Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW4_CFNAME "cxgb4/t4-config.txt"
139 #define FW5_CFNAME "cxgb4/t5-config.txt"
140
141 MODULE_DESCRIPTION(DRV_DESC);
142 MODULE_AUTHOR("Chelsio Communications");
143 MODULE_LICENSE("Dual BSD/GPL");
144 MODULE_VERSION(DRV_VERSION);
145 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
146 MODULE_FIRMWARE(FW4_FNAME);
147 MODULE_FIRMWARE(FW5_FNAME);
148
149 /*
150  * Normally we're willing to become the firmware's Master PF but will be happy
151  * if another PF has already become the Master and initialized the adapter.
152  * Setting "force_init" will cause this driver to forcibly establish itself as
153  * the Master PF and initialize the adapter.
154  */
155 static uint force_init;
156
157 module_param(force_init, uint, 0644);
158 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
159
160 /*
161  * Normally if the firmware we connect to has Configuration File support, we
162  * use that and only fall back to the old Driver-based initialization if the
163  * Configuration File fails for some reason.  If force_old_init is set, then
164  * we'll always use the old Driver-based initialization sequence.
165  */
166 static uint force_old_init;
167
168 module_param(force_old_init, uint, 0644);
169 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
170                  " parameter");
171
172 static int dflt_msg_enable = DFLT_MSG_ENABLE;
173
174 module_param(dflt_msg_enable, int, 0644);
175 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
176
177 /*
178  * The driver uses the best interrupt scheme available on a platform in the
179  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
180  * of these schemes the driver may consider as follows:
181  *
182  * msi = 2: choose from among all three options
183  * msi = 1: only consider MSI and INTx interrupts
184  * msi = 0: force INTx interrupts
185  */
186 static int msi = 2;
187
188 module_param(msi, int, 0644);
189 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
190
191 /*
192  * Queue interrupt hold-off timer values.  Queues default to the first of these
193  * upon creation.
194  */
195 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
196
197 module_param_array(intr_holdoff, uint, NULL, 0644);
198 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
199                  "0..4 in microseconds, deprecated parameter");
200
201 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
202
203 module_param_array(intr_cnt, uint, NULL, 0644);
204 MODULE_PARM_DESC(intr_cnt,
205                  "thresholds 1..3 for queue interrupt packet counters, "
206                  "deprecated parameter");
207
208 /*
209  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
210  * offset by 2 bytes in order to have the IP headers line up on 4-byte
211  * boundaries.  This is a requirement for many architectures which will throw
212  * a machine check fault if an attempt is made to access one of the 4-byte IP
213  * header fields on a non-4-byte boundary.  And it's a major performance issue
214  * even on some architectures which allow it like some implementations of the
215  * x86 ISA.  However, some architectures don't mind this and for some very
216  * edge-case performance sensitive applications (like forwarding large volumes
217  * of small packets), setting this DMA offset to 0 will decrease the number of
218  * PCI-E Bus transfers enough to measurably affect performance.
219  */
220 static int rx_dma_offset = 2;
221
222 static bool vf_acls;
223
224 #ifdef CONFIG_PCI_IOV
225 module_param(vf_acls, bool, 0644);
226 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
227                  "deprecated parameter");
228
229 /* Configure the number of PCI-E Virtual Function which are to be instantiated
230  * on SR-IOV Capable Physical Functions.
231  */
232 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
233
234 module_param_array(num_vf, uint, NULL, 0644);
235 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
236 #endif
237
238 /* TX Queue select used to determine what algorithm to use for selecting TX
239  * queue. Select between the kernel provided function (select_queue=0) or user
240  * cxgb_select_queue function (select_queue=1)
241  *
242  * Default: select_queue=0
243  */
244 static int select_queue;
245 module_param(select_queue, int, 0644);
246 MODULE_PARM_DESC(select_queue,
247                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
248
249 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
250
251 module_param(tp_vlan_pri_map, uint, 0644);
252 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
253                  "deprecated parameter");
254
255 static struct dentry *cxgb4_debugfs_root;
256
257 static LIST_HEAD(adapter_list);
258 static DEFINE_MUTEX(uld_mutex);
259 /* Adapter list to be accessed from atomic context */
260 static LIST_HEAD(adap_rcu_list);
261 static DEFINE_SPINLOCK(adap_rcu_lock);
262 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
263 static const char *uld_str[] = { "RDMA", "iSCSI" };
264
265 static void link_report(struct net_device *dev)
266 {
267         if (!netif_carrier_ok(dev))
268                 netdev_info(dev, "link down\n");
269         else {
270                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
271
272                 const char *s = "10Mbps";
273                 const struct port_info *p = netdev_priv(dev);
274
275                 switch (p->link_cfg.speed) {
276                 case 10000:
277                         s = "10Gbps";
278                         break;
279                 case 1000:
280                         s = "1000Mbps";
281                         break;
282                 case 100:
283                         s = "100Mbps";
284                         break;
285                 case 40000:
286                         s = "40Gbps";
287                         break;
288                 }
289
290                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
291                             fc[p->link_cfg.fc]);
292         }
293 }
294
295 #ifdef CONFIG_CHELSIO_T4_DCB
296 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
297 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
298 {
299         struct port_info *pi = netdev_priv(dev);
300         struct adapter *adap = pi->adapter;
301         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
302         int i;
303
304         /* We use a simple mapping of Port TX Queue Index to DCB
305          * Priority when we're enabling DCB.
306          */
307         for (i = 0; i < pi->nqsets; i++, txq++) {
308                 u32 name, value;
309                 int err;
310
311                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
312                         FW_PARAMS_PARAM_X_V(
313                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
314                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
315                 value = enable ? i : 0xffffffff;
316
317                 /* Since we can be called while atomic (from "interrupt
318                  * level") we need to issue the Set Parameters Commannd
319                  * without sleeping (timeout < 0).
320                  */
321                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
322                                             &name, &value);
323
324                 if (err)
325                         dev_err(adap->pdev_dev,
326                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
327                                 enable ? "set" : "unset", pi->port_id, i, -err);
328                 else
329                         txq->dcb_prio = value;
330         }
331 }
332 #endif /* CONFIG_CHELSIO_T4_DCB */
333
334 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
335 {
336         struct net_device *dev = adapter->port[port_id];
337
338         /* Skip changes from disabled ports. */
339         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
340                 if (link_stat)
341                         netif_carrier_on(dev);
342                 else {
343 #ifdef CONFIG_CHELSIO_T4_DCB
344                         cxgb4_dcb_state_init(dev);
345                         dcb_tx_queue_prio_enable(dev, false);
346 #endif /* CONFIG_CHELSIO_T4_DCB */
347                         netif_carrier_off(dev);
348                 }
349
350                 link_report(dev);
351         }
352 }
353
354 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
355 {
356         static const char *mod_str[] = {
357                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
358         };
359
360         const struct net_device *dev = adap->port[port_id];
361         const struct port_info *pi = netdev_priv(dev);
362
363         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
364                 netdev_info(dev, "port module unplugged\n");
365         else if (pi->mod_type < ARRAY_SIZE(mod_str))
366                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
367 }
368
369 /*
370  * Configure the exact and hash address filters to handle a port's multicast
371  * and secondary unicast MAC addresses.
372  */
373 static int set_addr_filters(const struct net_device *dev, bool sleep)
374 {
375         u64 mhash = 0;
376         u64 uhash = 0;
377         bool free = true;
378         u16 filt_idx[7];
379         const u8 *addr[7];
380         int ret, naddr = 0;
381         const struct netdev_hw_addr *ha;
382         int uc_cnt = netdev_uc_count(dev);
383         int mc_cnt = netdev_mc_count(dev);
384         const struct port_info *pi = netdev_priv(dev);
385         unsigned int mb = pi->adapter->fn;
386
387         /* first do the secondary unicast addresses */
388         netdev_for_each_uc_addr(ha, dev) {
389                 addr[naddr++] = ha->addr;
390                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
391                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
392                                         naddr, addr, filt_idx, &uhash, sleep);
393                         if (ret < 0)
394                                 return ret;
395
396                         free = false;
397                         naddr = 0;
398                 }
399         }
400
401         /* next set up the multicast addresses */
402         netdev_for_each_mc_addr(ha, dev) {
403                 addr[naddr++] = ha->addr;
404                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
405                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
406                                         naddr, addr, filt_idx, &mhash, sleep);
407                         if (ret < 0)
408                                 return ret;
409
410                         free = false;
411                         naddr = 0;
412                 }
413         }
414
415         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
416                                 uhash | mhash, sleep);
417 }
418
419 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
420 module_param(dbfifo_int_thresh, int, 0644);
421 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
422
423 /*
424  * usecs to sleep while draining the dbfifo
425  */
426 static int dbfifo_drain_delay = 1000;
427 module_param(dbfifo_drain_delay, int, 0644);
428 MODULE_PARM_DESC(dbfifo_drain_delay,
429                  "usecs to sleep while draining the dbfifo");
430
431 /*
432  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
433  * If @mtu is -1 it is left unchanged.
434  */
435 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
436 {
437         int ret;
438         struct port_info *pi = netdev_priv(dev);
439
440         ret = set_addr_filters(dev, sleep_ok);
441         if (ret == 0)
442                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
443                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
444                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
445                                     sleep_ok);
446         return ret;
447 }
448
449 /**
450  *      link_start - enable a port
451  *      @dev: the port to enable
452  *
453  *      Performs the MAC and PHY actions needed to enable a port.
454  */
455 static int link_start(struct net_device *dev)
456 {
457         int ret;
458         struct port_info *pi = netdev_priv(dev);
459         unsigned int mb = pi->adapter->fn;
460
461         /*
462          * We do not set address filters and promiscuity here, the stack does
463          * that step explicitly.
464          */
465         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
466                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
467         if (ret == 0) {
468                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
469                                     pi->xact_addr_filt, dev->dev_addr, true,
470                                     true);
471                 if (ret >= 0) {
472                         pi->xact_addr_filt = ret;
473                         ret = 0;
474                 }
475         }
476         if (ret == 0)
477                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
478                                     &pi->link_cfg);
479         if (ret == 0) {
480                 local_bh_disable();
481                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
482                                           true, CXGB4_DCB_ENABLED);
483                 local_bh_enable();
484         }
485
486         return ret;
487 }
488
489 int cxgb4_dcb_enabled(const struct net_device *dev)
490 {
491 #ifdef CONFIG_CHELSIO_T4_DCB
492         struct port_info *pi = netdev_priv(dev);
493
494         if (!pi->dcb.enabled)
495                 return 0;
496
497         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
498                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
499 #else
500         return 0;
501 #endif
502 }
503 EXPORT_SYMBOL(cxgb4_dcb_enabled);
504
505 #ifdef CONFIG_CHELSIO_T4_DCB
506 /* Handle a Data Center Bridging update message from the firmware. */
507 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
508 {
509         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
510         struct net_device *dev = adap->port[port];
511         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
512         int new_dcb_enabled;
513
514         cxgb4_dcb_handle_fw_update(adap, pcmd);
515         new_dcb_enabled = cxgb4_dcb_enabled(dev);
516
517         /* If the DCB has become enabled or disabled on the port then we're
518          * going to need to set up/tear down DCB Priority parameters for the
519          * TX Queues associated with the port.
520          */
521         if (new_dcb_enabled != old_dcb_enabled)
522                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
523 }
524 #endif /* CONFIG_CHELSIO_T4_DCB */
525
526 /* Clear a filter and release any of its resources that we own.  This also
527  * clears the filter's "pending" status.
528  */
529 static void clear_filter(struct adapter *adap, struct filter_entry *f)
530 {
531         /* If the new or old filter have loopback rewriteing rules then we'll
532          * need to free any existing Layer Two Table (L2T) entries of the old
533          * filter rule.  The firmware will handle freeing up any Source MAC
534          * Table (SMT) entries used for rewriting Source MAC Addresses in
535          * loopback rules.
536          */
537         if (f->l2t)
538                 cxgb4_l2t_release(f->l2t);
539
540         /* The zeroing of the filter rule below clears the filter valid,
541          * pending, locked flags, l2t pointer, etc. so it's all we need for
542          * this operation.
543          */
544         memset(f, 0, sizeof(*f));
545 }
546
547 /* Handle a filter write/deletion reply.
548  */
549 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
550 {
551         unsigned int idx = GET_TID(rpl);
552         unsigned int nidx = idx - adap->tids.ftid_base;
553         unsigned int ret;
554         struct filter_entry *f;
555
556         if (idx >= adap->tids.ftid_base && nidx <
557            (adap->tids.nftids + adap->tids.nsftids)) {
558                 idx = nidx;
559                 ret = TCB_COOKIE_G(rpl->cookie);
560                 f = &adap->tids.ftid_tab[idx];
561
562                 if (ret == FW_FILTER_WR_FLT_DELETED) {
563                         /* Clear the filter when we get confirmation from the
564                          * hardware that the filter has been deleted.
565                          */
566                         clear_filter(adap, f);
567                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
568                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
569                                 idx);
570                         clear_filter(adap, f);
571                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
572                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
573                         f->pending = 0;  /* asynchronous setup completed */
574                         f->valid = 1;
575                 } else {
576                         /* Something went wrong.  Issue a warning about the
577                          * problem and clear everything out.
578                          */
579                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
580                                 idx, ret);
581                         clear_filter(adap, f);
582                 }
583         }
584 }
585
586 /* Response queue handler for the FW event queue.
587  */
588 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
589                           const struct pkt_gl *gl)
590 {
591         u8 opcode = ((const struct rss_header *)rsp)->opcode;
592
593         rsp++;                                          /* skip RSS header */
594
595         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
596          */
597         if (unlikely(opcode == CPL_FW4_MSG &&
598            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
599                 rsp++;
600                 opcode = ((const struct rss_header *)rsp)->opcode;
601                 rsp++;
602                 if (opcode != CPL_SGE_EGR_UPDATE) {
603                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
604                                 , opcode);
605                         goto out;
606                 }
607         }
608
609         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
610                 const struct cpl_sge_egr_update *p = (void *)rsp;
611                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
612                 struct sge_txq *txq;
613
614                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
615                 txq->restarts++;
616                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
617                         struct sge_eth_txq *eq;
618
619                         eq = container_of(txq, struct sge_eth_txq, q);
620                         netif_tx_wake_queue(eq->txq);
621                 } else {
622                         struct sge_ofld_txq *oq;
623
624                         oq = container_of(txq, struct sge_ofld_txq, q);
625                         tasklet_schedule(&oq->qresume_tsk);
626                 }
627         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
628                 const struct cpl_fw6_msg *p = (void *)rsp;
629
630 #ifdef CONFIG_CHELSIO_T4_DCB
631                 const struct fw_port_cmd *pcmd = (const void *)p->data;
632                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
633                 unsigned int action =
634                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
635
636                 if (cmd == FW_PORT_CMD &&
637                     action == FW_PORT_ACTION_GET_PORT_INFO) {
638                         int port = FW_PORT_CMD_PORTID_G(
639                                         be32_to_cpu(pcmd->op_to_portid));
640                         struct net_device *dev = q->adap->port[port];
641                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
642                                             FW_PORT_CMD_DCBXDIS_F)
643                                            ? CXGB4_DCB_INPUT_FW_DISABLED
644                                            : CXGB4_DCB_INPUT_FW_ENABLED);
645
646                         cxgb4_dcb_state_fsm(dev, state_input);
647                 }
648
649                 if (cmd == FW_PORT_CMD &&
650                     action == FW_PORT_ACTION_L2_DCB_CFG)
651                         dcb_rpl(q->adap, pcmd);
652                 else
653 #endif
654                         if (p->type == 0)
655                                 t4_handle_fw_rpl(q->adap, p->data);
656         } else if (opcode == CPL_L2T_WRITE_RPL) {
657                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
658
659                 do_l2t_write_rpl(q->adap, p);
660         } else if (opcode == CPL_SET_TCB_RPL) {
661                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
662
663                 filter_rpl(q->adap, p);
664         } else
665                 dev_err(q->adap->pdev_dev,
666                         "unexpected CPL %#x on FW event queue\n", opcode);
667 out:
668         return 0;
669 }
670
671 /**
672  *      uldrx_handler - response queue handler for ULD queues
673  *      @q: the response queue that received the packet
674  *      @rsp: the response queue descriptor holding the offload message
675  *      @gl: the gather list of packet fragments
676  *
677  *      Deliver an ingress offload packet to a ULD.  All processing is done by
678  *      the ULD, we just maintain statistics.
679  */
680 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
681                          const struct pkt_gl *gl)
682 {
683         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
684
685         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
686          */
687         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
688             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
689                 rsp += 2;
690
691         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
692                 rxq->stats.nomem++;
693                 return -1;
694         }
695         if (gl == NULL)
696                 rxq->stats.imm++;
697         else if (gl == CXGB4_MSG_AN)
698                 rxq->stats.an++;
699         else
700                 rxq->stats.pkts++;
701         return 0;
702 }
703
704 static void disable_msi(struct adapter *adapter)
705 {
706         if (adapter->flags & USING_MSIX) {
707                 pci_disable_msix(adapter->pdev);
708                 adapter->flags &= ~USING_MSIX;
709         } else if (adapter->flags & USING_MSI) {
710                 pci_disable_msi(adapter->pdev);
711                 adapter->flags &= ~USING_MSI;
712         }
713 }
714
715 /*
716  * Interrupt handler for non-data events used with MSI-X.
717  */
718 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
719 {
720         struct adapter *adap = cookie;
721         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
722
723         if (v & PFSW_F) {
724                 adap->swintr = 1;
725                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
726         }
727         if (adap->flags & MASTER_PF)
728                 t4_slow_intr_handler(adap);
729         return IRQ_HANDLED;
730 }
731
732 /*
733  * Name the MSI-X interrupts.
