25608, 0x2561c,
1210                 0x25624, 0x25628,
1211                 0x25630, 0x25634,
1212                 0x2563c, 0x2563c,
1213                 0x25700, 0x2571c,
1214                 0x25780, 0x2578c,
1215                 0x25800, 0x25818,
1216                 0x25820, 0x25828,
1217                 0x25830, 0x25848,
1218                 0x25850, 0x25854,
1219                 0x25860, 0x25868,
1220                 0x25870, 0x25870,
1221                 0x25878, 0x25898,
1222                 0x258a0, 0x258a8,
1223                 0x258b0, 0x258c8,
1224                 0x258d0, 0x258d4,
1225                 0x258e0, 0x258e8,
1226                 0x258f0, 0x258f0,
1227                 0x258f8, 0x25a18,
1228                 0x25a20, 0x25a28,
1229                 0x25a30, 0x25a48,
1230                 0x25a50, 0x25a54,
1231                 0x25a60, 0x25a68,
1232                 0x25a70, 0x25a70,
1233                 0x25a78, 0x25a98,
1234                 0x25aa0, 0x25aa8,
1235                 0x25ab0, 0x25ac8,
1236                 0x25ad0, 0x25ad4,
1237                 0x25ae0, 0x25ae8,
1238                 0x25af0, 0x25af0,
1239                 0x25af8, 0x25c18,
1240                 0x25c20, 0x25c20,
1241                 0x25c28, 0x25c30,
1242                 0x25c38, 0x25c38,
1243                 0x25c80, 0x25c98,
1244                 0x25ca0, 0x25ca8,
1245                 0x25cb0, 0x25cc8,
1246                 0x25cd0, 0x25cd4,
1247                 0x25ce0, 0x25ce8,
1248                 0x25cf0, 0x25cf0,
1249                 0x25cf8, 0x25d7c,
1250                 0x25e00, 0x25e04,
1251                 0x26000, 0x2602c,
1252                 0x26100, 0x2613c,
1253                 0x26190, 0x261a0,
1254                 0x261a8, 0x261b8,
1255                 0x261c4, 0x261c8,
1256                 0x26200, 0x26318,
1257                 0x26400, 0x264b4,
1258                 0x264c0, 0x26528,
1259                 0x26540, 0x26614,
1260                 0x27000, 0x27040,
1261                 0x2704c, 0x27060,
1262                 0x270c0, 0x270ec,
1263                 0x27200, 0x27268,
1264                 0x27270, 0x27284,
1265                 0x272fc, 0x27388,
1266                 0x27400, 0x27404,
1267                 0x27500, 0x27500,
1268                 0x27510, 0x27518,
1269                 0x2752c, 0x27530,
1270                 0x2753c, 0x2753c,
1271                 0x27550, 0x27554,
1272                 0x27600, 0x27600,
1273                 0x27608, 0x2761c,
1274                 0x27624, 0x27628,
1275                 0x27630, 0x27634,
1276                 0x2763c, 0x2763c,
1277                 0x27700, 0x2771c,
1278                 0x27780, 0x2778c,
1279                 0x27800, 0x27818,
1280                 0x27820, 0x27828,
1281                 0x27830, 0x27848,
1282                 0x27850, 0x27854,
1283                 0x27860, 0x27868,
1284                 0x27870, 0x27870,
1285                 0x27878, 0x27898,
1286                 0x278a0, 0x278a8,
1287                 0x278b0, 0x278c8,
1288                 0x278d0, 0x278d4,
1289                 0x278e0, 0x278e8,
1290                 0x278f0, 0x278f0,
1291                 0x278f8, 0x27a18,
1292                 0x27a20, 0x27a28,
1293                 0x27a30, 0x27a48,
1294                 0x27a50, 0x27a54,
1295                 0x27a60, 0x27a68,
1296                 0x27a70, 0x27a70,
1297                 0x27a78, 0x27a98,
1298                 0x27aa0, 0x27aa8,
1299                 0x27ab0, 0x27ac8,
1300                 0x27ad0, 0x27ad4,
1301                 0x27ae0, 0x27ae8,
1302                 0x27af0, 0x27af0,
1303                 0x27af8, 0x27c18,
1304                 0x27c20, 0x27c20,
1305                 0x27c28, 0x27c30,
1306                 0x27c38, 0x27c38,
1307                 0x27c80, 0x27c98,
1308                 0x27ca0, 0x27ca8,
1309                 0x27cb0, 0x27cc8,
1310                 0x27cd0, 0x27cd4,
1311                 0x27ce0, 0x27ce8,
1312                 0x27cf0, 0x27cf0,
1313                 0x27cf8, 0x27d7c,
1314                 0x27e00, 0x27e04,
1315         };
1316
1317         static const unsigned int t5_reg_ranges[] = {
1318                 0x1008, 0x10c0,
1319                 0x10cc, 0x10f8,
1320                 0x1100, 0x1100,
1321                 0x110c, 0x1148,
1322                 0x1180, 0x1184,
1323                 0x1190, 0x1194,
1324                 0x11a0, 0x11a4,
1325                 0x11b0, 0x11b4,
1326                 0x11fc, 0x123c,
1327                 0x1280, 0x173c,
1328                 0x1800, 0x18fc,
1329                 0x3000, 0x3028,
1330                 0x3060, 0x30b0,
1331                 0x30b8, 0x30d8,
1332                 0x30e0, 0x30fc,
1333                 0x3140, 0x357c,
1334                 0x35a8, 0x35cc,
1335                 0x35ec, 0x35ec,
1336                 0x3600, 0x5624,
1337                 0x56cc, 0x56ec,
1338                 0x56f4, 0x5720,
1339                 0x5728, 0x575c,
1340                 0x580c, 0x5814,
1341                 0x5890, 0x589c,
1342                 0x58a4, 0x58ac,
1343                 0x58b8, 0x58bc,
1344                 0x5940, 0x59c8,
1345                 0x59d0, 0x59dc,
1346                 0x59fc, 0x5a18,
1347                 0x5a60, 0x5a70,
1348                 0x5a80, 0x5a9c,
1349                 0x5b94, 0x5bfc,
1350                 0x6000, 0x6020,
1351                 0x6028, 0x6040,
1352                 0x6058, 0x609c,
1353                 0x60a8, 0x614c,
1354                 0x7700, 0x7798,
1355                 0x77c0, 0x78fc,
1356                 0x7b00, 0x7b58,
1357                 0x7b60, 0x7b84,
1358                 0x7b8c, 0x7c54,
1359                 0x7d00, 0x7d38,
1360                 0x7d40, 0x7d80,
1361                 0x7d8c, 0x7ddc,
1362                 0x7de4, 0x7e04,
1363                 0x7e10, 0x7e1c,
1364                 0x7e24, 0x7e38,
1365                 0x7e40, 0x7e44,
1366                 0x7e4c, 0x7e78,
1367                 0x7e80, 0x7edc,
1368                 0x7ee8, 0x7efc,
1369                 0x8dc0, 0x8de0,
1370                 0x8df8, 0x8e04,
1371                 0x8e10, 0x8e84,
1372                 0x8ea0, 0x8f84,
1373                 0x8fc0, 0x9058,
1374                 0x9060, 0x9060,
1375                 0x9068, 0x90f8,
1376                 0x9400, 0x9408,
1377                 0x9410, 0x9470,
1378                 0x9600, 0x9600,
1379                 0x9608, 0x9638,
1380                 0x9640, 0x96f4,
1381                 0x9800, 0x9808,
1382                 0x9820, 0x983c,
1383                 0x9850, 0x9864,
1384                 0x9c00, 0x9c6c,
1385                 0x9c80, 0x9cec,
1386                 0x9d00, 0x9d6c,
1387                 0x9d80, 0x9dec,
1388                 0x9e00, 0x9e6c,
1389                 0x9e80, 0x9eec,
1390                 0x9f00, 0x9f6c,
1391                 0x9f80, 0xa020,
1392                 0xd004, 0xd004,
1393                 0xd010, 0xd03c,
1394                 0xdfc0, 0xdfe0,
1395                 0xe000, 0x1106c,
1396                 0x11074, 0x11088,
1397                 0x1109c, 0x1117c,
1398                 0x11190, 0x11204,
1399                 0x19040, 0x1906c,
1400                 0x19078, 0x19080,
1401                 0x1908c, 0x190e8,
1402                 0x190f0, 0x190f8,
1403                 0x19100, 0x19110,
1404                 0x19120, 0x19124,
1405                 0x19150, 0x19194,
1406                 0x1919c, 0x191b0,
1407                 0x191d0, 0x191e8,
1408                 0x19238, 0x19290,
1409                 0x193f8, 0x19428,
1410                 0x19430, 0x19444,
1411                 0x1944c, 0x1946c,
1412                 0x19474, 0x19474,
1413                 0x19490, 0x194cc,
1414                 0x194f0, 0x194f8,
1415                 0x19c00, 0x19c08,
1416                 0x19c10, 0x19c60,
1417                 0x19c94, 0x19ce4,
1418                 0x19cf0, 0x19d40,
1419                 0x19d50, 0x19d94,
1420                 0x19da0, 0x19de8,
1421                 0x19df0, 0x19e10,
1422                 0x19e50, 0x19e90,
1423                 0x19ea0, 0x19f24,
1424                 0x19f34, 0x19f34,
1425                 0x19f40, 0x19f50,
1426                 0x19f90, 0x19fb4,
1427                 0x19fc4, 0x19fe4,
1428                 0x1a000, 0x1a004,
1429                 0x1a010, 0x1a06c,
1430                 0x1a0b0, 0x1a0e4,
1431                 0x1a0ec, 0x1a0f8,
1432                 0x1a100, 0x1a108,
1433                 0x1a114, 0x1a120,
1434                 0x1a128, 0x1a130,
1435                 0x1a138, 0x1a138,
1436                 0x1a190, 0x1a1c4,
1437                 0x1a1fc, 0x1a1fc,
1438                 0x1e008, 0x1e00c,
1439                 0x1e040, 0x1e044,
1440                 0x1e04c, 0x1e04c,
1441                 0x1e284, 0x1e290,
1442                 0x1e2c0, 0x1e2c0,
1443                 0x1e2e0, 0x1e2e0,
1444                 0x1e300, 0x1e384,
1445                 0x1e3c0, 0x1e3c8,
1446                 0x1e408, 0x1e40c,
1447                 0x1e440, 0x1e444,
1448                 0x1e44c, 0x1e44c,
1449                 0x1e684, 0x1e690,
1450                 0x1e6c0, 0x1e6c0,
1451                 0x1e6e0, 0x1e6e0,
1452                 0x1e700, 0x1e784,
1453                 0x1e7c0, 0x1e7c8,
1454                 0x1e808, 0x1e80c,
1455                 0x1e840, 0x1e844,
1456                 0x1e84c, 0x1e84c,
1457                 0x1ea84, 0x1ea90,
1458                 0x1eac0, 0x1eac0,
1459                 0x1eae0, 0x1eae0,
1460                 0x1eb00, 0x1eb84,
1461                 0x1ebc0, 0x1ebc8,
1462                 0x1ec08, 0x1ec0c,
1463                 0x1ec40, 0x1ec44,
1464                 0x1ec4c, 0x1ec4c,
1465                 0x1ee84, 0x1ee90,
1466                 0x1eec0, 0x1eec0,
1467                 0x1eee0, 0x1eee0,
1468                 0x1ef00, 0x1ef84,
1469                 0x1efc0, 0x1efc8,
1470                 0x1f008, 0x1f00c,
1471                 0x1f040, 0x1f044,
1472                 0x1f04c, 0x1f04c,
1473                 0x1f284, 0x1f290,
1474                 0x1f2c0, 0x1f2c0,
1475                 0x1f2e0, 0x1f2e0,
1476                 0x1f300, 0x1f384,
1477                 0x1f3c0, 0x1f3c8,
1478                 0x1f408, 0x1f40c,
1479                 0x1f440, 0x1f444,
1480                 0x1f44c, 0x1f44c,
1481                 0x1f684, 0x1f690,
1482                 0x1f6c0, 0x1f6c0,
1483                 0x1f6e0, 0x1f6e0,
1484                 0x1f700, 0x1f784,
1485                 0x1f7c0, 0x1f7c8,
1486                 0x1f808, 0x1f80c,
1487                 0x1f840, 0x1f844,
1488                 0x1f84c, 0x1f84c,
1489                 0x1fa84, 0x1fa90,
1490                 0x1fac0, 0x1fac0,
1491                 0x1fae0, 0x1fae0,
1492                 0x1fb00, 0x1fb84,
1493                 0x1fbc0, 0x1fbc8,
1494                 0x1fc08, 0x1fc0c,
1495                 0x1fc40, 0x1fc44,
1496                 0x1fc4c, 0x1fc4c,
1497                 0x1fe84, 0x1fe90,
1498                 0x1fec0, 0x1fec0,
1499                 0x1fee0, 0x1fee0,
1500                 0x1ff00, 0x1ff84,
1501                 0x1ffc0, 0x1ffc8,
1502                 0x30000, 0x30030,
1503                 0x30100, 0x30144,
1504                 0x30190, 0x301a0,
1505                 0x301a8, 0x301b8,
1506                 0x301c4, 0x301c8,
1507                 0x301d0, 0x301d0,
1508                 0x30200, 0x30318,
1509                 0x30400, 0x304b4,
1510                 0x304c0, 0x3052c,
1511                 0x30540, 0x3061c,
1512                 0x30800, 0x30828,
1513                 0x30834, 0x30834,
1514                 0x308c0, 0x30908,
1515                 0x30910, 0x309ac,
1516                 0x30a00, 0x30a14,
1517                 0x30a1c, 0x30a2c,
1518                 0x30a44, 0x30a50,
1519                 0x30a74, 0x30a74,
1520                 0x30a7c, 0x30afc,
1521                 0x30b08, 0x30c24,
1522                 0x30d00, 0x30d00,
1523                 0x30d08, 0x30d14,
1524                 0x30d1c, 0x30d20,
1525                 0x30d3c, 0x30d3c,
1526                 0x30d48, 0x30d50,
1527                 0x31200, 0x3120c,
1528                 0x31220, 0x31220,
1529                 0x31240, 0x31240,
1530                 0x31600, 0x3160c,
1531                 0x31a00, 0x31a1c,
1532                 0x31e00, 0x31e20,
1533                 0x31e38, 0x31e3c,
1534                 0x31e80, 0x31e80,
1535                 0x31e88, 0x31ea8,
1536                 0x31eb0, 0x31eb4,
1537                 0x31ec8, 0x31ed4,
1538                 0x31fb8, 0x32004,
1539                 0x32200, 0x32200,
1540                 0x32208, 0x32240,
1541                 0x32248, 0x32280,
1542                 0x32288, 0x322c0,
1543                 0x322c8, 0x322fc,
1544                 0x32600, 0x32630,
1545                 0x32a00, 0x32abc,
1546                 0x32b00, 0x32b10,
1547                 0x32b20, 0x32b30,
1548                 0x32b40, 0x32b50,
1549                 0x32b60, 0x32b70,
1550                 0x33000, 0x33028,
1551                 0x33030, 0x33048,
1552                 0x33060, 0x33068,
1553                 0x33070, 0x3309c,
1554                 0x330f0, 0x33128,
1555                 0x33130, 0x33148,
1556                 0x33160, 0x33168,
1557                 0x33170, 0x3319c,
1558                 0x331f0, 0x33238,
1559                 0x33240, 0x33240,
1560                 0x33248, 0x33250,
1561                 0x3325c, 0x33264,
1562                 0x33270, 0x332b8,
1563                 0x332c0, 0x332e4,
1564                 0x332f8, 0x33338,
1565                 0x33340, 0x33340,
1566                 0x33348, 0x33350,
1567                 0x3335c, 0x33364,
1568                 0x33370, 0x333b8,
1569                 0x333c0, 0x333e4,
1570                 0x333f8, 0x33428,
1571                 0x33430, 0x33448,
1572                 0x33460, 0x33468,
1573                 0x33470, 0x3349c,
1574                 0x334f0, 0x33528,
1575                 0x33530, 0x33548,
1576                 0x33560, 0x33568,
1577                 0x33570, 0x3359c,
1578                 0x335f0, 0x33638,
1579                 0x33640, 0x33640,
1580                 0x33648, 0x33650,
1581                 0x3365c, 0x33664,
1582                 0x33670, 0x336b8,
1583                 0x336c0, 0x336e4,
1584                 0x336f8, 0x33738,
1585                 0x33740, 0x33740,
1586                 0x33748, 0x33750,
1587                 0x3375c, 0x33764,
1588                 0x33770, 0x337b8,
1589                 0x337c0, 0x337e4,
1590                 0x337f8, 0x337fc,
1591                 0x33814, 0x33814,
1592                 0x3382c, 0x3382c,
1593                 0x33880, 0x3388c,
1594                 0x338e8, 0x338ec,
1595                 0x33900, 0x33928,
1596                 0x33930, 0x33948,
1597                 0x33960, 0x33968,
1598                 0x33970, 0x3399c,
1599                 0x339f0, 0x33a38,
1600                 0x33a40, 0x33a40,
1601                 0x33a48, 0x33a50,
1602                 0x33a5c, 0x33a64,
1603                 0x33a70, 0x33ab8,
1604                 0x33ac0, 0x33ae4,
1605                 0x33af8, 0x33b10,
1606                 0x33b28, 0x33b28,
1607                 0x33b3c, 0x33b50,
1608                 0x33bf0, 0x33c10,
1609                 0x33c28, 0x33c28,
1610                 0x33c3c, 0x33c50,
1611                 0x33cf0, 0x33cfc,
1612                 0x34000, 0x34030,
1613                 0x34100, 0x34144,
1614                 0x34190, 0x341a0,
1615                 0x341a8, 0x341b8,
1616                 0x341c4, 0x341c8,
1617                 0x341d0, 0x341d0,
1618                 0x34200, 0x34318,
1619                 0x34400, 0x344b4,
1620                 0x344c0, 0x3452c,
1621                 0x34540, 0x3461c,
1622                 0x34800, 0x34828,
1623                 0x34834, 0x34834,
1624                 0x348c0, 0x34908,
1625                 0x34910, 0x349ac,
1626                 0x34a00, 0x34a14,
1627                 0x34a1c, 0x34a2c,
1628                 0x34a44, 0x34a50,
1629                 0x34a74, 0x34a74,
1630                 0x34a7c, 0x34afc,
1631                 0x34b08, 0x34c24,
1632                 0x34d00, 0x34d00,
1633                 0x34d08, 0x34d14,
1634                 0x34d1c, 0x34d20,
1635                 0x34d3c, 0x34d3c,
1636                 0x34d48, 0x34d50,
1637                 0x35200, 0x3520c,
1638                 0x35220, 0x35220,
1639                 0x35240, 0x35240,
1640                 0x35600, 0x3560c,
1641                 0x35a00, 0x35a1c,
1642                 0x35e00, 0x35e20,
1643                 0x35e38, 0x35e3c,
1644                 0x35e80, 0x35e80,
1645                 0x35e88, 0x35ea8,
1646                 0x35eb0, 0x35eb4,
1647                 0x35ec8, 0x35ed4,
1648                 0x35fb8, 0x36004,
1649                 0x36200, 0x36200,
1650                 0x36208, 0x36240,
1651                 0x36248, 0x36280,
1652                 0x36288, 0x362c0,
1653                 0x362c8, 0x362fc,
1654                 0x36600, 0x36630,
1655                 0x36a00, 0x36abc,
1656                 0x36b00, 0x36b10,
1657                 0x36b20, 0x36b30,
1658                 0x36b40, 0x36b50,
1659                 0x36b60, 0x36b70,
1660                 0x37000, 0x37028,
1661                 0x37030, 0x37048,
1662                 0x37060, 0x37068,
1663                 0x37070, 0x3709c,
1664                 0x370f0, 0x37128,
1665                 0x37130, 0x37148,
1666                 0x37160, 0x37168,
1667                 0x37170, 0x3719c,
1668                 0x371f0, 0x37238,
1669                 0x37240, 0x37240,
1670                 0x37248, 0x37250,
1671                 0x3725c, 0x37264,
1672                 0x37270, 0x372b8,
1673                 0x372c0, 0x372e4,
1674                 0x372f8, 0x37338,
1675                 0x37340, 0x37340,
1676                 0x37348, 0x37350,
1677                 0x3735c, 0x37364,
1678                 0x37370, 0x373b8,
1679                 0x373c0, 0x373e4,
1680                 0x373f8, 0x37428,
1681                 0x37430, 0x37448,
1682                 0x37460, 0x37468,
1683                 0x37470, 0x3749c,
1684                 0x374f0, 0x37528,
1685                 0x37530, 0x37548,
1686                 0x37560, 0x37568,
1687                 0x37570, 0x3759c,
1688                 0x375f0, 0x37638,
1689                 0x37640, 0x37640,
1690                 0x37648, 0x37650,
1691                 0x3765c, 0x37664,
1692                 0x37670, 0x376b8,
1693                 0x376c0, 0x376e4,
1694                 0x376f8, 0x37738,
1695                 0x37740, 0x37740,
1696                 0x37748, 0x37750,
1697                 0x3775c, 0x37764,
1698                 0x37770, 0x377b8,
1699                 0x377c0, 0x377e4,
1700                 0x377f8, 0x377fc,
1701                 0x37814, 0x37814,
1702                 0x3782c, 0x3782c,
1703                 0x37880, 0x3788c,
1704                 0x378e8, 0x378ec,
1705                 0x37900, 0x37928,
1706                 0x37930, 0x37948,
1707                 0x37960, 0x37968,
1708                 0x37970, 0x3799c,
1709                 0x379f0, 0x37a38,
1710                 0x37a40, 0x37a40,
1711                 0x37a48, 0x37a50,
1712                 0x37a5c, 0x37a64,
1713                 0x37a70, 0x37ab8,
1714                 0x37ac0, 0x37ae4,
1715                 0x37af8, 0x37b10,
1716                 0x37b28, 0x37b28,
1717                 0x37b3c, 0x37b50,
1718                 0x37bf0, 0x37c10,
1719                 0x37c28, 0x37c28,
1720                 0x37c3c, 0x37c50,
1721                 0x37cf0, 0x37cfc,
1722                 0x38000, 0x38030,
1723                 0x38100, 0x38144,
1724                 0x38190, 0x381a0,
1725                 0x381a8, 0x381b8,
1726                 0x381c4, 0x381c8,
1727                 0x381d0, 0x381d0,
1728                 0x38200, 0x38318,
1729                 0x38400, 0x384b4,
1730                 0x384c0, 0x3852c,
1731                 0x38540, 0x3861c,
1732                 0x38800, 0x38828,
1733                 0x38834, 0x38834,
1734                 0x388c0, 0x38908,
1735                 0x38910, 0x389ac,
1736                 0x38a00, 0x38a14,
1737                 0x38a1c, 0x38a2c,
1738                 0x38a44, 0x38a50,
1739                 0x38a74, 0x38a74,
1740                 0x38a7c, 0x38afc,
1741                 0x38b08, 0x38c24,
1742                 0x38d00, 0x38d00,
1743                 0x38d08, 0x38d14,
1744                 0x38d1c, 0x38d20,
1745                 0x38d3c, 0x38d3c,
1746                 0x38d48, 0x38d50,
1747                 0x39200, 0x3920c,
1748                 0x39220, 0x39220,
1749                 0x39240, 0x39240,
1750                 0x39600, 0x3960c,
1751                 0x39a00, 0x39a1c,
1752                 0x39e00, 0x39e20,
1753                 0x39e38, 0x39e3c,
1754                 0x39e80, 0x39e80,
1755                 0x39e88, 0x39ea8,
1756                 0x39eb0, 0x39eb4,
1757                 0x39ec8, 0x39ed4,
1758                 0x39fb8, 0x3a004,
1759                 0x3a200, 0x3a200,
1760                 0x3a208, 0x3a240,
1761                 0x3a248, 0x3a280,
1762                 0x3a288, 0x3a2c0,
1763                 0x3a2c8, 0x3a2fc,
1764                 0x3a600, 0x3a630,
1765                 0x3aa00, 0x3aabc,
1766                 0x3ab00, 0x3ab10,
1767                 0x3ab20, 0x3ab30,
1768                 0x3ab40, 0x3ab50,
1769                 0x3ab60, 0x3ab70,
1770                 0x3b000, 0x3b028,
1771                 0x3b030, 0x3b048,
1772                 0x3b060, 0x3b068,
1773                 0x3b070, 0x3b09c,
1774                 0x3b0f0, 0x3b128,
1775                 0x3b130, 0x3b148,
1776                 0x3b160, 0x3b168,
1777                 0x3b170, 0x3b19c,
1778                 0x3b1f0, 0x3b238,
1779                 0x3b240, 0x3b240,
1780                 0x3b248, 0x3b250,
1781                 0x3b25c, 0x3b264,
1782                 0x3b270, 0x3b2b8,
1783                 0x3b2c0, 0x3b2e4,
1784                 0x3b2f8, 0x3b338,
1785                 0x3b340, 0x3b340,
1786                 0x3b348, 0x3b350,
1787                 0x3b35c, 0x3b364,
1788                 0x3b370, 0x3b3b8,
1789                 0x3b3c0, 0x3b3e4,
1790                 0x3b3f8, 0x3b428,
1791                 0x3b430, 0x3b448,
1792                 0x3b460, 0x3b468,
1793                 0x3b470, 0x3b49c,
1794                 0x3b4f0, 0x3b528,
1795                 0x3b530, 0x3b548,
1796                 0x3b560, 0x3b568,
1797                 0x3b570, 0x3b59c,
1798                 0x3b5f0, 0x3b638,
1799                 0x3b640, 0x3b640,
1800                 0x3b648, 0x3b650,
1801                 0x3b65c, 0x3b664,
1802                 0x3b670, 0x3b6b8,
1803                 0x3b6c0, 0x3b6e4,
1804                 0x3b6f8, 0x3b738,
1805                 0x3b740, 0x3b740,
1806                 0x3b748, 0x3b750,
1807                 0x3b75c, 0x3b764,
1808                 0x3b770, 0x3b7b8,
1809                 0x3b7c0, 0x3b7e4,
1810                 0x3b7f8, 0x3b7fc,
1811                 0x3b814, 0x3b814,
1812                 0x3b82c, 0x3b82c,
1813                 0x3b880, 0x3b88c,
1814                 0x3b8e8, 0x3b8ec,
1815                 0x3b900, 0x3b928,
1816                 0x3b930, 0x3b948,
1817                 0x3b960, 0x3b968,
1818                 0x3b970, 0x3b99c,
1819                 0x3b9f0, 0x3ba38,
1820                 0x3ba40, 0x3ba40,
1821                 0x3ba48, 0x3ba50,
1822                 0x3ba5c, 0x3ba64,
1823                 0x3ba70, 0x3bab8,
1824                 0x3bac0, 0x3bae4,
1825                 0x3baf8, 0x3bb10,
1826                 0x3bb28, 0x3bb28,
1827                 0x3bb3c, 0x3bb50,
1828                 0x3bbf0, 0x3bc10,
1829                 0x3bc28, 0x3bc28,
1830                 0x3bc3c, 0x3bc50,
1831                 0x3bcf0, 0x3bcfc,
1832                 0x3c000, 0x3c030,
1833                 0x3c100, 0x3c144,
1834                 0x3c190, 0x3c1a0,
1835                 0x3c1a8, 0x3c1b8,
1836                 0x3c1c4, 0x3c1c8,
1837                 0x3c1d0, 0x3c1d0,
1838                 0x3c200, 0x3c318,
1839                 0x3c400, 0x3c4b4,
1840                 0x3c4c0, 0x3c52c,
1841                 0x3c540, 0x3c61c,
1842                 0x3c800, 0x3c828,
1843                 0x3c834, 0x3c834,
1844                 0x3c8c0, 0x3c908,
1845                 0x3c910, 0x3c9ac,
1846                 0x3ca00, 0x3ca14,
1847                 0x3ca1c, 0x3ca2c,
1848                 0x3ca44, 0x3ca50,
1849                 0x3ca74, 0x3ca74,
1850                 0x3ca7c, 0x3cafc,
1851                 0x3cb08, 0x3cc24,
1852                 0x3cd00, 0x3cd00,
1853                 0x3cd08, 0x3cd14,
1854                 0x3cd1c, 0x3cd20,
1855                 0x3cd3c, 0x3cd3c,
1856                 0x3cd48, 0x3cd50,
1857                 0x3d200, 0x3d20c,
1858                 0x3d220, 0x3d220,
1859                 0x3d240, 0x3d240,
1860                 0x3d600, 0x3d60c,
1861                 0x3da00, 0x3da1c,
1862                 0x3de00, 0x3de20,
1863                 0x3de38, 0x3de3c,
1864                 0x3de80, 0x3de80,
1865                 0x3de88, 0x3dea8,
1866                 0x3deb0, 0x3deb4,
1867                 0x3dec8, 0x3ded4,
1868                 0x3dfb8, 0x3e004,
1869                 0x3e200, 0x3e200,
1870                 0x3e208, 0x3e240,
1871                 0x3e248, 0x3e280,
1872                 0x3e288, 0x3e2c0,
1873                 0x3e2c8, 0x3e2fc,
1874                 0x3e600, 0x3e630,
1875                 0x3ea00, 0x3eabc,
1876                 0x3eb00, 0x3eb10,
1877                 0x3eb20, 0x3eb30,
1878                 0x3eb40, 0x3eb50,
1879                 0x3eb60, 0x3eb70,
1880                 0x3f000, 0x3f028,
1881                 0x3f030, 0x3f048,
1882                 0x3f060, 0x3f068,
1883                 0x3f070, 0x3f09c,
1884                 0x3f0f0, 0x3f128,
1885                 0x3f130, 0x3f148,
1886                 0x3f160, 0x3f168,
1887                 0x3f170, 0x3f19c,
1888                 0x3f1f0, 0x3f238,
1889                 0x3f240, 0x3f240,
1890                 0x3f248, 0x3f250,
1891                 0x3f25c, 0x3f264,
1892                 0x3f270, 0x3f2b8,
1893                 0x3f2c0, 0x3f2e4,
1894                 0x3f2f8, 0x3f338,
1895                 0x3f340, 0x3f340,
1896                 0x3f348, 0x3f350,
1897                 0x3f35c, 0x3f364,
1898                 0x3f370, 0x3f3b8,
1899                 0x3f3c0, 0x3f3e4,
1900                 0x3f3f8, 0x3f428,
1901                 0x3f430, 0x3f448,
1902                 0x3f460, 0x3f468,
1903                 0x3f470, 0x3f49c,
1904                 0x3f4f0, 0x3f528,
1905                 0x3f530, 0x3f548,
1906                 0x3f560, 0x3f568,
1907                 0x3f570, 0x3f59c,
1908                 0x3f5f0, 0x3f638,
1909                 0x3f640, 0x3f640,
1910                 0x3f648, 0x3f650,
1911                 0x3f65c, 0x3f664,
1912                 0x3f670, 0x3f6b8,
1913                 0x3f6c0, 0x3f6e4,
1914                 0x3f6f8, 0x3f738,
1915                 0x3f740, 0x3f740,
1916                 0x3f748, 0x3f750,
1917                 0x3f75c, 0x3f764,
1918                 0x3f770, 0x3f7b8,
1919                 0x3f7c0, 0x3f7e4,
1920                 0x3f7f8, 0x3f7fc,
1921                 0x3f814, 0x3f814,
1922                 0x3f82c, 0x3f82c,
1923                 0x3f880, 0x3f88c,
1924                 0x3f8e8, 0x3f8ec,
1925                 0x3f900, 0x3f928,
1926                 0x3f930, 0x3f948,
1927                 0x3f960, 0x3f968,
1928                 0x3f970, 0x3f99c,
1929                 0x3f9f0, 0x3fa38,
1930                 0x3fa40, 0x3fa40,
1931                 0x3fa48, 0x3fa50,
1932                 0x3fa5c, 0x3fa64,
1933                 0x3fa70, 0x3fab8,
1934                 0x3fac0, 0x3fae4,
1935                 0x3faf8, 0x3fb10,
1936                 0x3fb28, 0x3fb28,
1937                 0x3fb3c, 0x3fb50,
1938                 0x3fbf0, 0x3fc10,
1939                 0x3fc28, 0x3fc28,
1940                 0x3fc3c, 0x3fc50,
1941                 0x3fcf0, 0x3fcfc,
1942                 0x40000, 0x4000c,
1943                 0x40040, 0x40050,
1944                 0x40060, 0x40068,
1945                 0x4007c, 0x4008c,
1946                 0x40094, 0x400b0,
1947                 0x400c0, 0x40144,
1948                 0x40180, 0x4018c,
1949                 0x40200, 0x40254,
1950                 0x40260, 0x40264,
1951                 0x40270, 0x40288,
1952                 0x40290, 0x40298,
1953                 0x402ac, 0x402c8,
1954                 0x402d0, 0x402e0,
1955                 0x402f0, 0x402f0,
1956                 0x40300, 0x4033c,
1957                 0x403f8, 0x403fc,
1958                 0x41304, 0x413c4,
1959                 0x41400, 0x4140c,
1960                 0x41414, 0x4141c,
1961                 0x41480, 0x414d0,
1962                 0x44000, 0x44054,
1963                 0x4405c, 0x44078,
1964                 0x440c0, 0x44174,
1965                 0x44180, 0x441ac,
1966                 0x441b4, 0x441b8,
1967                 0x441c0, 0x44254,
1968                 0x4425c, 0x44278,
1969                 0x442c0, 0x44374,
1970                 0x44380, 0x443ac,
1971                 0x443b4, 0x443b8,
1972                 0x443c0, 0x44454,
1973                 0x4445c, 0x44478,
1974                 0x444c0, 0x44574,
1975                 0x44580, 0x445ac,
1976                 0x445b4, 0x445b8,
1977                 0x445c0, 0x44654,
1978                 0x4465c, 0x44678,
1979                 0x446c0, 0x44774,
1980                 0x44780, 0x447ac,
1981                 0x447b4, 0x447b8,
1982                 0x447c0, 0x44854,
1983                 0x4485c, 0x44878,
1984                 0x448c0, 0x44974,
1985                 0x44980, 0x449ac,
1986                 0x449b4, 0x449b8,
1987                 0x449c0, 0x449fc,
1988                 0x45000, 0x45004,
1989                 0x45010, 0x45030,
1990                 0x45040, 0x45060,
1991                 0x45068, 0x45068,
1992                 0x45080, 0x45084,
1993                 0x450a0, 0x450b0,
1994                 0x45200, 0x45204,
1995                 0x45210, 0x45230,
1996                 0x45240, 0x45260,
1997                 0x45268, 0x45268,
1998                 0x45280, 0x45284,
1999                 0x452a0, 0x452b0,
2000                 0x460c0, 0x460e4,
2001                 0x47000, 0x4703c,
2002                 0x47044, 0x4708c,
2003                 0x47200, 0x47250,
2004                 0x47400, 0x47408,
2005                 0x47414, 0x47420,
2006                 0x47600, 0x47618,
2007                 0x47800, 0x47814,
2008                 0x48000, 0x4800c,
2009                 0x48040, 0x48050,
2010                 0x48060, 0x48068,
2011                 0x4807c, 0x4808c,
2012                 0x48094, 0x480b0,
2013                 0x480c0, 0x48144,
2014                 0x48180, 0x4818c,
2015                 0x48200, 0x48254,
2016                 0x48260, 0x48264,
2017                 0x48270, 0x48288,
2018                 0x48290, 0x48298,
2019                 0x482ac, 0x482c8,
2020                 0x482d0, 0x482e0,
2021                 0x482f0, 0x482f0,
2022                 0x48300, 0x4833c,
2023                 0x483f8, 0x483fc,
2024                 0x49304, 0x493c4,
2025                 0x49400, 0x4940c,
2026                 0x49414, 0x4941c,
2027                 0x49480, 0x494d0,
2028                 0x4c000, 0x4c054,
2029                 0x4c05c, 0x4c078,
2030                 0x4c0c0, 0x4c174,
2031                 0x4c180, 0x4c1ac,
2032                 0x4c1b4, 0x4c1b8,
2033                 0x4c1c0, 0x4c254,
2034                 0x4c25c, 0x4c278,
2035                 0x4c2c0, 0x4c374,
2036                 0x4c380, 0x4c3ac,
2037                 0x4c3b4, 0x4c3b8,
2038                 0x4c3c0, 0x4c454,
2039                 0x4c45c, 0x4c478,
2040                 0x4c4c0, 0x4c574,
2041                 0x4c580, 0x4c5ac,
2042                 0x4c5b4, 0x4c5b8,
2043                 0x4c5c0, 0x4c654,
2044                 0x4c65c, 0x4c678,
2045                 0x4c6c0, 0x4c774,
2046                 0x4c780, 0x4c7ac,
2047                 0x4c7b4, 0x4c7b8,
2048                 0x4c7c0, 0x4c854,
2049                 0x4c85c, 0x4c878,
2050                 0x4c8c0, 0x4c974,
2051                 0x4c980, 0x4c9ac,
2052                 0x4c9b4, 0x4c9b8,
2053                 0x4c9c0, 0x4c9fc,
2054                 0x4d000, 0x4d004,
2055                 0x4d010, 0x4d030,
2056                 0x4d040, 0x4d060,
2057                 0x4d068, 0x4d068,
2058                 0x4d080, 0x4d084,
2059                 0x4d0a0, 0x4d0b0,
2060                 0x4d200, 0x4d204,
2061                 0x4d210, 0x4d230,
2062                 0x4d240, 0x4d260,
