nds32: fix build error "relocation truncated to fit: R_NDS32_25_PCREL_RELA" when
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 #include <net/udp_tunnel.h>
69
70 #include "cxgb4.h"
71 #include "cxgb4_filter.h"
72 #include "t4_regs.h"
73 #include "t4_values.h"
74 #include "t4_msg.h"
75 #include "t4fw_api.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
78 #include "srq.h"
79 #include "cxgb4_debugfs.h"
80 #include "clip_tbl.h"
81 #include "l2t.h"
82 #include "smt.h"
83 #include "sched.h"
84 #include "cxgb4_tc_u32.h"
85 #include "cxgb4_tc_flower.h"
86 #include "cxgb4_ptp.h"
87 #include "cxgb4_cudbg.h"
88
89 char cxgb4_driver_name[] = KBUILD_MODNAME;
90
91 #ifdef DRV_VERSION
92 #undef DRV_VERSION
93 #endif
94 #define DRV_VERSION "2.0.0-ko"
95 const char cxgb4_driver_version[] = DRV_VERSION;
96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97
98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
99                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
100                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101
102 /* Macros needed to support the PCI Device ID Table ...
103  */
104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
105         static const struct pci_device_id cxgb4_pci_tbl[] = {
106 #define CXGB4_UNIFIED_PF 0x4
107
108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109
110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
111  * called for both.
112  */
113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114
115 #define CH_PCI_ID_TABLE_ENTRY(devid) \
116                 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
119                 { 0, } \
120         }
121
122 #include "t4_pci_id_tbl.h"
123
124 #define FW4_FNAME "cxgb4/t4fw.bin"
125 #define FW5_FNAME "cxgb4/t5fw.bin"
126 #define FW6_FNAME "cxgb4/t6fw.bin"
127 #define FW4_CFNAME "cxgb4/t4-config.txt"
128 #define FW5_CFNAME "cxgb4/t5-config.txt"
129 #define FW6_CFNAME "cxgb4/t6-config.txt"
130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
132 #define PHY_AQ1202_DEVICEID 0x4409
133 #define PHY_BCM84834_DEVICEID 0x4486
134
135 MODULE_DESCRIPTION(DRV_DESC);
136 MODULE_AUTHOR("Chelsio Communications");
137 MODULE_LICENSE("Dual BSD/GPL");
138 MODULE_VERSION(DRV_VERSION);
139 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
140 MODULE_FIRMWARE(FW4_FNAME);
141 MODULE_FIRMWARE(FW5_FNAME);
142 MODULE_FIRMWARE(FW6_FNAME);
143
144 /*
145  * The driver uses the best interrupt scheme available on a platform in the
146  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
147  * of these schemes the driver may consider as follows:
148  *
149  * msi = 2: choose from among all three options
150  * msi = 1: only consider MSI and INTx interrupts
151  * msi = 0: force INTx interrupts
152  */
153 static int msi = 2;
154
155 module_param(msi, int, 0644);
156 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
157
158 /*
159  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
160  * offset by 2 bytes in order to have the IP headers line up on 4-byte
161  * boundaries.  This is a requirement for many architectures which will throw
162  * a machine check fault if an attempt is made to access one of the 4-byte IP
163  * header fields on a non-4-byte boundary.  And it's a major performance issue
164  * even on some architectures which allow it like some implementations of the
165  * x86 ISA.  However, some architectures don't mind this and for some very
166  * edge-case performance sensitive applications (like forwarding large volumes
167  * of small packets), setting this DMA offset to 0 will decrease the number of
168  * PCI-E Bus transfers enough to measurably affect performance.
169  */
170 static int rx_dma_offset = 2;
171
172 /* TX Queue select used to determine what algorithm to use for selecting TX
173  * queue. Select between the kernel provided function (select_queue=0) or user
174  * cxgb_select_queue function (select_queue=1)
175  *
176  * Default: select_queue=0
177  */
178 static int select_queue;
179 module_param(select_queue, int, 0644);
180 MODULE_PARM_DESC(select_queue,
181                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
182
183 static struct dentry *cxgb4_debugfs_root;
184
185 LIST_HEAD(adapter_list);
186 DEFINE_MUTEX(uld_mutex);
187
188 static void link_report(struct net_device *dev)
189 {
190         if (!netif_carrier_ok(dev))
191                 netdev_info(dev, "link down\n");
192         else {
193                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
194
195                 const char *s;
196                 const struct port_info *p = netdev_priv(dev);
197
198                 switch (p->link_cfg.speed) {
199                 case 100:
200                         s = "100Mbps";
201                         break;
202                 case 1000:
203                         s = "1Gbps";
204                         break;
205                 case 10000:
206                         s = "10Gbps";
207                         break;
208                 case 25000:
209                         s = "25Gbps";
210                         break;
211                 case 40000:
212                         s = "40Gbps";
213                         break;
214                 case 50000:
215                         s = "50Gbps";
216                         break;
217                 case 100000:
218                         s = "100Gbps";
219                         break;
220                 default:
221                         pr_info("%s: unsupported speed: %d\n",
222                                 dev->name, p->link_cfg.speed);
223                         return;
224                 }
225
226                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
227                             fc[p->link_cfg.fc]);
228         }
229 }
230
231 #ifdef CONFIG_CHELSIO_T4_DCB
232 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
233 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
234 {
235         struct port_info *pi = netdev_priv(dev);
236         struct adapter *adap = pi->adapter;
237         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
238         int i;
239
240         /* We use a simple mapping of Port TX Queue Index to DCB
241          * Priority when we're enabling DCB.
242          */
243         for (i = 0; i < pi->nqsets; i++, txq++) {
244                 u32 name, value;
245                 int err;
246
247                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
248                         FW_PARAMS_PARAM_X_V(
249                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
250                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
251                 value = enable ? i : 0xffffffff;
252
253                 /* Since we can be called while atomic (from "interrupt
254                  * level") we need to issue the Set Parameters Commannd
255                  * without sleeping (timeout < 0).
256                  */
257                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
258                                             &name, &value,
259                                             -FW_CMD_MAX_TIMEOUT);
260
261                 if (err)
262                         dev_err(adap->pdev_dev,
263                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
264                                 enable ? "set" : "unset", pi->port_id, i, -err);
265                 else
266                         txq->dcb_prio = value;
267         }
268 }
269
270 static int cxgb4_dcb_enabled(const struct net_device *dev)
271 {
272         struct port_info *pi = netdev_priv(dev);
273
274         if (!pi->dcb.enabled)
275                 return 0;
276
277         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
278                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
279 }
280 #endif /* CONFIG_CHELSIO_T4_DCB */
281
282 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
283 {
284         struct net_device *dev = adapter->port[port_id];
285
286         /* Skip changes from disabled ports. */
287         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
288                 if (link_stat)
289                         netif_carrier_on(dev);
290                 else {
291 #ifdef CONFIG_CHELSIO_T4_DCB
292                         if (cxgb4_dcb_enabled(dev)) {
293                                 cxgb4_dcb_reset(dev);
294                                 dcb_tx_queue_prio_enable(dev, false);
295                         }
296 #endif /* CONFIG_CHELSIO_T4_DCB */
297                         netif_carrier_off(dev);
298                 }
299
300                 link_report(dev);
301         }
302 }
303
304 void t4_os_portmod_changed(struct adapter *adap, int port_id)
305 {
306         static const char *mod_str[] = {
307                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
308         };
309
310         struct net_device *dev = adap->port[port_id];
311         struct port_info *pi = netdev_priv(dev);
312
313         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
314                 netdev_info(dev, "port module unplugged\n");
315         else if (pi->mod_type < ARRAY_SIZE(mod_str))
316                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
317         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
318                 netdev_info(dev, "%s: unsupported port module inserted\n",
319                             dev->name);
320         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
321                 netdev_info(dev, "%s: unknown port module inserted\n",
322                             dev->name);
323         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
324                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
325         else
326                 netdev_info(dev, "%s: unknown module type %d inserted\n",
327                             dev->name, pi->mod_type);
328
329         /* If the interface is running, then we'll need any "sticky" Link
330          * Parameters redone with a new Transceiver Module.
331          */
332         pi->link_cfg.redo_l1cfg = netif_running(dev);
333 }
334
335 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
336 module_param(dbfifo_int_thresh, int, 0644);
337 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
338
339 /*
340  * usecs to sleep while draining the dbfifo
341  */
342 static int dbfifo_drain_delay = 1000;
343 module_param(dbfifo_drain_delay, int, 0644);
344 MODULE_PARM_DESC(dbfifo_drain_delay,
345                  "usecs to sleep while draining the dbfifo");
346
347 static inline int cxgb4_set_addr_hash(struct port_info *pi)
348 {
349         struct adapter *adap = pi->adapter;
350         u64 vec = 0;
351         bool ucast = false;
352         struct hash_mac_addr *entry;
353
354         /* Calculate the hash vector for the updated list and program it */
355         list_for_each_entry(entry, &adap->mac_hlist, list) {
356                 ucast |= is_unicast_ether_addr(entry->addr);
357                 vec |= (1ULL << hash_mac_addr(entry->addr));
358         }
359         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
360                                 vec, false);
361 }
362
363 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
364 {
365         struct port_info *pi = netdev_priv(netdev);
366         struct adapter *adap = pi->adapter;
367         int ret;
368         u64 mhash = 0;
369         u64 uhash = 0;
370         bool free = false;
371         bool ucast = is_unicast_ether_addr(mac_addr);
372         const u8 *maclist[1] = {mac_addr};
373         struct hash_mac_addr *new_entry;
374
375         ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
376                                 NULL, ucast ? &uhash : &mhash, false);
377         if (ret < 0)
378                 goto out;
379         /* if hash != 0, then add the addr to hash addr list
380          * so on the end we will calculate the hash for the
381          * list and program it
382          */
383         if (uhash || mhash) {
384                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
385                 if (!new_entry)
386                         return -ENOMEM;
387                 ether_addr_copy(new_entry->addr, mac_addr);
388                 list_add_tail(&new_entry->list, &adap->mac_hlist);
389                 ret = cxgb4_set_addr_hash(pi);
390         }
391 out:
392         return ret < 0 ? ret : 0;
393 }
394
395 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
396 {
397         struct port_info *pi = netdev_priv(netdev);
398         struct adapter *adap = pi->adapter;
399         int ret;
400         const u8 *maclist[1] = {mac_addr};
401         struct hash_mac_addr *entry, *tmp;
402
403         /* If the MAC address to be removed is in the hash addr
404          * list, delete it from the list and update hash vector
405          */
406         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
407                 if (ether_addr_equal(entry->addr, mac_addr)) {
408                         list_del(&entry->list);
409                         kfree(entry);
410                         return cxgb4_set_addr_hash(pi);
411                 }
412         }
413
414         ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
415         return ret < 0 ? -EINVAL : 0;
416 }
417
418 /*
419  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
420  * If @mtu is -1 it is left unchanged.
421  */
422 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
423 {
424         struct port_info *pi = netdev_priv(dev);
425         struct adapter *adapter = pi->adapter;
426
427         __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
428         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
429
430         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
431                              (dev->flags & IFF_PROMISC) ? 1 : 0,
432                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
433                              sleep_ok);
434 }
435
436 /**
437  *      link_start - enable a port
438  *      @dev: the port to enable
439  *
440  *      Performs the MAC and PHY actions needed to enable a port.
441  */
442 static int link_start(struct net_device *dev)
443 {
444         int ret;
445         struct port_info *pi = netdev_priv(dev);
446         unsigned int mb = pi->adapter->pf;
447
448         /*
449          * We do not set address filters and promiscuity here, the stack does
450          * that step explicitly.
451          */
452         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
453                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
454         if (ret == 0) {
455                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
456                                     pi->xact_addr_filt, dev->dev_addr, true,
457                                     true);
458                 if (ret >= 0) {
459                         pi->xact_addr_filt = ret;
460                         ret = 0;
461                 }
462         }
463         if (ret == 0)
464                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
465                                     &pi->link_cfg);
466         if (ret == 0) {
467                 local_bh_disable();
468                 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
469                                           true, CXGB4_DCB_ENABLED);
470                 local_bh_enable();
471         }
472
473         return ret;
474 }
475
476 #ifdef CONFIG_CHELSIO_T4_DCB
477 /* Handle a Data Center Bridging update message from the firmware. */
478 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
479 {
480         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
481         struct net_device *dev = adap->port[adap->chan_map[port]];
482         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
483         int new_dcb_enabled;
484
485         cxgb4_dcb_handle_fw_update(adap, pcmd);
486         new_dcb_enabled = cxgb4_dcb_enabled(dev);
487
488         /* If the DCB has become enabled or disabled on the port then we're
489          * going to need to set up/tear down DCB Priority parameters for the
490          * TX Queues associated with the port.
491          */
492         if (new_dcb_enabled != old_dcb_enabled)
493                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
494 }
495 #endif /* CONFIG_CHELSIO_T4_DCB */
496
497 /* Response queue handler for the FW event queue.
498  */
499 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
500                           const struct pkt_gl *gl)
501 {
502         u8 opcode = ((const struct rss_header *)rsp)->opcode;
503
504         rsp++;                                          /* skip RSS header */
505
506         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
507          */
508         if (unlikely(opcode == CPL_FW4_MSG &&
509            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
510                 rsp++;
511                 opcode = ((const struct rss_header *)rsp)->opcode;
512                 rsp++;
513                 if (opcode != CPL_SGE_EGR_UPDATE) {
514                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
515                                 , opcode);
516                         goto out;
517                 }
518         }
519
520         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
521                 const struct cpl_sge_egr_update *p = (void *)rsp;
522                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
523                 struct sge_txq *txq;
524
525                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
526                 txq->restarts++;
527                 if (txq->q_type == CXGB4_TXQ_ETH) {
528                         struct sge_eth_txq *eq;
529
530                         eq = container_of(txq, struct sge_eth_txq, q);
531                         netif_tx_wake_queue(eq->txq);
532                 } else {
533                         struct sge_uld_txq *oq;
534
535                         oq = container_of(txq, struct sge_uld_txq, q);
536                         tasklet_schedule(&oq->qresume_tsk);
537                 }
538         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
539                 const struct cpl_fw6_msg *p = (void *)rsp;
540
541 #ifdef CONFIG_CHELSIO_T4_DCB
542                 const struct fw_port_cmd *pcmd = (const void *)p->data;
543                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
544                 unsigned int action =
545                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
546
547                 if (cmd == FW_PORT_CMD &&
548                     (action == FW_PORT_ACTION_GET_PORT_INFO ||
549                      action == FW_PORT_ACTION_GET_PORT_INFO32)) {
550                         int port = FW_PORT_CMD_PORTID_G(
551                                         be32_to_cpu(pcmd->op_to_portid));
552                         struct net_device *dev;
553                         int dcbxdis, state_input;
554
555                         dev = q->adap->port[q->adap->chan_map[port]];
556                         dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
557                                    ? !!(pcmd->u.info.dcbxdis_pkd &
558                                         FW_PORT_CMD_DCBXDIS_F)
559                                    : !!(pcmd->u.info32.lstatus32_to_cbllen32 &
560                                         FW_PORT_CMD_DCBXDIS32_F));
561                         state_input = (dcbxdis
562                                        ? CXGB4_DCB_INPUT_FW_DISABLED
563                                        : CXGB4_DCB_INPUT_FW_ENABLED);
564
565                         cxgb4_dcb_state_fsm(dev, state_input);
566                 }
567
568                 if (cmd == FW_PORT_CMD &&
569                     action == FW_PORT_ACTION_L2_DCB_CFG)
570                         dcb_rpl(q->adap, pcmd);
571                 else
572 #endif
573                         if (p->type == 0)
574                                 t4_handle_fw_rpl(q->adap, p->data);
575         } else if (opcode == CPL_L2T_WRITE_RPL) {
576                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
577
578                 do_l2t_write_rpl(q->adap, p);
579         } else if (opcode == CPL_SMT_WRITE_RPL) {
580                 const struct cpl_smt_write_rpl *p = (void *)rsp;
581
582                 do_smt_write_rpl(q->adap, p);
583         } else if (opcode == CPL_SET_TCB_RPL) {
584                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
585
586                 filter_rpl(q->adap, p);
587         } else if (opcode == CPL_ACT_OPEN_RPL) {
588                 const struct cpl_act_open_rpl *p = (void *)rsp;
589
590                 hash_filter_rpl(q->adap, p);
591         } else if (opcode == CPL_ABORT_RPL_RSS) {
592                 const struct cpl_abort_rpl_rss *p = (void *)rsp;
593
594                 hash_del_filter_rpl(q->adap, p);
595         } else if (opcode == CPL_SRQ_TABLE_RPL) {
596                 const struct cpl_srq_table_rpl *p = (void *)rsp;
597
598                 do_srq_table_rpl(q->adap, p);
599         } else
600                 dev_err(q->adap->pdev_dev,
601                         "unexpected CPL %#x on FW event queue\n", opcode);
602 out:
603         return 0;
604 }
605
606 static void disable_msi(struct adapter *adapter)
607 {
608         if (adapter->flags & USING_MSIX) {
609                 pci_disable_msix(adapter->pdev);
610                 adapter->flags &= ~USING_MSIX;
611         } else if (adapter->flags & USING_MSI) {
612                 pci_disable_msi(adapter->pdev);
613                 adapter->flags &= ~USING_MSI;
614         }
615 }
616
617 /*
618  * Interrupt handler for non-data events used with MSI-X.
619  */
620 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
621 {
622         struct adapter *adap = cookie;
623         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
624
625         if (v & PFSW_F) {
626                 adap->swintr = 1;
627                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
628         }
629         if (adap->flags & MASTER_PF)
630                 t4_slow_intr_handler(adap);
631         return IRQ_HANDLED;
632 }
633
634 /*
635  * Name the MSI-X interrupts.
636  */
637 static void name_msix_vecs(struct adapter *adap)
638 {
639         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
640
641         /* non-data interrupts */
642         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
643
644         /* FW events */
645         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
646                  adap->port[0]->name);
647
648         /* Ethernet queues */
649         for_each_port(adap, j) {
650                 struct net_device *d = adap->port[j];
651                 const struct port_info *pi = netdev_priv(d);
652
653                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
654                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
655                                  d->name, i);
656         }
657 }
658
659 static int request_msix_queue_irqs(struct adapter *adap)
660 {
661         struct sge *s = &adap->sge;
662         int err, ethqidx;
663         int msi_index = 2;
664
665         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
666                           adap->msix_info[1].desc, &s->fw_evtq);
667         if (err)
668                 return err;
669
670         for_each_ethrxq(s, ethqidx) {
671                 err = request_irq(adap->msix_info[msi_index].vec,
672                                   t4_sge_intr_msix, 0,
673                                   adap->msix_info[msi_index].desc,
674                                   &s->ethrxq[ethqidx].rspq);
675                 if (err)
676                         goto unwind;
677                 msi_index++;
678         }
679         return 0;
680
681 unwind:
682         while (--ethqidx >= 0)
683                 free_irq(adap->msix_info[--msi_index].vec,
684                          &s->ethrxq[ethqidx].rspq);
685         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
686         return err;
687 }
688
689 static void free_msix_queue_irqs(struct adapter *adap)
690 {
691         int i, msi_index = 2;
692         struct sge *s = &adap->sge;
693
694         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
695         for_each_ethrxq(s, i)
696                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
697 }
698
699 /**
700  *      cxgb4_write_rss - write the RSS table for a given port
701  *      @pi: the port
702  *      @queues: array of queue indices for RSS
703  *
704  *      Sets up the portion of the HW RSS table for the port's VI to distribute
705  *      packets to the Rx queues in @queues.
706  *      Should never be called before setting up sge eth rx queues
707  */
708 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
709 {
710         u16 *rss;
711         int i, err;
712         struct adapter *adapter = pi->adapter;
713         const struct sge_eth_rxq *rxq;
714
715         rxq = &adapter->sge.ethrxq[pi->first_qset];
716         rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
717         if (!rss)
718                 return -ENOMEM;
719
720         /* map the queue indices to queue ids */
721         for (i = 0; i < pi->rss_size; i++, queues++)
722                 rss[i] = rxq[*queues].rspq.abs_id;
723
724         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
725                                   pi->rss_size, rss, pi->rss_size);
726         /* If Tunnel All Lookup isn't specified in the global RSS
727          * Configuration, then we need to specify a default Ingress
728          * Queue for any ingress packets which aren't hashed.  We'll
729          * use our first ingress queue ...
730          */
731         if (!err)
732                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
733                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
734                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
735                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
736                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
737                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
738                                        rss[0]);
739         kfree(rss);
740         return err;
741 }
742
743 /**
744  *      setup_rss - configure RSS
745  *      @adap: the adapter
746  *
747  *      Sets up RSS for each port.
748  */
749 static int setup_rss(struct adapter *adap)
750 {
751         int i, j, err;
752
753         for_each_port(adap, i) {
754                 const struct port_info *pi = adap2pinfo(adap, i);
755
756                 /* Fill default values with equal distribution */
757                 for (j = 0; j < pi->rss_size; j++)
758                         pi->rss[j] = j % pi->nqsets;
759
760                 err = cxgb4_write_rss(pi, pi->rss);
761                 if (err)
762                         return err;
763         }
764         return 0;
765 }
766
767 /*
768  * Return the channel of the ingress queue with the given qid.
769  */
770 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
771 {
772         qid -= p->ingr_start;
773         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
774 }
775
776 /*
777  * Wait until all NAPI handlers are descheduled.
778  */
779 static void quiesce_rx(struct adapter *adap)
780 {
781         int i;
782
783         for (i = 0; i < adap->sge.ingr_sz; i++) {
784                 struct sge_rspq *q = adap->sge.ingr_map[i];
785
786                 if (q && q->handler)
787                         napi_disable(&q->napi);
788         }
789 }
790
791 /* Disable interrupt and napi handler */
792 static void disable_interrupts(struct adapter *adap)
793 {
794         if (adap->flags & FULL_INIT_DONE) {
795                 t4_intr_disable(adap);
796                 if (adap->flags & USING_MSIX) {
797                         free_msix_queue_irqs(adap);
798                         free_irq(adap->msix_info[0].vec, adap);
799                 } else {
800                         free_irq(adap->pdev->irq, adap);
801                 }
802                 quiesce_rx(adap);
803         }
804 }
805
806 /*
807  * Enable NAPI scheduling and interrupt generation for all Rx queues.
808  */
809 static void enable_rx(struct adapter *adap)
810 {
811         int i;
812
813         for (i = 0; i < adap->sge.ingr_sz; i++) {
814                 struct sge_rspq *q = adap->sge.ingr_map[i];
815
816                 if (!q)
817                         continue;
818                 if (q->handler)
819                         napi_enable(&q->napi);
820
821                 /* 0-increment GTS to start the timer and enable interrupts */
822                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
823                              SEINTARM_V(q->intr_params) |
824                              INGRESSQID_V(q->cntxt_id));
825         }
826 }
827
828
829 static int setup_fw_sge_queues(struct adapter *adap)
830 {
831         struct sge *s = &adap->sge;
832         int err = 0;
833
834         bitmap_zero(s->starving_fl, s->egr_sz);
835         bitmap_zero(s->txq_maperr, s->egr_sz);
836
837         if (adap->flags & USING_MSIX)
838                 adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
839         else {
840                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
841                                        NULL, NULL, NULL, -1);
842                 if (err)
843                         return err;
844                 adap->msi_idx = -((int)s->intrq.abs_id + 1);
845         }
846
847         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
848                                adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
849         return err;
850 }
851
852 /**
853  *      setup_sge_queues - configure SGE Tx/Rx/response queues
854  *      @adap: the adapter
855  *
856  *      Determines how many sets of SGE queues to use and initializes them.
