qla4xxx: add a missing include
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW4_CFNAME "cxgb4/t4-config.txt"
139 #define FW5_CFNAME "cxgb4/t5-config.txt"
140 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
141 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
142 #define PHY_AQ1202_DEVICEID 0x4409
143 #define PHY_BCM84834_DEVICEID 0x4486
144
145 MODULE_DESCRIPTION(DRV_DESC);
146 MODULE_AUTHOR("Chelsio Communications");
147 MODULE_LICENSE("Dual BSD/GPL");
148 MODULE_VERSION(DRV_VERSION);
149 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
150 MODULE_FIRMWARE(FW4_FNAME);
151 MODULE_FIRMWARE(FW5_FNAME);
152
153 /*
154  * Normally we're willing to become the firmware's Master PF but will be happy
155  * if another PF has already become the Master and initialized the adapter.
156  * Setting "force_init" will cause this driver to forcibly establish itself as
157  * the Master PF and initialize the adapter.
158  */
159 static uint force_init;
160
161 module_param(force_init, uint, 0644);
162 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
163
164 /*
165  * Normally if the firmware we connect to has Configuration File support, we
166  * use that and only fall back to the old Driver-based initialization if the
167  * Configuration File fails for some reason.  If force_old_init is set, then
168  * we'll always use the old Driver-based initialization sequence.
169  */
170 static uint force_old_init;
171
172 module_param(force_old_init, uint, 0644);
173 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
174                  " parameter");
175
176 static int dflt_msg_enable = DFLT_MSG_ENABLE;
177
178 module_param(dflt_msg_enable, int, 0644);
179 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
180
181 /*
182  * The driver uses the best interrupt scheme available on a platform in the
183  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
184  * of these schemes the driver may consider as follows:
185  *
186  * msi = 2: choose from among all three options
187  * msi = 1: only consider MSI and INTx interrupts
188  * msi = 0: force INTx interrupts
189  */
190 static int msi = 2;
191
192 module_param(msi, int, 0644);
193 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
194
195 /*
196  * Queue interrupt hold-off timer values.  Queues default to the first of these
197  * upon creation.
198  */
199 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
200
201 module_param_array(intr_holdoff, uint, NULL, 0644);
202 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
203                  "0..4 in microseconds, deprecated parameter");
204
205 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
206
207 module_param_array(intr_cnt, uint, NULL, 0644);
208 MODULE_PARM_DESC(intr_cnt,
209                  "thresholds 1..3 for queue interrupt packet counters, "
210                  "deprecated parameter");
211
212 /*
213  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
214  * offset by 2 bytes in order to have the IP headers line up on 4-byte
215  * boundaries.  This is a requirement for many architectures which will throw
216  * a machine check fault if an attempt is made to access one of the 4-byte IP
217  * header fields on a non-4-byte boundary.  And it's a major performance issue
218  * even on some architectures which allow it like some implementations of the
219  * x86 ISA.  However, some architectures don't mind this and for some very
220  * edge-case performance sensitive applications (like forwarding large volumes
221  * of small packets), setting this DMA offset to 0 will decrease the number of
222  * PCI-E Bus transfers enough to measurably affect performance.
223  */
224 static int rx_dma_offset = 2;
225
226 static bool vf_acls;
227
228 #ifdef CONFIG_PCI_IOV
229 module_param(vf_acls, bool, 0644);
230 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
231                  "deprecated parameter");
232
233 /* Configure the number of PCI-E Virtual Function which are to be instantiated
234  * on SR-IOV Capable Physical Functions.
235  */
236 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
237
238 module_param_array(num_vf, uint, NULL, 0644);
239 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
240 #endif
241
242 /* TX Queue select used to determine what algorithm to use for selecting TX
243  * queue. Select between the kernel provided function (select_queue=0) or user
244  * cxgb_select_queue function (select_queue=1)
245  *
246  * Default: select_queue=0
247  */
248 static int select_queue;
249 module_param(select_queue, int, 0644);
250 MODULE_PARM_DESC(select_queue,
251                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
252
253 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
254
255 module_param(tp_vlan_pri_map, uint, 0644);
256 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
257                  "deprecated parameter");
258
259 static struct dentry *cxgb4_debugfs_root;
260
261 static LIST_HEAD(adapter_list);
262 static DEFINE_MUTEX(uld_mutex);
263 /* Adapter list to be accessed from atomic context */
264 static LIST_HEAD(adap_rcu_list);
265 static DEFINE_SPINLOCK(adap_rcu_lock);
266 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
267 static const char *uld_str[] = { "RDMA", "iSCSI" };
268
269 static void link_report(struct net_device *dev)
270 {
271         if (!netif_carrier_ok(dev))
272                 netdev_info(dev, "link down\n");
273         else {
274                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
275
276                 const char *s = "10Mbps";
277                 const struct port_info *p = netdev_priv(dev);
278
279                 switch (p->link_cfg.speed) {
280                 case 10000:
281                         s = "10Gbps";
282                         break;
283                 case 1000:
284                         s = "1000Mbps";
285                         break;
286                 case 100:
287                         s = "100Mbps";
288                         break;
289                 case 40000:
290                         s = "40Gbps";
291                         break;
292                 }
293
294                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
295                             fc[p->link_cfg.fc]);
296         }
297 }
298
299 #ifdef CONFIG_CHELSIO_T4_DCB
300 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
301 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
302 {
303         struct port_info *pi = netdev_priv(dev);
304         struct adapter *adap = pi->adapter;
305         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
306         int i;
307
308         /* We use a simple mapping of Port TX Queue Index to DCB
309          * Priority when we're enabling DCB.
310          */
311         for (i = 0; i < pi->nqsets; i++, txq++) {
312                 u32 name, value;
313                 int err;
314
315                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
316                         FW_PARAMS_PARAM_X_V(
317                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
318                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
319                 value = enable ? i : 0xffffffff;
320
321                 /* Since we can be called while atomic (from "interrupt
322                  * level") we need to issue the Set Parameters Commannd
323                  * without sleeping (timeout < 0).
324                  */
325                 err = t4_set_params_timeout(adap, adap->mbox, adap->fn, 0, 1,
326                                             &name, &value,
327                                             -FW_CMD_MAX_TIMEOUT);
328
329                 if (err)
330                         dev_err(adap->pdev_dev,
331                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
332                                 enable ? "set" : "unset", pi->port_id, i, -err);
333                 else
334                         txq->dcb_prio = value;
335         }
336 }
337 #endif /* CONFIG_CHELSIO_T4_DCB */
338
339 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
340 {
341         struct net_device *dev = adapter->port[port_id];
342
343         /* Skip changes from disabled ports. */
344         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
345                 if (link_stat)
346                         netif_carrier_on(dev);
347                 else {
348 #ifdef CONFIG_CHELSIO_T4_DCB
349                         cxgb4_dcb_state_init(dev);
350                         dcb_tx_queue_prio_enable(dev, false);
351 #endif /* CONFIG_CHELSIO_T4_DCB */
352                         netif_carrier_off(dev);
353                 }
354
355                 link_report(dev);
356         }
357 }
358
359 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
360 {
361         static const char *mod_str[] = {
362                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
363         };
364
365         const struct net_device *dev = adap->port[port_id];
366         const struct port_info *pi = netdev_priv(dev);
367
368         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
369                 netdev_info(dev, "port module unplugged\n");
370         else if (pi->mod_type < ARRAY_SIZE(mod_str))
371                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
372 }
373
374 /*
375  * Configure the exact and hash address filters to handle a port's multicast
376  * and secondary unicast MAC addresses.
377  */
378 static int set_addr_filters(const struct net_device *dev, bool sleep)
379 {
380         u64 mhash = 0;
381         u64 uhash = 0;
382         bool free = true;
383         u16 filt_idx[7];
384         const u8 *addr[7];
385         int ret, naddr = 0;
386         const struct netdev_hw_addr *ha;
387         int uc_cnt = netdev_uc_count(dev);
388         int mc_cnt = netdev_mc_count(dev);
389         const struct port_info *pi = netdev_priv(dev);
390         unsigned int mb = pi->adapter->fn;
391
392         /* first do the secondary unicast addresses */
393         netdev_for_each_uc_addr(ha, dev) {
394                 addr[naddr++] = ha->addr;
395                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
396                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
397                                         naddr, addr, filt_idx, &uhash, sleep);
398                         if (ret < 0)
399                                 return ret;
400
401                         free = false;
402                         naddr = 0;
403                 }
404         }
405
406         /* next set up the multicast addresses */
407         netdev_for_each_mc_addr(ha, dev) {
408                 addr[naddr++] = ha->addr;
409                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
410                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
411                                         naddr, addr, filt_idx, &mhash, sleep);
412                         if (ret < 0)
413                                 return ret;
414
415                         free = false;
416                         naddr = 0;
417                 }
418         }
419
420         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
421                                 uhash | mhash, sleep);
422 }
423
424 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
425 module_param(dbfifo_int_thresh, int, 0644);
426 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
427
428 /*
429  * usecs to sleep while draining the dbfifo
430  */
431 static int dbfifo_drain_delay = 1000;
432 module_param(dbfifo_drain_delay, int, 0644);
433 MODULE_PARM_DESC(dbfifo_drain_delay,
434                  "usecs to sleep while draining the dbfifo");
435
436 /*
437  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
438  * If @mtu is -1 it is left unchanged.
439  */
440 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
441 {
442         int ret;
443         struct port_info *pi = netdev_priv(dev);
444
445         ret = set_addr_filters(dev, sleep_ok);
446         if (ret == 0)
447                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
448                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
449                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
450                                     sleep_ok);
451         return ret;
452 }
453
454 /**
455  *      link_start - enable a port
456  *      @dev: the port to enable
457  *
458  *      Performs the MAC and PHY actions needed to enable a port.
459  */
460 static int link_start(struct net_device *dev)
461 {
462         int ret;
463         struct port_info *pi = netdev_priv(dev);
464         unsigned int mb = pi->adapter->fn;
465
466         /*
467          * We do not set address filters and promiscuity here, the stack does
468          * that step explicitly.
469          */
470         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
471                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
472         if (ret == 0) {
473                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
474                                     pi->xact_addr_filt, dev->dev_addr, true,
475                                     true);
476                 if (ret >= 0) {
477                         pi->xact_addr_filt = ret;
478                         ret = 0;
479                 }
480         }
481         if (ret == 0)
482                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
483                                     &pi->link_cfg);
484         if (ret == 0) {
485                 local_bh_disable();
486                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
487                                           true, CXGB4_DCB_ENABLED);
488                 local_bh_enable();
489         }
490
491         return ret;
492 }
493
494 int cxgb4_dcb_enabled(const struct net_device *dev)
495 {
496 #ifdef CONFIG_CHELSIO_T4_DCB
497         struct port_info *pi = netdev_priv(dev);
498
499         if (!pi->dcb.enabled)
500                 return 0;
501
502         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
503                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
504 #else
505         return 0;
506 #endif
507 }
508 EXPORT_SYMBOL(cxgb4_dcb_enabled);
509
510 #ifdef CONFIG_CHELSIO_T4_DCB
511 /* Handle a Data Center Bridging update message from the firmware. */
512 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
513 {
514         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
515         struct net_device *dev = adap->port[port];
516         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
517         int new_dcb_enabled;
518
519         cxgb4_dcb_handle_fw_update(adap, pcmd);
520         new_dcb_enabled = cxgb4_dcb_enabled(dev);
521
522         /* If the DCB has become enabled or disabled on the port then we're
523          * going to need to set up/tear down DCB Priority parameters for the
524          * TX Queues associated with the port.
525          */
526         if (new_dcb_enabled != old_dcb_enabled)
527                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
528 }
529 #endif /* CONFIG_CHELSIO_T4_DCB */
530
531 /* Clear a filter and release any of its resources that we own.  This also
532  * clears the filter's "pending" status.
533  */
534 static void clear_filter(struct adapter *adap, struct filter_entry *f)
535 {
536         /* If the new or old filter have loopback rewriteing rules then we'll
537          * need to free any existing Layer Two Table (L2T) entries of the old
538          * filter rule.  The firmware will handle freeing up any Source MAC
539          * Table (SMT) entries used for rewriting Source MAC Addresses in
540          * loopback rules.
541          */
542         if (f->l2t)
543                 cxgb4_l2t_release(f->l2t);
544
545         /* The zeroing of the filter rule below clears the filter valid,
546          * pending, locked flags, l2t pointer, etc. so it's all we need for
547          * this operation.
548          */
549         memset(f, 0, sizeof(*f));
550 }
551
552 /* Handle a filter write/deletion reply.
553  */
554 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
555 {
556         unsigned int idx = GET_TID(rpl);
557         unsigned int nidx = idx - adap->tids.ftid_base;
558         unsigned int ret;
559         struct filter_entry *f;
560
561         if (idx >= adap->tids.ftid_base && nidx <
562            (adap->tids.nftids + adap->tids.nsftids)) {
563                 idx = nidx;
564                 ret = TCB_COOKIE_G(rpl->cookie);
565                 f = &adap->tids.ftid_tab[idx];
566
567                 if (ret == FW_FILTER_WR_FLT_DELETED) {
568                         /* Clear the filter when we get confirmation from the
569                          * hardware that the filter has been deleted.