2063                 0x4d268, 0x4d268,
2064                 0x4d280, 0x4d284,
2065                 0x4d2a0, 0x4d2b0,
2066                 0x4e0c0, 0x4e0e4,
2067                 0x4f000, 0x4f03c,
2068                 0x4f044, 0x4f08c,
2069                 0x4f200, 0x4f250,
2070                 0x4f400, 0x4f408,
2071                 0x4f414, 0x4f420,
2072                 0x4f600, 0x4f618,
2073                 0x4f800, 0x4f814,
2074                 0x50000, 0x50084,
2075                 0x50090, 0x500cc,
2076                 0x50400, 0x50400,
2077                 0x50800, 0x50884,
2078                 0x50890, 0x508cc,
2079                 0x50c00, 0x50c00,
2080                 0x51000, 0x5101c,
2081                 0x51300, 0x51308,
2082         };
2083
2084         static const unsigned int t6_reg_ranges[] = {
2085                 0x1008, 0x101c,
2086                 0x1024, 0x10a8,
2087                 0x10b4, 0x10f8,
2088                 0x1100, 0x1114,
2089                 0x111c, 0x112c,
2090                 0x1138, 0x113c,
2091                 0x1144, 0x114c,
2092                 0x1180, 0x1184,
2093                 0x1190, 0x1194,
2094                 0x11a0, 0x11a4,
2095                 0x11b0, 0x11b4,
2096                 0x11fc, 0x1274,
2097                 0x1280, 0x133c,
2098                 0x1800, 0x18fc,
2099                 0x3000, 0x302c,
2100                 0x3060, 0x30b0,
2101                 0x30b8, 0x30d8,
2102                 0x30e0, 0x30fc,
2103                 0x3140, 0x357c,
2104                 0x35a8, 0x35cc,
2105                 0x35ec, 0x35ec,
2106                 0x3600, 0x5624,
2107                 0x56cc, 0x56ec,
2108                 0x56f4, 0x5720,
2109                 0x5728, 0x575c,
2110                 0x580c, 0x5814,
2111                 0x5890, 0x589c,
2112                 0x58a4, 0x58ac,
2113                 0x58b8, 0x58bc,
2114                 0x5940, 0x595c,
2115                 0x5980, 0x598c,
2116                 0x59b0, 0x59c8,
2117                 0x59d0, 0x59dc,
2118                 0x59fc, 0x5a18,
2119                 0x5a60, 0x5a6c,
2120                 0x5a80, 0x5a8c,
2121                 0x5a94, 0x5a9c,
2122                 0x5b94, 0x5bfc,
2123                 0x5c10, 0x5e48,
2124                 0x5e50, 0x5e94,
2125                 0x5ea0, 0x5eb0,
2126                 0x5ec0, 0x5ec0,
2127                 0x5ec8, 0x5ed0,
2128                 0x5ee0, 0x5ee0,
2129                 0x5ef0, 0x5ef0,
2130                 0x5f00, 0x5f00,
2131                 0x6000, 0x6020,
2132                 0x6028, 0x6040,
2133                 0x6058, 0x609c,
2134                 0x60a8, 0x619c,
2135                 0x7700, 0x7798,
2136                 0x77c0, 0x7880,
2137                 0x78cc, 0x78fc,
2138                 0x7b00, 0x7b58,
2139                 0x7b60, 0x7b84,
2140                 0x7b8c, 0x7c54,
2141                 0x7d00, 0x7d38,
2142                 0x7d40, 0x7d84,
2143                 0x7d8c, 0x7ddc,
2144                 0x7de4, 0x7e04,
2145                 0x7e10, 0x7e1c,
2146                 0x7e24, 0x7e38,
2147                 0x7e40, 0x7e44,
2148                 0x7e4c, 0x7e78,
2149                 0x7e80, 0x7edc,
2150                 0x7ee8, 0x7efc,
2151                 0x8dc0, 0x8de4,
2152                 0x8df8, 0x8e04,
2153                 0x8e10, 0x8e84,
2154                 0x8ea0, 0x8f88,
2155                 0x8fb8, 0x9058,
2156                 0x9060, 0x9060,
2157                 0x9068, 0x90f8,
2158                 0x9100, 0x9124,
2159                 0x9400, 0x9470,
2160                 0x9600, 0x9600,
2161                 0x9608, 0x9638,
2162                 0x9640, 0x9704,
2163                 0x9710, 0x971c,
2164                 0x9800, 0x9808,
2165                 0x9820, 0x983c,
2166                 0x9850, 0x9864,
2167                 0x9c00, 0x9c6c,
2168                 0x9c80, 0x9cec,
2169                 0x9d00, 0x9d6c,
2170                 0x9d80, 0x9dec,
2171                 0x9e00, 0x9e6c,
2172                 0x9e80, 0x9eec,
2173                 0x9f00, 0x9f6c,
2174                 0x9f80, 0xa020,
2175                 0xd004, 0xd03c,
2176                 0xd100, 0xd118,
2177                 0xd200, 0xd214,
2178                 0xd220, 0xd234,
2179                 0xd240, 0xd254,
2180                 0xd260, 0xd274,
2181                 0xd280, 0xd294,
2182                 0xd2a0, 0xd2b4,
2183                 0xd2c0, 0xd2d4,
2184                 0xd2e0, 0xd2f4,
2185                 0xd300, 0xd31c,
2186                 0xdfc0, 0xdfe0,
2187                 0xe000, 0xf008,
2188                 0xf010, 0xf018,
2189                 0xf020, 0xf028,
2190                 0x11000, 0x11014,
2191                 0x11048, 0x1106c,
2192                 0x11074, 0x11088,
2193                 0x11098, 0x11120,
2194                 0x1112c, 0x1117c,
2195                 0x11190, 0x112e0,
2196                 0x11300, 0x1130c,
2197                 0x12000, 0x1206c,
2198                 0x19040, 0x1906c,
2199                 0x19078, 0x19080,
2200                 0x1908c, 0x190e8,
2201                 0x190f0, 0x190f8,
2202                 0x19100, 0x19110,
2203                 0x19120, 0x19124,
2204                 0x19150, 0x19194,
2205                 0x1919c, 0x191b0,
2206                 0x191d0, 0x191e8,
2207                 0x19238, 0x19290,
2208                 0x192a4, 0x192b0,
2209                 0x192bc, 0x192bc,
2210                 0x19348, 0x1934c,
2211                 0x193f8, 0x19418,
2212                 0x19420, 0x19428,
2213                 0x19430, 0x19444,
2214                 0x1944c, 0x1946c,
2215                 0x19474, 0x19474,
2216                 0x19490, 0x194cc,
2217                 0x194f0, 0x194f8,
2218                 0x19c00, 0x19c48,
2219                 0x19c50, 0x19c80,
2220                 0x19c94, 0x19c98,
2221                 0x19ca0, 0x19cbc,
2222                 0x19ce4, 0x19ce4,
2223                 0x19cf0, 0x19cf8,
2224                 0x19d00, 0x19d28,
2225                 0x19d50, 0x19d78,
2226                 0x19d94, 0x19d98,
2227                 0x19da0, 0x19dc8,
2228                 0x19df0, 0x19e10,
2229                 0x19e50, 0x19e6c,
2230                 0x19ea0, 0x19ebc,
2231                 0x19ec4, 0x19ef4,
2232                 0x19f04, 0x19f2c,
2233                 0x19f34, 0x19f34,
2234                 0x19f40, 0x19f50,
2235                 0x19f90, 0x19fac,
2236                 0x19fc4, 0x19fc8,
2237                 0x19fd0, 0x19fe4,
2238                 0x1a000, 0x1a004,
2239                 0x1a010, 0x1a06c,
2240                 0x1a0b0, 0x1a0e4,
2241                 0x1a0ec, 0x1a0f8,
2242                 0x1a100, 0x1a108,
2243                 0x1a114, 0x1a120,
2244                 0x1a128, 0x1a130,
2245                 0x1a138, 0x1a138,
2246                 0x1a190, 0x1a1c4,
2247                 0x1a1fc, 0x1a1fc,
2248                 0x1e008, 0x1e00c,
2249                 0x1e040, 0x1e044,
2250                 0x1e04c, 0x1e04c,
2251                 0x1e284, 0x1e290,
2252                 0x1e2c0, 0x1e2c0,
2253                 0x1e2e0, 0x1e2e0,
2254                 0x1e300, 0x1e384,
2255                 0x1e3c0, 0x1e3c8,
2256                 0x1e408, 0x1e40c,
2257                 0x1e440, 0x1e444,
2258                 0x1e44c, 0x1e44c,
2259                 0x1e684, 0x1e690,
2260                 0x1e6c0, 0x1e6c0,
2261                 0x1e6e0, 0x1e6e0,
2262                 0x1e700, 0x1e784,
2263                 0x1e7c0, 0x1e7c8,
2264                 0x1e808, 0x1e80c,
2265                 0x1e840, 0x1e844,
2266                 0x1e84c, 0x1e84c,
2267                 0x1ea84, 0x1ea90,
2268                 0x1eac0, 0x1eac0,
2269                 0x1eae0, 0x1eae0,
2270                 0x1eb00, 0x1eb84,
2271                 0x1ebc0, 0x1ebc8,
2272                 0x1ec08, 0x1ec0c,
2273                 0x1ec40, 0x1ec44,
2274                 0x1ec4c, 0x1ec4c,
2275                 0x1ee84, 0x1ee90,
2276                 0x1eec0, 0x1eec0,
2277                 0x1eee0, 0x1eee0,
2278                 0x1ef00, 0x1ef84,
2279                 0x1efc0, 0x1efc8,
2280                 0x1f008, 0x1f00c,
2281                 0x1f040, 0x1f044,
2282                 0x1f04c, 0x1f04c,
2283                 0x1f284, 0x1f290,
2284                 0x1f2c0, 0x1f2c0,
2285                 0x1f2e0, 0x1f2e0,
2286                 0x1f300, 0x1f384,
2287                 0x1f3c0, 0x1f3c8,
2288                 0x1f408, 0x1f40c,
2289                 0x1f440, 0x1f444,
2290                 0x1f44c, 0x1f44c,
2291                 0x1f684, 0x1f690,
2292                 0x1f6c0, 0x1f6c0,
2293                 0x1f6e0, 0x1f6e0,
2294                 0x1f700, 0x1f784,
2295                 0x1f7c0, 0x1f7c8,
2296                 0x1f808, 0x1f80c,
2297                 0x1f840, 0x1f844,
2298                 0x1f84c, 0x1f84c,
2299                 0x1fa84, 0x1fa90,
2300                 0x1fac0, 0x1fac0,
2301                 0x1fae0, 0x1fae0,
2302                 0x1fb00, 0x1fb84,
2303                 0x1fbc0, 0x1fbc8,
2304                 0x1fc08, 0x1fc0c,
2305                 0x1fc40, 0x1fc44,
2306                 0x1fc4c, 0x1fc4c,
2307                 0x1fe84, 0x1fe90,
2308                 0x1fec0, 0x1fec0,
2309                 0x1fee0, 0x1fee0,
2310                 0x1ff00, 0x1ff84,
2311                 0x1ffc0, 0x1ffc8,
2312                 0x30000, 0x30030,
2313                 0x30100, 0x30168,
2314                 0x30190, 0x301a0,
2315                 0x301a8, 0x301b8,
2316                 0x301c4, 0x301c8,
2317                 0x301d0, 0x301d0,
2318                 0x30200, 0x30320,
2319                 0x30400, 0x304b4,
2320                 0x304c0, 0x3052c,
2321                 0x30540, 0x3061c,
2322                 0x30800, 0x308a0,
2323                 0x308c0, 0x30908,
2324                 0x30910, 0x309b8,
2325                 0x30a00, 0x30a04,
2326                 0x30a0c, 0x30a14,
2327                 0x30a1c, 0x30a2c,
2328                 0x30a44, 0x30a50,
2329                 0x30a74, 0x30a74,
2330                 0x30a7c, 0x30afc,
2331                 0x30b08, 0x30c24,
2332                 0x30d00, 0x30d14,
2333                 0x30d1c, 0x30d3c,
2334                 0x30d44, 0x30d4c,
2335                 0x30d54, 0x30d74,
2336                 0x30d7c, 0x30d7c,
2337                 0x30de0, 0x30de0,
2338                 0x30e00, 0x30ed4,
2339                 0x30f00, 0x30fa4,
2340                 0x30fc0, 0x30fc4,
2341                 0x31000, 0x31004,
2342                 0x31080, 0x310fc,
2343                 0x31208, 0x31220,
2344                 0x3123c, 0x31254,
2345                 0x31300, 0x31300,
2346                 0x31308, 0x3131c,
2347                 0x31338, 0x3133c,
2348                 0x31380, 0x31380,
2349                 0x31388, 0x313a8,
2350                 0x313b4, 0x313b4,
2351                 0x31400, 0x31420,
2352                 0x31438, 0x3143c,
2353                 0x31480, 0x31480,
2354                 0x314a8, 0x314a8,
2355                 0x314b0, 0x314b4,
2356                 0x314c8, 0x314d4,
2357                 0x31a40, 0x31a4c,
2358                 0x31af0, 0x31b20,
2359                 0x31b38, 0x31b3c,
2360                 0x31b80, 0x31b80,
2361                 0x31ba8, 0x31ba8,
2362                 0x31bb0, 0x31bb4,
2363                 0x31bc8, 0x31bd4,
2364                 0x32140, 0x3218c,
2365                 0x321f0, 0x321f4,
2366                 0x32200, 0x32200,
2367                 0x32218, 0x32218,
2368                 0x32400, 0x32400,
2369                 0x32408, 0x3241c,
2370                 0x32618, 0x32620,
2371                 0x32664, 0x32664,
2372                 0x326a8, 0x326a8,
2373                 0x326ec, 0x326ec,
2374                 0x32a00, 0x32abc,
2375                 0x32b00, 0x32b18,
2376                 0x32b20, 0x32b38,
2377                 0x32b40, 0x32b58,
2378                 0x32b60, 0x32b78,
2379                 0x32c00, 0x32c00,
2380                 0x32c08, 0x32c3c,
2381                 0x33000, 0x3302c,
2382                 0x33034, 0x33050,
2383                 0x33058, 0x33058,
2384                 0x33060, 0x3308c,
2385                 0x3309c, 0x330ac,
2386                 0x330c0, 0x330c0,
2387                 0x330c8, 0x330d0,
2388                 0x330d8, 0x330e0,
2389                 0x330ec, 0x3312c,
2390                 0x33134, 0x33150,
2391                 0x33158, 0x33158,
2392                 0x33160, 0x3318c,
2393                 0x3319c, 0x331ac,
2394                 0x331c0, 0x331c0,
2395                 0x331c8, 0x331d0,
2396                 0x331d8, 0x331e0,
2397                 0x331ec, 0x33290,
2398                 0x33298, 0x332c4,
2399                 0x332e4, 0x33390,
2400                 0x33398, 0x333c4,
2401                 0x333e4, 0x3342c,
2402                 0x33434, 0x33450,
2403                 0x33458, 0x33458,
2404                 0x33460, 0x3348c,
2405                 0x3349c, 0x334ac,
2406                 0x334c0, 0x334c0,
2407                 0x334c8, 0x334d0,
2408                 0x334d8, 0x334e0,
2409                 0x334ec, 0x3352c,
2410                 0x33534, 0x33550,
2411                 0x33558, 0x33558,
2412                 0x33560, 0x3358c,
2413                 0x3359c, 0x335ac,
2414                 0x335c0, 0x335c0,
2415                 0x335c8, 0x335d0,
2416                 0x335d8, 0x335e0,
2417                 0x335ec, 0x33690,
2418                 0x33698, 0x336c4,
2419                 0x336e4, 0x33790,
2420                 0x33798, 0x337c4,
2421                 0x337e4, 0x337fc,
2422                 0x33814, 0x33814,
2423                 0x33854, 0x33868,
2424                 0x33880, 0x3388c,
2425                 0x338c0, 0x338d0,
2426                 0x338e8, 0x338ec,
2427                 0x33900, 0x3392c,
2428                 0x33934, 0x33950,
2429                 0x33958, 0x33958,
2430                 0x33960, 0x3398c,
2431                 0x3399c, 0x339ac,
2432                 0x339c0, 0x339c0,
2433                 0x339c8, 0x339d0,
2434                 0x339d8, 0x339e0,
2435                 0x339ec, 0x33a90,
2436                 0x33a98, 0x33ac4,
2437                 0x33ae4, 0x33b10,
2438                 0x33b24, 0x33b28,
2439                 0x33b38, 0x33b50,
2440                 0x33bf0, 0x33c10,
2441                 0x33c24, 0x33c28,
2442                 0x33c38, 0x33c50,
2443                 0x33cf0, 0x33cfc,
2444                 0x34000, 0x34030,
2445                 0x34100, 0x34168,
2446                 0x34190, 0x341a0,
2447                 0x341a8, 0x341b8,
2448                 0x341c4, 0x341c8,
2449                 0x341d0, 0x341d0,
2450                 0x34200, 0x34320,
2451                 0x34400, 0x344b4,
2452                 0x344c0, 0x3452c,
2453                 0x34540, 0x3461c,
2454                 0x34800, 0x348a0,
2455                 0x348c0, 0x34908,
2456                 0x34910, 0x349b8,
2457                 0x34a00, 0x34a04,
2458                 0x34a0c, 0x34a14,
2459                 0x34a1c, 0x34a2c,
2460                 0x34a44, 0x34a50,
2461                 0x34a74, 0x34a74,
2462                 0x34a7c, 0x34afc,
2463                 0x34b08, 0x34c24,
2464                 0x34d00, 0x34d14,
2465                 0x34d1c, 0x34d3c,
2466                 0x34d44, 0x34d4c,
2467                 0x34d54, 0x34d74,
2468                 0x34d7c, 0x34d7c,
2469                 0x34de0, 0x34de0,
2470                 0x34e00, 0x34ed4,
2471                 0x34f00, 0x34fa4,
2472                 0x34fc0, 0x34fc4,
2473                 0x35000, 0x35004,
2474                 0x35080, 0x350fc,
2475                 0x35208, 0x35220,
2476                 0x3523c, 0x35254,
2477                 0x35300, 0x35300,
2478                 0x35308, 0x3531c,
2479                 0x35338, 0x3533c,
2480                 0x35380, 0x35380,
2481                 0x35388, 0x353a8,
2482                 0x353b4, 0x353b4,
2483                 0x35400, 0x35420,
2484                 0x35438, 0x3543c,
2485                 0x35480, 0x35480,
2486                 0x354a8, 0x354a8,
2487                 0x354b0, 0x354b4,
2488                 0x354c8, 0x354d4,
2489                 0x35a40, 0x35a4c,
2490                 0x35af0, 0x35b20,
2491                 0x35b38, 0x35b3c,
2492                 0x35b80, 0x35b80,
2493                 0x35ba8, 0x35ba8,
2494                 0x35bb0, 0x35bb4,
2495                 0x35bc8, 0x35bd4,
2496                 0x36140, 0x3618c,
2497                 0x361f0, 0x361f4,
2498                 0x36200, 0x36200,
2499                 0x36218, 0x36218,
2500                 0x36400, 0x36400,
2501                 0x36408, 0x3641c,
2502                 0x36618, 0x36620,
2503                 0x36664, 0x36664,
2504                 0x366a8, 0x366a8,
2505                 0x366ec, 0x366ec,
2506                 0x36a00, 0x36abc,
2507                 0x36b00, 0x36b18,
2508                 0x36b20, 0x36b38,
2509                 0x36b40, 0x36b58,
2510                 0x36b60, 0x36b78,
2511                 0x36c00, 0x36c00,
2512                 0x36c08, 0x36c3c,
2513                 0x37000, 0x3702c,
2514                 0x37034, 0x37050,
2515                 0x37058, 0x37058,
2516                 0x37060, 0x3708c,
2517                 0x3709c, 0x370ac,
2518                 0x370c0, 0x370c0,
2519                 0x370c8, 0x370d0,
2520                 0x370d8, 0x370e0,
2521                 0x370ec, 0x3712c,
2522                 0x37134, 0x37150,
2523                 0x37158, 0x37158,
2524                 0x37160, 0x3718c,
2525                 0x3719c, 0x371ac,
2526                 0x371c0, 0x371c0,
2527                 0x371c8, 0x371d0,
2528                 0x371d8, 0x371e0,
2529                 0x371ec, 0x37290,
2530                 0x37298, 0x372c4,
2531                 0x372e4, 0x37390,
2532                 0x37398, 0x373c4,
2533                 0x373e4, 0x3742c,
2534                 0x37434, 0x37450,
2535                 0x37458, 0x37458,
2536                 0x37460, 0x3748c,
2537                 0x3749c, 0x374ac,
2538                 0x374c0, 0x374c0,
2539                 0x374c8, 0x374d0,
2540                 0x374d8, 0x374e0,
2541                 0x374ec, 0x3752c,
2542                 0x37534, 0x37550,
2543                 0x37558, 0x37558,
2544                 0x37560, 0x3758c,
2545                 0x3759c, 0x375ac,
2546                 0x375c0, 0x375c0,
2547                 0x375c8, 0x375d0,
2548                 0x375d8, 0x375e0,
2549                 0x375ec, 0x37690,
2550                 0x37698, 0x376c4,
2551                 0x376e4, 0x37790,
2552                 0x37798, 0x377c4,
2553                 0x377e4, 0x377fc,
2554                 0x37814, 0x37814,
2555                 0x37854, 0x37868,
2556                 0x37880, 0x3788c,
2557                 0x378c0, 0x378d0,
2558                 0x378e8, 0x378ec,
2559                 0x37900, 0x3792c,
2560                 0x37934, 0x37950,
2561                 0x37958, 0x37958,
2562                 0x37960, 0x3798c,
2563                 0x3799c, 0x379ac,
2564                 0x379c0, 0x379c0,
2565                 0x379c8, 0x379d0,
2566                 0x379d8, 0x379e0,
2567                 0x379ec, 0x37a90,
2568                 0x37a98, 0x37ac4,
2569                 0x37ae4, 0x37b10,
2570                 0x37b24, 0x37b28,
2571                 0x37b38, 0x37b50,
2572                 0x37bf0, 0x37c10,
2573                 0x37c24, 0x37c28,
2574                 0x37c38, 0x37c50,
2575                 0x37cf0, 0x37cfc,
2576                 0x40040, 0x40040,
2577                 0x40080, 0x40084,
2578                 0x40100, 0x40100,
2579                 0x40140, 0x401bc,
2580                 0x40200, 0x40214,
2581                 0x40228, 0x40228,
2582                 0x40240, 0x40258,
2583                 0x40280, 0x40280,
2584                 0x40304, 0x40304,
2585                 0x40330, 0x4033c,
2586                 0x41304, 0x413c8,
2587                 0x413d0, 0x413dc,
2588                 0x413f0, 0x413f0,
2589                 0x41400, 0x4140c,
2590                 0x41414, 0x4141c,
2591                 0x41480, 0x414d0,
2592                 0x44000, 0x4407c,
2593                 0x440c0, 0x441ac,
2594                 0x441b4, 0x4427c,
2595                 0x442c0, 0x443ac,
2596                 0x443b4, 0x4447c,
2597                 0x444c0, 0x445ac,
2598                 0x445b4, 0x4467c,
2599                 0x446c0, 0x447ac,
2600                 0x447b4, 0x4487c,
2601                 0x448c0, 0x449ac,
2602                 0x449b4, 0x44a7c,
2603                 0x44ac0, 0x44bac,
2604                 0x44bb4, 0x44c7c,
2605                 0x44cc0, 0x44dac,
2606                 0x44db4, 0x44e7c,
2607                 0x44ec0, 0x44fac,
2608                 0x44fb4, 0x4507c,
2609                 0x450c0, 0x451ac,
2610                 0x451b4, 0x451fc,
2611                 0x45800, 0x45804,
2612                 0x45810, 0x45830,
2613                 0x45840, 0x45860,
2614                 0x45868, 0x45868,
2615                 0x45880, 0x45884,
2616                 0x458a0, 0x458b0,
2617                 0x45a00, 0x45a04,
2618                 0x45a10, 0x45a30,
2619                 0x45a40, 0x45a60,
2620                 0x45a68, 0x45a68,
2621                 0x45a80, 0x45a84,
2622                 0x45aa0, 0x45ab0,
2623                 0x460c0, 0x460e4,
2624                 0x47000, 0x4703c,
2625                 0x47044, 0x4708c,
2626                 0x47200, 0x47250,
2627                 0x47400, 0x47408,
2628                 0x47414, 0x47420,
2629                 0x47600, 0x47618,
2630                 0x47800, 0x47814,
2631                 0x47820, 0x4782c,
2632                 0x50000, 0x50084,
2633                 0x50090, 0x500cc,
2634                 0x50300, 0x50384,
2635                 0x50400, 0x50400,
2636                 0x50800, 0x50884,
2637                 0x50890, 0x508cc,
2638                 0x50b00, 0x50b84,
2639                 0x50c00, 0x50c00,
2640                 0x51000, 0x51020,
2641                 0x51028, 0x510b0,
2642                 0x51300, 0x51324,
2643         };
2644
2645         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646         const unsigned int *reg_ranges;
2647         int reg_ranges_size, range;
2648         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2649
2650         /* Select the right set of register ranges to dump depending on the
2651          * adapter chip type.
2652          */
2653         switch (chip_version) {
2654         case CHELSIO_T4:
2655                 reg_ranges = t4_reg_ranges;
2656                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657                 break;
2658
2659         case CHELSIO_T5:
2660                 reg_ranges = t5_reg_ranges;
2661                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662                 break;
2663
2664         case CHELSIO_T6:
2665                 reg_ranges = t6_reg_ranges;
2666                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667                 break;
2668
2669         default:
2670                 dev_err(adap->pdev_dev,
2671                         "Unsupported chip version %d\n", chip_version);
2672                 return;
2673         }
2674
2675         /* Clear the register buffer and insert the appropriate register
2676          * values selected by the above register ranges.
2677          */
2678         memset(buf, 0, buf_size);
2679         for (range = 0; range < reg_ranges_size; range += 2) {
2680                 unsigned int reg = reg_ranges[range];
2681                 unsigned int last_reg = reg_ranges[range + 1];
2682                 u32 *bufp = (u32 *)((char *)buf + reg);
2683
2684                 /* Iterate across the register range filling in the register
2685                  * buffer but don't write past the end of the register buffer.
2686                  */
2687                 while (reg <= last_reg && bufp < buf_end) {
2688                         *bufp++ = t4_read_reg(adap, reg);
2689                         reg += sizeof(u32);
2690                 }
2691         }
2692 }
2693
2694 #define EEPROM_STAT_ADDR   0x7bfc
2695 #define VPD_BASE           0x400
2696 #define VPD_BASE_OLD       0
2697 #define VPD_LEN            1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2699
2700 /**
2701  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702  * @phys_addr: the physical EEPROM address
2703  * @fn: the PCI function number
2704  * @sz: size of function-specific area
2705  *
2706  * Translate a physical EEPROM address to virtual.  The first 1K is
2707  * accessed through virtual addresses starting at 31K, the rest is
2708  * accessed through virtual addresses starting at 0.
2709  *
2710  * The mapping is as follows:
2711  * [0..1K) -> [31K..32K)
2712  * [1K..1K+A) -> [31K-A..31K)
2713  * [1K+A..ES) -> [0..ES-A-1K)
2714  *
2715  * where A = @fn * @sz, and ES = EEPROM size.
2716  */
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2718 {
2719         fn *= sz;
2720         if (phys_addr < 1024)
2721                 return phys_addr + (31 << 10);
2722         if (phys_addr < 1024 + fn)
2723                 return 31744 - fn + phys_addr - 1024;
2724         if (phys_addr < EEPROMSIZE)
2725                 return phys_addr - 1024 - fn;
2726         return -EINVAL;
2727 }
2728
2729 /**
2730  *      t4_seeprom_wp - enable/disable EEPROM write protection
2731  *      @adapter: the adapter
2732  *      @enable: whether to enable or disable write protection
2733  *
2734  *      Enables or disables write protection on the serial EEPROM.
2735  */
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2737 {
2738         unsigned int v = enable ? 0xc : 0;
2739         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740         return ret < 0 ? ret : 0;
2741 }
2742
2743 /**
2744  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745  *      @adapter: adapter to read
2746  *      @p: where to store the parameters
2747  *
2748  *      Reads card parameters stored in VPD EEPROM.
2749  */
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2751 {
2752         int i, ret = 0, addr;
2753         int ec, sn, pn, na;
2754         u8 *vpd, csum;
2755         unsigned int vpdr_len, kw_offset, id_len;
2756
2757         vpd = vmalloc(VPD_LEN);
2758         if (!vpd)
2759                 return -ENOMEM;
2760
2761         /* Card information normally starts at VPD_BASE but early cards had
2762          * it at 0.
2763          */
2764         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765         if (ret < 0)
2766                 goto out;
2767
2768         /* The VPD shall have a unique identifier specified by the PCI SIG.
2769          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771          * is expected to automatically put this entry at the
2772          * beginning of the VPD.
2773          */
2774         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2775
2776         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777         if (ret < 0)
2778                 goto out;
2779
2780         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782                 ret = -EINVAL;
2783                 goto out;
2784         }
2785
2786         id_len = pci_vpd_lrdt_size(vpd);
2787         if (id_len > ID_LEN)
2788                 id_len = ID_LEN;
2789
2790         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791         if (i < 0) {
2792                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793                 ret = -EINVAL;
2794                 goto out;
2795         }
2796
2797         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799         if (vpdr_len + kw_offset > VPD_LEN) {
2800                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801                 ret = -EINVAL;
2802                 goto out;
2803         }
2804
2805 #define FIND_VPD_KW(var, name) do { \
2806         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807         if (var < 0) { \
2808                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809                 ret = -EINVAL; \
2810                 goto out; \
2811         } \
2812         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2814
2815         FIND_VPD_KW(i, "RV");
2816         for (csum = 0; i >= 0; i--)
2817                 csum += vpd[i];
2818
2819         if (csum) {
2820                 dev_err(adapter->pdev_dev,
2821                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2822                 ret = -EINVAL;
2823                 goto out;
2824         }
2825
2826         FIND_VPD_KW(ec, "EC");
2827         FIND_VPD_KW(sn, "SN");
2828         FIND_VPD_KW(pn, "PN");
2829         FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2831
2832         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833         strim(p->id);
2834         memcpy(p->ec, vpd + ec, EC_LEN);
2835         strim(p->ec);
2836         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838         strim(p->sn);
2839         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841         strim(p->pn);
2842         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843         strim((char *)p->na);
2844
2845 out:
2846         vfree(vpd);
2847         return ret < 0 ? ret : 0;
2848 }
2849
2850 /**
2851  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852  *      @adapter: adapter to read
2853  *      @p: where to store the parameters
2854  *
2855  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2856  *      Clock.  This can only be called after a connection to the firmware
2857  *      is established.
2858  */
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2860 {
2861         u32 cclk_param, cclk_val;
2862         int ret;
2863
2864         /* Grab the raw VPD parameters.
2865          */
2866         ret = t4_get_raw_vpd_params(adapter, p);
2867         if (ret)
2868                 return ret;
2869
2870         /* Ask firmware for the Core Clock since it knows how to translate the
2871          * Reference Clock ('V2') VPD field into a Core Clock value ...
2872          */
2873         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876                               1, &cclk_param, &cclk_val);
2877
2878         if (ret)
2879                 return ret;
2880         p->cclk = cclk_val;
2881
2882         return 0;
2883 }
2884
2885 /* serial flash and firmware constants */
2886 enum {
2887         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2888
2889         /* flash command opcodes */
2890         SF_PROG_PAGE    = 2,          /* program page */
2891         SF_WR_DISABLE   = 4,          /* disable writes */
2892         SF_RD_STATUS    = 5,          /* read status register */
2893         SF_WR_ENABLE    = 6,          /* enable writes */
2894         SF_RD_DATA_FAST = 0xb,        /* read flash */
2895         SF_RD_ID        = 0x9f,       /* read ID */
2896         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2897 };
2898
2899 /**
2900  *      sf1_read - read data from the serial flash
2901  *      @adapter: the adapter
2902  *      @byte_cnt: number of bytes to read
2903  *      @cont: whether another operation will be chained
2904  *      @lock: whether to lock SF for PL access only
2905  *      @valp: where to store the read data
2906  *
2907  *      Reads up to 4 bytes of data from the serial flash.  The location of
2908  *      the read needs to be specified prior to calling this by issuing the
2909  *      appropriate commands to the serial flash.
2910  */
2911 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2912                     int lock, u32 *valp)
2913 {
2914         int ret;
2915
2916         if (!byte_cnt || byte_cnt > 4)
2917                 return -EINVAL;
2918         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2919                 return -EBUSY;
2920         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2921                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2922         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2923         if (!ret)
2924                 *valp = t4_read_reg(adapter, SF_DATA_A);
2925         return ret;
2926 }
2927
2928 /**
2929  *      sf1_write - write data to the serial flash
2930  *      @adapter: the adapter
2931  *      @byte_cnt: number of bytes to write
2932  *      @cont: whether another operation will be chained
2933  *      @lock: whether to lock SF for PL access only
2934  *      @val: value to write
2935  *
2936  *      Writes up to 4 bytes of data to the serial flash.  The location of
2937  *      the write needs to be specified prior to calling this by issuing the
2938  *      appropriate commands to the serial flash.