734  */
735 static void name_msix_vecs(struct adapter *adap)
736 {
737         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
738
739         /* non-data interrupts */
740         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
741
742         /* FW events */
743         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
744                  adap->port[0]->name);
745
746         /* Ethernet queues */
747         for_each_port(adap, j) {
748                 struct net_device *d = adap->port[j];
749                 const struct port_info *pi = netdev_priv(d);
750
751                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
752                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
753                                  d->name, i);
754         }
755
756         /* offload queues */
757         for_each_ofldrxq(&adap->sge, i)
758                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
759                          adap->port[0]->name, i);
760
761         for_each_rdmarxq(&adap->sge, i)
762                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
763                          adap->port[0]->name, i);
764
765         for_each_rdmaciq(&adap->sge, i)
766                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
767                          adap->port[0]->name, i);
768 }
769
770 static int request_msix_queue_irqs(struct adapter *adap)
771 {
772         struct sge *s = &adap->sge;
773         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
774         int msi_index = 2;
775
776         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
777                           adap->msix_info[1].desc, &s->fw_evtq);
778         if (err)
779                 return err;
780
781         for_each_ethrxq(s, ethqidx) {
782                 err = request_irq(adap->msix_info[msi_index].vec,
783                                   t4_sge_intr_msix, 0,
784                                   adap->msix_info[msi_index].desc,
785                                   &s->ethrxq[ethqidx].rspq);
786                 if (err)
787                         goto unwind;
788                 msi_index++;
789         }
790         for_each_ofldrxq(s, ofldqidx) {
791                 err = request_irq(adap->msix_info[msi_index].vec,
792                                   t4_sge_intr_msix, 0,
793                                   adap->msix_info[msi_index].desc,
794                                   &s->ofldrxq[ofldqidx].rspq);
795                 if (err)
796                         goto unwind;
797                 msi_index++;
798         }
799         for_each_rdmarxq(s, rdmaqidx) {
800                 err = request_irq(adap->msix_info[msi_index].vec,
801                                   t4_sge_intr_msix, 0,
802                                   adap->msix_info[msi_index].desc,
803                                   &s->rdmarxq[rdmaqidx].rspq);
804                 if (err)
805                         goto unwind;
806                 msi_index++;
807         }
808         for_each_rdmaciq(s, rdmaciqqidx) {
809                 err = request_irq(adap->msix_info[msi_index].vec,
810                                   t4_sge_intr_msix, 0,
811                                   adap->msix_info[msi_index].desc,
812                                   &s->rdmaciq[rdmaciqqidx].rspq);
813                 if (err)
814                         goto unwind;
815                 msi_index++;
816         }
817         return 0;
818
819 unwind:
820         while (--rdmaciqqidx >= 0)
821                 free_irq(adap->msix_info[--msi_index].vec,
822                          &s->rdmaciq[rdmaciqqidx].rspq);
823         while (--rdmaqidx >= 0)
824                 free_irq(adap->msix_info[--msi_index].vec,
825                          &s->rdmarxq[rdmaqidx].rspq);
826         while (--ofldqidx >= 0)
827                 free_irq(adap->msix_info[--msi_index].vec,
828                          &s->ofldrxq[ofldqidx].rspq);
829         while (--ethqidx >= 0)
830                 free_irq(adap->msix_info[--msi_index].vec,
831                          &s->ethrxq[ethqidx].rspq);
832         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
833         return err;
834 }
835
836 static void free_msix_queue_irqs(struct adapter *adap)
837 {
838         int i, msi_index = 2;
839         struct sge *s = &adap->sge;
840
841         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
842         for_each_ethrxq(s, i)
843                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
844         for_each_ofldrxq(s, i)
845                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
846         for_each_rdmarxq(s, i)
847                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
848         for_each_rdmaciq(s, i)
849                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
850 }
851
852 /**
853  *      cxgb4_write_rss - write the RSS table for a given port
854  *      @pi: the port
855  *      @queues: array of queue indices for RSS
856  *
857  *      Sets up the portion of the HW RSS table for the port's VI to distribute
858  *      packets to the Rx queues in @queues.
859  *      Should never be called before setting up sge eth rx queues
860  */
861 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
862 {
863         u16 *rss;
864         int i, err;
865         struct adapter *adapter = pi->adapter;
866         const struct sge_eth_rxq *rxq;
867
868         rxq = &adapter->sge.ethrxq[pi->first_qset];
869         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
870         if (!rss)
871                 return -ENOMEM;
872
873         /* map the queue indices to queue ids */
874         for (i = 0; i < pi->rss_size; i++, queues++)
875                 rss[i] = rxq[*queues].rspq.abs_id;
876
877         err = t4_config_rss_range(adapter, adapter->fn, pi->viid, 0,
878                                   pi->rss_size, rss, pi->rss_size);
879         /* If Tunnel All Lookup isn't specified in the global RSS
880          * Configuration, then we need to specify a default Ingress
881          * Queue for any ingress packets which aren't hashed.  We'll
882          * use our first ingress queue ...
883          */
884         if (!err)
885                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
886                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
887                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
888                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
889                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
890                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
891                                        rss[0]);
892         kfree(rss);
893         return err;
894 }
895
896 /**
897  *      setup_rss - configure RSS
898  *      @adap: the adapter
899  *
900  *      Sets up RSS for each port.
901  */
902 static int setup_rss(struct adapter *adap)
903 {
904         int i, j, err;
905
906         for_each_port(adap, i) {
907                 const struct port_info *pi = adap2pinfo(adap, i);
908
909                 /* Fill default values with equal distribution */
910                 for (j = 0; j < pi->rss_size; j++)
911                         pi->rss[j] = j % pi->nqsets;
912
913                 err = cxgb4_write_rss(pi, pi->rss);
914                 if (err)
915                         return err;
916         }
917         return 0;
918 }
919
920 /*
921  * Return the channel of the ingress queue with the given qid.
922  */
923 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
924 {
925         qid -= p->ingr_start;
926         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
927 }
928
929 /*
930  * Wait until all NAPI handlers are descheduled.
931  */
932 static void quiesce_rx(struct adapter *adap)
933 {
934         int i;
935
936         for (i = 0; i < adap->sge.ingr_sz; i++) {
937                 struct sge_rspq *q = adap->sge.ingr_map[i];
938
939                 if (q && q->handler) {
940                         napi_disable(&q->napi);
941                         local_bh_disable();
942                         while (!cxgb_poll_lock_napi(q))
943                                 mdelay(1);
944                         local_bh_enable();
945                 }
946
947         }
948 }
949
950 /* Disable interrupt and napi handler */
951 static void disable_interrupts(struct adapter *adap)
952 {
953         if (adap->flags & FULL_INIT_DONE) {
954                 t4_intr_disable(adap);
955                 if (adap->flags & USING_MSIX) {
956                         free_msix_queue_irqs(adap);
957                         free_irq(adap->msix_info[0].vec, adap);
958                 } else {
959                         free_irq(adap->pdev->irq, adap);
960                 }
961                 quiesce_rx(adap);
962         }
963 }
964
965 /*
966  * Enable NAPI scheduling and interrupt generation for all Rx queues.
967  */
968 static void enable_rx(struct adapter *adap)
969 {
970         int i;
971
972         for (i = 0; i < adap->sge.ingr_sz; i++) {
973                 struct sge_rspq *q = adap->sge.ingr_map[i];
974
975                 if (!q)
976                         continue;
977                 if (q->handler) {
978                         cxgb_busy_poll_init_lock(q);
979                         napi_enable(&q->napi);
980                 }
981                 /* 0-increment GTS to start the timer and enable interrupts */
982                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
983                              SEINTARM_V(q->intr_params) |
984                              INGRESSQID_V(q->cntxt_id));
985         }
986 }
987
988 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
989                            unsigned int nq, unsigned int per_chan, int msi_idx,
990                            u16 *ids)
991 {
992         int i, err;
993
994         for (i = 0; i < nq; i++, q++) {
995                 if (msi_idx > 0)
996                         msi_idx++;
997                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
998                                        adap->port[i / per_chan],
999                                        msi_idx, q->fl.size ? &q->fl : NULL,
1000                                        uldrx_handler, 0);
1001                 if (err)
1002                         return err;
1003                 memset(&q->stats, 0, sizeof(q->stats));
1004                 if (ids)
1005                         ids[i] = q->rspq.abs_id;
1006         }
1007         return 0;
1008 }
1009
1010 /**
1011  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1012  *      @adap: the adapter
1013  *
1014  *      Determines how many sets of SGE queues to use and initializes them.
1015  *      We support multiple queue sets per port if we have MSI-X, otherwise
1016  *      just one queue set per port.
1017  */
1018 static int setup_sge_queues(struct adapter *adap)
1019 {
1020         int err, msi_idx, i, j;
1021         struct sge *s = &adap->sge;
1022
1023         bitmap_zero(s->starving_fl, s->egr_sz);
1024         bitmap_zero(s->txq_maperr, s->egr_sz);
1025
1026         if (adap->flags & USING_MSIX)
1027                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1028         else {
1029                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1030                                        NULL, NULL, -1);
1031                 if (err)
1032                         return err;
1033                 msi_idx = -((int)s->intrq.abs_id + 1);
1034         }
1035
1036         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1037          * don't forget to update the following which need to be
1038          * synchronized to and changes here.
1039          *
1040          * 1. The calculations of MAX_INGQ in cxgb4.h.
1041          *
1042          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1043          *    to accommodate any new/deleted Ingress Queues
1044          *    which need MSI-X Vectors.
1045          *
1046          * 3. Update sge_qinfo_show() to include information on the
1047          *    new/deleted queues.
1048          */
1049         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1050                                msi_idx, NULL, fwevtq_handler, -1);
1051         if (err) {
1052 freeout:        t4_free_sge_resources(adap);
1053                 return err;
1054         }
1055
1056         for_each_port(adap, i) {
1057                 struct net_device *dev = adap->port[i];
1058                 struct port_info *pi = netdev_priv(dev);
1059                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1060                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1061
1062                 for (j = 0; j < pi->nqsets; j++, q++) {
1063                         if (msi_idx > 0)
1064                                 msi_idx++;
1065                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1066                                                msi_idx, &q->fl,
1067                                                t4_ethrx_handler,
1068                                                t4_get_mps_bg_map(adap,
1069                                                                  pi->tx_chan));
1070                         if (err)
1071                                 goto freeout;
1072                         q->rspq.idx = j;
1073                         memset(&q->stats, 0, sizeof(q->stats));
1074                 }
1075                 for (j = 0; j < pi->nqsets; j++, t++) {
1076                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1077                                         netdev_get_tx_queue(dev, j),
1078                                         s->fw_evtq.cntxt_id);
1079                         if (err)
1080                                 goto freeout;
1081                 }
1082         }
1083
1084         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1085         for_each_ofldrxq(s, i) {
1086                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1087                                             adap->port[i / j],
1088                                             s->fw_evtq.cntxt_id);
1089                 if (err)
1090                         goto freeout;
1091         }
1092
1093 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1094         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1095         if (err) \
1096                 goto freeout; \
1097         if (msi_idx > 0) \
1098                 msi_idx += nq; \
1099 } while (0)
1100
1101         ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1102         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1103         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1104         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1105
1106 #undef ALLOC_OFLD_RXQS
1107
1108         for_each_port(adap, i) {
1109                 /*
1110                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1111                  * have RDMA queues, and that's the right value.
1112                  */
1113                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1114                                             s->fw_evtq.cntxt_id,
1115                                             s->rdmarxq[i].rspq.cntxt_id);
1116                 if (err)
1117                         goto freeout;
1118         }
1119
1120         t4_write_reg(adap, is_t4(adap->params.chip) ?
1121                                 MPS_TRC_RSS_CONTROL_A :
1122                                 MPS_T5_TRC_RSS_CONTROL_A,
1123                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1124                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1125         return 0;
1126 }
1127
1128 /*
1129  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1130  * The allocated memory is cleared.
1131  */
1132 void *t4_alloc_mem(size_t size)
1133 {
1134         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1135
1136         if (!p)
1137                 p = vzalloc(size);
1138         return p;
1139 }
1140
1141 /*
1142  * Free memory allocated through alloc_mem().
1143  */
1144 void t4_free_mem(void *addr)
1145 {
1146         if (is_vmalloc_addr(addr))
1147                 vfree(addr);
1148         else
1149                 kfree(addr);
1150 }
1151
1152 /* Send a Work Request to write the filter at a specified index.  We construct
1153  * a Firmware Filter Work Request to have the work done and put the indicated
1154  * filter into "pending" mode which will prevent any further actions against
1155  * it till we get a reply from the firmware on the completion status of the
1156  * request.
1157  */
1158 static int set_filter_wr(struct adapter *adapter, int fidx)
1159 {
1160         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1161         struct sk_buff *skb;
1162         struct fw_filter_wr *fwr;
1163         unsigned int ftid;
1164
1165         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1166         if (!skb)
1167                 return -ENOMEM;
1168
1169         /* If the new filter requires loopback Destination MAC and/or VLAN
1170          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1171          * the filter.
1172          */
1173         if (f->fs.newdmac || f->fs.newvlan) {
1174                 /* allocate L2T entry for new filter */
1175                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1176                 if (f->l2t == NULL) {
1177                         kfree_skb(skb);
1178                         return -EAGAIN;
1179                 }
1180                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1181                                         f->fs.eport, f->fs.dmac)) {
1182                         cxgb4_l2t_release(f->l2t);
1183                         f->l2t = NULL;
1184                         kfree_skb(skb);
1185                         return -ENOMEM;
1186                 }
1187         }
1188
1189         ftid = adapter->tids.ftid_base + fidx;
1190
1191         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1192         memset(fwr, 0, sizeof(*fwr));
1193
1194         /* It would be nice to put most of the following in t4_hw.c but most
1195          * of the work is translating the cxgbtool ch_filter_specification
1196          * into the Work Request and the definition of that structure is
1197          * currently in cxgbtool.h which isn't appropriate to pull into the
1198          * common code.  We may eventually try to come up with a more neutral
1199          * filter specification structure but for now it's easiest to simply
1200          * put this fairly direct code in line ...
1201          */
1202         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1203         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1204         fwr->tid_to_iq =
1205                 htonl(FW_FILTER_WR_TID_V(ftid) |
1206                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1207                       FW_FILTER_WR_NOREPLY_V(0) |
1208                       FW_FILTER_WR_IQ_V(f->fs.iq));
1209         fwr->del_filter_to_l2tix =
1210                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1211                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1212                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1213                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1214                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1215                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1216                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1217                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1218                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1219                                              f->fs.newvlan == VLAN_REWRITE) |
1220                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1221                                             f->fs.newvlan == VLAN_REWRITE) |
1222                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1223                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1224                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1225                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1226         fwr->ethtype = htons(f->fs.val.ethtype);
1227         fwr->ethtypem = htons(f->fs.mask.ethtype);
1228         fwr->frag_to_ovlan_vldm =
1229                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1230                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1231                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1232                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1233                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1234                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1235         fwr->smac_sel = 0;
1236         fwr->rx_chan_rx_rpl_iq =
1237                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1238                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1239         fwr->maci_to_matchtypem =
1240                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1241                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1242                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1243                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1244                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1245                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1246                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1247                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1248         fwr->ptcl = f->fs.val.proto;
1249         fwr->ptclm = f->fs.mask.proto;
1250         fwr->ttyp = f->fs.val.tos;
1251         fwr->ttypm = f->fs.mask.tos;
1252         fwr->ivlan = htons(f->fs.val.ivlan);
1253         fwr->ivlanm = htons(f->fs.mask.ivlan);
1254         fwr->ovlan = htons(f->fs.val.ovlan);
1255         fwr->ovlanm = htons(f->fs.mask.ovlan);
1256         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1257         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1258         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1259         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1260         fwr->lp = htons(f->fs.val.lport);
1261         fwr->lpm = htons(f->fs.mask.lport);
1262         fwr->fp = htons(f->fs.val.fport);
1263         fwr->fpm = htons(f->fs.mask.fport);
1264         if (f->fs.newsmac)
1265                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1266
1267         /* Mark the filter as "pending" and ship off the Filter Work Request.
1268          * When we get the Work Request Reply we'll clear the pending status.
1269          */
1270         f->pending = 1;
1271         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1272         t4_ofld_send(adapter, skb);
1273         return 0;
1274 }
1275
1276 /* Delete the filter at a specified index.
1277  */
1278 static int del_filter_wr(struct adapter *adapter, int fidx)
1279 {
1280         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1281         struct sk_buff *skb;
1282         struct fw_filter_wr *fwr;
1283         unsigned int len, ftid;
1284
1285         len = sizeof(*fwr);
1286         ftid = adapter->tids.ftid_base + fidx;
1287
1288         skb = alloc_skb(len, GFP_KERNEL);
1289         if (!skb)
1290                 return -ENOMEM;
1291
1292         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1293         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1294
1295         /* Mark the filter as "pending" and ship off the Filter Work Request.
1296          * When we get the Work Request Reply we'll clear the pending status.
1297          */
1298         f->pending = 1;
1299         t4_mgmt_tx(adapter, skb);
1300         return 0;
1301 }
1302
1303 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1304                              void *accel_priv, select_queue_fallback_t fallback)
1305 {
1306         int txq;
1307
1308 #ifdef CONFIG_CHELSIO_T4_DCB
1309         /* If a Data Center Bridging has been successfully negotiated on this
1310          * link then we'll use the skb's priority to map it to a TX Queue.
1311          * The skb's priority is determined via the VLAN Tag Priority Code
1312          * Point field.