570                          */
571                         clear_filter(adap, f);
572                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
573                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
574                                 idx);
575                         clear_filter(adap, f);
576                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
577                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
578                         f->pending = 0;  /* asynchronous setup completed */
579                         f->valid = 1;
580                 } else {
581                         /* Something went wrong.  Issue a warning about the
582                          * problem and clear everything out.
583                          */
584                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
585                                 idx, ret);
586                         clear_filter(adap, f);
587                 }
588         }
589 }
590
591 /* Response queue handler for the FW event queue.
592  */
593 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
594                           const struct pkt_gl *gl)
595 {
596         u8 opcode = ((const struct rss_header *)rsp)->opcode;
597
598         rsp++;                                          /* skip RSS header */
599
600         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
601          */
602         if (unlikely(opcode == CPL_FW4_MSG &&
603            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
604                 rsp++;
605                 opcode = ((const struct rss_header *)rsp)->opcode;
606                 rsp++;
607                 if (opcode != CPL_SGE_EGR_UPDATE) {
608                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
609                                 , opcode);
610                         goto out;
611                 }
612         }
613
614         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
615                 const struct cpl_sge_egr_update *p = (void *)rsp;
616                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
617                 struct sge_txq *txq;
618
619                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
620                 txq->restarts++;
621                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
622                         struct sge_eth_txq *eq;
623
624                         eq = container_of(txq, struct sge_eth_txq, q);
625                         netif_tx_wake_queue(eq->txq);
626                 } else {
627                         struct sge_ofld_txq *oq;
628
629                         oq = container_of(txq, struct sge_ofld_txq, q);
630                         tasklet_schedule(&oq->qresume_tsk);
631                 }
632         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
633                 const struct cpl_fw6_msg *p = (void *)rsp;
634
635 #ifdef CONFIG_CHELSIO_T4_DCB
636                 const struct fw_port_cmd *pcmd = (const void *)p->data;
637                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
638                 unsigned int action =
639                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
640
641                 if (cmd == FW_PORT_CMD &&
642                     action == FW_PORT_ACTION_GET_PORT_INFO) {
643                         int port = FW_PORT_CMD_PORTID_G(
644                                         be32_to_cpu(pcmd->op_to_portid));
645                         struct net_device *dev = q->adap->port[port];
646                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
647                                             FW_PORT_CMD_DCBXDIS_F)
648                                            ? CXGB4_DCB_INPUT_FW_DISABLED
649                                            : CXGB4_DCB_INPUT_FW_ENABLED);
650
651                         cxgb4_dcb_state_fsm(dev, state_input);
652                 }
653
654                 if (cmd == FW_PORT_CMD &&
655                     action == FW_PORT_ACTION_L2_DCB_CFG)
656                         dcb_rpl(q->adap, pcmd);
657                 else
658 #endif
659                         if (p->type == 0)
660                                 t4_handle_fw_rpl(q->adap, p->data);
661         } else if (opcode == CPL_L2T_WRITE_RPL) {
662                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
663
664                 do_l2t_write_rpl(q->adap, p);
665         } else if (opcode == CPL_SET_TCB_RPL) {
666                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
667
668                 filter_rpl(q->adap, p);
669         } else
670                 dev_err(q->adap->pdev_dev,
671                         "unexpected CPL %#x on FW event queue\n", opcode);
672 out:
673         return 0;
674 }
675
676 /**
677  *      uldrx_handler - response queue handler for ULD queues
678  *      @q: the response queue that received the packet
679  *      @rsp: the response queue descriptor holding the offload message
680  *      @gl: the gather list of packet fragments
681  *
682  *      Deliver an ingress offload packet to a ULD.  All processing is done by
683  *      the ULD, we just maintain statistics.
684  */
685 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
686                          const struct pkt_gl *gl)
687 {
688         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
689
690         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
691          */
692         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
693             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
694                 rsp += 2;
695
696         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
697                 rxq->stats.nomem++;
698                 return -1;
699         }
700         if (gl == NULL)
701                 rxq->stats.imm++;
702         else if (gl == CXGB4_MSG_AN)
703                 rxq->stats.an++;
704         else
705                 rxq->stats.pkts++;
706         return 0;
707 }
708
709 static void disable_msi(struct adapter *adapter)
710 {
711         if (adapter->flags & USING_MSIX) {
712                 pci_disable_msix(adapter->pdev);
713                 adapter->flags &= ~USING_MSIX;
714         } else if (adapter->flags & USING_MSI) {
715                 pci_disable_msi(adapter->pdev);
716                 adapter->flags &= ~USING_MSI;
717         }
718 }
719
720 /*
721  * Interrupt handler for non-data events used with MSI-X.
722  */
723 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
724 {
725         struct adapter *adap = cookie;
726         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
727
728         if (v & PFSW_F) {
729                 adap->swintr = 1;
730                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
731         }
732         if (adap->flags & MASTER_PF)
733                 t4_slow_intr_handler(adap);
734         return IRQ_HANDLED;
735 }
736
737 /*
738  * Name the MSI-X interrupts.
739  */
740 static void name_msix_vecs(struct adapter *adap)
741 {
742         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
743
744         /* non-data interrupts */
745         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
746
747         /* FW events */
748         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
749                  adap->port[0]->name);
750
751         /* Ethernet queues */
752         for_each_port(adap, j) {
753                 struct net_device *d = adap->port[j];
754                 const struct port_info *pi = netdev_priv(d);
755
756                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
757                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
758                                  d->name, i);
759         }
760
761         /* offload queues */
762         for_each_ofldrxq(&adap->sge, i)
763                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
764                          adap->port[0]->name, i);
765
766         for_each_rdmarxq(&adap->sge, i)
767                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
768                          adap->port[0]->name, i);
769
770         for_each_rdmaciq(&adap->sge, i)
771                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
772                          adap->port[0]->name, i);
773 }
774
775 static int request_msix_queue_irqs(struct adapter *adap)
776 {
777         struct sge *s = &adap->sge;
778         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
779         int msi_index = 2;
780
781         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
782                           adap->msix_info[1].desc, &s->fw_evtq);
783         if (err)
784                 return err;
785
786         for_each_ethrxq(s, ethqidx) {
787                 err = request_irq(adap->msix_info[msi_index].vec,
788                                   t4_sge_intr_msix, 0,
789                                   adap->msix_info[msi_index].desc,
790                                   &s->ethrxq[ethqidx].rspq);
791                 if (err)
792                         goto unwind;
793                 msi_index++;
794         }
795         for_each_ofldrxq(s, ofldqidx) {
796                 err = request_irq(adap->msix_info[msi_index].vec,
797                                   t4_sge_intr_msix, 0,
798                                   adap->msix_info[msi_index].desc,
799                                   &s->ofldrxq[ofldqidx].rspq);
800                 if (err)
801                         goto unwind;
802                 msi_index++;
803         }
804         for_each_rdmarxq(s, rdmaqidx) {
805                 err = request_irq(adap->msix_info[msi_index].vec,
806                                   t4_sge_intr_msix, 0,
807                                   adap->msix_info[msi_index].desc,
808                                   &s->rdmarxq[rdmaqidx].rspq);
809                 if (err)
810                         goto unwind;
811                 msi_index++;
812         }
813         for_each_rdmaciq(s, rdmaciqqidx) {
814                 err = request_irq(adap->msix_info[msi_index].vec,
815                                   t4_sge_intr_msix, 0,
816                                   adap->msix_info[msi_index].desc,
817                                   &s->rdmaciq[rdmaciqqidx].rspq);
818                 if (err)
819                         goto unwind;
820                 msi_index++;
821         }
822         return 0;
823
824 unwind:
825         while (--rdmaciqqidx >= 0)
826                 free_irq(adap->msix_info[--msi_index].vec,
827                          &s->rdmaciq[rdmaciqqidx].rspq);
828         while (--rdmaqidx >= 0)
829                 free_irq(adap->msix_info[--msi_index].vec,
830                          &s->rdmarxq[rdmaqidx].rspq);
831         while (--ofldqidx >= 0)
832                 free_irq(adap->msix_info[--msi_index].vec,
833                          &s->ofldrxq[ofldqidx].rspq);
834         while (--ethqidx >= 0)
835                 free_irq(adap->msix_info[--msi_index].vec,
836                          &s->ethrxq[ethqidx].rspq);
837         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
838         return err;
839 }
840
841 static void free_msix_queue_irqs(struct adapter *adap)
842 {
843         int i, msi_index = 2;
844         struct sge *s = &adap->sge;
845
846         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
847         for_each_ethrxq(s, i)
848                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
849         for_each_ofldrxq(s, i)
850                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
851         for_each_rdmarxq(s, i)
852                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
853         for_each_rdmaciq(s, i)
854                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
855 }
856
857 /**
858  *      cxgb4_write_rss - write the RSS table for a given port
859  *      @pi: the port
860  *      @queues: array of queue indices for RSS
861  *
862  *      Sets up the portion of the HW RSS table for the port's VI to distribute
863  *      packets to the Rx queues in @queues.
864  *      Should never be called before setting up sge eth rx queues
865  */
866 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
867 {
868         u16 *rss;
869         int i, err;
870         struct adapter *adapter = pi->adapter;
871         const struct sge_eth_rxq *rxq;
872
873         rxq = &adapter->sge.ethrxq[pi->first_qset];
874         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
875         if (!rss)
876                 return -ENOMEM;
877
878         /* map the queue indices to queue ids */
879         for (i = 0; i < pi->rss_size; i++, queues++)
880                 rss[i] = rxq[*queues].rspq.abs_id;
881
882         err = t4_config_rss_range(adapter, adapter->fn, pi->viid, 0,
883                                   pi->rss_size, rss, pi->rss_size);
884         /* If Tunnel All Lookup isn't specified in the global RSS
885          * Configuration, then we need to specify a default Ingress
886          * Queue for any ingress packets which aren't hashed.  We'll
887          * use our first ingress queue ...
888          */
889         if (!err)
890                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
891                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
892                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
893                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
894                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
895                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
896                                        rss[0]);
897         kfree(rss);
898         return err;
899 }
900
901 /**
902  *      setup_rss - configure RSS
903  *      @adap: the adapter
904  *
905  *      Sets up RSS for each port.
906  */
907 static int setup_rss(struct adapter *adap)
908 {
909         int i, j, err;
910
911         for_each_port(adap, i) {
912                 const struct port_info *pi = adap2pinfo(adap, i);
913
914                 /* Fill default values with equal distribution */
915                 for (j = 0; j < pi->rss_size; j++)
916                         pi->rss[j] = j % pi->nqsets;
917
918                 err = cxgb4_write_rss(pi, pi->rss);
919                 if (err)
920                         return err;
921         }
922         return 0;
923 }
924
925 /*
926  * Return the channel of the ingress queue with the given qid.
927  */
928 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
929 {
930         qid -= p->ingr_start;
931         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
932 }
933
934 /*
935  * Wait until all NAPI handlers are descheduled.
936  */
937 static void quiesce_rx(struct adapter *adap)
938 {
939         int i;
940
941         for (i = 0; i < adap->sge.ingr_sz; i++) {
942                 struct sge_rspq *q = adap->sge.ingr_map[i];
943
944                 if (q && q->handler) {
945                         napi_disable(&q->napi);
946                         local_bh_disable();
947                         while (!cxgb_poll_lock_napi(q))
948                                 mdelay(1);
949                         local_bh_enable();
950                 }
951
952         }
953 }
954
955 /* Disable interrupt and napi handler */
956 static void disable_interrupts(struct adapter *adap)
957 {
958         if (adap->flags & FULL_INIT_DONE) {
959                 t4_intr_disable(adap);
960                 if (adap->flags & USING_MSIX) {
961                         free_msix_queue_irqs(adap);
962                         free_irq(adap->msix_info[0].vec, adap);
963                 } else {
964                         free_irq(adap->pdev->irq, adap);
965                 }
966                 quiesce_rx(adap);
967         }
968 }
969
970 /*
971  * Enable NAPI scheduling and interrupt generation for all Rx queues.
972  */
973 static void enable_rx(struct adapter *adap)
974 {
975         int i;
976
977         for (i = 0; i < adap->sge.ingr_sz; i++) {
978                 struct sge_rspq *q = adap->sge.ingr_map[i];
979
980                 if (!q)
981                         continue;
982                 if (q->handler) {
983                         cxgb_busy_poll_init_lock(q);
984                         napi_enable(&q->napi);
985                 }
986                 /* 0-increment GTS to start the timer and enable interrupts */
987                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
988                              SEINTARM_V(q->intr_params) |
989                              INGRESSQID_V(q->cntxt_id));
990         }
991 }
992
993 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
994                            unsigned int nq, unsigned int per_chan, int msi_idx,
995                            u16 *ids)
996 {
997         int i, err;
998
999         for (i = 0; i < nq; i++, q++) {
1000                 if (msi_idx > 0)
1001                         msi_idx++;
1002                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1003                                        adap->port[i / per_chan],
1004                                        msi_idx, q->fl.size ? &q->fl : NULL,
1005                                        uldrx_handler, 0);
1006                 if (err)
1007                         return err;
1008                 memset(&q->stats, 0, sizeof(q->stats));
1009                 if (ids)
1010                         ids[i] = q->rspq.abs_id;
1011         }
1012         return 0;
1013 }
1014
1015 /**
1016  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1017  *      @adap: the adapter
1018  *
1019  *      Determines how many sets of SGE queues to use and initializes them.
1020  *      We support multiple queue sets per port if we have MSI-X, otherwise
1021  *      just one queue set per port.