2939  */
2940 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2941                      int lock, u32 val)
2942 {
2943         if (!byte_cnt || byte_cnt > 4)
2944                 return -EINVAL;
2945         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2946                 return -EBUSY;
2947         t4_write_reg(adapter, SF_DATA_A, val);
2948         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2949                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2950         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2951 }
2952
2953 /**
2954  *      flash_wait_op - wait for a flash operation to complete
2955  *      @adapter: the adapter
2956  *      @attempts: max number of polls of the status register
2957  *      @delay: delay between polls in ms
2958  *
2959  *      Wait for a flash operation to complete by polling the status register.
2960  */
2961 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2962 {
2963         int ret;
2964         u32 status;
2965
2966         while (1) {
2967                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2968                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2969                         return ret;
2970                 if (!(status & 1))
2971                         return 0;
2972                 if (--attempts == 0)
2973                         return -EAGAIN;
2974                 if (delay)
2975                         msleep(delay);
2976         }
2977 }
2978
2979 /**
2980  *      t4_read_flash - read words from serial flash
2981  *      @adapter: the adapter
2982  *      @addr: the start address for the read
2983  *      @nwords: how many 32-bit words to read
2984  *      @data: where to store the read data
2985  *      @byte_oriented: whether to store data as bytes or as words
2986  *
2987  *      Read the specified number of 32-bit words from the serial flash.
2988  *      If @byte_oriented is set the read data is stored as a byte array
2989  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
2990  *      natural endianness.
2991  */
2992 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2993                   unsigned int nwords, u32 *data, int byte_oriented)
2994 {
2995         int ret;
2996
2997         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2998                 return -EINVAL;
2999
3000         addr = swab32(addr) | SF_RD_DATA_FAST;
3001
3002         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3003             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3004                 return ret;
3005
3006         for ( ; nwords; nwords--, data++) {
3007                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3008                 if (nwords == 1)
3009                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3010                 if (ret)
3011                         return ret;
3012                 if (byte_oriented)
3013                         *data = (__force __u32)(cpu_to_be32(*data));
3014         }
3015         return 0;
3016 }
3017
3018 /**
3019  *      t4_write_flash - write up to a page of data to the serial flash
3020  *      @adapter: the adapter
3021  *      @addr: the start address to write
3022  *      @n: length of data to write in bytes
3023  *      @data: the data to write
3024  *
3025  *      Writes up to a page of data (256 bytes) to the serial flash starting
3026  *      at the given address.  All the data must be written to the same page.
3027  */
3028 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3029                           unsigned int n, const u8 *data)
3030 {
3031         int ret;
3032         u32 buf[64];
3033         unsigned int i, c, left, val, offset = addr & 0xff;
3034
3035         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3036                 return -EINVAL;
3037
3038         val = swab32(addr) | SF_PROG_PAGE;
3039
3040         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3041             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3042                 goto unlock;
3043
3044         for (left = n; left; left -= c) {
3045                 c = min(left, 4U);
3046                 for (val = 0, i = 0; i < c; ++i)
3047                         val = (val << 8) + *data++;
3048
3049                 ret = sf1_write(adapter, c, c != left, 1, val);
3050                 if (ret)
3051                         goto unlock;
3052         }
3053         ret = flash_wait_op(adapter, 8, 1);
3054         if (ret)
3055                 goto unlock;
3056
3057         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3058
3059         /* Read the page to verify the write succeeded */
3060         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3061         if (ret)
3062                 return ret;
3063
3064         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3065                 dev_err(adapter->pdev_dev,
3066                         "failed to correctly write the flash page at %#x\n",
3067                         addr);
3068                 return -EIO;
3069         }
3070         return 0;
3071
3072 unlock:
3073         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3074         return ret;
3075 }
3076
3077 /**
3078  *      t4_get_fw_version - read the firmware version
3079  *      @adapter: the adapter
3080  *      @vers: where to place the version
3081  *
3082  *      Reads the FW version from flash.
3083  */
3084 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3085 {
3086         return t4_read_flash(adapter, FLASH_FW_START +
3087                              offsetof(struct fw_hdr, fw_ver), 1,
3088                              vers, 0);
3089 }
3090
3091 /**
3092  *      t4_get_bs_version - read the firmware bootstrap version
3093  *      @adapter: the adapter
3094  *      @vers: where to place the version
3095  *
3096  *      Reads the FW Bootstrap version from flash.
3097  */
3098 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3099 {
3100         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3101                              offsetof(struct fw_hdr, fw_ver), 1,
3102                              vers, 0);
3103 }
3104
3105 /**
3106  *      t4_get_tp_version - read the TP microcode version
3107  *      @adapter: the adapter
3108  *      @vers: where to place the version
3109  *
3110  *      Reads the TP microcode version from flash.
3111  */
3112 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3113 {
3114         return t4_read_flash(adapter, FLASH_FW_START +
3115                              offsetof(struct fw_hdr, tp_microcode_ver),
3116                              1, vers, 0);
3117 }
3118
3119 /**
3120  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3121  *      @adapter: the adapter
3122  *      @vers: where to place the version
3123  *
3124  *      Reads the Expansion ROM header from FLASH and returns the version
3125  *      number (if present) through the @vers return value pointer.  We return
3126  *      this in the Firmware Version Format since it's convenient.  Return
3127  *      0 on success, -ENOENT if no Expansion ROM is present.
3128  */
3129 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3130 {
3131         struct exprom_header {
3132                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3133                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3134         } *hdr;
3135         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3136                                            sizeof(u32))];
3137         int ret;
3138
3139         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3140                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3141                             0);
3142         if (ret)
3143                 return ret;
3144
3145         hdr = (struct exprom_header *)exprom_header_buf;
3146         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3147                 return -ENOENT;
3148
3149         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3150                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3151                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3152                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3153         return 0;
3154 }
3155
3156 /**
3157  *      t4_get_vpd_version - return the VPD version
3158  *      @adapter: the adapter
3159  *      @vers: where to place the version
3160  *
3161  *      Reads the VPD via the Firmware interface (thus this can only be called
3162  *      once we're ready to issue Firmware commands).  The format of the
3163  *      VPD version is adapter specific.  Returns 0 on success, an error on
3164  *      failure.
3165  *
3166  *      Note that early versions of the Firmware didn't include the ability
3167  *      to retrieve the VPD version, so we zero-out the return-value parameter
3168  *      in that case to avoid leaving it with garbage in it.
3169  *
3170  *      Also note that the Firmware will return its cached copy of the VPD
3171  *      Revision ID, not the actual Revision ID as written in the Serial
3172  *      EEPROM.  This is only an issue if a new VPD has been written and the
3173  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3174  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3175  *      if the Host Driver will be performing a full adapter initialization.
3176  */
3177 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3178 {
3179         u32 vpdrev_param;
3180         int ret;
3181
3182         vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3183                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3184         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3185                               1, &vpdrev_param, vers);
3186         if (ret)
3187                 *vers = 0;
3188         return ret;
3189 }
3190
3191 /**
3192  *      t4_get_scfg_version - return the Serial Configuration version
3193  *      @adapter: the adapter
3194  *      @vers: where to place the version
3195  *
3196  *      Reads the Serial Configuration Version via the Firmware interface
3197  *      (thus this can only be called once we're ready to issue Firmware
3198  *      commands).  The format of the Serial Configuration version is
3199  *      adapter specific.  Returns 0 on success, an error on failure.
3200  *
3201  *      Note that early versions of the Firmware didn't include the ability
3202  *      to retrieve the Serial Configuration version, so we zero-out the
3203  *      return-value parameter in that case to avoid leaving it with
3204  *      garbage in it.
3205  *
3206  *      Also note that the Firmware will return its cached copy of the Serial
3207  *      Initialization Revision ID, not the actual Revision ID as written in
3208  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3209  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3210  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3211  *      been issued if the Host Driver will be performing a full adapter
3212  *      initialization.
3213  */
3214 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3215 {
3216         u32 scfgrev_param;
3217         int ret;
3218
3219         scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3220                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3221         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3222                               1, &scfgrev_param, vers);
3223         if (ret)
3224                 *vers = 0;
3225         return ret;
3226 }
3227
3228 /**
3229  *      t4_get_version_info - extract various chip/firmware version information
3230  *      @adapter: the adapter
3231  *
3232  *      Reads various chip/firmware version numbers and stores them into the
3233  *      adapter Adapter Parameters structure.  If any of the efforts fails
3234  *      the first failure will be returned, but all of the version numbers
3235  *      will be read.
3236  */
3237 int t4_get_version_info(struct adapter *adapter)
3238 {
3239         int ret = 0;
3240
3241         #define FIRST_RET(__getvinfo) \
3242         do { \
3243                 int __ret = __getvinfo; \
3244                 if (__ret && !ret) \
3245                         ret = __ret; \
3246         } while (0)
3247
3248         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3249         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3250         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3251         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3252         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3253         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3254
3255         #undef FIRST_RET
3256         return ret;
3257 }
3258
3259 /**
3260  *      t4_dump_version_info - dump all of the adapter configuration IDs
3261  *      @adapter: the adapter
3262  *
3263  *      Dumps all of the various bits of adapter configuration version/revision
3264  *      IDs information.  This is typically called at some point after
3265  *      t4_get_version_info() has been called.
3266  */
3267 void t4_dump_version_info(struct adapter *adapter)
3268 {
3269         /* Device information */
3270         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3271                  adapter->params.vpd.id,
3272                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
3273         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3274                  adapter->params.vpd.sn, adapter->params.vpd.pn);
3275
3276         /* Firmware Version */
3277         if (!adapter->params.fw_vers)
3278                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3279         else
3280                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3281                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3282                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3283                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3284                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3285
3286         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3287          * Firmware, so dev_info() is more appropriate here.)
3288          */
3289         if (!adapter->params.bs_vers)
3290                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3291         else
3292                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3293                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3294                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3295                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3296                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3297
3298         /* TP Microcode Version */
3299         if (!adapter->params.tp_vers)
3300                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3301         else
3302                 dev_info(adapter->pdev_dev,
3303                          "TP Microcode version: %u.%u.%u.%u\n",
3304                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3305                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3306                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3307                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3308
3309         /* Expansion ROM version */
3310         if (!adapter->params.er_vers)
3311                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3312         else
3313                 dev_info(adapter->pdev_dev,
3314                          "Expansion ROM version: %u.%u.%u.%u\n",
3315                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3316                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3317                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3318                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3319
3320         /* Serial Configuration version */
3321         dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3322                  adapter->params.scfg_vers);
3323
3324         /* VPD Version */
3325         dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3326                  adapter->params.vpd_vers);
3327 }
3328
3329 /**
3330  *      t4_check_fw_version - check if the FW is supported with this driver
3331  *      @adap: the adapter
3332  *
3333  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3334  *      if there's exact match, a negative error if the version could not be
3335  *      read or there's a major version mismatch
3336  */
3337 int t4_check_fw_version(struct adapter *adap)
3338 {
3339         int i, ret, major, minor, micro;
3340         int exp_major, exp_minor, exp_micro;
3341         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3342
3343         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3344         /* Try multiple times before returning error */
3345         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3346                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3347
3348         if (ret)
3349                 return ret;
3350
3351         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3352         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3353         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3354
3355         switch (chip_version) {
3356         case CHELSIO_T4:
3357                 exp_major = T4FW_MIN_VERSION_MAJOR;
3358                 exp_minor = T4FW_MIN_VERSION_MINOR;
3359                 exp_micro = T4FW_MIN_VERSION_MICRO;
3360                 break;
3361         case CHELSIO_T5:
3362                 exp_major = T5FW_MIN_VERSION_MAJOR;
3363                 exp_minor = T5FW_MIN_VERSION_MINOR;
3364                 exp_micro = T5FW_MIN_VERSION_MICRO;
3365                 break;
3366         case CHELSIO_T6:
3367                 exp_major = T6FW_MIN_VERSION_MAJOR;
3368                 exp_minor = T6FW_MIN_VERSION_MINOR;
3369                 exp_micro = T6FW_MIN_VERSION_MICRO;
3370                 break;
3371         default:
3372                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3373                         adap->chip);
3374                 return -EINVAL;
3375         }
3376
3377         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3378             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3379                 dev_err(adap->pdev_dev,
3380                         "Card has firmware version %u.%u.%u, minimum "
3381                         "supported firmware is %u.%u.%u.\n", major, minor,
3382                         micro, exp_major, exp_minor, exp_micro);
3383                 return -EFAULT;
3384         }
3385         return 0;
3386 }
3387
3388 /* Is the given firmware API compatible with the one the driver was compiled
3389  * with?
3390  */
3391 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3392 {
3393
3394         /* short circuit if it's the exact same firmware version */
3395         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3396                 return 1;
3397
3398 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3399         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3400             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3401                 return 1;
3402 #undef SAME_INTF
3403
3404         return 0;
3405 }
3406
3407 /* The firmware in the filesystem is usable, but should it be installed?
3408  * This routine explains itself in detail if it indicates the filesystem
3409  * firmware should be installed.
3410  */
3411 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3412                                 int k, int c)
3413 {
3414         const char *reason;
3415
3416         if (!card_fw_usable) {
3417                 reason = "incompatible or unusable";
3418                 goto install;
3419         }
3420
3421         if (k > c) {
3422                 reason = "older than the version supported with this driver";
3423                 goto install;
3424         }
3425
3426         return 0;
3427
3428 install:
3429         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3430                 "installing firmware %u.%u.%u.%u on card.\n",
3431                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3432                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3433                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3434                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3435
3436         return 1;
3437 }
3438
3439 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3440                const u8 *fw_data, unsigned int fw_size,
3441                struct fw_hdr *card_fw, enum dev_state state,
3442                int *reset)
3443 {
3444         int ret, card_fw_usable, fs_fw_usable;
3445         const struct fw_hdr *fs_fw;
3446         const struct fw_hdr *drv_fw;
3447
3448         drv_fw = &fw_info->fw_hdr;
3449
3450         /* Read the header of the firmware on the card */
3451         ret = -t4_read_flash(adap, FLASH_FW_START,
3452                             sizeof(*card_fw) / sizeof(uint32_t),
3453                             (uint32_t *)card_fw, 1);
3454         if (ret == 0) {
3455                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3456         } else {
3457                 dev_err(adap->pdev_dev,
3458                         "Unable to read card's firmware header: %d\n", ret);
3459                 card_fw_usable = 0;
3460         }
3461
3462         if (fw_data != NULL) {
3463                 fs_fw = (const void *)fw_data;
3464                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3465         } else {
3466                 fs_fw = NULL;
3467                 fs_fw_usable = 0;
3468         }
3469
3470         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3471             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3472                 /* Common case: the firmware on the card is an exact match and
3473                  * the filesystem one is an exact match too, or the filesystem
3474                  * one is absent/incompatible.
3475                  */
3476         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3477                    should_install_fs_fw(adap, card_fw_usable,
3478                                         be32_to_cpu(fs_fw->fw_ver),
3479                                         be32_to_cpu(card_fw->fw_ver))) {
3480                 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3481                                      fw_size, 0);
3482                 if (ret != 0) {
3483                         dev_err(adap->pdev_dev,
3484                                 "failed to install firmware: %d\n", ret);
3485                         goto bye;
3486                 }
3487
3488                 /* Installed successfully, update the cached header too. */
3489                 *card_fw = *fs_fw;
3490                 card_fw_usable = 1;
3491                 *reset = 0;     /* already reset as part of load_fw */
3492         }
3493
3494         if (!card_fw_usable) {
3495                 uint32_t d, c, k;
3496
3497                 d = be32_to_cpu(drv_fw->fw_ver);
3498                 c = be32_to_cpu(card_fw->fw_ver);
3499                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3500
3501                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3502                         "chip state %d, "
3503                         "driver compiled with %d.%d.%d.%d, "
3504                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3505                         state,
3506                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3507                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3508                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3509                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3510                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3511                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3512                 ret = EINVAL;
3513                 goto bye;
3514         }
3515
3516         /* We're using whatever's on the card and it's known to be good. */
3517         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3518         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3519
3520 bye:
3521         return ret;
3522 }
3523
3524 /**
3525  *      t4_flash_erase_sectors - erase a range of flash sectors
3526  *      @adapter: the adapter
3527  *      @start: the first sector to erase
3528  *      @end: the last sector to erase
3529  *
3530  *      Erases the sectors in the given inclusive range.
3531  */
3532 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3533 {
3534         int ret = 0;
3535
3536         if (end >= adapter->params.sf_nsec)
3537                 return -EINVAL;
3538
3539         while (start <= end) {
3540                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3541                     (ret = sf1_write(adapter, 4, 0, 1,
3542                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3543                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3544                         dev_err(adapter->pdev_dev,
3545                                 "erase of flash sector %d failed, error %d\n",
3546                                 start, ret);
3547                         break;
3548                 }
3549                 start++;
3550         }
3551         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3552         return ret;
3553 }
3554
3555 /**
3556  *      t4_flash_cfg_addr - return the address of the flash configuration file
3557  *      @adapter: the adapter
3558  *
3559  *      Return the address within the flash where the Firmware Configuration
3560  *      File is stored.
3561  */
3562 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3563 {
3564         if (adapter->params.sf_size == 0x100000)
3565                 return FLASH_FPGA_CFG_START;
3566         else
3567                 return FLASH_CFG_START;
3568 }
3569
3570 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3571  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3572  * and emit an error message for mismatched firmware to save our caller the
3573  * effort ...
3574  */
3575 static bool t4_fw_matches_chip(const struct adapter *adap,
3576                                const struct fw_hdr *hdr)
3577 {
3578         /* The expression below will return FALSE for any unsupported adapter
3579          * which will keep us "honest" in the future ...
3580          */
3581         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3582             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3583             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3584                 return true;
3585
3586         dev_err(adap->pdev_dev,
3587                 "FW image (%d) is not suitable for this adapter (%d)\n",
3588                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3589         return false;
3590 }
3591
3592 /**
3593  *      t4_load_fw - download firmware
3594  *      @adap: the adapter
3595  *      @fw_data: the firmware image to write
3596  *      @size: image size
3597  *
3598  *      Write the supplied firmware image to the card's serial flash.
3599  */
3600 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3601 {
3602         u32 csum;
3603         int ret, addr;
3604         unsigned int i;
3605         u8 first_page[SF_PAGE_SIZE];
3606         const __be32 *p = (const __be32 *)fw_data;
3607         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3608         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3609         unsigned int fw_start_sec = FLASH_FW_START_SEC;
3610         unsigned int fw_size = FLASH_FW_MAX_SIZE;
3611         unsigned int fw_start = FLASH_FW_START;
3612
3613         if (!size) {
3614                 dev_err(adap->pdev_dev, "FW image has no data\n");
3615                 return -EINVAL;
3616         }
3617         if (size & 511) {
3618                 dev_err(adap->pdev_dev,
3619                         "FW image size not multiple of 512 bytes\n");
3620                 return -EINVAL;
3621         }
3622         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3623                 dev_err(adap->pdev_dev,
3624                         "FW image size differs from size in FW header\n");
3625                 return -EINVAL;
3626         }
3627         if (size > fw_size) {
3628                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3629                         fw_size);
3630                 return -EFBIG;
3631         }
3632         if (!t4_fw_matches_chip(adap, hdr))
3633                 return -EINVAL;
3634
3635         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3636                 csum += be32_to_cpu(p[i]);
3637
3638         if (csum != 0xffffffff) {
3639                 dev_err(adap->pdev_dev,
3640                         "corrupted firmware image, checksum %#x\n", csum);
3641                 return -EINVAL;
3642         }
3643
3644         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3645         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3646         if (ret)
3647                 goto out;
3648
3649         /*
3650          * We write the correct version at the end so the driver can see a bad
3651          * version if the FW write fails.  Start by writing a copy of the
3652          * first page with a bad version.
3653          */
3654         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3655         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3656         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3657         if (ret)
3658                 goto out;
3659
3660         addr = fw_start;
3661         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3662                 addr += SF_PAGE_SIZE;
3663                 fw_data += SF_PAGE_SIZE;
3664                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3665                 if (ret)
3666                         goto out;
3667         }
3668
3669         ret = t4_write_flash(adap,
3670                              fw_start + offsetof(struct fw_hdr, fw_ver),
3671                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3672 out:
3673         if (ret)
3674                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3675                         ret);
3676         else
3677                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3678         return ret;
3679 }
3680
3681 /**
3682  *      t4_phy_fw_ver - return current PHY firmware version
3683  *      @adap: the adapter
3684  *      @phy_fw_ver: return value buffer for PHY firmware version
3685  *
3686  *      Returns the current version of external PHY firmware on the
3687  *      adapter.
3688  */
3689 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3690 {
3691         u32 param, val;
3692         int ret;
3693
3694         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3695                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3696                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3697                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3698         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3699                               &param, &val);
3700         if (ret < 0)
3701                 return ret;
3702         *phy_fw_ver = val;
3703         return 0;
3704 }
3705
3706 /**
3707  *      t4_load_phy_fw - download port PHY firmware
3708  *      @adap: the adapter
3709  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3710  *      @win_lock: the lock to use to guard the memory copy
3711  *      @phy_fw_version: function to check PHY firmware versions
3712  *      @phy_fw_data: the PHY firmware image to write
3713  *      @phy_fw_size: image size
3714  *
3715  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3716  *      @phy_fw_version is supplied, then it will be used to determine if
3717  *      it's necessary to perform the transfer by comparing the version
3718  *      of any existing adapter PHY firmware with that of the passed in
3719  *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3720  *      around the call to t4_memory_rw() which transfers the PHY firmware
3721  *      to the adapter.
3722  *
3723  *      A negative error number will be returned if an error occurs.  If
3724  *      version number support is available and there's no need to upgrade
3725  *      the firmware, 0 will be returned.  If firmware is successfully
3726  *      transferred to the adapter, 1 will be retured.
3727  *
3728  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3729  *      a result, a RESET of the adapter would cause that RAM to lose its
3730  *      contents.  Thus, loading PHY firmware on such adapters must happen
3731  *      after any FW_RESET_CMDs ...
3732  */
3733 int t4_load_phy_fw(struct adapter *adap,
3734                    int win, spinlock_t *win_lock,
3735                    int (*phy_fw_version)(const u8 *, size_t),
3736                    const u8 *phy_fw_data, size_t phy_fw_size)
3737 {
3738         unsigned long mtype = 0, maddr = 0;
3739         u32 param, val;
3740         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3741         int ret;
3742
3743         /* If we have version number support, then check to see if the adapter
3744          * already has up-to-date PHY firmware loaded.
3745          */
3746          if (phy_fw_version) {
3747                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3748                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3749                 if (ret < 0)
3750                         return ret;
3751
3752                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3753                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3754                                 "version %#x\n", cur_phy_fw_ver);
3755                         return 0;
3756                 }
3757         }
3758
3759         /* Ask the firmware where it wants us to copy the PHY firmware image.
3760          * The size of the file requires a special version of the READ coommand
3761          * which will pass the file size via the values field in PARAMS_CMD and
3762          * retrieve the return value from firmware and place it in the same
3763          * buffer values
3764          */
3765         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3766                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3767                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3768                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3769         val = phy_fw_size;
3770         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3771                                  &param, &val, 1, true);
3772         if (ret < 0)
3773                 return ret;
3774         mtype = val >> 8;
3775         maddr = (val & 0xff) << 16;
3776
3777         /* Copy the supplied PHY Firmware image to the adapter memory location
3778          * allocated by the adapter firmware.
3779          */
3780         if (win_lock)
3781                 spin_lock_bh(win_lock);
3782         ret = t4_memory_rw(adap, win, mtype, maddr,
3783                            phy_fw_size, (__be32 *)phy_fw_data,
3784                            T4_MEMORY_WRITE);
3785         if (win_lock)
3786                 spin_unlock_bh(win_lock);
3787         if (ret)
3788                 return ret;
3789
3790         /* Tell the firmware that the PHY firmware image has been written to
3791          * RAM and it can now start copying it over to the PHYs.  The chip
3792          * firmware will RESET the affected PHYs as part of this operation
3793          * leaving them running the new PHY firmware image.
3794          */
3795         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3796                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3797                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3798                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3799         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3800                                     &param, &val, 30000);
3801
3802         /* If we have version number support, then check to see that the new
3803          * firmware got loaded properly.
3804          */
3805         if (phy_fw_version) {
3806                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3807                 if (ret < 0)
3808                         return ret;
3809
3810                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3811                         CH_WARN(adap, "PHY Firmware did not update: "
3812                                 "version on adapter %#x, "
3813                                 "version flashed %#x\n",
3814                                 cur_phy_fw_ver, new_phy_fw_vers);
3815                         return -ENXIO;
3816                 }
3817         }
3818
3819         return 1;
3820 }
3821
3822 /**
3823  *      t4_fwcache - firmware cache operation
3824  *      @adap: the adapter
3825  *      @op  : the operation (flush or flush and invalidate)
3826  */
3827 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3828 {
3829         struct fw_params_cmd c;
3830
3831         memset(&c, 0, sizeof(c));
3832         c.op_to_vfn =
3833                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3834                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3835                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3836                             FW_PARAMS_CMD_VFN_V(0));
3837         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3838         c.param[0].mnem =
3839                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3840                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3841         c.param[0].val = (__force __be32)op;
3842
3843         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3844 }
3845
3846 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3847                         unsigned int *pif_req_wrptr,
3848                         unsigned int *pif_rsp_wrptr)
3849 {
3850         int i, j;
3851         u32 cfg, val, req, rsp;
3852
3853         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3854         if (cfg & LADBGEN_F)
3855                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3856
3857         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3858         req = POLADBGWRPTR_G(val);
3859         rsp = PILADBGWRPTR_G(val);
3860         if (pif_req_wrptr)
3861                 *pif_req_wrptr = req;
3862         if (pif_rsp_wrptr)
3863                 *pif_rsp_wrptr = rsp;
3864
3865         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3866                 for (j = 0; j < 6; j++) {
3867                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3868                                      PILADBGRDPTR_V(rsp));
3869                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3870                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3871                         req++;
3872                         rsp++;
3873                 }
3874                 req = (req + 2) & POLADBGRDPTR_M;
3875                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3876         }
3877         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3878 }
3879
3880 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3881 {
3882         u32 cfg;
3883         int i, j, idx;
3884
3885         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3886         if (cfg & LADBGEN_F)
3887                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3888
3889         for (i = 0; i < CIM_MALA_SIZE; i++) {
3890                 for (j = 0; j < 5; j++) {
3891                         idx = 8 * i + j;
3892                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3893                                      PILADBGRDPTR_V(idx));
3894                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3895                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3896                 }
3897         }
3898         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3899 }
3900
3901 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3902 {
3903         unsigned int i, j;
3904
3905         for (i = 0; i < 8; i++) {
3906                 u32 *p = la_buf + i;
3907
3908                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3909                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3910                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3911                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3912                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3913         }
3914 }
3915
3916 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3917                      FW_PORT_CAP32_ANEG)
3918
3919 /**
3920  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3921  *      @caps16: a 16-bit Port Capabilities value
3922  *
3923  *      Returns the equivalent 32-bit Port Capabilities value.
3924  */
3925 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3926 {
3927         fw_port_cap32_t caps32 = 0;
3928
3929         #define CAP16_TO_CAP32(__cap) \
3930                 do { \
3931                         if (caps16 & FW_PORT_CAP_##__cap) \
3932                                 caps32 |= FW_PORT_CAP32_##__cap; \
3933                 } while (0)
3934
3935         CAP16_TO_CAP32(SPEED_100M);
3936         CAP16_TO_CAP32(SPEED_1G);
3937         CAP16_TO_CAP32(SPEED_25G);
3938         CAP16_TO_CAP32(SPEED_10G);
3939         CAP16_TO_CAP32(SPEED_40G);
3940         CAP16_TO_CAP32(SPEED_100G);
3941         CAP16_TO_CAP32(FC_RX);
3942         CAP16_TO_CAP32(FC_TX);
3943         CAP16_TO_CAP32(ANEG);
3944         CAP16_TO_CAP32(FORCE_PAUSE);
3945         CAP16_TO_CAP32(MDIAUTO);
3946         CAP16_TO_CAP32(MDISTRAIGHT);
3947         CAP16_TO_CAP32(FEC_RS);
3948         CAP16_TO_CAP32(FEC_BASER_RS);
3949         CAP16_TO_CAP32(802_3_PAUSE);
3950         CAP16_TO_CAP32(802_3_ASM_DIR);
3951
3952         #undef CAP16_TO_CAP32
3953
3954         return caps32;
3955 }
3956
3957 /**
3958  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3959  *      @caps32: a 32-bit Port Capabilities value
3960  *
3961  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
3962  *      not all 32-bit Port Capabilities can be represented in the 16-bit
3963  *      Port Capabilities and some fields/values may not make it.
3964  */
3965 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3966 {
3967         fw_port_cap16_t caps16 = 0;
3968
3969         #define CAP32_TO_CAP16(__cap) \
3970                 do { \
3971                         if (caps32 & FW_PORT_CAP32_##__cap) \
3972                                 caps16 |= FW_PORT_CAP_##__cap; \
3973                 } while (0)
3974
3975         CAP32_TO_CAP16(SPEED_100M);
3976         CAP32_TO_CAP16(SPEED_1G);
3977         CAP32_TO_CAP16(SPEED_10G);
3978         CAP32_TO_CAP16(SPEED_25G);
3979         CAP32_TO_CAP16(SPEED_40G);
3980         CAP32_TO_CAP16(SPEED_100G);
3981         CAP32_TO_CAP16(FC_RX);
3982         CAP32_TO_CAP16(FC_TX);
3983         CAP32_TO_CAP16(802_3_PAUSE);
3984         CAP32_TO_CAP16(802_3_ASM_DIR);
3985         CAP32_TO_CAP16(ANEG);
3986         CAP32_TO_CAP16(FORCE_PAUSE);
3987         CAP32_TO_CAP16(MDIAUTO);
3988         CAP32_TO_CAP16(MDISTRAIGHT);
3989         CAP32_TO_CAP16(FEC_RS);
3990         CAP32_TO_CAP16(FEC_BASER_RS);
3991
3992         #undef CAP32_TO_CAP16
3993
3994         return caps16;
3995 }
3996
3997 /* Translate Firmware Port Capabilities Pause specification to Common Code */
3998 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3999 {
4000         enum cc_pause cc_pause = 0;
4001
4002         if (fw_pause & FW_PORT_CAP32_FC_RX)
4003                 cc_pause |= PAUSE_RX;
4004         if (fw_pause & FW_PORT_CAP32_FC_TX)
4005                 cc_pause |= PAUSE_TX;
4006
4007         return cc_pause;
4008 }
4009
4010 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4011 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4012 {
4013         fw_port_cap32_t fw_pause = 0;
4014
4015         if (cc_pause & PAUSE_RX)
4016                 fw_pause |= FW_PORT_CAP32_FC_RX;
4017         if (cc_pause & PAUSE_TX)
4018                 fw_pause |= FW_PORT_CAP32_FC_TX;
4019         if (!(cc_pause & PAUSE_AUTONEG))
4020                 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4021
4022         return fw_pause;
4023 }
4024
4025 /* Translate Firmware Forward Error Correction specification to Common Code */
4026 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4027 {
4028         enum cc_fec cc_fec = 0;
4029
4030         if (fw_fec & FW_PORT_CAP32_FEC_RS)
4031                 cc_fec |= FEC_RS;
4032         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4033                 cc_fec |= FEC_BASER_RS;
4034
4035         return cc_fec;
4036 }
4037
4038 /* Translate Common Code Forward Error Correction specification to Firmware */
4039 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4040 {
4041         fw_port_cap32_t fw_fec = 0;
4042
4043         if (cc_fec & FEC_RS)
4044                 fw_fec |= FW_PORT_CAP32_FEC_RS;
4045         if (cc_fec & FEC_BASER_RS)
4046                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4047
4048         return fw_fec;
4049 }
4050
4051 /**
4052  *      t4_link_l1cfg - apply link configuration to MAC/PHY
4053  *      @adapter: the adapter
4054  *      @mbox: the Firmware Mailbox to use
4055  *      @port: the Port ID
4056  *      @lc: the Port's Link Configuration
4057  *
4058  *      Set up a port's MAC and PHY according to a desired link configuration.
4059  *      - If the PHY can auto-negotiate first decide what to advertise, then
4060  *        enable/disable auto-negotiation as desired, and reset.
4061  *      - If the PHY does not auto-negotiate just reset it.
4062  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4063  *        otherwise do it later based on the outcome of auto-negotiation.
4064  */
4065 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4066                        unsigned int port, struct link_config *lc,
4067                        bool sleep_ok, int timeout)
4068 {
4069         unsigned int fw_caps = adapter->params.fw_caps_support;
4070         fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4071         struct fw_port_cmd cmd;
4072         unsigned int fw_mdi;
4073         int ret;
4074
4075         fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4076         /* Convert driver coding of Pause Frame Flow Control settings into the
4077          * Firmware's API.
4078          */
4079         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4080
4081         /* Convert Common Code Forward Error Control settings into the
4082          * Firmware's API.  If the current Requested FEC has "Automatic"
4083          * (IEEE 802.3) specified, then we use whatever the Firmware
4084          * sent us as part of it's IEEE 802.3-based interpratation of
4085          * the Transceiver Module EPROM FEC parameters.  Otherwise we
4086          * use whatever is in the current Requested FEC settings.
4087          */
4088         if (lc->requested_fec & FEC_AUTO)
4089                 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4090         else
4091                 cc_fec = lc->requested_fec;
4092         fw_fec = cc_to_fwcap_fec(cc_fec);
4093
4094         /* Figure out what our Requested Port Capabilities are going to be.
4095          */
4096         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4097                 rcap = lc->acaps | fw_fc | fw_fec;
4098                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4099                 lc->fec = cc_fec;
4100         } else if (lc->autoneg == AUTONEG_DISABLE) {
4101                 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4102                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4103                 lc->fec = cc_fec;
4104         } else {
4105                 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4106         }
4107
4108         /* Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4109          * we need to exclude this from this check in order to maintain
4110          * compatibility ...
4111          */
4112         if ((rcap & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4113                 dev_err(adapter->pdev_dev,
4114                         "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4115                         rcap, lc->pcaps);
4116                 return -EINVAL;
4117         }
4118
4119         /* And send that on to the Firmware ...
4120          */
4121         memset(&cmd, 0, sizeof(cmd));
4122         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4123                                        FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4124                                        FW_PORT_CMD_PORTID_V(port));
4125         cmd.action_to_len16 =
4126                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4127                                                  ? FW_PORT_ACTION_L1_CFG
4128                                                  : FW_PORT_ACTION_L1_CFG32) |
4129                                                  FW_LEN16(cmd));
4130         if (fw_caps == FW_CAPS16)
4131                 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4132         else
4133                 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4134
4135         ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4136                                       sleep_ok, timeout);
4137         if (ret) {
4138                 dev_err(adapter->pdev_dev,
4139                         "Requested Port Capabilities %#x rejected, error %d\n",
4140                         rcap, -ret);
4141                 return ret;
4142         }
4143         return ret;
4144 }
4145
4146 /**
4147  *      t4_restart_aneg - restart autonegotiation
4148  *      @adap: the adapter
4149  *      @mbox: mbox to use for the FW command
4150  *      @port: the port id
4151  *
4152  *      Restarts autonegotiation for the selected port.