857  *      We support multiple queue sets per port if we have MSI-X, otherwise
858  *      just one queue set per port.
859  */
860 static int setup_sge_queues(struct adapter *adap)
861 {
862         int err, i, j;
863         struct sge *s = &adap->sge;
864         struct sge_uld_rxq_info *rxq_info = NULL;
865         unsigned int cmplqid = 0;
866
867         if (is_uld(adap))
868                 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
869
870         for_each_port(adap, i) {
871                 struct net_device *dev = adap->port[i];
872                 struct port_info *pi = netdev_priv(dev);
873                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
874                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
875
876                 for (j = 0; j < pi->nqsets; j++, q++) {
877                         if (adap->msi_idx > 0)
878                                 adap->msi_idx++;
879                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
880                                                adap->msi_idx, &q->fl,
881                                                t4_ethrx_handler,
882                                                NULL,
883                                                t4_get_tp_ch_map(adap,
884                                                                 pi->tx_chan));
885                         if (err)
886                                 goto freeout;
887                         q->rspq.idx = j;
888                         memset(&q->stats, 0, sizeof(q->stats));
889                 }
890                 for (j = 0; j < pi->nqsets; j++, t++) {
891                         err = t4_sge_alloc_eth_txq(adap, t, dev,
892                                         netdev_get_tx_queue(dev, j),
893                                         s->fw_evtq.cntxt_id);
894                         if (err)
895                                 goto freeout;
896                 }
897         }
898
899         for_each_port(adap, i) {
900                 /* Note that cmplqid below is 0 if we don't
901                  * have RDMA queues, and that's the right value.
902                  */
903                 if (rxq_info)
904                         cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
905
906                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
907                                             s->fw_evtq.cntxt_id, cmplqid);
908                 if (err)
909                         goto freeout;
910         }
911
912         if (!is_t4(adap->params.chip)) {
913                 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
914                                            netdev_get_tx_queue(adap->port[0], 0)
915                                            , s->fw_evtq.cntxt_id);
916                 if (err)
917                         goto freeout;
918         }
919
920         t4_write_reg(adap, is_t4(adap->params.chip) ?
921                                 MPS_TRC_RSS_CONTROL_A :
922                                 MPS_T5_TRC_RSS_CONTROL_A,
923                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
924                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
925         return 0;
926 freeout:
927         t4_free_sge_resources(adap);
928         return err;
929 }
930
931 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
932                              void *accel_priv, select_queue_fallback_t fallback)
933 {
934         int txq;
935
936 #ifdef CONFIG_CHELSIO_T4_DCB
937         /* If a Data Center Bridging has been successfully negotiated on this
938          * link then we'll use the skb's priority to map it to a TX Queue.
939          * The skb's priority is determined via the VLAN Tag Priority Code
940          * Point field.
941          */
942         if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
943                 u16 vlan_tci;
944                 int err;
945
946                 err = vlan_get_tag(skb, &vlan_tci);
947                 if (unlikely(err)) {
948                         if (net_ratelimit())
949                                 netdev_warn(dev,
950                                             "TX Packet without VLAN Tag on DCB Link\n");
951                         txq = 0;
952                 } else {
953                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
954 #ifdef CONFIG_CHELSIO_T4_FCOE
955                         if (skb->protocol == htons(ETH_P_FCOE))
956                                 txq = skb->priority & 0x7;
957 #endif /* CONFIG_CHELSIO_T4_FCOE */
958                 }
959                 return txq;
960         }
961 #endif /* CONFIG_CHELSIO_T4_DCB */
962
963         if (select_queue) {
964                 txq = (skb_rx_queue_recorded(skb)
965                         ? skb_get_rx_queue(skb)
966                         : smp_processor_id());
967
968                 while (unlikely(txq >= dev->real_num_tx_queues))
969                         txq -= dev->real_num_tx_queues;
970
971                 return txq;
972         }
973
974         return fallback(dev, skb) % dev->real_num_tx_queues;
975 }
976
977 static int closest_timer(const struct sge *s, int time)
978 {
979         int i, delta, match = 0, min_delta = INT_MAX;
980
981         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
982                 delta = time - s->timer_val[i];
983                 if (delta < 0)
984                         delta = -delta;
985                 if (delta < min_delta) {
986                         min_delta = delta;
987                         match = i;
988                 }
989         }
990         return match;
991 }
992
993 static int closest_thres(const struct sge *s, int thres)
994 {
995         int i, delta, match = 0, min_delta = INT_MAX;
996
997         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
998                 delta = thres - s->counter_val[i];
999                 if (delta < 0)
1000                         delta = -delta;
1001                 if (delta < min_delta) {
1002                         min_delta = delta;
1003                         match = i;
1004                 }
1005         }
1006         return match;
1007 }
1008
1009 /**
1010  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1011  *      @q: the Rx queue
1012  *      @us: the hold-off time in us, or 0 to disable timer
1013  *      @cnt: the hold-off packet count, or 0 to disable counter
1014  *
1015  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1016  *      one of the two needs to be enabled for the queue to generate interrupts.
1017  */
1018 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1019                                unsigned int us, unsigned int cnt)
1020 {
1021         struct adapter *adap = q->adap;
1022
1023         if ((us | cnt) == 0)
1024                 cnt = 1;
1025
1026         if (cnt) {
1027                 int err;
1028                 u32 v, new_idx;
1029
1030                 new_idx = closest_thres(&adap->sge, cnt);
1031                 if (q->desc && q->pktcnt_idx != new_idx) {
1032                         /* the queue has already been created, update it */
1033                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1034                             FW_PARAMS_PARAM_X_V(
1035                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1036                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1037                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1038                                             &v, &new_idx);
1039                         if (err)
1040                                 return err;
1041                 }
1042                 q->pktcnt_idx = new_idx;
1043         }
1044
1045         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1046         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1047         return 0;
1048 }
1049
1050 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1051 {
1052         const struct port_info *pi = netdev_priv(dev);
1053         netdev_features_t changed = dev->features ^ features;
1054         int err;
1055
1056         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1057                 return 0;
1058
1059         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1060                             -1, -1, -1,
1061                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1062         if (unlikely(err))
1063                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1064         return err;
1065 }
1066
1067 static int setup_debugfs(struct adapter *adap)
1068 {
1069         if (IS_ERR_OR_NULL(adap->debugfs_root))
1070                 return -1;
1071
1072 #ifdef CONFIG_DEBUG_FS
1073         t4_setup_debugfs(adap);
1074 #endif
1075         return 0;
1076 }
1077
1078 /*
1079  * upper-layer driver support
1080  */
1081
1082 /*
1083  * Allocate an active-open TID and set it to the supplied value.
1084  */
1085 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1086 {
1087         int atid = -1;
1088
1089         spin_lock_bh(&t->atid_lock);
1090         if (t->afree) {
1091                 union aopen_entry *p = t->afree;
1092
1093                 atid = (p - t->atid_tab) + t->atid_base;
1094                 t->afree = p->next;
1095                 p->data = data;
1096                 t->atids_in_use++;
1097         }
1098         spin_unlock_bh(&t->atid_lock);
1099         return atid;
1100 }
1101 EXPORT_SYMBOL(cxgb4_alloc_atid);
1102
1103 /*
1104  * Release an active-open TID.
1105  */
1106 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1107 {
1108         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1109
1110         spin_lock_bh(&t->atid_lock);
1111         p->next = t->afree;
1112         t->afree = p;
1113         t->atids_in_use--;
1114         spin_unlock_bh(&t->atid_lock);
1115 }
1116 EXPORT_SYMBOL(cxgb4_free_atid);
1117
1118 /*
1119  * Allocate a server TID and set it to the supplied value.
1120  */
1121 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1122 {
1123         int stid;
1124
1125         spin_lock_bh(&t->stid_lock);
1126         if (family == PF_INET) {
1127                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1128                 if (stid < t->nstids)
1129                         __set_bit(stid, t->stid_bmap);
1130                 else
1131                         stid = -1;
1132         } else {
1133                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1134                 if (stid < 0)
1135                         stid = -1;
1136         }
1137         if (stid >= 0) {
1138                 t->stid_tab[stid].data = data;
1139                 stid += t->stid_base;
1140                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1141                  * This is equivalent to 4 TIDs. With CLIP enabled it
1142                  * needs 2 TIDs.
1143                  */
1144                 if (family == PF_INET6) {
1145                         t->stids_in_use += 2;
1146                         t->v6_stids_in_use += 2;
1147                 } else {
1148                         t->stids_in_use++;
1149                 }
1150         }
1151         spin_unlock_bh(&t->stid_lock);
1152         return stid;
1153 }
1154 EXPORT_SYMBOL(cxgb4_alloc_stid);
1155
1156 /* Allocate a server filter TID and set it to the supplied value.
1157  */
1158 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1159 {
1160         int stid;
1161
1162         spin_lock_bh(&t->stid_lock);
1163         if (family == PF_INET) {
1164                 stid = find_next_zero_bit(t->stid_bmap,
1165                                 t->nstids + t->nsftids, t->nstids);
1166                 if (stid < (t->nstids + t->nsftids))
1167                         __set_bit(stid, t->stid_bmap);
1168                 else
1169                         stid = -1;
1170         } else {
1171                 stid = -1;
1172         }
1173         if (stid >= 0) {
1174                 t->stid_tab[stid].data = data;
1175                 stid -= t->nstids;
1176                 stid += t->sftid_base;
1177                 t->sftids_in_use++;
1178         }
1179         spin_unlock_bh(&t->stid_lock);
1180         return stid;
1181 }
1182 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1183
1184 /* Release a server TID.
1185  */
1186 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1187 {
1188         /* Is it a server filter TID? */
1189         if (t->nsftids && (stid >= t->sftid_base)) {
1190                 stid -= t->sftid_base;
1191                 stid += t->nstids;
1192         } else {
1193                 stid -= t->stid_base;
1194         }
1195
1196         spin_lock_bh(&t->stid_lock);
1197         if (family == PF_INET)
1198                 __clear_bit(stid, t->stid_bmap);
1199         else
1200                 bitmap_release_region(t->stid_bmap, stid, 1);
1201         t->stid_tab[stid].data = NULL;
1202         if (stid < t->nstids) {
1203                 if (family == PF_INET6) {
1204                         t->stids_in_use -= 2;
1205                         t->v6_stids_in_use -= 2;
1206                 } else {
1207                         t->stids_in_use--;
1208                 }
1209         } else {
1210                 t->sftids_in_use--;
1211         }
1212
1213         spin_unlock_bh(&t->stid_lock);
1214 }
1215 EXPORT_SYMBOL(cxgb4_free_stid);
1216
1217 /*
1218  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1219  */
1220 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1221                            unsigned int tid)
1222 {
1223         struct cpl_tid_release *req;
1224
1225         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1226         req = __skb_put(skb, sizeof(*req));
1227         INIT_TP_WR(req, tid);
1228         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1229 }
1230
1231 /*
1232  * Queue a TID release request and if necessary schedule a work queue to
1233  * process it.
1234  */
1235 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1236                                     unsigned int tid)
1237 {
1238         void **p = &t->tid_tab[tid];
1239         struct adapter *adap = container_of(t, struct adapter, tids);
1240
1241         spin_lock_bh(&adap->tid_release_lock);
1242         *p = adap->tid_release_head;
1243         /* Low 2 bits encode the Tx channel number */
1244         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1245         if (!adap->tid_release_task_busy) {
1246                 adap->tid_release_task_busy = true;
1247                 queue_work(adap->workq, &adap->tid_release_task);
1248         }
1249         spin_unlock_bh(&adap->tid_release_lock);
1250 }
1251
1252 /*
1253  * Process the list of pending TID release requests.
1254  */
1255 static void process_tid_release_list(struct work_struct *work)
1256 {
1257         struct sk_buff *skb;
1258         struct adapter *adap;
1259
1260         adap = container_of(work, struct adapter, tid_release_task);
1261
1262         spin_lock_bh(&adap->tid_release_lock);
1263         while (adap->tid_release_head) {
1264                 void **p = adap->tid_release_head;
1265                 unsigned int chan = (uintptr_t)p & 3;
1266                 p = (void *)p - chan;
1267
1268                 adap->tid_release_head = *p;
1269                 *p = NULL;
1270                 spin_unlock_bh(&adap->tid_release_lock);
1271
1272                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1273                                          GFP_KERNEL)))
1274                         schedule_timeout_uninterruptible(1);
1275
1276                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1277                 t4_ofld_send(adap, skb);
1278                 spin_lock_bh(&adap->tid_release_lock);
1279         }
1280         adap->tid_release_task_busy = false;
1281         spin_unlock_bh(&adap->tid_release_lock);
1282 }
1283
1284 /*
1285  * Release a TID and inform HW.  If we are unable to allocate the release
1286  * message we defer to a work queue.
1287  */
1288 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1289                       unsigned short family)
1290 {
1291         struct sk_buff *skb;
1292         struct adapter *adap = container_of(t, struct adapter, tids);
1293
1294         WARN_ON(tid >= t->ntids);
1295
1296         if (t->tid_tab[tid]) {
1297                 t->tid_tab[tid] = NULL;
1298                 atomic_dec(&t->conns_in_use);
1299                 if (t->hash_base && (tid >= t->hash_base)) {
1300                         if (family == AF_INET6)
1301                                 atomic_sub(2, &t->hash_tids_in_use);
1302                         else
1303                                 atomic_dec(&t->hash_tids_in_use);
1304                 } else {
1305                         if (family == AF_INET6)
1306                                 atomic_sub(2, &t->tids_in_use);
1307                         else
1308                                 atomic_dec(&t->tids_in_use);
1309                 }
1310         }
1311
1312         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1313         if (likely(skb)) {
1314                 mk_tid_release(skb, chan, tid);
1315                 t4_ofld_send(adap, skb);
1316         } else
1317                 cxgb4_queue_tid_release(t, chan, tid);
1318 }
1319 EXPORT_SYMBOL(cxgb4_remove_tid);
1320
1321 /*
1322  * Allocate and initialize the TID tables.  Returns 0 on success.
1323  */
1324 static int tid_init(struct tid_info *t)
1325 {
1326         struct adapter *adap = container_of(t, struct adapter, tids);
1327         unsigned int max_ftids = t->nftids + t->nsftids;
1328         unsigned int natids = t->natids;
1329         unsigned int stid_bmap_size;
1330         unsigned int ftid_bmap_size;
1331         size_t size;
1332
1333         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1334         ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1335         size = t->ntids * sizeof(*t->tid_tab) +
1336                natids * sizeof(*t->atid_tab) +
1337                t->nstids * sizeof(*t->stid_tab) +
1338                t->nsftids * sizeof(*t->stid_tab) +
1339                stid_bmap_size * sizeof(long) +
1340                max_ftids * sizeof(*t->ftid_tab) +
1341                ftid_bmap_size * sizeof(long);
1342
1343         t->tid_tab = kvzalloc(size, GFP_KERNEL);
1344         if (!t->tid_tab)
1345                 return -ENOMEM;
1346
1347         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1348         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1349         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1350         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1351         t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1352         spin_lock_init(&t->stid_lock);
1353         spin_lock_init(&t->atid_lock);
1354         spin_lock_init(&t->ftid_lock);
1355
1356         t->stids_in_use = 0;
1357         t->v6_stids_in_use = 0;
1358         t->sftids_in_use = 0;
1359         t->afree = NULL;
1360         t->atids_in_use = 0;
1361         atomic_set(&t->tids_in_use, 0);
1362         atomic_set(&t->conns_in_use, 0);
1363         atomic_set(&t->hash_tids_in_use, 0);
1364
1365         /* Setup the free list for atid_tab and clear the stid bitmap. */
1366         if (natids) {
1367                 while (--natids)
1368                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1369                 t->afree = t->atid_tab;
1370         }
1371
1372         if (is_offload(adap)) {
1373                 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1374                 /* Reserve stid 0 for T4/T5 adapters */
1375                 if (!t->stid_base &&
1376                     CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1377                         __set_bit(0, t->stid_bmap);
1378         }
1379
1380         bitmap_zero(t->ftid_bmap, t->nftids);
1381         return 0;
1382 }
1383
1384 /**
1385  *      cxgb4_create_server - create an IP server
1386  *      @dev: the device
1387  *      @stid: the server TID
1388  *      @sip: local IP address to bind server to
1389  *      @sport: the server's TCP port
1390  *      @queue: queue to direct messages from this server to
1391  *
1392  *      Create an IP server for the given port and address.
1393  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1394  */
1395 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1396                         __be32 sip, __be16 sport, __be16 vlan,
1397                         unsigned int queue)
1398 {
1399         unsigned int chan;
1400         struct sk_buff *skb;
1401         struct adapter *adap;
1402         struct cpl_pass_open_req *req;
1403         int ret;
1404
1405         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1406         if (!skb)
1407                 return -ENOMEM;
1408
1409         adap = netdev2adap(dev);
1410         req = __skb_put(skb, sizeof(*req));
1411         INIT_TP_WR(req, 0);
1412         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1413         req->local_port = sport;
1414         req->peer_port = htons(0);
1415         req->local_ip = sip;
1416         req->peer_ip = htonl(0);
1417         chan = rxq_to_chan(&adap->sge, queue);
1418         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1419         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1420                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1421         ret = t4_mgmt_tx(adap, skb);
1422         return net_xmit_eval(ret);
1423 }
1424 EXPORT_SYMBOL(cxgb4_create_server);
1425
1426 /*      cxgb4_create_server6 - create an IPv6 server
1427  *      @dev: the device
1428  *      @stid: the server TID
1429  *      @sip: local IPv6 address to bind server to
1430  *      @sport: the server's TCP port
1431  *      @queue: queue to direct messages from this server to
1432  *
1433  *      Create an IPv6 server for the given port and address.
1434  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1435  */
1436 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1437                          const struct in6_addr *sip, __be16 sport,
1438                          unsigned int queue)
1439 {
1440         unsigned int chan;
1441         struct sk_buff *skb;
1442         struct adapter *adap;
1443         struct cpl_pass_open_req6 *req;
1444         int ret;
1445
1446         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1447         if (!skb)
1448                 return -ENOMEM;
1449
1450         adap = netdev2adap(dev);
1451         req = __skb_put(skb, sizeof(*req));
1452         INIT_TP_WR(req, 0);
1453         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1454         req->local_port = sport;
1455         req->peer_port = htons(0);
1456         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1457         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1458         req->peer_ip_hi = cpu_to_be64(0);
1459         req->peer_ip_lo = cpu_to_be64(0);
1460         chan = rxq_to_chan(&adap->sge, queue);
1461         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1462         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1463                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1464         ret = t4_mgmt_tx(adap, skb);
1465         return net_xmit_eval(ret);
1466 }
1467 EXPORT_SYMBOL(cxgb4_create_server6);
1468
1469 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1470                         unsigned int queue, bool ipv6)
1471 {
1472         struct sk_buff *skb;
1473         struct adapter *adap;
1474         struct cpl_close_listsvr_req *req;
1475         int ret;
1476
1477         adap = netdev2adap(dev);
1478
1479         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1480         if (!skb)
1481                 return -ENOMEM;
1482
1483         req = __skb_put(skb, sizeof(*req));
1484         INIT_TP_WR(req, 0);
1485         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1486         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1487                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1488         ret = t4_mgmt_tx(adap, skb);
1489         return net_xmit_eval(ret);
1490 }
1491 EXPORT_SYMBOL(cxgb4_remove_server);
1492
1493 /**
1494  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1495  *      @mtus: the HW MTU table
1496  *      @mtu: the target MTU
1497  *      @idx: index of selected entry in the MTU table
1498  *
1499  *      Returns the index and the value in the HW MTU table that is closest to
1500  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1501  *      table, in which case that smallest available value is selected.
1502  */
1503 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1504                             unsigned int *idx)
1505 {
1506         unsigned int i = 0;
1507
1508         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1509                 ++i;
1510         if (idx)
1511                 *idx = i;
1512         return mtus[i];
1513 }
1514 EXPORT_SYMBOL(cxgb4_best_mtu);
1515
1516 /**
1517  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1518  *     @mtus: the HW MTU table
1519  *     @header_size: Header Size
1520  *     @data_size_max: maximum Data Segment Size
1521  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1522  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1523  *
1524  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1525  *     MTU Table based solely on a Maximum MTU parameter, we break that
1526  *     parameter up into a Header Size and Maximum Data Segment Size, and
1527  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1528  *     the Hardware MTU Table which will result in a Data Segment Size with
1529  *     the requested alignment _and_ that MTU isn't "too far" from the
1530  *     closest MTU, then we'll return that rather than the closest MTU.
1531  */
1532 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1533                                     unsigned short header_size,
1534                                     unsigned short data_size_max,
1535                                     unsigned short data_size_align,
1536                                     unsigned int *mtu_idxp)
1537 {
1538         unsigned short max_mtu = header_size + data_size_max;
1539         unsigned short data_size_align_mask = data_size_align - 1;
1540         int mtu_idx, aligned_mtu_idx;
1541
1542         /* Scan the MTU Table till we find an MTU which is larger than our
1543          * Maximum MTU or we reach the end of the table.  Along the way,
1544          * record the last MTU found, if any, which will result in a Data
1545          * Segment Length matching the requested alignment.
1546          */
1547         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1548                 unsigned short data_size = mtus[mtu_idx] - header_size;
1549
1550                 /* If this MTU minus the Header Size would result in a
1551                  * Data Segment Size of the desired alignment, remember it.
1552                  */
1553                 if ((data_size & data_size_align_mask) == 0)
1554                         aligned_mtu_idx = mtu_idx;
1555
1556                 /* If we're not at the end of the Hardware MTU Table and the
1557                  * next element is larger than our Maximum MTU, drop out of
1558                  * the loop.
1559                  */
1560                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1561                         break;
1562         }
1563
1564         /* If we fell out of the loop because we ran to the end of the table,
1565          * then we just have to use the last [largest] entry.
1566          */
1567         if (mtu_idx == NMTUS)
1568                 mtu_idx--;
1569
1570         /* If we found an MTU which resulted in the requested Data Segment
1571          * Length alignment and that's "not far" from the largest MTU which is
1572          * less than or equal to the maximum MTU, then use that.
1573          */
1574         if (aligned_mtu_idx >= 0 &&
1575             mtu_idx - aligned_mtu_idx <= 1)
1576                 mtu_idx = aligned_mtu_idx;
1577
1578         /* If the caller has passed in an MTU Index pointer, pass the
1579          * MTU Index back.  Return the MTU value.
1580          */
1581         if (mtu_idxp)
1582                 *mtu_idxp = mtu_idx;
1583         return mtus[mtu_idx];
1584 }
1585 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1586
1587 /**
1588  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1589  *      @chip: chip type
1590  *      @viid: VI id of the given port
1591  *
1592  *      Return the SMT index for this VI.