1022  */
1023 static int setup_sge_queues(struct adapter *adap)
1024 {
1025         int err, msi_idx, i, j;
1026         struct sge *s = &adap->sge;
1027
1028         bitmap_zero(s->starving_fl, s->egr_sz);
1029         bitmap_zero(s->txq_maperr, s->egr_sz);
1030
1031         if (adap->flags & USING_MSIX)
1032                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1033         else {
1034                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1035                                        NULL, NULL, -1);
1036                 if (err)
1037                         return err;
1038                 msi_idx = -((int)s->intrq.abs_id + 1);
1039         }
1040
1041         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1042          * don't forget to update the following which need to be
1043          * synchronized to and changes here.
1044          *
1045          * 1. The calculations of MAX_INGQ in cxgb4.h.
1046          *
1047          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1048          *    to accommodate any new/deleted Ingress Queues
1049          *    which need MSI-X Vectors.
1050          *
1051          * 3. Update sge_qinfo_show() to include information on the
1052          *    new/deleted queues.
1053          */
1054         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1055                                msi_idx, NULL, fwevtq_handler, -1);
1056         if (err) {
1057 freeout:        t4_free_sge_resources(adap);
1058                 return err;
1059         }
1060
1061         for_each_port(adap, i) {
1062                 struct net_device *dev = adap->port[i];
1063                 struct port_info *pi = netdev_priv(dev);
1064                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1065                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1066
1067                 for (j = 0; j < pi->nqsets; j++, q++) {
1068                         if (msi_idx > 0)
1069                                 msi_idx++;
1070                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1071                                                msi_idx, &q->fl,
1072                                                t4_ethrx_handler,
1073                                                t4_get_mps_bg_map(adap,
1074                                                                  pi->tx_chan));
1075                         if (err)
1076                                 goto freeout;
1077                         q->rspq.idx = j;
1078                         memset(&q->stats, 0, sizeof(q->stats));
1079                 }
1080                 for (j = 0; j < pi->nqsets; j++, t++) {
1081                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1082                                         netdev_get_tx_queue(dev, j),
1083                                         s->fw_evtq.cntxt_id);
1084                         if (err)
1085                                 goto freeout;
1086                 }
1087         }
1088
1089         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1090         for_each_ofldrxq(s, i) {
1091                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1092                                             adap->port[i / j],
1093                                             s->fw_evtq.cntxt_id);
1094                 if (err)
1095                         goto freeout;
1096         }
1097
1098 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1099         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1100         if (err) \
1101                 goto freeout; \
1102         if (msi_idx > 0) \
1103                 msi_idx += nq; \
1104 } while (0)
1105
1106         ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1107         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1108         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1109         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1110
1111 #undef ALLOC_OFLD_RXQS
1112
1113         for_each_port(adap, i) {
1114                 /*
1115                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1116                  * have RDMA queues, and that's the right value.
1117                  */
1118                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1119                                             s->fw_evtq.cntxt_id,
1120                                             s->rdmarxq[i].rspq.cntxt_id);
1121                 if (err)
1122                         goto freeout;
1123         }
1124
1125         t4_write_reg(adap, is_t4(adap->params.chip) ?
1126                                 MPS_TRC_RSS_CONTROL_A :
1127                                 MPS_T5_TRC_RSS_CONTROL_A,
1128                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1129                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1130         return 0;
1131 }
1132
1133 /*
1134  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1135  * The allocated memory is cleared.
1136  */
1137 void *t4_alloc_mem(size_t size)
1138 {
1139         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1140
1141         if (!p)
1142                 p = vzalloc(size);
1143         return p;
1144 }
1145
1146 /*
1147  * Free memory allocated through alloc_mem().
1148  */
1149 void t4_free_mem(void *addr)
1150 {
1151         if (is_vmalloc_addr(addr))
1152                 vfree(addr);
1153         else
1154                 kfree(addr);
1155 }
1156
1157 /* Send a Work Request to write the filter at a specified index.  We construct
1158  * a Firmware Filter Work Request to have the work done and put the indicated
1159  * filter into "pending" mode which will prevent any further actions against
1160  * it till we get a reply from the firmware on the completion status of the
1161  * request.
1162  */
1163 static int set_filter_wr(struct adapter *adapter, int fidx)
1164 {
1165         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1166         struct sk_buff *skb;
1167         struct fw_filter_wr *fwr;
1168         unsigned int ftid;
1169
1170         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1171         if (!skb)
1172                 return -ENOMEM;
1173
1174         /* If the new filter requires loopback Destination MAC and/or VLAN
1175          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1176          * the filter.
1177          */
1178         if (f->fs.newdmac || f->fs.newvlan) {
1179                 /* allocate L2T entry for new filter */
1180                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1181                 if (f->l2t == NULL) {
1182                         kfree_skb(skb);
1183                         return -EAGAIN;
1184                 }
1185                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1186                                         f->fs.eport, f->fs.dmac)) {
1187                         cxgb4_l2t_release(f->l2t);
1188                         f->l2t = NULL;
1189                         kfree_skb(skb);
1190                         return -ENOMEM;
1191                 }
1192         }
1193
1194         ftid = adapter->tids.ftid_base + fidx;
1195
1196         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1197         memset(fwr, 0, sizeof(*fwr));
1198
1199         /* It would be nice to put most of the following in t4_hw.c but most
1200          * of the work is translating the cxgbtool ch_filter_specification
1201          * into the Work Request and the definition of that structure is
1202          * currently in cxgbtool.h which isn't appropriate to pull into the
1203          * common code.  We may eventually try to come up with a more neutral
1204          * filter specification structure but for now it's easiest to simply
1205          * put this fairly direct code in line ...
1206          */
1207         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1208         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1209         fwr->tid_to_iq =
1210                 htonl(FW_FILTER_WR_TID_V(ftid) |
1211                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1212                       FW_FILTER_WR_NOREPLY_V(0) |
1213                       FW_FILTER_WR_IQ_V(f->fs.iq));
1214         fwr->del_filter_to_l2tix =
1215                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1216                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1217                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1218                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1219                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1220                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1221                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1222                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1223                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1224                                              f->fs.newvlan == VLAN_REWRITE) |
1225                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1226                                             f->fs.newvlan == VLAN_REWRITE) |
1227                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1228                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1229                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1230                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1231         fwr->ethtype = htons(f->fs.val.ethtype);
1232         fwr->ethtypem = htons(f->fs.mask.ethtype);
1233         fwr->frag_to_ovlan_vldm =
1234                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1235                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1236                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1237                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1238                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1239                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1240         fwr->smac_sel = 0;
1241         fwr->rx_chan_rx_rpl_iq =
1242                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1243                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1244         fwr->maci_to_matchtypem =
1245                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1246                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1247                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1248                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1249                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1250                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1251                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1252                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1253         fwr->ptcl = f->fs.val.proto;
1254         fwr->ptclm = f->fs.mask.proto;
1255         fwr->ttyp = f->fs.val.tos;
1256         fwr->ttypm = f->fs.mask.tos;
1257         fwr->ivlan = htons(f->fs.val.ivlan);
1258         fwr->ivlanm = htons(f->fs.mask.ivlan);
1259         fwr->ovlan = htons(f->fs.val.ovlan);
1260         fwr->ovlanm = htons(f->fs.mask.ovlan);
1261         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1262         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1263         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1264         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1265         fwr->lp = htons(f->fs.val.lport);
1266         fwr->lpm = htons(f->fs.mask.lport);
1267         fwr->fp = htons(f->fs.val.fport);
1268         fwr->fpm = htons(f->fs.mask.fport);
1269         if (f->fs.newsmac)
1270                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1271
1272         /* Mark the filter as "pending" and ship off the Filter Work Request.
1273          * When we get the Work Request Reply we'll clear the pending status.
1274          */
1275         f->pending = 1;
1276         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1277         t4_ofld_send(adapter, skb);
1278         return 0;
1279 }
1280
1281 /* Delete the filter at a specified index.
1282  */
1283 static int del_filter_wr(struct adapter *adapter, int fidx)
1284 {
1285         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1286         struct sk_buff *skb;
1287         struct fw_filter_wr *fwr;
1288         unsigned int len, ftid;
1289
1290         len = sizeof(*fwr);
1291         ftid = adapter->tids.ftid_base + fidx;
1292
1293         skb = alloc_skb(len, GFP_KERNEL);
1294         if (!skb)
1295                 return -ENOMEM;
1296
1297         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1298         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1299
1300         /* Mark the filter as "pending" and ship off the Filter Work Request.
1301          * When we get the Work Request Reply we'll clear the pending status.
1302          */
1303         f->pending = 1;
1304         t4_mgmt_tx(adapter, skb);
1305         return 0;
1306 }
1307
1308 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1309                              void *accel_priv, select_queue_fallback_t fallback)
1310 {
1311         int txq;
1312
1313 #ifdef CONFIG_CHELSIO_T4_DCB
1314         /* If a Data Center Bridging has been successfully negotiated on this
1315          * link then we'll use the skb's priority to map it to a TX Queue.
1316          * The skb's priority is determined via the VLAN Tag Priority Code
1317          * Point field.
1318          */
1319         if (cxgb4_dcb_enabled(dev)) {
1320                 u16 vlan_tci;
1321                 int err;
1322
1323                 err = vlan_get_tag(skb, &vlan_tci);
1324                 if (unlikely(err)) {
1325                         if (net_ratelimit())
1326                                 netdev_warn(dev,
1327                                             "TX Packet without VLAN Tag on DCB Link\n");
1328                         txq = 0;
1329                 } else {
1330                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1331 #ifdef CONFIG_CHELSIO_T4_FCOE
1332                         if (skb->protocol == htons(ETH_P_FCOE))
1333                                 txq = skb->priority & 0x7;
1334 #endif /* CONFIG_CHELSIO_T4_FCOE */
1335                 }
1336                 return txq;
1337         }
1338 #endif /* CONFIG_CHELSIO_T4_DCB */
1339
1340         if (select_queue) {
1341                 txq = (skb_rx_queue_recorded(skb)
1342                         ? skb_get_rx_queue(skb)
1343                         : smp_processor_id());
1344
1345                 while (unlikely(txq >= dev->real_num_tx_queues))
1346                         txq -= dev->real_num_tx_queues;
1347
1348                 return txq;
1349         }
1350
1351         return fallback(dev, skb) % dev->real_num_tx_queues;
1352 }
1353
1354 static inline int is_offload(const struct adapter *adap)
1355 {
1356         return adap->params.offload;
1357 }
1358
1359 static int closest_timer(const struct sge *s, int time)
1360 {
1361         int i, delta, match = 0, min_delta = INT_MAX;
1362
1363         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1364                 delta = time - s->timer_val[i];
1365                 if (delta < 0)
1366                         delta = -delta;
1367                 if (delta < min_delta) {
1368                         min_delta = delta;
1369                         match = i;
1370                 }
1371         }
1372         return match;
1373 }
1374
1375 static int closest_thres(const struct sge *s, int thres)
1376 {
1377         int i, delta, match = 0, min_delta = INT_MAX;
1378
1379         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1380                 delta = thres - s->counter_val[i];
1381                 if (delta < 0)
1382                         delta = -delta;
1383                 if (delta < min_delta) {
1384                         min_delta = delta;
1385                         match = i;
1386                 }
1387         }
1388         return match;
1389 }
1390
1391 /**
1392  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1393  *      @q: the Rx queue
1394  *      @us: the hold-off time in us, or 0 to disable timer
1395  *      @cnt: the hold-off packet count, or 0 to disable counter
1396  *
1397  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1398  *      one of the two needs to be enabled for the queue to generate interrupts.
1399  */
1400 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1401                                unsigned int us, unsigned int cnt)
1402 {
1403         struct adapter *adap = q->adap;
1404
1405         if ((us | cnt) == 0)
1406                 cnt = 1;
1407
1408         if (cnt) {
1409                 int err;
1410                 u32 v, new_idx;
1411
1412                 new_idx = closest_thres(&adap->sge, cnt);
1413                 if (q->desc && q->pktcnt_idx != new_idx) {
1414                         /* the queue has already been created, update it */
1415                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1416                             FW_PARAMS_PARAM_X_V(
1417                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1418                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1419                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1420                                             &new_idx);
1421                         if (err)
1422                                 return err;
1423                 }
1424                 q->pktcnt_idx = new_idx;
1425         }
1426
1427         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1428         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1429         return 0;
1430 }
1431
1432 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1433 {
1434         const struct port_info *pi = netdev_priv(dev);
1435         netdev_features_t changed = dev->features ^ features;
1436         int err;
1437
1438         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1439                 return 0;
1440
1441         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1442                             -1, -1, -1,
1443                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1444         if (unlikely(err))
1445                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1446         return err;
1447 }
1448
1449 static int setup_debugfs(struct adapter *adap)
1450 {
1451         if (IS_ERR_OR_NULL(adap->debugfs_root))
1452                 return -1;
1453
1454 #ifdef CONFIG_DEBUG_FS
1455         t4_setup_debugfs(adap);
1456 #endif
1457         return 0;
1458 }
1459
1460 /*
1461  * upper-layer driver support
1462  */
1463
1464 /*
1465  * Allocate an active-open TID and set it to the supplied value.