4153  */
4154 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4155 {
4156         struct fw_port_cmd c;
4157
4158         memset(&c, 0, sizeof(c));
4159         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4160                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4161                                      FW_PORT_CMD_PORTID_V(port));
4162         c.action_to_len16 =
4163                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4164                             FW_LEN16(c));
4165         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4166         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4167 }
4168
4169 typedef void (*int_handler_t)(struct adapter *adap);
4170
4171 struct intr_info {
4172         unsigned int mask;       /* bits to check in interrupt status */
4173         const char *msg;         /* message to print or NULL */
4174         short stat_idx;          /* stat counter to increment or -1 */
4175         unsigned short fatal;    /* whether the condition reported is fatal */
4176         int_handler_t int_handler; /* platform-specific int handler */
4177 };
4178
4179 /**
4180  *      t4_handle_intr_status - table driven interrupt handler
4181  *      @adapter: the adapter that generated the interrupt
4182  *      @reg: the interrupt status register to process
4183  *      @acts: table of interrupt actions
4184  *
4185  *      A table driven interrupt handler that applies a set of masks to an
4186  *      interrupt status word and performs the corresponding actions if the
4187  *      interrupts described by the mask have occurred.  The actions include
4188  *      optionally emitting a warning or alert message.  The table is terminated
4189  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4190  *      conditions.
4191  */
4192 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4193                                  const struct intr_info *acts)
4194 {
4195         int fatal = 0;
4196         unsigned int mask = 0;
4197         unsigned int status = t4_read_reg(adapter, reg);
4198
4199         for ( ; acts->mask; ++acts) {
4200                 if (!(status & acts->mask))
4201                         continue;
4202                 if (acts->fatal) {
4203                         fatal++;
4204                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4205                                   status & acts->mask);
4206                 } else if (acts->msg && printk_ratelimit())
4207                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4208                                  status & acts->mask);
4209                 if (acts->int_handler)
4210                         acts->int_handler(adapter);
4211                 mask |= acts->mask;
4212         }
4213         status &= mask;
4214         if (status)                           /* clear processed interrupts */
4215                 t4_write_reg(adapter, reg, status);
4216         return fatal;
4217 }
4218
4219 /*
4220  * Interrupt handler for the PCIE module.
4221  */
4222 static void pcie_intr_handler(struct adapter *adapter)
4223 {
4224         static const struct intr_info sysbus_intr_info[] = {
4225                 { RNPP_F, "RXNP array parity error", -1, 1 },
4226                 { RPCP_F, "RXPC array parity error", -1, 1 },
4227                 { RCIP_F, "RXCIF array parity error", -1, 1 },
4228                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
4229                 { RFTP_F, "RXFT array parity error", -1, 1 },
4230                 { 0 }
4231         };
4232         static const struct intr_info pcie_port_intr_info[] = {
4233                 { TPCP_F, "TXPC array parity error", -1, 1 },
4234                 { TNPP_F, "TXNP array parity error", -1, 1 },
4235                 { TFTP_F, "TXFT array parity error", -1, 1 },
4236                 { TCAP_F, "TXCA array parity error", -1, 1 },
4237                 { TCIP_F, "TXCIF array parity error", -1, 1 },
4238                 { RCAP_F, "RXCA array parity error", -1, 1 },
4239                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
4240                 { RDPE_F, "Rx data parity error", -1, 1 },
4241                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4242                 { 0 }
4243         };
4244         static const struct intr_info pcie_intr_info[] = {
4245                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4246                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4247                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4248                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4249                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4250                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4251                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4252                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4253                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4254                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4255                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4256                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4257                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4258                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4259                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4260                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4261                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4262                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4263                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4264                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4265                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4266                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4267                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4268                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4269                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4270                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4271                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4272                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4273                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4274                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4275                   -1, 0 },
4276                 { 0 }
4277         };
4278
4279         static struct intr_info t5_pcie_intr_info[] = {
4280                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
4281                   -1, 1 },
4282                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4283                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4284                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4285                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4286                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4287                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4288                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4289                   -1, 1 },
4290                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4291                   -1, 1 },
4292                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4293                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4294                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4295                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4296                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
4297                   -1, 1 },
4298                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4299                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4300                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4301                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4302                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4303                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4304                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4305                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4306                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4307                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4308                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4309                   -1, 1 },
4310                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4311                   -1, 1 },
4312                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4313                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4314                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4315                 { READRSPERR_F, "Outbound read error", -1, 0 },
4316                 { 0 }
4317         };
4318
4319         int fat;
4320
4321         if (is_t4(adapter->params.chip))
4322                 fat = t4_handle_intr_status(adapter,
4323                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4324                                 sysbus_intr_info) +
4325                         t4_handle_intr_status(adapter,
4326                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4327                                         pcie_port_intr_info) +
4328                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4329                                               pcie_intr_info);
4330         else
4331                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4332                                             t5_pcie_intr_info);
4333
4334         if (fat)
4335                 t4_fatal_err(adapter);
4336 }
4337
4338 /*
4339  * TP interrupt handler.
4340  */
4341 static void tp_intr_handler(struct adapter *adapter)
4342 {
4343         static const struct intr_info tp_intr_info[] = {
4344                 { 0x3fffffff, "TP parity error", -1, 1 },
4345                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4346                 { 0 }
4347         };
4348
4349         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4350                 t4_fatal_err(adapter);
4351 }
4352
4353 /*
4354  * SGE interrupt handler.
4355  */
4356 static void sge_intr_handler(struct adapter *adapter)
4357 {
4358         u64 v;
4359         u32 err;
4360
4361         static const struct intr_info sge_intr_info[] = {
4362                 { ERR_CPL_EXCEED_IQE_SIZE_F,
4363                   "SGE received CPL exceeding IQE size", -1, 1 },
4364                 { ERR_INVALID_CIDX_INC_F,
4365                   "SGE GTS CIDX increment too large", -1, 0 },
4366                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4367                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4368                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4369                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
4370                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4371                   0 },
4372                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4373                   0 },
4374                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4375                   0 },
4376                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4377                   0 },
4378                 { ERR_ING_CTXT_PRIO_F,
4379                   "SGE too many priority ingress contexts", -1, 0 },
4380                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4381                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4382                 { 0 }
4383         };
4384
4385         static struct intr_info t4t5_sge_intr_info[] = {
4386                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4387                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4388                 { ERR_EGR_CTXT_PRIO_F,
4389                   "SGE too many priority egress contexts", -1, 0 },
4390                 { 0 }
4391         };
4392
4393         v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4394                 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4395         if (v) {
4396                 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4397                                 (unsigned long long)v);
4398                 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4399                 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4400         }
4401
4402         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4403         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4404                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4405                                            t4t5_sge_intr_info);
4406
4407         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4408         if (err & ERROR_QID_VALID_F) {
4409                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4410                         ERROR_QID_G(err));
4411                 if (err & UNCAPTURED_ERROR_F)
4412                         dev_err(adapter->pdev_dev,
4413                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
4414                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4415                              UNCAPTURED_ERROR_F);
4416         }
4417
4418         if (v != 0)
4419                 t4_fatal_err(adapter);
4420 }
4421
4422 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4423                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4424 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4425                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4426
4427 /*
4428  * CIM interrupt handler.
4429  */
4430 static void cim_intr_handler(struct adapter *adapter)
4431 {
4432         static const struct intr_info cim_intr_info[] = {
4433                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4434                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4435                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4436                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4437                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4438                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4439                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4440                 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4441                 { 0 }
4442         };
4443         static const struct intr_info cim_upintr_info[] = {
4444                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4445                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4446                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4447                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4448                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4449                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4450                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4451                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4452                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4453                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4454                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4455                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4456                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4457                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4458                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4459                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4460                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4461                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4462                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4463                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4464                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4465                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4466                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4467                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4468                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4469                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4470                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4471                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4472                 { 0 }
4473         };
4474
4475         u32 val, fw_err;
4476         int fat;
4477
4478         fw_err = t4_read_reg(adapter, PCIE_FW_A);
4479         if (fw_err & PCIE_FW_ERR_F)
4480                 t4_report_fw_error(adapter);
4481
4482         /* When the Firmware detects an internal error which normally
4483          * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4484          * in order to make sure the Host sees the Firmware Crash.  So
4485          * if we have a Timer0 interrupt and don't see a Firmware Crash,
4486          * ignore the Timer0 interrupt.
4487          */
4488
4489         val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4490         if (val & TIMER0INT_F)
4491                 if (!(fw_err & PCIE_FW_ERR_F) ||
4492                     (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4493                         t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4494                                      TIMER0INT_F);
4495
4496         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4497                                     cim_intr_info) +
4498               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4499                                     cim_upintr_info);
4500         if (fat)
4501                 t4_fatal_err(adapter);
4502 }
4503
4504 /*
4505  * ULP RX interrupt handler.
4506  */
4507 static void ulprx_intr_handler(struct adapter *adapter)
4508 {
4509         static const struct intr_info ulprx_intr_info[] = {
4510                 { 0x1800000, "ULPRX context error", -1, 1 },
4511                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4512                 { 0 }
4513         };
4514
4515         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4516                 t4_fatal_err(adapter);
4517 }
4518
4519 /*
4520  * ULP TX interrupt handler.
4521  */
4522 static void ulptx_intr_handler(struct adapter *adapter)
4523 {
4524         static const struct intr_info ulptx_intr_info[] = {
4525                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4526                   0 },
4527                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4528                   0 },
4529                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4530                   0 },
4531                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4532                   0 },
4533                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4534                 { 0 }
4535         };
4536
4537         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4538                 t4_fatal_err(adapter);
4539 }
4540
4541 /*
4542  * PM TX interrupt handler.
4543  */
4544 static void pmtx_intr_handler(struct adapter *adapter)
4545 {
4546         static const struct intr_info pmtx_intr_info[] = {
4547                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4548                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4549                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4550                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4551                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4552                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4553                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4554                   -1, 1 },
4555                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4556                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4557                 { 0 }
4558         };
4559
4560         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4561                 t4_fatal_err(adapter);
4562 }
4563
4564 /*
4565  * PM RX interrupt handler.
4566  */
4567 static void pmrx_intr_handler(struct adapter *adapter)
4568 {
4569         static const struct intr_info pmrx_intr_info[] = {
4570                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4571                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4572                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4573                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4574                   -1, 1 },
4575                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4576                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4577                 { 0 }
4578         };
4579
4580         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4581                 t4_fatal_err(adapter);
4582 }
4583
4584 /*
4585  * CPL switch interrupt handler.
4586  */
4587 static void cplsw_intr_handler(struct adapter *adapter)
4588 {
4589         static const struct intr_info cplsw_intr_info[] = {
4590                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4591                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4592                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4593                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4594                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4595                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4596                 { 0 }
4597         };
4598
4599         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4600                 t4_fatal_err(adapter);
4601 }
4602
4603 /*
4604  * LE interrupt handler.
4605  */
4606 static void le_intr_handler(struct adapter *adap)
4607 {
4608         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4609         static const struct intr_info le_intr_info[] = {
4610                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4611                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4612                 { PARITYERR_F, "LE parity error", -1, 1 },
4613                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4614                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4615                 { 0 }
4616         };
4617
4618         static struct intr_info t6_le_intr_info[] = {
4619                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4620                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4621                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4622                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4623                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4624                 { 0 }
4625         };
4626
4627         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4628                                   (chip <= CHELSIO_T5) ?
4629                                   le_intr_info : t6_le_intr_info))
4630                 t4_fatal_err(adap);
4631 }
4632
4633 /*
4634  * MPS interrupt handler.
4635  */
4636 static void mps_intr_handler(struct adapter *adapter)
4637 {
4638         static const struct intr_info mps_rx_intr_info[] = {
4639                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4640                 { 0 }
4641         };
4642         static const struct intr_info mps_tx_intr_info[] = {
4643                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4644                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4645                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4646                   -1, 1 },
4647                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4648                   -1, 1 },
4649                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4650                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4651                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4652                 { 0 }
4653         };
4654         static const struct intr_info t6_mps_tx_intr_info[] = {
4655                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4656                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4657                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4658                   -1, 1 },
4659                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4660                   -1, 1 },
4661                 /* MPS Tx Bubble is normal for T6 */
4662                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4663                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4664                 { 0 }
4665         };
4666         static const struct intr_info mps_trc_intr_info[] = {
4667                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4668                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4669                   -1, 1 },
4670                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4671                 { 0 }
4672         };
4673         static const struct intr_info mps_stat_sram_intr_info[] = {
4674                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4675                 { 0 }
4676         };
4677         static const struct intr_info mps_stat_tx_intr_info[] = {
4678                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4679                 { 0 }
4680         };
4681         static const struct intr_info mps_stat_rx_intr_info[] = {
4682                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4683                 { 0 }
4684         };
4685         static const struct intr_info mps_cls_intr_info[] = {
4686                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4687                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4688                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4689                 { 0 }
4690         };
4691
4692         int fat;
4693
4694         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4695                                     mps_rx_intr_info) +
4696               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4697                                     is_t6(adapter->params.chip)
4698                                     ? t6_mps_tx_intr_info
4699                                     : mps_tx_intr_info) +
4700               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4701                                     mps_trc_intr_info) +
4702               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4703                                     mps_stat_sram_intr_info) +
4704               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4705                                     mps_stat_tx_intr_info) +
4706               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4707                                     mps_stat_rx_intr_info) +
4708               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4709                                     mps_cls_intr_info);
4710
4711         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4712         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4713         if (fat)
4714                 t4_fatal_err(adapter);
4715 }
4716
4717 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4718                       ECC_UE_INT_CAUSE_F)
4719
4720 /*
4721  * EDC/MC interrupt handler.
4722  */
4723 static void mem_intr_handler(struct adapter *adapter, int idx)
4724 {
4725         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4726
4727         unsigned int addr, cnt_addr, v;
4728
4729         if (idx <= MEM_EDC1) {
4730                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4731                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4732         } else if (idx == MEM_MC) {
4733                 if (is_t4(adapter->params.chip)) {
4734                         addr = MC_INT_CAUSE_A;
4735                         cnt_addr = MC_ECC_STATUS_A;
4736                 } else {
4737                         addr = MC_P_INT_CAUSE_A;
4738                         cnt_addr = MC_P_ECC_STATUS_A;
4739                 }
4740         } else {
4741                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4742                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4743         }
4744
4745         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4746         if (v & PERR_INT_CAUSE_F)
4747                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4748                           name[idx]);
4749         if (v & ECC_CE_INT_CAUSE_F) {
4750                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4751
4752                 t4_edc_err_read(adapter, idx);
4753
4754                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4755                 if (printk_ratelimit())
4756                         dev_warn(adapter->pdev_dev,
4757                                  "%u %s correctable ECC data error%s\n",
4758                                  cnt, name[idx], cnt > 1 ? "s" : "");
4759         }
4760         if (v & ECC_UE_INT_CAUSE_F)
4761                 dev_alert(adapter->pdev_dev,
4762                           "%s uncorrectable ECC data error\n", name[idx]);
4763
4764         t4_write_reg(adapter, addr, v);
4765         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4766                 t4_fatal_err(adapter);
4767 }
4768
4769 /*
4770  * MA interrupt handler.
4771  */
4772 static void ma_intr_handler(struct adapter *adap)
4773 {
4774         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4775
4776         if (status & MEM_PERR_INT_CAUSE_F) {
4777                 dev_alert(adap->pdev_dev,
4778                           "MA parity error, parity status %#x\n",
4779                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4780                 if (is_t5(adap->params.chip))
4781                         dev_alert(adap->pdev_dev,
4782                                   "MA parity error, parity status %#x\n",
4783                                   t4_read_reg(adap,
4784                                               MA_PARITY_ERROR_STATUS2_A));
4785         }
4786         if (status & MEM_WRAP_INT_CAUSE_F) {
4787                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4788                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4789                           "client %u to address %#x\n",
4790                           MEM_WRAP_CLIENT_NUM_G(v),
4791                           MEM_WRAP_ADDRESS_G(v) << 4);
4792         }
4793         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4794         t4_fatal_err(adap);
4795 }
4796
4797 /*
4798  * SMB interrupt handler.
4799  */
4800 static void smb_intr_handler(struct adapter *adap)
4801 {
4802         static const struct intr_info smb_intr_info[] = {
4803                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4804                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4805                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4806                 { 0 }
4807         };
4808
4809         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4810                 t4_fatal_err(adap);
4811 }
4812
4813 /*
4814  * NC-SI interrupt handler.
4815  */
4816 static void ncsi_intr_handler(struct adapter *adap)
4817 {
4818         static const struct intr_info ncsi_intr_info[] = {
4819                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4820                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4821                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4822                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4823                 { 0 }
4824         };
4825
4826         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4827                 t4_fatal_err(adap);
4828 }
4829
4830 /*
4831  * XGMAC interrupt handler.
4832  */
4833 static void xgmac_intr_handler(struct adapter *adap, int port)
4834 {
4835         u32 v, int_cause_reg;
4836
4837         if (is_t4(adap->params.chip))
4838                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4839         else
4840                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4841
4842         v = t4_read_reg(adap, int_cause_reg);
4843
4844         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4845         if (!v)
4846                 return;
4847
4848         if (v & TXFIFO_PRTY_ERR_F)
4849                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4850                           port);
4851         if (v & RXFIFO_PRTY_ERR_F)
4852                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4853                           port);
4854         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4855         t4_fatal_err(adap);
4856 }
4857
4858 /*
4859  * PL interrupt handler.
4860  */
4861 static void pl_intr_handler(struct adapter *adap)
4862 {
4863         static const struct intr_info pl_intr_info[] = {
4864                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4865                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4866                 { 0 }
4867         };
4868
4869         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4870                 t4_fatal_err(adap);
4871 }
4872
4873 #define PF_INTR_MASK (PFSW_F)
4874 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4875                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4876                 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4877
4878 /**
4879  *      t4_slow_intr_handler - control path interrupt handler
4880  *      @adapter: the adapter
4881  *
4882  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4883  *      The designation 'slow' is because it involves register reads, while
4884  *      data interrupts typically don't involve any MMIOs.
4885  */
4886 int t4_slow_intr_handler(struct adapter *adapter)
4887 {
4888         u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4889
4890         if (!(cause & GLBL_INTR_MASK))
4891                 return 0;
4892         if (cause & CIM_F)
4893                 cim_intr_handler(adapter);
4894         if (cause & MPS_F)
4895                 mps_intr_handler(adapter);
4896         if (cause & NCSI_F)
4897                 ncsi_intr_handler(adapter);
4898         if (cause & PL_F)
4899                 pl_intr_handler(adapter);
4900         if (cause & SMB_F)
4901                 smb_intr_handler(adapter);
4902         if (cause & XGMAC0_F)
4903                 xgmac_intr_handler(adapter, 0);
4904         if (cause & XGMAC1_F)
4905                 xgmac_intr_handler(adapter, 1);
4906         if (cause & XGMAC_KR0_F)
4907                 xgmac_intr_handler(adapter, 2);
4908         if (cause & XGMAC_KR1_F)
4909                 xgmac_intr_handler(adapter, 3);
4910         if (cause & PCIE_F)
4911                 pcie_intr_handler(adapter);
4912         if (cause & MC_F)
4913                 mem_intr_handler(adapter, MEM_MC);
4914         if (is_t5(adapter->params.chip) && (cause & MC1_F))
4915                 mem_intr_handler(adapter, MEM_MC1);
4916         if (cause & EDC0_F)
4917                 mem_intr_handler(adapter, MEM_EDC0);
4918         if (cause & EDC1_F)
4919                 mem_intr_handler(adapter, MEM_EDC1);
4920         if (cause & LE_F)
4921                 le_intr_handler(adapter);
4922         if (cause & TP_F)
4923                 tp_intr_handler(adapter);
4924         if (cause & MA_F)
4925                 ma_intr_handler(adapter);
4926         if (cause & PM_TX_F)
4927                 pmtx_intr_handler(adapter);
4928         if (cause & PM_RX_F)
4929                 pmrx_intr_handler(adapter);
4930         if (cause & ULP_RX_F)
4931                 ulprx_intr_handler(adapter);
4932         if (cause & CPL_SWITCH_F)
4933                 cplsw_intr_handler(adapter);
4934         if (cause & SGE_F)
4935                 sge_intr_handler(adapter);
4936         if (cause & ULP_TX_F)
4937                 ulptx_intr_handler(adapter);
4938
4939         /* Clear the interrupts just processed for which we are the master. */
4940         t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4941         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4942         return 1;
4943 }
4944
4945 /**
4946  *      t4_intr_enable - enable interrupts
4947  *      @adapter: the adapter whose interrupts should be enabled
4948  *
4949  *      Enable PF-specific interrupts for the calling function and the top-level
4950  *      interrupt concentrator for global interrupts.  Interrupts are already
4951  *      enabled at each module, here we just enable the roots of the interrupt
4952  *      hierarchies.
4953  *
4954  *      Note: this function should be called only when the driver manages
4955  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4956  *      function at a time should be doing this.
4957  */
4958 void t4_intr_enable(struct adapter *adapter)
4959 {
4960         u32 val = 0;
4961         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4962         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4963                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4964
4965         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4966                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4967         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4968                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4969                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4970                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4971                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4972                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4973                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4974         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4975         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4976 }
4977
4978 /**
4979  *      t4_intr_disable - disable interrupts
4980  *      @adapter: the adapter whose interrupts should be disabled
4981  *
4982  *      Disable interrupts.  We only disable the top-level interrupt
4983  *      concentrators.  The caller must be a PCI function managing global
4984  *      interrupts.
4985  */
4986 void t4_intr_disable(struct adapter *adapter)
4987 {
4988         u32 whoami, pf;
4989
4990         if (pci_channel_offline(adapter->pdev))
4991                 return;
4992
4993         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4994         pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4995                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4996
4997         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4998         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4999 }
5000
5001 unsigned int t4_chip_rss_size(struct adapter *adap)
5002 {
5003         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5004                 return RSS_NENTRIES;
5005         else
5006                 return T6_RSS_NENTRIES;
5007 }
5008
5009 /**
5010  *      t4_config_rss_range - configure a portion of the RSS mapping table
5011  *      @adapter: the adapter
5012  *      @mbox: mbox to use for the FW command
5013  *      @viid: virtual interface whose RSS subtable is to be written
5014  *      @start: start entry in the table to write
5015  *      @n: how many table entries to write
5016  *      @rspq: values for the response queue lookup table
5017  *      @nrspq: number of values in @rspq
5018  *
5019  *      Programs the selected part of the VI's RSS mapping table with the
5020  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5021  *      until the full table range is populated.
5022  *
5023  *      The caller must ensure the values in @rspq are in the range allowed for
5024  *      @viid.
5025  */
5026 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5027                         int start, int n, const u16 *rspq, unsigned int nrspq)
5028 {
5029         int ret;
5030         const u16 *rsp = rspq;
5031         const u16 *rsp_end = rspq + nrspq;
5032         struct fw_rss_ind_tbl_cmd cmd;
5033
5034         memset(&cmd, 0, sizeof(cmd));
5035         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5036                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5037                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
5038         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5039
5040         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5041         while (n > 0) {
5042                 int nq = min(n, 32);
5043                 __be32 *qp = &cmd.iq0_to_iq2;
5044
5045                 cmd.niqid = cpu_to_be16(nq);
5046                 cmd.startidx = cpu_to_be16(start);
5047
5048                 start += nq;
5049                 n -= nq;
5050
5051                 while (nq > 0) {
5052                         unsigned int v;
5053
5054                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5055                         if (++rsp >= rsp_end)
5056                                 rsp = rspq;
5057                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5058                         if (++rsp >= rsp_end)
5059                                 rsp = rspq;
5060                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5061                         if (++rsp >= rsp_end)
5062                                 rsp = rspq;
5063
5064                         *qp++ = cpu_to_be32(v);
5065                         nq -= 3;
5066                 }
5067
5068                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5069                 if (ret)
5070                         return ret;
5071         }
5072         return 0;
5073 }
5074
5075 /**
5076  *      t4_config_glbl_rss - configure the global RSS mode
5077  *      @adapter: the adapter
5078  *      @mbox: mbox to use for the FW command
5079  *      @mode: global RSS mode
5080  *      @flags: mode-specific flags
5081  *
5082  *      Sets the global RSS mode.
5083  */
5084 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5085                        unsigned int flags)
5086 {
5087         struct fw_rss_glb_config_cmd c;
5088
5089         memset(&c, 0, sizeof(c));
5090         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5091                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5092         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5093         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5094                 c.u.manual.mode_pkd =
5095                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5096         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5097                 c.u.basicvirtual.mode_pkd =
5098                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5099                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5100         } else
5101                 return -EINVAL;
5102         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5103 }
5104
5105 /**
5106  *      t4_config_vi_rss - configure per VI RSS settings
5107  *      @adapter: the adapter
5108  *      @mbox: mbox to use for the FW command
5109  *      @viid: the VI id
5110  *      @flags: RSS flags
5111  *      @defq: id of the default RSS queue for the VI.
5112  *
5113  *      Configures VI-specific RSS properties.
5114  */
5115 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5116                      unsigned int flags, unsigned int defq)
5117 {
5118         struct fw_rss_vi_config_cmd c;
5119
5120         memset(&c, 0, sizeof(c));
5121         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5122                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5123                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5124         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5125         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5126                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5127         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5128 }
5129
5130 /* Read an RSS table row */
5131 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5132 {
5133         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5134         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5135                                    5, 0, val);
5136 }
5137
5138 /**
5139  *      t4_read_rss - read the contents of the RSS mapping table
5140  *      @adapter: the adapter
5141  *      @map: holds the contents of the RSS mapping table
5142  *
5143  *      Reads the contents of the RSS hash->queue mapping table.
5144  */
5145 int t4_read_rss(struct adapter *adapter, u16 *map)
5146 {
5147         int i, ret, nentries;
5148         u32 val;
5149
5150         nentries = t4_chip_rss_size(adapter);
5151         for (i = 0; i < nentries / 2; ++i) {
5152                 ret = rd_rss_row(adapter, i, &val);
5153                 if (ret)
5154                         return ret;
5155                 *map++ = LKPTBLQUEUE0_G(val);
5156                 *map++ = LKPTBLQUEUE1_G(val);
5157         }
5158         return 0;
5159 }
5160
5161 static unsigned int t4_use_ldst(struct adapter *adap)
5162 {
5163         return (adap->flags & FW_OK) && !adap->use_bd;
5164 }
5165
5166 /**
5167  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5168  * @adap: the adapter
5169  * @cmd: TP fw ldst address space type
5170  * @vals: where the indirect register values are stored/written
5171  * @nregs: how many indirect registers to read/write
5172  * @start_idx: index of first indirect register to read/write
5173  * @rw: Read (1) or Write (0)
5174  * @sleep_ok: if true we may sleep while awaiting command completion
5175  *
5176  * Access TP indirect registers through LDST
5177  */
5178 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5179                             unsigned int nregs, unsigned int start_index,
5180                             unsigned int rw, bool sleep_ok)
5181 {
5182         int ret = 0;
5183         unsigned int i;
5184         struct fw_ldst_cmd c;
5185
5186         for (i = 0; i < nregs; i++) {
5187                 memset(&c, 0, sizeof(c));
5188                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5189                                                 FW_CMD_REQUEST_F |
5190                                                 (rw ? FW_CMD_READ_F :
5191                                                       FW_CMD_WRITE_F) |
5192                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
5193                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5194
5195                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5196                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5197                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5198                                       sleep_ok);
5199                 if (ret)
5200                         return ret;
5201
5202                 if (rw)
5203                         vals[i] = be32_to_cpu(c.u.addrval.val);
5204         }
5205         return 0;
5206 }
5207
5208 /**
5209  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5210  * @adap: the adapter
5211  * @reg_addr: Address Register
5212  * @reg_data: Data register
5213  * @buff: where the indirect register values are stored/written
5214  * @nregs: how many indirect registers to read/write
5215  * @start_index: index of first indirect register to read/write
5216  * @rw: READ(1) or WRITE(0)
5217  * @sleep_ok: if true we may sleep while awaiting command completion
5218  *
5219  * Read/Write TP indirect registers through LDST if possible.
5220  * Else, use backdoor access
5221  **/
5222 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5223                               u32 *buff, u32 nregs, u32 start_index, int rw,
5224                               bool sleep_ok)
5225 {
5226         int rc = -EINVAL;
5227         int cmd;
5228
5229         switch (reg_addr) {
5230         case TP_PIO_ADDR_A:
5231                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5232                 break;
5233         case TP_TM_PIO_ADDR_A:
5234                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5235                 break;
5236         case TP_MIB_INDEX_A:
5237                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5238                 break;
5239         default:
5240                 goto indirect_access;
5241         }
5242
5243         if (t4_use_ldst(adap))
5244                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5245                                       sleep_ok);
5246
5247 indirect_access:
5248
5249         if (rc) {
5250                 if (rw)
5251                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5252                                          start_index);
5253                 else
5254                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5255                                           start_index);
5256         }
5257 }
5258
5259 /**
5260  * t4_tp_pio_read - Read TP PIO registers
5261  * @adap: the adapter
5262  * @buff: where the indirect register values are written
5263  * @nregs: how many indirect registers to read
5264  * @start_index: index of first indirect register to read
5265  * @sleep_ok: if true we may sleep while awaiting command completion
5266  *
5267  * Read TP PIO Registers
5268  **/
5269 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5270                     u32 start_index, bool sleep_ok)
5271 {
5272         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5273                           start_index, 1, sleep_ok);
5274 }
5275
5276 /**
5277  * t4_tp_pio_write - Write TP PIO registers
5278  * @adap: the adapter
5279  * @buff: where the indirect register values are stored
5280  * @nregs: how many indirect registers to write
5281  * @start_index: index of first indirect register to write
5282  * @sleep_ok: if true we may sleep while awaiting command completion
5283  *
5284  * Write TP PIO Registers
5285  **/
5286 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5287                             u32 start_index, bool sleep_ok)
5288 {
5289         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5290                           start_index, 0, sleep_ok);
5291 }
5292
5293 /**
5294  * t4_tp_tm_pio_read - Read TP TM PIO registers
5295  * @adap: the adapter
5296  * @buff: where the indirect register values are written
5297  * @nregs: how many indirect registers to read
5298  * @start_index: index of first indirect register to read
5299  * @sleep_ok: if true we may sleep while awaiting command completion
5300  *
5301  * Read TP TM PIO Registers
5302  **/
5303 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5304                        u32 start_index, bool sleep_ok)
5305 {
5306         t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5307                           nregs, start_index, 1, sleep_ok);
5308 }
5309
5310 /**
5311  * t4_tp_mib_read - Read TP MIB registers
5312  * @adap: the adapter
5313  * @buff: where the indirect register values are written
5314  * @nregs: how many indirect registers to read
5315  * @start_index: index of first indirect register to read
5316  * @sleep_ok: if true we may sleep while awaiting command completion
5317  *
5318  * Read TP MIB Registers
5319  **/
5320 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5321                     bool sleep_ok)
5322 {
5323         t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5324                           start_index, 1, sleep_ok);
5325 }
5326
5327 /**
5328  *      t4_read_rss_key - read the global RSS key
5329  *      @adap: the adapter
5330  *      @key: 10-entry array holding the 320-bit RSS key
5331  *      @sleep_ok: if true we may sleep while awaiting command completion
5332  *
5333  *      Reads the global 320-bit RSS key.
5334  */
5335 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5336 {
5337         t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5338 }
5339
5340 /**
5341  *      t4_write_rss_key - program one of the RSS keys
5342  *      @adap: the adapter
5343  *      @key: 10-entry array holding the 320-bit RSS key
5344  *      @idx: which RSS key to write
5345  *      @sleep_ok: if true we may sleep while awaiting command completion
5346  *
5347  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5348  *      0..15 the corresponding entry in the RSS key table is written,
5349  *      otherwise the global RSS key is written.
5350  */
5351 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5352                       bool sleep_ok)
5353 {
5354         u8 rss_key_addr_cnt = 16;
5355         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5356
5357         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5358          * allows access to key addresses 16-63 by using KeyWrAddrX
5359          * as index[5:4](upper 2) into key table
5360          */
5361         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5362             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5363                 rss_key_addr_cnt = 32;
5364
5365         t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5366
5367         if (idx >= 0 && idx < rss_key_addr_cnt) {
5368                 if (rss_key_addr_cnt > 16)
5369                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5370                                      KEYWRADDRX_V(idx >> 4) |
5371                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
5372                 else
5373                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5374                                      KEYWRADDR_V(idx) | KEYWREN_F);
5375         }
5376 }
5377
5378 /**
5379  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5380  *      @adapter: the adapter
5381  *      @index: the entry in the PF RSS table to read
5382  *      @valp: where to store the returned value
5383  *      @sleep_ok: if true we may sleep while awaiting command completion
5384  *
5385  *      Reads the PF RSS Configuration Table at the specified index and returns
5386  *      the value found there.
5387  */
5388 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5389                            u32 *valp, bool sleep_ok)
5390 {
5391         t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5392 }
5393
5394 /**
5395  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5396  *      @adapter: the adapter
5397  *      @index: the entry in the VF RSS table to read
5398  *      @vfl: where to store the returned VFL
5399  *      @vfh: where to store the returned VFH
5400  *      @sleep_ok: if true we may sleep while awaiting command completion
5401  *
5402  *      Reads the VF RSS Configuration Table at the specified index and returns
5403  *      the (VFL, VFH) values found there.
5404  */
5405 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5406                            u32 *vfl, u32 *vfh, bool sleep_ok)
5407 {
5408         u32 vrt, mask, data;
5409
5410         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5411                 mask = VFWRADDR_V(VFWRADDR_M);
5412                 data = VFWRADDR_V(index);
5413         } else {
5414                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5415                  data = T6_VFWRADDR_V(index);
5416         }
5417
5418         /* Request that the index'th VF Table values be read into VFL/VFH.
5419          */
5420         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5421         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5422         vrt |= data | VFRDEN_F;
5423         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5424
5425         /* Grab the VFL/VFH values ...
5426          */
5427         t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5428         t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5429 }
5430
5431 /**
5432  *      t4_read_rss_pf_map - read PF RSS Map
5433  *      @adapter: the adapter
5434  *      @sleep_ok: if true we may sleep while awaiting command completion
5435  *
5436  *      Reads the PF RSS Map register and returns its value.
5437  */
5438 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5439 {
5440         u32 pfmap;
5441
5442         t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5443         return pfmap;
5444 }
5445
5446 /**
5447  *      t4_read_rss_pf_mask - read PF RSS Mask
5448  *      @adapter: the adapter
5449  *      @sleep_ok: if true we may sleep while awaiting command completion
5450  *
5451  *      Reads the PF RSS Mask register and returns its value.