1313          */
1314         if (cxgb4_dcb_enabled(dev)) {
1315                 u16 vlan_tci;
1316                 int err;
1317
1318                 err = vlan_get_tag(skb, &vlan_tci);
1319                 if (unlikely(err)) {
1320                         if (net_ratelimit())
1321                                 netdev_warn(dev,
1322                                             "TX Packet without VLAN Tag on DCB Link\n");
1323                         txq = 0;
1324                 } else {
1325                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1326 #ifdef CONFIG_CHELSIO_T4_FCOE
1327                         if (skb->protocol == htons(ETH_P_FCOE))
1328                                 txq = skb->priority & 0x7;
1329 #endif /* CONFIG_CHELSIO_T4_FCOE */
1330                 }
1331                 return txq;
1332         }
1333 #endif /* CONFIG_CHELSIO_T4_DCB */
1334
1335         if (select_queue) {
1336                 txq = (skb_rx_queue_recorded(skb)
1337                         ? skb_get_rx_queue(skb)
1338                         : smp_processor_id());
1339
1340                 while (unlikely(txq >= dev->real_num_tx_queues))
1341                         txq -= dev->real_num_tx_queues;
1342
1343                 return txq;
1344         }
1345
1346         return fallback(dev, skb) % dev->real_num_tx_queues;
1347 }
1348
1349 static inline int is_offload(const struct adapter *adap)
1350 {
1351         return adap->params.offload;
1352 }
1353
1354 static int closest_timer(const struct sge *s, int time)
1355 {
1356         int i, delta, match = 0, min_delta = INT_MAX;
1357
1358         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1359                 delta = time - s->timer_val[i];
1360                 if (delta < 0)
1361                         delta = -delta;
1362                 if (delta < min_delta) {
1363                         min_delta = delta;
1364                         match = i;
1365                 }
1366         }
1367         return match;
1368 }
1369
1370 static int closest_thres(const struct sge *s, int thres)
1371 {
1372         int i, delta, match = 0, min_delta = INT_MAX;
1373
1374         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1375                 delta = thres - s->counter_val[i];
1376                 if (delta < 0)
1377                         delta = -delta;
1378                 if (delta < min_delta) {
1379                         min_delta = delta;
1380                         match = i;
1381                 }
1382         }
1383         return match;
1384 }
1385
1386 /**
1387  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1388  *      @q: the Rx queue
1389  *      @us: the hold-off time in us, or 0 to disable timer
1390  *      @cnt: the hold-off packet count, or 0 to disable counter
1391  *
1392  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1393  *      one of the two needs to be enabled for the queue to generate interrupts.
1394  */
1395 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1396                                unsigned int us, unsigned int cnt)
1397 {
1398         struct adapter *adap = q->adap;
1399
1400         if ((us | cnt) == 0)
1401                 cnt = 1;
1402
1403         if (cnt) {
1404                 int err;
1405                 u32 v, new_idx;
1406
1407                 new_idx = closest_thres(&adap->sge, cnt);
1408                 if (q->desc && q->pktcnt_idx != new_idx) {
1409                         /* the queue has already been created, update it */
1410                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1411                             FW_PARAMS_PARAM_X_V(
1412                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1413                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1414                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1415                                             &new_idx);
1416                         if (err)
1417                                 return err;
1418                 }
1419                 q->pktcnt_idx = new_idx;
1420         }
1421
1422         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1423         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1424         return 0;
1425 }
1426
1427 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1428 {
1429         const struct port_info *pi = netdev_priv(dev);
1430         netdev_features_t changed = dev->features ^ features;
1431         int err;
1432
1433         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1434                 return 0;
1435
1436         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1437                             -1, -1, -1,
1438                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1439         if (unlikely(err))
1440                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1441         return err;
1442 }
1443
1444 static int setup_debugfs(struct adapter *adap)
1445 {
1446         if (IS_ERR_OR_NULL(adap->debugfs_root))
1447                 return -1;
1448
1449 #ifdef CONFIG_DEBUG_FS
1450         t4_setup_debugfs(adap);
1451 #endif
1452         return 0;
1453 }
1454
1455 /*
1456  * upper-layer driver support
1457  */
1458
1459 /*
1460  * Allocate an active-open TID and set it to the supplied value.
1461  */
1462 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1463 {
1464         int atid = -1;
1465
1466         spin_lock_bh(&t->atid_lock);
1467         if (t->afree) {
1468                 union aopen_entry *p = t->afree;
1469
1470                 atid = (p - t->atid_tab) + t->atid_base;
1471                 t->afree = p->next;
1472                 p->data = data;
1473                 t->atids_in_use++;
1474         }
1475         spin_unlock_bh(&t->atid_lock);
1476         return atid;
1477 }
1478 EXPORT_SYMBOL(cxgb4_alloc_atid);
1479
1480 /*
1481  * Release an active-open TID.
1482  */
1483 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1484 {
1485         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1486
1487         spin_lock_bh(&t->atid_lock);
1488         p->next = t->afree;
1489         t->afree = p;
1490         t->atids_in_use--;
1491         spin_unlock_bh(&t->atid_lock);
1492 }
1493 EXPORT_SYMBOL(cxgb4_free_atid);
1494
1495 /*
1496  * Allocate a server TID and set it to the supplied value.
1497  */
1498 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1499 {
1500         int stid;
1501
1502         spin_lock_bh(&t->stid_lock);
1503         if (family == PF_INET) {
1504                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1505                 if (stid < t->nstids)
1506                         __set_bit(stid, t->stid_bmap);
1507                 else
1508                         stid = -1;
1509         } else {
1510                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1511                 if (stid < 0)
1512                         stid = -1;
1513         }
1514         if (stid >= 0) {
1515                 t->stid_tab[stid].data = data;
1516                 stid += t->stid_base;
1517                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1518                  * This is equivalent to 4 TIDs. With CLIP enabled it
1519                  * needs 2 TIDs.
1520                  */
1521                 if (family == PF_INET)
1522                         t->stids_in_use++;
1523                 else
1524                         t->stids_in_use += 4;
1525         }
1526         spin_unlock_bh(&t->stid_lock);
1527         return stid;
1528 }
1529 EXPORT_SYMBOL(cxgb4_alloc_stid);
1530
1531 /* Allocate a server filter TID and set it to the supplied value.
1532  */
1533 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1534 {
1535         int stid;
1536
1537         spin_lock_bh(&t->stid_lock);
1538         if (family == PF_INET) {
1539                 stid = find_next_zero_bit(t->stid_bmap,
1540                                 t->nstids + t->nsftids, t->nstids);
1541                 if (stid < (t->nstids + t->nsftids))
1542                         __set_bit(stid, t->stid_bmap);
1543                 else
1544                         stid = -1;
1545         } else {
1546                 stid = -1;
1547         }
1548         if (stid >= 0) {
1549                 t->stid_tab[stid].data = data;
1550                 stid -= t->nstids;
1551                 stid += t->sftid_base;
1552                 t->stids_in_use++;
1553         }
1554         spin_unlock_bh(&t->stid_lock);
1555         return stid;
1556 }
1557 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1558
1559 /* Release a server TID.
1560  */
1561 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1562 {
1563         /* Is it a server filter TID? */
1564         if (t->nsftids && (stid >= t->sftid_base)) {
1565                 stid -= t->sftid_base;
1566                 stid += t->nstids;
1567         } else {
1568                 stid -= t->stid_base;
1569         }
1570
1571         spin_lock_bh(&t->stid_lock);
1572         if (family == PF_INET)
1573                 __clear_bit(stid, t->stid_bmap);
1574         else
1575                 bitmap_release_region(t->stid_bmap, stid, 2);
1576         t->stid_tab[stid].data = NULL;
1577         if (family == PF_INET)
1578                 t->stids_in_use--;
1579         else
1580                 t->stids_in_use -= 4;
1581         spin_unlock_bh(&t->stid_lock);
1582 }
1583 EXPORT_SYMBOL(cxgb4_free_stid);
1584
1585 /*
1586  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1587  */
1588 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1589                            unsigned int tid)
1590 {
1591         struct cpl_tid_release *req;
1592
1593         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1594         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1595         INIT_TP_WR(req, tid);
1596         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1597 }
1598
1599 /*
1600  * Queue a TID release request and if necessary schedule a work queue to
1601  * process it.
1602  */
1603 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1604                                     unsigned int tid)
1605 {
1606         void **p = &t->tid_tab[tid];
1607         struct adapter *adap = container_of(t, struct adapter, tids);
1608
1609         spin_lock_bh(&adap->tid_release_lock);
1610         *p = adap->tid_release_head;
1611         /* Low 2 bits encode the Tx channel number */
1612         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1613         if (!adap->tid_release_task_busy) {
1614                 adap->tid_release_task_busy = true;
1615                 queue_work(adap->workq, &adap->tid_release_task);
1616         }
1617         spin_unlock_bh(&adap->tid_release_lock);
1618 }
1619
1620 /*
1621  * Process the list of pending TID release requests.
1622  */
1623 static void process_tid_release_list(struct work_struct *work)
1624 {
1625         struct sk_buff *skb;
1626         struct adapter *adap;
1627
1628         adap = container_of(work, struct adapter, tid_release_task);
1629
1630         spin_lock_bh(&adap->tid_release_lock);
1631         while (adap->tid_release_head) {
1632                 void **p = adap->tid_release_head;
1633                 unsigned int chan = (uintptr_t)p & 3;
1634                 p = (void *)p - chan;
1635
1636                 adap->tid_release_head = *p;
1637                 *p = NULL;
1638                 spin_unlock_bh(&adap->tid_release_lock);
1639
1640                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1641                                          GFP_KERNEL)))
1642                         schedule_timeout_uninterruptible(1);
1643
1644                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1645                 t4_ofld_send(adap, skb);
1646                 spin_lock_bh(&adap->tid_release_lock);
1647         }
1648         adap->tid_release_task_busy = false;
1649         spin_unlock_bh(&adap->tid_release_lock);
1650 }
1651
1652 /*
1653  * Release a TID and inform HW.  If we are unable to allocate the release
1654  * message we defer to a work queue.
1655  */
1656 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1657 {
1658         void *old;
1659         struct sk_buff *skb;
1660         struct adapter *adap = container_of(t, struct adapter, tids);
1661
1662         old = t->tid_tab[tid];
1663         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1664         if (likely(skb)) {
1665                 t->tid_tab[tid] = NULL;
1666                 mk_tid_release(skb, chan, tid);
1667                 t4_ofld_send(adap, skb);
1668         } else
1669                 cxgb4_queue_tid_release(t, chan, tid);
1670         if (old)
1671                 atomic_dec(&t->tids_in_use);
1672 }
1673 EXPORT_SYMBOL(cxgb4_remove_tid);
1674
1675 /*
1676  * Allocate and initialize the TID tables.  Returns 0 on success.
1677  */
1678 static int tid_init(struct tid_info *t)
1679 {
1680         size_t size;
1681         unsigned int stid_bmap_size;
1682         unsigned int natids = t->natids;
1683         struct adapter *adap = container_of(t, struct adapter, tids);
1684
1685         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1686         size = t->ntids * sizeof(*t->tid_tab) +
1687                natids * sizeof(*t->atid_tab) +
1688                t->nstids * sizeof(*t->stid_tab) +
1689                t->nsftids * sizeof(*t->stid_tab) +
1690                stid_bmap_size * sizeof(long) +
1691                t->nftids * sizeof(*t->ftid_tab) +
1692                t->nsftids * sizeof(*t->ftid_tab);
1693
1694         t->tid_tab = t4_alloc_mem(size);
1695         if (!t->tid_tab)
1696                 return -ENOMEM;
1697
1698         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1699         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1700         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1701         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1702         spin_lock_init(&t->stid_lock);
1703         spin_lock_init(&t->atid_lock);
1704
1705         t->stids_in_use = 0;
1706         t->afree = NULL;
1707         t->atids_in_use = 0;
1708         atomic_set(&t->tids_in_use, 0);
1709
1710         /* Setup the free list for atid_tab and clear the stid bitmap. */
1711         if (natids) {
1712                 while (--natids)
1713                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1714                 t->afree = t->atid_tab;
1715         }
1716         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1717         /* Reserve stid 0 for T4/T5 adapters */
1718         if (!t->stid_base &&
1719             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
1720                 __set_bit(0, t->stid_bmap);
1721
1722         return 0;
1723 }
1724
1725 /**
1726  *      cxgb4_create_server - create an IP server
1727  *      @dev: the device
1728  *      @stid: the server TID
1729  *      @sip: local IP address to bind server to
1730  *      @sport: the server's TCP port
1731  *      @queue: queue to direct messages from this server to
1732  *
1733  *      Create an IP server for the given port and address.
1734  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1735  */
1736 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1737                         __be32 sip, __be16 sport, __be16 vlan,
1738                         unsigned int queue)
1739 {
1740         unsigned int chan;
1741         struct sk_buff *skb;
1742         struct adapter *adap;
1743         struct cpl_pass_open_req *req;
1744         int ret;
1745
1746         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1747         if (!skb)
1748                 return -ENOMEM;
1749
1750         adap = netdev2adap(dev);
1751         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1752         INIT_TP_WR(req, 0);
1753         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1754         req->local_port = sport;
1755         req->peer_port = htons(0);
1756         req->local_ip = sip;
1757         req->peer_ip = htonl(0);
1758         chan = rxq_to_chan(&adap->sge, queue);
1759         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1760         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1761                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1762         ret = t4_mgmt_tx(adap, skb);
1763         return net_xmit_eval(ret);
1764 }
1765 EXPORT_SYMBOL(cxgb4_create_server);
1766
1767 /*      cxgb4_create_server6 - create an IPv6 server
1768  *      @dev: the device
1769  *      @stid: the server TID
1770  *      @sip: local IPv6 address to bind server to
1771  *      @sport: the server's TCP port
1772  *      @queue: queue to direct messages from this server to
1773  *
1774  *      Create an IPv6 server for the given port and address.
1775  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1776  */
1777 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1778                          const struct in6_addr *sip, __be16 sport,
1779                          unsigned int queue)
1780 {
1781         unsigned int chan;
1782         struct sk_buff *skb;
1783         struct adapter *adap;
1784         struct cpl_pass_open_req6 *req;
1785         int ret;
1786
1787         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1788         if (!skb)
1789                 return -ENOMEM;
1790
1791         adap = netdev2adap(dev);
1792         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1793         INIT_TP_WR(req, 0);
1794         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1795         req->local_port = sport;
1796         req->peer_port = htons(0);
1797         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1798         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1799         req->peer_ip_hi = cpu_to_be64(0);
1800         req->peer_ip_lo = cpu_to_be64(0);
1801         chan = rxq_to_chan(&adap->sge, queue);
1802         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1803         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1804                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1805         ret = t4_mgmt_tx(adap, skb);
1806         return net_xmit_eval(ret);
1807 }
1808 EXPORT_SYMBOL(cxgb4_create_server6);
1809
1810 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1811                         unsigned int queue, bool ipv6)
1812 {
1813         struct sk_buff *skb;
1814         struct adapter *adap;
1815         struct cpl_close_listsvr_req *req;
1816         int ret;
1817
1818         adap = netdev2adap(dev);
1819
1820         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1821         if (!skb)
1822                 return -ENOMEM;
1823
1824         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1825         INIT_TP_WR(req, 0);
1826         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1827         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1828                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1829         ret = t4_mgmt_tx(adap, skb);
1830         return net_xmit_eval(ret);
1831 }
1832 EXPORT_SYMBOL(cxgb4_remove_server);
1833
1834 /**
1835  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1836  *      @mtus: the HW MTU table
1837  *      @mtu: the target MTU
1838  *      @idx: index of selected entry in the MTU table
1839  *
1840  *      Returns the index and the value in the HW MTU table that is closest to
1841  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1842  *      table, in which case that smallest available value is selected.
1843  */
1844 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1845                             unsigned int *idx)
1846 {
1847         unsigned int i = 0;
1848
1849         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1850                 ++i;
1851         if (idx)
1852                 *idx = i;
1853         return mtus[i];
1854 }
1855 EXPORT_SYMBOL(cxgb4_best_mtu);
1856
1857 /**
1858  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1859  *     @mtus: the HW MTU table
1860  *     @header_size: Header Size
1861  *     @data_size_max: maximum Data Segment Size
1862  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1863  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1864  *
1865  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1866  *     MTU Table based solely on a Maximum MTU parameter, we break that
1867  *     parameter up into a Header Size and Maximum Data Segment Size, and
1868  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1869  *     the Hardware MTU Table which will result in a Data Segment Size with
1870  *     the requested alignment _and_ that MTU isn't "too far" from the
1871  *     closest MTU, then we'll return that rather than the closest MTU.
1872  */
1873 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1874                                     unsigned short header_size,
1875                                     unsigned short data_size_max,
1876                                     unsigned short data_size_align,
1877                                     unsigned int *mtu_idxp)
1878 {
1879         unsigned short max_mtu = header_size + data_size_max;
1880         unsigned short data_size_align_mask = data_size_align - 1;
1881         int mtu_idx, aligned_mtu_idx;
1882
1883         /* Scan the MTU Table till we find an MTU which is larger than our
1884          * Maximum MTU or we reach the end of the table.  Along the way,
1885          * record the last MTU found, if any, which will result in a Data
1886          * Segment Length matching the requested alignment.
1887          */
1888         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1889                 unsigned short data_size = mtus[mtu_idx] - header_size;
1890
1891                 /* If this MTU minus the Header Size would result in a
1892                  * Data Segment Size of the desired alignment, remember it.
1893                  */
1894                 if ((data_size & data_size_align_mask) == 0)
1895                         aligned_mtu_idx = mtu_idx;
1896
1897                 /* If we're not at the end of the Hardware MTU Table and the
1898                  * next element is larger than our Maximum MTU, drop out of
1899                  * the loop.
1900                  */
1901                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1902                         break;
1903         }
1904
1905         /* If we fell out of the loop because we ran to the end of the table,
1906          * then we just have to use the last [largest] entry.
1907          */
1908         if (mtu_idx == NMTUS)
1909                 mtu_idx--;
1910
1911         /* If we found an MTU which resulted in the requested Data Segment
1912          * Length alignment and that's "not far" from the largest MTU which is
1913          * less than or equal to the maximum MTU, then use that.