1466  */
1467 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1468 {
1469         int atid = -1;
1470
1471         spin_lock_bh(&t->atid_lock);
1472         if (t->afree) {
1473                 union aopen_entry *p = t->afree;
1474
1475                 atid = (p - t->atid_tab) + t->atid_base;
1476                 t->afree = p->next;
1477                 p->data = data;
1478                 t->atids_in_use++;
1479         }
1480         spin_unlock_bh(&t->atid_lock);
1481         return atid;
1482 }
1483 EXPORT_SYMBOL(cxgb4_alloc_atid);
1484
1485 /*
1486  * Release an active-open TID.
1487  */
1488 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1489 {
1490         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1491
1492         spin_lock_bh(&t->atid_lock);
1493         p->next = t->afree;
1494         t->afree = p;
1495         t->atids_in_use--;
1496         spin_unlock_bh(&t->atid_lock);
1497 }
1498 EXPORT_SYMBOL(cxgb4_free_atid);
1499
1500 /*
1501  * Allocate a server TID and set it to the supplied value.
1502  */
1503 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1504 {
1505         int stid;
1506
1507         spin_lock_bh(&t->stid_lock);
1508         if (family == PF_INET) {
1509                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1510                 if (stid < t->nstids)
1511                         __set_bit(stid, t->stid_bmap);
1512                 else
1513                         stid = -1;
1514         } else {
1515                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1516                 if (stid < 0)
1517                         stid = -1;
1518         }
1519         if (stid >= 0) {
1520                 t->stid_tab[stid].data = data;
1521                 stid += t->stid_base;
1522                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1523                  * This is equivalent to 4 TIDs. With CLIP enabled it
1524                  * needs 2 TIDs.
1525                  */
1526                 if (family == PF_INET)
1527                         t->stids_in_use++;
1528                 else
1529                         t->stids_in_use += 4;
1530         }
1531         spin_unlock_bh(&t->stid_lock);
1532         return stid;
1533 }
1534 EXPORT_SYMBOL(cxgb4_alloc_stid);
1535
1536 /* Allocate a server filter TID and set it to the supplied value.
1537  */
1538 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1539 {
1540         int stid;
1541
1542         spin_lock_bh(&t->stid_lock);
1543         if (family == PF_INET) {
1544                 stid = find_next_zero_bit(t->stid_bmap,
1545                                 t->nstids + t->nsftids, t->nstids);
1546                 if (stid < (t->nstids + t->nsftids))
1547                         __set_bit(stid, t->stid_bmap);
1548                 else
1549                         stid = -1;
1550         } else {
1551                 stid = -1;
1552         }
1553         if (stid >= 0) {
1554                 t->stid_tab[stid].data = data;
1555                 stid -= t->nstids;
1556                 stid += t->sftid_base;
1557                 t->stids_in_use++;
1558         }
1559         spin_unlock_bh(&t->stid_lock);
1560         return stid;
1561 }
1562 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1563
1564 /* Release a server TID.
1565  */
1566 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1567 {
1568         /* Is it a server filter TID? */
1569         if (t->nsftids && (stid >= t->sftid_base)) {
1570                 stid -= t->sftid_base;
1571                 stid += t->nstids;
1572         } else {
1573                 stid -= t->stid_base;
1574         }
1575
1576         spin_lock_bh(&t->stid_lock);
1577         if (family == PF_INET)
1578                 __clear_bit(stid, t->stid_bmap);
1579         else
1580                 bitmap_release_region(t->stid_bmap, stid, 2);
1581         t->stid_tab[stid].data = NULL;
1582         if (family == PF_INET)
1583                 t->stids_in_use--;
1584         else
1585                 t->stids_in_use -= 4;
1586         spin_unlock_bh(&t->stid_lock);
1587 }
1588 EXPORT_SYMBOL(cxgb4_free_stid);
1589
1590 /*
1591  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1592  */
1593 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1594                            unsigned int tid)
1595 {
1596         struct cpl_tid_release *req;
1597
1598         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1599         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1600         INIT_TP_WR(req, tid);
1601         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1602 }
1603
1604 /*
1605  * Queue a TID release request and if necessary schedule a work queue to
1606  * process it.
1607  */
1608 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1609                                     unsigned int tid)
1610 {
1611         void **p = &t->tid_tab[tid];
1612         struct adapter *adap = container_of(t, struct adapter, tids);
1613
1614         spin_lock_bh(&adap->tid_release_lock);
1615         *p = adap->tid_release_head;
1616         /* Low 2 bits encode the Tx channel number */
1617         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1618         if (!adap->tid_release_task_busy) {
1619                 adap->tid_release_task_busy = true;
1620                 queue_work(adap->workq, &adap->tid_release_task);
1621         }
1622         spin_unlock_bh(&adap->tid_release_lock);
1623 }
1624
1625 /*
1626  * Process the list of pending TID release requests.
1627  */
1628 static void process_tid_release_list(struct work_struct *work)
1629 {
1630         struct sk_buff *skb;
1631         struct adapter *adap;
1632
1633         adap = container_of(work, struct adapter, tid_release_task);
1634
1635         spin_lock_bh(&adap->tid_release_lock);
1636         while (adap->tid_release_head) {
1637                 void **p = adap->tid_release_head;
1638                 unsigned int chan = (uintptr_t)p & 3;
1639                 p = (void *)p - chan;
1640
1641                 adap->tid_release_head = *p;
1642                 *p = NULL;
1643                 spin_unlock_bh(&adap->tid_release_lock);
1644
1645                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1646                                          GFP_KERNEL)))
1647                         schedule_timeout_uninterruptible(1);
1648
1649                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1650                 t4_ofld_send(adap, skb);
1651                 spin_lock_bh(&adap->tid_release_lock);
1652         }
1653         adap->tid_release_task_busy = false;
1654         spin_unlock_bh(&adap->tid_release_lock);
1655 }
1656
1657 /*
1658  * Release a TID and inform HW.  If we are unable to allocate the release
1659  * message we defer to a work queue.
1660  */
1661 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1662 {
1663         void *old;
1664         struct sk_buff *skb;
1665         struct adapter *adap = container_of(t, struct adapter, tids);
1666
1667         old = t->tid_tab[tid];
1668         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1669         if (likely(skb)) {
1670                 t->tid_tab[tid] = NULL;
1671                 mk_tid_release(skb, chan, tid);
1672                 t4_ofld_send(adap, skb);
1673         } else
1674                 cxgb4_queue_tid_release(t, chan, tid);
1675         if (old)
1676                 atomic_dec(&t->tids_in_use);
1677 }
1678 EXPORT_SYMBOL(cxgb4_remove_tid);
1679
1680 /*
1681  * Allocate and initialize the TID tables.  Returns 0 on success.
1682  */
1683 static int tid_init(struct tid_info *t)
1684 {
1685         size_t size;
1686         unsigned int stid_bmap_size;
1687         unsigned int natids = t->natids;
1688         struct adapter *adap = container_of(t, struct adapter, tids);
1689
1690         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1691         size = t->ntids * sizeof(*t->tid_tab) +
1692                natids * sizeof(*t->atid_tab) +
1693                t->nstids * sizeof(*t->stid_tab) +
1694                t->nsftids * sizeof(*t->stid_tab) +
1695                stid_bmap_size * sizeof(long) +
1696                t->nftids * sizeof(*t->ftid_tab) +
1697                t->nsftids * sizeof(*t->ftid_tab);
1698
1699         t->tid_tab = t4_alloc_mem(size);
1700         if (!t->tid_tab)
1701                 return -ENOMEM;
1702
1703         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1704         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1705         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1706         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1707         spin_lock_init(&t->stid_lock);
1708         spin_lock_init(&t->atid_lock);
1709
1710         t->stids_in_use = 0;
1711         t->afree = NULL;
1712         t->atids_in_use = 0;
1713         atomic_set(&t->tids_in_use, 0);
1714
1715         /* Setup the free list for atid_tab and clear the stid bitmap. */
1716         if (natids) {
1717                 while (--natids)
1718                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1719                 t->afree = t->atid_tab;
1720         }
1721         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1722         /* Reserve stid 0 for T4/T5 adapters */
1723         if (!t->stid_base &&
1724             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
1725                 __set_bit(0, t->stid_bmap);
1726
1727         return 0;
1728 }
1729
1730 /**
1731  *      cxgb4_create_server - create an IP server
1732  *      @dev: the device
1733  *      @stid: the server TID
1734  *      @sip: local IP address to bind server to
1735  *      @sport: the server's TCP port
1736  *      @queue: queue to direct messages from this server to
1737  *
1738  *      Create an IP server for the given port and address.
1739  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1740  */
1741 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1742                         __be32 sip, __be16 sport, __be16 vlan,
1743                         unsigned int queue)
1744 {
1745         unsigned int chan;
1746         struct sk_buff *skb;
1747         struct adapter *adap;
1748         struct cpl_pass_open_req *req;
1749         int ret;
1750
1751         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1752         if (!skb)
1753                 return -ENOMEM;
1754
1755         adap = netdev2adap(dev);
1756         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1757         INIT_TP_WR(req, 0);
1758         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1759         req->local_port = sport;
1760         req->peer_port = htons(0);
1761         req->local_ip = sip;
1762         req->peer_ip = htonl(0);
1763         chan = rxq_to_chan(&adap->sge, queue);
1764         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1765         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1766                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1767         ret = t4_mgmt_tx(adap, skb);
1768         return net_xmit_eval(ret);
1769 }
1770 EXPORT_SYMBOL(cxgb4_create_server);
1771
1772 /*      cxgb4_create_server6 - create an IPv6 server
1773  *      @dev: the device
1774  *      @stid: the server TID
1775  *      @sip: local IPv6 address to bind server to
1776  *      @sport: the server's TCP port
1777  *      @queue: queue to direct messages from this server to
1778  *
1779  *      Create an IPv6 server for the given port and address.
1780  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1781  */
1782 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1783                          const struct in6_addr *sip, __be16 sport,
1784                          unsigned int queue)
1785 {
1786         unsigned int chan;
1787         struct sk_buff *skb;
1788         struct adapter *adap;
1789         struct cpl_pass_open_req6 *req;
1790         int ret;
1791
1792         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1793         if (!skb)
1794                 return -ENOMEM;
1795
1796         adap = netdev2adap(dev);
1797         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1798         INIT_TP_WR(req, 0);
1799         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1800         req->local_port = sport;
1801         req->peer_port = htons(0);
1802         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1803         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1804         req->peer_ip_hi = cpu_to_be64(0);
1805         req->peer_ip_lo = cpu_to_be64(0);
1806         chan = rxq_to_chan(&adap->sge, queue);
1807         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1808         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1809                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1810         ret = t4_mgmt_tx(adap, skb);
1811         return net_xmit_eval(ret);
1812 }
1813 EXPORT_SYMBOL(cxgb4_create_server6);
1814
1815 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1816                         unsigned int queue, bool ipv6)
1817 {
1818         struct sk_buff *skb;
1819         struct adapter *adap;
1820         struct cpl_close_listsvr_req *req;
1821         int ret;
1822
1823         adap = netdev2adap(dev);
1824
1825         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1826         if (!skb)
1827                 return -ENOMEM;
1828
1829         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1830         INIT_TP_WR(req, 0);
1831         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1832         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1833                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1834         ret = t4_mgmt_tx(adap, skb);
1835         return net_xmit_eval(ret);
1836 }
1837 EXPORT_SYMBOL(cxgb4_remove_server);
1838
1839 /**
1840  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1841  *      @mtus: the HW MTU table
1842  *      @mtu: the target MTU
1843  *      @idx: index of selected entry in the MTU table
1844  *
1845  *      Returns the index and the value in the HW MTU table that is closest to
1846  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1847  *      table, in which case that smallest available value is selected.
1848  */
1849 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1850                             unsigned int *idx)
1851 {
1852         unsigned int i = 0;
1853
1854         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1855                 ++i;
1856         if (idx)
1857                 *idx = i;
1858         return mtus[i];
1859 }
1860 EXPORT_SYMBOL(cxgb4_best_mtu);
1861
1862 /**
1863  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1864  *     @mtus: the HW MTU table
1865  *     @header_size: Header Size
1866  *     @data_size_max: maximum Data Segment Size
1867  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1868  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1869  *
1870  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1871  *     MTU Table based solely on a Maximum MTU parameter, we break that
1872  *     parameter up into a Header Size and Maximum Data Segment Size, and
1873  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1874  *     the Hardware MTU Table which will result in a Data Segment Size with
1875  *     the requested alignment _and_ that MTU isn't "too far" from the
1876  *     closest MTU, then we'll return that rather than the closest MTU.
1877  */
1878 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1879                                     unsigned short header_size,
1880                                     unsigned short data_size_max,
1881                                     unsigned short data_size_align,
1882                                     unsigned int *mtu_idxp)
1883 {
1884         unsigned short max_mtu = header_size + data_size_max;
1885         unsigned short data_size_align_mask = data_size_align - 1;
1886         int mtu_idx, aligned_mtu_idx;
1887
1888         /* Scan the MTU Table till we find an MTU which is larger than our
1889          * Maximum MTU or we reach the end of the table.  Along the way,
1890          * record the last MTU found, if any, which will result in a Data
1891          * Segment Length matching the requested alignment.
1892          */
1893         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1894                 unsigned short data_size = mtus[mtu_idx] - header_size;
1895
1896                 /* If this MTU minus the Header Size would result in a
1897                  * Data Segment Size of the desired alignment, remember it.
1898                  */
1899                 if ((data_size & data_size_align_mask) == 0)
1900                         aligned_mtu_idx = mtu_idx;
1901
1902                 /* If we're not at the end of the Hardware MTU Table and the
1903                  * next element is larger than our Maximum MTU, drop out of
1904                  * the loop.