1593  */
1594 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1595 {
1596         /* In T4/T5, SMT contains 256 SMAC entries organized in
1597          * 128 rows of 2 entries each.
1598          * In T6, SMT contains 256 SMAC entries in 256 rows.
1599          * TODO: The below code needs to be updated when we add support
1600          * for 256 VFs.
1601          */
1602         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1603                 return ((viid & 0x7f) << 1);
1604         else
1605                 return (viid & 0x7f);
1606 }
1607 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1608
1609 /**
1610  *      cxgb4_port_chan - get the HW channel of a port
1611  *      @dev: the net device for the port
1612  *
1613  *      Return the HW Tx channel of the given port.
1614  */
1615 unsigned int cxgb4_port_chan(const struct net_device *dev)
1616 {
1617         return netdev2pinfo(dev)->tx_chan;
1618 }
1619 EXPORT_SYMBOL(cxgb4_port_chan);
1620
1621 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1622 {
1623         struct adapter *adap = netdev2adap(dev);
1624         u32 v1, v2, lp_count, hp_count;
1625
1626         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1627         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1628         if (is_t4(adap->params.chip)) {
1629                 lp_count = LP_COUNT_G(v1);
1630                 hp_count = HP_COUNT_G(v1);
1631         } else {
1632                 lp_count = LP_COUNT_T5_G(v1);
1633                 hp_count = HP_COUNT_T5_G(v2);
1634         }
1635         return lpfifo ? lp_count : hp_count;
1636 }
1637 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1638
1639 /**
1640  *      cxgb4_port_viid - get the VI id of a port
1641  *      @dev: the net device for the port
1642  *
1643  *      Return the VI id of the given port.
1644  */
1645 unsigned int cxgb4_port_viid(const struct net_device *dev)
1646 {
1647         return netdev2pinfo(dev)->viid;
1648 }
1649 EXPORT_SYMBOL(cxgb4_port_viid);
1650
1651 /**
1652  *      cxgb4_port_idx - get the index of a port
1653  *      @dev: the net device for the port
1654  *
1655  *      Return the index of the given port.
1656  */
1657 unsigned int cxgb4_port_idx(const struct net_device *dev)
1658 {
1659         return netdev2pinfo(dev)->port_id;
1660 }
1661 EXPORT_SYMBOL(cxgb4_port_idx);
1662
1663 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1664                          struct tp_tcp_stats *v6)
1665 {
1666         struct adapter *adap = pci_get_drvdata(pdev);
1667
1668         spin_lock(&adap->stats_lock);
1669         t4_tp_get_tcp_stats(adap, v4, v6, false);
1670         spin_unlock(&adap->stats_lock);
1671 }
1672 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1673
1674 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1675                       const unsigned int *pgsz_order)
1676 {
1677         struct adapter *adap = netdev2adap(dev);
1678
1679         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1680         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1681                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1682                      HPZ3_V(pgsz_order[3]));
1683 }
1684 EXPORT_SYMBOL(cxgb4_iscsi_init);
1685
1686 int cxgb4_flush_eq_cache(struct net_device *dev)
1687 {
1688         struct adapter *adap = netdev2adap(dev);
1689
1690         return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1691 }
1692 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1693
1694 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1695 {
1696         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1697         __be64 indices;
1698         int ret;
1699
1700         spin_lock(&adap->win0_lock);
1701         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1702                            sizeof(indices), (__be32 *)&indices,
1703                            T4_MEMORY_READ);
1704         spin_unlock(&adap->win0_lock);
1705         if (!ret) {
1706                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1707                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1708         }
1709         return ret;
1710 }
1711
1712 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1713                         u16 size)
1714 {
1715         struct adapter *adap = netdev2adap(dev);
1716         u16 hw_pidx, hw_cidx;
1717         int ret;
1718
1719         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1720         if (ret)
1721                 goto out;
1722
1723         if (pidx != hw_pidx) {
1724                 u16 delta;
1725                 u32 val;
1726
1727                 if (pidx >= hw_pidx)
1728                         delta = pidx - hw_pidx;
1729                 else
1730                         delta = size - hw_pidx + pidx;
1731
1732                 if (is_t4(adap->params.chip))
1733                         val = PIDX_V(delta);
1734                 else
1735                         val = PIDX_T5_V(delta);
1736                 wmb();
1737                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1738                              QID_V(qid) | val);
1739         }
1740 out:
1741         return ret;
1742 }
1743 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1744
1745 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1746 {
1747         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1748         u32 edc0_end, edc1_end, mc0_end, mc1_end;
1749         u32 offset, memtype, memaddr;
1750         struct adapter *adap;
1751         u32 hma_size = 0;
1752         int ret;
1753
1754         adap = netdev2adap(dev);
1755
1756         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1757
1758         /* Figure out where the offset lands in the Memory Type/Address scheme.
1759          * This code assumes that the memory is laid out starting at offset 0
1760          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1761          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1762          * MC0, and some have both MC0 and MC1.
1763          */
1764         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1765         edc0_size = EDRAM0_SIZE_G(size) << 20;
1766         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1767         edc1_size = EDRAM1_SIZE_G(size) << 20;
1768         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1769         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1770
1771         if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1772                 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1773                 hma_size = EXT_MEM1_SIZE_G(size) << 20;
1774         }
1775         edc0_end = edc0_size;
1776         edc1_end = edc0_end + edc1_size;
1777         mc0_end = edc1_end + mc0_size;
1778
1779         if (offset < edc0_end) {
1780                 memtype = MEM_EDC0;
1781                 memaddr = offset;
1782         } else if (offset < edc1_end) {
1783                 memtype = MEM_EDC1;
1784                 memaddr = offset - edc0_end;
1785         } else {
1786                 if (hma_size && (offset < (edc1_end + hma_size))) {
1787                         memtype = MEM_HMA;
1788                         memaddr = offset - edc1_end;
1789                 } else if (offset < mc0_end) {
1790                         memtype = MEM_MC0;
1791                         memaddr = offset - edc1_end;
1792                 } else if (is_t5(adap->params.chip)) {
1793                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1794                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1795                         mc1_end = mc0_end + mc1_size;
1796                         if (offset < mc1_end) {
1797                                 memtype = MEM_MC1;
1798                                 memaddr = offset - mc0_end;
1799                         } else {
1800                                 /* offset beyond the end of any memory */
1801                                 goto err;
1802                         }
1803                 } else {
1804                         /* T4/T6 only has a single memory channel */
1805                         goto err;
1806                 }
1807         }
1808
1809         spin_lock(&adap->win0_lock);
1810         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1811         spin_unlock(&adap->win0_lock);
1812         return ret;
1813
1814 err:
1815         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1816                 stag, offset);
1817         return -EINVAL;
1818 }
1819 EXPORT_SYMBOL(cxgb4_read_tpte);
1820
1821 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1822 {
1823         u32 hi, lo;
1824         struct adapter *adap;
1825
1826         adap = netdev2adap(dev);
1827         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1828         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1829
1830         return ((u64)hi << 32) | (u64)lo;
1831 }
1832 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1833
1834 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1835                          unsigned int qid,
1836                          enum cxgb4_bar2_qtype qtype,
1837                          int user,
1838                          u64 *pbar2_qoffset,
1839                          unsigned int *pbar2_qid)
1840 {
1841         return t4_bar2_sge_qregs(netdev2adap(dev),
1842                                  qid,
1843                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
1844                                   ? T4_BAR2_QTYPE_EGRESS
1845                                   : T4_BAR2_QTYPE_INGRESS),
1846                                  user,
1847                                  pbar2_qoffset,
1848                                  pbar2_qid);
1849 }
1850 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1851
1852 static struct pci_driver cxgb4_driver;
1853
1854 static void check_neigh_update(struct neighbour *neigh)
1855 {
1856         const struct device *parent;
1857         const struct net_device *netdev = neigh->dev;
1858
1859         if (is_vlan_dev(netdev))
1860                 netdev = vlan_dev_real_dev(netdev);
1861         parent = netdev->dev.parent;
1862         if (parent && parent->driver == &cxgb4_driver.driver)
1863                 t4_l2t_update(dev_get_drvdata(parent), neigh);
1864 }
1865
1866 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1867                        void *data)
1868 {
1869         switch (event) {
1870         case NETEVENT_NEIGH_UPDATE:
1871                 check_neigh_update(data);
1872                 break;
1873         case NETEVENT_REDIRECT:
1874         default:
1875                 break;
1876         }
1877         return 0;
1878 }
1879
1880 static bool netevent_registered;
1881 static struct notifier_block cxgb4_netevent_nb = {
1882         .notifier_call = netevent_cb
1883 };
1884
1885 static void drain_db_fifo(struct adapter *adap, int usecs)
1886 {
1887         u32 v1, v2, lp_count, hp_count;
1888
1889         do {
1890                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1891                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1892                 if (is_t4(adap->params.chip)) {
1893                         lp_count = LP_COUNT_G(v1);
1894                         hp_count = HP_COUNT_G(v1);
1895                 } else {
1896                         lp_count = LP_COUNT_T5_G(v1);
1897                         hp_count = HP_COUNT_T5_G(v2);
1898                 }
1899
1900                 if (lp_count == 0 && hp_count == 0)
1901                         break;
1902                 set_current_state(TASK_UNINTERRUPTIBLE);
1903                 schedule_timeout(usecs_to_jiffies(usecs));
1904         } while (1);
1905 }
1906
1907 static void disable_txq_db(struct sge_txq *q)
1908 {
1909         unsigned long flags;
1910
1911         spin_lock_irqsave(&q->db_lock, flags);
1912         q->db_disabled = 1;
1913         spin_unlock_irqrestore(&q->db_lock, flags);
1914 }
1915
1916 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1917 {
1918         spin_lock_irq(&q->db_lock);
1919         if (q->db_pidx_inc) {
1920                 /* Make sure that all writes to the TX descriptors
1921                  * are committed before we tell HW about them.
1922                  */
1923                 wmb();
1924                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1925                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1926                 q->db_pidx_inc = 0;
1927         }
1928         q->db_disabled = 0;
1929         spin_unlock_irq(&q->db_lock);
1930 }
1931
1932 static void disable_dbs(struct adapter *adap)
1933 {
1934         int i;
1935
1936         for_each_ethrxq(&adap->sge, i)
1937                 disable_txq_db(&adap->sge.ethtxq[i].q);
1938         if (is_offload(adap)) {
1939                 struct sge_uld_txq_info *txq_info =
1940                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1941
1942                 if (txq_info) {
1943                         for_each_ofldtxq(&adap->sge, i) {
1944                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1945
1946                                 disable_txq_db(&txq->q);
1947                         }
1948                 }
1949         }
1950         for_each_port(adap, i)
1951                 disable_txq_db(&adap->sge.ctrlq[i].q);
1952 }
1953
1954 static void enable_dbs(struct adapter *adap)
1955 {
1956         int i;
1957
1958         for_each_ethrxq(&adap->sge, i)
1959                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1960         if (is_offload(adap)) {
1961                 struct sge_uld_txq_info *txq_info =
1962                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1963
1964                 if (txq_info) {
1965                         for_each_ofldtxq(&adap->sge, i) {
1966                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1967
1968                                 enable_txq_db(adap, &txq->q);
1969                         }
1970                 }
1971         }
1972         for_each_port(adap, i)
1973                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1974 }
1975
1976 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1977 {
1978         enum cxgb4_uld type = CXGB4_ULD_RDMA;
1979
1980         if (adap->uld && adap->uld[type].handle)
1981                 adap->uld[type].control(adap->uld[type].handle, cmd);
1982 }
1983
1984 static void process_db_full(struct work_struct *work)
1985 {
1986         struct adapter *adap;
1987
1988         adap = container_of(work, struct adapter, db_full_task);
1989
1990         drain_db_fifo(adap, dbfifo_drain_delay);
1991         enable_dbs(adap);
1992         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1993         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1994                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1995                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1996                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1997         else
1998                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1999                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2000 }
2001
2002 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2003 {
2004         u16 hw_pidx, hw_cidx;
2005         int ret;
2006
2007         spin_lock_irq(&q->db_lock);
2008         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2009         if (ret)
2010                 goto out;
2011         if (q->db_pidx != hw_pidx) {
2012                 u16 delta;
2013                 u32 val;
2014
2015                 if (q->db_pidx >= hw_pidx)
2016                         delta = q->db_pidx - hw_pidx;
2017                 else
2018                         delta = q->size - hw_pidx + q->db_pidx;
2019
2020                 if (is_t4(adap->params.chip))
2021                         val = PIDX_V(delta);
2022                 else
2023                         val = PIDX_T5_V(delta);
2024                 wmb();
2025                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2026                              QID_V(q->cntxt_id) | val);
2027         }
2028 out:
2029         q->db_disabled = 0;
2030         q->db_pidx_inc = 0;
2031         spin_unlock_irq(&q->db_lock);
2032         if (ret)
2033                 CH_WARN(adap, "DB drop recovery failed.\n");
2034 }
2035
2036 static void recover_all_queues(struct adapter *adap)
2037 {
2038         int i;
2039
2040         for_each_ethrxq(&adap->sge, i)
2041                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2042         if (is_offload(adap)) {
2043                 struct sge_uld_txq_info *txq_info =
2044                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2045                 if (txq_info) {
2046                         for_each_ofldtxq(&adap->sge, i) {
2047                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2048
2049                                 sync_txq_pidx(adap, &txq->q);
2050                         }
2051                 }
2052         }
2053         for_each_port(adap, i)
2054                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2055 }
2056
2057 static void process_db_drop(struct work_struct *work)
2058 {
2059         struct adapter *adap;
2060
2061         adap = container_of(work, struct adapter, db_drop_task);
2062
2063         if (is_t4(adap->params.chip)) {
2064                 drain_db_fifo(adap, dbfifo_drain_delay);
2065                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2066                 drain_db_fifo(adap, dbfifo_drain_delay);
2067                 recover_all_queues(adap);
2068                 drain_db_fifo(adap, dbfifo_drain_delay);
2069                 enable_dbs(adap);
2070                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2071         } else if (is_t5(adap->params.chip)) {
2072                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2073                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2074                 u16 pidx_inc = dropped_db & 0x1fff;
2075                 u64 bar2_qoffset;
2076                 unsigned int bar2_qid;
2077                 int ret;
2078
2079                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2080                                         0, &bar2_qoffset, &bar2_qid);
2081                 if (ret)
2082                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2083                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2084                 else
2085                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2086                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2087
2088                 /* Re-enable BAR2 WC */
2089                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2090         }
2091
2092         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2093                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2094 }
2095
2096 void t4_db_full(struct adapter *adap)
2097 {
2098         if (is_t4(adap->params.chip)) {
2099                 disable_dbs(adap);
2100                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2101                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2102                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2103                 queue_work(adap->workq, &adap->db_full_task);
2104         }
2105 }
2106
2107 void t4_db_dropped(struct adapter *adap)
2108 {
2109         if (is_t4(adap->params.chip)) {
2110                 disable_dbs(adap);
2111                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2112         }
2113         queue_work(adap->workq, &adap->db_drop_task);
2114 }
2115
2116 void t4_register_netevent_notifier(void)
2117 {
2118         if (!netevent_registered) {
2119                 register_netevent_notifier(&cxgb4_netevent_nb);
2120                 netevent_registered = true;
2121         }
2122 }
2123
2124 static void detach_ulds(struct adapter *adap)
2125 {
2126         unsigned int i;
2127
2128         mutex_lock(&uld_mutex);
2129         list_del(&adap->list_node);
2130
2131         for (i = 0; i < CXGB4_ULD_MAX; i++)
2132                 if (adap->uld && adap->uld[i].handle)
2133                         adap->uld[i].state_change(adap->uld[i].handle,
2134                                              CXGB4_STATE_DETACH);
2135
2136         if (netevent_registered && list_empty(&adapter_list)) {
2137                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2138                 netevent_registered = false;
2139         }
2140         mutex_unlock(&uld_mutex);
2141 }
2142
2143 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2144 {
2145         unsigned int i;
2146
2147         mutex_lock(&uld_mutex);
2148         for (i = 0; i < CXGB4_ULD_MAX; i++)
2149                 if (adap->uld && adap->uld[i].handle)
2150                         adap->uld[i].state_change(adap->uld[i].handle,
2151                                                   new_state);
2152         mutex_unlock(&uld_mutex);
2153 }
2154
2155 #if IS_ENABLED(CONFIG_IPV6)
2156 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2157                                    unsigned long event, void *data)
2158 {
2159         struct inet6_ifaddr *ifa = data;
2160         struct net_device *event_dev = ifa->idev->dev;
2161         const struct device *parent = NULL;
2162 #if IS_ENABLED(CONFIG_BONDING)
2163         struct adapter *adap;
2164 #endif
2165         if (is_vlan_dev(event_dev))
2166                 event_dev = vlan_dev_real_dev(event_dev);
2167 #if IS_ENABLED(CONFIG_BONDING)
2168         if (event_dev->flags & IFF_MASTER) {
2169                 list_for_each_entry(adap, &adapter_list, list_node) {
2170                         switch (event) {
2171                         case NETDEV_UP:
2172                                 cxgb4_clip_get(adap->port[0],
2173                                                (const u32 *)ifa, 1);
2174                                 break;
2175                         case NETDEV_DOWN:
2176                                 cxgb4_clip_release(adap->port[0],
2177                                                    (const u32 *)ifa, 1);
2178                                 break;
2179                         default:
2180                                 break;
2181                         }
2182                 }
2183                 return NOTIFY_OK;
2184         }
2185 #endif
2186
2187         if (event_dev)
2188                 parent = event_dev->dev.parent;
2189
2190         if (parent && parent->driver == &cxgb4_driver.driver) {
2191                 switch (event) {
2192                 case NETDEV_UP:
2193                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2194                         break;
2195                 case NETDEV_DOWN:
2196                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2197                         break;
2198                 default:
2199                         break;
2200                 }
2201         }
2202         return NOTIFY_OK;
2203 }
2204
2205 static bool inet6addr_registered;
2206 static struct notifier_block cxgb4_inet6addr_notifier = {
2207         .notifier_call = cxgb4_inet6addr_handler
2208 };
2209
2210 static void update_clip(const struct adapter *adap)
2211 {
2212         int i;
2213         struct net_device *dev;
2214         int ret;
2215
2216         rcu_read_lock();
2217
2218         for (i = 0; i < MAX_NPORTS; i++) {
2219                 dev = adap->port[i];
2220                 ret = 0;
2221
2222                 if (dev)
2223                         ret = cxgb4_update_root_dev_clip(dev);
2224
2225                 if (ret < 0)
2226                         break;
2227         }
2228         rcu_read_unlock();
2229 }
2230 #endif /* IS_ENABLED(CONFIG_IPV6) */
2231
2232 /**
2233  *      cxgb_up - enable the adapter
2234  *      @adap: adapter being enabled
2235  *
2236  *      Called when the first port is enabled, this function performs the
2237  *      actions necessary to make an adapter operational, such as completing
2238  *      the initialization of HW modules, and enabling interrupts.
2239  *
2240  *      Must be called with the rtnl lock held.
2241  */
2242 static int cxgb_up(struct adapter *adap)
2243 {
2244         int err;
2245
2246         mutex_lock(&uld_mutex);
2247         err = setup_sge_queues(adap);
2248         if (err)
2249                 goto rel_lock;
2250         err = setup_rss(adap);
2251         if (err)
2252                 goto freeq;
2253
2254         if (adap->flags & USING_MSIX) {
2255                 name_msix_vecs(adap);
2256                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2257                                   adap->msix_info[0].desc, adap);
2258                 if (err)
2259                         goto irq_err;
2260                 err = request_msix_queue_irqs(adap);
2261                 if (err) {
2262                         free_irq(adap->msix_info[0].vec, adap);
2263                         goto irq_err;
2264                 }
2265         } else {
2266                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2267                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2268                                   adap->port[0]->name, adap);
2269                 if (err)
2270                         goto irq_err;
2271         }
2272
2273         enable_rx(adap);
2274         t4_sge_start(adap);
2275         t4_intr_enable(adap);
2276         adap->flags |= FULL_INIT_DONE;
2277         mutex_unlock(&uld_mutex);
2278
2279         notify_ulds(adap, CXGB4_STATE_UP);
2280 #if IS_ENABLED(CONFIG_IPV6)
2281         update_clip(adap);
2282 #endif
2283         /* Initialize hash mac addr list*/
2284         INIT_LIST_HEAD(&adap->mac_hlist);
2285         return err;
2286
2287  irq_err:
2288         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2289  freeq:
2290         t4_free_sge_resources(adap);
2291  rel_lock:
2292         mutex_unlock(&uld_mutex);
2293         return err;
2294 }
2295
2296 static void cxgb_down(struct adapter *adapter)
2297 {
2298         cancel_work_sync(&adapter->tid_release_task);
2299         cancel_work_sync(&adapter->db_full_task);
2300         cancel_work_sync(&adapter->db_drop_task);
2301         adapter->tid_release_task_busy = false;
2302         adapter->tid_release_head = NULL;
2303
2304         t4_sge_stop(adapter);
2305         t4_free_sge_resources(adapter);
2306         adapter->flags &= ~FULL_INIT_DONE;
2307 }
2308
2309 /*
2310  * net_device operations
2311  */
2312 static int cxgb_open(struct net_device *dev)
2313 {
2314         int err;
2315         struct port_info *pi = netdev_priv(dev);
2316         struct adapter *adapter = pi->adapter;
2317
2318         netif_carrier_off(dev);
2319
2320         if (!(adapter->flags & FULL_INIT_DONE)) {
2321                 err = cxgb_up(adapter);
2322                 if (err < 0)
2323                         return err;
2324         }
2325
2326         /* It's possible that the basic port information could have
2327          * changed since we first read it.
2328          */
2329         err = t4_update_port_info(pi);
2330         if (err < 0)
2331                 return err;
2332
2333         err = link_start(dev);
2334         if (!err)
2335                 netif_tx_start_all_queues(dev);
2336         return err;
2337 }
2338
2339 static int cxgb_close(struct net_device *dev)
2340 {
2341         struct port_info *pi = netdev_priv(dev);
2342         struct adapter *adapter = pi->adapter;
2343         int ret;
2344
2345         netif_tx_stop_all_queues(dev);
2346         netif_carrier_off(dev);
2347         ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2348                                   false, false, false);
2349 #ifdef CONFIG_CHELSIO_T4_DCB
2350         cxgb4_dcb_reset(dev);
2351         dcb_tx_queue_prio_enable(dev, false);
2352 #endif
2353         return ret;
2354 }
2355
2356 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2357                 __be32 sip, __be16 sport, __be16 vlan,
2358                 unsigned int queue, unsigned char port, unsigned char mask)
2359 {
2360         int ret;
2361         struct filter_entry *f;
2362         struct adapter *adap;
2363         int i;
2364         u8 *val;
2365
2366         adap = netdev2adap(dev);
2367
2368         /* Adjust stid to correct filter index */
2369         stid -= adap->tids.sftid_base;
2370         stid += adap->tids.nftids;
2371
2372         /* Check to make sure the filter requested is writable ...
2373          */
2374         f = &adap->tids.ftid_tab[stid];
2375         ret = writable_filter(f);
2376         if (ret)
2377                 return ret;
2378
2379         /* Clear out any old resources being used by the filter before
2380          * we start constructing the new filter.