5452  */
5453 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5454 {
5455         u32 pfmask;
5456
5457         t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5458         return pfmask;
5459 }
5460
5461 /**
5462  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5463  *      @adap: the adapter
5464  *      @v4: holds the TCP/IP counter values
5465  *      @v6: holds the TCP/IPv6 counter values
5466  *      @sleep_ok: if true we may sleep while awaiting command completion
5467  *
5468  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5469  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5470  */
5471 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5472                          struct tp_tcp_stats *v6, bool sleep_ok)
5473 {
5474         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5475
5476 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5477 #define STAT(x)     val[STAT_IDX(x)]
5478 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5479
5480         if (v4) {
5481                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5482                                TP_MIB_TCP_OUT_RST_A, sleep_ok);
5483                 v4->tcp_out_rsts = STAT(OUT_RST);
5484                 v4->tcp_in_segs  = STAT64(IN_SEG);
5485                 v4->tcp_out_segs = STAT64(OUT_SEG);
5486                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5487         }
5488         if (v6) {
5489                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5490                                TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5491                 v6->tcp_out_rsts = STAT(OUT_RST);
5492                 v6->tcp_in_segs  = STAT64(IN_SEG);
5493                 v6->tcp_out_segs = STAT64(OUT_SEG);
5494                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5495         }
5496 #undef STAT64
5497 #undef STAT
5498 #undef STAT_IDX
5499 }
5500
5501 /**
5502  *      t4_tp_get_err_stats - read TP's error MIB counters
5503  *      @adap: the adapter
5504  *      @st: holds the counter values
5505  *      @sleep_ok: if true we may sleep while awaiting command completion
5506  *
5507  *      Returns the values of TP's error counters.
5508  */
5509 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5510                          bool sleep_ok)
5511 {
5512         int nchan = adap->params.arch.nchan;
5513
5514         t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5515                        sleep_ok);
5516         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5517                        sleep_ok);
5518         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5519                        sleep_ok);
5520         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5521                        TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5522         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5523                        TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5524         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5525                        sleep_ok);
5526         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5527                        TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5528         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5529                        TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5530         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5531                        sleep_ok);
5532 }
5533
5534 /**
5535  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5536  *      @adap: the adapter
5537  *      @st: holds the counter values
5538  *      @sleep_ok: if true we may sleep while awaiting command completion
5539  *
5540  *      Returns the values of TP's CPL counters.
5541  */
5542 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5543                          bool sleep_ok)
5544 {
5545         int nchan = adap->params.arch.nchan;
5546
5547         t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5548
5549         t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5550 }
5551
5552 /**
5553  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5554  *      @adap: the adapter
5555  *      @st: holds the counter values
5556  *      @sleep_ok: if true we may sleep while awaiting command completion
5557  *
5558  *      Returns the values of TP's RDMA counters.
5559  */
5560 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5561                           bool sleep_ok)
5562 {
5563         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5564                        sleep_ok);
5565 }
5566
5567 /**
5568  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5569  *      @adap: the adapter
5570  *      @idx: the port index
5571  *      @st: holds the counter values
5572  *      @sleep_ok: if true we may sleep while awaiting command completion
5573  *
5574  *      Returns the values of TP's FCoE counters for the selected port.
5575  */
5576 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5577                        struct tp_fcoe_stats *st, bool sleep_ok)
5578 {
5579         u32 val[2];
5580
5581         t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5582                        sleep_ok);
5583
5584         t4_tp_mib_read(adap, &st->frames_drop, 1,
5585                        TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5586
5587         t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5588                        sleep_ok);
5589
5590         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5591 }
5592
5593 /**
5594  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5595  *      @adap: the adapter
5596  *      @st: holds the counter values
5597  *      @sleep_ok: if true we may sleep while awaiting command completion
5598  *
5599  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5600  */
5601 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5602                       bool sleep_ok)
5603 {
5604         u32 val[4];
5605
5606         t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5607         st->frames = val[0];
5608         st->drops = val[1];
5609         st->octets = ((u64)val[2] << 32) | val[3];
5610 }
5611
5612 /**
5613  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5614  *      @adap: the adapter
5615  *      @mtus: where to store the MTU values
5616  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5617  *
5618  *      Reads the HW path MTU table.
5619  */
5620 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5621 {
5622         u32 v;
5623         int i;
5624
5625         for (i = 0; i < NMTUS; ++i) {
5626                 t4_write_reg(adap, TP_MTU_TABLE_A,
5627                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
5628                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5629                 mtus[i] = MTUVALUE_G(v);
5630                 if (mtu_log)
5631                         mtu_log[i] = MTUWIDTH_G(v);
5632         }
5633 }
5634
5635 /**
5636  *      t4_read_cong_tbl - reads the congestion control table
5637  *      @adap: the adapter
5638  *      @incr: where to store the alpha values
5639  *
5640  *      Reads the additive increments programmed into the HW congestion
5641  *      control table.
5642  */
5643 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5644 {
5645         unsigned int mtu, w;
5646
5647         for (mtu = 0; mtu < NMTUS; ++mtu)
5648                 for (w = 0; w < NCCTRL_WIN; ++w) {
5649                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5650                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5651                         incr[mtu][w] = (u16)t4_read_reg(adap,
5652                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5653                 }
5654 }
5655
5656 /**
5657  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5658  *      @adap: the adapter
5659  *      @addr: the indirect TP register address
5660  *      @mask: specifies the field within the register to modify
5661  *      @val: new value for the field
5662  *
5663  *      Sets a field of an indirect TP register to the given value.
5664  */
5665 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5666                             unsigned int mask, unsigned int val)
5667 {
5668         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5669         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5670         t4_write_reg(adap, TP_PIO_DATA_A, val);
5671 }
5672
5673 /**
5674  *      init_cong_ctrl - initialize congestion control parameters
5675  *      @a: the alpha values for congestion control
5676  *      @b: the beta values for congestion control
5677  *
5678  *      Initialize the congestion control parameters.
5679  */
5680 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5681 {
5682         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5683         a[9] = 2;
5684         a[10] = 3;
5685         a[11] = 4;
5686         a[12] = 5;
5687         a[13] = 6;
5688         a[14] = 7;
5689         a[15] = 8;
5690         a[16] = 9;
5691         a[17] = 10;
5692         a[18] = 14;
5693         a[19] = 17;
5694         a[20] = 21;
5695         a[21] = 25;
5696         a[22] = 30;
5697         a[23] = 35;
5698         a[24] = 45;
5699         a[25] = 60;
5700         a[26] = 80;
5701         a[27] = 100;
5702         a[28] = 200;
5703         a[29] = 300;
5704         a[30] = 400;
5705         a[31] = 500;
5706
5707         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5708         b[9] = b[10] = 1;
5709         b[11] = b[12] = 2;
5710         b[13] = b[14] = b[15] = b[16] = 3;
5711         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5712         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5713         b[28] = b[29] = 6;
5714         b[30] = b[31] = 7;
5715 }
5716
5717 /* The minimum additive increment value for the congestion control table */
5718 #define CC_MIN_INCR 2U
5719
5720 /**
5721  *      t4_load_mtus - write the MTU and congestion control HW tables
5722  *      @adap: the adapter
5723  *      @mtus: the values for the MTU table
5724  *      @alpha: the values for the congestion control alpha parameter
5725  *      @beta: the values for the congestion control beta parameter
5726  *
5727  *      Write the HW MTU table with the supplied MTUs and the high-speed
5728  *      congestion control table with the supplied alpha, beta, and MTUs.
5729  *      We write the two tables together because the additive increments
5730  *      depend on the MTUs.
5731  */
5732 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5733                   const unsigned short *alpha, const unsigned short *beta)
5734 {
5735         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5736                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5737                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5738                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5739         };
5740
5741         unsigned int i, w;
5742
5743         for (i = 0; i < NMTUS; ++i) {
5744                 unsigned int mtu = mtus[i];
5745                 unsigned int log2 = fls(mtu);
5746
5747                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5748                         log2--;
5749                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5750                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5751
5752                 for (w = 0; w < NCCTRL_WIN; ++w) {
5753                         unsigned int inc;
5754
5755                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5756                                   CC_MIN_INCR);
5757
5758                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5759                                      (w << 16) | (beta[w] << 13) | inc);
5760                 }
5761         }
5762 }
5763
5764 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5765  * clocks.  The formula is
5766  *
5767  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5768  *
5769  * which is equivalent to
5770  *
5771  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5772  */
5773 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5774 {
5775         u64 v = bytes256 * adap->params.vpd.cclk;
5776
5777         return v * 62 + v / 2;
5778 }
5779
5780 /**
5781  *      t4_get_chan_txrate - get the current per channel Tx rates
5782  *      @adap: the adapter
5783  *      @nic_rate: rates for NIC traffic
5784  *      @ofld_rate: rates for offloaded traffic
5785  *
5786  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5787  *      for each channel.
5788  */
5789 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5790 {
5791         u32 v;
5792
5793         v = t4_read_reg(adap, TP_TX_TRATE_A);
5794         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5795         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5796         if (adap->params.arch.nchan == NCHAN) {
5797                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5798                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5799         }
5800
5801         v = t4_read_reg(adap, TP_TX_ORATE_A);
5802         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5803         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5804         if (adap->params.arch.nchan == NCHAN) {
5805                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5806                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5807         }
5808 }
5809
5810 /**
5811  *      t4_set_trace_filter - configure one of the tracing filters
5812  *      @adap: the adapter
5813  *      @tp: the desired trace filter parameters
5814  *      @idx: which filter to configure
5815  *      @enable: whether to enable or disable the filter
5816  *
5817  *      Configures one of the tracing filters available in HW.  If @enable is
5818  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5819  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5820  */
5821 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5822                         int idx, int enable)
5823 {
5824         int i, ofst = idx * 4;
5825         u32 data_reg, mask_reg, cfg;
5826         u32 multitrc = TRCMULTIFILTER_F;
5827
5828         if (!enable) {
5829                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5830                 return 0;
5831         }
5832
5833         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5834         if (cfg & TRCMULTIFILTER_F) {
5835                 /* If multiple tracers are enabled, then maximum
5836                  * capture size is 2.5KB (FIFO size of a single channel)
5837                  * minus 2 flits for CPL_TRACE_PKT header.
5838                  */
5839                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5840                         return -EINVAL;
5841         } else {
5842                 /* If multiple tracers are disabled, to avoid deadlocks
5843                  * maximum packet capture size of 9600 bytes is recommended.
5844                  * Also in this mode, only trace0 can be enabled and running.
5845                  */
5846                 multitrc = 0;
5847                 if (tp->snap_len > 9600 || idx)
5848                         return -EINVAL;
5849         }
5850
5851         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5852             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5853             tp->min_len > TFMINPKTSIZE_M)
5854                 return -EINVAL;
5855
5856         /* stop the tracer we'll be changing */
5857         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5858
5859         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5860         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5861         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5862
5863         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5864                 t4_write_reg(adap, data_reg, tp->data[i]);
5865                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5866         }
5867         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5868                      TFCAPTUREMAX_V(tp->snap_len) |
5869                      TFMINPKTSIZE_V(tp->min_len));
5870         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5871                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5872                      (is_t4(adap->params.chip) ?
5873                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5874                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
5875                      T5_TFINVERTMATCH_V(tp->invert)));
5876
5877         return 0;
5878 }
5879
5880 /**
5881  *      t4_get_trace_filter - query one of the tracing filters
5882  *      @adap: the adapter
5883  *      @tp: the current trace filter parameters
5884  *      @idx: which trace filter to query
5885  *      @enabled: non-zero if the filter is enabled
5886  *
5887  *      Returns the current settings of one of the HW tracing filters.
5888  */
5889 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5890                          int *enabled)
5891 {
5892         u32 ctla, ctlb;
5893         int i, ofst = idx * 4;
5894         u32 data_reg, mask_reg;
5895
5896         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5897         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5898
5899         if (is_t4(adap->params.chip)) {
5900                 *enabled = !!(ctla & TFEN_F);
5901                 tp->port =  TFPORT_G(ctla);
5902                 tp->invert = !!(ctla & TFINVERTMATCH_F);
5903         } else {
5904                 *enabled = !!(ctla & T5_TFEN_F);
5905                 tp->port = T5_TFPORT_G(ctla);
5906                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5907         }
5908         tp->snap_len = TFCAPTUREMAX_G(ctlb);
5909         tp->min_len = TFMINPKTSIZE_G(ctlb);
5910         tp->skip_ofst = TFOFFSET_G(ctla);
5911         tp->skip_len = TFLENGTH_G(ctla);
5912
5913         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5914         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5915         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5916
5917         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5918                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5919                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5920         }
5921 }
5922
5923 /**
5924  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5925  *      @adap: the adapter
5926  *      @cnt: where to store the count statistics
5927  *      @cycles: where to store the cycle statistics
5928  *
5929  *      Returns performance statistics from PMTX.
5930  */
5931 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5932 {
5933         int i;
5934         u32 data[2];
5935
5936         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5937                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5938                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5939                 if (is_t4(adap->params.chip)) {
5940                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5941                 } else {
5942                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5943                                          PM_TX_DBG_DATA_A, data, 2,
5944                                          PM_TX_DBG_STAT_MSB_A);
5945                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5946                 }
5947         }
5948 }
5949
5950 /**
5951  *      t4_pmrx_get_stats - returns the HW stats from PMRX
5952  *      @adap: the adapter
5953  *      @cnt: where to store the count statistics
5954  *      @cycles: where to store the cycle statistics
5955  *
5956  *      Returns performance statistics from PMRX.
5957  */
5958 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5959 {
5960         int i;
5961         u32 data[2];
5962
5963         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5964                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5965                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5966                 if (is_t4(adap->params.chip)) {
5967                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5968                 } else {
5969                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5970                                          PM_RX_DBG_DATA_A, data, 2,
5971                                          PM_RX_DBG_STAT_MSB_A);
5972                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5973                 }
5974         }
5975 }
5976
5977 /**
5978  *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5979  *      @adap: the adapter
5980  *      @pidx: the port index
5981  *
5982  *      Computes and returns a bitmap indicating which MPS buffer groups are
5983  *      associated with the given Port.  Bit i is set if buffer group i is
5984  *      used by the Port.
5985  */
5986 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5987                                               int pidx)
5988 {
5989         unsigned int chip_version, nports;
5990
5991         chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5992         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5993
5994         switch (chip_version) {
5995         case CHELSIO_T4:
5996         case CHELSIO_T5:
5997                 switch (nports) {
5998                 case 1: return 0xf;
5999                 case 2: return 3 << (2 * pidx);
6000                 case 4: return 1 << pidx;
6001                 }
6002                 break;
6003
6004         case CHELSIO_T6:
6005                 switch (nports) {
6006                 case 2: return 1 << (2 * pidx);
6007                 }
6008                 break;
6009         }
6010
6011         dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6012                 chip_version, nports);
6013
6014         return 0;
6015 }
6016
6017 /**
6018  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6019  *      @adapter: the adapter
6020  *      @pidx: the port index
6021  *
6022  *      Returns a bitmap indicating which MPS buffer groups are associated
6023  *      with the given Port.  Bit i is set if buffer group i is used by the
6024  *      Port.
6025  */
6026 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6027 {
6028         u8 *mps_bg_map;
6029         unsigned int nports;
6030
6031         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6032         if (pidx >= nports) {
6033                 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6034                         pidx, nports);
6035                 return 0;
6036         }
6037
6038         /* If we've already retrieved/computed this, just return the result.
6039          */
6040         mps_bg_map = adapter->params.mps_bg_map;
6041         if (mps_bg_map[pidx])
6042                 return mps_bg_map[pidx];
6043
6044         /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6045          * If we're talking to such Firmware, let it tell us.  If the new
6046          * API isn't supported, revert back to old hardcoded way.  The value
6047          * obtained from Firmware is encoded in below format:
6048          *
6049          * val = (( MPSBGMAP[Port 3] << 24 ) |
6050          *        ( MPSBGMAP[Port 2] << 16 ) |
6051          *        ( MPSBGMAP[Port 1] <<  8 ) |
6052          *        ( MPSBGMAP[Port 0] <<  0 ))
6053          */
6054         if (adapter->flags & FW_OK) {
6055                 u32 param, val;
6056                 int ret;
6057
6058                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6059                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6060                 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6061                                          0, 1, &param, &val);
6062                 if (!ret) {
6063                         int p;
6064
6065                         /* Store the BG Map for all of the Ports in order to
6066                          * avoid more calls to the Firmware in the future.
6067                          */
6068                         for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6069                                 mps_bg_map[p] = val & 0xff;
6070
6071                         return mps_bg_map[pidx];
6072                 }
6073         }
6074
6075         /* Either we're not talking to the Firmware or we're dealing with
6076          * older Firmware which doesn't support the new API to get the MPS
6077          * Buffer Group Map.  Fall back to computing it ourselves.
6078          */
6079         mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6080         return mps_bg_map[pidx];
6081 }
6082
6083 /**
6084  *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6085  *      @adapter: the adapter
6086  *      @pidx: the port index
6087  *
6088  *      Returns a bitmap indicating which TP Ingress Channels are associated
6089  *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6090  *      the Port.
6091  */
6092 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6093 {
6094         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6095         unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6096
6097         if (pidx >= nports) {
6098                 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6099                          pidx, nports);
6100                 return 0;
6101         }
6102
6103         switch (chip_version) {
6104         case CHELSIO_T4:
6105         case CHELSIO_T5:
6106                 /* Note that this happens to be the same values as the MPS
6107                  * Buffer Group Map for these Chips.  But we replicate the code
6108                  * here because they're really separate concepts.
6109                  */
6110                 switch (nports) {
6111                 case 1: return 0xf;
6112                 case 2: return 3 << (2 * pidx);
6113                 case 4: return 1 << pidx;
6114                 }
6115                 break;
6116
6117         case CHELSIO_T6:
6118                 switch (nports) {
6119                 case 1:
6120                 case 2: return 1 << pidx;
6121                 }
6122                 break;
6123         }
6124
6125         dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6126                 chip_version, nports);
6127         return 0;
6128 }
6129
6130 /**
6131  *      t4_get_port_type_description - return Port Type string description
6132  *      @port_type: firmware Port Type enumeration
6133  */
6134 const char *t4_get_port_type_description(enum fw_port_type port_type)
6135 {
6136         static const char *const port_type_description[] = {
6137                 "Fiber_XFI",
6138                 "Fiber_XAUI",
6139                 "BT_SGMII",
6140                 "BT_XFI",
6141                 "BT_XAUI",
6142                 "KX4",
6143                 "CX4",
6144                 "KX",
6145                 "KR",
6146                 "SFP",
6147                 "BP_AP",
6148                 "BP4_AP",
6149                 "QSFP_10G",
6150                 "QSA",
6151                 "QSFP",
6152                 "BP40_BA",
6153                 "KR4_100G",
6154                 "CR4_QSFP",
6155                 "CR_QSFP",
6156                 "CR2_QSFP",
6157                 "SFP28",
6158                 "KR_SFP28",
6159                 "KR_XLAUI"
6160         };
6161
6162         if (port_type < ARRAY_SIZE(port_type_description))
6163                 return port_type_description[port_type];
6164         return "UNKNOWN";
6165 }
6166
6167 /**
6168  *      t4_get_port_stats_offset - collect port stats relative to a previous
6169  *                                 snapshot
6170  *      @adap: The adapter
6171  *      @idx: The port
6172  *      @stats: Current stats to fill
6173  *      @offset: Previous stats snapshot
6174  */
6175 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6176                               struct port_stats *stats,
6177                               struct port_stats *offset)
6178 {
6179         u64 *s, *o;
6180         int i;
6181
6182         t4_get_port_stats(adap, idx, stats);
6183         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6184                         i < (sizeof(struct port_stats) / sizeof(u64));
6185                         i++, s++, o++)
6186                 *s -= *o;
6187 }
6188
6189 /**
6190  *      t4_get_port_stats - collect port statistics
6191  *      @adap: the adapter
6192  *      @idx: the port index
6193  *      @p: the stats structure to fill
6194  *
6195  *      Collect statistics related to the given port from HW.
6196  */
6197 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6198 {
6199         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6200         u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6201
6202 #define GET_STAT(name) \
6203         t4_read_reg64(adap, \
6204         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6205         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6206 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6207
6208         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6209         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6210         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6211         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6212         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6213         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6214         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6215         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6216         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6217         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6218         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6219         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6220         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6221         p->tx_drop             = GET_STAT(TX_PORT_DROP);
6222         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6223         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6224         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6225         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6226         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6227         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6228         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6229         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6230         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6231
6232         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6233                 if (stat_ctl & COUNTPAUSESTATTX_F)
6234                         p->tx_frames_64 -= p->tx_pause;
6235                 if (stat_ctl & COUNTPAUSEMCTX_F)
6236                         p->tx_mcast_frames -= p->tx_pause;
6237         }
6238         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6239         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6240         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6241         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6242         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6243         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6244         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6245         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6246         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6247         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6248         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6249         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6250         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6251         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6252         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6253         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6254         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6255         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6256         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6257         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6258         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6259         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6260         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6261         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6262         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6263         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6264         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6265
6266         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6267                 if (stat_ctl & COUNTPAUSESTATRX_F)
6268                         p->rx_frames_64 -= p->rx_pause;
6269                 if (stat_ctl & COUNTPAUSEMCRX_F)
6270                         p->rx_mcast_frames -= p->rx_pause;
6271         }
6272
6273         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6274         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6275         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6276         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6277         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6278         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6279         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6280         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6281
6282 #undef GET_STAT
6283 #undef GET_STAT_COM
6284 }
6285
6286 /**
6287  *      t4_get_lb_stats - collect loopback port statistics
6288  *      @adap: the adapter
6289  *      @idx: the loopback port index
6290  *      @p: the stats structure to fill
6291  *
6292  *      Return HW statistics for the given loopback port.
6293  */
6294 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6295 {
6296         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6297
6298 #define GET_STAT(name) \
6299         t4_read_reg64(adap, \
6300         (is_t4(adap->params.chip) ? \
6301         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6302         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6303 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6304
6305         p->octets           = GET_STAT(BYTES);
6306         p->frames           = GET_STAT(FRAMES);
6307         p->bcast_frames     = GET_STAT(BCAST);
6308         p->mcast_frames     = GET_STAT(MCAST);
6309         p->ucast_frames     = GET_STAT(UCAST);
6310         p->error_frames     = GET_STAT(ERROR);
6311
6312         p->frames_64        = GET_STAT(64B);
6313         p->frames_65_127    = GET_STAT(65B_127B);
6314         p->frames_128_255   = GET_STAT(128B_255B);
6315         p->frames_256_511   = GET_STAT(256B_511B);
6316         p->frames_512_1023  = GET_STAT(512B_1023B);
6317         p->frames_1024_1518 = GET_STAT(1024B_1518B);
6318         p->frames_1519_max  = GET_STAT(1519B_MAX);
6319         p->drop             = GET_STAT(DROP_FRAMES);
6320
6321         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6322         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6323         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6324         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6325         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6326         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6327         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6328         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6329
6330 #undef GET_STAT
6331 #undef GET_STAT_COM
6332 }
6333
6334 /*     t4_mk_filtdelwr - create a delete filter WR
6335  *     @ftid: the filter ID
6336  *     @wr: the filter work request to populate
6337  *     @qid: ingress queue to receive the delete notification
6338  *
6339  *     Creates a filter work request to delete the supplied filter.  If @qid is
6340  *     negative the delete notification is suppressed.
6341  */
6342 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6343 {
6344         memset(wr, 0, sizeof(*wr));
6345         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6346         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6347         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6348                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
6349         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6350         if (qid >= 0)
6351                 wr->rx_chan_rx_rpl_iq =
6352                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6353 }
6354
6355 #define INIT_CMD(var, cmd, rd_wr) do { \
6356         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6357                                         FW_CMD_REQUEST_F | \
6358                                         FW_CMD_##rd_wr##_F); \
6359         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6360 } while (0)
6361
6362 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6363                           u32 addr, u32 val)
6364 {
6365         u32 ldst_addrspace;
6366         struct fw_ldst_cmd c;
6367
6368         memset(&c, 0, sizeof(c));
6369         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6370         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6371                                         FW_CMD_REQUEST_F |
6372                                         FW_CMD_WRITE_F |
6373                                         ldst_addrspace);
6374         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6375         c.u.addrval.addr = cpu_to_be32(addr);
6376         c.u.addrval.val = cpu_to_be32(val);
6377
6378         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6379 }
6380
6381 /**
6382  *      t4_mdio_rd - read a PHY register through MDIO
6383  *      @adap: the adapter
6384  *      @mbox: mailbox to use for the FW command
6385  *      @phy_addr: the PHY address
6386  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6387  *      @reg: the register to read
6388  *      @valp: where to store the value
6389  *
6390  *      Issues a FW command through the given mailbox to read a PHY register.
6391  */
6392 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6393                unsigned int mmd, unsigned int reg, u16 *valp)
6394 {
6395         int ret;
6396         u32 ldst_addrspace;
6397         struct fw_ldst_cmd c;
6398
6399         memset(&c, 0, sizeof(c));
6400         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6401         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6402                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6403                                         ldst_addrspace);
6404         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6405         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6406                                          FW_LDST_CMD_MMD_V(mmd));
6407         c.u.mdio.raddr = cpu_to_be16(reg);
6408
6409         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6410         if (ret == 0)
6411                 *valp = be16_to_cpu(c.u.mdio.rval);
6412         return ret;
6413 }
6414
6415 /**
6416  *      t4_mdio_wr - write a PHY register through MDIO
6417  *      @adap: the adapter
6418  *      @mbox: mailbox to use for the FW command
6419  *      @phy_addr: the PHY address
6420  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6421  *      @reg: the register to write
6422  *      @valp: value to write
6423  *
6424  *      Issues a FW command through the given mailbox to write a PHY register.
6425  */
6426 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6427                unsigned int mmd, unsigned int reg, u16 val)
6428 {
6429         u32 ldst_addrspace;
6430         struct fw_ldst_cmd c;
6431
6432         memset(&c, 0, sizeof(c));
6433         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6434         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6435                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6436                                         ldst_addrspace);
6437         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6438         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6439                                          FW_LDST_CMD_MMD_V(mmd));
6440         c.u.mdio.raddr = cpu_to_be16(reg);
6441         c.u.mdio.rval = cpu_to_be16(val);
6442
6443         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6444 }
6445
6446 /**
6447  *      t4_sge_decode_idma_state - decode the idma state
6448  *      @adap: the adapter
6449  *      @state: the state idma is stuck in
6450  */
6451 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6452 {
6453         static const char * const t4_decode[] = {
6454                 "IDMA_IDLE",
6455                 "IDMA_PUSH_MORE_CPL_FIFO",
6456                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6457                 "Not used",
6458                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6459                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6460                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6461                 "IDMA_SEND_FIFO_TO_IMSG",
6462                 "IDMA_FL_REQ_DATA_FL_PREP",
6463                 "IDMA_FL_REQ_DATA_FL",
6464                 "IDMA_FL_DROP",
6465                 "IDMA_FL_H_REQ_HEADER_FL",
6466                 "IDMA_FL_H_SEND_PCIEHDR",
6467                 "IDMA_FL_H_PUSH_CPL_FIFO",
6468                 "IDMA_FL_H_SEND_CPL",
6469                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6470                 "IDMA_FL_H_SEND_IP_HDR",
6471                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6472                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6473                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6474                 "IDMA_FL_D_SEND_PCIEHDR",
6475                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6476                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6477                 "IDMA_FL_SEND_PCIEHDR",
6478                 "IDMA_FL_PUSH_CPL_FIFO",
6479                 "IDMA_FL_SEND_CPL",
6480                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6481                 "IDMA_FL_SEND_PAYLOAD",
6482                 "IDMA_FL_REQ_NEXT_DATA_FL",
6483                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6484                 "IDMA_FL_SEND_PADDING",
6485                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6486                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6487                 "IDMA_FL_REQ_DATAFL_DONE",
6488                 "IDMA_FL_REQ_HEADERFL_DONE",
6489         };
6490         static const char * const t5_decode[] = {
6491                 "IDMA_IDLE",
6492                 "IDMA_ALMOST_IDLE",
6493                 "IDMA_PUSH_MORE_CPL_FIFO",
6494                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6495                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6496                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6497                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6498                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6499                 "IDMA_SEND_FIFO_TO_IMSG",
6500                 "IDMA_FL_REQ_DATA_FL",
6501                 "IDMA_FL_DROP",
6502                 "IDMA_FL_DROP_SEND_INC",
6503                 "IDMA_FL_H_REQ_HEADER_FL",
6504                 "IDMA_FL_H_SEND_PCIEHDR",
6505                 "IDMA_FL_H_PUSH_CPL_FIFO",
6506                 "IDMA_FL_H_SEND_CPL",
6507                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6508                 "IDMA_FL_H_SEND_IP_HDR",
6509                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6510                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6511                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6512                 "IDMA_FL_D_SEND_PCIEHDR",
6513                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6514                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6515                 "IDMA_FL_SEND_PCIEHDR",
6516                 "IDMA_FL_PUSH_CPL_FIFO",
6517                 "IDMA_FL_SEND_CPL",
6518                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6519                 "IDMA_FL_SEND_PAYLOAD",
6520                 "IDMA_FL_REQ_NEXT_DATA_FL",
6521                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6522                 "IDMA_FL_SEND_PADDING",
6523                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6524         };
6525         static const char * const t6_decode[] = {
6526                 "IDMA_IDLE",
6527                 "IDMA_PUSH_MORE_CPL_FIFO",
6528                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6529                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6530                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6531                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6532                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6533                 "IDMA_FL_REQ_DATA_FL",
6534                 "IDMA_FL_DROP",
6535                 "IDMA_FL_DROP_SEND_INC",
6536                 "IDMA_FL_H_REQ_HEADER_FL",
6537                 "IDMA_FL_H_SEND_PCIEHDR",
6538                 "IDMA_FL_H_PUSH_CPL_FIFO",
6539                 "IDMA_FL_H_SEND_CPL",
6540                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6541                 "IDMA_FL_H_SEND_IP_HDR",
6542                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6543                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6544                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6545                 "IDMA_FL_D_SEND_PCIEHDR",
6546                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6547                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6548                 "IDMA_FL_SEND_PCIEHDR",
6549                 "IDMA_FL_PUSH_CPL_FIFO",
6550                 "IDMA_FL_SEND_CPL",
6551                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6552                 "IDMA_FL_SEND_PAYLOAD",
6553                 "IDMA_FL_REQ_NEXT_DATA_FL",
6554                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6555                 "IDMA_FL_SEND_PADDING",
6556                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6557         };
6558         static const u32 sge_regs[] = {
6559                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6560                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6561                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6562         };
6563         const char **sge_idma_decode;
6564         int sge_idma_decode_nstates;
6565         int i;
6566         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6567
6568         /* Select the right set of decode strings to dump depending on the
6569          * adapter chip type.
6570          */
6571         switch (chip_version) {
6572         case CHELSIO_T4:
6573                 sge_idma_decode = (const char **)t4_decode;
6574                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6575                 break;
6576
6577         case CHELSIO_T5:
6578                 sge_idma_decode = (const char **)t5_decode;
6579                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6580                 break;
6581
6582         case CHELSIO_T6:
6583                 sge_idma_decode = (const char **)t6_decode;
6584                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6585                 break;
6586
6587         default:
6588                 dev_err(adapter->pdev_dev,
6589                         "Unsupported chip version %d\n", chip_version);
6590                 return;
6591         }
6592
6593         if (is_t4(adapter->params.chip)) {
6594                 sge_idma_decode = (const char **)t4_decode;
6595                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6596         } else {
6597                 sge_idma_decode = (const char **)t5_decode;
6598                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6599         }
6600
6601         if (state < sge_idma_decode_nstates)
6602                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6603         else
6604                 CH_WARN(adapter, "idma state %d unknown\n", state);
6605
6606         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6607                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6608                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6609 }
6610
6611 /**
6612  *      t4_sge_ctxt_flush - flush the SGE context cache
6613  *      @adap: the adapter
6614  *      @mbox: mailbox to use for the FW command
6615  *      @ctx_type: Egress or Ingress
6616  *
6617  *      Issues a FW command through the given mailbox to flush the
6618  *      SGE context cache.
6619  */
6620 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6621 {
6622         int ret;
6623         u32 ldst_addrspace;
6624         struct fw_ldst_cmd c;
6625
6626         memset(&c, 0, sizeof(c));
6627         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6628                                                  FW_LDST_ADDRSPC_SGE_EGRC :
6629                                                  FW_LDST_ADDRSPC_SGE_INGC);
6630         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6631                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6632                                         ldst_addrspace);
6633         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6634         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6635
6636         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6637         return ret;
6638 }
6639
6640 /**
6641  *      t4_fw_hello - establish communication with FW
6642  *      @adap: the adapter
6643  *      @mbox: mailbox to use for the FW command
6644  *      @evt_mbox: mailbox to receive async FW events
6645  *      @master: specifies the caller's willingness to be the device master
6646  *      @state: returns the current device state (if non-NULL)
6647  *
6648  *      Issues a command to establish communication with FW.  Returns either
6649  *      an error (negative integer) or the mailbox of the Master PF.
6650  */
6651 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6652                 enum dev_master master, enum dev_state *state)
6653 {
6654         int ret;
6655         struct fw_hello_cmd c;
6656         u32 v;
6657         unsigned int master_mbox;
6658         int retries = FW_CMD_HELLO_RETRIES;
6659
6660 retry:
6661         memset(&c, 0, sizeof(c));
6662         INIT_CMD(c, HELLO, WRITE);
6663         c.err_to_clearinit = cpu_to_be32(
6664                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6665                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6666                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6667                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
6668                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6669                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6670                 FW_HELLO_CMD_CLEARINIT_F);
6671
6672         /*
6673          * Issue the HELLO command to the firmware.  If it's not successful
6674          * but indicates that we got a "busy" or "timeout" condition, retry
6675          * the HELLO until we exhaust our retry limit.  If we do exceed our
6676          * retry limit, check to see if the firmware left us any error
6677          * information and report that if so.
6678          */
6679         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6680         if (ret < 0) {
6681                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6682                         goto retry;
6683                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6684                         t4_report_fw_error(adap);
6685                 return ret;
6686         }
6687
6688         v = be32_to_cpu(c.err_to_clearinit);
6689         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6690         if (state) {
6691                 if (v & FW_HELLO_CMD_ERR_F)
6692                         *state = DEV_STATE_ERR;
6693                 else if (v & FW_HELLO_CMD_INIT_F)
6694                         *state = DEV_STATE_INIT;
6695                 else
6696                         *state = DEV_STATE_UNINIT;
6697         }
6698
6699         /*
6700          * If we're not the Master PF then we need to wait around for the
6701          * Master PF Driver to finish setting up the adapter.
6702          *
6703          * Note that we also do this wait if we're a non-Master-capable PF and
6704          * there is no current Master PF; a Master PF may show up momentarily
6705          * and we wouldn't want to fail pointlessly.  (This can happen when an
6706          * OS loads lots of different drivers rapidly at the same time).  In
6707          * this case, the Master PF returned by the firmware will be
6708          * PCIE_FW_MASTER_M so the test below will work ...
6709          */
6710         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6711             master_mbox != mbox) {
6712                 int waiting = FW_CMD_HELLO_TIMEOUT;
6713
6714                 /*
6715                  * Wait for the firmware to either indicate an error or
6716                  * initialized state.  If we see either of these we bail out
6717                  * and report the issue to the caller.  If we exhaust the
6718                  * "hello timeout" and we haven't exhausted our retries, try
6719                  * again.  Otherwise bail with a timeout error.