1905                  */
1906                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1907                         break;
1908         }
1909
1910         /* If we fell out of the loop because we ran to the end of the table,
1911          * then we just have to use the last [largest] entry.
1912          */
1913         if (mtu_idx == NMTUS)
1914                 mtu_idx--;
1915
1916         /* If we found an MTU which resulted in the requested Data Segment
1917          * Length alignment and that's "not far" from the largest MTU which is
1918          * less than or equal to the maximum MTU, then use that.
1919          */
1920         if (aligned_mtu_idx >= 0 &&
1921             mtu_idx - aligned_mtu_idx <= 1)
1922                 mtu_idx = aligned_mtu_idx;
1923
1924         /* If the caller has passed in an MTU Index pointer, pass the
1925          * MTU Index back.  Return the MTU value.
1926          */
1927         if (mtu_idxp)
1928                 *mtu_idxp = mtu_idx;
1929         return mtus[mtu_idx];
1930 }
1931 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1932
1933 /**
1934  *      cxgb4_port_chan - get the HW channel of a port
1935  *      @dev: the net device for the port
1936  *
1937  *      Return the HW Tx channel of the given port.
1938  */
1939 unsigned int cxgb4_port_chan(const struct net_device *dev)
1940 {
1941         return netdev2pinfo(dev)->tx_chan;
1942 }
1943 EXPORT_SYMBOL(cxgb4_port_chan);
1944
1945 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1946 {
1947         struct adapter *adap = netdev2adap(dev);
1948         u32 v1, v2, lp_count, hp_count;
1949
1950         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1951         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1952         if (is_t4(adap->params.chip)) {
1953                 lp_count = LP_COUNT_G(v1);
1954                 hp_count = HP_COUNT_G(v1);
1955         } else {
1956                 lp_count = LP_COUNT_T5_G(v1);
1957                 hp_count = HP_COUNT_T5_G(v2);
1958         }
1959         return lpfifo ? lp_count : hp_count;
1960 }
1961 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1962
1963 /**
1964  *      cxgb4_port_viid - get the VI id of a port
1965  *      @dev: the net device for the port
1966  *
1967  *      Return the VI id of the given port.
1968  */
1969 unsigned int cxgb4_port_viid(const struct net_device *dev)
1970 {
1971         return netdev2pinfo(dev)->viid;
1972 }
1973 EXPORT_SYMBOL(cxgb4_port_viid);
1974
1975 /**
1976  *      cxgb4_port_idx - get the index of a port
1977  *      @dev: the net device for the port
1978  *
1979  *      Return the index of the given port.
1980  */
1981 unsigned int cxgb4_port_idx(const struct net_device *dev)
1982 {
1983         return netdev2pinfo(dev)->port_id;
1984 }
1985 EXPORT_SYMBOL(cxgb4_port_idx);
1986
1987 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1988                          struct tp_tcp_stats *v6)
1989 {
1990         struct adapter *adap = pci_get_drvdata(pdev);
1991
1992         spin_lock(&adap->stats_lock);
1993         t4_tp_get_tcp_stats(adap, v4, v6);
1994         spin_unlock(&adap->stats_lock);
1995 }
1996 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1997
1998 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1999                       const unsigned int *pgsz_order)
2000 {
2001         struct adapter *adap = netdev2adap(dev);
2002
2003         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2004         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2005                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2006                      HPZ3_V(pgsz_order[3]));
2007 }
2008 EXPORT_SYMBOL(cxgb4_iscsi_init);
2009
2010 int cxgb4_flush_eq_cache(struct net_device *dev)
2011 {
2012         struct adapter *adap = netdev2adap(dev);
2013         int ret;
2014
2015         ret = t4_fwaddrspace_write(adap, adap->mbox,
2016                                    0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
2017         return ret;
2018 }
2019 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2020
2021 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2022 {
2023         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2024         __be64 indices;
2025         int ret;
2026
2027         spin_lock(&adap->win0_lock);
2028         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2029                            sizeof(indices), (__be32 *)&indices,
2030                            T4_MEMORY_READ);
2031         spin_unlock(&adap->win0_lock);
2032         if (!ret) {
2033                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2034                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2035         }
2036         return ret;
2037 }
2038
2039 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2040                         u16 size)
2041 {
2042         struct adapter *adap = netdev2adap(dev);
2043         u16 hw_pidx, hw_cidx;
2044         int ret;
2045
2046         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2047         if (ret)
2048                 goto out;
2049
2050         if (pidx != hw_pidx) {
2051                 u16 delta;
2052                 u32 val;
2053
2054                 if (pidx >= hw_pidx)
2055                         delta = pidx - hw_pidx;
2056                 else
2057                         delta = size - hw_pidx + pidx;
2058
2059                 if (is_t4(adap->params.chip))
2060                         val = PIDX_V(delta);
2061                 else
2062                         val = PIDX_T5_V(delta);
2063                 wmb();
2064                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2065                              QID_V(qid) | val);
2066         }
2067 out:
2068         return ret;
2069 }
2070 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2071
2072 void cxgb4_disable_db_coalescing(struct net_device *dev)
2073 {
2074         struct adapter *adap;
2075
2076         adap = netdev2adap(dev);
2077         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
2078                          NOCOALESCE_F);
2079 }
2080 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
2081
2082 void cxgb4_enable_db_coalescing(struct net_device *dev)
2083 {
2084         struct adapter *adap;
2085
2086         adap = netdev2adap(dev);
2087         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
2088 }
2089 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
2090
2091 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2092 {
2093         struct adapter *adap;
2094         u32 offset, memtype, memaddr;
2095         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2096         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2097         int ret;
2098
2099         adap = netdev2adap(dev);
2100
2101         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2102
2103         /* Figure out where the offset lands in the Memory Type/Address scheme.
2104          * This code assumes that the memory is laid out starting at offset 0
2105          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2106          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2107          * MC0, and some have both MC0 and MC1.
2108          */
2109         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2110         edc0_size = EDRAM0_SIZE_G(size) << 20;
2111         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2112         edc1_size = EDRAM1_SIZE_G(size) << 20;
2113         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2114         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2115
2116         edc0_end = edc0_size;
2117         edc1_end = edc0_end + edc1_size;
2118         mc0_end = edc1_end + mc0_size;
2119
2120         if (offset < edc0_end) {
2121                 memtype = MEM_EDC0;
2122                 memaddr = offset;
2123         } else if (offset < edc1_end) {
2124                 memtype = MEM_EDC1;
2125                 memaddr = offset - edc0_end;
2126         } else {
2127                 if (offset < mc0_end) {
2128                         memtype = MEM_MC0;
2129                         memaddr = offset - edc1_end;
2130                 } else if (is_t4(adap->params.chip)) {
2131                         /* T4 only has a single memory channel */
2132                         goto err;
2133                 } else {
2134                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2135                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2136                         mc1_end = mc0_end + mc1_size;
2137                         if (offset < mc1_end) {
2138                                 memtype = MEM_MC1;
2139                                 memaddr = offset - mc0_end;
2140                         } else {
2141                                 /* offset beyond the end of any memory */
2142                                 goto err;
2143                         }
2144                 }
2145         }
2146
2147         spin_lock(&adap->win0_lock);
2148         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2149         spin_unlock(&adap->win0_lock);
2150         return ret;
2151
2152 err:
2153         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2154                 stag, offset);
2155         return -EINVAL;
2156 }
2157 EXPORT_SYMBOL(cxgb4_read_tpte);
2158
2159 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2160 {
2161         u32 hi, lo;
2162         struct adapter *adap;
2163
2164         adap = netdev2adap(dev);
2165         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2166         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2167
2168         return ((u64)hi << 32) | (u64)lo;
2169 }
2170 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2171
2172 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2173                          unsigned int qid,
2174                          enum cxgb4_bar2_qtype qtype,
2175                          u64 *pbar2_qoffset,
2176                          unsigned int *pbar2_qid)
2177 {
2178         return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
2179                                  qid,
2180                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2181                                   ? T4_BAR2_QTYPE_EGRESS
2182                                   : T4_BAR2_QTYPE_INGRESS),
2183                                  pbar2_qoffset,
2184                                  pbar2_qid);
2185 }
2186 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2187
2188 static struct pci_driver cxgb4_driver;
2189
2190 static void check_neigh_update(struct neighbour *neigh)
2191 {
2192         const struct device *parent;
2193         const struct net_device *netdev = neigh->dev;
2194
2195         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2196                 netdev = vlan_dev_real_dev(netdev);
2197         parent = netdev->dev.parent;
2198         if (parent && parent->driver == &cxgb4_driver.driver)
2199                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2200 }
2201
2202 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2203                        void *data)
2204 {
2205         switch (event) {
2206         case NETEVENT_NEIGH_UPDATE:
2207                 check_neigh_update(data);
2208                 break;
2209         case NETEVENT_REDIRECT:
2210         default:
2211                 break;
2212         }
2213         return 0;
2214 }
2215
2216 static bool netevent_registered;
2217 static struct notifier_block cxgb4_netevent_nb = {
2218         .notifier_call = netevent_cb
2219 };
2220
2221 static void drain_db_fifo(struct adapter *adap, int usecs)
2222 {
2223         u32 v1, v2, lp_count, hp_count;
2224
2225         do {
2226                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2227                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2228                 if (is_t4(adap->params.chip)) {
2229                         lp_count = LP_COUNT_G(v1);
2230                         hp_count = HP_COUNT_G(v1);
2231                 } else {
2232                         lp_count = LP_COUNT_T5_G(v1);
2233                         hp_count = HP_COUNT_T5_G(v2);
2234                 }
2235
2236                 if (lp_count == 0 && hp_count == 0)
2237                         break;
2238                 set_current_state(TASK_UNINTERRUPTIBLE);
2239                 schedule_timeout(usecs_to_jiffies(usecs));
2240         } while (1);
2241 }
2242
2243 static void disable_txq_db(struct sge_txq *q)
2244 {
2245         unsigned long flags;
2246
2247         spin_lock_irqsave(&q->db_lock, flags);
2248         q->db_disabled = 1;
2249         spin_unlock_irqrestore(&q->db_lock, flags);
2250 }
2251
2252 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2253 {
2254         spin_lock_irq(&q->db_lock);
2255         if (q->db_pidx_inc) {
2256                 /* Make sure that all writes to the TX descriptors
2257                  * are committed before we tell HW about them.