2381          */
2382         if (f->valid)
2383                 clear_filter(adap, f);
2384
2385         /* Clear out filter specifications */
2386         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2387         f->fs.val.lport = cpu_to_be16(sport);
2388         f->fs.mask.lport  = ~0;
2389         val = (u8 *)&sip;
2390         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2391                 for (i = 0; i < 4; i++) {
2392                         f->fs.val.lip[i] = val[i];
2393                         f->fs.mask.lip[i] = ~0;
2394                 }
2395                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2396                         f->fs.val.iport = port;
2397                         f->fs.mask.iport = mask;
2398                 }
2399         }
2400
2401         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2402                 f->fs.val.proto = IPPROTO_TCP;
2403                 f->fs.mask.proto = ~0;
2404         }
2405
2406         f->fs.dirsteer = 1;
2407         f->fs.iq = queue;
2408         /* Mark filter as locked */
2409         f->locked = 1;
2410         f->fs.rpttid = 1;
2411
2412         /* Save the actual tid. We need this to get the corresponding
2413          * filter entry structure in filter_rpl.
2414          */
2415         f->tid = stid + adap->tids.ftid_base;
2416         ret = set_filter_wr(adap, stid);
2417         if (ret) {
2418                 clear_filter(adap, f);
2419                 return ret;
2420         }
2421
2422         return 0;
2423 }
2424 EXPORT_SYMBOL(cxgb4_create_server_filter);
2425
2426 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2427                 unsigned int queue, bool ipv6)
2428 {
2429         struct filter_entry *f;
2430         struct adapter *adap;
2431
2432         adap = netdev2adap(dev);
2433
2434         /* Adjust stid to correct filter index */
2435         stid -= adap->tids.sftid_base;
2436         stid += adap->tids.nftids;
2437
2438         f = &adap->tids.ftid_tab[stid];
2439         /* Unlock the filter */
2440         f->locked = 0;
2441
2442         return delete_filter(adap, stid);
2443 }
2444 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2445
2446 static void cxgb_get_stats(struct net_device *dev,
2447                            struct rtnl_link_stats64 *ns)
2448 {
2449         struct port_stats stats;
2450         struct port_info *p = netdev_priv(dev);
2451         struct adapter *adapter = p->adapter;
2452
2453         /* Block retrieving statistics during EEH error
2454          * recovery. Otherwise, the recovery might fail
2455          * and the PCI device will be removed permanently
2456          */
2457         spin_lock(&adapter->stats_lock);
2458         if (!netif_device_present(dev)) {
2459                 spin_unlock(&adapter->stats_lock);
2460                 return;
2461         }
2462         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2463                                  &p->stats_base);
2464         spin_unlock(&adapter->stats_lock);
2465
2466         ns->tx_bytes   = stats.tx_octets;
2467         ns->tx_packets = stats.tx_frames;
2468         ns->rx_bytes   = stats.rx_octets;
2469         ns->rx_packets = stats.rx_frames;
2470         ns->multicast  = stats.rx_mcast_frames;
2471
2472         /* detailed rx_errors */
2473         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2474                                stats.rx_runt;
2475         ns->rx_over_errors   = 0;
2476         ns->rx_crc_errors    = stats.rx_fcs_err;
2477         ns->rx_frame_errors  = stats.rx_symbol_err;
2478         ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
2479                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2480                                stats.rx_trunc0 + stats.rx_trunc1 +
2481                                stats.rx_trunc2 + stats.rx_trunc3;
2482         ns->rx_missed_errors = 0;
2483
2484         /* detailed tx_errors */
2485         ns->tx_aborted_errors   = 0;
2486         ns->tx_carrier_errors   = 0;
2487         ns->tx_fifo_errors      = 0;
2488         ns->tx_heartbeat_errors = 0;
2489         ns->tx_window_errors    = 0;
2490
2491         ns->tx_errors = stats.tx_error_frames;
2492         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2493                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2494 }
2495
2496 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2497 {
2498         unsigned int mbox;
2499         int ret = 0, prtad, devad;
2500         struct port_info *pi = netdev_priv(dev);
2501         struct adapter *adapter = pi->adapter;
2502         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2503
2504         switch (cmd) {
2505         case SIOCGMIIPHY:
2506                 if (pi->mdio_addr < 0)
2507                         return -EOPNOTSUPP;
2508                 data->phy_id = pi->mdio_addr;
2509                 break;
2510         case SIOCGMIIREG:
2511         case SIOCSMIIREG:
2512                 if (mdio_phy_id_is_c45(data->phy_id)) {
2513                         prtad = mdio_phy_id_prtad(data->phy_id);
2514                         devad = mdio_phy_id_devad(data->phy_id);
2515                 } else if (data->phy_id < 32) {
2516                         prtad = data->phy_id;
2517                         devad = 0;
2518                         data->reg_num &= 0x1f;
2519                 } else
2520                         return -EINVAL;
2521
2522                 mbox = pi->adapter->pf;
2523                 if (cmd == SIOCGMIIREG)
2524                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2525                                          data->reg_num, &data->val_out);
2526                 else
2527                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2528                                          data->reg_num, data->val_in);
2529                 break;
2530         case SIOCGHWTSTAMP:
2531                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2532                                     sizeof(pi->tstamp_config)) ?
2533                         -EFAULT : 0;
2534         case SIOCSHWTSTAMP:
2535                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2536                                    sizeof(pi->tstamp_config)))
2537                         return -EFAULT;
2538
2539                 if (!is_t4(adapter->params.chip)) {
2540                         switch (pi->tstamp_config.tx_type) {
2541                         case HWTSTAMP_TX_OFF:
2542                         case HWTSTAMP_TX_ON:
2543                                 break;
2544                         default:
2545                                 return -ERANGE;
2546                         }
2547
2548                         switch (pi->tstamp_config.rx_filter) {
2549                         case HWTSTAMP_FILTER_NONE:
2550                                 pi->rxtstamp = false;
2551                                 break;
2552                         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2553                         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2554                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2555                                                          PTP_TS_L4);
2556                                 break;
2557                         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2558                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2559                                                          PTP_TS_L2_L4);
2560                                 break;
2561                         case HWTSTAMP_FILTER_ALL:
2562                         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2563                         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2564                         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2565                         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2566                                 pi->rxtstamp = true;
2567                                 break;
2568                         default:
2569                                 pi->tstamp_config.rx_filter =
2570                                         HWTSTAMP_FILTER_NONE;
2571                                 return -ERANGE;
2572                         }
2573
2574                         if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2575                             (pi->tstamp_config.rx_filter ==
2576                                 HWTSTAMP_FILTER_NONE)) {
2577                                 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2578                                         pi->ptp_enable = false;
2579                         }
2580
2581                         if (pi->tstamp_config.rx_filter !=
2582                                 HWTSTAMP_FILTER_NONE) {
2583                                 if (cxgb4_ptp_redirect_rx_packet(adapter,
2584                                                                  pi) >= 0)
2585                                         pi->ptp_enable = true;
2586                         }
2587                 } else {
2588                         /* For T4 Adapters */
2589                         switch (pi->tstamp_config.rx_filter) {
2590                         case HWTSTAMP_FILTER_NONE:
2591                         pi->rxtstamp = false;
2592                         break;
2593                         case HWTSTAMP_FILTER_ALL:
2594                         pi->rxtstamp = true;
2595                         break;
2596                         default:
2597                         pi->tstamp_config.rx_filter =
2598                         HWTSTAMP_FILTER_NONE;
2599                         return -ERANGE;
2600                         }
2601                 }
2602                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2603                                     sizeof(pi->tstamp_config)) ?
2604                         -EFAULT : 0;
2605         default:
2606                 return -EOPNOTSUPP;
2607         }
2608         return ret;
2609 }
2610
2611 static void cxgb_set_rxmode(struct net_device *dev)
2612 {
2613         /* unfortunately we can't return errors to the stack */
2614         set_rxmode(dev, -1, false);
2615 }
2616
2617 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2618 {
2619         int ret;
2620         struct port_info *pi = netdev_priv(dev);
2621
2622         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2623                             -1, -1, -1, true);
2624         if (!ret)
2625                 dev->mtu = new_mtu;
2626         return ret;
2627 }
2628
2629 #ifdef CONFIG_PCI_IOV
2630 static int cxgb4_mgmt_open(struct net_device *dev)
2631 {
2632         /* Turn carrier off since we don't have to transmit anything on this
2633          * interface.
2634          */
2635         netif_carrier_off(dev);
2636         return 0;
2637 }
2638
2639 /* Fill MAC address that will be assigned by the FW */
2640 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2641 {
2642         u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2643         unsigned int i, vf, nvfs;
2644         u16 a, b;
2645         int err;
2646         u8 *na;
2647
2648         adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2649                                                             PCI_CAP_ID_VPD);
2650         err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2651         if (err)
2652                 return;
2653
2654         na = adap->params.vpd.na;
2655         for (i = 0; i < ETH_ALEN; i++)
2656                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2657                               hex2val(na[2 * i + 1]));
2658
2659         a = (hw_addr[0] << 8) | hw_addr[1];
2660         b = (hw_addr[1] << 8) | hw_addr[2];
2661         a ^= b;
2662         a |= 0x0200;    /* locally assigned Ethernet MAC address */
2663         a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2664         macaddr[0] = a >> 8;
2665         macaddr[1] = a & 0xff;
2666
2667         for (i = 2; i < 5; i++)
2668                 macaddr[i] = hw_addr[i + 1];
2669
2670         for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2671                 vf < nvfs; vf++) {
2672                 macaddr[5] = adap->pf * 16 + vf;
2673                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2674         }
2675 }
2676
2677 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2678 {
2679         struct port_info *pi = netdev_priv(dev);
2680         struct adapter *adap = pi->adapter;
2681         int ret;
2682
2683         /* verify MAC addr is valid */
2684         if (!is_valid_ether_addr(mac)) {
2685                 dev_err(pi->adapter->pdev_dev,
2686                         "Invalid Ethernet address %pM for VF %d\n",
2687                         mac, vf);
2688                 return -EINVAL;
2689         }
2690
2691         dev_info(pi->adapter->pdev_dev,
2692                  "Setting MAC %pM on VF %d\n", mac, vf);
2693         ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2694         if (!ret)
2695                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2696         return ret;
2697 }
2698
2699 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2700                                     int vf, struct ifla_vf_info *ivi)
2701 {
2702         struct port_info *pi = netdev_priv(dev);
2703         struct adapter *adap = pi->adapter;
2704         struct vf_info *vfinfo;
2705
2706         if (vf >= adap->num_vfs)
2707                 return -EINVAL;
2708         vfinfo = &adap->vfinfo[vf];
2709
2710         ivi->vf = vf;
2711         ivi->max_tx_rate = vfinfo->tx_rate;
2712         ivi->min_tx_rate = 0;
2713         ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2714         ivi->vlan = vfinfo->vlan;
2715         return 0;
2716 }
2717
2718 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2719                                        struct netdev_phys_item_id *ppid)
2720 {
2721         struct port_info *pi = netdev_priv(dev);
2722         unsigned int phy_port_id;
2723
2724         phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2725         ppid->id_len = sizeof(phy_port_id);
2726         memcpy(ppid->id, &phy_port_id, ppid->id_len);
2727         return 0;
2728 }
2729
2730 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2731                                   int min_tx_rate, int max_tx_rate)
2732 {
2733         struct port_info *pi = netdev_priv(dev);
2734         struct adapter *adap = pi->adapter;
2735         unsigned int link_ok, speed, mtu;
2736         u32 fw_pfvf, fw_class;
2737         int class_id = vf;
2738         int ret;
2739         u16 pktsize;
2740
2741         if (vf >= adap->num_vfs)
2742                 return -EINVAL;
2743
2744         if (min_tx_rate) {
2745                 dev_err(adap->pdev_dev,
2746                         "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2747                         min_tx_rate, vf);
2748                 return -EINVAL;
2749         }
2750
2751         ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2752         if (ret != FW_SUCCESS) {
2753                 dev_err(adap->pdev_dev,
2754                         "Failed to get link information for VF %d\n", vf);
2755                 return -EINVAL;
2756         }
2757
2758         if (!link_ok) {
2759                 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2760                 return -EINVAL;
2761         }
2762
2763         if (max_tx_rate > speed) {
2764                 dev_err(adap->pdev_dev,
2765                         "Max tx rate %d for VF %d can't be > link-speed %u",
2766                         max_tx_rate, vf, speed);
2767                 return -EINVAL;
2768         }
2769
2770         pktsize = mtu;
2771         /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2772         pktsize = pktsize - sizeof(struct ethhdr) - 4;
2773         /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2774         pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2775         /* configure Traffic Class for rate-limiting */
2776         ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2777                               SCHED_CLASS_LEVEL_CL_RL,
2778                               SCHED_CLASS_MODE_CLASS,
2779                               SCHED_CLASS_RATEUNIT_BITS,
2780                               SCHED_CLASS_RATEMODE_ABS,
2781                               pi->tx_chan, class_id, 0,
2782                               max_tx_rate * 1000, 0, pktsize);
2783         if (ret) {
2784                 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2785                         ret);
2786                 return -EINVAL;
2787         }
2788         dev_info(adap->pdev_dev,
2789                  "Class %d with MSS %u configured with rate %u\n",
2790                  class_id, pktsize, max_tx_rate);
2791
2792         /* bind VF to configured Traffic Class */
2793         fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2794                    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2795         fw_class = class_id;
2796         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2797                             &fw_class);
2798         if (ret) {
2799                 dev_err(adap->pdev_dev,
2800                         "Err %d in binding VF %d to Traffic Class %d\n",
2801                         ret, vf, class_id);
2802                 return -EINVAL;
2803         }
2804         dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2805                  adap->pf, vf, class_id);
2806         adap->vfinfo[vf].tx_rate = max_tx_rate;
2807         return 0;
2808 }
2809
2810 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2811                                   u16 vlan, u8 qos, __be16 vlan_proto)
2812 {
2813         struct port_info *pi = netdev_priv(dev);
2814         struct adapter *adap = pi->adapter;
2815         int ret;
2816
2817         if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2818                 return -EINVAL;
2819
2820         if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2821                 return -EPROTONOSUPPORT;
2822
2823         ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2824         if (!ret) {
2825                 adap->vfinfo[vf].vlan = vlan;
2826                 return 0;
2827         }
2828
2829         dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2830                 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2831         return ret;
2832 }
2833 #endif /* CONFIG_PCI_IOV */
2834
2835 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2836 {
2837         int ret;
2838         struct sockaddr *addr = p;
2839         struct port_info *pi = netdev_priv(dev);
2840
2841         if (!is_valid_ether_addr(addr->sa_data))
2842                 return -EADDRNOTAVAIL;
2843
2844         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2845                             pi->xact_addr_filt, addr->sa_data, true, true);
2846         if (ret < 0)
2847                 return ret;
2848
2849         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2850         pi->xact_addr_filt = ret;
2851         return 0;
2852 }
2853
2854 #ifdef CONFIG_NET_POLL_CONTROLLER
2855 static void cxgb_netpoll(struct net_device *dev)
2856 {
2857         struct port_info *pi = netdev_priv(dev);
2858         struct adapter *adap = pi->adapter;
2859
2860         if (adap->flags & USING_MSIX) {
2861                 int i;
2862                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2863
2864                 for (i = pi->nqsets; i; i--, rx++)
2865                         t4_sge_intr_msix(0, &rx->rspq);
2866         } else
2867                 t4_intr_handler(adap)(0, adap);
2868 }
2869 #endif
2870
2871 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2872 {
2873         struct port_info *pi = netdev_priv(dev);
2874         struct adapter *adap = pi->adapter;
2875         struct sched_class *e;
2876         struct ch_sched_params p;
2877         struct ch_sched_queue qe;
2878         u32 req_rate;
2879         int err = 0;
2880
2881         if (!can_sched(dev))
2882                 return -ENOTSUPP;
2883
2884         if (index < 0 || index > pi->nqsets - 1)
2885                 return -EINVAL;
2886
2887         if (!(adap->flags & FULL_INIT_DONE)) {
2888                 dev_err(adap->pdev_dev,
2889                         "Failed to rate limit on queue %d. Link Down?\n",
2890                         index);
2891                 return -EINVAL;
2892         }
2893
2894         /* Convert from Mbps to Kbps */
2895         req_rate = rate * 1000;
2896
2897         /* Max rate is 100 Gbps */
2898         if (req_rate > SCHED_MAX_RATE_KBPS) {
2899                 dev_err(adap->pdev_dev,
2900                         "Invalid rate %u Mbps, Max rate is %u Mbps\n",
2901                         rate, SCHED_MAX_RATE_KBPS / 1000);
2902                 return -ERANGE;
2903         }
2904
2905         /* First unbind the queue from any existing class */
2906         memset(&qe, 0, sizeof(qe));
2907         qe.queue = index;
2908         qe.class = SCHED_CLS_NONE;
2909
2910         err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2911         if (err) {
2912                 dev_err(adap->pdev_dev,
2913                         "Unbinding Queue %d on port %d fail. Err: %d\n",
2914                         index, pi->port_id, err);
2915                 return err;
2916         }
2917
2918         /* Queue already unbound */
2919         if (!req_rate)
2920                 return 0;
2921
2922         /* Fetch any available unused or matching scheduling class */
2923         memset(&p, 0, sizeof(p));
2924         p.type = SCHED_CLASS_TYPE_PACKET;
2925         p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2926         p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2927         p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2928         p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2929         p.u.params.channel  = pi->tx_chan;
2930         p.u.params.class    = SCHED_CLS_NONE;
2931         p.u.params.minrate  = 0;
2932         p.u.params.maxrate  = req_rate;
2933         p.u.params.weight   = 0;
2934         p.u.params.pktsize  = dev->mtu;
2935
2936         e = cxgb4_sched_class_alloc(dev, &p);
2937         if (!e)
2938                 return -ENOMEM;
2939
2940         /* Bind the queue to a scheduling class */
2941         memset(&qe, 0, sizeof(qe));
2942         qe.queue = index;
2943         qe.class = e->idx;
2944
2945         err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2946         if (err)
2947                 dev_err(adap->pdev_dev,
2948                         "Queue rate limiting failed. Err: %d\n", err);
2949         return err;
2950 }
2951
2952 static int cxgb_setup_tc_flower(struct net_device *dev,
2953                                 struct tc_cls_flower_offload *cls_flower)
2954 {
2955         switch (cls_flower->command) {
2956         case TC_CLSFLOWER_REPLACE:
2957                 return cxgb4_tc_flower_replace(dev, cls_flower);
2958         case TC_CLSFLOWER_DESTROY:
2959                 return cxgb4_tc_flower_destroy(dev, cls_flower);
2960         case TC_CLSFLOWER_STATS:
2961                 return cxgb4_tc_flower_stats(dev, cls_flower);
2962         default:
2963                 return -EOPNOTSUPP;
2964         }
2965 }
2966
2967 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2968                                  struct tc_cls_u32_offload *cls_u32)
2969 {
2970         switch (cls_u32->command) {
2971         case TC_CLSU32_NEW_KNODE:
2972         case TC_CLSU32_REPLACE_KNODE:
2973                 return cxgb4_config_knode(dev, cls_u32);
2974         case TC_CLSU32_DELETE_KNODE:
2975                 return cxgb4_delete_knode(dev, cls_u32);
2976         default:
2977                 return -EOPNOTSUPP;
2978         }
2979 }
2980
2981 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2982                                   void *cb_priv)
2983 {
2984         struct net_device *dev = cb_priv;
2985         struct port_info *pi = netdev2pinfo(dev);
2986         struct adapter *adap = netdev2adap(dev);
2987
2988         if (!(adap->flags & FULL_INIT_DONE)) {
2989                 dev_err(adap->pdev_dev,
2990                         "Failed to setup tc on port %d. Link Down?\n",
2991                         pi->port_id);
2992                 return -EINVAL;
2993         }
2994
2995         if (!tc_cls_can_offload_and_chain0(dev, type_data))
2996                 return -EOPNOTSUPP;
2997
2998         switch (type) {
2999         case TC_SETUP_CLSU32:
3000                 return cxgb_setup_tc_cls_u32(dev, type_data);
3001         case TC_SETUP_CLSFLOWER:
3002                 return cxgb_setup_tc_flower(dev, type_data);
3003         default:
3004                 return -EOPNOTSUPP;
3005         }
3006 }
3007
3008 static int cxgb_setup_tc_block(struct net_device *dev,
3009                                struct tc_block_offload *f)
3010 {
3011         struct port_info *pi = netdev2pinfo(dev);
3012
3013         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3014                 return -EOPNOTSUPP;
3015
3016         switch (f->command) {
3017         case TC_BLOCK_BIND:
3018                 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
3019                                              pi, dev);
3020         case TC_BLOCK_UNBIND:
3021                 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
3022                 return 0;
3023         default:
3024                 return -EOPNOTSUPP;
3025         }
3026 }
3027
3028 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3029                          void *type_data)
3030 {
3031         switch (type) {
3032         case TC_SETUP_BLOCK:
3033                 return cxgb_setup_tc_block(dev, type_data);
3034         default:
3035                 return -EOPNOTSUPP;
3036         }
3037 }
3038
3039 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3040                                 struct udp_tunnel_info *ti)
3041 {
3042         struct port_info *pi = netdev_priv(netdev);
3043         struct adapter *adapter = pi->adapter;
3044         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3045         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3046         int ret = 0, i;
3047
3048         if (chip_ver < CHELSIO_T6)
3049                 return;
3050
3051         switch (ti->type) {
3052         case UDP_TUNNEL_TYPE_VXLAN:
3053                 if (!adapter->vxlan_port_cnt ||
3054                     adapter->vxlan_port != ti->port)
3055                         return; /* Invalid VxLAN destination port */
3056
3057                 adapter->vxlan_port_cnt--;
3058                 if (adapter->vxlan_port_cnt)
3059                         return;
3060
3061                 adapter->vxlan_port = 0;
3062                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3063                 break;
3064         case UDP_TUNNEL_TYPE_GENEVE:
3065                 if (!adapter->geneve_port_cnt ||
3066                     adapter->geneve_port != ti->port)
3067                         return; /* Invalid GENEVE destination port */
3068
3069                 adapter->geneve_port_cnt--;
3070                 if (adapter->geneve_port_cnt)
3071                         return;
3072
3073                 adapter->geneve_port = 0;
3074                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3075         default:
3076                 return;
3077         }
3078
3079         /* Matchall mac entries can be deleted only after all tunnel ports
3080          * are brought down or removed.
3081          */
3082         if (!adapter->rawf_cnt)
3083                 return;
3084         for_each_port(adapter, i) {
3085                 pi = adap2pinfo(adapter, i);
3086                 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3087                                            match_all_mac, match_all_mac,
3088                                            adapter->rawf_start +
3089                                             pi->port_id,
3090                                            1, pi->port_id, false);
3091                 if (ret < 0) {
3092                         netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3093                                     i);
3094                         return;
3095                 }
3096                 atomic_dec(&adapter->mps_encap[adapter->rawf_start +
3097                            pi->port_id].refcnt);
3098         }
3099 }
3100
3101 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3102                                 struct udp_tunnel_info *ti)
3103 {
3104         struct port_info *pi = netdev_priv(netdev);
3105         struct adapter *adapter = pi->adapter;
3106         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3107         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3108         int i, ret;
3109
3110         if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3111                 return;
3112
3113         switch (ti->type) {
3114         case UDP_TUNNEL_TYPE_VXLAN:
3115                 /* Callback for adding vxlan port can be called with the same
3116                  * port for both IPv4 and IPv6. We should not disable the
3117                  * offloading when the same port for both protocols is added
3118                  * and later one of them is removed.