6720                  */
6721                 for (;;) {
6722                         u32 pcie_fw;
6723
6724                         msleep(50);
6725                         waiting -= 50;
6726
6727                         /*
6728                          * If neither Error nor Initialialized are indicated
6729                          * by the firmware keep waiting till we exaust our
6730                          * timeout ... and then retry if we haven't exhausted
6731                          * our retries ...
6732                          */
6733                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6734                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6735                                 if (waiting <= 0) {
6736                                         if (retries-- > 0)
6737                                                 goto retry;
6738
6739                                         return -ETIMEDOUT;
6740                                 }
6741                                 continue;
6742                         }
6743
6744                         /*
6745                          * We either have an Error or Initialized condition
6746                          * report errors preferentially.
6747                          */
6748                         if (state) {
6749                                 if (pcie_fw & PCIE_FW_ERR_F)
6750                                         *state = DEV_STATE_ERR;
6751                                 else if (pcie_fw & PCIE_FW_INIT_F)
6752                                         *state = DEV_STATE_INIT;
6753                         }
6754
6755                         /*
6756                          * If we arrived before a Master PF was selected and
6757                          * there's not a valid Master PF, grab its identity
6758                          * for our caller.
6759                          */
6760                         if (master_mbox == PCIE_FW_MASTER_M &&
6761                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
6762                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6763                         break;
6764                 }
6765         }
6766
6767         return master_mbox;
6768 }
6769
6770 /**
6771  *      t4_fw_bye - end communication with FW
6772  *      @adap: the adapter
6773  *      @mbox: mailbox to use for the FW command
6774  *
6775  *      Issues a command to terminate communication with FW.
6776  */
6777 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6778 {
6779         struct fw_bye_cmd c;
6780
6781         memset(&c, 0, sizeof(c));
6782         INIT_CMD(c, BYE, WRITE);
6783         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6784 }
6785
6786 /**
6787  *      t4_init_cmd - ask FW to initialize the device
6788  *      @adap: the adapter
6789  *      @mbox: mailbox to use for the FW command
6790  *
6791  *      Issues a command to FW to partially initialize the device.  This
6792  *      performs initialization that generally doesn't depend on user input.
6793  */
6794 int t4_early_init(struct adapter *adap, unsigned int mbox)
6795 {
6796         struct fw_initialize_cmd c;
6797
6798         memset(&c, 0, sizeof(c));
6799         INIT_CMD(c, INITIALIZE, WRITE);
6800         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6801 }
6802
6803 /**
6804  *      t4_fw_reset - issue a reset to FW
6805  *      @adap: the adapter
6806  *      @mbox: mailbox to use for the FW command
6807  *      @reset: specifies the type of reset to perform
6808  *
6809  *      Issues a reset command of the specified type to FW.
6810  */
6811 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6812 {
6813         struct fw_reset_cmd c;
6814
6815         memset(&c, 0, sizeof(c));
6816         INIT_CMD(c, RESET, WRITE);
6817         c.val = cpu_to_be32(reset);
6818         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6819 }
6820
6821 /**
6822  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6823  *      @adap: the adapter
6824  *      @mbox: mailbox to use for the FW RESET command (if desired)
6825  *      @force: force uP into RESET even if FW RESET command fails
6826  *
6827  *      Issues a RESET command to firmware (if desired) with a HALT indication
6828  *      and then puts the microprocessor into RESET state.  The RESET command
6829  *      will only be issued if a legitimate mailbox is provided (mbox <=
6830  *      PCIE_FW_MASTER_M).
6831  *
6832  *      This is generally used in order for the host to safely manipulate the
6833  *      adapter without fear of conflicting with whatever the firmware might
6834  *      be doing.  The only way out of this state is to RESTART the firmware
6835  *      ...
6836  */
6837 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6838 {
6839         int ret = 0;
6840
6841         /*
6842          * If a legitimate mailbox is provided, issue a RESET command
6843          * with a HALT indication.
6844          */
6845         if (mbox <= PCIE_FW_MASTER_M) {
6846                 struct fw_reset_cmd c;
6847
6848                 memset(&c, 0, sizeof(c));
6849                 INIT_CMD(c, RESET, WRITE);
6850                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6851                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6852                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6853         }
6854
6855         /*
6856          * Normally we won't complete the operation if the firmware RESET
6857          * command fails but if our caller insists we'll go ahead and put the
6858          * uP into RESET.  This can be useful if the firmware is hung or even
6859          * missing ...  We'll have to take the risk of putting the uP into
6860          * RESET without the cooperation of firmware in that case.
6861          *
6862          * We also force the firmware's HALT flag to be on in case we bypassed
6863          * the firmware RESET command above or we're dealing with old firmware
6864          * which doesn't have the HALT capability.  This will serve as a flag
6865          * for the incoming firmware to know that it's coming out of a HALT
6866          * rather than a RESET ... if it's new enough to understand that ...
6867          */
6868         if (ret == 0 || force) {
6869                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6870                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6871                                  PCIE_FW_HALT_F);
6872         }
6873
6874         /*
6875          * And we always return the result of the firmware RESET command
6876          * even when we force the uP into RESET ...
6877          */
6878         return ret;
6879 }
6880
6881 /**
6882  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6883  *      @adap: the adapter
6884  *      @reset: if we want to do a RESET to restart things
6885  *
6886  *      Restart firmware previously halted by t4_fw_halt().  On successful
6887  *      return the previous PF Master remains as the new PF Master and there
6888  *      is no need to issue a new HELLO command, etc.
6889  *
6890  *      We do this in two ways:
6891  *
6892  *       1. If we're dealing with newer firmware we'll simply want to take
6893  *          the chip's microprocessor out of RESET.  This will cause the
6894  *          firmware to start up from its start vector.  And then we'll loop
6895  *          until the firmware indicates it's started again (PCIE_FW.HALT
6896  *          reset to 0) or we timeout.
6897  *
6898  *       2. If we're dealing with older firmware then we'll need to RESET
6899  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6900  *          flag and automatically RESET itself on startup.
6901  */
6902 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6903 {
6904         if (reset) {
6905                 /*
6906                  * Since we're directing the RESET instead of the firmware
6907                  * doing it automatically, we need to clear the PCIE_FW.HALT
6908                  * bit.
6909                  */
6910                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6911
6912                 /*
6913                  * If we've been given a valid mailbox, first try to get the
6914                  * firmware to do the RESET.  If that works, great and we can
6915                  * return success.  Otherwise, if we haven't been given a
6916                  * valid mailbox or the RESET command failed, fall back to
6917                  * hitting the chip with a hammer.
6918                  */
6919                 if (mbox <= PCIE_FW_MASTER_M) {
6920                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6921                         msleep(100);
6922                         if (t4_fw_reset(adap, mbox,
6923                                         PIORST_F | PIORSTMODE_F) == 0)
6924                                 return 0;
6925                 }
6926
6927                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6928                 msleep(2000);
6929         } else {
6930                 int ms;
6931
6932                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6933                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6934                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6935                                 return 0;
6936                         msleep(100);
6937                         ms += 100;
6938                 }
6939                 return -ETIMEDOUT;
6940         }
6941         return 0;
6942 }
6943
6944 /**
6945  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6946  *      @adap: the adapter
6947  *      @mbox: mailbox to use for the FW RESET command (if desired)
6948  *      @fw_data: the firmware image to write
6949  *      @size: image size
6950  *      @force: force upgrade even if firmware doesn't cooperate
6951  *
6952  *      Perform all of the steps necessary for upgrading an adapter's
6953  *      firmware image.  Normally this requires the cooperation of the
6954  *      existing firmware in order to halt all existing activities
6955  *      but if an invalid mailbox token is passed in we skip that step
6956  *      (though we'll still put the adapter microprocessor into RESET in
6957  *      that case).
6958  *
6959  *      On successful return the new firmware will have been loaded and
6960  *      the adapter will have been fully RESET losing all previous setup
6961  *      state.  On unsuccessful return the adapter may be completely hosed ...
6962  *      positive errno indicates that the adapter is ~probably~ intact, a
6963  *      negative errno indicates that things are looking bad ...
6964  */
6965 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6966                   const u8 *fw_data, unsigned int size, int force)
6967 {
6968         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6969         int reset, ret;
6970
6971         if (!t4_fw_matches_chip(adap, fw_hdr))
6972                 return -EINVAL;
6973
6974         /* Disable FW_OK flag so that mbox commands with FW_OK flag set
6975          * wont be sent when we are flashing FW.
6976          */
6977         adap->flags &= ~FW_OK;
6978
6979         ret = t4_fw_halt(adap, mbox, force);
6980         if (ret < 0 && !force)
6981                 goto out;
6982
6983         ret = t4_load_fw(adap, fw_data, size);
6984         if (ret < 0)
6985                 goto out;
6986
6987         /*
6988          * If there was a Firmware Configuration File stored in FLASH,
6989          * there's a good chance that it won't be compatible with the new
6990          * Firmware.  In order to prevent difficult to diagnose adapter
6991          * initialization issues, we clear out the Firmware Configuration File
6992          * portion of the FLASH .  The user will need to re-FLASH a new
6993          * Firmware Configuration File which is compatible with the new
6994          * Firmware if that's desired.
6995          */
6996         (void)t4_load_cfg(adap, NULL, 0);
6997
6998         /*
6999          * Older versions of the firmware don't understand the new
7000          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7001          * restart.  So for newly loaded older firmware we'll have to do the
7002          * RESET for it so it starts up on a clean slate.  We can tell if
7003          * the newly loaded firmware will handle this right by checking
7004          * its header flags to see if it advertises the capability.
7005          */
7006         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7007         ret = t4_fw_restart(adap, mbox, reset);
7008
7009         /* Grab potentially new Firmware Device Log parameters so we can see
7010          * how healthy the new Firmware is.  It's okay to contact the new
7011          * Firmware for these parameters even though, as far as it's
7012          * concerned, we've never said "HELLO" to it ...
7013          */
7014         (void)t4_init_devlog_params(adap);
7015 out:
7016         adap->flags |= FW_OK;
7017         return ret;
7018 }
7019
7020 /**
7021  *      t4_fl_pkt_align - return the fl packet alignment
7022  *      @adap: the adapter
7023  *
7024  *      T4 has a single field to specify the packing and padding boundary.
7025  *      T5 onwards has separate fields for this and hence the alignment for
7026  *      next packet offset is maximum of these two.
7027  *
7028  */
7029 int t4_fl_pkt_align(struct adapter *adap)
7030 {
7031         u32 sge_control, sge_control2;
7032         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7033
7034         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7035
7036         /* T4 uses a single control field to specify both the PCIe Padding and
7037          * Packing Boundary.  T5 introduced the ability to specify these
7038          * separately.  The actual Ingress Packet Data alignment boundary
7039          * within Packed Buffer Mode is the maximum of these two
7040          * specifications.  (Note that it makes no real practical sense to
7041          * have the Pading Boudary be larger than the Packing Boundary but you
7042          * could set the chip up that way and, in fact, legacy T4 code would
7043          * end doing this because it would initialize the Padding Boundary and
7044          * leave the Packing Boundary initialized to 0 (16 bytes).)
7045          * Padding Boundary values in T6 starts from 8B,
7046          * where as it is 32B for T4 and T5.
7047          */
7048         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7049                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7050         else
7051                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7052
7053         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7054
7055         fl_align = ingpadboundary;
7056         if (!is_t4(adap->params.chip)) {
7057                 /* T5 has a weird interpretation of one of the PCIe Packing
7058                  * Boundary values.  No idea why ...
7059                  */
7060                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7061                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7062                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7063                         ingpackboundary = 16;
7064                 else
7065                         ingpackboundary = 1 << (ingpackboundary +
7066                                                 INGPACKBOUNDARY_SHIFT_X);
7067
7068                 fl_align = max(ingpadboundary, ingpackboundary);
7069         }
7070         return fl_align;
7071 }
7072
7073 /**
7074  *      t4_fixup_host_params - fix up host-dependent parameters
7075  *      @adap: the adapter
7076  *      @page_size: the host's Base Page Size
7077  *      @cache_line_size: the host's Cache Line Size
7078  *
7079  *      Various registers in T4 contain values which are dependent on the
7080  *      host's Base Page and Cache Line Sizes.  This function will fix all of
7081  *      those registers with the appropriate values as passed in ...
7082  */
7083 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7084                          unsigned int cache_line_size)
7085 {
7086         unsigned int page_shift = fls(page_size) - 1;
7087         unsigned int sge_hps = page_shift - 10;
7088         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7089         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7090         unsigned int fl_align_log = fls(fl_align) - 1;
7091
7092         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7093                      HOSTPAGESIZEPF0_V(sge_hps) |
7094                      HOSTPAGESIZEPF1_V(sge_hps) |
7095                      HOSTPAGESIZEPF2_V(sge_hps) |
7096                      HOSTPAGESIZEPF3_V(sge_hps) |
7097                      HOSTPAGESIZEPF4_V(sge_hps) |
7098                      HOSTPAGESIZEPF5_V(sge_hps) |
7099                      HOSTPAGESIZEPF6_V(sge_hps) |
7100                      HOSTPAGESIZEPF7_V(sge_hps));
7101
7102         if (is_t4(adap->params.chip)) {
7103                 t4_set_reg_field(adap, SGE_CONTROL_A,
7104                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7105                                  EGRSTATUSPAGESIZE_F,
7106                                  INGPADBOUNDARY_V(fl_align_log -
7107                                                   INGPADBOUNDARY_SHIFT_X) |
7108                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7109         } else {
7110                 unsigned int pack_align;
7111                 unsigned int ingpad, ingpack;
7112                 unsigned int pcie_cap;
7113
7114                 /* T5 introduced the separation of the Free List Padding and
7115                  * Packing Boundaries.  Thus, we can select a smaller Padding
7116                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
7117                  * Bandwidth, and use a Packing Boundary which is large enough
7118                  * to avoid false sharing between CPUs, etc.
7119                  *
7120                  * For the PCI Link, the smaller the Padding Boundary the
7121                  * better.  For the Memory Controller, a smaller Padding
7122                  * Boundary is better until we cross under the Memory Line
7123                  * Size (the minimum unit of transfer to/from Memory).  If we
7124                  * have a Padding Boundary which is smaller than the Memory
7125                  * Line Size, that'll involve a Read-Modify-Write cycle on the
7126                  * Memory Controller which is never good.
7127                  */
7128
7129                 /* We want the Packing Boundary to be based on the Cache Line
7130                  * Size in order to help avoid False Sharing performance
7131                  * issues between CPUs, etc.  We also want the Packing
7132                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7133                  * get best performance when the Packing Boundary is a
7134                  * multiple of the Maximum Payload Size.
7135                  */
7136                 pack_align = fl_align;
7137                 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7138                 if (pcie_cap) {
7139                         unsigned int mps, mps_log;
7140                         u16 devctl;
7141
7142                         /* The PCIe Device Control Maximum Payload Size field
7143                          * [bits 7:5] encodes sizes as powers of 2 starting at
7144                          * 128 bytes.
7145                          */
7146                         pci_read_config_word(adap->pdev,
7147                                              pcie_cap + PCI_EXP_DEVCTL,
7148                                              &devctl);
7149                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7150                         mps = 1 << mps_log;
7151                         if (mps > pack_align)
7152                                 pack_align = mps;
7153                 }
7154
7155                 /* N.B. T5/T6 have a crazy special interpretation of the "0"
7156                  * value for the Packing Boundary.  This corresponds to 16
7157                  * bytes instead of the expected 32 bytes.  So if we want 32
7158                  * bytes, the best we can really do is 64 bytes ...
7159                  */
7160                 if (pack_align <= 16) {
7161                         ingpack = INGPACKBOUNDARY_16B_X;
7162                         fl_align = 16;
7163                 } else if (pack_align == 32) {
7164                         ingpack = INGPACKBOUNDARY_64B_X;
7165                         fl_align = 64;
7166                 } else {
7167                         unsigned int pack_align_log = fls(pack_align) - 1;
7168
7169                         ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7170                         fl_align = pack_align;
7171                 }
7172
7173                 /* Use the smallest Ingress Padding which isn't smaller than
7174                  * the Memory Controller Read/Write Size.  We'll take that as
7175                  * being 8 bytes since we don't know of any system with a
7176                  * wider Memory Controller Bus Width.
7177                  */
7178                 if (is_t5(adap->params.chip))
7179                         ingpad = INGPADBOUNDARY_32B_X;
7180                 else
7181                         ingpad = T6_INGPADBOUNDARY_8B_X;
7182
7183                 t4_set_reg_field(adap, SGE_CONTROL_A,
7184                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7185                                  EGRSTATUSPAGESIZE_F,
7186                                  INGPADBOUNDARY_V(ingpad) |
7187                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7188                 t4_set_reg_field(adap, SGE_CONTROL2_A,
7189                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7190                                  INGPACKBOUNDARY_V(ingpack));
7191         }
7192         /*
7193          * Adjust various SGE Free List Host Buffer Sizes.
7194          *
7195          * This is something of a crock since we're using fixed indices into
7196          * the array which are also known by the sge.c code and the T4
7197          * Firmware Configuration File.  We need to come up with a much better
7198          * approach to managing this array.  For now, the first four entries
7199          * are:
7200          *
7201          *   0: Host Page Size
7202          *   1: 64KB
7203          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7204          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7205          *
7206          * For the single-MTU buffers in unpacked mode we need to include
7207          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7208          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7209          * Padding boundary.  All of these are accommodated in the Factory
7210          * Default Firmware Configuration File but we need to adjust it for
7211          * this host's cache line size.
7212          */
7213         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7214         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7215                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7216                      & ~(fl_align-1));
7217         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7218                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7219                      & ~(fl_align-1));
7220
7221         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7222
7223         return 0;
7224 }
7225
7226 /**
7227  *      t4_fw_initialize - ask FW to initialize the device
7228  *      @adap: the adapter
7229  *      @mbox: mailbox to use for the FW command
7230  *
7231  *      Issues a command to FW to partially initialize the device.  This
7232  *      performs initialization that generally doesn't depend on user input.
7233  */
7234 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7235 {
7236         struct fw_initialize_cmd c;
7237
7238         memset(&c, 0, sizeof(c));
7239         INIT_CMD(c, INITIALIZE, WRITE);
7240         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7241 }
7242
7243 /**
7244  *      t4_query_params_rw - query FW or device parameters
7245  *      @adap: the adapter
7246  *      @mbox: mailbox to use for the FW command
7247  *      @pf: the PF
7248  *      @vf: the VF
7249  *      @nparams: the number of parameters
7250  *      @params: the parameter names
7251  *      @val: the parameter values
7252  *      @rw: Write and read flag
7253  *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7254  *
7255  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7256  *      queried at once.
7257  */
7258 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7259                        unsigned int vf, unsigned int nparams, const u32 *params,
7260                        u32 *val, int rw, bool sleep_ok)
7261 {
7262         int i, ret;
7263         struct fw_params_cmd c;
7264         __be32 *p = &c.param[0].mnem;
7265
7266         if (nparams > 7)
7267                 return -EINVAL;
7268
7269         memset(&c, 0, sizeof(c));
7270         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7271                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
7272                                   FW_PARAMS_CMD_PFN_V(pf) |
7273                                   FW_PARAMS_CMD_VFN_V(vf));
7274         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7275
7276         for (i = 0; i < nparams; i++) {
7277                 *p++ = cpu_to_be32(*params++);
7278                 if (rw)
7279                         *p = cpu_to_be32(*(val + i));
7280                 p++;
7281         }
7282
7283         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7284         if (ret == 0)
7285                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7286                         *val++ = be32_to_cpu(*p);
7287         return ret;
7288 }
7289
7290 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7291                     unsigned int vf, unsigned int nparams, const u32 *params,
7292                     u32 *val)
7293 {
7294         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7295                                   true);
7296 }
7297
7298 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7299                        unsigned int vf, unsigned int nparams, const u32 *params,
7300                        u32 *val)
7301 {
7302         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7303                                   false);
7304 }
7305
7306 /**
7307  *      t4_set_params_timeout - sets FW or device parameters
7308  *      @adap: the adapter
7309  *      @mbox: mailbox to use for the FW command
7310  *      @pf: the PF
7311  *      @vf: the VF
7312  *      @nparams: the number of parameters
7313  *      @params: the parameter names
7314  *      @val: the parameter values
7315  *      @timeout: the timeout time
7316  *
7317  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7318  *      specified at once.
7319  */
7320 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7321                           unsigned int pf, unsigned int vf,
7322                           unsigned int nparams, const u32 *params,
7323                           const u32 *val, int timeout)
7324 {
7325         struct fw_params_cmd c;
7326         __be32 *p = &c.param[0].mnem;
7327
7328         if (nparams > 7)
7329                 return -EINVAL;
7330
7331         memset(&c, 0, sizeof(c));
7332         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7333                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7334                                   FW_PARAMS_CMD_PFN_V(pf) |
7335                                   FW_PARAMS_CMD_VFN_V(vf));
7336         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7337
7338         while (nparams--) {
7339                 *p++ = cpu_to_be32(*params++);
7340                 *p++ = cpu_to_be32(*val++);
7341         }
7342
7343         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7344 }
7345
7346 /**
7347  *      t4_set_params - sets FW or device parameters
7348  *      @adap: the adapter
7349  *      @mbox: mailbox to use for the FW command
7350  *      @pf: the PF
7351  *      @vf: the VF
7352  *      @nparams: the number of parameters
7353  *      @params: the parameter names
7354  *      @val: the parameter values
7355  *
7356  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7357  *      specified at once.
7358  */
7359 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7360                   unsigned int vf, unsigned int nparams, const u32 *params,
7361                   const u32 *val)
7362 {
7363         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7364                                      FW_CMD_MAX_TIMEOUT);
7365 }
7366
7367 /**
7368  *      t4_cfg_pfvf - configure PF/VF resource limits
7369  *      @adap: the adapter
7370  *      @mbox: mailbox to use for the FW command
7371  *      @pf: the PF being configured
7372  *      @vf: the VF being configured
7373  *      @txq: the max number of egress queues
7374  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7375  *      @rxqi: the max number of interrupt-capable ingress queues
7376  *      @rxq: the max number of interruptless ingress queues
7377  *      @tc: the PCI traffic class
7378  *      @vi: the max number of virtual interfaces
7379  *      @cmask: the channel access rights mask for the PF/VF
7380  *      @pmask: the port access rights mask for the PF/VF
7381  *      @nexact: the maximum number of exact MPS filters
7382  *      @rcaps: read capabilities
7383  *      @wxcaps: write/execute capabilities
7384  *
7385  *      Configures resource limits and capabilities for a physical or virtual
7386  *      function.
7387  */
7388 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7389                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7390                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7391                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7392                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7393 {
7394         struct fw_pfvf_cmd c;
7395
7396         memset(&c, 0, sizeof(c));
7397         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7398                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7399                                   FW_PFVF_CMD_VFN_V(vf));
7400         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7401         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7402                                      FW_PFVF_CMD_NIQ_V(rxq));
7403         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7404                                     FW_PFVF_CMD_PMASK_V(pmask) |
7405                                     FW_PFVF_CMD_NEQ_V(txq));
7406         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7407                                       FW_PFVF_CMD_NVI_V(vi) |
7408                                       FW_PFVF_CMD_NEXACTF_V(nexact));
7409         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7410                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7411                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7412         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7413 }
7414
7415 /**
7416  *      t4_alloc_vi - allocate a virtual interface
7417  *      @adap: the adapter
7418  *      @mbox: mailbox to use for the FW command
7419  *      @port: physical port associated with the VI
7420  *      @pf: the PF owning the VI
7421  *      @vf: the VF owning the VI
7422  *      @nmac: number of MAC addresses needed (1 to 5)
7423  *      @mac: the MAC addresses of the VI
7424  *      @rss_size: size of RSS table slice associated with this VI
7425  *
7426  *      Allocates a virtual interface for the given physical port.  If @mac is
7427  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7428  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7429  *      stored consecutively so the space needed is @nmac * 6 bytes.
7430  *      Returns a negative error number or the non-negative VI id.
7431  */
7432 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7433                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7434                 unsigned int *rss_size)
7435 {
7436         int ret;
7437         struct fw_vi_cmd c;
7438
7439         memset(&c, 0, sizeof(c));
7440         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7441                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7442                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7443         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7444         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7445         c.nmac = nmac - 1;
7446
7447         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7448         if (ret)
7449                 return ret;
7450
7451         if (mac) {
7452                 memcpy(mac, c.mac, sizeof(c.mac));
7453                 switch (nmac) {
7454                 case 5:
7455                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7456                 case 4:
7457                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7458                 case 3:
7459                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7460                 case 2:
7461                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7462                 }
7463         }
7464         if (rss_size)
7465                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7466         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7467 }
7468
7469 /**
7470  *      t4_free_vi - free a virtual interface
7471  *      @adap: the adapter
7472  *      @mbox: mailbox to use for the FW command
7473  *      @pf: the PF owning the VI
7474  *      @vf: the VF owning the VI
7475  *      @viid: virtual interface identifiler
7476  *
7477  *      Free a previously allocated virtual interface.
7478  */
7479 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7480                unsigned int vf, unsigned int viid)
7481 {
7482         struct fw_vi_cmd c;
7483
7484         memset(&c, 0, sizeof(c));
7485         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7486                                   FW_CMD_REQUEST_F |
7487                                   FW_CMD_EXEC_F |
7488                                   FW_VI_CMD_PFN_V(pf) |
7489                                   FW_VI_CMD_VFN_V(vf));
7490         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7491         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7492
7493         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7494 }
7495
7496 /**
7497  *      t4_set_rxmode - set Rx properties of a virtual interface
7498  *      @adap: the adapter
7499  *      @mbox: mailbox to use for the FW command
7500  *      @viid: the VI id
7501  *      @mtu: the new MTU or -1
7502  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7503  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7504  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7505  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7506  *      @sleep_ok: if true we may sleep while awaiting command completion
7507  *
7508  *      Sets Rx properties of a virtual interface.
7509  */
7510 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7511                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
7512                   bool sleep_ok)
7513 {
7514         struct fw_vi_rxmode_cmd c;
7515
7516         /* convert to FW values */
7517         if (mtu < 0)
7518                 mtu = FW_RXMODE_MTU_NO_CHG;
7519         if (promisc < 0)
7520                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7521         if (all_multi < 0)
7522                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7523         if (bcast < 0)
7524                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7525         if (vlanex < 0)
7526                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7527
7528         memset(&c, 0, sizeof(c));
7529         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7530                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7531                                    FW_VI_RXMODE_CMD_VIID_V(viid));
7532         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7533         c.mtu_to_vlanexen =
7534                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7535                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7536                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7537                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7538                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7539         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7540 }
7541
7542 /**
7543  *      t4_free_encap_mac_filt - frees MPS entry at given index
7544  *      @adap: the adapter
7545  *      @viid: the VI id
7546  *      @idx: index of MPS entry to be freed
7547  *      @sleep_ok: call is allowed to sleep
7548  *
7549  *      Frees the MPS entry at supplied index
7550  *
7551  *      Returns a negative error number or zero on success
7552  */
7553 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7554                            int idx, bool sleep_ok)
7555 {
7556         struct fw_vi_mac_exact *p;
7557         u8 addr[] = {0, 0, 0, 0, 0, 0};
7558         struct fw_vi_mac_cmd c;
7559         int ret = 0;
7560         u32 exact;
7561
7562         memset(&c, 0, sizeof(c));
7563         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7564                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7565                                    FW_CMD_EXEC_V(0) |
7566                                    FW_VI_MAC_CMD_VIID_V(viid));
7567         exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7568         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7569                                           exact |
7570                                           FW_CMD_LEN16_V(1));
7571         p = c.u.exact;
7572         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7573                                       FW_VI_MAC_CMD_IDX_V(idx));
7574         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7575         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7576         return ret;
7577 }
7578
7579 /**
7580  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7581  *      @adap: the adapter
7582  *      @viid: the VI id
7583  *      @addr: the MAC address
7584  *      @mask: the mask
7585  *      @idx: index of the entry in mps tcam
7586  *      @lookup_type: MAC address for inner (1) or outer (0) header
7587  *      @port_id: the port index
7588  *      @sleep_ok: call is allowed to sleep
7589  *
7590  *      Removes the mac entry at the specified index using raw mac interface.
7591  *
7592  *      Returns a negative error number on failure.
7593  */
7594 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7595                          const u8 *addr, const u8 *mask, unsigned int idx,
7596                          u8 lookup_type, u8 port_id, bool sleep_ok)
7597 {
7598         struct fw_vi_mac_cmd c;
7599         struct fw_vi_mac_raw *p = &c.u.raw;
7600         u32 val;
7601
7602         memset(&c, 0, sizeof(c));
7603         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7604                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7605                                    FW_CMD_EXEC_V(0) |
7606                                    FW_VI_MAC_CMD_VIID_V(viid));
7607         val = FW_CMD_LEN16_V(1) |
7608               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7609         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7610                                           FW_CMD_LEN16_V(val));
7611
7612         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7613                                      FW_VI_MAC_ID_BASED_FREE);
7614
7615         /* Lookup Type. Outer header: 0, Inner header: 1 */
7616         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7617                                    DATAPORTNUM_V(port_id));
7618         /* Lookup mask and port mask */
7619         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7620                                     DATAPORTNUM_V(DATAPORTNUM_M));
7621
7622         /* Copy the address and the mask */
7623         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7624         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7625
7626         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7627 }
7628
7629 /**
7630  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7631  *      @adap: the adapter
7632  *      @viid: the VI id
7633  *      @mac: the MAC address
7634  *      @mask: the mask
7635  *      @vni: the VNI id for the tunnel protocol
7636  *      @vni_mask: mask for the VNI id
7637  *      @dip_hit: to enable DIP match for the MPS entry
7638  *      @lookup_type: MAC address for inner (1) or outer (0) header
7639  *      @sleep_ok: call is allowed to sleep
7640  *
7641  *      Allocates an MPS entry with specified MAC address and VNI value.
7642  *
7643  *      Returns a negative error number or the allocated index for this mac.
7644  */
7645 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7646                             const u8 *addr, const u8 *mask, unsigned int vni,
7647                             unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7648                             bool sleep_ok)
7649 {
7650         struct fw_vi_mac_cmd c;
7651         struct fw_vi_mac_vni *p = c.u.exact_vni;
7652         int ret = 0;
7653         u32 val;
7654
7655         memset(&c, 0, sizeof(c));
7656         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7657                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7658                                    FW_VI_MAC_CMD_VIID_V(viid));
7659         val = FW_CMD_LEN16_V(1) |
7660               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7661         c.freemacs_to_len16 = cpu_to_be32(val);
7662         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7663                                       FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7664         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7665         memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7666
7667         p->lookup_type_to_vni =
7668                 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7669                             FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7670                             FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7671         p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7672         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7673         if (ret == 0)
7674                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7675         return ret;
7676 }
7677
7678 /**
7679  *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7680  *      @adap: the adapter
7681  *      @viid: the VI id
7682  *      @mac: the MAC address
7683  *      @mask: the mask
7684  *      @idx: index at which to add this entry
7685  *      @port_id: the port index
7686  *      @lookup_type: MAC address for inner (1) or outer (0) header
7687  *      @sleep_ok: call is allowed to sleep
7688  *
7689  *      Adds the mac entry at the specified index using raw mac interface.
7690  *
7691  *      Returns a negative error number or the allocated index for this mac.
7692  */
7693 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7694                           const u8 *addr, const u8 *mask, unsigned int idx,
7695                           u8 lookup_type, u8 port_id, bool sleep_ok)
7696 {
7697         int ret = 0;
7698         struct fw_vi_mac_cmd c;
7699         struct fw_vi_mac_raw *p = &c.u.raw;
7700         u32 val;
7701
7702         memset(&c, 0, sizeof(c));
7703         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7704                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7705                                    FW_VI_MAC_CMD_VIID_V(viid));
7706         val = FW_CMD_LEN16_V(1) |
7707               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7708         c.freemacs_to_len16 = cpu_to_be32(val);
7709
7710         /* Specify that this is an inner mac address */
7711         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7712
7713         /* Lookup Type. Outer header: 0, Inner header: 1 */
7714         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7715                                    DATAPORTNUM_V(port_id));
7716         /* Lookup mask and port mask */
7717         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7718                                     DATAPORTNUM_V(DATAPORTNUM_M));
7719
7720         /* Copy the address and the mask */
7721         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7722         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7723
7724         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7725         if (ret == 0) {
7726                 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7727                 if (ret != idx)
7728                         ret = -ENOMEM;
7729         }
7730
7731         return ret;
7732 }
7733
7734 /**
7735  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7736  *      @adap: the adapter
7737  *      @mbox: mailbox to use for the FW command
7738  *      @viid: the VI id
7739  *      @free: if true any existing filters for this VI id are first removed
7740  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7741  *      @addr: the MAC address(es)
7742  *      @idx: where to store the index of each allocated filter
7743  *      @hash: pointer to hash address filter bitmap
7744  *      @sleep_ok: call is allowed to sleep
7745  *
7746  *      Allocates an exact-match filter for each of the supplied addresses and
7747  *      sets it to the corresponding address.  If @idx is not %NULL it should
7748  *      have at least @naddr entries, each of which will be set to the index of
7749  *      the filter allocated for the corresponding MAC address.  If a filter
7750  *      could not be allocated for an address its index is set to 0xffff.
7751  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7752  *      are hashed and update the hash filter bitmap pointed at by @hash.
7753  *
7754  *      Returns a negative error number or the number of filters allocated.
7755  */
7756 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7757                       unsigned int viid, bool free, unsigned int naddr,
7758                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7759 {
7760         int offset, ret = 0;
7761         struct fw_vi_mac_cmd c;
7762         unsigned int nfilters = 0;
7763         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7764         unsigned int rem = naddr;
7765
7766         if (naddr > max_naddr)
7767                 return -EINVAL;
7768
7769         for (offset = 0; offset < naddr ; /**/) {
7770                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7771                                          rem : ARRAY_SIZE(c.u.exact));
7772                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7773                                                      u.exact[fw_naddr]), 16);
7774                 struct fw_vi_mac_exact *p;
7775                 int i;
7776
7777                 memset(&c, 0, sizeof(c));
7778                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7779                                            FW_CMD_REQUEST_F |
7780                                            FW_CMD_WRITE_F |
7781                                            FW_CMD_EXEC_V(free) |
7782                                            FW_VI_MAC_CMD_VIID_V(viid));
7783                 c.freemacs_to_len16 =
7784                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7785                                     FW_CMD_LEN16_V(len16));
7786
7787                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7788                         p->valid_to_idx =
7789                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7790                                             FW_VI_MAC_CMD_IDX_V(
7791                                                     FW_VI_MAC_ADD_MAC));
7792                         memcpy(p->macaddr, addr[offset + i],
7793                                sizeof(p->macaddr));
7794                 }
7795
7796                 /* It's okay if we run out of space in our MAC address arena.
7797                  * Some of the addresses we submit may get stored so we need
7798                  * to run through the reply to see what the results were ...
7799                  */
7800                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7801                 if (ret && ret != -FW_ENOMEM)
7802                         break;
7803
7804                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7805                         u16 index = FW_VI_MAC_CMD_IDX_G(
7806                                         be16_to_cpu(p->valid_to_idx));
7807
7808                         if (idx)
7809                                 idx[offset + i] = (index >= max_naddr ?