2258                  */
2259                 wmb();
2260                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2261                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2262                 q->db_pidx_inc = 0;
2263         }
2264         q->db_disabled = 0;
2265         spin_unlock_irq(&q->db_lock);
2266 }
2267
2268 static void disable_dbs(struct adapter *adap)
2269 {
2270         int i;
2271
2272         for_each_ethrxq(&adap->sge, i)
2273                 disable_txq_db(&adap->sge.ethtxq[i].q);
2274         for_each_ofldrxq(&adap->sge, i)
2275                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2276         for_each_port(adap, i)
2277                 disable_txq_db(&adap->sge.ctrlq[i].q);
2278 }
2279
2280 static void enable_dbs(struct adapter *adap)
2281 {
2282         int i;
2283
2284         for_each_ethrxq(&adap->sge, i)
2285                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2286         for_each_ofldrxq(&adap->sge, i)
2287                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2288         for_each_port(adap, i)
2289                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2290 }
2291
2292 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2293 {
2294         if (adap->uld_handle[CXGB4_ULD_RDMA])
2295                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2296                                 cmd);
2297 }
2298
2299 static void process_db_full(struct work_struct *work)
2300 {
2301         struct adapter *adap;
2302
2303         adap = container_of(work, struct adapter, db_full_task);
2304
2305         drain_db_fifo(adap, dbfifo_drain_delay);
2306         enable_dbs(adap);
2307         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2308         t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2309                          DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2310                          DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2311 }
2312
2313 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2314 {
2315         u16 hw_pidx, hw_cidx;
2316         int ret;
2317
2318         spin_lock_irq(&q->db_lock);
2319         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2320         if (ret)
2321                 goto out;
2322         if (q->db_pidx != hw_pidx) {
2323                 u16 delta;
2324                 u32 val;
2325
2326                 if (q->db_pidx >= hw_pidx)
2327                         delta = q->db_pidx - hw_pidx;
2328                 else
2329                         delta = q->size - hw_pidx + q->db_pidx;
2330
2331                 if (is_t4(adap->params.chip))
2332                         val = PIDX_V(delta);
2333                 else
2334                         val = PIDX_T5_V(delta);
2335                 wmb();
2336                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2337                              QID_V(q->cntxt_id) | val);
2338         }
2339 out:
2340         q->db_disabled = 0;
2341         q->db_pidx_inc = 0;
2342         spin_unlock_irq(&q->db_lock);
2343         if (ret)
2344                 CH_WARN(adap, "DB drop recovery failed.\n");
2345 }
2346 static void recover_all_queues(struct adapter *adap)
2347 {
2348         int i;
2349
2350         for_each_ethrxq(&adap->sge, i)
2351                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2352         for_each_ofldrxq(&adap->sge, i)
2353                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2354         for_each_port(adap, i)
2355                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2356 }
2357
2358 static void process_db_drop(struct work_struct *work)
2359 {
2360         struct adapter *adap;
2361
2362         adap = container_of(work, struct adapter, db_drop_task);
2363
2364         if (is_t4(adap->params.chip)) {
2365                 drain_db_fifo(adap, dbfifo_drain_delay);
2366                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2367                 drain_db_fifo(adap, dbfifo_drain_delay);
2368                 recover_all_queues(adap);
2369                 drain_db_fifo(adap, dbfifo_drain_delay);
2370                 enable_dbs(adap);
2371                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2372         } else {
2373                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2374                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2375                 u16 pidx_inc = dropped_db & 0x1fff;
2376                 u64 bar2_qoffset;
2377                 unsigned int bar2_qid;
2378                 int ret;
2379
2380                 ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2381                                         &bar2_qoffset, &bar2_qid);
2382                 if (ret)
2383                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2384                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2385                 else
2386                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2387                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2388
2389                 /* Re-enable BAR2 WC */
2390                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2391         }
2392
2393         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2394 }
2395
2396 void t4_db_full(struct adapter *adap)
2397 {
2398         if (is_t4(adap->params.chip)) {
2399                 disable_dbs(adap);
2400                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2401                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2402                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2403                 queue_work(adap->workq, &adap->db_full_task);
2404         }
2405 }
2406
2407 void t4_db_dropped(struct adapter *adap)
2408 {
2409         if (is_t4(adap->params.chip)) {
2410                 disable_dbs(adap);
2411                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2412         }
2413         queue_work(adap->workq, &adap->db_drop_task);
2414 }
2415
2416 static void uld_attach(struct adapter *adap, unsigned int uld)
2417 {
2418         void *handle;
2419         struct cxgb4_lld_info lli;
2420         unsigned short i;
2421
2422         lli.pdev = adap->pdev;
2423         lli.pf = adap->fn;
2424         lli.l2t = adap->l2t;
2425         lli.tids = &adap->tids;
2426         lli.ports = adap->port;
2427         lli.vr = &adap->vres;
2428         lli.mtus = adap->params.mtus;
2429         if (uld == CXGB4_ULD_RDMA) {
2430                 lli.rxq_ids = adap->sge.rdma_rxq;
2431                 lli.ciq_ids = adap->sge.rdma_ciq;
2432                 lli.nrxq = adap->sge.rdmaqs;
2433                 lli.nciq = adap->sge.rdmaciqs;
2434         } else if (uld == CXGB4_ULD_ISCSI) {
2435                 lli.rxq_ids = adap->sge.ofld_rxq;
2436                 lli.nrxq = adap->sge.ofldqsets;
2437         }
2438         lli.ntxq = adap->sge.ofldqsets;
2439         lli.nchan = adap->params.nports;
2440         lli.nports = adap->params.nports;
2441         lli.wr_cred = adap->params.ofldq_wr_cred;
2442         lli.adapter_type = adap->params.chip;
2443         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2444         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2445         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2446         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2447         lli.filt_mode = adap->params.tp.vlan_pri_map;
2448         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2449         for (i = 0; i < NCHAN; i++)
2450                 lli.tx_modq[i] = i;
2451         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2452         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2453         lli.fw_vers = adap->params.fw_vers;
2454         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2455         lli.sge_ingpadboundary = adap->sge.fl_align;
2456         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2457         lli.sge_pktshift = adap->sge.pktshift;
2458         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2459         lli.max_ordird_qp = adap->params.max_ordird_qp;
2460         lli.max_ird_adapter = adap->params.max_ird_adapter;
2461         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2462         lli.nodeid = dev_to_node(adap->pdev_dev);
2463
2464         handle = ulds[uld].add(&lli);
2465         if (IS_ERR(handle)) {
2466                 dev_warn(adap->pdev_dev,
2467                          "could not attach to the %s driver, error %ld\n",
2468                          uld_str[uld], PTR_ERR(handle));
2469                 return;
2470         }
2471
2472         adap->uld_handle[uld] = handle;
2473
2474         if (!netevent_registered) {
2475                 register_netevent_notifier(&cxgb4_netevent_nb);
2476                 netevent_registered = true;
2477         }
2478
2479         if (adap->flags & FULL_INIT_DONE)
2480                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2481 }
2482
2483 static void attach_ulds(struct adapter *adap)
2484 {
2485         unsigned int i;
2486
2487         spin_lock(&adap_rcu_lock);
2488         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2489         spin_unlock(&adap_rcu_lock);
2490
2491         mutex_lock(&uld_mutex);
2492         list_add_tail(&adap->list_node, &adapter_list);
2493         for (i = 0; i < CXGB4_ULD_MAX; i++)
2494                 if (ulds[i].add)
2495                         uld_attach(adap, i);
2496         mutex_unlock(&uld_mutex);
2497 }
2498
2499 static void detach_ulds(struct adapter *adap)
2500 {
2501         unsigned int i;
2502
2503         mutex_lock(&uld_mutex);
2504         list_del(&adap->list_node);
2505         for (i = 0; i < CXGB4_ULD_MAX; i++)
2506                 if (adap->uld_handle[i]) {
2507                         ulds[i].state_change(adap->uld_handle[i],
2508                                              CXGB4_STATE_DETACH);
2509                         adap->uld_handle[i] = NULL;
2510                 }
2511         if (netevent_registered && list_empty(&adapter_list)) {
2512                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2513                 netevent_registered = false;
2514         }
2515         mutex_unlock(&uld_mutex);
2516
2517         spin_lock(&adap_rcu_lock);
2518         list_del_rcu(&adap->rcu_node);
2519         spin_unlock(&adap_rcu_lock);
2520 }
2521
2522 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2523 {
2524         unsigned int i;
2525
2526         mutex_lock(&uld_mutex);
2527         for (i = 0; i < CXGB4_ULD_MAX; i++)
2528                 if (adap->uld_handle[i])
2529                         ulds[i].state_change(adap->uld_handle[i], new_state);
2530         mutex_unlock(&uld_mutex);
2531 }
2532
2533 /**
2534  *      cxgb4_register_uld - register an upper-layer driver
2535  *      @type: the ULD type
2536  *      @p: the ULD methods
2537  *
2538  *      Registers an upper-layer driver with this driver and notifies the ULD
2539  *      about any presently available devices that support its type.  Returns
2540  *      %-EBUSY if a ULD of the same type is already registered.
2541  */
2542 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2543 {
2544         int ret = 0;
2545         struct adapter *adap;
2546
2547         if (type >= CXGB4_ULD_MAX)
2548                 return -EINVAL;
2549         mutex_lock(&uld_mutex);
2550         if (ulds[type].add) {
2551                 ret = -EBUSY;
2552                 goto out;
2553         }
2554         ulds[type] = *p;
2555         list_for_each_entry(adap, &adapter_list, list_node)
2556                 uld_attach(adap, type);
2557 out:    mutex_unlock(&uld_mutex);
2558         return ret;
2559 }
2560 EXPORT_SYMBOL(cxgb4_register_uld);
2561
2562 /**
2563  *      cxgb4_unregister_uld - unregister an upper-layer driver
2564  *      @type: the ULD type
2565  *
2566  *      Unregisters an existing upper-layer driver.
2567  */
2568 int cxgb4_unregister_uld(enum cxgb4_uld type)
2569 {
2570         struct adapter *adap;
2571
2572         if (type >= CXGB4_ULD_MAX)
2573                 return -EINVAL;
2574         mutex_lock(&uld_mutex);
2575         list_for_each_entry(adap, &adapter_list, list_node)
2576                 adap->uld_handle[type] = NULL;
2577         ulds[type].add = NULL;
2578         mutex_unlock(&uld_mutex);
2579         return 0;
2580 }
2581 EXPORT_SYMBOL(cxgb4_unregister_uld);
2582
2583 #if IS_ENABLED(CONFIG_IPV6)
2584 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2585                                    unsigned long event, void *data)
2586 {
2587         struct inet6_ifaddr *ifa = data;
2588         struct net_device *event_dev = ifa->idev->dev;
2589         const struct device *parent = NULL;
2590 #if IS_ENABLED(CONFIG_BONDING)
2591         struct adapter *adap;
2592 #endif
2593         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2594                 event_dev = vlan_dev_real_dev(event_dev);
2595 #if IS_ENABLED(CONFIG_BONDING)
2596         if (event_dev->flags & IFF_MASTER) {
2597                 list_for_each_entry(adap, &adapter_list, list_node) {
2598                         switch (event) {
2599                         case NETDEV_UP:
2600                                 cxgb4_clip_get(adap->port[0],
2601                                                (const u32 *)ifa, 1);
2602                                 break;
2603                         case NETDEV_DOWN:
2604                                 cxgb4_clip_release(adap->port[0],
2605                                                    (const u32 *)ifa, 1);
2606                                 break;
2607                         default:
2608                                 break;
2609                         }
2610                 }
2611                 return NOTIFY_OK;
2612         }
2613 #endif
2614
2615         if (event_dev)
2616                 parent = event_dev->dev.parent;
2617
2618         if (parent && parent->driver == &cxgb4_driver.driver) {
2619                 switch (event) {
2620                 case NETDEV_UP:
2621                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2622                         break;
2623                 case NETDEV_DOWN:
2624                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2625                         break;
2626                 default:
2627                         break;
2628                 }
2629         }
2630         return NOTIFY_OK;
2631 }
2632
2633 static bool inet6addr_registered;
2634 static struct notifier_block cxgb4_inet6addr_notifier = {
2635         .notifier_call = cxgb4_inet6addr_handler
2636 };
2637
2638 static void update_clip(const struct adapter *adap)
2639 {
2640         int i;
2641         struct net_device *dev;
2642         int ret;
2643
2644         rcu_read_lock();
2645
2646         for (i = 0; i < MAX_NPORTS; i++) {
2647                 dev = adap->port[i];
2648                 ret = 0;
2649
2650                 if (dev)
2651                         ret = cxgb4_update_root_dev_clip(dev);
2652
2653                 if (ret < 0)
2654                         break;
2655         }
2656         rcu_read_unlock();
2657 }
2658 #endif /* IS_ENABLED(CONFIG_IPV6) */
2659
2660 /**
2661  *      cxgb_up - enable the adapter
2662  *      @adap: adapter being enabled
2663  *
2664  *      Called when the first port is enabled, this function performs the
2665  *      actions necessary to make an adapter operational, such as completing
2666  *      the initialization of HW modules, and enabling interrupts.
2667  *
2668  *      Must be called with the rtnl lock held.
2669  */
2670 static int cxgb_up(struct adapter *adap)
2671 {
2672         int err;
2673
2674         err = setup_sge_queues(adap);
2675         if (err)
2676                 goto out;
2677         err = setup_rss(adap);
2678         if (err)
2679                 goto freeq;
2680
2681         if (adap->flags & USING_MSIX) {
2682                 name_msix_vecs(adap);
2683                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2684                                   adap->msix_info[0].desc, adap);
2685                 if (err)
2686                         goto irq_err;
2687
2688                 err = request_msix_queue_irqs(adap);
2689                 if (err) {
2690                         free_irq(adap->msix_info[0].vec, adap);
2691                         goto irq_err;
2692                 }
2693         } else {
2694                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2695                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2696                                   adap->port[0]->name, adap);
2697                 if (err)
2698                         goto irq_err;
2699         }
2700         enable_rx(adap);
2701         t4_sge_start(adap);
2702         t4_intr_enable(adap);
2703         adap->flags |= FULL_INIT_DONE;
2704         notify_ulds(adap, CXGB4_STATE_UP);
2705 #if IS_ENABLED(CONFIG_IPV6)
2706         update_clip(adap);
2707 #endif
2708  out:
2709         return err;
2710  irq_err:
2711         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2712  freeq:
2713         t4_free_sge_resources(adap);
2714         goto out;
2715 }
2716
2717 static void cxgb_down(struct adapter *adapter)
2718 {
2719         cancel_work_sync(&adapter->tid_release_task);
2720         cancel_work_sync(&adapter->db_full_task);
2721         cancel_work_sync(&adapter->db_drop_task);
2722         adapter->tid_release_task_busy = false;
2723         adapter->tid_release_head = NULL;
2724
2725         t4_sge_stop(adapter);
2726         t4_free_sge_resources(adapter);
2727         adapter->flags &= ~FULL_INIT_DONE;
2728 }
2729
2730 /*
2731  * net_device operations
2732  */
2733 static int cxgb_open(struct net_device *dev)
2734 {
2735         int err;
2736         struct port_info *pi = netdev_priv(dev);
2737         struct adapter *adapter = pi->adapter;
2738
2739         netif_carrier_off(dev);
2740
2741         if (!(adapter->flags & FULL_INIT_DONE)) {
2742                 err = cxgb_up(adapter);
2743                 if (err < 0)
2744                         return err;
2745         }
2746
2747         err = link_start(dev);
2748         if (!err)
2749                 netif_tx_start_all_queues(dev);
2750         return err;
2751 }
2752
2753 static int cxgb_close(struct net_device *dev)
2754 {
2755         struct port_info *pi = netdev_priv(dev);
2756         struct adapter *adapter = pi->adapter;
2757
2758         netif_tx_stop_all_queues(dev);
2759         netif_carrier_off(dev);
2760         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2761 }
2762
2763 /* Return an error number if the indicated filter isn't writable ...
2764  */
2765 static int writable_filter(struct filter_entry *f)
2766 {
2767         if (f->locked)
2768                 return -EPERM;
2769         if (f->pending)
2770                 return -EBUSY;
2771
2772         return 0;
2773 }
2774
2775 /* Delete the filter at the specified index (if valid).  The checks for all
2776  * the common problems with doing this like the filter being locked, currently
2777  * pending in another operation, etc.