1914          */
1915         if (aligned_mtu_idx >= 0 &&
1916             mtu_idx - aligned_mtu_idx <= 1)
1917                 mtu_idx = aligned_mtu_idx;
1918
1919         /* If the caller has passed in an MTU Index pointer, pass the
1920          * MTU Index back.  Return the MTU value.
1921          */
1922         if (mtu_idxp)
1923                 *mtu_idxp = mtu_idx;
1924         return mtus[mtu_idx];
1925 }
1926 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1927
1928 /**
1929  *      cxgb4_port_chan - get the HW channel of a port
1930  *      @dev: the net device for the port
1931  *
1932  *      Return the HW Tx channel of the given port.
1933  */
1934 unsigned int cxgb4_port_chan(const struct net_device *dev)
1935 {
1936         return netdev2pinfo(dev)->tx_chan;
1937 }
1938 EXPORT_SYMBOL(cxgb4_port_chan);
1939
1940 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1941 {
1942         struct adapter *adap = netdev2adap(dev);
1943         u32 v1, v2, lp_count, hp_count;
1944
1945         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1946         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1947         if (is_t4(adap->params.chip)) {
1948                 lp_count = LP_COUNT_G(v1);
1949                 hp_count = HP_COUNT_G(v1);
1950         } else {
1951                 lp_count = LP_COUNT_T5_G(v1);
1952                 hp_count = HP_COUNT_T5_G(v2);
1953         }
1954         return lpfifo ? lp_count : hp_count;
1955 }
1956 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1957
1958 /**
1959  *      cxgb4_port_viid - get the VI id of a port
1960  *      @dev: the net device for the port
1961  *
1962  *      Return the VI id of the given port.
1963  */
1964 unsigned int cxgb4_port_viid(const struct net_device *dev)
1965 {
1966         return netdev2pinfo(dev)->viid;
1967 }
1968 EXPORT_SYMBOL(cxgb4_port_viid);
1969
1970 /**
1971  *      cxgb4_port_idx - get the index of a port
1972  *      @dev: the net device for the port
1973  *
1974  *      Return the index of the given port.
1975  */
1976 unsigned int cxgb4_port_idx(const struct net_device *dev)
1977 {
1978         return netdev2pinfo(dev)->port_id;
1979 }
1980 EXPORT_SYMBOL(cxgb4_port_idx);
1981
1982 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1983                          struct tp_tcp_stats *v6)
1984 {
1985         struct adapter *adap = pci_get_drvdata(pdev);
1986
1987         spin_lock(&adap->stats_lock);
1988         t4_tp_get_tcp_stats(adap, v4, v6);
1989         spin_unlock(&adap->stats_lock);
1990 }
1991 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1992
1993 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1994                       const unsigned int *pgsz_order)
1995 {
1996         struct adapter *adap = netdev2adap(dev);
1997
1998         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1999         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2000                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2001                      HPZ3_V(pgsz_order[3]));
2002 }
2003 EXPORT_SYMBOL(cxgb4_iscsi_init);
2004
2005 int cxgb4_flush_eq_cache(struct net_device *dev)
2006 {
2007         struct adapter *adap = netdev2adap(dev);
2008         int ret;
2009
2010         ret = t4_fwaddrspace_write(adap, adap->mbox,
2011                                    0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
2012         return ret;
2013 }
2014 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2015
2016 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2017 {
2018         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2019         __be64 indices;
2020         int ret;
2021
2022         spin_lock(&adap->win0_lock);
2023         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2024                            sizeof(indices), (__be32 *)&indices,
2025                            T4_MEMORY_READ);
2026         spin_unlock(&adap->win0_lock);
2027         if (!ret) {
2028                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2029                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2030         }
2031         return ret;
2032 }
2033
2034 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2035                         u16 size)
2036 {
2037         struct adapter *adap = netdev2adap(dev);
2038         u16 hw_pidx, hw_cidx;
2039         int ret;
2040
2041         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2042         if (ret)
2043                 goto out;
2044
2045         if (pidx != hw_pidx) {
2046                 u16 delta;
2047                 u32 val;
2048
2049                 if (pidx >= hw_pidx)
2050                         delta = pidx - hw_pidx;
2051                 else
2052                         delta = size - hw_pidx + pidx;
2053
2054                 if (is_t4(adap->params.chip))
2055                         val = PIDX_V(delta);
2056                 else
2057                         val = PIDX_T5_V(delta);
2058                 wmb();
2059                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2060                              QID_V(qid) | val);
2061         }
2062 out:
2063         return ret;
2064 }
2065 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2066
2067 void cxgb4_disable_db_coalescing(struct net_device *dev)
2068 {
2069         struct adapter *adap;
2070
2071         adap = netdev2adap(dev);
2072         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
2073                          NOCOALESCE_F);
2074 }
2075 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
2076
2077 void cxgb4_enable_db_coalescing(struct net_device *dev)
2078 {
2079         struct adapter *adap;
2080
2081         adap = netdev2adap(dev);
2082         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
2083 }
2084 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
2085
2086 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2087 {
2088         struct adapter *adap;
2089         u32 offset, memtype, memaddr;
2090         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2091         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2092         int ret;
2093
2094         adap = netdev2adap(dev);
2095
2096         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2097
2098         /* Figure out where the offset lands in the Memory Type/Address scheme.
2099          * This code assumes that the memory is laid out starting at offset 0
2100          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2101          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2102          * MC0, and some have both MC0 and MC1.
2103          */
2104         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2105         edc0_size = EDRAM0_SIZE_G(size) << 20;
2106         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2107         edc1_size = EDRAM1_SIZE_G(size) << 20;
2108         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2109         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2110
2111         edc0_end = edc0_size;
2112         edc1_end = edc0_end + edc1_size;
2113         mc0_end = edc1_end + mc0_size;
2114
2115         if (offset < edc0_end) {
2116                 memtype = MEM_EDC0;
2117                 memaddr = offset;
2118         } else if (offset < edc1_end) {
2119                 memtype = MEM_EDC1;
2120                 memaddr = offset - edc0_end;
2121         } else {
2122                 if (offset < mc0_end) {
2123                         memtype = MEM_MC0;
2124                         memaddr = offset - edc1_end;
2125                 } else if (is_t4(adap->params.chip)) {
2126                         /* T4 only has a single memory channel */
2127                         goto err;
2128                 } else {
2129                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2130                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2131                         mc1_end = mc0_end + mc1_size;
2132                         if (offset < mc1_end) {
2133                                 memtype = MEM_MC1;
2134                                 memaddr = offset - mc0_end;
2135                         } else {
2136                                 /* offset beyond the end of any memory */
2137                                 goto err;
2138                         }
2139                 }
2140         }
2141
2142         spin_lock(&adap->win0_lock);
2143         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2144         spin_unlock(&adap->win0_lock);
2145         return ret;
2146
2147 err:
2148         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2149                 stag, offset);
2150         return -EINVAL;
2151 }
2152 EXPORT_SYMBOL(cxgb4_read_tpte);
2153
2154 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2155 {
2156         u32 hi, lo;
2157         struct adapter *adap;
2158
2159         adap = netdev2adap(dev);
2160         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2161         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2162
2163         return ((u64)hi << 32) | (u64)lo;
2164 }
2165 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2166
2167 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2168                          unsigned int qid,
2169                          enum cxgb4_bar2_qtype qtype,
2170                          u64 *pbar2_qoffset,
2171                          unsigned int *pbar2_qid)
2172 {
2173         return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
2174                                  qid,
2175                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2176                                   ? T4_BAR2_QTYPE_EGRESS
2177                                   : T4_BAR2_QTYPE_INGRESS),
2178                                  pbar2_qoffset,
2179                                  pbar2_qid);
2180 }
2181 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2182
2183 static struct pci_driver cxgb4_driver;
2184
2185 static void check_neigh_update(struct neighbour *neigh)
2186 {
2187         const struct device *parent;
2188         const struct net_device *netdev = neigh->dev;
2189
2190         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2191                 netdev = vlan_dev_real_dev(netdev);
2192         parent = netdev->dev.parent;
2193         if (parent && parent->driver == &cxgb4_driver.driver)
2194                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2195 }
2196
2197 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2198                        void *data)
2199 {
2200         switch (event) {
2201         case NETEVENT_NEIGH_UPDATE:
2202                 check_neigh_update(data);
2203                 break;
2204         case NETEVENT_REDIRECT:
2205         default:
2206                 break;
2207         }
2208         return 0;
2209 }
2210
2211 static bool netevent_registered;
2212 static struct notifier_block cxgb4_netevent_nb = {
2213         .notifier_call = netevent_cb
2214 };
2215
2216 static void drain_db_fifo(struct adapter *adap, int usecs)
2217 {
2218         u32 v1, v2, lp_count, hp_count;
2219
2220         do {
2221                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2222                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2223                 if (is_t4(adap->params.chip)) {
2224                         lp_count = LP_COUNT_G(v1);
2225                         hp_count = HP_COUNT_G(v1);
2226                 } else {
2227                         lp_count = LP_COUNT_T5_G(v1);
2228                         hp_count = HP_COUNT_T5_G(v2);
2229                 }
2230
2231                 if (lp_count == 0 && hp_count == 0)
2232                         break;
2233                 set_current_state(TASK_UNINTERRUPTIBLE);
2234                 schedule_timeout(usecs_to_jiffies(usecs));
2235         } while (1);
2236 }
2237
2238 static void disable_txq_db(struct sge_txq *q)
2239 {
2240         unsigned long flags;
2241
2242         spin_lock_irqsave(&q->db_lock, flags);
2243         q->db_disabled = 1;
2244         spin_unlock_irqrestore(&q->db_lock, flags);
2245 }
2246
2247 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2248 {
2249         spin_lock_irq(&q->db_lock);
2250         if (q->db_pidx_inc) {
2251                 /* Make sure that all writes to the TX descriptors
2252                  * are committed before we tell HW about them.
2253                  */
2254                 wmb();
2255                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2256                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2257                 q->db_pidx_inc = 0;
2258         }
2259         q->db_disabled = 0;
2260         spin_unlock_irq(&q->db_lock);
2261 }
2262
2263 static void disable_dbs(struct adapter *adap)
2264 {
2265         int i;
2266
2267         for_each_ethrxq(&adap->sge, i)
2268                 disable_txq_db(&adap->sge.ethtxq[i].q);
2269         for_each_ofldrxq(&adap->sge, i)
2270                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2271         for_each_port(adap, i)
2272                 disable_txq_db(&adap->sge.ctrlq[i].q);
2273 }
2274
2275 static void enable_dbs(struct adapter *adap)
2276 {
2277         int i;
2278
2279         for_each_ethrxq(&adap->sge, i)
2280                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2281         for_each_ofldrxq(&adap->sge, i)
2282                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2283         for_each_port(adap, i)
2284                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2285 }
2286
2287 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2288 {
2289         if (adap->uld_handle[CXGB4_ULD_RDMA])
2290                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2291                                 cmd);
2292 }
2293
2294 static void process_db_full(struct work_struct *work)
2295 {
2296         struct adapter *adap;
2297
2298         adap = container_of(work, struct adapter, db_full_task);
2299
2300         drain_db_fifo(adap, dbfifo_drain_delay);
2301         enable_dbs(adap);
2302         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2303         t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2304                          DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2305                          DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2306 }
2307
2308 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2309 {
2310         u16 hw_pidx, hw_cidx;
2311         int ret;
2312
2313         spin_lock_irq(&q->db_lock);
2314         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2315         if (ret)
2316                 goto out;
2317         if (q->db_pidx != hw_pidx) {
2318                 u16 delta;
2319                 u32 val;
2320
2321                 if (q->db_pidx >= hw_pidx)
2322                         delta = q->db_pidx - hw_pidx;
2323                 else
2324                         delta = q->size - hw_pidx + q->db_pidx;
2325
2326                 if (is_t4(adap->params.chip))
2327                         val = PIDX_V(delta);
2328                 else
2329                         val = PIDX_T5_V(delta);
2330                 wmb();
2331                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2332                              QID_V(q->cntxt_id) | val);
2333         }
2334 out:
2335         q->db_disabled = 0;
2336         q->db_pidx_inc = 0;
2337         spin_unlock_irq(&q->db_lock);
2338         if (ret)
2339                 CH_WARN(adap, "DB drop recovery failed.\n");
2340 }
2341 static void recover_all_queues(struct adapter *adap)
2342 {
2343         int i;
2344
2345         for_each_ethrxq(&adap->sge, i)
2346                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2347         for_each_ofldrxq(&adap->sge, i)
2348                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2349         for_each_port(adap, i)
2350                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2351 }
2352
2353 static void process_db_drop(struct work_struct *work)
2354 {
2355         struct adapter *adap;
2356
2357         adap = container_of(work, struct adapter, db_drop_task);
2358
2359         if (is_t4(adap->params.chip)) {
2360                 drain_db_fifo(adap, dbfifo_drain_delay);
2361                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2362                 drain_db_fifo(adap, dbfifo_drain_delay);
2363                 recover_all_queues(adap);
2364                 drain_db_fifo(adap, dbfifo_drain_delay);
2365                 enable_dbs(adap);
2366                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2367         } else {
2368                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2369                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2370                 u16 pidx_inc = dropped_db & 0x1fff;
2371                 u64 bar2_qoffset;
2372                 unsigned int bar2_qid;
2373                 int ret;
2374
2375                 ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2376                                         &bar2_qoffset, &bar2_qid);
2377                 if (ret)
2378                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2379                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2380                 else
2381                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2382                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2383
2384                 /* Re-enable BAR2 WC */
2385                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2386         }
2387
2388         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2389 }
2390
2391 void t4_db_full(struct adapter *adap)
2392 {
2393         if (is_t4(adap->params.chip)) {
2394                 disable_dbs(adap);
2395                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2396                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2397                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2398                 queue_work(adap->workq, &adap->db_full_task);
2399         }
2400 }
2401
2402 void t4_db_dropped(struct adapter *adap)
2403 {
2404         if (is_t4(adap->params.chip)) {
2405                 disable_dbs(adap);
2406                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2407         }
2408         queue_work(adap->workq, &adap->db_drop_task);
2409 }
2410
2411 static void uld_attach(struct adapter *adap, unsigned int uld)
2412 {
2413         void *handle;
2414         struct cxgb4_lld_info lli;
2415         unsigned short i;
2416
2417         lli.pdev = adap->pdev;
2418         lli.pf = adap->fn;
2419         lli.l2t = adap->l2t;
2420         lli.tids = &adap->tids;
2421         lli.ports = adap->port;
2422         lli.vr = &adap->vres;
2423         lli.mtus = adap->params.mtus;
2424         if (uld == CXGB4_ULD_RDMA) {
2425                 lli.rxq_ids = adap->sge.rdma_rxq;
2426                 lli.ciq_ids = adap->sge.rdma_ciq;
2427                 lli.nrxq = adap->sge.rdmaqs;
2428                 lli.nciq = adap->sge.rdmaciqs;
2429         } else if (uld == CXGB4_ULD_ISCSI) {
2430                 lli.rxq_ids = adap->sge.ofld_rxq;
2431                 lli.nrxq = adap->sge.ofldqsets;
2432         }
2433         lli.ntxq = adap->sge.ofldqsets;
2434         lli.nchan = adap->params.nports;
2435         lli.nports = adap->params.nports;
2436         lli.wr_cred = adap->params.ofldq_wr_cred;
2437         lli.adapter_type = adap->params.chip;
2438         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2439         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2440         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2441         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2442         lli.filt_mode = adap->params.tp.vlan_pri_map;
2443         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2444         for (i = 0; i < NCHAN; i++)
2445                 lli.tx_modq[i] = i;
2446         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2447         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2448         lli.fw_vers = adap->params.fw_vers;
2449         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2450         lli.sge_ingpadboundary = adap->sge.fl_align;
2451         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2452         lli.sge_pktshift = adap->sge.pktshift;
2453         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2454         lli.max_ordird_qp = adap->params.max_ordird_qp;
2455         lli.max_ird_adapter = adap->params.max_ird_adapter;
2456         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2457         lli.nodeid = dev_to_node(adap->pdev_dev);
2458
2459         handle = ulds[uld].add(&lli);
2460         if (IS_ERR(handle)) {
2461                 dev_warn(adap->pdev_dev,
2462                          "could not attach to the %s driver, error %ld\n",
2463                          uld_str[uld], PTR_ERR(handle));
2464                 return;
2465         }
2466
2467         adap->uld_handle[uld] = handle;
2468
2469         if (!netevent_registered) {
2470                 register_netevent_notifier(&cxgb4_netevent_nb);
2471                 netevent_registered = true;
2472         }
2473
2474         if (adap->flags & FULL_INIT_DONE)
2475                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2476 }
2477
2478 static void attach_ulds(struct adapter *adap)
2479 {
2480         unsigned int i;
2481
2482         spin_lock(&adap_rcu_lock);
2483         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2484         spin_unlock(&adap_rcu_lock);
2485
2486         mutex_lock(&uld_mutex);
2487         list_add_tail(&adap->list_node, &adapter_list);
2488         for (i = 0; i < CXGB4_ULD_MAX; i++)
2489                 if (ulds[i].add)
2490                         uld_attach(adap, i);
2491         mutex_unlock(&uld_mutex);
2492 }
2493
2494 static void detach_ulds(struct adapter *adap)
2495 {
2496         unsigned int i;
2497
2498         mutex_lock(&uld_mutex);
2499         list_del(&adap->list_node);
2500         for (i = 0; i < CXGB4_ULD_MAX; i++)
2501                 if (adap->uld_handle[i]) {
2502                         ulds[i].state_change(adap->uld_handle[i],
2503                                              CXGB4_STATE_DETACH);
2504                         adap->uld_handle[i] = NULL;
2505                 }
2506         if (netevent_registered && list_empty(&adapter_list)) {
2507                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2508                 netevent_registered = false;
2509         }
2510         mutex_unlock(&uld_mutex);
2511
2512         spin_lock(&adap_rcu_lock);
2513         list_del_rcu(&adap->rcu_node);
2514         spin_unlock(&adap_rcu_lock);
2515 }
2516
2517 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2518 {
2519         unsigned int i;
2520
2521         mutex_lock(&uld_mutex);
2522         for (i = 0; i < CXGB4_ULD_MAX; i++)
2523                 if (adap->uld_handle[i])
2524                         ulds[i].state_change(adap->uld_handle[i], new_state);
2525         mutex_unlock(&uld_mutex);
2526 }
2527
2528 /**
2529  *      cxgb4_register_uld - register an upper-layer driver
2530  *      @type: the ULD type
2531  *      @p: the ULD methods
2532  *
2533  *      Registers an upper-layer driver with this driver and notifies the ULD
2534  *      about any presently available devices that support its type.  Returns
2535  *      %-EBUSY if a ULD of the same type is already registered.