3119                  */
3120                 if (adapter->vxlan_port_cnt &&
3121                     adapter->vxlan_port == ti->port) {
3122                         adapter->vxlan_port_cnt++;
3123                         return;
3124                 }
3125
3126                 /* We will support only one VxLAN port */
3127                 if (adapter->vxlan_port_cnt) {
3128                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3129                                     be16_to_cpu(adapter->vxlan_port),
3130                                     be16_to_cpu(ti->port));
3131                         return;
3132                 }
3133
3134                 adapter->vxlan_port = ti->port;
3135                 adapter->vxlan_port_cnt = 1;
3136
3137                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3138                              VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3139                 break;
3140         case UDP_TUNNEL_TYPE_GENEVE:
3141                 if (adapter->geneve_port_cnt &&
3142                     adapter->geneve_port == ti->port) {
3143                         adapter->geneve_port_cnt++;
3144                         return;
3145                 }
3146
3147                 /* We will support only one GENEVE port */
3148                 if (adapter->geneve_port_cnt) {
3149                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3150                                     be16_to_cpu(adapter->geneve_port),
3151                                     be16_to_cpu(ti->port));
3152                         return;
3153                 }
3154
3155                 adapter->geneve_port = ti->port;
3156                 adapter->geneve_port_cnt = 1;
3157
3158                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3159                              GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3160         default:
3161                 return;
3162         }
3163
3164         /* Create a 'match all' mac filter entry for inner mac,
3165          * if raw mac interface is supported. Once the linux kernel provides
3166          * driver entry points for adding/deleting the inner mac addresses,
3167          * we will remove this 'match all' entry and fallback to adding
3168          * exact match filters.
3169          */
3170         for_each_port(adapter, i) {
3171                 pi = adap2pinfo(adapter, i);
3172
3173                 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3174                                             match_all_mac,
3175                                             match_all_mac,
3176                                             adapter->rawf_start +
3177                                             pi->port_id,
3178                                             1, pi->port_id, false);
3179                 if (ret < 0) {
3180                         netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3181                                     be16_to_cpu(ti->port));
3182                         cxgb_del_udp_tunnel(netdev, ti);
3183                         return;
3184                 }
3185                 atomic_inc(&adapter->mps_encap[ret].refcnt);
3186         }
3187 }
3188
3189 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3190                                              struct net_device *dev,
3191                                              netdev_features_t features)
3192 {
3193         struct port_info *pi = netdev_priv(dev);
3194         struct adapter *adapter = pi->adapter;
3195
3196         if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3197                 return features;
3198
3199         /* Check if hw supports offload for this packet */
3200         if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3201                 return features;
3202
3203         /* Offload is not supported for this encapsulated packet */
3204         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3205 }
3206
3207 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3208                                            netdev_features_t features)
3209 {
3210         /* Disable GRO, if RX_CSUM is disabled */
3211         if (!(features & NETIF_F_RXCSUM))
3212                 features &= ~NETIF_F_GRO;
3213
3214         return features;
3215 }
3216
3217 static const struct net_device_ops cxgb4_netdev_ops = {
3218         .ndo_open             = cxgb_open,
3219         .ndo_stop             = cxgb_close,
3220         .ndo_start_xmit       = t4_eth_xmit,
3221         .ndo_select_queue     = cxgb_select_queue,
3222         .ndo_get_stats64      = cxgb_get_stats,
3223         .ndo_set_rx_mode      = cxgb_set_rxmode,
3224         .ndo_set_mac_address  = cxgb_set_mac_addr,
3225         .ndo_set_features     = cxgb_set_features,
3226         .ndo_validate_addr    = eth_validate_addr,
3227         .ndo_do_ioctl         = cxgb_ioctl,
3228         .ndo_change_mtu       = cxgb_change_mtu,
3229 #ifdef CONFIG_NET_POLL_CONTROLLER
3230         .ndo_poll_controller  = cxgb_netpoll,
3231 #endif
3232 #ifdef CONFIG_CHELSIO_T4_FCOE
3233         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3234         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3235 #endif /* CONFIG_CHELSIO_T4_FCOE */
3236         .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3237         .ndo_setup_tc         = cxgb_setup_tc,
3238         .ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3239         .ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3240         .ndo_features_check   = cxgb_features_check,
3241         .ndo_fix_features     = cxgb_fix_features,
3242 };
3243
3244 #ifdef CONFIG_PCI_IOV
3245 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3246         .ndo_open             = cxgb4_mgmt_open,
3247         .ndo_set_vf_mac       = cxgb4_mgmt_set_vf_mac,
3248         .ndo_get_vf_config    = cxgb4_mgmt_get_vf_config,
3249         .ndo_set_vf_rate      = cxgb4_mgmt_set_vf_rate,
3250         .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3251         .ndo_set_vf_vlan      = cxgb4_mgmt_set_vf_vlan,
3252 };
3253 #endif
3254
3255 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3256                                    struct ethtool_drvinfo *info)
3257 {
3258         struct adapter *adapter = netdev2adap(dev);
3259
3260         strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3261         strlcpy(info->version, cxgb4_driver_version,
3262                 sizeof(info->version));
3263         strlcpy(info->bus_info, pci_name(adapter->pdev),
3264                 sizeof(info->bus_info));
3265 }
3266
3267 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3268         .get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3269 };
3270
3271 static void notify_fatal_err(struct work_struct *work)
3272 {
3273         struct adapter *adap;
3274
3275         adap = container_of(work, struct adapter, fatal_err_notify_task);
3276         notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3277 }
3278
3279 void t4_fatal_err(struct adapter *adap)
3280 {
3281         int port;
3282
3283         if (pci_channel_offline(adap->pdev))
3284                 return;
3285
3286         /* Disable the SGE since ULDs are going to free resources that
3287          * could be exposed to the adapter.  RDMA MWs for example...
3288          */
3289         t4_shutdown_adapter(adap);
3290         for_each_port(adap, port) {
3291                 struct net_device *dev = adap->port[port];
3292
3293                 /* If we get here in very early initialization the network
3294                  * devices may not have been set up yet.
3295                  */
3296                 if (!dev)
3297                         continue;
3298
3299                 netif_tx_stop_all_queues(dev);
3300                 netif_carrier_off(dev);
3301         }
3302         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3303         queue_work(adap->workq, &adap->fatal_err_notify_task);
3304 }
3305
3306 static void setup_memwin(struct adapter *adap)
3307 {
3308         u32 nic_win_base = t4_get_util_window(adap);
3309
3310         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3311 }
3312
3313 static void setup_memwin_rdma(struct adapter *adap)
3314 {
3315         if (adap->vres.ocq.size) {
3316                 u32 start;
3317                 unsigned int sz_kb;
3318
3319                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3320                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3321                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3322                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3323                 t4_write_reg(adap,
3324                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3325                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3326                 t4_write_reg(adap,
3327                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3328                              adap->vres.ocq.start);
3329                 t4_read_reg(adap,
3330                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3331         }
3332 }
3333
3334 /* HMA Definitions */
3335
3336 /* The maximum number of address that can be send in a single FW cmd */
3337 #define HMA_MAX_ADDR_IN_CMD     5
3338
3339 #define HMA_PAGE_SIZE           PAGE_SIZE
3340
3341 #define HMA_MAX_NO_FW_ADDRESS   (16 << 10)  /* FW supports 16K addresses */
3342
3343 #define HMA_PAGE_ORDER                                  \
3344         ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?      \
3345         ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3346
3347 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3348  * configuration(in units of MB).
3349  */
3350 #define HMA_MIN_TOTAL_SIZE      1
3351 #define HMA_MAX_TOTAL_SIZE                              \
3352         (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *           \
3353           HMA_MAX_NO_FW_ADDRESS) >> 20)
3354
3355 static void adap_free_hma_mem(struct adapter *adapter)
3356 {
3357         struct scatterlist *iter;
3358         struct page *page;
3359         int i;
3360
3361         if (!adapter->hma.sgt)
3362                 return;
3363
3364         if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3365                 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3366                              adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3367                 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3368         }
3369
3370         for_each_sg(adapter->hma.sgt->sgl, iter,
3371                     adapter->hma.sgt->orig_nents, i) {
3372                 page = sg_page(iter);
3373                 if (page)
3374                         __free_pages(page, HMA_PAGE_ORDER);
3375         }
3376
3377         kfree(adapter->hma.phy_addr);
3378         sg_free_table(adapter->hma.sgt);
3379         kfree(adapter->hma.sgt);
3380         adapter->hma.sgt = NULL;
3381 }
3382
3383 static int adap_config_hma(struct adapter *adapter)
3384 {
3385         struct scatterlist *sgl, *iter;
3386         struct sg_table *sgt;
3387         struct page *newpage;
3388         unsigned int i, j, k;
3389         u32 param, hma_size;
3390         unsigned int ncmds;
3391         size_t page_size;
3392         u32 page_order;
3393         int node, ret;
3394
3395         /* HMA is supported only for T6+ cards.
3396          * Avoid initializing HMA in kdump kernels.
3397          */
3398         if (is_kdump_kernel() ||
3399             CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3400                 return 0;
3401
3402         /* Get the HMA region size required by fw */
3403         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3404                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3405         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3406                               1, &param, &hma_size);
3407         /* An error means card has its own memory or HMA is not supported by
3408          * the firmware. Return without any errors.
3409          */
3410         if (ret || !hma_size)
3411                 return 0;
3412
3413         if (hma_size < HMA_MIN_TOTAL_SIZE ||
3414             hma_size > HMA_MAX_TOTAL_SIZE) {
3415                 dev_err(adapter->pdev_dev,
3416                         "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3417                         hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3418                 return -EINVAL;
3419         }
3420
3421         page_size = HMA_PAGE_SIZE;
3422         page_order = HMA_PAGE_ORDER;
3423         adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3424         if (unlikely(!adapter->hma.sgt)) {
3425                 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3426                 return -ENOMEM;
3427         }
3428         sgt = adapter->hma.sgt;
3429         /* FW returned value will be in MB's
3430          */
3431         sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3432         if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3433                 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3434                 kfree(adapter->hma.sgt);
3435                 adapter->hma.sgt = NULL;
3436                 return -ENOMEM;
3437         }
3438
3439         sgl = adapter->hma.sgt->sgl;
3440         node = dev_to_node(adapter->pdev_dev);
3441         for_each_sg(sgl, iter, sgt->orig_nents, i) {
3442                 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3443                                            __GFP_ZERO, page_order);
3444                 if (!newpage) {
3445                         dev_err(adapter->pdev_dev,
3446                                 "Not enough memory for HMA page allocation\n");
3447                         ret = -ENOMEM;
3448                         goto free_hma;
3449                 }
3450                 sg_set_page(iter, newpage, page_size << page_order, 0);
3451         }
3452
3453         sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3454                                 DMA_BIDIRECTIONAL);
3455         if (!sgt->nents) {
3456                 dev_err(adapter->pdev_dev,
3457                         "Not enough memory for HMA DMA mapping");
3458                 ret = -ENOMEM;
3459                 goto free_hma;
3460         }
3461         adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3462
3463         adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3464                                         GFP_KERNEL);
3465         if (unlikely(!adapter->hma.phy_addr))
3466                 goto free_hma;
3467
3468         for_each_sg(sgl, iter, sgt->nents, i) {
3469                 newpage = sg_page(iter);
3470                 adapter->hma.phy_addr[i] = sg_dma_address(iter);
3471         }
3472
3473         ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3474         /* Pass on the addresses to firmware */
3475         for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3476                 struct fw_hma_cmd hma_cmd;
3477                 u8 naddr = HMA_MAX_ADDR_IN_CMD;
3478                 u8 soc = 0, eoc = 0;
3479                 u8 hma_mode = 1; /* Presently we support only Page table mode */
3480
3481                 soc = (i == 0) ? 1 : 0;
3482                 eoc = (i == ncmds - 1) ? 1 : 0;
3483
3484                 /* For last cmd, set naddr corresponding to remaining
3485                  * addresses
3486                  */
3487                 if (i == ncmds - 1) {
3488                         naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3489                         naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3490                 }
3491                 memset(&hma_cmd, 0, sizeof(hma_cmd));
3492                 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3493                                        FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3494                 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3495
3496                 hma_cmd.mode_to_pcie_params =
3497                         htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3498                               FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3499
3500                 /* HMA cmd size specified in MB's */
3501                 hma_cmd.naddr_size =
3502                         htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3503                               FW_HMA_CMD_NADDR_V(naddr));
3504
3505                 /* Total Page size specified in units of 4K */
3506                 hma_cmd.addr_size_pkd =
3507                         htonl(FW_HMA_CMD_ADDR_SIZE_V
3508                                 ((page_size << page_order) >> 12));
3509
3510                 /* Fill the 5 addresses */
3511                 for (j = 0; j < naddr; j++) {
3512                         hma_cmd.phy_address[j] =
3513                                 cpu_to_be64(adapter->hma.phy_addr[j + k]);
3514                 }
3515                 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3516                                  sizeof(hma_cmd), &hma_cmd);
3517                 if (ret) {
3518                         dev_err(adapter->pdev_dev,
3519                                 "HMA FW command failed with err %d\n", ret);
3520                         goto free_hma;
3521                 }
3522         }
3523
3524         if (!ret)
3525                 dev_info(adapter->pdev_dev,
3526                          "Reserved %uMB host memory for HMA\n", hma_size);
3527         return ret;
3528
3529 free_hma:
3530         adap_free_hma_mem(adapter);
3531         return ret;
3532 }
3533
3534 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3535 {
3536         u32 v;
3537         int ret;
3538
3539         /* get device capabilities */
3540         memset(c, 0, sizeof(*c));
3541         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3542                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3543         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3544         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3545         if (ret < 0)
3546                 return ret;
3547
3548         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3549                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3550         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3551         if (ret < 0)
3552                 return ret;
3553
3554         ret = t4_config_glbl_rss(adap, adap->pf,
3555                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3556                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3557                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3558         if (ret < 0)
3559                 return ret;
3560
3561         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3562                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3563                           FW_CMD_CAP_PF);
3564         if (ret < 0)
3565                 return ret;
3566
3567         t4_sge_init(adap);
3568
3569         /* tweak some settings */
3570         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3571         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3572         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3573         v = t4_read_reg(adap, TP_PIO_DATA_A);
3574         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3575
3576         /* first 4 Tx modulation queues point to consecutive Tx channels */
3577         adap->params.tp.tx_modq_map = 0xE4;
3578         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3579                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3580
3581         /* associate each Tx modulation queue with consecutive Tx channels */
3582         v = 0x84218421;
3583         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3584                           &v, 1, TP_TX_SCHED_HDR_A);
3585         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3586                           &v, 1, TP_TX_SCHED_FIFO_A);
3587         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3588                           &v, 1, TP_TX_SCHED_PCMD_A);
3589
3590 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3591         if (is_offload(adap)) {
3592                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3593                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3594                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3595                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3596                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3597                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3598                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3599                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3600                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3601                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3602         }
3603
3604         /* get basic stuff going */
3605         return t4_early_init(adap, adap->pf);
3606 }
3607
3608 /*
3609  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3610  */
3611 #define MAX_ATIDS 8192U
3612
3613 /*
3614  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3615  *
3616  * If the firmware we're dealing with has Configuration File support, then
3617  * we use that to perform all configuration
3618  */
3619
3620 /*
3621  * Tweak configuration based on module parameters, etc.  Most of these have
3622  * defaults assigned to them by Firmware Configuration Files (if we're using
3623  * them) but need to be explicitly set if we're using hard-coded
3624  * initialization.  But even in the case of using Firmware Configuration
3625  * Files, we'd like to expose the ability to change these via module
3626  * parameters so these are essentially common tweaks/settings for
3627  * Configuration Files and hard-coded initialization ...
3628  */
3629 static int adap_init0_tweaks(struct adapter *adapter)
3630 {
3631         /*
3632          * Fix up various Host-Dependent Parameters like Page Size, Cache
3633          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3634          * 64B Cache Line Size ...
3635          */
3636         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3637
3638         /*
3639          * Process module parameters which affect early initialization.
3640          */
3641         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3642                 dev_err(&adapter->pdev->dev,
3643                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3644                         rx_dma_offset);
3645                 rx_dma_offset = 2;
3646         }
3647         t4_set_reg_field(adapter, SGE_CONTROL_A,
3648                          PKTSHIFT_V(PKTSHIFT_M),
3649                          PKTSHIFT_V(rx_dma_offset));
3650
3651         /*
3652          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3653          * adds the pseudo header itself.
3654          */
3655         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3656                                CSUM_HAS_PSEUDO_HDR_F, 0);
3657
3658         return 0;
3659 }
3660
3661 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3662  * unto themselves and they contain their own firmware to perform their
3663  * tasks ...
3664  */
3665 static int phy_aq1202_version(const u8 *phy_fw_data,
3666                               size_t phy_fw_size)
3667 {
3668         int offset;
3669
3670         /* At offset 0x8 you're looking for the primary image's
3671          * starting offset which is 3 Bytes wide
3672          *
3673          * At offset 0xa of the primary image, you look for the offset
3674          * of the DRAM segment which is 3 Bytes wide.
3675          *
3676          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3677          * wide
3678          */
3679         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3680         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3681         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3682
3683         offset = le24(phy_fw_data + 0x8) << 12;
3684         offset = le24(phy_fw_data + offset + 0xa);
3685         return be16(phy_fw_data + offset + 0x27e);
3686
3687         #undef be16
3688         #undef le16
3689         #undef le24
3690 }
3691
3692 static struct info_10gbt_phy_fw {
3693         unsigned int phy_fw_id;         /* PCI Device ID */
3694         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3695         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3696         int phy_flash;                  /* Has FLASH for PHY Firmware */
3697 } phy_info_array[] = {
3698         {
3699                 PHY_AQ1202_DEVICEID,
3700                 PHY_AQ1202_FIRMWARE,
3701                 phy_aq1202_version,
3702                 1,
3703         },
3704         {
3705                 PHY_BCM84834_DEVICEID,
3706                 PHY_BCM84834_FIRMWARE,
3707                 NULL,
3708                 0,
3709         },
3710         { 0, NULL, NULL },
3711 };
3712
3713 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3714 {
3715         int i;
3716
3717         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3718                 if (phy_info_array[i].phy_fw_id == devid)
3719                         return &phy_info_array[i];
3720         }
3721         return NULL;
3722 }
3723
3724 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3725  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3726  * we return a negative error number.  If we transfer new firmware we return 1
3727  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3728  */
3729 static int adap_init0_phy(struct adapter *adap)
3730 {
3731         const struct firmware *phyf;
3732         int ret;
3733         struct info_10gbt_phy_fw *phy_info;
3734
3735         /* Use the device ID to determine which PHY file to flash.
3736          */
3737         phy_info = find_phy_info(adap->pdev->device);
3738         if (!phy_info) {
3739                 dev_warn(adap->pdev_dev,
3740                          "No PHY Firmware file found for this PHY\n");
3741                 return -EOPNOTSUPP;
3742         }
3743
3744         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3745          * use that. The adapter firmware provides us with a memory buffer
3746          * where we can load a PHY firmware file from the host if we want to
3747          * override the PHY firmware File in flash.
3748          */
3749         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3750                                       adap->pdev_dev);
3751         if (ret < 0) {
3752                 /* For adapters without FLASH attached to PHY for their
3753                  * firmware, it's obviously a fatal error if we can't get the
3754                  * firmware to the adapter.  For adapters with PHY firmware
3755                  * FLASH storage, it's worth a warning if we can't find the
3756                  * PHY Firmware but we'll neuter the error ...
3757                  */
3758                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3759                         "/lib/firmware/%s, error %d\n",
3760                         phy_info->phy_fw_file, -ret);
3761                 if (phy_info->phy_flash) {
3762                         int cur_phy_fw_ver = 0;
3763
3764                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3765                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3766                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3767                         ret = 0;
3768                 }
3769
3770                 return ret;
3771         }
3772
3773         /* Load PHY Firmware onto adapter.
3774          */
3775         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3776                              phy_info->phy_fw_version,
3777                              (u8 *)phyf->data, phyf->size);
3778         if (ret < 0)
3779                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3780                         -ret);
3781         else if (ret > 0) {
3782                 int new_phy_fw_ver = 0;
3783
3784                 if (phy_info->phy_fw_version)
3785                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3786                                                                   phyf->size);
3787                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3788                          "Firmware /lib/firmware/%s, version %#x\n",
3789                          phy_info->phy_fw_file, new_phy_fw_ver);
3790         }
3791
3792         release_firmware(phyf);
3793
3794         return ret;
3795 }
3796
3797 /*
3798  * Attempt to initialize the adapter via a Firmware Configuration File.
3799  */
3800 static int adap_init0_config(struct adapter *adapter, int reset)
3801 {
3802         struct fw_caps_config_cmd caps_cmd;
3803         const struct firmware *cf;
3804         unsigned long mtype = 0, maddr = 0;
3805         u32 finiver, finicsum, cfcsum;
3806         int ret;
3807         int config_issued = 0;
3808         char *fw_config_file, fw_config_file_path[256];
3809         char *config_name = NULL;
3810
3811         /*
3812          * Reset device if necessary.
3813          */
3814         if (reset) {
3815                 ret = t4_fw_reset(adapter, adapter->mbox,
3816                                   PIORSTMODE_F | PIORST_F);
3817                 if (ret < 0)
3818                         goto bye;
3819         }
3820
3821         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3822          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3823          * to be performed after any global adapter RESET above since some
3824          * PHYs only have local RAM copies of the PHY firmware.
3825          */
3826         if (is_10gbt_device(adapter->pdev->device)) {
3827                 ret = adap_init0_phy(adapter);
3828                 if (ret < 0)
3829                         goto bye;
3830         }
3831         /*
3832          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3833          * then use that.  Otherwise, use the configuration file stored
3834          * in the adapter flash ...
3835          */
3836         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3837         case CHELSIO_T4:
3838                 fw_config_file = FW4_CFNAME;
3839                 break;
3840         case CHELSIO_T5:
3841                 fw_config_file = FW5_CFNAME;
3842                 break;
3843         case CHELSIO_T6:
3844                 fw_config_file = FW6_CFNAME;
3845                 break;
3846         default:
3847                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3848                        adapter->pdev->device);
3849                 ret = -EINVAL;
3850                 goto bye;
3851         }
3852
3853         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3854         if (ret < 0) {
3855                 config_name = "On FLASH";
3856                 mtype = FW_MEMTYPE_CF_FLASH;
3857                 maddr = t4_flash_cfg_addr(adapter);
3858         } else {
3859                 u32 params[7], val[7];
3860
3861                 sprintf(fw_config_file_path,
3862                         "/lib/firmware/%s", fw_config_file);
3863                 config_name = fw_config_file_path;
3864
3865                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3866                         ret = -ENOMEM;
3867                 else {
3868                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3869                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3870                         ret = t4_query_params(adapter, adapter->mbox,
3871                                               adapter->pf, 0, 1, params, val);
3872                         if (ret == 0) {
3873                                 /*
3874                                  * For t4_memory_rw() below addresses and
3875                                  * sizes have to be in terms of multiples of 4
3876                                  * bytes.  So, if the Configuration File isn't
3877                                  * a multiple of 4 bytes in length we'll have
3878                                  * to write that out separately since we can't
3879                                  * guarantee that the bytes following the
3880                                  * residual byte in the buffer returned by
3881                                  * request_firmware() are zeroed out ...