2778  */
2779 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2780 {
2781         struct filter_entry *f;
2782         int ret;
2783
2784         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2785                 return -EINVAL;
2786
2787         f = &adapter->tids.ftid_tab[fidx];
2788         ret = writable_filter(f);
2789         if (ret)
2790                 return ret;
2791         if (f->valid)
2792                 return del_filter_wr(adapter, fidx);
2793
2794         return 0;
2795 }
2796
2797 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2798                 __be32 sip, __be16 sport, __be16 vlan,
2799                 unsigned int queue, unsigned char port, unsigned char mask)
2800 {
2801         int ret;
2802         struct filter_entry *f;
2803         struct adapter *adap;
2804         int i;
2805         u8 *val;
2806
2807         adap = netdev2adap(dev);
2808
2809         /* Adjust stid to correct filter index */
2810         stid -= adap->tids.sftid_base;
2811         stid += adap->tids.nftids;
2812
2813         /* Check to make sure the filter requested is writable ...
2814          */
2815         f = &adap->tids.ftid_tab[stid];
2816         ret = writable_filter(f);
2817         if (ret)
2818                 return ret;
2819
2820         /* Clear out any old resources being used by the filter before
2821          * we start constructing the new filter.
2822          */
2823         if (f->valid)
2824                 clear_filter(adap, f);
2825
2826         /* Clear out filter specifications */
2827         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2828         f->fs.val.lport = cpu_to_be16(sport);
2829         f->fs.mask.lport  = ~0;
2830         val = (u8 *)&sip;
2831         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2832                 for (i = 0; i < 4; i++) {
2833                         f->fs.val.lip[i] = val[i];
2834                         f->fs.mask.lip[i] = ~0;
2835                 }
2836                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2837                         f->fs.val.iport = port;
2838                         f->fs.mask.iport = mask;
2839                 }
2840         }
2841
2842         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2843                 f->fs.val.proto = IPPROTO_TCP;
2844                 f->fs.mask.proto = ~0;
2845         }
2846
2847         f->fs.dirsteer = 1;
2848         f->fs.iq = queue;
2849         /* Mark filter as locked */
2850         f->locked = 1;
2851         f->fs.rpttid = 1;
2852
2853         ret = set_filter_wr(adap, stid);
2854         if (ret) {
2855                 clear_filter(adap, f);
2856                 return ret;
2857         }
2858
2859         return 0;
2860 }
2861 EXPORT_SYMBOL(cxgb4_create_server_filter);
2862
2863 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2864                 unsigned int queue, bool ipv6)
2865 {
2866         int ret;
2867         struct filter_entry *f;
2868         struct adapter *adap;
2869
2870         adap = netdev2adap(dev);
2871
2872         /* Adjust stid to correct filter index */
2873         stid -= adap->tids.sftid_base;
2874         stid += adap->tids.nftids;
2875
2876         f = &adap->tids.ftid_tab[stid];
2877         /* Unlock the filter */
2878         f->locked = 0;
2879
2880         ret = delete_filter(adap, stid);
2881         if (ret)
2882                 return ret;
2883
2884         return 0;
2885 }
2886 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2887
2888 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2889                                                 struct rtnl_link_stats64 *ns)
2890 {
2891         struct port_stats stats;
2892         struct port_info *p = netdev_priv(dev);
2893         struct adapter *adapter = p->adapter;
2894
2895         /* Block retrieving statistics during EEH error
2896          * recovery. Otherwise, the recovery might fail
2897          * and the PCI device will be removed permanently
2898          */
2899         spin_lock(&adapter->stats_lock);
2900         if (!netif_device_present(dev)) {
2901                 spin_unlock(&adapter->stats_lock);
2902                 return ns;
2903         }
2904         t4_get_port_stats(adapter, p->tx_chan, &stats);
2905         spin_unlock(&adapter->stats_lock);
2906
2907         ns->tx_bytes   = stats.tx_octets;
2908         ns->tx_packets = stats.tx_frames;
2909         ns->rx_bytes   = stats.rx_octets;
2910         ns->rx_packets = stats.rx_frames;
2911         ns->multicast  = stats.rx_mcast_frames;
2912
2913         /* detailed rx_errors */
2914         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2915                                stats.rx_runt;
2916         ns->rx_over_errors   = 0;
2917         ns->rx_crc_errors    = stats.rx_fcs_err;
2918         ns->rx_frame_errors  = stats.rx_symbol_err;
2919         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2920                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2921                                stats.rx_trunc0 + stats.rx_trunc1 +
2922                                stats.rx_trunc2 + stats.rx_trunc3;
2923         ns->rx_missed_errors = 0;
2924
2925         /* detailed tx_errors */
2926         ns->tx_aborted_errors   = 0;
2927         ns->tx_carrier_errors   = 0;
2928         ns->tx_fifo_errors      = 0;
2929         ns->tx_heartbeat_errors = 0;
2930         ns->tx_window_errors    = 0;
2931
2932         ns->tx_errors = stats.tx_error_frames;
2933         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2934                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2935         return ns;
2936 }
2937
2938 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2939 {
2940         unsigned int mbox;
2941         int ret = 0, prtad, devad;
2942         struct port_info *pi = netdev_priv(dev);
2943         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2944
2945         switch (cmd) {
2946         case SIOCGMIIPHY:
2947                 if (pi->mdio_addr < 0)
2948                         return -EOPNOTSUPP;
2949                 data->phy_id = pi->mdio_addr;
2950                 break;
2951         case SIOCGMIIREG:
2952         case SIOCSMIIREG:
2953                 if (mdio_phy_id_is_c45(data->phy_id)) {
2954                         prtad = mdio_phy_id_prtad(data->phy_id);
2955                         devad = mdio_phy_id_devad(data->phy_id);
2956                 } else if (data->phy_id < 32) {
2957                         prtad = data->phy_id;
2958                         devad = 0;
2959                         data->reg_num &= 0x1f;
2960                 } else
2961                         return -EINVAL;
2962
2963                 mbox = pi->adapter->fn;
2964                 if (cmd == SIOCGMIIREG)
2965                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2966                                          data->reg_num, &data->val_out);
2967                 else
2968                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2969                                          data->reg_num, data->val_in);
2970                 break;
2971         default:
2972                 return -EOPNOTSUPP;
2973         }
2974         return ret;
2975 }
2976
2977 static void cxgb_set_rxmode(struct net_device *dev)
2978 {
2979         /* unfortunately we can't return errors to the stack */
2980         set_rxmode(dev, -1, false);
2981 }
2982
2983 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2984 {
2985         int ret;
2986         struct port_info *pi = netdev_priv(dev);
2987
2988         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2989                 return -EINVAL;
2990         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2991                             -1, -1, -1, true);
2992         if (!ret)
2993                 dev->mtu = new_mtu;
2994         return ret;
2995 }
2996
2997 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2998 {
2999         int ret;
3000         struct sockaddr *addr = p;
3001         struct port_info *pi = netdev_priv(dev);
3002
3003         if (!is_valid_ether_addr(addr->sa_data))
3004                 return -EADDRNOTAVAIL;
3005
3006         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
3007                             pi->xact_addr_filt, addr->sa_data, true, true);
3008         if (ret < 0)
3009                 return ret;
3010
3011         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3012         pi->xact_addr_filt = ret;
3013         return 0;
3014 }
3015
3016 #ifdef CONFIG_NET_POLL_CONTROLLER
3017 static void cxgb_netpoll(struct net_device *dev)
3018 {
3019         struct port_info *pi = netdev_priv(dev);
3020         struct adapter *adap = pi->adapter;
3021
3022         if (adap->flags & USING_MSIX) {
3023                 int i;
3024                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3025
3026                 for (i = pi->nqsets; i; i--, rx++)
3027                         t4_sge_intr_msix(0, &rx->rspq);
3028         } else
3029                 t4_intr_handler(adap)(0, adap);
3030 }
3031 #endif
3032
3033 static const struct net_device_ops cxgb4_netdev_ops = {
3034         .ndo_open             = cxgb_open,
3035         .ndo_stop             = cxgb_close,
3036         .ndo_start_xmit       = t4_eth_xmit,
3037         .ndo_select_queue     = cxgb_select_queue,
3038         .ndo_get_stats64      = cxgb_get_stats,
3039         .ndo_set_rx_mode      = cxgb_set_rxmode,
3040         .ndo_set_mac_address  = cxgb_set_mac_addr,
3041         .ndo_set_features     = cxgb_set_features,
3042         .ndo_validate_addr    = eth_validate_addr,
3043         .ndo_do_ioctl         = cxgb_ioctl,
3044         .ndo_change_mtu       = cxgb_change_mtu,
3045 #ifdef CONFIG_NET_POLL_CONTROLLER
3046         .ndo_poll_controller  = cxgb_netpoll,
3047 #endif
3048 #ifdef CONFIG_CHELSIO_T4_FCOE
3049         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3050         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3051 #endif /* CONFIG_CHELSIO_T4_FCOE */
3052 #ifdef CONFIG_NET_RX_BUSY_POLL
3053         .ndo_busy_poll        = cxgb_busy_poll,
3054 #endif
3055
3056 };
3057
3058 void t4_fatal_err(struct adapter *adap)
3059 {
3060         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3061         t4_intr_disable(adap);
3062         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3063 }
3064
3065 static void setup_memwin(struct adapter *adap)
3066 {
3067         u32 nic_win_base = t4_get_util_window(adap);
3068
3069         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3070 }
3071
3072 static void setup_memwin_rdma(struct adapter *adap)
3073 {
3074         if (adap->vres.ocq.size) {
3075                 u32 start;
3076                 unsigned int sz_kb;
3077
3078                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3079                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3080                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3081                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3082                 t4_write_reg(adap,
3083                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3084                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3085                 t4_write_reg(adap,
3086                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3087                              adap->vres.ocq.start);
3088                 t4_read_reg(adap,
3089                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3090         }
3091 }
3092
3093 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3094 {
3095         u32 v;
3096         int ret;
3097
3098         /* get device capabilities */
3099         memset(c, 0, sizeof(*c));
3100         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3101                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3102         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3103         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
3104         if (ret < 0)
3105                 return ret;
3106
3107         /* select capabilities we'll be using */
3108         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3109                 if (!vf_acls)
3110                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3111                 else
3112                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3113         } else if (vf_acls) {
3114                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3115                 return ret;
3116         }
3117         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3118                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3119         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
3120         if (ret < 0)
3121                 return ret;
3122
3123         ret = t4_config_glbl_rss(adap, adap->fn,
3124                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3125                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3126                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3127         if (ret < 0)
3128                 return ret;
3129
3130         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
3131                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3132                           FW_CMD_CAP_PF);
3133         if (ret < 0)
3134                 return ret;
3135
3136         t4_sge_init(adap);
3137
3138         /* tweak some settings */
3139         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3140         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3141         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3142         v = t4_read_reg(adap, TP_PIO_DATA_A);
3143         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3144
3145         /* first 4 Tx modulation queues point to consecutive Tx channels */
3146         adap->params.tp.tx_modq_map = 0xE4;
3147         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3148                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3149
3150         /* associate each Tx modulation queue with consecutive Tx channels */
3151         v = 0x84218421;
3152         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3153                           &v, 1, TP_TX_SCHED_HDR_A);
3154         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3155                           &v, 1, TP_TX_SCHED_FIFO_A);
3156         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3157                           &v, 1, TP_TX_SCHED_PCMD_A);
3158
3159 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3160         if (is_offload(adap)) {
3161                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3162                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3163                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3164                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3165                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3166                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3167                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3168                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3169                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3170                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3171         }
3172
3173         /* get basic stuff going */
3174         return t4_early_init(adap, adap->fn);
3175 }
3176
3177 /*
3178  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3179  */
3180 #define MAX_ATIDS 8192U
3181
3182 /*
3183  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3184  *
3185  * If the firmware we're dealing with has Configuration File support, then
3186  * we use that to perform all configuration
3187  */
3188
3189 /*
3190  * Tweak configuration based on module parameters, etc.  Most of these have
3191  * defaults assigned to them by Firmware Configuration Files (if we're using
3192  * them) but need to be explicitly set if we're using hard-coded
3193  * initialization.  But even in the case of using Firmware Configuration
3194  * Files, we'd like to expose the ability to change these via module
3195  * parameters so these are essentially common tweaks/settings for
3196  * Configuration Files and hard-coded initialization ...
3197  */
3198 static int adap_init0_tweaks(struct adapter *adapter)
3199 {
3200         /*
3201          * Fix up various Host-Dependent Parameters like Page Size, Cache
3202          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3203          * 64B Cache Line Size ...
3204          */
3205         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3206
3207         /*
3208          * Process module parameters which affect early initialization.
3209          */
3210         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3211                 dev_err(&adapter->pdev->dev,
3212                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3213                         rx_dma_offset);
3214                 rx_dma_offset = 2;
3215         }
3216         t4_set_reg_field(adapter, SGE_CONTROL_A,
3217                          PKTSHIFT_V(PKTSHIFT_M),
3218                          PKTSHIFT_V(rx_dma_offset));
3219
3220         /*
3221          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3222          * adds the pseudo header itself.
3223          */
3224         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3225                                CSUM_HAS_PSEUDO_HDR_F, 0);
3226
3227         return 0;
3228 }
3229
3230 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3231  * unto themselves and they contain their own firmware to perform their
3232  * tasks ...