2536  */
2537 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2538 {
2539         int ret = 0;
2540         struct adapter *adap;
2541
2542         if (type >= CXGB4_ULD_MAX)
2543                 return -EINVAL;
2544         mutex_lock(&uld_mutex);
2545         if (ulds[type].add) {
2546                 ret = -EBUSY;
2547                 goto out;
2548         }
2549         ulds[type] = *p;
2550         list_for_each_entry(adap, &adapter_list, list_node)
2551                 uld_attach(adap, type);
2552 out:    mutex_unlock(&uld_mutex);
2553         return ret;
2554 }
2555 EXPORT_SYMBOL(cxgb4_register_uld);
2556
2557 /**
2558  *      cxgb4_unregister_uld - unregister an upper-layer driver
2559  *      @type: the ULD type
2560  *
2561  *      Unregisters an existing upper-layer driver.
2562  */
2563 int cxgb4_unregister_uld(enum cxgb4_uld type)
2564 {
2565         struct adapter *adap;
2566
2567         if (type >= CXGB4_ULD_MAX)
2568                 return -EINVAL;
2569         mutex_lock(&uld_mutex);
2570         list_for_each_entry(adap, &adapter_list, list_node)
2571                 adap->uld_handle[type] = NULL;
2572         ulds[type].add = NULL;
2573         mutex_unlock(&uld_mutex);
2574         return 0;
2575 }
2576 EXPORT_SYMBOL(cxgb4_unregister_uld);
2577
2578 #if IS_ENABLED(CONFIG_IPV6)
2579 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2580                                    unsigned long event, void *data)
2581 {
2582         struct inet6_ifaddr *ifa = data;
2583         struct net_device *event_dev = ifa->idev->dev;
2584         const struct device *parent = NULL;
2585 #if IS_ENABLED(CONFIG_BONDING)
2586         struct adapter *adap;
2587 #endif
2588         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2589                 event_dev = vlan_dev_real_dev(event_dev);
2590 #if IS_ENABLED(CONFIG_BONDING)
2591         if (event_dev->flags & IFF_MASTER) {
2592                 list_for_each_entry(adap, &adapter_list, list_node) {
2593                         switch (event) {
2594                         case NETDEV_UP:
2595                                 cxgb4_clip_get(adap->port[0],
2596                                                (const u32 *)ifa, 1);
2597                                 break;
2598                         case NETDEV_DOWN:
2599                                 cxgb4_clip_release(adap->port[0],
2600                                                    (const u32 *)ifa, 1);
2601                                 break;
2602                         default:
2603                                 break;
2604                         }
2605                 }
2606                 return NOTIFY_OK;
2607         }
2608 #endif
2609
2610         if (event_dev)
2611                 parent = event_dev->dev.parent;
2612
2613         if (parent && parent->driver == &cxgb4_driver.driver) {
2614                 switch (event) {
2615                 case NETDEV_UP:
2616                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2617                         break;
2618                 case NETDEV_DOWN:
2619                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2620                         break;
2621                 default:
2622                         break;
2623                 }
2624         }
2625         return NOTIFY_OK;
2626 }
2627
2628 static bool inet6addr_registered;
2629 static struct notifier_block cxgb4_inet6addr_notifier = {
2630         .notifier_call = cxgb4_inet6addr_handler
2631 };
2632
2633 static void update_clip(const struct adapter *adap)
2634 {
2635         int i;
2636         struct net_device *dev;
2637         int ret;
2638
2639         rcu_read_lock();
2640
2641         for (i = 0; i < MAX_NPORTS; i++) {
2642                 dev = adap->port[i];
2643                 ret = 0;
2644
2645                 if (dev)
2646                         ret = cxgb4_update_root_dev_clip(dev);
2647
2648                 if (ret < 0)
2649                         break;
2650         }
2651         rcu_read_unlock();
2652 }
2653 #endif /* IS_ENABLED(CONFIG_IPV6) */
2654
2655 /**
2656  *      cxgb_up - enable the adapter
2657  *      @adap: adapter being enabled
2658  *
2659  *      Called when the first port is enabled, this function performs the
2660  *      actions necessary to make an adapter operational, such as completing
2661  *      the initialization of HW modules, and enabling interrupts.
2662  *
2663  *      Must be called with the rtnl lock held.
2664  */
2665 static int cxgb_up(struct adapter *adap)
2666 {
2667         int err;
2668
2669         err = setup_sge_queues(adap);
2670         if (err)
2671                 goto out;
2672         err = setup_rss(adap);
2673         if (err)
2674                 goto freeq;
2675
2676         if (adap->flags & USING_MSIX) {
2677                 name_msix_vecs(adap);
2678                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2679                                   adap->msix_info[0].desc, adap);
2680                 if (err)
2681                         goto irq_err;
2682
2683                 err = request_msix_queue_irqs(adap);
2684                 if (err) {
2685                         free_irq(adap->msix_info[0].vec, adap);
2686                         goto irq_err;
2687                 }
2688         } else {
2689                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2690                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2691                                   adap->port[0]->name, adap);
2692                 if (err)
2693                         goto irq_err;
2694         }
2695         enable_rx(adap);
2696         t4_sge_start(adap);
2697         t4_intr_enable(adap);
2698         adap->flags |= FULL_INIT_DONE;
2699         notify_ulds(adap, CXGB4_STATE_UP);
2700 #if IS_ENABLED(CONFIG_IPV6)
2701         update_clip(adap);
2702 #endif
2703  out:
2704         return err;
2705  irq_err:
2706         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2707  freeq:
2708         t4_free_sge_resources(adap);
2709         goto out;
2710 }
2711
2712 static void cxgb_down(struct adapter *adapter)
2713 {
2714         cancel_work_sync(&adapter->tid_release_task);
2715         cancel_work_sync(&adapter->db_full_task);
2716         cancel_work_sync(&adapter->db_drop_task);
2717         adapter->tid_release_task_busy = false;
2718         adapter->tid_release_head = NULL;
2719
2720         t4_sge_stop(adapter);
2721         t4_free_sge_resources(adapter);
2722         adapter->flags &= ~FULL_INIT_DONE;
2723 }
2724
2725 /*
2726  * net_device operations
2727  */
2728 static int cxgb_open(struct net_device *dev)
2729 {
2730         int err;
2731         struct port_info *pi = netdev_priv(dev);
2732         struct adapter *adapter = pi->adapter;
2733
2734         netif_carrier_off(dev);
2735
2736         if (!(adapter->flags & FULL_INIT_DONE)) {
2737                 err = cxgb_up(adapter);
2738                 if (err < 0)
2739                         return err;
2740         }
2741
2742         err = link_start(dev);
2743         if (!err)
2744                 netif_tx_start_all_queues(dev);
2745         return err;
2746 }
2747
2748 static int cxgb_close(struct net_device *dev)
2749 {
2750         struct port_info *pi = netdev_priv(dev);
2751         struct adapter *adapter = pi->adapter;
2752
2753         netif_tx_stop_all_queues(dev);
2754         netif_carrier_off(dev);
2755         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2756 }
2757
2758 /* Return an error number if the indicated filter isn't writable ...
2759  */
2760 static int writable_filter(struct filter_entry *f)
2761 {
2762         if (f->locked)
2763                 return -EPERM;
2764         if (f->pending)
2765                 return -EBUSY;
2766
2767         return 0;
2768 }
2769
2770 /* Delete the filter at the specified index (if valid).  The checks for all
2771  * the common problems with doing this like the filter being locked, currently
2772  * pending in another operation, etc.
2773  */
2774 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2775 {
2776         struct filter_entry *f;
2777         int ret;
2778
2779         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2780                 return -EINVAL;
2781
2782         f = &adapter->tids.ftid_tab[fidx];
2783         ret = writable_filter(f);
2784         if (ret)
2785                 return ret;
2786         if (f->valid)
2787                 return del_filter_wr(adapter, fidx);
2788
2789         return 0;
2790 }
2791
2792 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2793                 __be32 sip, __be16 sport, __be16 vlan,
2794                 unsigned int queue, unsigned char port, unsigned char mask)
2795 {
2796         int ret;
2797         struct filter_entry *f;
2798         struct adapter *adap;
2799         int i;
2800         u8 *val;
2801
2802         adap = netdev2adap(dev);
2803
2804         /* Adjust stid to correct filter index */
2805         stid -= adap->tids.sftid_base;
2806         stid += adap->tids.nftids;
2807
2808         /* Check to make sure the filter requested is writable ...
2809          */
2810         f = &adap->tids.ftid_tab[stid];
2811         ret = writable_filter(f);
2812         if (ret)
2813                 return ret;
2814
2815         /* Clear out any old resources being used by the filter before
2816          * we start constructing the new filter.
2817          */
2818         if (f->valid)
2819                 clear_filter(adap, f);
2820
2821         /* Clear out filter specifications */
2822         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2823         f->fs.val.lport = cpu_to_be16(sport);
2824         f->fs.mask.lport  = ~0;
2825         val = (u8 *)&sip;
2826         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2827                 for (i = 0; i < 4; i++) {
2828                         f->fs.val.lip[i] = val[i];
2829                         f->fs.mask.lip[i] = ~0;
2830                 }
2831                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2832                         f->fs.val.iport = port;
2833                         f->fs.mask.iport = mask;
2834                 }
2835         }
2836
2837         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2838                 f->fs.val.proto = IPPROTO_TCP;
2839                 f->fs.mask.proto = ~0;
2840         }
2841
2842         f->fs.dirsteer = 1;
2843         f->fs.iq = queue;
2844         /* Mark filter as locked */
2845         f->locked = 1;
2846         f->fs.rpttid = 1;
2847
2848         ret = set_filter_wr(adap, stid);
2849         if (ret) {
2850                 clear_filter(adap, f);
2851                 return ret;
2852         }
2853
2854         return 0;
2855 }
2856 EXPORT_SYMBOL(cxgb4_create_server_filter);
2857
2858 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2859                 unsigned int queue, bool ipv6)
2860 {
2861         int ret;
2862         struct filter_entry *f;
2863         struct adapter *adap;
2864
2865         adap = netdev2adap(dev);
2866
2867         /* Adjust stid to correct filter index */
2868         stid -= adap->tids.sftid_base;
2869         stid += adap->tids.nftids;
2870
2871         f = &adap->tids.ftid_tab[stid];
2872         /* Unlock the filter */
2873         f->locked = 0;
2874
2875         ret = delete_filter(adap, stid);
2876         if (ret)
2877                 return ret;
2878
2879         return 0;
2880 }
2881 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2882
2883 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2884                                                 struct rtnl_link_stats64 *ns)
2885 {
2886         struct port_stats stats;
2887         struct port_info *p = netdev_priv(dev);
2888         struct adapter *adapter = p->adapter;
2889
2890         /* Block retrieving statistics during EEH error
2891          * recovery. Otherwise, the recovery might fail
2892          * and the PCI device will be removed permanently
2893          */
2894         spin_lock(&adapter->stats_lock);
2895         if (!netif_device_present(dev)) {
2896                 spin_unlock(&adapter->stats_lock);
2897                 return ns;
2898         }
2899         t4_get_port_stats(adapter, p->tx_chan, &stats);
2900         spin_unlock(&adapter->stats_lock);
2901
2902         ns->tx_bytes   = stats.tx_octets;
2903         ns->tx_packets = stats.tx_frames;
2904         ns->rx_bytes   = stats.rx_octets;
2905         ns->rx_packets = stats.rx_frames;
2906         ns->multicast  = stats.rx_mcast_frames;
2907
2908         /* detailed rx_errors */
2909         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2910                                stats.rx_runt;
2911         ns->rx_over_errors   = 0;
2912         ns->rx_crc_errors    = stats.rx_fcs_err;
2913         ns->rx_frame_errors  = stats.rx_symbol_err;
2914         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2915                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2916                                stats.rx_trunc0 + stats.rx_trunc1 +
2917                                stats.rx_trunc2 + stats.rx_trunc3;
2918         ns->rx_missed_errors = 0;
2919
2920         /* detailed tx_errors */
2921         ns->tx_aborted_errors   = 0;
2922         ns->tx_carrier_errors   = 0;
2923         ns->tx_fifo_errors      = 0;
2924         ns->tx_heartbeat_errors = 0;
2925         ns->tx_window_errors    = 0;
2926
2927         ns->tx_errors = stats.tx_error_frames;
2928         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2929                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2930         return ns;
2931 }
2932
2933 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2934 {
2935         unsigned int mbox;
2936         int ret = 0, prtad, devad;
2937         struct port_info *pi = netdev_priv(dev);
2938         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2939
2940         switch (cmd) {
2941         case SIOCGMIIPHY:
2942                 if (pi->mdio_addr < 0)
2943                         return -EOPNOTSUPP;
2944                 data->phy_id = pi->mdio_addr;
2945                 break;
2946         case SIOCGMIIREG:
2947         case SIOCSMIIREG:
2948                 if (mdio_phy_id_is_c45(data->phy_id)) {
2949                         prtad = mdio_phy_id_prtad(data->phy_id);
2950                         devad = mdio_phy_id_devad(data->phy_id);
2951                 } else if (data->phy_id < 32) {
2952                         prtad = data->phy_id;
2953                         devad = 0;
2954                         data->reg_num &= 0x1f;
2955                 } else
2956                         return -EINVAL;
2957
2958                 mbox = pi->adapter->fn;
2959                 if (cmd == SIOCGMIIREG)
2960                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2961                                          data->reg_num, &data->val_out);
2962                 else
2963                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2964                                          data->reg_num, data->val_in);
2965                 break;
2966         default:
2967                 return -EOPNOTSUPP;
2968         }
2969         return ret;
2970 }
2971
2972 static void cxgb_set_rxmode(struct net_device *dev)
2973 {
2974         /* unfortunately we can't return errors to the stack */
2975         set_rxmode(dev, -1, false);
2976 }
2977
2978 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2979 {
2980         int ret;
2981         struct port_info *pi = netdev_priv(dev);
2982
2983         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2984                 return -EINVAL;
2985         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2986                             -1, -1, -1, true);
2987         if (!ret)
2988                 dev->mtu = new_mtu;
2989         return ret;
2990 }
2991
2992 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2993 {
2994         int ret;
2995         struct sockaddr *addr = p;
2996         struct port_info *pi = netdev_priv(dev);
2997
2998         if (!is_valid_ether_addr(addr->sa_data))
2999                 return -EADDRNOTAVAIL;
3000
3001         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
3002                             pi->xact_addr_filt, addr->sa_data, true, true);
3003         if (ret < 0)
3004                 return ret;
3005
3006         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3007         pi->xact_addr_filt = ret;
3008         return 0;
3009 }
3010
3011 #ifdef CONFIG_NET_POLL_CONTROLLER
3012 static void cxgb_netpoll(struct net_device *dev)
3013 {
3014         struct port_info *pi = netdev_priv(dev);
3015         struct adapter *adap = pi->adapter;
3016
3017         if (adap->flags & USING_MSIX) {
3018                 int i;
3019                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3020
3021                 for (i = pi->nqsets; i; i--, rx++)
3022                         t4_sge_intr_msix(0, &rx->rspq);
3023         } else
3024                 t4_intr_handler(adap)(0, adap);
3025 }
3026 #endif
3027
3028 static const struct net_device_ops cxgb4_netdev_ops = {
3029         .ndo_open             = cxgb_open,
3030         .ndo_stop             = cxgb_close,
3031         .ndo_start_xmit       = t4_eth_xmit,
3032         .ndo_select_queue     = cxgb_select_queue,
3033         .ndo_get_stats64      = cxgb_get_stats,
3034         .ndo_set_rx_mode      = cxgb_set_rxmode,
3035         .ndo_set_mac_address  = cxgb_set_mac_addr,
3036         .ndo_set_features     = cxgb_set_features,
3037         .ndo_validate_addr    = eth_validate_addr,
3038         .ndo_do_ioctl         = cxgb_ioctl,
3039         .ndo_change_mtu       = cxgb_change_mtu,
3040 #ifdef CONFIG_NET_POLL_CONTROLLER
3041         .ndo_poll_controller  = cxgb_netpoll,
3042 #endif
3043 #ifdef CONFIG_CHELSIO_T4_FCOE
3044         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3045         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3046 #endif /* CONFIG_CHELSIO_T4_FCOE */
3047 #ifdef CONFIG_NET_RX_BUSY_POLL
3048         .ndo_busy_poll        = cxgb_busy_poll,
3049 #endif
3050
3051 };
3052
3053 void t4_fatal_err(struct adapter *adap)
3054 {
3055         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3056         t4_intr_disable(adap);
3057         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3058 }
3059
3060 static void setup_memwin(struct adapter *adap)
3061 {
3062         u32 nic_win_base = t4_get_util_window(adap);
3063
3064         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3065 }
3066
3067 static void setup_memwin_rdma(struct adapter *adap)
3068 {
3069         if (adap->vres.ocq.size) {
3070                 u32 start;
3071                 unsigned int sz_kb;
3072
3073                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3074                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3075                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3076                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3077                 t4_write_reg(adap,
3078                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3079                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3080                 t4_write_reg(adap,
3081                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3082                              adap->vres.ocq.start);
3083                 t4_read_reg(adap,
3084                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3085         }
3086 }
3087
3088 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3089 {
3090         u32 v;
3091         int ret;
3092
3093         /* get device capabilities */
3094         memset(c, 0, sizeof(*c));
3095         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3096                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3097         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3098         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
3099         if (ret < 0)
3100                 return ret;
3101
3102         /* select capabilities we'll be using */
3103         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3104                 if (!vf_acls)
3105                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3106                 else
3107                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3108         } else if (vf_acls) {
3109                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3110                 return ret;
3111         }
3112         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3113                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3114         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
3115         if (ret < 0)
3116                 return ret;
3117
3118         ret = t4_config_glbl_rss(adap, adap->fn,
3119                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3120                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3121                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3122         if (ret < 0)
3123                 return ret;
3124
3125         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
3126                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3127                           FW_CMD_CAP_PF);
3128         if (ret < 0)
3129                 return ret;
3130
3131         t4_sge_init(adap);
3132
3133         /* tweak some settings */
3134         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3135         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3136         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3137         v = t4_read_reg(adap, TP_PIO_DATA_A);
3138         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3139
3140         /* first 4 Tx modulation queues point to consecutive Tx channels */
3141         adap->params.tp.tx_modq_map = 0xE4;
3142         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3143                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3144
3145         /* associate each Tx modulation queue with consecutive Tx channels */
3146         v = 0x84218421;
3147         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3148                           &v, 1, TP_TX_SCHED_HDR_A);
3149         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3150                           &v, 1, TP_TX_SCHED_FIFO_A);
3151         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3152                           &v, 1, TP_TX_SCHED_PCMD_A);
3153
3154 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3155         if (is_offload(adap)) {
3156                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3157                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3158                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3159                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3160                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3161                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3162                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3163                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3164                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3165                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3166         }
3167
3168         /* get basic stuff going */
3169         return t4_early_init(adap, adap->fn);
3170 }
3171
3172 /*
3173  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3174  */
3175 #define MAX_ATIDS 8192U
3176
3177 /*
3178  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3179  *
3180  * If the firmware we're dealing with has Configuration File support, then
3181  * we use that to perform all configuration
3182  */
3183
3184 /*
3185  * Tweak configuration based on module parameters, etc.  Most of these have
3186  * defaults assigned to them by Firmware Configuration Files (if we're using
3187  * them) but need to be explicitly set if we're using hard-coded
3188  * initialization.  But even in the case of using Firmware Configuration
3189  * Files, we'd like to expose the ability to change these via module
3190  * parameters so these are essentially common tweaks/settings for
3191  * Configuration Files and hard-coded initialization ...