3882                                  */
3883                                 size_t resid = cf->size & 0x3;
3884                                 size_t size = cf->size & ~0x3;
3885                                 __be32 *data = (__be32 *)cf->data;
3886
3887                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3888                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3889
3890                                 spin_lock(&adapter->win0_lock);
3891                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3892                                                    size, data, T4_MEMORY_WRITE);
3893                                 if (ret == 0 && resid != 0) {
3894                                         union {
3895                                                 __be32 word;
3896                                                 char buf[4];
3897                                         } last;
3898                                         int i;
3899
3900                                         last.word = data[size >> 2];
3901                                         for (i = resid; i < 4; i++)
3902                                                 last.buf[i] = 0;
3903                                         ret = t4_memory_rw(adapter, 0, mtype,
3904                                                            maddr + size,
3905                                                            4, &last.word,
3906                                                            T4_MEMORY_WRITE);
3907                                 }
3908                                 spin_unlock(&adapter->win0_lock);
3909                         }
3910                 }
3911
3912                 release_firmware(cf);
3913                 if (ret)
3914                         goto bye;
3915         }
3916
3917         /*
3918          * Issue a Capability Configuration command to the firmware to get it
3919          * to parse the Configuration File.  We don't use t4_fw_config_file()
3920          * because we want the ability to modify various features after we've
3921          * processed the configuration file ...
3922          */
3923         memset(&caps_cmd, 0, sizeof(caps_cmd));
3924         caps_cmd.op_to_write =
3925                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3926                       FW_CMD_REQUEST_F |
3927                       FW_CMD_READ_F);
3928         caps_cmd.cfvalid_to_len16 =
3929                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3930                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3931                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3932                       FW_LEN16(caps_cmd));
3933         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3934                          &caps_cmd);
3935
3936         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3937          * Configuration File in FLASH), our last gasp effort is to use the
3938          * Firmware Configuration File which is embedded in the firmware.  A
3939          * very few early versions of the firmware didn't have one embedded
3940          * but we can ignore those.
3941          */
3942         if (ret == -ENOENT) {
3943                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3944                 caps_cmd.op_to_write =
3945                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3946                                         FW_CMD_REQUEST_F |
3947                                         FW_CMD_READ_F);
3948                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3949                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3950                                 sizeof(caps_cmd), &caps_cmd);
3951                 config_name = "Firmware Default";
3952         }
3953
3954         config_issued = 1;
3955         if (ret < 0)
3956                 goto bye;
3957
3958         finiver = ntohl(caps_cmd.finiver);
3959         finicsum = ntohl(caps_cmd.finicsum);
3960         cfcsum = ntohl(caps_cmd.cfcsum);
3961         if (finicsum != cfcsum)
3962                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3963                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3964                          finicsum, cfcsum);
3965
3966         /*
3967          * And now tell the firmware to use the configuration we just loaded.
3968          */
3969         caps_cmd.op_to_write =
3970                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3971                       FW_CMD_REQUEST_F |
3972                       FW_CMD_WRITE_F);
3973         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3974         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3975                          NULL);
3976         if (ret < 0)
3977                 goto bye;
3978
3979         /*
3980          * Tweak configuration based on system architecture, module
3981          * parameters, etc.
3982          */
3983         ret = adap_init0_tweaks(adapter);
3984         if (ret < 0)
3985                 goto bye;
3986
3987         /* We will proceed even if HMA init fails. */
3988         ret = adap_config_hma(adapter);
3989         if (ret)
3990                 dev_err(adapter->pdev_dev,
3991                         "HMA configuration failed with error %d\n", ret);
3992
3993         /*
3994          * And finally tell the firmware to initialize itself using the
3995          * parameters from the Configuration File.
3996          */
3997         ret = t4_fw_initialize(adapter, adapter->mbox);
3998         if (ret < 0)
3999                 goto bye;
4000
4001         /* Emit Firmware Configuration File information and return
4002          * successfully.
4003          */
4004         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4005                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4006                  config_name, finiver, cfcsum);
4007         return 0;
4008
4009         /*
4010          * Something bad happened.  Return the error ...  (If the "error"
4011          * is that there's no Configuration File on the adapter we don't
4012          * want to issue a warning since this is fairly common.)
4013          */
4014 bye:
4015         if (config_issued && ret != -ENOENT)
4016                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4017                          config_name, -ret);
4018         return ret;
4019 }
4020
4021 static struct fw_info fw_info_array[] = {
4022         {
4023                 .chip = CHELSIO_T4,
4024                 .fs_name = FW4_CFNAME,
4025                 .fw_mod_name = FW4_FNAME,
4026                 .fw_hdr = {
4027                         .chip = FW_HDR_CHIP_T4,
4028                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4029                         .intfver_nic = FW_INTFVER(T4, NIC),
4030                         .intfver_vnic = FW_INTFVER(T4, VNIC),
4031                         .intfver_ri = FW_INTFVER(T4, RI),
4032                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4033                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
4034                 },
4035         }, {
4036                 .chip = CHELSIO_T5,
4037                 .fs_name = FW5_CFNAME,
4038                 .fw_mod_name = FW5_FNAME,
4039                 .fw_hdr = {
4040                         .chip = FW_HDR_CHIP_T5,
4041                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4042                         .intfver_nic = FW_INTFVER(T5, NIC),
4043                         .intfver_vnic = FW_INTFVER(T5, VNIC),
4044                         .intfver_ri = FW_INTFVER(T5, RI),
4045                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4046                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
4047                 },
4048         }, {
4049                 .chip = CHELSIO_T6,
4050                 .fs_name = FW6_CFNAME,
4051                 .fw_mod_name = FW6_FNAME,
4052                 .fw_hdr = {
4053                         .chip = FW_HDR_CHIP_T6,
4054                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4055                         .intfver_nic = FW_INTFVER(T6, NIC),
4056                         .intfver_vnic = FW_INTFVER(T6, VNIC),
4057                         .intfver_ofld = FW_INTFVER(T6, OFLD),
4058                         .intfver_ri = FW_INTFVER(T6, RI),
4059                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4060                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4061                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4062                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
4063                 },
4064         }
4065
4066 };
4067
4068 static struct fw_info *find_fw_info(int chip)
4069 {
4070         int i;
4071
4072         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4073                 if (fw_info_array[i].chip == chip)
4074                         return &fw_info_array[i];
4075         }
4076         return NULL;
4077 }
4078
4079 /*
4080  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4081  */
4082 static int adap_init0(struct adapter *adap)
4083 {
4084         int ret;
4085         u32 v, port_vec;
4086         enum dev_state state;
4087         u32 params[7], val[7];
4088         struct fw_caps_config_cmd caps_cmd;
4089         int reset = 1;
4090
4091         /* Grab Firmware Device Log parameters as early as possible so we have
4092          * access to it for debugging, etc.
4093          */
4094         ret = t4_init_devlog_params(adap);
4095         if (ret < 0)
4096                 return ret;
4097
4098         /* Contact FW, advertising Master capability */
4099         ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4100                           is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4101         if (ret < 0) {
4102                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4103                         ret);
4104                 return ret;
4105         }
4106         if (ret == adap->mbox)
4107                 adap->flags |= MASTER_PF;
4108
4109         /*
4110          * If we're the Master PF Driver and the device is uninitialized,
4111          * then let's consider upgrading the firmware ...  (We always want
4112          * to check the firmware version number in order to A. get it for
4113          * later reporting and B. to warn if the currently loaded firmware
4114          * is excessively mismatched relative to the driver.)
4115          */
4116
4117         t4_get_version_info(adap);
4118         ret = t4_check_fw_version(adap);
4119         /* If firmware is too old (not supported by driver) force an update. */
4120         if (ret)
4121                 state = DEV_STATE_UNINIT;
4122         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4123                 struct fw_info *fw_info;
4124                 struct fw_hdr *card_fw;
4125                 const struct firmware *fw;
4126                 const u8 *fw_data = NULL;
4127                 unsigned int fw_size = 0;
4128
4129                 /* This is the firmware whose headers the driver was compiled
4130                  * against
4131                  */
4132                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4133                 if (fw_info == NULL) {
4134                         dev_err(adap->pdev_dev,
4135                                 "unable to get firmware info for chip %d.\n",
4136                                 CHELSIO_CHIP_VERSION(adap->params.chip));
4137                         return -EINVAL;
4138                 }
4139
4140                 /* allocate memory to read the header of the firmware on the
4141                  * card
4142                  */
4143                 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4144                 if (!card_fw) {
4145                         ret = -ENOMEM;
4146                         goto bye;
4147                 }
4148
4149                 /* Get FW from from /lib/firmware/ */
4150                 ret = request_firmware(&fw, fw_info->fw_mod_name,
4151                                        adap->pdev_dev);
4152                 if (ret < 0) {
4153                         dev_err(adap->pdev_dev,
4154                                 "unable to load firmware image %s, error %d\n",
4155                                 fw_info->fw_mod_name, ret);
4156                 } else {
4157                         fw_data = fw->data;
4158                         fw_size = fw->size;
4159                 }
4160
4161                 /* upgrade FW logic */
4162                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4163                                  state, &reset);
4164
4165                 /* Cleaning up */
4166                 release_firmware(fw);
4167                 kvfree(card_fw);
4168
4169                 if (ret < 0)
4170                         goto bye;
4171         }
4172
4173         /*
4174          * Grab VPD parameters.  This should be done after we establish a
4175          * connection to the firmware since some of the VPD parameters
4176          * (notably the Core Clock frequency) are retrieved via requests to
4177          * the firmware.  On the other hand, we need these fairly early on
4178          * so we do this right after getting ahold of the firmware.
4179          */
4180         ret = t4_get_vpd_params(adap, &adap->params.vpd);
4181         if (ret < 0)
4182                 goto bye;
4183
4184         /*
4185          * Find out what ports are available to us.  Note that we need to do
4186          * this before calling adap_init0_no_config() since it needs nports
4187          * and portvec ...
4188          */
4189         v =
4190             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4191             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4192         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4193         if (ret < 0)
4194                 goto bye;
4195
4196         adap->params.nports = hweight32(port_vec);
4197         adap->params.portvec = port_vec;
4198
4199         /* If the firmware is initialized already, emit a simply note to that
4200          * effect. Otherwise, it's time to try initializing the adapter.
4201          */
4202         if (state == DEV_STATE_INIT) {
4203                 ret = adap_config_hma(adap);
4204                 if (ret)
4205                         dev_err(adap->pdev_dev,
4206                                 "HMA configuration failed with error %d\n",
4207                                 ret);
4208                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4209                          "Adapter already initialized\n",
4210                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4211         } else {
4212                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4213                          "Initializing adapter\n");
4214
4215                 /* Find out whether we're dealing with a version of the
4216                  * firmware which has configuration file support.
4217                  */
4218                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4219                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4220                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4221                                       params, val);
4222
4223                 /* If the firmware doesn't support Configuration Files,
4224                  * return an error.
4225                  */
4226                 if (ret < 0) {
4227                         dev_err(adap->pdev_dev, "firmware doesn't support "
4228                                 "Firmware Configuration Files\n");
4229                         goto bye;
4230                 }
4231
4232                 /* The firmware provides us with a memory buffer where we can
4233                  * load a Configuration File from the host if we want to
4234                  * override the Configuration File in flash.
4235                  */
4236                 ret = adap_init0_config(adap, reset);
4237                 if (ret == -ENOENT) {
4238                         dev_err(adap->pdev_dev, "no Configuration File "
4239                                 "present on adapter.\n");
4240                         goto bye;
4241                 }
4242                 if (ret < 0) {
4243                         dev_err(adap->pdev_dev, "could not initialize "
4244                                 "adapter, error %d\n", -ret);
4245                         goto bye;
4246                 }
4247         }
4248
4249         /* Give the SGE code a chance to pull in anything that it needs ...
4250          * Note that this must be called after we retrieve our VPD parameters
4251          * in order to know how to convert core ticks to seconds, etc.
4252          */
4253         ret = t4_sge_init(adap);
4254         if (ret < 0)
4255                 goto bye;
4256
4257         if (is_bypass_device(adap->pdev->device))
4258                 adap->params.bypass = 1;
4259
4260         /*
4261          * Grab some of our basic fundamental operating parameters.
4262          */
4263 #define FW_PARAM_DEV(param) \
4264         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4265         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4266
4267 #define FW_PARAM_PFVF(param) \
4268         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4269         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4270         FW_PARAMS_PARAM_Y_V(0) | \
4271         FW_PARAMS_PARAM_Z_V(0)
4272
4273         params[0] = FW_PARAM_PFVF(EQ_START);
4274         params[1] = FW_PARAM_PFVF(L2T_START);
4275         params[2] = FW_PARAM_PFVF(L2T_END);
4276         params[3] = FW_PARAM_PFVF(FILTER_START);
4277         params[4] = FW_PARAM_PFVF(FILTER_END);
4278         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4279         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4280         if (ret < 0)
4281                 goto bye;
4282         adap->sge.egr_start = val[0];
4283         adap->l2t_start = val[1];
4284         adap->l2t_end = val[2];
4285         adap->tids.ftid_base = val[3];
4286         adap->tids.nftids = val[4] - val[3] + 1;
4287         adap->sge.ingr_start = val[5];
4288
4289         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4290                 /* Read the raw mps entries. In T6, the last 2 tcam entries
4291                  * are reserved for raw mac addresses (rawf = 2, one per port).
4292                  */
4293                 params[0] = FW_PARAM_PFVF(RAWF_START);
4294                 params[1] = FW_PARAM_PFVF(RAWF_END);
4295                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4296                                       params, val);
4297                 if (ret == 0) {
4298                         adap->rawf_start = val[0];
4299                         adap->rawf_cnt = val[1] - val[0] + 1;
4300                 }
4301         }
4302
4303         /* qids (ingress/egress) returned from firmware can be anywhere
4304          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4305          * Hence driver needs to allocate memory for this range to
4306          * store the queue info. Get the highest IQFLINT/EQ index returned
4307          * in FW_EQ_*_CMD.alloc command.
4308          */
4309         params[0] = FW_PARAM_PFVF(EQ_END);
4310         params[1] = FW_PARAM_PFVF(IQFLINT_END);
4311         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4312         if (ret < 0)
4313                 goto bye;
4314         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4315         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4316
4317         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4318                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
4319         if (!adap->sge.egr_map) {
4320                 ret = -ENOMEM;
4321                 goto bye;
4322         }
4323
4324         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4325                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4326         if (!adap->sge.ingr_map) {
4327                 ret = -ENOMEM;
4328                 goto bye;
4329         }
4330
4331         /* Allocate the memory for the vaious egress queue bitmaps
4332          * ie starving_fl, txq_maperr and blocked_fl.
4333          */
4334         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4335                                         sizeof(long), GFP_KERNEL);
4336         if (!adap->sge.starving_fl) {
4337                 ret = -ENOMEM;
4338                 goto bye;
4339         }
4340
4341         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4342                                        sizeof(long), GFP_KERNEL);
4343         if (!adap->sge.txq_maperr) {
4344                 ret = -ENOMEM;
4345                 goto bye;
4346         }
4347
4348 #ifdef CONFIG_DEBUG_FS
4349         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4350                                        sizeof(long), GFP_KERNEL);
4351         if (!adap->sge.blocked_fl) {
4352                 ret = -ENOMEM;
4353                 goto bye;
4354         }
4355 #endif
4356
4357         params[0] = FW_PARAM_PFVF(CLIP_START);
4358         params[1] = FW_PARAM_PFVF(CLIP_END);
4359         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4360         if (ret < 0)
4361                 goto bye;
4362         adap->clipt_start = val[0];
4363         adap->clipt_end = val[1];
4364
4365         /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4366          * Classes supported by the hardware/firmware so we hard code it here
4367          * for now.
4368          */
4369         adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4370
4371         /* query params related to active filter region */
4372         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4373         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4374         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4375         /* If Active filter size is set we enable establishing
4376          * offload connection through firmware work request
4377          */
4378         if ((val[0] != val[1]) && (ret >= 0)) {
4379                 adap->flags |= FW_OFLD_CONN;
4380                 adap->tids.aftid_base = val[0];
4381                 adap->tids.aftid_end = val[1];
4382         }
4383
4384         /* If we're running on newer firmware, let it know that we're
4385          * prepared to deal with encapsulated CPL messages.  Older
4386          * firmware won't understand this and we'll just get
4387          * unencapsulated messages ...
4388          */
4389         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4390         val[0] = 1;
4391         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4392
4393         /*
4394          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4395          * capability.  Earlier versions of the firmware didn't have the
4396          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4397          * permission to use ULPTX MEMWRITE DSGL.
4398          */
4399         if (is_t4(adap->params.chip)) {
4400                 adap->params.ulptx_memwrite_dsgl = false;
4401         } else {
4402                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4403                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4404                                       1, params, val);
4405                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4406         }
4407
4408         /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4409         params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4410         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4411                               1, params, val);
4412         adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4413
4414         /* See if FW supports FW_FILTER2 work request */
4415         if (is_t4(adap->params.chip)) {
4416                 adap->params.filter2_wr_support = 0;
4417         } else {
4418                 params[0] = FW_PARAM_DEV(FILTER2_WR);
4419                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4420                                       1, params, val);
4421                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4422         }
4423
4424         /*
4425          * Get device capabilities so we can determine what resources we need
4426          * to manage.
4427          */
4428         memset(&caps_cmd, 0, sizeof(caps_cmd));
4429         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4430                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
4431         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4432         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4433                          &caps_cmd);
4434         if (ret < 0)
4435                 goto bye;
4436
4437         if (caps_cmd.ofldcaps ||
4438             (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4439                 /* query offload-related parameters */
4440                 params[0] = FW_PARAM_DEV(NTID);
4441                 params[1] = FW_PARAM_PFVF(SERVER_START);
4442                 params[2] = FW_PARAM_PFVF(SERVER_END);
4443                 params[3] = FW_PARAM_PFVF(TDDP_START);
4444                 params[4] = FW_PARAM_PFVF(TDDP_END);
4445                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4446                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4447                                       params, val);
4448                 if (ret < 0)
4449                         goto bye;
4450                 adap->tids.ntids = val[0];
4451                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4452                 adap->tids.stid_base = val[1];
4453                 adap->tids.nstids = val[2] - val[1] + 1;
4454                 /*
4455                  * Setup server filter region. Divide the available filter
4456                  * region into two parts. Regular filters get 1/3rd and server
4457                  * filters get 2/3rd part. This is only enabled if workarond
4458                  * path is enabled.
4459                  * 1. For regular filters.
4460                  * 2. Server filter: This are special filters which are used
4461                  * to redirect SYN packets to offload queue.
4462                  */
4463                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4464                         adap->tids.sftid_base = adap->tids.ftid_base +
4465                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4466                         adap->tids.nsftids = adap->tids.nftids -
4467                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4468                         adap->tids.nftids = adap->tids.sftid_base -
4469                                                 adap->tids.ftid_base;
4470                 }
4471                 adap->vres.ddp.start = val[3];
4472                 adap->vres.ddp.size = val[4] - val[3] + 1;
4473                 adap->params.ofldq_wr_cred = val[5];
4474
4475                 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4476                         ret = init_hash_filter(adap);
4477                         if (ret < 0)
4478                                 goto bye;
4479                 } else {
4480                         adap->params.offload = 1;
4481                         adap->num_ofld_uld += 1;
4482                 }
4483         }
4484         if (caps_cmd.rdmacaps) {
4485                 params[0] = FW_PARAM_PFVF(STAG_START);
4486                 params[1] = FW_PARAM_PFVF(STAG_END);
4487                 params[2] = FW_PARAM_PFVF(RQ_START);
4488                 params[3] = FW_PARAM_PFVF(RQ_END);
4489                 params[4] = FW_PARAM_PFVF(PBL_START);
4490                 params[5] = FW_PARAM_PFVF(PBL_END);
4491                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4492                                       params, val);
4493                 if (ret < 0)
4494                         goto bye;
4495                 adap->vres.stag.start = val[0];
4496                 adap->vres.stag.size = val[1] - val[0] + 1;
4497                 adap->vres.rq.start = val[2];
4498                 adap->vres.rq.size = val[3] - val[2] + 1;
4499                 adap->vres.pbl.start = val[4];
4500                 adap->vres.pbl.size = val[5] - val[4] + 1;
4501
4502                 params[0] = FW_PARAM_PFVF(SRQ_START);
4503                 params[1] = FW_PARAM_PFVF(SRQ_END);
4504                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4505                                       params, val);
4506                 if (!ret) {
4507                         adap->vres.srq.start = val[0];
4508                         adap->vres.srq.size = val[1] - val[0] + 1;
4509                 }
4510                 if (adap->vres.srq.size) {
4511                         adap->srq = t4_init_srq(adap->vres.srq.size);
4512                         if (!adap->srq)
4513                                 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4514                 }
4515
4516                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4517                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4518                 params[2] = FW_PARAM_PFVF(CQ_START);
4519                 params[3] = FW_PARAM_PFVF(CQ_END);
4520                 params[4] = FW_PARAM_PFVF(OCQ_START);
4521                 params[5] = FW_PARAM_PFVF(OCQ_END);
4522                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4523                                       val);
4524                 if (ret < 0)
4525                         goto bye;
4526                 adap->vres.qp.start = val[0];
4527                 adap->vres.qp.size = val[1] - val[0] + 1;
4528                 adap->vres.cq.start = val[2];
4529                 adap->vres.cq.size = val[3] - val[2] + 1;
4530                 adap->vres.ocq.start = val[4];
4531                 adap->vres.ocq.size = val[5] - val[4] + 1;
4532
4533                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4534                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4535                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4536                                       val);
4537                 if (ret < 0) {
4538                         adap->params.max_ordird_qp = 8;
4539                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4540                         ret = 0;
4541                 } else {
4542                         adap->params.max_ordird_qp = val[0];
4543                         adap->params.max_ird_adapter = val[1];
4544                 }
4545                 dev_info(adap->pdev_dev,
4546                          "max_ordird_qp %d max_ird_adapter %d\n",
4547                          adap->params.max_ordird_qp,
4548                          adap->params.max_ird_adapter);
4549
4550                 /* Enable write_with_immediate if FW supports it */
4551                 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4552                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4553                                       val);
4554                 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4555
4556                 /* Enable write_cmpl if FW supports it */
4557                 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4558                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4559                                       val);
4560                 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4561                 adap->num_ofld_uld += 2;
4562         }
4563         if (caps_cmd.iscsicaps) {
4564                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4565                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4566                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4567                                       params, val);
4568                 if (ret < 0)
4569                         goto bye;
4570                 adap->vres.iscsi.start = val[0];
4571                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4572                 /* LIO target and cxgb4i initiaitor */
4573                 adap->num_ofld_uld += 2;
4574         }
4575         if (caps_cmd.cryptocaps) {
4576                 if (ntohs(caps_cmd.cryptocaps) &
4577                     FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4578                         params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4579                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4580                                               2, params, val);
4581                         if (ret < 0) {
4582                                 if (ret != -EINVAL)
4583                                         goto bye;
4584                         } else {
4585                                 adap->vres.ncrypto_fc = val[0];
4586                         }
4587                         adap->num_ofld_uld += 1;
4588                 }
4589                 if (ntohs(caps_cmd.cryptocaps) &
4590                     FW_CAPS_CONFIG_TLS_INLINE) {
4591                         params[0] = FW_PARAM_PFVF(TLS_START);
4592                         params[1] = FW_PARAM_PFVF(TLS_END);
4593                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4594                                               2, params, val);
4595                         if (ret < 0)
4596                                 goto bye;
4597                         adap->vres.key.start = val[0];
4598                         adap->vres.key.size = val[1] - val[0] + 1;
4599                         adap->num_uld += 1;
4600                 }
4601                 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4602         }
4603 #undef FW_PARAM_PFVF
4604 #undef FW_PARAM_DEV
4605
4606         /* The MTU/MSS Table is initialized by now, so load their values.  If
4607          * we're initializing the adapter, then we'll make any modifications
4608          * we want to the MTU/MSS Table and also initialize the congestion
4609          * parameters.