7810                                                    0xffff : index);
7811                         if (index < max_naddr)
7812                                 nfilters++;
7813                         else if (hash)
7814                                 *hash |= (1ULL <<
7815                                           hash_mac_addr(addr[offset + i]));
7816                 }
7817
7818                 free = false;
7819                 offset += fw_naddr;
7820                 rem -= fw_naddr;
7821         }
7822
7823         if (ret == 0 || ret == -FW_ENOMEM)
7824                 ret = nfilters;
7825         return ret;
7826 }
7827
7828 /**
7829  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
7830  *      @adap: the adapter
7831  *      @mbox: mailbox to use for the FW command
7832  *      @viid: the VI id
7833  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7834  *      @addr: the MAC address(es)
7835  *      @sleep_ok: call is allowed to sleep
7836  *
7837  *      Frees the exact-match filter for each of the supplied addresses
7838  *
7839  *      Returns a negative error number or the number of filters freed.
7840  */
7841 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7842                      unsigned int viid, unsigned int naddr,
7843                      const u8 **addr, bool sleep_ok)
7844 {
7845         int offset, ret = 0;
7846         struct fw_vi_mac_cmd c;
7847         unsigned int nfilters = 0;
7848         unsigned int max_naddr = is_t4(adap->params.chip) ?
7849                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
7850                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7851         unsigned int rem = naddr;
7852
7853         if (naddr > max_naddr)
7854                 return -EINVAL;
7855
7856         for (offset = 0; offset < (int)naddr ; /**/) {
7857                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7858                                          ? rem
7859                                          : ARRAY_SIZE(c.u.exact));
7860                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7861                                                      u.exact[fw_naddr]), 16);
7862                 struct fw_vi_mac_exact *p;
7863                 int i;
7864
7865                 memset(&c, 0, sizeof(c));
7866                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7867                                      FW_CMD_REQUEST_F |
7868                                      FW_CMD_WRITE_F |
7869                                      FW_CMD_EXEC_V(0) |
7870                                      FW_VI_MAC_CMD_VIID_V(viid));
7871                 c.freemacs_to_len16 =
7872                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7873                                             FW_CMD_LEN16_V(len16));
7874
7875                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7876                         p->valid_to_idx = cpu_to_be16(
7877                                 FW_VI_MAC_CMD_VALID_F |
7878                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7879                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7880                 }
7881
7882                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7883                 if (ret)
7884                         break;
7885
7886                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7887                         u16 index = FW_VI_MAC_CMD_IDX_G(
7888                                                 be16_to_cpu(p->valid_to_idx));
7889
7890                         if (index < max_naddr)
7891                                 nfilters++;
7892                 }
7893
7894                 offset += fw_naddr;
7895                 rem -= fw_naddr;
7896         }
7897
7898         if (ret == 0)
7899                 ret = nfilters;
7900         return ret;
7901 }
7902
7903 /**
7904  *      t4_change_mac - modifies the exact-match filter for a MAC address
7905  *      @adap: the adapter
7906  *      @mbox: mailbox to use for the FW command
7907  *      @viid: the VI id
7908  *      @idx: index of existing filter for old value of MAC address, or -1
7909  *      @addr: the new MAC address value
7910  *      @persist: whether a new MAC allocation should be persistent
7911  *      @add_smt: if true also add the address to the HW SMT
7912  *
7913  *      Modifies an exact-match filter and sets it to the new MAC address.
7914  *      Note that in general it is not possible to modify the value of a given
7915  *      filter so the generic way to modify an address filter is to free the one
7916  *      being used by the old address value and allocate a new filter for the
7917  *      new address value.  @idx can be -1 if the address is a new addition.
7918  *
7919  *      Returns a negative error number or the index of the filter with the new
7920  *      MAC value.
7921  */
7922 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7923                   int idx, const u8 *addr, bool persist, bool add_smt)
7924 {
7925         int ret, mode;
7926         struct fw_vi_mac_cmd c;
7927         struct fw_vi_mac_exact *p = c.u.exact;
7928         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7929
7930         if (idx < 0)                             /* new allocation */
7931                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7932         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7933
7934         memset(&c, 0, sizeof(c));
7935         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7936                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7937                                    FW_VI_MAC_CMD_VIID_V(viid));
7938         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7939         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7940                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7941                                       FW_VI_MAC_CMD_IDX_V(idx));
7942         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7943
7944         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7945         if (ret == 0) {
7946                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7947                 if (ret >= max_mac_addr)
7948                         ret = -ENOMEM;
7949         }
7950         return ret;
7951 }
7952
7953 /**
7954  *      t4_set_addr_hash - program the MAC inexact-match hash filter
7955  *      @adap: the adapter
7956  *      @mbox: mailbox to use for the FW command
7957  *      @viid: the VI id
7958  *      @ucast: whether the hash filter should also match unicast addresses
7959  *      @vec: the value to be written to the hash filter
7960  *      @sleep_ok: call is allowed to sleep
7961  *
7962  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
7963  */
7964 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7965                      bool ucast, u64 vec, bool sleep_ok)
7966 {
7967         struct fw_vi_mac_cmd c;
7968
7969         memset(&c, 0, sizeof(c));
7970         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7971                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7972                                    FW_VI_ENABLE_CMD_VIID_V(viid));
7973         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7974                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7975                                           FW_CMD_LEN16_V(1));
7976         c.u.hash.hashvec = cpu_to_be64(vec);
7977         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7978 }
7979
7980 /**
7981  *      t4_enable_vi_params - enable/disable a virtual interface
7982  *      @adap: the adapter
7983  *      @mbox: mailbox to use for the FW command
7984  *      @viid: the VI id
7985  *      @rx_en: 1=enable Rx, 0=disable Rx
7986  *      @tx_en: 1=enable Tx, 0=disable Tx
7987  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7988  *
7989  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7990  *      only makes sense when enabling a Virtual Interface ...
7991  */
7992 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7993                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7994 {
7995         struct fw_vi_enable_cmd c;
7996
7997         memset(&c, 0, sizeof(c));
7998         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7999                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8000                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8001         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8002                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8003                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8004                                      FW_LEN16(c));
8005         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8006 }
8007
8008 /**
8009  *      t4_enable_vi - enable/disable a virtual interface
8010  *      @adap: the adapter
8011  *      @mbox: mailbox to use for the FW command
8012  *      @viid: the VI id
8013  *      @rx_en: 1=enable Rx, 0=disable Rx
8014  *      @tx_en: 1=enable Tx, 0=disable Tx
8015  *
8016  *      Enables/disables a virtual interface.
8017  */
8018 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8019                  bool rx_en, bool tx_en)
8020 {
8021         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8022 }
8023
8024 /**
8025  *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8026  *      @adap: the adapter
8027  *      @mbox: mailbox to use for the FW command
8028  *      @pi: the Port Information structure
8029  *      @rx_en: 1=enable Rx, 0=disable Rx
8030  *      @tx_en: 1=enable Tx, 0=disable Tx
8031  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8032  *
8033  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8034  *      Enable only makes sense when enabling a Virtual Interface ...
8035  *      If the Virtual Interface enable/disable operation is successful,
8036  *      we notify the OS-specific code of a potential Link Status change
8037  *      via the OS Contract API t4_os_link_changed().
8038  */
8039 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8040                         struct port_info *pi,
8041                         bool rx_en, bool tx_en, bool dcb_en)
8042 {
8043         int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8044                                       rx_en, tx_en, dcb_en);
8045         if (ret)
8046                 return ret;
8047         t4_os_link_changed(adap, pi->port_id,
8048                            rx_en && tx_en && pi->link_cfg.link_ok);
8049         return 0;
8050 }
8051
8052 /**
8053  *      t4_identify_port - identify a VI's port by blinking its LED
8054  *      @adap: the adapter
8055  *      @mbox: mailbox to use for the FW command
8056  *      @viid: the VI id
8057  *      @nblinks: how many times to blink LED at 2.5 Hz
8058  *
8059  *      Identifies a VI's port by blinking its LED.
8060  */
8061 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8062                      unsigned int nblinks)
8063 {
8064         struct fw_vi_enable_cmd c;
8065
8066         memset(&c, 0, sizeof(c));
8067         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8068                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8069                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8070         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8071         c.blinkdur = cpu_to_be16(nblinks);
8072         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8073 }
8074
8075 /**
8076  *      t4_iq_stop - stop an ingress queue and its FLs
8077  *      @adap: the adapter
8078  *      @mbox: mailbox to use for the FW command
8079  *      @pf: the PF owning the queues
8080  *      @vf: the VF owning the queues
8081  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8082  *      @iqid: ingress queue id
8083  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8084  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8085  *
8086  *      Stops an ingress queue and its associated FLs, if any.  This causes
8087  *      any current or future data/messages destined for these queues to be
8088  *      tossed.
8089  */
8090 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8091                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8092                unsigned int fl0id, unsigned int fl1id)
8093 {
8094         struct fw_iq_cmd c;
8095
8096         memset(&c, 0, sizeof(c));
8097         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8098                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8099                                   FW_IQ_CMD_VFN_V(vf));
8100         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8101         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8102         c.iqid = cpu_to_be16(iqid);
8103         c.fl0id = cpu_to_be16(fl0id);
8104         c.fl1id = cpu_to_be16(fl1id);
8105         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8106 }
8107
8108 /**
8109  *      t4_iq_free - free an ingress queue and its FLs
8110  *      @adap: the adapter
8111  *      @mbox: mailbox to use for the FW command
8112  *      @pf: the PF owning the queues
8113  *      @vf: the VF owning the queues
8114  *      @iqtype: the ingress queue type
8115  *      @iqid: ingress queue id
8116  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8117  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8118  *
8119  *      Frees an ingress queue and its associated FLs, if any.
8120  */
8121 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8122                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8123                unsigned int fl0id, unsigned int fl1id)
8124 {
8125         struct fw_iq_cmd c;
8126
8127         memset(&c, 0, sizeof(c));
8128         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8129                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8130                                   FW_IQ_CMD_VFN_V(vf));
8131         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8132         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8133         c.iqid = cpu_to_be16(iqid);
8134         c.fl0id = cpu_to_be16(fl0id);
8135         c.fl1id = cpu_to_be16(fl1id);
8136         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8137 }
8138
8139 /**
8140  *      t4_eth_eq_free - free an Ethernet egress queue
8141  *      @adap: the adapter
8142  *      @mbox: mailbox to use for the FW command
8143  *      @pf: the PF owning the queue
8144  *      @vf: the VF owning the queue
8145  *      @eqid: egress queue id
8146  *
8147  *      Frees an Ethernet egress queue.
8148  */
8149 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8150                    unsigned int vf, unsigned int eqid)
8151 {
8152         struct fw_eq_eth_cmd c;
8153
8154         memset(&c, 0, sizeof(c));
8155         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8156                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8157                                   FW_EQ_ETH_CMD_PFN_V(pf) |
8158                                   FW_EQ_ETH_CMD_VFN_V(vf));
8159         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8160         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8161         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8162 }
8163
8164 /**
8165  *      t4_ctrl_eq_free - free a control egress queue
8166  *      @adap: the adapter
8167  *      @mbox: mailbox to use for the FW command
8168  *      @pf: the PF owning the queue
8169  *      @vf: the VF owning the queue
8170  *      @eqid: egress queue id
8171  *
8172  *      Frees a control egress queue.
8173  */
8174 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8175                     unsigned int vf, unsigned int eqid)
8176 {
8177         struct fw_eq_ctrl_cmd c;
8178
8179         memset(&c, 0, sizeof(c));
8180         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8181                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8182                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
8183                                   FW_EQ_CTRL_CMD_VFN_V(vf));
8184         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8185         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8186         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8187 }
8188
8189 /**
8190  *      t4_ofld_eq_free - free an offload egress queue
8191  *      @adap: the adapter
8192  *      @mbox: mailbox to use for the FW command
8193  *      @pf: the PF owning the queue
8194  *      @vf: the VF owning the queue
8195  *      @eqid: egress queue id
8196  *
8197  *      Frees a control egress queue.
8198  */
8199 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8200                     unsigned int vf, unsigned int eqid)
8201 {
8202         struct fw_eq_ofld_cmd c;
8203
8204         memset(&c, 0, sizeof(c));
8205         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8206                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8207                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
8208                                   FW_EQ_OFLD_CMD_VFN_V(vf));
8209         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8210         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8211         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8212 }
8213
8214 /**
8215  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8216  *      @adap: the adapter
8217  *      @link_down_rc: Link Down Reason Code
8218  *
8219  *      Returns a string representation of the Link Down Reason Code.
8220  */
8221 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8222 {
8223         static const char * const reason[] = {
8224                 "Link Down",
8225                 "Remote Fault",
8226                 "Auto-negotiation Failure",
8227                 "Reserved",
8228                 "Insufficient Airflow",
8229                 "Unable To Determine Reason",
8230                 "No RX Signal Detected",
8231                 "Reserved",
8232         };
8233
8234         if (link_down_rc >= ARRAY_SIZE(reason))
8235                 return "Bad Reason Code";
8236
8237         return reason[link_down_rc];
8238 }
8239
8240 /**
8241  * Return the highest speed set in the port capabilities, in Mb/s.
8242  */
8243 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8244 {
8245         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8246                 do { \
8247                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8248                                 return __speed; \
8249                 } while (0)
8250
8251         TEST_SPEED_RETURN(400G, 400000);
8252         TEST_SPEED_RETURN(200G, 200000);
8253         TEST_SPEED_RETURN(100G, 100000);
8254         TEST_SPEED_RETURN(50G,   50000);
8255         TEST_SPEED_RETURN(40G,   40000);
8256         TEST_SPEED_RETURN(25G,   25000);
8257         TEST_SPEED_RETURN(10G,   10000);
8258         TEST_SPEED_RETURN(1G,     1000);
8259         TEST_SPEED_RETURN(100M,    100);
8260
8261         #undef TEST_SPEED_RETURN
8262
8263         return 0;
8264 }
8265
8266 /**
8267  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8268  *      @acaps: advertised Port Capabilities
8269  *
8270  *      Get the highest speed for the port from the advertised Port
8271  *      Capabilities.  It will be either the highest speed from the list of
8272  *      speeds or whatever user has set using ethtool.
8273  */
8274 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8275 {
8276         #define TEST_SPEED_RETURN(__caps_speed) \
8277                 do { \
8278                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8279                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8280                 } while (0)
8281
8282         TEST_SPEED_RETURN(400G);
8283         TEST_SPEED_RETURN(200G);
8284         TEST_SPEED_RETURN(100G);
8285         TEST_SPEED_RETURN(50G);
8286         TEST_SPEED_RETURN(40G);
8287         TEST_SPEED_RETURN(25G);
8288         TEST_SPEED_RETURN(10G);
8289         TEST_SPEED_RETURN(1G);
8290         TEST_SPEED_RETURN(100M);
8291
8292         #undef TEST_SPEED_RETURN
8293
8294         return 0;
8295 }
8296
8297 /**
8298  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8299  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8300  *
8301  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8302  *      32-bit Port Capabilities value.
8303  */
8304 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8305 {
8306         fw_port_cap32_t linkattr = 0;
8307
8308         /* Unfortunately the format of the Link Status in the old
8309          * 16-bit Port Information message isn't the same as the
8310          * 16-bit Port Capabilities bitfield used everywhere else ...
8311          */
8312         if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8313                 linkattr |= FW_PORT_CAP32_FC_RX;
8314         if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8315                 linkattr |= FW_PORT_CAP32_FC_TX;
8316         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8317                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8318         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8319                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8320         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8321                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8322         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8323                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8324         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8325                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8326         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8327                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8328
8329         return linkattr;
8330 }
8331
8332 /**
8333  *      t4_handle_get_port_info - process a FW reply message
8334  *      @pi: the port info
8335  *      @rpl: start of the FW message
8336  *
8337  *      Processes a GET_PORT_INFO FW reply message.
8338  */
8339 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8340 {
8341         const struct fw_port_cmd *cmd = (const void *)rpl;
8342         int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8343         struct adapter *adapter = pi->adapter;
8344         struct link_config *lc = &pi->link_cfg;
8345         int link_ok, linkdnrc;
8346         enum fw_port_type port_type;
8347         enum fw_port_module_type mod_type;
8348         unsigned int speed, fc, fec;
8349         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8350
8351         /* Extract the various fields from the Port Information message.
8352          */
8353         switch (action) {
8354         case FW_PORT_ACTION_GET_PORT_INFO: {
8355                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8356
8357                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8358                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8359                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8360                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8361                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8362                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8363                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8364                 linkattr = lstatus_to_fwcap(lstatus);
8365                 break;
8366         }
8367
8368         case FW_PORT_ACTION_GET_PORT_INFO32: {
8369                 u32 lstatus32;
8370
8371                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8372                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8373                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8374                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8375                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8376                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8377                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
8378                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8379                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8380                 break;
8381         }
8382
8383         default:
8384                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8385                         be32_to_cpu(cmd->action_to_len16));
8386                 return;
8387         }
8388
8389         fec = fwcap_to_cc_fec(acaps);
8390         fc = fwcap_to_cc_pause(linkattr);
8391         speed = fwcap_to_speed(linkattr);
8392
8393         lc->new_module = false;
8394         lc->redo_l1cfg = false;
8395
8396         if (mod_type != pi->mod_type) {
8397                 /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8398                  * various fundamental Port Capabilities which used to be
8399                  * immutable can now change radically.  We can now have
8400                  * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8401                  * all change based on what Transceiver Module is inserted.
8402                  * So we need to record the Physical "Port" Capabilities on
8403                  * every Transceiver Module change.
8404                  */
8405                 lc->pcaps = pcaps;
8406
8407                 /* When a new Transceiver Module is inserted, the Firmware
8408                  * will examine its i2c EPROM to determine its type and
8409                  * general operating parameters including things like Forward
8410                  * Error Control, etc.  Various IEEE 802.3 standards dictate
8411                  * how to interpret these i2c values to determine default
8412                  * "sutomatic" settings.  We record these for future use when
8413                  * the user explicitly requests these standards-based values.
8414                  */
8415                 lc->def_acaps = acaps;
8416
8417                 /* Some versions of the early T6 Firmware "cheated" when
8418                  * handling different Transceiver Modules by changing the
8419                  * underlaying Port Type reported to the Host Drivers.  As
8420                  * such we need to capture whatever Port Type the Firmware
8421                  * sends us and record it in case it's different from what we
8422                  * were told earlier.  Unfortunately, since Firmware is
8423                  * forever, we'll need to keep this code here forever, but in
8424                  * later T6 Firmware it should just be an assignment of the
8425                  * same value already recorded.
8426                  */
8427                 pi->port_type = port_type;
8428
8429                 pi->mod_type = mod_type;
8430
8431                 lc->new_module = t4_is_inserted_mod_type(mod_type);
8432                 t4_os_portmod_changed(adapter, pi->port_id);
8433         }
8434
8435         if (link_ok != lc->link_ok || speed != lc->speed ||
8436             fc != lc->fc || fec != lc->fec) {   /* something changed */
8437                 if (!link_ok && lc->link_ok) {
8438                         lc->link_down_rc = linkdnrc;
8439                         dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8440                                  pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8441                 }
8442                 lc->link_ok = link_ok;
8443                 lc->speed = speed;
8444                 lc->fc = fc;
8445                 lc->fec = fec;
8446
8447                 lc->lpacaps = lpacaps;
8448                 lc->acaps = acaps & ADVERT_MASK;
8449
8450                 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8451                         lc->autoneg = AUTONEG_DISABLE;
8452                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8453                         lc->autoneg = AUTONEG_ENABLE;
8454                 } else {
8455                         /* When Autoneg is disabled, user needs to set
8456                          * single speed.
8457                          * Similar to cxgb4_ethtool.c: set_link_ksettings
8458                          */
8459                         lc->acaps = 0;
8460                         lc->speed_caps = fwcap_to_fwspeed(acaps);
8461                         lc->autoneg = AUTONEG_DISABLE;
8462                 }
8463
8464                 t4_os_link_changed(adapter, pi->port_id, link_ok);
8465         }
8466
8467         if (lc->new_module && lc->redo_l1cfg) {
8468                 struct link_config old_lc;
8469                 int ret;
8470
8471                 /* Save the current L1 Configuration and restore it if an
8472                  * error occurs.  We probably should fix the l1_cfg*()
8473                  * routines not to change the link_config when an error
8474                  * occurs ...
8475                  */
8476                 old_lc = *lc;
8477                 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8478                 if (ret) {
8479                         *lc = old_lc;
8480                         dev_warn(adapter->pdev_dev,
8481                                  "Attempt to update new Transceiver Module settings failed\n");
8482                 }
8483         }
8484         lc->new_module = false;
8485         lc->redo_l1cfg = false;
8486 }
8487
8488 /**
8489  *      t4_update_port_info - retrieve and update port information if changed
8490  *      @pi: the port_info
8491  *
8492  *      We issue a Get Port Information Command to the Firmware and, if
8493  *      successful, we check to see if anything is different from what we
8494  *      last recorded and update things accordingly.
8495  */
8496 int t4_update_port_info(struct port_info *pi)
8497 {
8498         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8499         struct fw_port_cmd port_cmd;
8500         int ret;
8501
8502         memset(&port_cmd, 0, sizeof(port_cmd));
8503         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8504                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8505                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8506         port_cmd.action_to_len16 = cpu_to_be32(
8507                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8508                                      ? FW_PORT_ACTION_GET_PORT_INFO
8509                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
8510                 FW_LEN16(port_cmd));
8511         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8512                          &port_cmd, sizeof(port_cmd), &port_cmd);
8513         if (ret)
8514                 return ret;
8515
8516         t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8517         return 0;
8518 }
8519
8520 /**
8521  *      t4_get_link_params - retrieve basic link parameters for given port
8522  *      @pi: the port
8523  *      @link_okp: value return pointer for link up/down
8524  *      @speedp: value return pointer for speed (Mb/s)
8525  *      @mtup: value return pointer for mtu
8526  *
8527  *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8528  *      and MTU for a specified port.  A negative error is returned on
8529  *      failure; 0 on success.
8530  */
8531 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8532                        unsigned int *speedp, unsigned int *mtup)
8533 {
8534         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8535         struct fw_port_cmd port_cmd;
8536         unsigned int action, link_ok, speed, mtu;
8537         fw_port_cap32_t linkattr;
8538         int ret;
8539
8540         memset(&port_cmd, 0, sizeof(port_cmd));
8541         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8542                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8543                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8544         action = (fw_caps == FW_CAPS16
8545                   ? FW_PORT_ACTION_GET_PORT_INFO
8546                   : FW_PORT_ACTION_GET_PORT_INFO32);
8547         port_cmd.action_to_len16 = cpu_to_be32(
8548                 FW_PORT_CMD_ACTION_V(action) |
8549                 FW_LEN16(port_cmd));
8550         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8551                          &port_cmd, sizeof(port_cmd), &port_cmd);
8552         if (ret)
8553                 return ret;
8554
8555         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8556                 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8557
8558                 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8559                 linkattr = lstatus_to_fwcap(lstatus);
8560                 mtu = be16_to_cpu(port_cmd.u.info.mtu);
8561         } else {
8562                 u32 lstatus32 =
8563                            be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8564
8565                 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8566                 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8567                 mtu = FW_PORT_CMD_MTU32_G(
8568                         be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8569         }
8570         speed = fwcap_to_speed(linkattr);
8571
8572         *link_okp = link_ok;
8573         *speedp = fwcap_to_speed(linkattr);
8574         *mtup = mtu;
8575
8576         return 0;
8577 }
8578
8579 /**
8580  *      t4_handle_fw_rpl - process a FW reply message
8581  *      @adap: the adapter
8582  *      @rpl: start of the FW message
8583  *
8584  *      Processes a FW message, such as link state change messages.
8585  */
8586 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8587 {
8588         u8 opcode = *(const u8 *)rpl;
8589
8590         /* This might be a port command ... this simplifies the following
8591          * conditionals ...  We can get away with pre-dereferencing
8592          * action_to_len16 because it's in the first 16 bytes and all messages
8593          * will be at least that long.
8594          */
8595         const struct fw_port_cmd *p = (const void *)rpl;
8596         unsigned int action =
8597                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8598
8599         if (opcode == FW_PORT_CMD &&
8600             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8601              action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8602                 int i;
8603                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8604                 struct port_info *pi = NULL;
8605
8606                 for_each_port(adap, i) {
8607                         pi = adap2pinfo(adap, i);
8608                         if (pi->tx_chan == chan)
8609                                 break;
8610                 }
8611
8612                 t4_handle_get_port_info(pi, rpl);
8613         } else {
8614                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8615                          opcode);
8616                 return -EINVAL;
8617         }
8618         return 0;
8619 }
8620
8621 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8622 {
8623         u16 val;
8624
8625         if (pci_is_pcie(adapter->pdev)) {
8626                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8627                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8628                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8629         }
8630 }
8631
8632 /**
8633  *      init_link_config - initialize a link's SW state
8634  *      @lc: pointer to structure holding the link state
8635  *      @pcaps: link Port Capabilities
8636  *      @acaps: link current Advertised Port Capabilities
8637  *
8638  *      Initializes the SW state maintained for each link, including the link's
8639  *      capabilities and default speed/flow-control/autonegotiation settings.
8640  */
8641 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8642                              fw_port_cap32_t acaps)
8643 {
8644         lc->pcaps = pcaps;
8645         lc->def_acaps = acaps;
8646         lc->lpacaps = 0;
8647         lc->speed_caps = 0;
8648         lc->speed = 0;
8649         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8650
8651         /* For Forward Error Control, we default to whatever the Firmware
8652          * tells us the Link is currently advertising.
8653          */
8654         lc->requested_fec = FEC_AUTO;
8655         lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8656
8657         /* If the Port is capable of Auto-Negtotiation, initialize it as
8658          * "enabled" and copy over all of the Physical Port Capabilities
8659          * to the Advertised Port Capabilities.  Otherwise mark it as
8660          * Auto-Negotiate disabled and select the highest supported speed
8661          * for the link.  Note parallel structure in t4_link_l1cfg_core()
8662          * and t4_handle_get_port_info().
8663          */
8664         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8665                 lc->acaps = lc->pcaps & ADVERT_MASK;
8666                 lc->autoneg = AUTONEG_ENABLE;
8667                 lc->requested_fc |= PAUSE_AUTONEG;
8668         } else {
8669                 lc->acaps = 0;
8670                 lc->autoneg = AUTONEG_DISABLE;
8671                 lc->speed_caps = fwcap_to_fwspeed(acaps);
8672         }
8673 }
8674
8675 #define CIM_PF_NOACCESS 0xeeeeeeee
8676
8677 int t4_wait_dev_ready(void __iomem *regs)
8678 {
8679         u32 whoami;
8680
8681         whoami = readl(regs + PL_WHOAMI_A);
8682         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8683                 return 0;
8684
8685         msleep(500);
8686         whoami = readl(regs + PL_WHOAMI_A);
8687         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8688 }
8689
8690 struct flash_desc {
8691         u32 vendor_and_model_id;
8692         u32 size_mb;
8693 };
8694
8695 static int t4_get_flash_params(struct adapter *adap)
8696 {
8697         /* Table for non-Numonix supported flash parts.  Numonix parts are left
8698          * to the preexisting code.  All flash parts have 64KB sectors.
8699          */
8700         static struct flash_desc supported_flash[] = {
8701                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8702         };
8703
8704         unsigned int part, manufacturer;
8705         unsigned int density, size = 0;
8706         u32 flashid = 0;
8707         int ret;
8708
8709         /* Issue a Read ID Command to the Flash part.  We decode supported
8710          * Flash parts and their sizes from this.  There's a newer Query
8711          * Command which can retrieve detailed geometry information but many
8712          * Flash parts don't support it.
8713          */
8714
8715         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8716         if (!ret)
8717                 ret = sf1_read(adap, 3, 0, 1, &flashid);
8718         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8719         if (ret)
8720                 return ret;
8721
8722         /* Check to see if it's one of our non-standard supported Flash parts.
8723          */
8724         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8725                 if (supported_flash[part].vendor_and_model_id == flashid) {
8726                         adap->params.sf_size = supported_flash[part].size_mb;
8727                         adap->params.sf_nsec =
8728                                 adap->params.sf_size / SF_SEC_SIZE;
8729                         goto found;
8730                 }
8731
8732         /* Decode Flash part size.  The code below looks repetative with
8733          * common encodings, but that's not guaranteed in the JEDEC
8734          * specification for the Read JADEC ID command.  The only thing that
8735          * we're guaranteed by the JADEC specification is where the
8736          * Manufacturer ID is in the returned result.  After that each
8737          * Manufacturer ~could~ encode things completely differently.
8738          * Note, all Flash parts must have 64KB sectors.
8739          */
8740         manufacturer = flashid & 0xff;
8741         switch (manufacturer) {
8742         case 0x20: { /* Micron/Numonix */
8743                 /* This Density -> Size decoding table is taken from Micron
8744                  * Data Sheets.
8745                  */
8746                 density = (flashid >> 16) & 0xff;
8747                 switch (density) {
8748                 case 0x14: /* 1MB */
8749                         size = 1 << 20;
8750                         break;
8751                 case 0x15: /* 2MB */
8752                         size = 1 << 21;
8753                         break;
8754                 case 0x16: /* 4MB */
8755                         size = 1 << 22;
8756                         break;
8757                 case 0x17: /* 8MB */
8758                         size = 1 << 23;
8759                         break;
8760                 case 0x18: /* 16MB */
8761                         size = 1 << 24;
8762                         break;
8763                 case 0x19: /* 32MB */
8764                         size = 1 << 25;
8765                         break;
8766                 case 0x20: /* 64MB */
8767                         size = 1 << 26;
8768                         break;
8769                 case 0x21: /* 128MB */
8770                         size = 1 << 27;
8771                         break;
8772                 case 0x22: /* 256MB */
8773                         size = 1 << 28;
8774                         break;
8775                 }
8776                 break;
8777         }
8778         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
8779                 /* This Density -> Size decoding table is taken from ISSI
8780                  * Data Sheets.
8781                  */
8782                 density = (flashid >> 16) & 0xff;
8783                 switch (density) {
8784                 case 0x16: /* 32 MB */
8785                         size = 1 << 25;
8786                         break;
8787                 case 0x17: /* 64MB */
8788                         size = 1 << 26;
8789                         break;
8790                 }
8791                 break;
8792         }
8793         case 0xc2: { /* Macronix */
8794                 /* This Density -> Size decoding table is taken from Macronix
8795                  * Data Sheets.
8796                  */
8797                 density = (flashid >> 16) & 0xff;
8798                 switch (density) {
8799                 case 0x17: /* 8MB */
8800                         size = 1 << 23;
8801                         break;
8802                 case 0x18: /* 16MB */
8803                         size = 1 << 24;
8804                         break;
8805                 }
8806                 break;
8807         }
8808         case 0xef: { /* Winbond */
8809                 /* This Density -> Size decoding table is taken from Winbond
8810                  * Data Sheets.
8811                  */
8812                 density = (flashid >> 16) & 0xff;
8813                 switch (density) {
8814                 case 0x17: /* 8MB */
8815                         size = 1 << 23;
8816                         break;
8817                 case 0x18: /* 16MB */
8818                         size = 1 << 24;
8819                         break;
8820                 }
8821                 break;
8822         }
8823         }
8824
8825         /* If we didn't recognize the FLASH part, that's no real issue: the
8826          * Hardware/Software contract says that Hardware will _*ALWAYS*_
8827          * use a FLASH part which is at least 4MB in size and has 64KB
8828          * sectors.  The unrecognized FLASH part is likely to be much larger
8829          * than 4MB, but that's all we really need.
8830          */
8831         if (size == 0) {
8832                 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
8833                          flashid);
8834                 size = 1 << 22;
8835         }
8836
8837         /* Store decoded Flash size and fall through into vetting code. */
8838         adap->params.sf_size = size;
8839         adap->params.sf_nsec = size / SF_SEC_SIZE;
8840
8841 found:
8842         if (adap->params.sf_size < FLASH_MIN_SIZE)
8843                 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8844                          flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8845         return 0;
8846 }
8847
8848 /**
8849  *      t4_prep_adapter - prepare SW and HW for operation
8850  *      @adapter: the adapter
8851  *      @reset: if true perform a HW reset
8852  *
8853  *      Initialize adapter SW state for the various HW modules, set initial
8854  *      values for some adapter tunables, take PHYs out of reset, and
8855  *      initialize the MDIO interface.
8856  */
8857 int t4_prep_adapter(struct adapter *adapter)
8858 {
8859         int ret, ver;
8860         uint16_t device_id;
8861         u32 pl_rev;
8862
8863         get_pci_mode(adapter, &adapter->params.pci);
8864         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8865
8866         ret = t4_get_flash_params(adapter);
8867         if (ret < 0) {
8868                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8869                 return ret;
8870         }
8871
8872         /* Retrieve adapter's device ID
8873          */
8874         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8875         ver = device_id >> 12;
8876         adapter->params.chip = 0;
8877         switch (ver) {
8878         case CHELSIO_T4:
8879                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8880                 adapter->params.arch.sge_fl_db = DBPRIO_F;
8881                 adapter->params.arch.mps_tcam_size =
8882                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
8883                 adapter->params.arch.mps_rplc_size = 128;
8884                 adapter->params.arch.nchan = NCHAN;
8885                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8886                 adapter->params.arch.vfcount = 128;
8887                 /* Congestion map is for 4 channels so that
8888                  * MPS can have 4 priority per port.
8889                  */
8890                 adapter->params.arch.cng_ch_bits_log = 2;
8891                 break;
8892         case CHELSIO_T5:
8893                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8894                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8895                 adapter->params.arch.mps_tcam_size =
8896                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8897                 adapter->params.arch.mps_rplc_size = 128;
8898                 adapter->params.arch.nchan = NCHAN;
8899                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8900                 adapter->params.arch.vfcount = 128;
8901                 adapter->params.arch.cng_ch_bits_log = 2;
8902                 break;
8903         case CHELSIO_T6:
8904                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8905                 adapter->params.arch.sge_fl_db = 0;
8906                 adapter->params.arch.mps_tcam_size =
8907                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8908                 adapter->params.arch.mps_rplc_size = 256;
8909                 adapter->params.arch.nchan = 2;
8910                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8911                 adapter->params.arch.vfcount = 256;
8912                 /* Congestion map will be for 2 channels so that
8913                  * MPS can have 8 priority per port.
8914                  */
8915                 adapter->params.arch.cng_ch_bits_log = 3;
8916                 break;
8917         default:
8918                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8919                         device_id);
8920                 return -EINVAL;
8921         }
8922
8923         adapter->params.cim_la_size = CIMLA_SIZE;
8924         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8925
8926         /*
8927          * Default port for debugging in case we can't reach FW.
8928          */
8929         adapter->params.nports = 1;
8930         adapter->params.portvec = 1;
8931         adapter->params.vpd.cclk = 50000;
8932
8933         /* Set PCIe completion timeout to 4 seconds. */
8934         pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
8935                                            PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
8936         return 0;
8937 }
8938
8939 /**
8940  *      t4_shutdown_adapter - shut down adapter, host & wire
8941  *      @adapter: the adapter
8942  *
8943  *      Perform an emergency shutdown of the adapter and stop it from
8944  *      continuing any further communication on the ports or DMA to the
8945  *      host.  This is typically used when the adapter and/or firmware
8946  *      have crashed and we want to prevent any further accidental
8947  *      communication with the rest of the world.  This will also force
8948  *      the port Link Status to go down -- if register writes work --
8949  *      which should help our peers figure out that we're down.