3192  */
3193 static int adap_init0_tweaks(struct adapter *adapter)
3194 {
3195         /*
3196          * Fix up various Host-Dependent Parameters like Page Size, Cache
3197          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3198          * 64B Cache Line Size ...
3199          */
3200         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3201
3202         /*
3203          * Process module parameters which affect early initialization.
3204          */
3205         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3206                 dev_err(&adapter->pdev->dev,
3207                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3208                         rx_dma_offset);
3209                 rx_dma_offset = 2;
3210         }
3211         t4_set_reg_field(adapter, SGE_CONTROL_A,
3212                          PKTSHIFT_V(PKTSHIFT_M),
3213                          PKTSHIFT_V(rx_dma_offset));
3214
3215         /*
3216          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3217          * adds the pseudo header itself.
3218          */
3219         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3220                                CSUM_HAS_PSEUDO_HDR_F, 0);
3221
3222         return 0;
3223 }
3224
3225 /*
3226  * Attempt to initialize the adapter via a Firmware Configuration File.
3227  */
3228 static int adap_init0_config(struct adapter *adapter, int reset)
3229 {
3230         struct fw_caps_config_cmd caps_cmd;
3231         const struct firmware *cf;
3232         unsigned long mtype = 0, maddr = 0;
3233         u32 finiver, finicsum, cfcsum;
3234         int ret;
3235         int config_issued = 0;
3236         char *fw_config_file, fw_config_file_path[256];
3237         char *config_name = NULL;
3238
3239         /*
3240          * Reset device if necessary.
3241          */
3242         if (reset) {
3243                 ret = t4_fw_reset(adapter, adapter->mbox,
3244                                   PIORSTMODE_F | PIORST_F);
3245                 if (ret < 0)
3246                         goto bye;
3247         }
3248
3249         /*
3250          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3251          * then use that.  Otherwise, use the configuration file stored
3252          * in the adapter flash ...
3253          */
3254         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3255         case CHELSIO_T4:
3256                 fw_config_file = FW4_CFNAME;
3257                 break;
3258         case CHELSIO_T5:
3259                 fw_config_file = FW5_CFNAME;
3260                 break;
3261         default:
3262                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3263                        adapter->pdev->device);
3264                 ret = -EINVAL;
3265                 goto bye;
3266         }
3267
3268         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3269         if (ret < 0) {
3270                 config_name = "On FLASH";
3271                 mtype = FW_MEMTYPE_CF_FLASH;
3272                 maddr = t4_flash_cfg_addr(adapter);
3273         } else {
3274                 u32 params[7], val[7];
3275
3276                 sprintf(fw_config_file_path,
3277                         "/lib/firmware/%s", fw_config_file);
3278                 config_name = fw_config_file_path;
3279
3280                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3281                         ret = -ENOMEM;
3282                 else {
3283                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3284                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3285                         ret = t4_query_params(adapter, adapter->mbox,
3286                                               adapter->fn, 0, 1, params, val);
3287                         if (ret == 0) {
3288                                 /*
3289                                  * For t4_memory_rw() below addresses and
3290                                  * sizes have to be in terms of multiples of 4
3291                                  * bytes.  So, if the Configuration File isn't
3292                                  * a multiple of 4 bytes in length we'll have
3293                                  * to write that out separately since we can't
3294                                  * guarantee that the bytes following the
3295                                  * residual byte in the buffer returned by
3296                                  * request_firmware() are zeroed out ...
3297                                  */
3298                                 size_t resid = cf->size & 0x3;
3299                                 size_t size = cf->size & ~0x3;
3300                                 __be32 *data = (__be32 *)cf->data;
3301
3302                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3303                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3304
3305                                 spin_lock(&adapter->win0_lock);
3306                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3307                                                    size, data, T4_MEMORY_WRITE);
3308                                 if (ret == 0 && resid != 0) {
3309                                         union {
3310                                                 __be32 word;
3311                                                 char buf[4];
3312                                         } last;
3313                                         int i;
3314
3315                                         last.word = data[size >> 2];
3316                                         for (i = resid; i < 4; i++)
3317                                                 last.buf[i] = 0;
3318                                         ret = t4_memory_rw(adapter, 0, mtype,
3319                                                            maddr + size,
3320                                                            4, &last.word,
3321                                                            T4_MEMORY_WRITE);
3322                                 }
3323                                 spin_unlock(&adapter->win0_lock);
3324                         }
3325                 }
3326
3327                 release_firmware(cf);
3328                 if (ret)
3329                         goto bye;
3330         }
3331
3332         /*
3333          * Issue a Capability Configuration command to the firmware to get it
3334          * to parse the Configuration File.  We don't use t4_fw_config_file()
3335          * because we want the ability to modify various features after we've
3336          * processed the configuration file ...
3337          */
3338         memset(&caps_cmd, 0, sizeof(caps_cmd));
3339         caps_cmd.op_to_write =
3340                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3341                       FW_CMD_REQUEST_F |
3342                       FW_CMD_READ_F);
3343         caps_cmd.cfvalid_to_len16 =
3344                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3345                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3346                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3347                       FW_LEN16(caps_cmd));
3348         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3349                          &caps_cmd);
3350
3351         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3352          * Configuration File in FLASH), our last gasp effort is to use the
3353          * Firmware Configuration File which is embedded in the firmware.  A
3354          * very few early versions of the firmware didn't have one embedded
3355          * but we can ignore those.
3356          */
3357         if (ret == -ENOENT) {
3358                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3359                 caps_cmd.op_to_write =
3360                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3361                                         FW_CMD_REQUEST_F |
3362                                         FW_CMD_READ_F);
3363                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3364                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3365                                 sizeof(caps_cmd), &caps_cmd);
3366                 config_name = "Firmware Default";
3367         }
3368
3369         config_issued = 1;
3370         if (ret < 0)
3371                 goto bye;
3372
3373         finiver = ntohl(caps_cmd.finiver);
3374         finicsum = ntohl(caps_cmd.finicsum);
3375         cfcsum = ntohl(caps_cmd.cfcsum);
3376         if (finicsum != cfcsum)
3377                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3378                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3379                          finicsum, cfcsum);
3380
3381         /*
3382          * And now tell the firmware to use the configuration we just loaded.
3383          */
3384         caps_cmd.op_to_write =
3385                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3386                       FW_CMD_REQUEST_F |
3387                       FW_CMD_WRITE_F);
3388         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3389         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3390                          NULL);
3391         if (ret < 0)
3392                 goto bye;
3393
3394         /*
3395          * Tweak configuration based on system architecture, module
3396          * parameters, etc.
3397          */
3398         ret = adap_init0_tweaks(adapter);
3399         if (ret < 0)
3400                 goto bye;
3401
3402         /*
3403          * And finally tell the firmware to initialize itself using the
3404          * parameters from the Configuration File.
3405          */
3406         ret = t4_fw_initialize(adapter, adapter->mbox);
3407         if (ret < 0)
3408                 goto bye;
3409
3410         /* Emit Firmware Configuration File information and return
3411          * successfully.
3412          */
3413         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3414                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3415                  config_name, finiver, cfcsum);
3416         return 0;
3417
3418         /*
3419          * Something bad happened.  Return the error ...  (If the "error"
3420          * is that there's no Configuration File on the adapter we don't
3421          * want to issue a warning since this is fairly common.)
3422          */
3423 bye:
3424         if (config_issued && ret != -ENOENT)
3425                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3426                          config_name, -ret);
3427         return ret;
3428 }
3429
3430 static struct fw_info fw_info_array[] = {
3431         {
3432                 .chip = CHELSIO_T4,
3433                 .fs_name = FW4_CFNAME,
3434                 .fw_mod_name = FW4_FNAME,
3435                 .fw_hdr = {
3436                         .chip = FW_HDR_CHIP_T4,
3437                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3438                         .intfver_nic = FW_INTFVER(T4, NIC),
3439                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3440                         .intfver_ri = FW_INTFVER(T4, RI),
3441                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3442                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3443                 },
3444         }, {
3445                 .chip = CHELSIO_T5,
3446                 .fs_name = FW5_CFNAME,
3447                 .fw_mod_name = FW5_FNAME,
3448                 .fw_hdr = {
3449                         .chip = FW_HDR_CHIP_T5,
3450                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3451                         .intfver_nic = FW_INTFVER(T5, NIC),
3452                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3453                         .intfver_ri = FW_INTFVER(T5, RI),
3454                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3455                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3456                 },
3457         }
3458 };
3459
3460 static struct fw_info *find_fw_info(int chip)
3461 {
3462         int i;
3463
3464         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3465                 if (fw_info_array[i].chip == chip)
3466                         return &fw_info_array[i];
3467         }
3468         return NULL;
3469 }
3470
3471 /*
3472  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3473  */
3474 static int adap_init0(struct adapter *adap)
3475 {
3476         int ret;
3477         u32 v, port_vec;
3478         enum dev_state state;
3479         u32 params[7], val[7];
3480         struct fw_caps_config_cmd caps_cmd;
3481         int reset = 1;
3482
3483         /* Grab Firmware Device Log parameters as early as possible so we have
3484          * access to it for debugging, etc.
3485          */
3486         ret = t4_init_devlog_params(adap);
3487         if (ret < 0)
3488                 return ret;
3489
3490         /* Contact FW, advertising Master capability */
3491         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3492         if (ret < 0) {
3493                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3494                         ret);
3495                 return ret;
3496         }
3497         if (ret == adap->mbox)
3498                 adap->flags |= MASTER_PF;
3499
3500         /*
3501          * If we're the Master PF Driver and the device is uninitialized,
3502          * then let's consider upgrading the firmware ...  (We always want
3503          * to check the firmware version number in order to A. get it for
3504          * later reporting and B. to warn if the currently loaded firmware
3505          * is excessively mismatched relative to the driver.)
3506          */
3507         t4_get_fw_version(adap, &adap->params.fw_vers);
3508         t4_get_tp_version(adap, &adap->params.tp_vers);
3509         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3510                 struct fw_info *fw_info;
3511                 struct fw_hdr *card_fw;
3512                 const struct firmware *fw;
3513                 const u8 *fw_data = NULL;
3514                 unsigned int fw_size = 0;
3515
3516                 /* This is the firmware whose headers the driver was compiled
3517                  * against
3518                  */
3519                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3520                 if (fw_info == NULL) {
3521                         dev_err(adap->pdev_dev,
3522                                 "unable to get firmware info for chip %d.\n",
3523                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3524                         return -EINVAL;
3525                 }
3526
3527                 /* allocate memory to read the header of the firmware on the
3528                  * card
3529                  */
3530                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3531
3532                 /* Get FW from from /lib/firmware/ */
3533                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3534                                        adap->pdev_dev);
3535                 if (ret < 0) {
3536                         dev_err(adap->pdev_dev,
3537                                 "unable to load firmware image %s, error %d\n",
3538                                 fw_info->fw_mod_name, ret);
3539                 } else {
3540                         fw_data = fw->data;
3541                         fw_size = fw->size;
3542                 }
3543
3544                 /* upgrade FW logic */
3545                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3546                                  state, &reset);
3547
3548                 /* Cleaning up */
3549                 release_firmware(fw);
3550                 t4_free_mem(card_fw);
3551
3552                 if (ret < 0)
3553                         goto bye;
3554         }
3555
3556         /*
3557          * Grab VPD parameters.  This should be done after we establish a
3558          * connection to the firmware since some of the VPD parameters
3559          * (notably the Core Clock frequency) are retrieved via requests to
3560          * the firmware.  On the other hand, we need these fairly early on
3561          * so we do this right after getting ahold of the firmware.
3562          */
3563         ret = get_vpd_params(adap, &adap->params.vpd);
3564         if (ret < 0)
3565                 goto bye;
3566
3567         /*
3568          * Find out what ports are available to us.  Note that we need to do
3569          * this before calling adap_init0_no_config() since it needs nports
3570          * and portvec ...
3571          */
3572         v =
3573             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3574             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3575         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
3576         if (ret < 0)
3577                 goto bye;
3578
3579         adap->params.nports = hweight32(port_vec);
3580         adap->params.portvec = port_vec;
3581
3582         /* If the firmware is initialized already, emit a simply note to that
3583          * effect. Otherwise, it's time to try initializing the adapter.
3584          */
3585         if (state == DEV_STATE_INIT) {
3586                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3587                          "Adapter already initialized\n",
3588                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3589         } else {
3590                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3591                          "Initializing adapter\n");
3592
3593                 /* Find out whether we're dealing with a version of the
3594                  * firmware which has configuration file support.
3595                  */
3596                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3597                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3598                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
3599                                       params, val);
3600
3601                 /* If the firmware doesn't support Configuration Files,
3602                  * return an error.
3603                  */
3604                 if (ret < 0) {
3605                         dev_err(adap->pdev_dev, "firmware doesn't support "
3606                                 "Firmware Configuration Files\n");
3607                         goto bye;
3608                 }
3609
3610                 /* The firmware provides us with a memory buffer where we can
3611                  * load a Configuration File from the host if we want to
3612                  * override the Configuration File in flash.
3613                  */
3614                 ret = adap_init0_config(adap, reset);
3615                 if (ret == -ENOENT) {
3616                         dev_err(adap->pdev_dev, "no Configuration File "
3617                                 "present on adapter.\n");
3618                         goto bye;
3619                 }
3620                 if (ret < 0) {
3621                         dev_err(adap->pdev_dev, "could not initialize "
3622                                 "adapter, error %d\n", -ret);
3623                         goto bye;
3624                 }
3625         }
3626
3627         /* Give the SGE code a chance to pull in anything that it needs ...
3628          * Note that this must be called after we retrieve our VPD parameters
3629          * in order to know how to convert core ticks to seconds, etc.
3630          */
3631         ret = t4_sge_init(adap);
3632         if (ret < 0)
3633                 goto bye;
3634
3635         if (is_bypass_device(adap->pdev->device))
3636                 adap->params.bypass = 1;
3637
3638         /*
3639          * Grab some of our basic fundamental operating parameters.
3640          */
3641 #define FW_PARAM_DEV(param) \
3642         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3643         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3644
3645 #define FW_PARAM_PFVF(param) \
3646         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3647         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3648         FW_PARAMS_PARAM_Y_V(0) | \
3649         FW_PARAMS_PARAM_Z_V(0)
3650
3651         params[0] = FW_PARAM_PFVF(EQ_START);
3652         params[1] = FW_PARAM_PFVF(L2T_START);
3653         params[2] = FW_PARAM_PFVF(L2T_END);
3654         params[3] = FW_PARAM_PFVF(FILTER_START);
3655         params[4] = FW_PARAM_PFVF(FILTER_END);
3656         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3657         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
3658         if (ret < 0)
3659                 goto bye;
3660         adap->sge.egr_start = val[0];
3661         adap->l2t_start = val[1];
3662         adap->l2t_end = val[2];
3663         adap->tids.ftid_base = val[3];
3664         adap->tids.nftids = val[4] - val[3] + 1;
3665         adap->sge.ingr_start = val[5];
3666
3667         /* qids (ingress/egress) returned from firmware can be anywhere
3668          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3669          * Hence driver needs to allocate memory for this range to
3670          * store the queue info. Get the highest IQFLINT/EQ index returned
3671          * in FW_EQ_*_CMD.alloc command.