4610          */
4611         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4612         if (state != DEV_STATE_INIT) {
4613                 int i;
4614
4615                 /* The default MTU Table contains values 1492 and 1500.
4616                  * However, for TCP, it's better to have two values which are
4617                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4618                  * This allows us to have a TCP Data Payload which is a
4619                  * multiple of 8 regardless of what combination of TCP Options
4620                  * are in use (always a multiple of 4 bytes) which is
4621                  * important for performance reasons.  For instance, if no
4622                  * options are in use, then we have a 20-byte IP header and a
4623                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4624                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4625                  * which is not a multiple of 8.  So using an MSS of 1488 in
4626                  * this case results in a TCP Data Payload of 1448 bytes which
4627                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4628                  * Stamps have been negotiated, then an MTU of 1500 bytes
4629                  * results in a TCP Data Payload of 1448 bytes which, as
4630                  * above, is a multiple of 8 bytes ...
4631                  */
4632                 for (i = 0; i < NMTUS; i++)
4633                         if (adap->params.mtus[i] == 1492) {
4634                                 adap->params.mtus[i] = 1488;
4635                                 break;
4636                         }
4637
4638                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4639                              adap->params.b_wnd);
4640         }
4641         t4_init_sge_params(adap);
4642         adap->flags |= FW_OK;
4643         t4_init_tp_params(adap, true);
4644         return 0;
4645
4646         /*
4647          * Something bad happened.  If a command timed out or failed with EIO
4648          * FW does not operate within its spec or something catastrophic
4649          * happened to HW/FW, stop issuing commands.
4650          */
4651 bye:
4652         adap_free_hma_mem(adap);
4653         kfree(adap->sge.egr_map);
4654         kfree(adap->sge.ingr_map);
4655         kfree(adap->sge.starving_fl);
4656         kfree(adap->sge.txq_maperr);
4657 #ifdef CONFIG_DEBUG_FS
4658         kfree(adap->sge.blocked_fl);
4659 #endif
4660         if (ret != -ETIMEDOUT && ret != -EIO)
4661                 t4_fw_bye(adap, adap->mbox);
4662         return ret;
4663 }
4664
4665 /* EEH callbacks */
4666
4667 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4668                                          pci_channel_state_t state)
4669 {
4670         int i;
4671         struct adapter *adap = pci_get_drvdata(pdev);
4672
4673         if (!adap)
4674                 goto out;
4675
4676         rtnl_lock();
4677         adap->flags &= ~FW_OK;
4678         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4679         spin_lock(&adap->stats_lock);
4680         for_each_port(adap, i) {
4681                 struct net_device *dev = adap->port[i];
4682                 if (dev) {
4683                         netif_device_detach(dev);
4684                         netif_carrier_off(dev);
4685                 }
4686         }
4687         spin_unlock(&adap->stats_lock);
4688         disable_interrupts(adap);
4689         if (adap->flags & FULL_INIT_DONE)
4690                 cxgb_down(adap);
4691         rtnl_unlock();
4692         if ((adap->flags & DEV_ENABLED)) {
4693                 pci_disable_device(pdev);
4694                 adap->flags &= ~DEV_ENABLED;
4695         }
4696 out:    return state == pci_channel_io_perm_failure ?
4697                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4698 }
4699
4700 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4701 {
4702         int i, ret;
4703         struct fw_caps_config_cmd c;
4704         struct adapter *adap = pci_get_drvdata(pdev);
4705
4706         if (!adap) {
4707                 pci_restore_state(pdev);
4708                 pci_save_state(pdev);
4709                 return PCI_ERS_RESULT_RECOVERED;
4710         }
4711
4712         if (!(adap->flags & DEV_ENABLED)) {
4713                 if (pci_enable_device(pdev)) {
4714                         dev_err(&pdev->dev, "Cannot reenable PCI "
4715                                             "device after reset\n");
4716                         return PCI_ERS_RESULT_DISCONNECT;
4717                 }
4718                 adap->flags |= DEV_ENABLED;
4719         }
4720
4721         pci_set_master(pdev);
4722         pci_restore_state(pdev);
4723         pci_save_state(pdev);
4724         pci_cleanup_aer_uncorrect_error_status(pdev);
4725
4726         if (t4_wait_dev_ready(adap->regs) < 0)
4727                 return PCI_ERS_RESULT_DISCONNECT;
4728         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4729                 return PCI_ERS_RESULT_DISCONNECT;
4730         adap->flags |= FW_OK;
4731         if (adap_init1(adap, &c))
4732                 return PCI_ERS_RESULT_DISCONNECT;
4733
4734         for_each_port(adap, i) {
4735                 struct port_info *p = adap2pinfo(adap, i);
4736
4737                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4738                                   NULL, NULL);
4739                 if (ret < 0)
4740                         return PCI_ERS_RESULT_DISCONNECT;
4741                 p->viid = ret;
4742                 p->xact_addr_filt = -1;
4743         }
4744
4745         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4746                      adap->params.b_wnd);
4747         setup_memwin(adap);
4748         if (cxgb_up(adap))
4749                 return PCI_ERS_RESULT_DISCONNECT;
4750         return PCI_ERS_RESULT_RECOVERED;
4751 }
4752
4753 static void eeh_resume(struct pci_dev *pdev)
4754 {
4755         int i;
4756         struct adapter *adap = pci_get_drvdata(pdev);
4757
4758         if (!adap)
4759                 return;
4760
4761         rtnl_lock();
4762         for_each_port(adap, i) {
4763                 struct net_device *dev = adap->port[i];
4764                 if (dev) {
4765                         if (netif_running(dev)) {
4766                                 link_start(dev);
4767                                 cxgb_set_rxmode(dev);
4768                         }
4769                         netif_device_attach(dev);
4770                 }
4771         }
4772         rtnl_unlock();
4773 }
4774
4775 static const struct pci_error_handlers cxgb4_eeh = {
4776         .error_detected = eeh_err_detected,
4777         .slot_reset     = eeh_slot_reset,
4778         .resume         = eeh_resume,
4779 };
4780
4781 /* Return true if the Link Configuration supports "High Speeds" (those greater
4782  * than 1Gb/s).
4783  */
4784 static inline bool is_x_10g_port(const struct link_config *lc)
4785 {
4786         unsigned int speeds, high_speeds;
4787
4788         speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4789         high_speeds = speeds &
4790                         ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4791
4792         return high_speeds != 0;
4793 }
4794
4795 /*
4796  * Perform default configuration of DMA queues depending on the number and type
4797  * of ports we found and the number of available CPUs.  Most settings can be
4798  * modified by the admin prior to actual use.
4799  */
4800 static void cfg_queues(struct adapter *adap)
4801 {
4802         struct sge *s = &adap->sge;
4803         int i = 0, n10g = 0, qidx = 0;
4804 #ifndef CONFIG_CHELSIO_T4_DCB
4805         int q10g = 0;
4806 #endif
4807
4808         /* Reduce memory usage in kdump environment, disable all offload.
4809          */
4810         if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4811                 adap->params.offload = 0;
4812                 adap->params.crypto = 0;
4813         }
4814
4815         n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4816 #ifdef CONFIG_CHELSIO_T4_DCB
4817         /* For Data Center Bridging support we need to be able to support up
4818          * to 8 Traffic Priorities; each of which will be assigned to its
4819          * own TX Queue in order to prevent Head-Of-Line Blocking.
4820          */
4821         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4822                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4823                         MAX_ETH_QSETS, adap->params.nports * 8);
4824                 BUG_ON(1);
4825         }
4826
4827         for_each_port(adap, i) {
4828                 struct port_info *pi = adap2pinfo(adap, i);
4829
4830                 pi->first_qset = qidx;
4831                 pi->nqsets = is_kdump_kernel() ? 1 : 8;
4832                 qidx += pi->nqsets;
4833         }
4834 #else /* !CONFIG_CHELSIO_T4_DCB */
4835         /*
4836          * We default to 1 queue per non-10G port and up to # of cores queues
4837          * per 10G port.
4838          */
4839         if (n10g)
4840                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4841         if (q10g > netif_get_num_default_rss_queues())
4842                 q10g = netif_get_num_default_rss_queues();
4843
4844         if (is_kdump_kernel())
4845                 q10g = 1;
4846
4847         for_each_port(adap, i) {
4848                 struct port_info *pi = adap2pinfo(adap, i);
4849
4850                 pi->first_qset = qidx;
4851                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4852                 qidx += pi->nqsets;
4853         }
4854 #endif /* !CONFIG_CHELSIO_T4_DCB */
4855
4856         s->ethqsets = qidx;
4857         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4858
4859         if (is_uld(adap)) {
4860                 /*
4861                  * For offload we use 1 queue/channel if all ports are up to 1G,
4862                  * otherwise we divide all available queues amongst the channels
4863                  * capped by the number of available cores.
4864                  */
4865                 if (n10g) {
4866                         i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4867                         s->ofldqsets = roundup(i, adap->params.nports);
4868                 } else {
4869                         s->ofldqsets = adap->params.nports;
4870                 }
4871         }
4872
4873         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4874                 struct sge_eth_rxq *r = &s->ethrxq[i];
4875
4876                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4877                 r->fl.size = 72;
4878         }
4879
4880         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4881                 s->ethtxq[i].q.size = 1024;
4882
4883         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4884                 s->ctrlq[i].q.size = 512;
4885
4886         if (!is_t4(adap->params.chip))
4887                 s->ptptxq.q.size = 8;
4888
4889         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4890         init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4891 }
4892
4893 /*
4894  * Reduce the number of Ethernet queues across all ports to at most n.
4895  * n provides at least one queue per port.
4896  */
4897 static void reduce_ethqs(struct adapter *adap, int n)
4898 {
4899         int i;
4900         struct port_info *pi;
4901
4902         while (n < adap->sge.ethqsets)
4903                 for_each_port(adap, i) {
4904                         pi = adap2pinfo(adap, i);
4905                         if (pi->nqsets > 1) {
4906                                 pi->nqsets--;
4907                                 adap->sge.ethqsets--;
4908                                 if (adap->sge.ethqsets <= n)
4909                                         break;
4910                         }
4911                 }
4912
4913         n = 0;
4914         for_each_port(adap, i) {
4915                 pi = adap2pinfo(adap, i);
4916                 pi->first_qset = n;
4917                 n += pi->nqsets;
4918         }
4919 }
4920
4921 static int get_msix_info(struct adapter *adap)
4922 {
4923         struct uld_msix_info *msix_info;
4924         unsigned int max_ingq = 0;
4925
4926         if (is_offload(adap))
4927                 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4928         if (is_pci_uld(adap))
4929                 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4930
4931         if (!max_ingq)
4932                 goto out;
4933
4934         msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4935         if (!msix_info)
4936                 return -ENOMEM;
4937
4938         adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4939                                                  sizeof(long), GFP_KERNEL);
4940         if (!adap->msix_bmap_ulds.msix_bmap) {
4941                 kfree(msix_info);
4942                 return -ENOMEM;
4943         }
4944         spin_lock_init(&adap->msix_bmap_ulds.lock);
4945         adap->msix_info_ulds = msix_info;
4946 out:
4947         return 0;
4948 }
4949
4950 static void free_msix_info(struct adapter *adap)
4951 {
4952         if (!(adap->num_uld && adap->num_ofld_uld))
4953                 return;
4954
4955         kfree(adap->msix_info_ulds);
4956         kfree(adap->msix_bmap_ulds.msix_bmap);
4957 }
4958
4959 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4960 #define EXTRA_VECS 2
4961
4962 static int enable_msix(struct adapter *adap)
4963 {
4964         int ofld_need = 0, uld_need = 0;
4965         int i, j, want, need, allocated;
4966         struct sge *s = &adap->sge;
4967         unsigned int nchan = adap->params.nports;
4968         struct msix_entry *entries;
4969         int max_ingq = MAX_INGQ;
4970
4971         if (is_pci_uld(adap))
4972                 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4973         if (is_offload(adap))
4974                 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4975         entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
4976                                 GFP_KERNEL);
4977         if (!entries)
4978                 return -ENOMEM;
4979
4980         /* map for msix */
4981         if (get_msix_info(adap)) {
4982                 adap->params.offload = 0;
4983                 adap->params.crypto = 0;
4984         }
4985
4986         for (i = 0; i < max_ingq + 1; ++i)
4987                 entries[i].entry = i;
4988
4989         want = s->max_ethqsets + EXTRA_VECS;
4990         if (is_offload(adap)) {
4991                 want += adap->num_ofld_uld * s->ofldqsets;
4992                 ofld_need = adap->num_ofld_uld * nchan;
4993         }
4994         if (is_pci_uld(adap)) {
4995                 want += adap->num_uld * s->ofldqsets;
4996                 uld_need = adap->num_uld * nchan;
4997         }
4998 #ifdef CONFIG_CHELSIO_T4_DCB
4999         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5000          * each port.
5001          */
5002         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5003 #else
5004         need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5005 #endif
5006         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5007         if (allocated < 0) {
5008                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5009                          " not using MSI-X\n");
5010                 kfree(entries);
5011                 return allocated;
5012         }
5013
5014         /* Distribute available vectors to the various queue groups.
5015          * Every group gets its minimum requirement and NIC gets top
5016          * priority for leftovers.
5017          */
5018         i = allocated - EXTRA_VECS - ofld_need - uld_need;
5019         if (i < s->max_ethqsets) {
5020                 s->max_ethqsets = i;
5021                 if (i < s->ethqsets)
5022                         reduce_ethqs(adap, i);
5023         }
5024         if (is_uld(adap)) {
5025                 if (allocated < want)
5026                         s->nqs_per_uld = nchan;
5027                 else
5028                         s->nqs_per_uld = s->ofldqsets;
5029         }
5030
5031         for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5032                 adap->msix_info[i].vec = entries[i].vector;
5033         if (is_uld(adap)) {
5034                 for (j = 0 ; i < allocated; ++i, j++) {
5035                         adap->msix_info_ulds[j].vec = entries[i].vector;
5036                         adap->msix_info_ulds[j].idx = i;
5037                 }
5038                 adap->msix_bmap_ulds.mapsize = j;
5039         }
5040         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5041                  "nic %d per uld %d\n",
5042                  allocated, s->max_ethqsets, s->nqs_per_uld);
5043
5044         kfree(entries);
5045         return 0;
5046 }
5047
5048 #undef EXTRA_VECS
5049
5050 static int init_rss(struct adapter *adap)
5051 {
5052         unsigned int i;
5053         int err;
5054
5055         err = t4_init_rss_mode(adap, adap->mbox);
5056         if (err)
5057                 return err;
5058
5059         for_each_port(adap, i) {
5060                 struct port_info *pi = adap2pinfo(adap, i);
5061
5062                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5063                 if (!pi->rss)
5064                         return -ENOMEM;
5065         }
5066         return 0;
5067 }
5068
5069 /* Dump basic information about the adapter */
5070 static void print_adapter_info(struct adapter *adapter)
5071 {
5072         /* Hardware/Firmware/etc. Version/Revision IDs */
5073         t4_dump_version_info(adapter);
5074
5075         /* Software/Hardware configuration */
5076         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5077                  is_offload(adapter) ? "R" : "",
5078                  ((adapter->flags & USING_MSIX) ? "MSI-X" :
5079                   (adapter->flags & USING_MSI) ? "MSI" : ""),
5080                  is_offload(adapter) ? "Offload" : "non-Offload");
5081 }
5082
5083 static void print_port_info(const struct net_device *dev)
5084 {
5085         char buf[80];
5086         char *bufp = buf;
5087         const char *spd = "";
5088         const struct port_info *pi = netdev_priv(dev);
5089         const struct adapter *adap = pi->adapter;
5090
5091         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
5092                 spd = " 2.5 GT/s";
5093         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
5094                 spd = " 5 GT/s";
5095         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
5096                 spd = " 8 GT/s";
5097
5098         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5099                 bufp += sprintf(bufp, "100M/");
5100         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5101                 bufp += sprintf(bufp, "1G/");
5102         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5103                 bufp += sprintf(bufp, "10G/");
5104         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5105                 bufp += sprintf(bufp, "25G/");
5106         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5107                 bufp += sprintf(bufp, "40G/");
5108         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5109                 bufp += sprintf(bufp, "50G/");
5110         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5111                 bufp += sprintf(bufp, "100G/");
5112         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5113                 bufp += sprintf(bufp, "200G/");
5114         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5115                 bufp += sprintf(bufp, "400G/");
5116         if (bufp != buf)
5117                 --bufp;
5118         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5119
5120         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5121                     dev->name, adap->params.vpd.id, adap->name, buf);
5122 }
5123
5124 /*
5125  * Free the following resources:
5126  * - memory used for tables
5127  * - MSI/MSI-X
5128  * - net devices
5129  * - resources FW is holding for us
5130  */
5131 static void free_some_resources(struct adapter *adapter)
5132 {
5133         unsigned int i;
5134
5135         kvfree(adapter->mps_encap);
5136         kvfree(adapter->smt);
5137         kvfree(adapter->l2t);
5138         kvfree(adapter->srq);
5139         t4_cleanup_sched(adapter);
5140         kvfree(adapter->tids.tid_tab);
5141         cxgb4_cleanup_tc_flower(adapter);
5142         cxgb4_cleanup_tc_u32(adapter);
5143         kfree(adapter->sge.egr_map);
5144         kfree(adapter->sge.ingr_map);
5145         kfree(adapter->sge.starving_fl);
5146         kfree(adapter->sge.txq_maperr);
5147 #ifdef CONFIG_DEBUG_FS
5148         kfree(adapter->sge.blocked_fl);
5149 #endif
5150         disable_msi(adapter);
5151
5152         for_each_port(adapter, i)
5153                 if (adapter->port[i]) {
5154                         struct port_info *pi = adap2pinfo(adapter, i);
5155
5156                         if (pi->viid != 0)
5157                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5158                                            0, pi->viid);
5159                         kfree(adap2pinfo(adapter, i)->rss);
5160                         free_netdev(adapter->port[i]);
5161                 }
5162         if (adapter->flags & FW_OK)
5163                 t4_fw_bye(adapter, adapter->pf);
5164 }
5165
5166 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5167 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5168                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5169 #define SEGMENT_SIZE 128
5170
5171 static int t4_get_chip_type(struct adapter *adap, int ver)
5172 {
5173         u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5174
5175         switch (ver) {
5176         case CHELSIO_T4:
5177                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5178         case CHELSIO_T5:
5179                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5180         case CHELSIO_T6:
5181                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5182         default:
5183                 break;
5184         }
5185         return -EINVAL;
5186 }
5187
5188 #ifdef CONFIG_PCI_IOV
5189 static void cxgb4_mgmt_setup(struct net_device *dev)
5190 {
5191         dev->type = ARPHRD_NONE;
5192         dev->mtu = 0;
5193         dev->hard_header_len = 0;
5194         dev->addr_len = 0;
5195         dev->tx_queue_len = 0;
5196         dev->flags |= IFF_NOARP;
5197         dev->priv_flags |= IFF_NO_QUEUE;
5198
5199         /* Initialize the device structure. */
5200         dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5201         dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5202 }
5203
5204 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5205 {
5206         struct adapter *adap = pci_get_drvdata(pdev);
5207         int err = 0;
5208         int current_vfs = pci_num_vf(pdev);
5209         u32 pcie_fw;
5210
5211         pcie_fw = readl(adap->regs + PCIE_FW_A);
5212         /* Check if fw is initialized */
5213         if (!(pcie_fw & PCIE_FW_INIT_F)) {
5214                 dev_warn(&pdev->dev, "Device not initialized\n");
5215                 return -EOPNOTSUPP;
5216         }
5217
5218         /* If any of the VF's is already assigned to Guest OS, then
5219          * SRIOV for the same cannot be modified
5220          */
5221         if (current_vfs && pci_vfs_assigned(pdev)) {
5222                 dev_err(&pdev->dev,
5223                         "Cannot modify SR-IOV while VFs are assigned\n");
5224                 return current_vfs;
5225         }
5226         /* Note that the upper-level code ensures that we're never called with
5227          * a non-zero "num_vfs" when we already have VFs instantiated.  But
5228          * it never hurts to code defensively.
5229          */
5230         if (num_vfs != 0 && current_vfs != 0)
5231                 return -EBUSY;
5232
5233         /* Nothing to do for no change. */
5234         if (num_vfs == current_vfs)
5235                 return num_vfs;
5236
5237         /* Disable SRIOV when zero is passed. */
5238         if (!num_vfs) {
5239                 pci_disable_sriov(pdev);
5240                 /* free VF Management Interface */
5241                 unregister_netdev(adap->port[0]);
5242                 free_netdev(adap->port[0]);
5243                 adap->port[0] = NULL;
5244
5245                 /* free VF resources */
5246                 adap->num_vfs = 0;
5247                 kfree(adap->vfinfo);
5248                 adap->vfinfo = NULL;
5249                 return 0;
5250         }
5251
5252         if (!current_vfs) {
5253                 struct fw_pfvf_cmd port_cmd, port_rpl;
5254                 struct net_device *netdev;
5255                 unsigned int pmask, port;
5256                 struct pci_dev *pbridge;
5257                 struct port_info *pi;
5258                 char name[IFNAMSIZ];
5259                 u32 devcap2;
5260                 u16 flags;
5261                 int pos;
5262
5263                 /* If we want to instantiate Virtual Functions, then our
5264                  * parent bridge's PCI-E needs to support Alternative Routing
5265                  * ID (ARI) because our VFs will show up at function offset 8
5266                  * and above.
5267                  */
5268                 pbridge = pdev->bus->self;
5269                 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP);
5270                 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags);
5271                 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2);
5272
5273                 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5274                     !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5275                         /* Our parent bridge does not support ARI so issue a
5276                          * warning and skip instantiating the VFs.  They
5277                          * won't be reachable.