8950  */
8951 int t4_shutdown_adapter(struct adapter *adapter)
8952 {
8953         int port;
8954
8955         t4_intr_disable(adapter);
8956         t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8957         for_each_port(adapter, port) {
8958                 u32 a_port_cfg = is_t4(adapter->params.chip) ?
8959                                        PORT_REG(port, XGMAC_PORT_CFG_A) :
8960                                        T5_PORT_REG(port, MAC_PORT_CFG_A);
8961
8962                 t4_write_reg(adapter, a_port_cfg,
8963                              t4_read_reg(adapter, a_port_cfg)
8964                              & ~SIGNAL_DET_V(1));
8965         }
8966         t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8967
8968         return 0;
8969 }
8970
8971 /**
8972  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8973  *      @adapter: the adapter
8974  *      @qid: the Queue ID
8975  *      @qtype: the Ingress or Egress type for @qid
8976  *      @user: true if this request is for a user mode queue
8977  *      @pbar2_qoffset: BAR2 Queue Offset
8978  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8979  *
8980  *      Returns the BAR2 SGE Queue Registers information associated with the
8981  *      indicated Absolute Queue ID.  These are passed back in return value
8982  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8983  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8984  *
8985  *      This may return an error which indicates that BAR2 SGE Queue
8986  *      registers aren't available.  If an error is not returned, then the
8987  *      following values are returned:
8988  *
8989  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8990  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8991  *
8992  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8993  *      require the "Inferred Queue ID" ability may be used.  E.g. the
8994  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8995  *      then these "Inferred Queue ID" register may not be used.
8996  */
8997 int t4_bar2_sge_qregs(struct adapter *adapter,
8998                       unsigned int qid,
8999                       enum t4_bar2_qtype qtype,
9000                       int user,
9001                       u64 *pbar2_qoffset,
9002                       unsigned int *pbar2_qid)
9003 {
9004         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9005         u64 bar2_page_offset, bar2_qoffset;
9006         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9007
9008         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9009         if (!user && is_t4(adapter->params.chip))
9010                 return -EINVAL;
9011
9012         /* Get our SGE Page Size parameters.
9013          */
9014         page_shift = adapter->params.sge.hps + 10;
9015         page_size = 1 << page_shift;
9016
9017         /* Get the right Queues per Page parameters for our Queue.
9018          */
9019         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9020                      ? adapter->params.sge.eq_qpp
9021                      : adapter->params.sge.iq_qpp);
9022         qpp_mask = (1 << qpp_shift) - 1;
9023
9024         /*  Calculate the basics of the BAR2 SGE Queue register area:
9025          *  o The BAR2 page the Queue registers will be in.
9026          *  o The BAR2 Queue ID.
9027          *  o The BAR2 Queue ID Offset into the BAR2 page.
9028          */
9029         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9030         bar2_qid = qid & qpp_mask;
9031         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9032
9033         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9034          * hardware will infer the Absolute Queue ID simply from the writes to
9035          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9036          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9037          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9038          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9039          * from the BAR2 Page and BAR2 Queue ID.
9040          *
9041          * One important censequence of this is that some BAR2 SGE registers
9042          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9043          * there.  But other registers synthesize the SGE Queue ID purely
9044          * from the writes to the registers -- the Write Combined Doorbell
9045          * Buffer is a good example.  These BAR2 SGE Registers are only
9046          * available for those BAR2 SGE Register areas where the SGE Absolute
9047          * Queue ID can be inferred from simple writes.
9048          */
9049         bar2_qoffset = bar2_page_offset;
9050         bar2_qinferred = (bar2_qid_offset < page_size);
9051         if (bar2_qinferred) {
9052                 bar2_qoffset += bar2_qid_offset;
9053                 bar2_qid = 0;
9054         }
9055
9056         *pbar2_qoffset = bar2_qoffset;
9057         *pbar2_qid = bar2_qid;
9058         return 0;
9059 }
9060
9061 /**
9062  *      t4_init_devlog_params - initialize adapter->params.devlog
9063  *      @adap: the adapter
9064  *
9065  *      Initialize various fields of the adapter's Firmware Device Log
9066  *      Parameters structure.
9067  */
9068 int t4_init_devlog_params(struct adapter *adap)
9069 {
9070         struct devlog_params *dparams = &adap->params.devlog;
9071         u32 pf_dparams;
9072         unsigned int devlog_meminfo;
9073         struct fw_devlog_cmd devlog_cmd;
9074         int ret;
9075
9076         /* If we're dealing with newer firmware, the Device Log Paramerters
9077          * are stored in a designated register which allows us to access the
9078          * Device Log even if we can't talk to the firmware.
9079          */
9080         pf_dparams =
9081                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9082         if (pf_dparams) {
9083                 unsigned int nentries, nentries128;
9084
9085                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9086                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9087
9088                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9089                 nentries = (nentries128 + 1) * 128;
9090                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9091
9092                 return 0;
9093         }
9094
9095         /* Otherwise, ask the firmware for it's Device Log Parameters.
9096          */
9097         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9098         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9099                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
9100         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9101         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9102                          &devlog_cmd);
9103         if (ret)
9104                 return ret;
9105
9106         devlog_meminfo =
9107                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9108         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9109         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9110         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9111
9112         return 0;
9113 }
9114
9115 /**
9116  *      t4_init_sge_params - initialize adap->params.sge
9117  *      @adapter: the adapter
9118  *
9119  *      Initialize various fields of the adapter's SGE Parameters structure.
9120  */
9121 int t4_init_sge_params(struct adapter *adapter)
9122 {
9123         struct sge_params *sge_params = &adapter->params.sge;
9124         u32 hps, qpp;
9125         unsigned int s_hps, s_qpp;
9126
9127         /* Extract the SGE Page Size for our PF.
9128          */
9129         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9130         s_hps = (HOSTPAGESIZEPF0_S +
9131                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9132         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9133
9134         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9135          */
9136         s_qpp = (QUEUESPERPAGEPF0_S +
9137                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9138         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9139         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9140         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9141         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9142
9143         return 0;
9144 }
9145
9146 /**
9147  *      t4_init_tp_params - initialize adap->params.tp
9148  *      @adap: the adapter
9149  *      @sleep_ok: if true we may sleep while awaiting command completion
9150  *
9151  *      Initialize various fields of the adapter's TP Parameters structure.
9152  */
9153 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9154 {
9155         int chan;
9156         u32 v;
9157
9158         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9159         adap->params.tp.tre = TIMERRESOLUTION_G(v);
9160         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9161
9162         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9163         for (chan = 0; chan < NCHAN; chan++)
9164                 adap->params.tp.tx_modq[chan] = chan;
9165
9166         /* Cache the adapter's Compressed Filter Mode and global Incress
9167          * Configuration.
9168          */
9169         t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9170                        TP_VLAN_PRI_MAP_A, sleep_ok);
9171         t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9172                        TP_INGRESS_CONFIG_A, sleep_ok);
9173
9174         /* For T6, cache the adapter's compressed error vector
9175          * and passing outer header info for encapsulated packets.
9176          */
9177         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9178                 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9179                 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9180         }
9181
9182         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9183          * shift positions of several elements of the Compressed Filter Tuple
9184          * for this adapter which we need frequently ...
9185          */
9186         adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9187         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9188         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9189         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9190         adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9191         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9192                                                                PROTOCOL_F);
9193         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9194                                                                 ETHERTYPE_F);
9195         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9196                                                                MACMATCH_F);
9197         adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9198                                                                 MPSHITTYPE_F);
9199         adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9200                                                            FRAGMENTATION_F);
9201
9202         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9203          * represents the presence of an Outer VLAN instead of a VNIC ID.
9204          */
9205         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9206                 adap->params.tp.vnic_shift = -1;
9207
9208         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9209         adap->params.tp.hash_filter_mask = v;
9210         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9211         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9212         return 0;
9213 }
9214
9215 /**
9216  *      t4_filter_field_shift - calculate filter field shift
9217  *      @adap: the adapter
9218  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9219  *
9220  *      Return the shift position of a filter field within the Compressed
9221  *      Filter Tuple.  The filter field is specified via its selection bit
9222  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9223  */
9224 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9225 {
9226         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9227         unsigned int sel;
9228         int field_shift;
9229
9230         if ((filter_mode & filter_sel) == 0)
9231                 return -1;
9232
9233         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9234                 switch (filter_mode & sel) {
9235                 case FCOE_F:
9236                         field_shift += FT_FCOE_W;
9237                         break;
9238                 case PORT_F:
9239                         field_shift += FT_PORT_W;
9240                         break;
9241                 case VNIC_ID_F:
9242                         field_shift += FT_VNIC_ID_W;
9243                         break;
9244                 case VLAN_F:
9245                         field_shift += FT_VLAN_W;
9246                         break;
9247                 case TOS_F:
9248                         field_shift += FT_TOS_W;
9249                         break;
9250                 case PROTOCOL_F:
9251                         field_shift += FT_PROTOCOL_W;
9252                         break;
9253                 case ETHERTYPE_F:
9254                         field_shift += FT_ETHERTYPE_W;
9255                         break;
9256                 case MACMATCH_F:
9257                         field_shift += FT_MACMATCH_W;
9258                         break;
9259                 case MPSHITTYPE_F:
9260                         field_shift += FT_MPSHITTYPE_W;
9261                         break;
9262                 case FRAGMENTATION_F:
9263                         field_shift += FT_FRAGMENTATION_W;
9264                         break;
9265                 }
9266         }
9267         return field_shift;
9268 }
9269
9270 int t4_init_rss_mode(struct adapter *adap, int mbox)
9271 {
9272         int i, ret;
9273         struct fw_rss_vi_config_cmd rvc;
9274
9275         memset(&rvc, 0, sizeof(rvc));
9276
9277         for_each_port(adap, i) {
9278                 struct port_info *p = adap2pinfo(adap, i);
9279
9280                 rvc.op_to_viid =
9281                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9282                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
9283                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9284                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9285                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9286                 if (ret)
9287                         return ret;
9288                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9289         }
9290         return 0;
9291 }
9292
9293 /**
9294  *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9295  *      @pi: the port_info
9296  *      @mbox: mailbox to use for the FW command
9297  *      @port: physical port associated with the VI
9298  *      @pf: the PF owning the VI
9299  *      @vf: the VF owning the VI
9300  *      @mac: the MAC address of the VI
9301  *
9302  *      Allocates a virtual interface for the given physical port.  If @mac is
9303  *      not %NULL it contains the MAC address of the VI as assigned by FW.
9304  *      @mac should be large enough to hold an Ethernet address.
9305  *      Returns < 0 on error.
9306  */
9307 int t4_init_portinfo(struct port_info *pi, int mbox,
9308                      int port, int pf, int vf, u8 mac[])
9309 {
9310         struct adapter *adapter = pi->adapter;
9311         unsigned int fw_caps = adapter->params.fw_caps_support;
9312         struct fw_port_cmd cmd;
9313         unsigned int rss_size;
9314         enum fw_port_type port_type;
9315         int mdio_addr;
9316         fw_port_cap32_t pcaps, acaps;
9317         int ret;
9318
9319         /* If we haven't yet determined whether we're talking to Firmware
9320          * which knows the new 32-bit Port Capabilities, it's time to find
9321          * out now.  This will also tell new Firmware to send us Port Status
9322          * Updates using the new 32-bit Port Capabilities version of the
9323          * Port Information message.
9324          */
9325         if (fw_caps == FW_CAPS_UNKNOWN) {
9326                 u32 param, val;
9327
9328                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9329                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9330                 val = 1;
9331                 ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9332                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9333                 adapter->params.fw_caps_support = fw_caps;
9334         }
9335
9336         memset(&cmd, 0, sizeof(cmd));
9337         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9338                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
9339                                        FW_PORT_CMD_PORTID_V(port));
9340         cmd.action_to_len16 = cpu_to_be32(
9341                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9342                                      ? FW_PORT_ACTION_GET_PORT_INFO
9343                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
9344                 FW_LEN16(cmd));
9345         ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9346         if (ret)
9347                 return ret;
9348
9349         /* Extract the various fields from the Port Information message.
9350          */
9351         if (fw_caps == FW_CAPS16) {
9352                 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9353
9354                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9355                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9356                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9357                              : -1);
9358                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9359                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9360         } else {
9361                 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9362
9363                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9364                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9365                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9366                              : -1);
9367                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9368                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
9369         }
9370
9371         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
9372         if (ret < 0)
9373                 return ret;
9374
9375         pi->viid = ret;
9376         pi->tx_chan = port;
9377         pi->lport = port;
9378         pi->rss_size = rss_size;
9379
9380         pi->port_type = port_type;
9381         pi->mdio_addr = mdio_addr;
9382         pi->mod_type = FW_PORT_MOD_TYPE_NA;
9383
9384         init_link_config(&pi->link_cfg, pcaps, acaps);
9385         return 0;
9386 }
9387
9388 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9389 {
9390         u8 addr[6];
9391         int ret, i, j = 0;
9392
9393         for_each_port(adap, i) {
9394                 struct port_info *pi = adap2pinfo(adap, i);
9395
9396                 while ((adap->params.portvec & (1 << j)) == 0)
9397                         j++;
9398
9399                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9400                 if (ret)
9401                         return ret;
9402
9403                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9404                 j++;
9405         }
9406         return 0;
9407 }
9408
9409 /**
9410  *      t4_read_cimq_cfg - read CIM queue configuration
9411  *      @adap: the adapter
9412  *      @base: holds the queue base addresses in bytes
9413  *      @size: holds the queue sizes in bytes
9414  *      @thres: holds the queue full thresholds in bytes
9415  *
9416  *      Returns the current configuration of the CIM queues, starting with
9417  *      the IBQs, then the OBQs.
9418  */
9419 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9420 {
9421         unsigned int i, v;
9422         int cim_num_obq = is_t4(adap->params.chip) ?
9423                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9424
9425         for (i = 0; i < CIM_NUM_IBQ; i++) {
9426                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9427                              QUENUMSELECT_V(i));
9428                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9429                 /* value is in 256-byte units */
9430                 *base++ = CIMQBASE_G(v) * 256;
9431                 *size++ = CIMQSIZE_G(v) * 256;
9432                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9433         }
9434         for (i = 0; i < cim_num_obq; i++) {
9435                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9436                              QUENUMSELECT_V(i));
9437                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9438                 /* value is in 256-byte units */
9439                 *base++ = CIMQBASE_G(v) * 256;
9440                 *size++ = CIMQSIZE_G(v) * 256;
9441         }
9442 }
9443
9444 /**
9445  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9446  *      @adap: the adapter
9447  *      @qid: the queue index
9448  *      @data: where to store the queue contents
9449  *      @n: capacity of @data in 32-bit words
9450  *
9451  *      Reads the contents of the selected CIM queue starting at address 0 up
9452  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9453  *      error and the number of 32-bit words actually read on success.
9454  */
9455 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9456 {
9457         int i, err, attempts;
9458         unsigned int addr;
9459         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9460
9461         if (qid > 5 || (n & 3))
9462                 return -EINVAL;
9463
9464         addr = qid * nwords;
9465         if (n > nwords)
9466                 n = nwords;
9467
9468         /* It might take 3-10ms before the IBQ debug read access is allowed.
9469          * Wait for 1 Sec with a delay of 1 usec.
9470          */
9471         attempts = 1000000;
9472
9473         for (i = 0; i < n; i++, addr++) {
9474                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9475                              IBQDBGEN_F);
9476                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9477                                       attempts, 1);
9478                 if (err)
9479                         return err;
9480                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9481         }
9482         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9483         return i;
9484 }
9485
9486 /**
9487  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9488  *      @adap: the adapter
9489  *      @qid: the queue index
9490  *      @data: where to store the queue contents
9491  *      @n: capacity of @data in 32-bit words
9492  *
9493  *      Reads the contents of the selected CIM queue starting at address 0 up
9494  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9495  *      error and the number of 32-bit words actually read on success.
9496  */
9497 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9498 {
9499         int i, err;
9500         unsigned int addr, v, nwords;
9501         int cim_num_obq = is_t4(adap->params.chip) ?
9502                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9503
9504         if ((qid > (cim_num_obq - 1)) || (n & 3))
9505                 return -EINVAL;
9506
9507         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9508                      QUENUMSELECT_V(qid));
9509         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9510
9511         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9512         nwords = CIMQSIZE_G(v) * 64;  /* same */
9513         if (n > nwords)
9514                 n = nwords;
9515
9516         for (i = 0; i < n; i++, addr++) {
9517                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9518                              OBQDBGEN_F);
9519                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9520                                       2, 1);
9521                 if (err)
9522                         return err;
9523                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9524         }
9525         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9526         return i;
9527 }
9528
9529 /**
9530  *      t4_cim_read - read a block from CIM internal address space
9531  *      @adap: the adapter
9532  *      @addr: the start address within the CIM address space
9533  *      @n: number of words to read
9534  *      @valp: where to store the result
9535  *
9536  *      Reads a block of 4-byte words from the CIM intenal address space.
9537  */
9538 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9539                 unsigned int *valp)
9540 {
9541         int ret = 0;
9542
9543         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9544                 return -EBUSY;
9545
9546         for ( ; !ret && n--; addr += 4) {
9547                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9548                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9549                                       0, 5, 2);
9550                 if (!ret)
9551                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9552         }
9553         return ret;
9554 }
9555
9556 /**
9557  *      t4_cim_write - write a block into CIM internal address space
9558  *      @adap: the adapter
9559  *      @addr: the start address within the CIM address space
9560  *      @n: number of words to write
9561  *      @valp: set of values to write
9562  *
9563  *      Writes a block of 4-byte words into the CIM intenal address space.
9564  */
9565 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9566                  const unsigned int *valp)
9567 {
9568         int ret = 0;
9569
9570         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9571                 return -EBUSY;
9572
9573         for ( ; !ret && n--; addr += 4) {
9574                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9575                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9576                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9577                                       0, 5, 2);
9578         }
9579         return ret;
9580 }
9581
9582 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9583                          unsigned int val)
9584 {
9585         return t4_cim_write(adap, addr, 1, &val);
9586 }
9587
9588 /**
9589  *      t4_cim_read_la - read CIM LA capture buffer
9590  *      @adap: the adapter
9591  *      @la_buf: where to store the LA data
9592  *      @wrptr: the HW write pointer within the capture buffer
9593  *
9594  *      Reads the contents of the CIM LA buffer with the most recent entry at
9595  *      the end of the returned data and with the entry at @wrptr first.
9596  *      We try to leave the LA in the running state we find it in.
9597  */
9598 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9599 {
9600         int i, ret;
9601         unsigned int cfg, val, idx;
9602
9603         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9604         if (ret)
9605                 return ret;
9606
9607         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9608                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9609                 if (ret)
9610                         return ret;
9611         }
9612
9613         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9614         if (ret)
9615                 goto restart;
9616
9617         idx = UPDBGLAWRPTR_G(val);
9618         if (wrptr)
9619                 *wrptr = idx;
9620
9621         for (i = 0; i < adap->params.cim_la_size; i++) {
9622                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9623                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9624                 if (ret)
9625                         break;
9626                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9627                 if (ret)
9628                         break;
9629                 if (val & UPDBGLARDEN_F) {
9630                         ret = -ETIMEDOUT;
9631                         break;
9632                 }
9633                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9634                 if (ret)
9635                         break;
9636
9637                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9638                  * identify the 32-bit portion of the full 312-bit data
9639                  */
9640                 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9641                         idx = (idx & 0xff0) + 0x10;
9642                 else
9643                         idx++;
9644                 /* address can't exceed 0xfff */
9645                 idx &= UPDBGLARDPTR_M;
9646         }
9647 restart:
9648         if (cfg & UPDBGLAEN_F) {
9649                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9650                                       cfg & ~UPDBGLARDEN_F);
9651                 if (!ret)
9652                         ret = r;
9653         }
9654         return ret;
9655 }
9656
9657 /**
9658  *      t4_tp_read_la - read TP LA capture buffer
9659  *      @adap: the adapter
9660  *      @la_buf: where to store the LA data
9661  *      @wrptr: the HW write pointer within the capture buffer
9662  *
9663  *      Reads the contents of the TP LA buffer with the most recent entry at
9664  *      the end of the returned data and with the entry at @wrptr first.
9665  *      We leave the LA in the running state we find it in.
9666  */
9667 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9668 {
9669         bool last_incomplete;
9670         unsigned int i, cfg, val, idx;
9671
9672         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9673         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
9674                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9675                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9676
9677         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9678         idx = DBGLAWPTR_G(val);
9679         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9680         if (last_incomplete)
9681                 idx = (idx + 1) & DBGLARPTR_M;
9682         if (wrptr)
9683                 *wrptr = idx;
9684
9685         val &= 0xffff;
9686         val &= ~DBGLARPTR_V(DBGLARPTR_M);
9687         val |= adap->params.tp.la_mask;
9688
9689         for (i = 0; i < TPLA_SIZE; i++) {
9690                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9691                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9692                 idx = (idx + 1) & DBGLARPTR_M;
9693         }
9694
9695         /* Wipe out last entry if it isn't valid */
9696         if (last_incomplete)
9697                 la_buf[TPLA_SIZE - 1] = ~0ULL;
9698
9699         if (cfg & DBGLAENABLE_F)                    /* restore running state */
9700                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9701                              cfg | adap->params.tp.la_mask);
9702 }
9703
9704 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9705  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9706  * state for more than the Warning Threshold then we'll issue a warning about
9707  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9708  * appears to be hung every Warning Repeat second till the situation clears.
9709  * If the situation clears, we'll note that as well.
9710  */
9711 #define SGE_IDMA_WARN_THRESH 1
9712 #define SGE_IDMA_WARN_REPEAT 300
9713
9714 /**
9715  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9716  *      @adapter: the adapter
9717  *      @idma: the adapter IDMA Monitor state
9718  *
9719  *      Initialize the state of an SGE Ingress DMA Monitor.
9720  */
9721 void t4_idma_monitor_init(struct adapter *adapter,
9722                           struct sge_idma_monitor_state *idma)
9723 {
9724         /* Initialize the state variables for detecting an SGE Ingress DMA
9725          * hang.  The SGE has internal counters which count up on each clock
9726          * tick whenever the SGE finds its Ingress DMA State Engines in the
9727          * same state they were on the previous clock tick.  The clock used is
9728          * the Core Clock so we have a limit on the maximum "time" they can
9729          * record; typically a very small number of seconds.  For instance,
9730          * with a 600MHz Core Clock, we can only count up to a bit more than
9731          * 7s.  So we'll synthesize a larger counter in order to not run the
9732          * risk of having the "timers" overflow and give us the flexibility to
9733          * maintain a Hung SGE State Machine of our own which operates across
9734          * a longer time frame.
9735          */
9736         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9737         idma->idma_stalled[0] = 0;
9738         idma->idma_stalled[1] = 0;
9739 }
9740
9741 /**
9742  *      t4_idma_monitor - monitor SGE Ingress DMA state
9743  *      @adapter: the adapter
9744  *      @idma: the adapter IDMA Monitor state
9745  *      @hz: number of ticks/second
9746  *      @ticks: number of ticks since the last IDMA Monitor call
9747  */
9748 void t4_idma_monitor(struct adapter *adapter,
9749                      struct sge_idma_monitor_state *idma,
9750                      int hz, int ticks)
9751 {
9752         int i, idma_same_state_cnt[2];
9753
9754          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9755           * are counters inside the SGE which count up on each clock when the
9756           * SGE finds its Ingress DMA State Engines in the same states they
9757           * were in the previous clock.  The counters will peg out at
9758           * 0xffffffff without wrapping around so once they pass the 1s
9759           * threshold they'll stay above that till the IDMA state changes.
9760           */
9761         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9762         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9763         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9764
9765         for (i = 0; i < 2; i++) {
9766                 u32 debug0, debug11;
9767
9768                 /* If the Ingress DMA Same State Counter ("timer") is less
9769                  * than 1s, then we can reset our synthesized Stall Timer and
9770                  * continue.  If we have previously emitted warnings about a
9771                  * potential stalled Ingress Queue, issue a note indicating
9772                  * that the Ingress Queue has resumed forward progress.
9773                  */
9774                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9775                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9776                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9777                                          "resumed after %d seconds\n",
9778                                          i, idma->idma_qid[i],
9779                                          idma->idma_stalled[i] / hz);
9780                         idma->idma_stalled[i] = 0;
9781                         continue;
9782                 }
9783
9784                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9785                  * domain.  The first time we get here it'll be because we
9786                  * passed the 1s Threshold; each additional time it'll be
9787                  * because the RX Timer Callback is being fired on its regular
9788                  * schedule.
9789                  *
9790                  * If the stall is below our Potential Hung Ingress Queue
9791                  * Warning Threshold, continue.
9792                  */
9793                 if (idma->idma_stalled[i] == 0) {
9794                         idma->idma_stalled[i] = hz;
9795                         idma->idma_warn[i] = 0;
9796                 } else {
9797                         idma->idma_stalled[i] += ticks;
9798                         idma->idma_warn[i] -= ticks;
9799                 }
9800
9801                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9802                         continue;
9803
9804                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9805                  */
9806                 if (idma->idma_warn[i] > 0)
9807                         continue;
9808                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9809
9810                 /* Read and save the SGE IDMA State and Queue ID information.
9811                  * We do this every time in case it changes across time ...
9812                  * can't be too careful ...
9813                  */
9814                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9815                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9816                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9817
9818                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9819                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9820                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9821
9822                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9823                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9824                          i, idma->idma_qid[i], idma->idma_state[i],
9825                          idma->idma_stalled[i] / hz,
9826                          debug0, debug11);
9827                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9828         }
9829 }
9830
9831 /**
9832  *      t4_load_cfg - download config file
9833  *      @adap: the adapter
9834  *      @cfg_data: the cfg text file to write
9835  *      @size: text file size
9836  *
9837  *      Write the supplied config text file to the card's serial flash.
9838  */
9839 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9840 {
9841         int ret, i, n, cfg_addr;
9842         unsigned int addr;
9843         unsigned int flash_cfg_start_sec;
9844         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9845
9846         cfg_addr = t4_flash_cfg_addr(adap);
9847         if (cfg_addr < 0)
9848                 return cfg_addr;
9849
9850         addr = cfg_addr;
9851         flash_cfg_start_sec = addr / SF_SEC_SIZE;
9852
9853         if (size > FLASH_CFG_MAX_SIZE) {
9854                 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9855                         FLASH_CFG_MAX_SIZE);
9856                 return -EFBIG;
9857         }
9858
9859         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
9860                          sf_sec_size);
9861         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9862                                      flash_cfg_start_sec + i - 1);
9863         /* If size == 0 then we're simply erasing the FLASH sectors associated
9864          * with the on-adapter Firmware Configuration File.
9865          */
9866         if (ret || size == 0)
9867                 goto out;
9868
9869         /* this will write to the flash up to SF_PAGE_SIZE at a time */
9870         for (i = 0; i < size; i += SF_PAGE_SIZE) {
9871                 if ((size - i) <  SF_PAGE_SIZE)
9872                         n = size - i;
9873                 else
9874                         n = SF_PAGE_SIZE;
9875                 ret = t4_write_flash(adap, addr, n, cfg_data);
9876                 if (ret)
9877                         goto out;
9878
9879                 addr += SF_PAGE_SIZE;
9880                 cfg_data += SF_PAGE_SIZE;
9881         }
9882
9883 out:
9884         if (ret)
9885                 dev_err(adap->pdev_dev, "config file %s failed %d\n",
9886                         (size == 0 ? "clear" : "download"), ret);
9887         return ret;
9888 }
9889
9890 /**
9891  *      t4_set_vf_mac - Set MAC address for the specified VF
9892  *      @adapter: The adapter
9893  *      @vf: one of the VFs instantiated by the specified PF
9894  *      @naddr: the number of MAC addresses
9895  *      @addr: the MAC address(es) to be set to the specified VF
9896  */
9897 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9898                       unsigned int naddr, u8 *addr)
9899 {
9900         struct fw_acl_mac_cmd cmd;
9901
9902         memset(&cmd, 0, sizeof(cmd));
9903         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9904                                     FW_CMD_REQUEST_F |
9905                                     FW_CMD_WRITE_F |
9906                                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9907                                     FW_ACL_MAC_CMD_VFN_V(vf));
9908
9909         /* Note: Do not enable the ACL */
9910         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9911         cmd.nmac = naddr;
9912
9913         switch (adapter->pf) {
9914         case 3:
9915                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9916                 break;
9917         case 2:
9918                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9919                 break;
9920         case 1:
9921                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9922                 break;
9923         case 0:
9924                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9925                 break;
9926         }
9927
9928         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9929 }
9930
9931 /**
9932  * t4_read_pace_tbl - read the pace table
9933  * @adap: the adapter
9934  * @pace_vals: holds the returned values
9935  *
9936  * Returns the values of TP's pace table in microseconds.
9937  */
9938 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9939 {
9940         unsigned int i, v;
9941
9942         for (i = 0; i < NTX_SCHED; i++) {
9943                 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
9944                 v = t4_read_reg(adap, TP_PACE_TABLE_A);
9945                 pace_vals[i] = dack_ticks_to_usec(adap, v);
9946         }
9947 }
9948
9949 /**
9950  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9951  * @adap: the adapter
9952  * @sched: the scheduler index
9953  * @kbps: the byte rate in Kbps
9954  * @ipg: the interpacket delay in tenths of nanoseconds
9955  * @sleep_ok: if true we may sleep while awaiting command completion
9956  *
9957  * Return the current configuration of a HW Tx scheduler.
9958  */
9959 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
9960                      unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
9961 {
9962         unsigned int v, addr, bpt, cpt;
9963
9964         if (kbps) {
9965                 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
9966                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9967                 if (sched & 1)
9968                         v >>= 16;
9969                 bpt = (v >> 8) & 0xff;
9970                 cpt = v & 0xff;
9971                 if (!cpt) {
9972                         *kbps = 0;      /* scheduler disabled */
9973                 } else {
9974                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9975                         *kbps = (v * bpt) / 125;
9976                 }
9977         }
9978         if (ipg) {
9979                 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
9980                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9981                 if (sched & 1)
9982                         v >>= 16;
9983                 v &= 0xffff;
9984                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
9985         }
9986 }
9987
9988 /* t4_sge_ctxt_rd - read an SGE context through FW
9989  * @adap: the adapter
9990  * @mbox: mailbox to use for the FW command
9991  * @cid: the context id
9992  * @ctype: the context type
9993  * @data: where to store the context data
9994  *
9995  * Issues a FW command through the given mailbox to read an SGE context.
9996  */
9997 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9998                    enum ctxt_type ctype, u32 *data)
9999 {
10000         struct fw_ldst_cmd c;
10001         int ret;
10002
10003         if (ctype == CTXT_FLM)
10004                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10005         else
10006                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10007
10008         memset(&c, 0, sizeof(c));
10009         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10010                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
10011                                         FW_LDST_CMD_ADDRSPACE_V(ret));
10012         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10013         c.u.idctxt.physid = cpu_to_be32(cid);
10014
10015         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10016         if (ret == 0) {
10017                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10018                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10019                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10020                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10021                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10022                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10023         }
10024         return ret;
10025 }
10026
10027 /**
10028  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10029  * @adap: the adapter
10030  * @cid: the context id
10031  * @ctype: the context type
10032  * @data: where to store the context data
10033  *
10034  * Reads an SGE context directly, bypassing FW.  This is only for
10035  * debugging when FW is unavailable.
10036  */
10037 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10038                       enum ctxt_type ctype, u32 *data)
10039 {
10040         int i, ret;
10041
10042         t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10043         ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10044         if (!ret)
10045                 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10046                         *data++ = t4_read_reg(adap, i);
10047         return ret;
10048 }
10049
10050 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10051                     int rateunit, int ratemode, int channel, int class,
10052                     int minrate, int maxrate, int weight, int pktsize)
10053 {
10054         struct fw_sched_cmd cmd;
10055
10056         memset(&cmd, 0, sizeof(cmd));
10057         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10058                                       FW_CMD_REQUEST_F |
10059                                       FW_CMD_WRITE_F);
10060         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10061
10062         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10063         cmd.u.params.type = type;
10064         cmd.u.params.level = level;
10065         cmd.u.params.mode = mode;
10066         cmd.u.params.ch = channel;
10067         cmd.u.params.cl = class;
10068         cmd.u.params.unit = rateunit;
10069         cmd.u.params.rate = ratemode;
10070         cmd.u.params.min = cpu_to_be32(minrate);
10071         cmd.u.params.max = cpu_to_be32(maxrate);
10072         cmd.u.params.weight = cpu_to_be16(weight);
10073         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10074
10075         return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10076                                NULL, 1);
10077 }
10078
10079 /**
10080  *      t4_i2c_rd - read I2C data from adapter
10081  *      @adap: the adapter
10082  *      @port: Port number if per-port device; <0 if not
10083  *      @devid: per-port device ID or absolute device ID
10084  *      @offset: byte offset into device I2C space
10085  *      @len: byte length of I2C space data
10086  *      @buf: buffer in which to return I2C data
10087  *
10088  *      Reads the I2C data from the indicated device and location.
10089  */
10090 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10091               unsigned int devid, unsigned int offset,
10092               unsigned int len, u8 *buf)
10093 {
10094         struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10095         unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10096         int ret = 0;
10097
10098         if (len > I2C_PAGE_SIZE)
10099                 return -EINVAL;
10100
10101         /* Dont allow reads that spans multiple pages */
10102         if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10103                 return -EINVAL;
10104
10105         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10106         ldst_cmd.op_to_addrspace =
10107                 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10108                             FW_CMD_REQUEST_F |
10109                             FW_CMD_READ_F |
10110                             FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10111         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10112         ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10113         ldst_cmd.u.i2c.did = devid;
10114
10115         while (len > 0) {
10116                 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10117
10118                 ldst_cmd.u.i2c.boffset = offset;
10119                 ldst_cmd.u.i2c.blen = i2c_len;
10120
10121                 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10122                                  &ldst_rpl);
10123                 if (ret)
10124                         break;
10125
10126                 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10127                 offset += i2c_len;
10128                 buf += i2c_len;
10129                 len -= i2c_len;
10130         }
10131
10132         return ret;
10133 }
10134
10135 /**
10136  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10137  *      @adapter: the adapter
10138  *      @mbox: mailbox to use for the FW command
10139  *      @vf: one of the VFs instantiated by the specified PF
10140  *      @vlan: The vlanid to be set
10141  */
10142 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10143                     u16 vlan)
10144 {
10145         struct fw_acl_vlan_cmd vlan_cmd;
10146         unsigned int enable;
10147
10148         enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10149         memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10150         vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10151                                          FW_CMD_REQUEST_F |
10152                                          FW_CMD_WRITE_F |
10153                                          FW_CMD_EXEC_F |
10154                                          FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10155                                          FW_ACL_VLAN_CMD_VFN_V(vf));
10156         vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10157         /* Drop all packets that donot match vlan id */
10158         vlan_cmd.dropnovlan_fm = FW_ACL_VLAN_CMD_FM_F;
10159         if (enable != 0) {
10160                 vlan_cmd.nvlan = 1;
10161                 vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10162         }
10163
10164         return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10165 }