3672          */
3673         params[0] = FW_PARAM_PFVF(EQ_END);
3674         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3675         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3676         if (ret < 0)
3677                 goto bye;
3678         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3679         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3680
3681         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3682                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3683         if (!adap->sge.egr_map) {
3684                 ret = -ENOMEM;
3685                 goto bye;
3686         }
3687
3688         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3689                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3690         if (!adap->sge.ingr_map) {
3691                 ret = -ENOMEM;
3692                 goto bye;
3693         }
3694
3695         /* Allocate the memory for the vaious egress queue bitmaps
3696          * ie starving_fl and txq_maperr.
3697          */
3698         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3699                                         sizeof(long), GFP_KERNEL);
3700         if (!adap->sge.starving_fl) {
3701                 ret = -ENOMEM;
3702                 goto bye;
3703         }
3704
3705         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3706                                        sizeof(long), GFP_KERNEL);
3707         if (!adap->sge.txq_maperr) {
3708                 ret = -ENOMEM;
3709                 goto bye;
3710         }
3711
3712         params[0] = FW_PARAM_PFVF(CLIP_START);
3713         params[1] = FW_PARAM_PFVF(CLIP_END);
3714         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3715         if (ret < 0)
3716                 goto bye;
3717         adap->clipt_start = val[0];
3718         adap->clipt_end = val[1];
3719
3720         /* query params related to active filter region */
3721         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3722         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3723         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3724         /* If Active filter size is set we enable establishing
3725          * offload connection through firmware work request
3726          */
3727         if ((val[0] != val[1]) && (ret >= 0)) {
3728                 adap->flags |= FW_OFLD_CONN;
3729                 adap->tids.aftid_base = val[0];
3730                 adap->tids.aftid_end = val[1];
3731         }
3732
3733         /* If we're running on newer firmware, let it know that we're
3734          * prepared to deal with encapsulated CPL messages.  Older
3735          * firmware won't understand this and we'll just get
3736          * unencapsulated messages ...
3737          */
3738         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3739         val[0] = 1;
3740         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
3741
3742         /*
3743          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3744          * capability.  Earlier versions of the firmware didn't have the
3745          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3746          * permission to use ULPTX MEMWRITE DSGL.
3747          */
3748         if (is_t4(adap->params.chip)) {
3749                 adap->params.ulptx_memwrite_dsgl = false;
3750         } else {
3751                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3752                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
3753                                       1, params, val);
3754                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3755         }
3756
3757         /*
3758          * Get device capabilities so we can determine what resources we need
3759          * to manage.
3760          */
3761         memset(&caps_cmd, 0, sizeof(caps_cmd));
3762         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3763                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3764         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3765         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3766                          &caps_cmd);
3767         if (ret < 0)
3768                 goto bye;
3769
3770         if (caps_cmd.ofldcaps) {
3771                 /* query offload-related parameters */
3772                 params[0] = FW_PARAM_DEV(NTID);
3773                 params[1] = FW_PARAM_PFVF(SERVER_START);
3774                 params[2] = FW_PARAM_PFVF(SERVER_END);
3775                 params[3] = FW_PARAM_PFVF(TDDP_START);
3776                 params[4] = FW_PARAM_PFVF(TDDP_END);
3777                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3778                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3779                                       params, val);
3780                 if (ret < 0)
3781                         goto bye;
3782                 adap->tids.ntids = val[0];
3783                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3784                 adap->tids.stid_base = val[1];
3785                 adap->tids.nstids = val[2] - val[1] + 1;
3786                 /*
3787                  * Setup server filter region. Divide the available filter
3788                  * region into two parts. Regular filters get 1/3rd and server
3789                  * filters get 2/3rd part. This is only enabled if workarond
3790                  * path is enabled.
3791                  * 1. For regular filters.
3792                  * 2. Server filter: This are special filters which are used
3793                  * to redirect SYN packets to offload queue.
3794                  */
3795                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3796                         adap->tids.sftid_base = adap->tids.ftid_base +
3797                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3798                         adap->tids.nsftids = adap->tids.nftids -
3799                                          DIV_ROUND_UP(adap->tids.nftids, 3);
3800                         adap->tids.nftids = adap->tids.sftid_base -
3801                                                 adap->tids.ftid_base;
3802                 }
3803                 adap->vres.ddp.start = val[3];
3804                 adap->vres.ddp.size = val[4] - val[3] + 1;
3805                 adap->params.ofldq_wr_cred = val[5];
3806
3807                 adap->params.offload = 1;
3808         }
3809         if (caps_cmd.rdmacaps) {
3810                 params[0] = FW_PARAM_PFVF(STAG_START);
3811                 params[1] = FW_PARAM_PFVF(STAG_END);
3812                 params[2] = FW_PARAM_PFVF(RQ_START);
3813                 params[3] = FW_PARAM_PFVF(RQ_END);
3814                 params[4] = FW_PARAM_PFVF(PBL_START);
3815                 params[5] = FW_PARAM_PFVF(PBL_END);
3816                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3817                                       params, val);
3818                 if (ret < 0)
3819                         goto bye;
3820                 adap->vres.stag.start = val[0];
3821                 adap->vres.stag.size = val[1] - val[0] + 1;
3822                 adap->vres.rq.start = val[2];
3823                 adap->vres.rq.size = val[3] - val[2] + 1;
3824                 adap->vres.pbl.start = val[4];
3825                 adap->vres.pbl.size = val[5] - val[4] + 1;
3826
3827                 params[0] = FW_PARAM_PFVF(SQRQ_START);
3828                 params[1] = FW_PARAM_PFVF(SQRQ_END);
3829                 params[2] = FW_PARAM_PFVF(CQ_START);
3830                 params[3] = FW_PARAM_PFVF(CQ_END);
3831                 params[4] = FW_PARAM_PFVF(OCQ_START);
3832                 params[5] = FW_PARAM_PFVF(OCQ_END);
3833                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
3834                                       val);
3835                 if (ret < 0)
3836                         goto bye;
3837                 adap->vres.qp.start = val[0];
3838                 adap->vres.qp.size = val[1] - val[0] + 1;
3839                 adap->vres.cq.start = val[2];
3840                 adap->vres.cq.size = val[3] - val[2] + 1;
3841                 adap->vres.ocq.start = val[4];
3842                 adap->vres.ocq.size = val[5] - val[4] + 1;
3843
3844                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3845                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3846                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
3847                                       val);
3848                 if (ret < 0) {
3849                         adap->params.max_ordird_qp = 8;
3850                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3851                         ret = 0;
3852                 } else {
3853                         adap->params.max_ordird_qp = val[0];
3854                         adap->params.max_ird_adapter = val[1];
3855                 }
3856                 dev_info(adap->pdev_dev,
3857                          "max_ordird_qp %d max_ird_adapter %d\n",
3858                          adap->params.max_ordird_qp,
3859                          adap->params.max_ird_adapter);
3860         }
3861         if (caps_cmd.iscsicaps) {
3862                 params[0] = FW_PARAM_PFVF(ISCSI_START);
3863                 params[1] = FW_PARAM_PFVF(ISCSI_END);
3864                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
3865                                       params, val);
3866                 if (ret < 0)
3867                         goto bye;
3868                 adap->vres.iscsi.start = val[0];
3869                 adap->vres.iscsi.size = val[1] - val[0] + 1;
3870         }
3871 #undef FW_PARAM_PFVF
3872 #undef FW_PARAM_DEV
3873
3874         /* The MTU/MSS Table is initialized by now, so load their values.  If
3875          * we're initializing the adapter, then we'll make any modifications
3876          * we want to the MTU/MSS Table and also initialize the congestion
3877          * parameters.
3878          */
3879         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3880         if (state != DEV_STATE_INIT) {
3881                 int i;
3882
3883                 /* The default MTU Table contains values 1492 and 1500.
3884                  * However, for TCP, it's better to have two values which are
3885                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3886                  * This allows us to have a TCP Data Payload which is a
3887                  * multiple of 8 regardless of what combination of TCP Options
3888                  * are in use (always a multiple of 4 bytes) which is
3889                  * important for performance reasons.  For instance, if no
3890                  * options are in use, then we have a 20-byte IP header and a
3891                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
3892                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3893                  * which is not a multiple of 8.  So using an MSS of 1488 in
3894                  * this case results in a TCP Data Payload of 1448 bytes which
3895                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3896                  * Stamps have been negotiated, then an MTU of 1500 bytes
3897                  * results in a TCP Data Payload of 1448 bytes which, as
3898                  * above, is a multiple of 8 bytes ...
3899                  */
3900                 for (i = 0; i < NMTUS; i++)
3901                         if (adap->params.mtus[i] == 1492) {
3902                                 adap->params.mtus[i] = 1488;
3903                                 break;
3904                         }
3905
3906                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3907                              adap->params.b_wnd);
3908         }
3909         t4_init_sge_params(adap);
3910         t4_init_tp_params(adap);
3911         adap->flags |= FW_OK;
3912         return 0;
3913
3914         /*
3915          * Something bad happened.  If a command timed out or failed with EIO
3916          * FW does not operate within its spec or something catastrophic
3917          * happened to HW/FW, stop issuing commands.
3918          */
3919 bye:
3920         kfree(adap->sge.egr_map);
3921         kfree(adap->sge.ingr_map);
3922         kfree(adap->sge.starving_fl);
3923         kfree(adap->sge.txq_maperr);
3924         if (ret != -ETIMEDOUT && ret != -EIO)
3925                 t4_fw_bye(adap, adap->mbox);
3926         return ret;
3927 }
3928
3929 /* EEH callbacks */
3930
3931 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3932                                          pci_channel_state_t state)
3933 {
3934         int i;
3935         struct adapter *adap = pci_get_drvdata(pdev);
3936
3937         if (!adap)
3938                 goto out;
3939
3940         rtnl_lock();
3941         adap->flags &= ~FW_OK;
3942         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3943         spin_lock(&adap->stats_lock);
3944         for_each_port(adap, i) {
3945                 struct net_device *dev = adap->port[i];
3946
3947                 netif_device_detach(dev);
3948                 netif_carrier_off(dev);
3949         }
3950         spin_unlock(&adap->stats_lock);
3951         disable_interrupts(adap);
3952         if (adap->flags & FULL_INIT_DONE)
3953                 cxgb_down(adap);
3954         rtnl_unlock();
3955         if ((adap->flags & DEV_ENABLED)) {
3956                 pci_disable_device(pdev);
3957                 adap->flags &= ~DEV_ENABLED;
3958         }
3959 out:    return state == pci_channel_io_perm_failure ?
3960                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3961 }
3962
3963 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3964 {
3965         int i, ret;
3966         struct fw_caps_config_cmd c;
3967         struct adapter *adap = pci_get_drvdata(pdev);
3968
3969         if (!adap) {
3970                 pci_restore_state(pdev);
3971                 pci_save_state(pdev);
3972                 return PCI_ERS_RESULT_RECOVERED;
3973         }
3974
3975         if (!(adap->flags & DEV_ENABLED)) {
3976                 if (pci_enable_device(pdev)) {
3977                         dev_err(&pdev->dev, "Cannot reenable PCI "
3978                                             "device after reset\n");
3979                         return PCI_ERS_RESULT_DISCONNECT;
3980                 }
3981                 adap->flags |= DEV_ENABLED;
3982         }
3983
3984         pci_set_master(pdev);
3985         pci_restore_state(pdev);
3986         pci_save_state(pdev);
3987         pci_cleanup_aer_uncorrect_error_status(pdev);
3988
3989         if (t4_wait_dev_ready(adap->regs) < 0)
3990                 return PCI_ERS_RESULT_DISCONNECT;
3991         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
3992                 return PCI_ERS_RESULT_DISCONNECT;
3993         adap->flags |= FW_OK;
3994         if (adap_init1(adap, &c))
3995                 return PCI_ERS_RESULT_DISCONNECT;
3996
3997         for_each_port(adap, i) {
3998                 struct port_info *p = adap2pinfo(adap, i);
3999
4000                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
4001                                   NULL, NULL);
4002                 if (ret < 0)
4003                         return PCI_ERS_RESULT_DISCONNECT;
4004                 p->viid = ret;
4005                 p->xact_addr_filt = -1;
4006         }
4007
4008         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4009                      adap->params.b_wnd);
4010         setup_memwin(adap);
4011         if (cxgb_up(adap))
4012                 return PCI_ERS_RESULT_DISCONNECT;
4013         return PCI_ERS_RESULT_RECOVERED;
4014 }
4015
4016 static void eeh_resume(struct pci_dev *pdev)
4017 {
4018         int i;
4019         struct adapter *adap = pci_get_drvdata(pdev);
4020
4021         if (!adap)
4022                 return;
4023
4024         rtnl_lock();
4025         for_each_port(adap, i) {
4026                 struct net_device *dev = adap->port[i];
4027
4028                 if (netif_running(dev)) {
4029                         link_start(dev);
4030                         cxgb_set_rxmode(dev);
4031                 }
4032                 netif_device_attach(dev);
4033         }
4034         rtnl_unlock();
4035 }
4036
4037 static const struct pci_error_handlers cxgb4_eeh = {
4038         .error_detected = eeh_err_detected,
4039         .slot_reset     = eeh_slot_reset,
4040         .resume         = eeh_resume,
4041 };
4042
4043 static inline bool is_x_10g_port(const struct link_config *lc)
4044 {
4045         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4046                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4047 }
4048
4049 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4050                              unsigned int us, unsigned int cnt,
4051                              unsigned int size, unsigned int iqe_size)
4052 {
4053         q->adap = adap;
4054         cxgb4_set_rspq_intr_params(q, us, cnt);
4055         q->iqe_len = iqe_size;
4056         q->size = size;
4057 }
4058
4059 /*
4060  * Perform default configuration of DMA queues depending on the number and type
4061  * of ports we found and the number of available CPUs.  Most settings can be
4062  * modified by the admin prior to actual use.
4063  */
4064 static void cfg_queues(struct adapter *adap)
4065 {
4066         struct sge *s = &adap->sge;
4067         int i, n10g = 0, qidx = 0;
4068 #ifndef CONFIG_CHELSIO_T4_DCB
4069         int q10g = 0;
4070 #endif
4071         int ciq_size;
4072
4073         for_each_port(adap, i)
4074                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4075 #ifdef CONFIG_CHELSIO_T4_DCB
4076         /* For Data Center Bridging support we need to be able to support up
4077          * to 8 Traffic Priorities; each of which will be assigned to its
4078          * own TX Queue in order to prevent Head-Of-Line Blocking.
4079          */
4080         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4081                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4082                         MAX_ETH_QSETS, adap->params.nports * 8);
4083                 BUG_ON(1);
4084         }
4085
4086         for_each_port(adap, i) {
4087                 struct port_info *pi = adap2pinfo(adap, i);
4088
4089                 pi->first_qset = qidx;
4090                 pi->nqsets = 8;
4091                 qidx += pi->nqsets;
4092         }
4093 #else /* !CONFIG_CHELSIO_T4_DCB */
4094         /*
4095          * We default to 1 queue per non-10G port and up to # of cores queues
4096          * per 10G port.
4097          */
4098         if (n10g)
4099                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4100         if (q10g > netif_get_num_default_rss_queues())
4101                 q10g = netif_get_num_default_rss_queues();
4102
4103         for_each_port(adap, i) {
4104                 struct port_info *pi = adap2pinfo(adap, i);
4105
4106                 pi->first_qset = qidx;
4107                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4108                 qidx += pi->nqsets;
4109         }
4110 #endif /* !CONFIG_CHELSIO_T4_DCB */
4111
4112         s->ethqsets = qidx;
4113         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4114
4115         if (is_offload(adap)) {
4116                 /*
4117                  * For offload we use 1 queue/channel if all ports are up to 1G,
4118                  * otherwise we divide all available queues amongst the channels
4119                  * capped by the number of available cores.
4120                  */
4121                 if (n10g) {
4122                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4123                                   num_online_cpus());
4124                         s->ofldqsets = roundup(i, adap->params.nports);
4125                 } else
4126                         s->ofldqsets = adap->params.nports;
4127                 /* For RDMA one Rx queue per channel suffices */
4128                 s->rdmaqs = adap->params.nports;
4129                 /* Try and allow at least 1 CIQ per cpu rounding down
4130                  * to the number of ports, with a minimum of 1 per port.
4131                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4132                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4133                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4134                  */
4135                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4136                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4137                                 adap->params.nports;
4138                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4139         }
4140
4141         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4142                 struct sge_eth_rxq *r = &s->ethrxq[i];
4143
4144                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4145                 r->fl.size = 72;
4146         }
4147
4148         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4149                 s->ethtxq[i].q.size = 1024;
4150
4151         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4152                 s->ctrlq[i].q.size = 512;
4153
4154         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4155                 s->ofldtxq[i].q.size = 1024;
4156
4157         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4158                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4159
4160                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4161                 r->rspq.uld = CXGB4_ULD_ISCSI;
4162                 r->fl.size = 72;
4163         }
4164
4165         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4166                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4167
4168                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4169                 r->rspq.uld = CXGB4_ULD_RDMA;
4170                 r->fl.size = 72;
4171         }
4172
4173         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4174         if (ciq_size > SGE_MAX_IQ_SIZE) {
4175                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4176                 ciq_size = SGE_MAX_IQ_SIZE;
4177         }
4178
4179         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4180                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4181
4182                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4183                 r->rspq.uld = CXGB4_ULD_RDMA;
4184         }
4185
4186         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4187         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4188 }
4189
4190 /*
4191  * Reduce the number of Ethernet queues across all ports to at most n.