5278                          */
5279                         dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5280                                  pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5281                                  PCI_FUNC(pbridge->devfn));
5282                         return -ENOTSUPP;
5283                 }
5284                 memset(&port_cmd, 0, sizeof(port_cmd));
5285                 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5286                                                  FW_CMD_REQUEST_F |
5287                                                  FW_CMD_READ_F |
5288                                                  FW_PFVF_CMD_PFN_V(adap->pf) |
5289                                                  FW_PFVF_CMD_VFN_V(0));
5290                 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5291                 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5292                                  &port_rpl);
5293                 if (err)
5294                         return err;
5295                 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5296                 port = ffs(pmask) - 1;
5297                 /* Allocate VF Management Interface. */
5298                 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5299                          adap->pf);
5300                 netdev = alloc_netdev(sizeof(struct port_info),
5301                                       name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5302                 if (!netdev)
5303                         return -ENOMEM;
5304
5305                 pi = netdev_priv(netdev);
5306                 pi->adapter = adap;
5307                 pi->lport = port;
5308                 pi->tx_chan = port;
5309                 SET_NETDEV_DEV(netdev, &pdev->dev);
5310
5311                 adap->port[0] = netdev;
5312                 pi->port_id = 0;
5313
5314                 err = register_netdev(adap->port[0]);
5315                 if (err) {
5316                         pr_info("Unable to register VF mgmt netdev %s\n", name);
5317                         free_netdev(adap->port[0]);
5318                         adap->port[0] = NULL;
5319                         return err;
5320                 }
5321                 /* Allocate and set up VF Information. */
5322                 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5323                                        sizeof(struct vf_info), GFP_KERNEL);
5324                 if (!adap->vfinfo) {
5325                         unregister_netdev(adap->port[0]);
5326                         free_netdev(adap->port[0]);
5327                         adap->port[0] = NULL;
5328                         return -ENOMEM;
5329                 }
5330                 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5331         }
5332         /* Instantiate the requested number of VFs. */
5333         err = pci_enable_sriov(pdev, num_vfs);
5334         if (err) {
5335                 pr_info("Unable to instantiate %d VFs\n", num_vfs);
5336                 if (!current_vfs) {
5337                         unregister_netdev(adap->port[0]);
5338                         free_netdev(adap->port[0]);
5339                         adap->port[0] = NULL;
5340                         kfree(adap->vfinfo);
5341                         adap->vfinfo = NULL;
5342                 }
5343                 return err;
5344         }
5345
5346         adap->num_vfs = num_vfs;
5347         return num_vfs;
5348 }
5349 #endif /* CONFIG_PCI_IOV */
5350
5351 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5352 {
5353         struct net_device *netdev;
5354         struct adapter *adapter;
5355         static int adap_idx = 1;
5356         int s_qpp, qpp, num_seg;
5357         struct port_info *pi;
5358         bool highdma = false;
5359         enum chip_type chip;
5360         void __iomem *regs;
5361         int func, chip_ver;
5362         u16 device_id;
5363         int i, err;
5364         u32 whoami;
5365
5366         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5367
5368         err = pci_request_regions(pdev, KBUILD_MODNAME);
5369         if (err) {
5370                 /* Just info, some other driver may have claimed the device. */
5371                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5372                 return err;
5373         }
5374
5375         err = pci_enable_device(pdev);
5376         if (err) {
5377                 dev_err(&pdev->dev, "cannot enable PCI device\n");
5378                 goto out_release_regions;
5379         }
5380
5381         regs = pci_ioremap_bar(pdev, 0);
5382         if (!regs) {
5383                 dev_err(&pdev->dev, "cannot map device registers\n");
5384                 err = -ENOMEM;
5385                 goto out_disable_device;
5386         }
5387
5388         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5389         if (!adapter) {
5390                 err = -ENOMEM;
5391                 goto out_unmap_bar0;
5392         }
5393
5394         adapter->regs = regs;
5395         err = t4_wait_dev_ready(regs);
5396         if (err < 0)
5397                 goto out_free_adapter;
5398
5399         /* We control everything through one PF */
5400         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5401         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5402         chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5403         if (chip < 0) {
5404                 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5405                 err = chip;
5406                 goto out_free_adapter;
5407         }
5408         chip_ver = CHELSIO_CHIP_VERSION(chip);
5409         func = chip_ver <= CHELSIO_T5 ?
5410                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5411
5412         adapter->pdev = pdev;
5413         adapter->pdev_dev = &pdev->dev;
5414         adapter->name = pci_name(pdev);
5415         adapter->mbox = func;
5416         adapter->pf = func;
5417         adapter->params.chip = chip;
5418         adapter->adap_idx = adap_idx;
5419         adapter->msg_enable = DFLT_MSG_ENABLE;
5420         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5421                                     (sizeof(struct mbox_cmd) *
5422                                      T4_OS_LOG_MBOX_CMDS),
5423                                     GFP_KERNEL);
5424         if (!adapter->mbox_log) {
5425                 err = -ENOMEM;
5426                 goto out_free_adapter;
5427         }
5428         spin_lock_init(&adapter->mbox_lock);
5429         INIT_LIST_HEAD(&adapter->mlist.list);
5430         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5431         pci_set_drvdata(pdev, adapter);
5432
5433         if (func != ent->driver_data) {
5434                 pci_disable_device(pdev);
5435                 pci_save_state(pdev);        /* to restore SR-IOV later */
5436                 return 0;
5437         }
5438
5439         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5440                 highdma = true;
5441                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5442                 if (err) {
5443                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5444                                 "coherent allocations\n");
5445                         goto out_free_adapter;
5446                 }
5447         } else {
5448                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5449                 if (err) {
5450                         dev_err(&pdev->dev, "no usable DMA configuration\n");
5451                         goto out_free_adapter;
5452                 }
5453         }
5454
5455         pci_enable_pcie_error_reporting(pdev);
5456         pci_set_master(pdev);
5457         pci_save_state(pdev);
5458         adap_idx++;
5459         adapter->workq = create_singlethread_workqueue("cxgb4");
5460         if (!adapter->workq) {
5461                 err = -ENOMEM;
5462                 goto out_free_adapter;
5463         }
5464
5465         /* PCI device has been enabled */
5466         adapter->flags |= DEV_ENABLED;
5467         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5468
5469         /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5470          * Ingress Packet Data to Free List Buffers in order to allow for
5471          * chipset performance optimizations between the Root Complex and
5472          * Memory Controllers.  (Messages to the associated Ingress Queue
5473          * notifying new Packet Placement in the Free Lists Buffers will be
5474          * send without the Relaxed Ordering Attribute thus guaranteeing that
5475          * all preceding PCIe Transaction Layer Packets will be processed
5476          * first.)  But some Root Complexes have various issues with Upstream
5477          * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5478          * The PCIe devices which under the Root Complexes will be cleared the
5479          * Relaxed Ordering bit in the configuration space, So we check our
5480          * PCIe configuration space to see if it's flagged with advice against
5481          * using Relaxed Ordering.
5482          */
5483         if (!pcie_relaxed_ordering_enabled(pdev))
5484                 adapter->flags |= ROOT_NO_RELAXED_ORDERING;
5485
5486         spin_lock_init(&adapter->stats_lock);
5487         spin_lock_init(&adapter->tid_release_lock);
5488         spin_lock_init(&adapter->win0_lock);
5489
5490         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5491         INIT_WORK(&adapter->db_full_task, process_db_full);
5492         INIT_WORK(&adapter->db_drop_task, process_db_drop);
5493         INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5494
5495         err = t4_prep_adapter(adapter);
5496         if (err)
5497                 goto out_free_adapter;
5498
5499         if (is_kdump_kernel()) {
5500                 /* Collect hardware state and append to /proc/vmcore */
5501                 err = cxgb4_cudbg_vmcore_add_dump(adapter);
5502                 if (err) {
5503                         dev_warn(adapter->pdev_dev,
5504                                  "Fail collecting vmcore device dump, err: %d. Continuing\n",
5505                                  err);
5506                         err = 0;
5507                 }
5508         }
5509
5510         if (!is_t4(adapter->params.chip)) {
5511                 s_qpp = (QUEUESPERPAGEPF0_S +
5512                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5513                         adapter->pf);
5514                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5515                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5516                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5517
5518                 /* Each segment size is 128B. Write coalescing is enabled only
5519                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5520                  * queue is less no of segments that can be accommodated in
5521                  * a page size.
5522                  */
5523                 if (qpp > num_seg) {
5524                         dev_err(&pdev->dev,
5525                                 "Incorrect number of egress queues per page\n");
5526                         err = -EINVAL;
5527                         goto out_free_adapter;
5528                 }
5529                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5530                 pci_resource_len(pdev, 2));
5531                 if (!adapter->bar2) {
5532                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
5533                         err = -ENOMEM;
5534                         goto out_free_adapter;
5535                 }
5536         }
5537
5538         setup_memwin(adapter);
5539         err = adap_init0(adapter);
5540 #ifdef CONFIG_DEBUG_FS
5541         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5542 #endif
5543         setup_memwin_rdma(adapter);
5544         if (err)
5545                 goto out_unmap_bar;
5546
5547         /* configure SGE_STAT_CFG_A to read WC stats */
5548         if (!is_t4(adapter->params.chip))
5549                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5550                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5551                               T6_STATMODE_V(0)));
5552
5553         for_each_port(adapter, i) {
5554                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5555                                            MAX_ETH_QSETS);
5556                 if (!netdev) {
5557                         err = -ENOMEM;
5558                         goto out_free_dev;
5559                 }
5560
5561                 SET_NETDEV_DEV(netdev, &pdev->dev);
5562
5563                 adapter->port[i] = netdev;
5564                 pi = netdev_priv(netdev);
5565                 pi->adapter = adapter;
5566                 pi->xact_addr_filt = -1;
5567                 pi->port_id = i;
5568                 netdev->irq = pdev->irq;
5569
5570                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5571                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5572                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
5573                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5574                         NETIF_F_HW_TC;
5575
5576                 if (chip_ver > CHELSIO_T5) {
5577                         netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5578                                                    NETIF_F_IPV6_CSUM |
5579                                                    NETIF_F_RXCSUM |
5580                                                    NETIF_F_GSO_UDP_TUNNEL |
5581                                                    NETIF_F_TSO | NETIF_F_TSO6;
5582
5583                         netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
5584                 }
5585
5586                 if (highdma)
5587                         netdev->hw_features |= NETIF_F_HIGHDMA;
5588                 netdev->features |= netdev->hw_features;
5589                 netdev->vlan_features = netdev->features & VLAN_FEAT;
5590
5591                 netdev->priv_flags |= IFF_UNICAST_FLT;
5592
5593                 /* MTU range: 81 - 9600 */
5594                 netdev->min_mtu = 81;              /* accommodate SACK */
5595                 netdev->max_mtu = MAX_MTU;
5596
5597                 netdev->netdev_ops = &cxgb4_netdev_ops;
5598 #ifdef CONFIG_CHELSIO_T4_DCB
5599                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5600                 cxgb4_dcb_state_init(netdev);
5601 #endif
5602                 cxgb4_set_ethtool_ops(netdev);
5603         }
5604
5605         cxgb4_init_ethtool_dump(adapter);
5606
5607         pci_set_drvdata(pdev, adapter);
5608
5609         if (adapter->flags & FW_OK) {
5610                 err = t4_port_init(adapter, func, func, 0);
5611                 if (err)
5612                         goto out_free_dev;
5613         } else if (adapter->params.nports == 1) {
5614                 /* If we don't have a connection to the firmware -- possibly
5615                  * because of an error -- grab the raw VPD parameters so we
5616                  * can set the proper MAC Address on the debug network
5617                  * interface that we've created.
5618                  */
5619                 u8 hw_addr[ETH_ALEN];
5620                 u8 *na = adapter->params.vpd.na;
5621
5622                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5623                 if (!err) {
5624                         for (i = 0; i < ETH_ALEN; i++)
5625                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5626                                               hex2val(na[2 * i + 1]));
5627                         t4_set_hw_addr(adapter, 0, hw_addr);
5628                 }
5629         }
5630
5631         /* Configure queues and allocate tables now, they can be needed as
5632          * soon as the first register_netdev completes.
5633          */
5634         cfg_queues(adapter);
5635
5636         adapter->smt = t4_init_smt();
5637         if (!adapter->smt) {
5638                 /* We tolerate a lack of SMT, giving up some functionality */
5639                 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5640         }
5641
5642         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5643         if (!adapter->l2t) {
5644                 /* We tolerate a lack of L2T, giving up some functionality */
5645                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5646                 adapter->params.offload = 0;
5647         }
5648
5649         adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size,
5650                                       sizeof(struct mps_encap_entry),
5651                                       GFP_KERNEL);
5652         if (!adapter->mps_encap)
5653                 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n");
5654
5655 #if IS_ENABLED(CONFIG_IPV6)
5656         if (chip_ver <= CHELSIO_T5 &&
5657             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5658                 /* CLIP functionality is not present in hardware,
5659                  * hence disable all offload features
5660                  */
5661                 dev_warn(&pdev->dev,
5662                          "CLIP not enabled in hardware, continuing\n");
5663                 adapter->params.offload = 0;
5664         } else {
5665                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5666                                                   adapter->clipt_end);
5667                 if (!adapter->clipt) {
5668                         /* We tolerate a lack of clip_table, giving up
5669                          * some functionality
5670                          */
5671                         dev_warn(&pdev->dev,
5672                                  "could not allocate Clip table, continuing\n");
5673                         adapter->params.offload = 0;
5674                 }
5675         }
5676 #endif
5677
5678         for_each_port(adapter, i) {
5679                 pi = adap2pinfo(adapter, i);
5680                 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5681                 if (!pi->sched_tbl)
5682                         dev_warn(&pdev->dev,
5683                                  "could not activate scheduling on port %d\n",
5684                                  i);
5685         }
5686
5687         if (tid_init(&adapter->tids) < 0) {
5688                 dev_warn(&pdev->dev, "could not allocate TID table, "
5689                          "continuing\n");
5690                 adapter->params.offload = 0;
5691         } else {
5692                 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5693                 if (!adapter->tc_u32)
5694                         dev_warn(&pdev->dev,
5695                                  "could not offload tc u32, continuing\n");
5696
5697                 if (cxgb4_init_tc_flower(adapter))
5698                         dev_warn(&pdev->dev,
5699                                  "could not offload tc flower, continuing\n");
5700         }
5701
5702         if (is_offload(adapter) || is_hashfilter(adapter)) {
5703                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5704                         u32 hash_base, hash_reg;
5705
5706                         if (chip <= CHELSIO_T5) {
5707                                 hash_reg = LE_DB_TID_HASHBASE_A;
5708                                 hash_base = t4_read_reg(adapter, hash_reg);
5709                                 adapter->tids.hash_base = hash_base / 4;
5710                         } else {
5711                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5712                                 hash_base = t4_read_reg(adapter, hash_reg);
5713                                 adapter->tids.hash_base = hash_base;
5714                         }
5715                 }
5716         }
5717
5718         /* See what interrupts we'll be using */
5719         if (msi > 1 && enable_msix(adapter) == 0)
5720                 adapter->flags |= USING_MSIX;
5721         else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5722                 adapter->flags |= USING_MSI;
5723                 if (msi > 1)
5724                         free_msix_info(adapter);
5725         }
5726
5727         /* check for PCI Express bandwidth capabiltites */
5728         pcie_print_link_status(pdev);
5729
5730         err = init_rss(adapter);
5731         if (err)
5732                 goto out_free_dev;
5733
5734         err = setup_fw_sge_queues(adapter);
5735         if (err) {
5736                 dev_err(adapter->pdev_dev,
5737                         "FW sge queue allocation failed, err %d", err);
5738                 goto out_free_dev;
5739         }
5740
5741         /*
5742          * The card is now ready to go.  If any errors occur during device
5743          * registration we do not fail the whole card but rather proceed only
5744          * with the ports we manage to register successfully.  However we must
5745          * register at least one net device.
5746          */
5747         for_each_port(adapter, i) {
5748                 pi = adap2pinfo(adapter, i);
5749                 adapter->port[i]->dev_port = pi->lport;
5750                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5751                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5752
5753                 netif_carrier_off(adapter->port[i]);
5754
5755                 err = register_netdev(adapter->port[i]);
5756                 if (err)
5757                         break;
5758                 adapter->chan_map[pi->tx_chan] = i;
5759                 print_port_info(adapter->port[i]);
5760         }
5761         if (i == 0) {
5762                 dev_err(&pdev->dev, "could not register any net devices\n");
5763                 goto out_free_dev;
5764         }
5765         if (err) {
5766                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5767                 err = 0;
5768         }
5769
5770         if (cxgb4_debugfs_root) {
5771                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5772                                                            cxgb4_debugfs_root);
5773                 setup_debugfs(adapter);
5774         }
5775
5776         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5777         pdev->needs_freset = 1;
5778
5779         if (is_uld(adapter)) {
5780                 mutex_lock(&uld_mutex);
5781                 list_add_tail(&adapter->list_node, &adapter_list);
5782                 mutex_unlock(&uld_mutex);
5783         }
5784
5785         if (!is_t4(adapter->params.chip))
5786                 cxgb4_ptp_init(adapter);
5787
5788         print_adapter_info(adapter);
5789         return 0;
5790
5791  out_free_dev:
5792         t4_free_sge_resources(adapter);
5793         free_some_resources(adapter);
5794         if (adapter->flags & USING_MSIX)
5795                 free_msix_info(adapter);
5796         if (adapter->num_uld || adapter->num_ofld_uld)
5797                 t4_uld_mem_free(adapter);
5798  out_unmap_bar:
5799         if (!is_t4(adapter->params.chip))
5800                 iounmap(adapter->bar2);
5801  out_free_adapter:
5802         if (adapter->workq)
5803                 destroy_workqueue(adapter->workq);
5804
5805         kfree(adapter->mbox_log);
5806         kfree(adapter);
5807  out_unmap_bar0:
5808         iounmap(regs);
5809  out_disable_device:
5810         pci_disable_pcie_error_reporting(pdev);
5811         pci_disable_device(pdev);
5812  out_release_regions:
5813         pci_release_regions(pdev);
5814         return err;
5815 }
5816
5817 static void remove_one(struct pci_dev *pdev)
5818 {
5819         struct adapter *adapter = pci_get_drvdata(pdev);
5820
5821         if (!adapter) {
5822                 pci_release_regions(pdev);
5823                 return;
5824         }
5825
5826         adapter->flags |= SHUTTING_DOWN;
5827
5828         if (adapter->pf == 4) {
5829                 int i;
5830
5831                 /* Tear down per-adapter Work Queue first since it can contain
5832                  * references to our adapter data structure.
5833                  */
5834                 destroy_workqueue(adapter->workq);
5835
5836                 if (is_uld(adapter)) {
5837                         detach_ulds(adapter);
5838                         t4_uld_clean_up(adapter);
5839                 }
5840
5841                 adap_free_hma_mem(adapter);
5842
5843                 disable_interrupts(adapter);
5844
5845                 for_each_port(adapter, i)
5846                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5847                                 unregister_netdev(adapter->port[i]);
5848
5849                 debugfs_remove_recursive(adapter->debugfs_root);
5850
5851                 if (!is_t4(adapter->params.chip))
5852                         cxgb4_ptp_stop(adapter);
5853
5854                 /* If we allocated filters, free up state associated with any
5855                  * valid filters ...
5856                  */
5857                 clear_all_filters(adapter);
5858
5859                 if (adapter->flags & FULL_INIT_DONE)
5860                         cxgb_down(adapter);
5861
5862                 if (adapter->flags & USING_MSIX)
5863                         free_msix_info(adapter);
5864                 if (adapter->num_uld || adapter->num_ofld_uld)
5865                         t4_uld_mem_free(adapter);
5866                 free_some_resources(adapter);
5867 #if IS_ENABLED(CONFIG_IPV6)
5868                 t4_cleanup_clip_tbl(adapter);
5869 #endif
5870                 if (!is_t4(adapter->params.chip))
5871                         iounmap(adapter->bar2);
5872         }
5873 #ifdef CONFIG_PCI_IOV
5874         else {
5875                 cxgb4_iov_configure(adapter->pdev, 0);
5876         }
5877 #endif
5878         iounmap(adapter->regs);
5879         pci_disable_pcie_error_reporting(pdev);
5880         if ((adapter->flags & DEV_ENABLED)) {
5881                 pci_disable_device(pdev);
5882                 adapter->flags &= ~DEV_ENABLED;
5883         }
5884         pci_release_regions(pdev);
5885         kfree(adapter->mbox_log);
5886         synchronize_rcu();
5887         kfree(adapter);
5888 }
5889
5890 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5891  * delivery.  This is essentially a stripped down version of the PCI remove()
5892  * function where we do the minimal amount of work necessary to shutdown any
5893  * further activity.
5894  */
5895 static void shutdown_one(struct pci_dev *pdev)
5896 {
5897         struct adapter *adapter = pci_get_drvdata(pdev);
5898
5899         /* As with remove_one() above (see extended comment), we only want do
5900          * do cleanup on PCI Devices which went all the way through init_one()
5901          * ...
5902          */
5903         if (!adapter) {
5904                 pci_release_regions(pdev);
5905                 return;
5906         }
5907
5908         adapter->flags |= SHUTTING_DOWN;
5909
5910         if (adapter->pf == 4) {
5911                 int i;
5912
5913                 for_each_port(adapter, i)
5914                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5915                                 cxgb_close(adapter->port[i]);
5916
5917                 if (is_uld(adapter)) {
5918                         detach_ulds(adapter);
5919                         t4_uld_clean_up(adapter);
5920                 }
5921
5922                 disable_interrupts(adapter);
5923                 disable_msi(adapter);
5924
5925                 t4_sge_stop(adapter);
5926                 if (adapter->flags & FW_OK)
5927                         t4_fw_bye(adapter, adapter->mbox);
5928         }
5929 }
5930
5931 static struct pci_driver cxgb4_driver = {
5932         .name     = KBUILD_MODNAME,
5933         .id_table = cxgb4_pci_tbl,
5934         .probe    = init_one,
5935         .remove   = remove_one,
5936         .shutdown = shutdown_one,
5937 #ifdef CONFIG_PCI_IOV
5938         .sriov_configure = cxgb4_iov_configure,
5939 #endif
5940         .err_handler = &cxgb4_eeh,
5941 };
5942
5943 static int __init cxgb4_init_module(void)
5944 {
5945         int ret;
5946
5947         /* Debugfs support is optional, just warn if this fails */
5948         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5949         if (!cxgb4_debugfs_root)
5950                 pr_warn("could not create debugfs entry, continuing\n");
5951
5952         ret = pci_register_driver(&cxgb4_driver);
5953         if (ret < 0)
5954                 debugfs_remove(cxgb4_debugfs_root);
5955
5956 #if IS_ENABLED(CONFIG_IPV6)
5957         if (!inet6addr_registered) {
5958                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5959                 inet6addr_registered = true;
5960         }
5961 #endif
5962
5963         return ret;
5964 }
5965
5966 static void __exit cxgb4_cleanup_module(void)
5967 {
5968 #if IS_ENABLED(CONFIG_IPV6)
5969         if (inet6addr_registered) {
5970                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5971                 inet6addr_registered = false;
5972         }
5973 #endif
5974         pci_unregister_driver(&cxgb4_driver);
5975         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5976 }
5977
5978 module_init(cxgb4_init_module);
5979 module_exit(cxgb4_cleanup_module);