4192  * n provides at least one queue per port.
4193  */
4194 static void reduce_ethqs(struct adapter *adap, int n)
4195 {
4196         int i;
4197         struct port_info *pi;
4198
4199         while (n < adap->sge.ethqsets)
4200                 for_each_port(adap, i) {
4201                         pi = adap2pinfo(adap, i);
4202                         if (pi->nqsets > 1) {
4203                                 pi->nqsets--;
4204                                 adap->sge.ethqsets--;
4205                                 if (adap->sge.ethqsets <= n)
4206                                         break;
4207                         }
4208                 }
4209
4210         n = 0;
4211         for_each_port(adap, i) {
4212                 pi = adap2pinfo(adap, i);
4213                 pi->first_qset = n;
4214                 n += pi->nqsets;
4215         }
4216 }
4217
4218 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4219 #define EXTRA_VECS 2
4220
4221 static int enable_msix(struct adapter *adap)
4222 {
4223         int ofld_need = 0;
4224         int i, want, need, allocated;
4225         struct sge *s = &adap->sge;
4226         unsigned int nchan = adap->params.nports;
4227         struct msix_entry *entries;
4228
4229         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4230                           GFP_KERNEL);
4231         if (!entries)
4232                 return -ENOMEM;
4233
4234         for (i = 0; i < MAX_INGQ + 1; ++i)
4235                 entries[i].entry = i;
4236
4237         want = s->max_ethqsets + EXTRA_VECS;
4238         if (is_offload(adap)) {
4239                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4240                 /* need nchan for each possible ULD */
4241                 ofld_need = 3 * nchan;
4242         }
4243 #ifdef CONFIG_CHELSIO_T4_DCB
4244         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4245          * each port.
4246          */
4247         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4248 #else
4249         need = adap->params.nports + EXTRA_VECS + ofld_need;
4250 #endif
4251         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4252         if (allocated < 0) {
4253                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4254                          " not using MSI-X\n");
4255                 kfree(entries);
4256                 return allocated;
4257         }
4258
4259         /* Distribute available vectors to the various queue groups.
4260          * Every group gets its minimum requirement and NIC gets top
4261          * priority for leftovers.
4262          */
4263         i = allocated - EXTRA_VECS - ofld_need;
4264         if (i < s->max_ethqsets) {
4265                 s->max_ethqsets = i;
4266                 if (i < s->ethqsets)
4267                         reduce_ethqs(adap, i);
4268         }
4269         if (is_offload(adap)) {
4270                 if (allocated < want) {
4271                         s->rdmaqs = nchan;
4272                         s->rdmaciqs = nchan;
4273                 }
4274
4275                 /* leftovers go to OFLD */
4276                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4277                     s->rdmaqs - s->rdmaciqs;
4278                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
4279         }
4280         for (i = 0; i < allocated; ++i)
4281                 adap->msix_info[i].vec = entries[i].vector;
4282
4283         kfree(entries);
4284         return 0;
4285 }
4286
4287 #undef EXTRA_VECS
4288
4289 static int init_rss(struct adapter *adap)
4290 {
4291         unsigned int i;
4292         int err;
4293
4294         err = t4_init_rss_mode(adap, adap->mbox);
4295         if (err)
4296                 return err;
4297
4298         for_each_port(adap, i) {
4299                 struct port_info *pi = adap2pinfo(adap, i);
4300
4301                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4302                 if (!pi->rss)
4303                         return -ENOMEM;
4304         }
4305         return 0;
4306 }
4307
4308 static void print_port_info(const struct net_device *dev)
4309 {
4310         char buf[80];
4311         char *bufp = buf;
4312         const char *spd = "";
4313         const struct port_info *pi = netdev_priv(dev);
4314         const struct adapter *adap = pi->adapter;
4315
4316         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4317                 spd = " 2.5 GT/s";
4318         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4319                 spd = " 5 GT/s";
4320         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4321                 spd = " 8 GT/s";
4322
4323         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4324                 bufp += sprintf(bufp, "100/");
4325         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4326                 bufp += sprintf(bufp, "1000/");
4327         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4328                 bufp += sprintf(bufp, "10G/");
4329         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4330                 bufp += sprintf(bufp, "40G/");
4331         if (bufp != buf)
4332                 --bufp;
4333         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4334
4335         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4336                     adap->params.vpd.id,
4337                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4338                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4339                     (adap->flags & USING_MSIX) ? " MSI-X" :
4340                     (adap->flags & USING_MSI) ? " MSI" : "");
4341         netdev_info(dev, "S/N: %s, P/N: %s\n",
4342                     adap->params.vpd.sn, adap->params.vpd.pn);
4343 }
4344
4345 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4346 {
4347         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4348 }
4349
4350 /*
4351  * Free the following resources:
4352  * - memory used for tables
4353  * - MSI/MSI-X
4354  * - net devices
4355  * - resources FW is holding for us
4356  */
4357 static void free_some_resources(struct adapter *adapter)
4358 {
4359         unsigned int i;
4360
4361         t4_free_mem(adapter->l2t);
4362         t4_free_mem(adapter->tids.tid_tab);
4363         kfree(adapter->sge.egr_map);
4364         kfree(adapter->sge.ingr_map);
4365         kfree(adapter->sge.starving_fl);
4366         kfree(adapter->sge.txq_maperr);
4367         disable_msi(adapter);
4368
4369         for_each_port(adapter, i)
4370                 if (adapter->port[i]) {
4371                         kfree(adap2pinfo(adapter, i)->rss);
4372                         free_netdev(adapter->port[i]);
4373                 }
4374         if (adapter->flags & FW_OK)
4375                 t4_fw_bye(adapter, adapter->fn);
4376 }
4377
4378 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4379 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4380                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4381 #define SEGMENT_SIZE 128
4382
4383 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4384 {
4385         int func, i, err, s_qpp, qpp, num_seg;
4386         struct port_info *pi;
4387         bool highdma = false;
4388         struct adapter *adapter = NULL;
4389         void __iomem *regs;
4390
4391         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4392
4393         err = pci_request_regions(pdev, KBUILD_MODNAME);
4394         if (err) {
4395                 /* Just info, some other driver may have claimed the device. */
4396                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4397                 return err;
4398         }
4399
4400         err = pci_enable_device(pdev);
4401         if (err) {
4402                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4403                 goto out_release_regions;
4404         }
4405
4406         regs = pci_ioremap_bar(pdev, 0);
4407         if (!regs) {
4408                 dev_err(&pdev->dev, "cannot map device registers\n");
4409                 err = -ENOMEM;
4410                 goto out_disable_device;
4411         }
4412
4413         err = t4_wait_dev_ready(regs);
4414         if (err < 0)
4415                 goto out_unmap_bar0;
4416
4417         /* We control everything through one PF */
4418         func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
4419         if (func != ent->driver_data) {
4420                 iounmap(regs);
4421                 pci_disable_device(pdev);
4422                 pci_save_state(pdev);        /* to restore SR-IOV later */
4423                 goto sriov;
4424         }
4425
4426         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4427                 highdma = true;
4428                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4429                 if (err) {
4430                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4431                                 "coherent allocations\n");
4432                         goto out_unmap_bar0;
4433                 }
4434         } else {
4435                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4436                 if (err) {
4437                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4438                         goto out_unmap_bar0;
4439                 }
4440         }
4441
4442         pci_enable_pcie_error_reporting(pdev);
4443         enable_pcie_relaxed_ordering(pdev);
4444         pci_set_master(pdev);
4445         pci_save_state(pdev);
4446
4447         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4448         if (!adapter) {
4449                 err = -ENOMEM;
4450                 goto out_unmap_bar0;
4451         }
4452
4453         adapter->workq = create_singlethread_workqueue("cxgb4");
4454         if (!adapter->workq) {
4455                 err = -ENOMEM;
4456                 goto out_free_adapter;
4457         }
4458
4459         /* PCI device has been enabled */
4460         adapter->flags |= DEV_ENABLED;
4461
4462         adapter->regs = regs;
4463         adapter->pdev = pdev;
4464         adapter->pdev_dev = &pdev->dev;
4465         adapter->mbox = func;
4466         adapter->fn = func;
4467         adapter->msg_enable = dflt_msg_enable;
4468         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4469
4470         spin_lock_init(&adapter->stats_lock);
4471         spin_lock_init(&adapter->tid_release_lock);
4472         spin_lock_init(&adapter->win0_lock);
4473
4474         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4475         INIT_WORK(&adapter->db_full_task, process_db_full);
4476         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4477
4478         err = t4_prep_adapter(adapter);
4479         if (err)
4480                 goto out_free_adapter;
4481
4482
4483         if (!is_t4(adapter->params.chip)) {
4484                 s_qpp = (QUEUESPERPAGEPF0_S +
4485                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4486                         adapter->fn);
4487                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4488                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4489                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4490
4491                 /* Each segment size is 128B. Write coalescing is enabled only
4492                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4493                  * queue is less no of segments that can be accommodated in
4494                  * a page size.
4495                  */
4496                 if (qpp > num_seg) {
4497                         dev_err(&pdev->dev,
4498                                 "Incorrect number of egress queues per page\n");
4499                         err = -EINVAL;
4500                         goto out_free_adapter;
4501                 }
4502                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4503                 pci_resource_len(pdev, 2));
4504                 if (!adapter->bar2) {
4505                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4506                         err = -ENOMEM;
4507                         goto out_free_adapter;
4508                 }
4509         }
4510
4511         setup_memwin(adapter);
4512         err = adap_init0(adapter);
4513         setup_memwin_rdma(adapter);
4514         if (err)
4515                 goto out_unmap_bar;
4516
4517         for_each_port(adapter, i) {
4518                 struct net_device *netdev;
4519
4520                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4521                                            MAX_ETH_QSETS);
4522                 if (!netdev) {
4523                         err = -ENOMEM;
4524                         goto out_free_dev;
4525                 }
4526
4527                 SET_NETDEV_DEV(netdev, &pdev->dev);
4528
4529                 adapter->port[i] = netdev;
4530                 pi = netdev_priv(netdev);
4531                 pi->adapter = adapter;
4532                 pi->xact_addr_filt = -1;
4533                 pi->port_id = i;
4534                 netdev->irq = pdev->irq;
4535
4536                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4537                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4538                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4539                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4540                 if (highdma)
4541                         netdev->hw_features |= NETIF_F_HIGHDMA;
4542                 netdev->features |= netdev->hw_features;
4543                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4544
4545                 netdev->priv_flags |= IFF_UNICAST_FLT;
4546
4547                 netdev->netdev_ops = &cxgb4_netdev_ops;
4548 #ifdef CONFIG_CHELSIO_T4_DCB
4549                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4550                 cxgb4_dcb_state_init(netdev);
4551 #endif
4552                 cxgb4_set_ethtool_ops(netdev);
4553         }
4554
4555         pci_set_drvdata(pdev, adapter);
4556
4557         if (adapter->flags & FW_OK) {
4558                 err = t4_port_init(adapter, func, func, 0);
4559                 if (err)
4560                         goto out_free_dev;
4561         }
4562
4563         /*
4564          * Configure queues and allocate tables now, they can be needed as
4565          * soon as the first register_netdev completes.
4566          */
4567         cfg_queues(adapter);
4568
4569         adapter->l2t = t4_init_l2t();
4570         if (!adapter->l2t) {
4571                 /* We tolerate a lack of L2T, giving up some functionality */
4572                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4573                 adapter->params.offload = 0;
4574         }
4575
4576 #if IS_ENABLED(CONFIG_IPV6)
4577         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4578                                           adapter->clipt_end);
4579         if (!adapter->clipt) {
4580                 /* We tolerate a lack of clip_table, giving up
4581                  * some functionality
4582                  */
4583                 dev_warn(&pdev->dev,
4584                          "could not allocate Clip table, continuing\n");
4585                 adapter->params.offload = 0;
4586         }
4587 #endif
4588         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4589                 dev_warn(&pdev->dev, "could not allocate TID table, "
4590                          "continuing\n");
4591                 adapter->params.offload = 0;
4592         }
4593
4594         /* See what interrupts we'll be using */
4595         if (msi > 1 && enable_msix(adapter) == 0)
4596                 adapter->flags |= USING_MSIX;
4597         else if (msi > 0 && pci_enable_msi(pdev) == 0)
4598                 adapter->flags |= USING_MSI;
4599
4600         err = init_rss(adapter);
4601         if (err)
4602                 goto out_free_dev;
4603
4604         /*
4605          * The card is now ready to go.  If any errors occur during device
4606          * registration we do not fail the whole card but rather proceed only
4607          * with the ports we manage to register successfully.  However we must
4608          * register at least one net device.
4609          */
4610         for_each_port(adapter, i) {
4611                 pi = adap2pinfo(adapter, i);
4612                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4613                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4614
4615                 err = register_netdev(adapter->port[i]);
4616                 if (err)
4617                         break;
4618                 adapter->chan_map[pi->tx_chan] = i;
4619                 print_port_info(adapter->port[i]);
4620         }
4621         if (i == 0) {
4622                 dev_err(&pdev->dev, "could not register any net devices\n");
4623                 goto out_free_dev;
4624         }
4625         if (err) {
4626                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4627                 err = 0;
4628         }
4629
4630         if (cxgb4_debugfs_root) {
4631                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4632                                                            cxgb4_debugfs_root);
4633                 setup_debugfs(adapter);
4634         }
4635
4636         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4637         pdev->needs_freset = 1;
4638
4639         if (is_offload(adapter))
4640                 attach_ulds(adapter);
4641
4642 sriov:
4643 #ifdef CONFIG_PCI_IOV
4644         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4645                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4646                         dev_info(&pdev->dev,
4647                                  "instantiated %u virtual functions\n",
4648                                  num_vf[func]);
4649 #endif
4650         return 0;
4651
4652  out_free_dev:
4653         free_some_resources(adapter);
4654  out_unmap_bar:
4655         if (!is_t4(adapter->params.chip))
4656                 iounmap(adapter->bar2);
4657  out_free_adapter:
4658         if (adapter->workq)
4659                 destroy_workqueue(adapter->workq);
4660
4661         kfree(adapter);
4662  out_unmap_bar0:
4663         iounmap(regs);
4664  out_disable_device:
4665         pci_disable_pcie_error_reporting(pdev);
4666         pci_disable_device(pdev);
4667  out_release_regions:
4668         pci_release_regions(pdev);
4669         return err;
4670 }
4671
4672 static void remove_one(struct pci_dev *pdev)
4673 {
4674         struct adapter *adapter = pci_get_drvdata(pdev);
4675
4676 #ifdef CONFIG_PCI_IOV
4677         pci_disable_sriov(pdev);
4678
4679 #endif
4680
4681         if (adapter) {
4682                 int i;
4683
4684                 /* Tear down per-adapter Work Queue first since it can contain
4685                  * references to our adapter data structure.
4686                  */
4687                 destroy_workqueue(adapter->workq);
4688
4689                 if (is_offload(adapter))
4690                         detach_ulds(adapter);
4691
4692                 disable_interrupts(adapter);
4693
4694                 for_each_port(adapter, i)
4695                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4696                                 unregister_netdev(adapter->port[i]);
4697
4698                 debugfs_remove_recursive(adapter->debugfs_root);
4699
4700                 /* If we allocated filters, free up state associated with any
4701                  * valid filters ...
4702                  */
4703                 if (adapter->tids.ftid_tab) {
4704                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
4705                         for (i = 0; i < (adapter->tids.nftids +
4706                                         adapter->tids.nsftids); i++, f++)
4707                                 if (f->valid)
4708                                         clear_filter(adapter, f);
4709                 }
4710
4711                 if (adapter->flags & FULL_INIT_DONE)
4712                         cxgb_down(adapter);
4713
4714                 free_some_resources(adapter);
4715 #if IS_ENABLED(CONFIG_IPV6)
4716                 t4_cleanup_clip_tbl(adapter);
4717 #endif
4718                 iounmap(adapter->regs);
4719                 if (!is_t4(adapter->params.chip))
4720                         iounmap(adapter->bar2);
4721                 pci_disable_pcie_error_reporting(pdev);
4722                 if ((adapter->flags & DEV_ENABLED)) {
4723                         pci_disable_device(pdev);
4724                         adapter->flags &= ~DEV_ENABLED;
4725                 }
4726                 pci_release_regions(pdev);
4727                 synchronize_rcu();
4728                 kfree(adapter);
4729         } else
4730                 pci_release_regions(pdev);
4731 }
4732
4733 static struct pci_driver cxgb4_driver = {
4734         .name     = KBUILD_MODNAME,
4735         .id_table = cxgb4_pci_tbl,
4736         .probe    = init_one,
4737         .remove   = remove_one,
4738         .shutdown = remove_one,
4739         .err_handler = &cxgb4_eeh,
4740 };
4741
4742 static int __init cxgb4_init_module(void)
4743 {
4744         int ret;
4745
4746         /* Debugfs support is optional, just warn if this fails */
4747         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4748         if (!cxgb4_debugfs_root)
4749                 pr_warn("could not create debugfs entry, continuing\n");
4750
4751         ret = pci_register_driver(&cxgb4_driver);
4752         if (ret < 0)
4753                 debugfs_remove(cxgb4_debugfs_root);
4754
4755 #if IS_ENABLED(CONFIG_IPV6)
4756         if (!inet6addr_registered) {
4757                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4758                 inet6addr_registered = true;
4759         }
4760 #endif
4761
4762         return ret;
4763 }
4764
4765 static void __exit cxgb4_cleanup_module(void)
4766 {
4767 #if IS_ENABLED(CONFIG_IPV6)
4768         if (inet6addr_registered) {
4769                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4770                 inet6addr_registered = false;
4771         }
4772 #endif
4773         pci_unregister_driver(&cxgb4_driver);
4774         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
4775 }
4776
4777 module_init(cxgb4_init_module);
4778 module_exit(cxgb4_cleanup_module);