3233  */
3234 static int phy_aq1202_version(const u8 *phy_fw_data,
3235                               size_t phy_fw_size)
3236 {
3237         int offset;
3238
3239         /* At offset 0x8 you're looking for the primary image's
3240          * starting offset which is 3 Bytes wide
3241          *
3242          * At offset 0xa of the primary image, you look for the offset
3243          * of the DRAM segment which is 3 Bytes wide.
3244          *
3245          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3246          * wide
3247          */
3248         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3249         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3250         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3251
3252         offset = le24(phy_fw_data + 0x8) << 12;
3253         offset = le24(phy_fw_data + offset + 0xa);
3254         return be16(phy_fw_data + offset + 0x27e);
3255
3256         #undef be16
3257         #undef le16
3258         #undef le24
3259 }
3260
3261 static struct info_10gbt_phy_fw {
3262         unsigned int phy_fw_id;         /* PCI Device ID */
3263         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3264         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3265         int phy_flash;                  /* Has FLASH for PHY Firmware */
3266 } phy_info_array[] = {
3267         {
3268                 PHY_AQ1202_DEVICEID,
3269                 PHY_AQ1202_FIRMWARE,
3270                 phy_aq1202_version,
3271                 1,
3272         },
3273         {
3274                 PHY_BCM84834_DEVICEID,
3275                 PHY_BCM84834_FIRMWARE,
3276                 NULL,
3277                 0,
3278         },
3279         { 0, NULL, NULL },
3280 };
3281
3282 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3283 {
3284         int i;
3285
3286         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3287                 if (phy_info_array[i].phy_fw_id == devid)
3288                         return &phy_info_array[i];
3289         }
3290         return NULL;
3291 }
3292
3293 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3294  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3295  * we return a negative error number.  If we transfer new firmware we return 1
3296  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3297  */
3298 static int adap_init0_phy(struct adapter *adap)
3299 {
3300         const struct firmware *phyf;
3301         int ret;
3302         struct info_10gbt_phy_fw *phy_info;
3303
3304         /* Use the device ID to determine which PHY file to flash.
3305          */
3306         phy_info = find_phy_info(adap->pdev->device);
3307         if (!phy_info) {
3308                 dev_warn(adap->pdev_dev,
3309                          "No PHY Firmware file found for this PHY\n");
3310                 return -EOPNOTSUPP;
3311         }
3312
3313         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3314          * use that. The adapter firmware provides us with a memory buffer
3315          * where we can load a PHY firmware file from the host if we want to
3316          * override the PHY firmware File in flash.
3317          */
3318         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3319                                       adap->pdev_dev);
3320         if (ret < 0) {
3321                 /* For adapters without FLASH attached to PHY for their
3322                  * firmware, it's obviously a fatal error if we can't get the
3323                  * firmware to the adapter.  For adapters with PHY firmware
3324                  * FLASH storage, it's worth a warning if we can't find the
3325                  * PHY Firmware but we'll neuter the error ...
3326                  */
3327                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3328                         "/lib/firmware/%s, error %d\n",
3329                         phy_info->phy_fw_file, -ret);
3330                 if (phy_info->phy_flash) {
3331                         int cur_phy_fw_ver = 0;
3332
3333                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3334                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3335                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3336                         ret = 0;
3337                 }
3338
3339                 return ret;
3340         }
3341
3342         /* Load PHY Firmware onto adapter.
3343          */
3344         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3345                              phy_info->phy_fw_version,
3346                              (u8 *)phyf->data, phyf->size);
3347         if (ret < 0)
3348                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3349                         -ret);
3350         else if (ret > 0) {
3351                 int new_phy_fw_ver = 0;
3352
3353                 if (phy_info->phy_fw_version)
3354                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3355                                                                   phyf->size);
3356                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3357                          "Firmware /lib/firmware/%s, version %#x\n",
3358                          phy_info->phy_fw_file, new_phy_fw_ver);
3359         }
3360
3361         release_firmware(phyf);
3362
3363         return ret;
3364 }
3365
3366 /*
3367  * Attempt to initialize the adapter via a Firmware Configuration File.
3368  */
3369 static int adap_init0_config(struct adapter *adapter, int reset)
3370 {
3371         struct fw_caps_config_cmd caps_cmd;
3372         const struct firmware *cf;
3373         unsigned long mtype = 0, maddr = 0;
3374         u32 finiver, finicsum, cfcsum;
3375         int ret;
3376         int config_issued = 0;
3377         char *fw_config_file, fw_config_file_path[256];
3378         char *config_name = NULL;
3379
3380         /*
3381          * Reset device if necessary.
3382          */
3383         if (reset) {
3384                 ret = t4_fw_reset(adapter, adapter->mbox,
3385                                   PIORSTMODE_F | PIORST_F);
3386                 if (ret < 0)
3387                         goto bye;
3388         }
3389
3390         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3391          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3392          * to be performed after any global adapter RESET above since some
3393          * PHYs only have local RAM copies of the PHY firmware.
3394          */
3395         if (is_10gbt_device(adapter->pdev->device)) {
3396                 ret = adap_init0_phy(adapter);
3397                 if (ret < 0)
3398                         goto bye;
3399         }
3400         /*
3401          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3402          * then use that.  Otherwise, use the configuration file stored
3403          * in the adapter flash ...
3404          */
3405         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3406         case CHELSIO_T4:
3407                 fw_config_file = FW4_CFNAME;
3408                 break;
3409         case CHELSIO_T5:
3410                 fw_config_file = FW5_CFNAME;
3411                 break;
3412         default:
3413                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3414                        adapter->pdev->device);
3415                 ret = -EINVAL;
3416                 goto bye;
3417         }
3418
3419         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3420         if (ret < 0) {
3421                 config_name = "On FLASH";
3422                 mtype = FW_MEMTYPE_CF_FLASH;
3423                 maddr = t4_flash_cfg_addr(adapter);
3424         } else {
3425                 u32 params[7], val[7];
3426
3427                 sprintf(fw_config_file_path,
3428                         "/lib/firmware/%s", fw_config_file);
3429                 config_name = fw_config_file_path;
3430
3431                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3432                         ret = -ENOMEM;
3433                 else {
3434                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3435                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3436                         ret = t4_query_params(adapter, adapter->mbox,
3437                                               adapter->fn, 0, 1, params, val);
3438                         if (ret == 0) {
3439                                 /*
3440                                  * For t4_memory_rw() below addresses and
3441                                  * sizes have to be in terms of multiples of 4
3442                                  * bytes.  So, if the Configuration File isn't
3443                                  * a multiple of 4 bytes in length we'll have
3444                                  * to write that out separately since we can't
3445                                  * guarantee that the bytes following the
3446                                  * residual byte in the buffer returned by
3447                                  * request_firmware() are zeroed out ...
3448                                  */
3449                                 size_t resid = cf->size & 0x3;
3450                                 size_t size = cf->size & ~0x3;
3451                                 __be32 *data = (__be32 *)cf->data;
3452
3453                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3454                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3455
3456                                 spin_lock(&adapter->win0_lock);
3457                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3458                                                    size, data, T4_MEMORY_WRITE);
3459                                 if (ret == 0 && resid != 0) {
3460                                         union {
3461                                                 __be32 word;
3462                                                 char buf[4];
3463                                         } last;
3464                                         int i;
3465
3466                                         last.word = data[size >> 2];
3467                                         for (i = resid; i < 4; i++)
3468                                                 last.buf[i] = 0;
3469                                         ret = t4_memory_rw(adapter, 0, mtype,
3470                                                            maddr + size,
3471                                                            4, &last.word,
3472                                                            T4_MEMORY_WRITE);
3473                                 }
3474                                 spin_unlock(&adapter->win0_lock);
3475                         }
3476                 }
3477
3478                 release_firmware(cf);
3479                 if (ret)
3480                         goto bye;
3481         }
3482
3483         /*
3484          * Issue a Capability Configuration command to the firmware to get it
3485          * to parse the Configuration File.  We don't use t4_fw_config_file()
3486          * because we want the ability to modify various features after we've
3487          * processed the configuration file ...
3488          */
3489         memset(&caps_cmd, 0, sizeof(caps_cmd));
3490         caps_cmd.op_to_write =
3491                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3492                       FW_CMD_REQUEST_F |
3493                       FW_CMD_READ_F);
3494         caps_cmd.cfvalid_to_len16 =
3495                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3496                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3497                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3498                       FW_LEN16(caps_cmd));
3499         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3500                          &caps_cmd);
3501
3502         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3503          * Configuration File in FLASH), our last gasp effort is to use the
3504          * Firmware Configuration File which is embedded in the firmware.  A
3505          * very few early versions of the firmware didn't have one embedded
3506          * but we can ignore those.
3507          */
3508         if (ret == -ENOENT) {
3509                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3510                 caps_cmd.op_to_write =
3511                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3512                                         FW_CMD_REQUEST_F |
3513                                         FW_CMD_READ_F);
3514                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3515                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3516                                 sizeof(caps_cmd), &caps_cmd);
3517                 config_name = "Firmware Default";
3518         }
3519
3520         config_issued = 1;
3521         if (ret < 0)
3522                 goto bye;
3523
3524         finiver = ntohl(caps_cmd.finiver);
3525         finicsum = ntohl(caps_cmd.finicsum);
3526         cfcsum = ntohl(caps_cmd.cfcsum);
3527         if (finicsum != cfcsum)
3528                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3529                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3530                          finicsum, cfcsum);
3531
3532         /*
3533          * And now tell the firmware to use the configuration we just loaded.
3534          */
3535         caps_cmd.op_to_write =
3536                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3537                       FW_CMD_REQUEST_F |
3538                       FW_CMD_WRITE_F);
3539         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3540         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3541                          NULL);
3542         if (ret < 0)
3543                 goto bye;
3544
3545         /*
3546          * Tweak configuration based on system architecture, module
3547          * parameters, etc.
3548          */
3549         ret = adap_init0_tweaks(adapter);
3550         if (ret < 0)
3551                 goto bye;
3552
3553         /*
3554          * And finally tell the firmware to initialize itself using the
3555          * parameters from the Configuration File.
3556          */
3557         ret = t4_fw_initialize(adapter, adapter->mbox);
3558         if (ret < 0)
3559                 goto bye;
3560
3561         /* Emit Firmware Configuration File information and return
3562          * successfully.
3563          */
3564         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3565                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3566                  config_name, finiver, cfcsum);
3567         return 0;
3568
3569         /*
3570          * Something bad happened.  Return the error ...  (If the "error"
3571          * is that there's no Configuration File on the adapter we don't
3572          * want to issue a warning since this is fairly common.)
3573          */
3574 bye:
3575         if (config_issued && ret != -ENOENT)
3576                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3577                          config_name, -ret);
3578         return ret;
3579 }
3580
3581 static struct fw_info fw_info_array[] = {
3582         {
3583                 .chip = CHELSIO_T4,
3584                 .fs_name = FW4_CFNAME,
3585                 .fw_mod_name = FW4_FNAME,
3586                 .fw_hdr = {
3587                         .chip = FW_HDR_CHIP_T4,
3588                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3589                         .intfver_nic = FW_INTFVER(T4, NIC),
3590                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3591                         .intfver_ri = FW_INTFVER(T4, RI),
3592                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3593                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3594                 },
3595         }, {
3596                 .chip = CHELSIO_T5,
3597                 .fs_name = FW5_CFNAME,
3598                 .fw_mod_name = FW5_FNAME,
3599                 .fw_hdr = {
3600                         .chip = FW_HDR_CHIP_T5,
3601                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3602                         .intfver_nic = FW_INTFVER(T5, NIC),
3603                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3604                         .intfver_ri = FW_INTFVER(T5, RI),
3605                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3606                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3607                 },
3608         }
3609 };
3610
3611 static struct fw_info *find_fw_info(int chip)
3612 {
3613         int i;
3614
3615         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3616                 if (fw_info_array[i].chip == chip)
3617                         return &fw_info_array[i];
3618         }
3619         return NULL;
3620 }
3621
3622 /*
3623  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3624  */
3625 static int adap_init0(struct adapter *adap)
3626 {
3627         int ret;
3628         u32 v, port_vec;
3629         enum dev_state state;
3630         u32 params[7], val[7];
3631         struct fw_caps_config_cmd caps_cmd;
3632         int reset = 1;
3633
3634         /* Grab Firmware Device Log parameters as early as possible so we have
3635          * access to it for debugging, etc.
3636          */
3637         ret = t4_init_devlog_params(adap);
3638         if (ret < 0)
3639                 return ret;
3640
3641         /* Contact FW, advertising Master capability */
3642         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3643         if (ret < 0) {
3644                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3645                         ret);
3646                 return ret;
3647         }
3648         if (ret == adap->mbox)
3649                 adap->flags |= MASTER_PF;
3650
3651         /*
3652          * If we're the Master PF Driver and the device is uninitialized,
3653          * then let's consider upgrading the firmware ...  (We always want
3654          * to check the firmware version number in order to A. get it for
3655          * later reporting and B. to warn if the currently loaded firmware
3656          * is excessively mismatched relative to the driver.)
3657          */
3658         t4_get_fw_version(adap, &adap->params.fw_vers);
3659         t4_get_tp_version(adap, &adap->params.tp_vers);
3660         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3661                 struct fw_info *fw_info;
3662                 struct fw_hdr *card_fw;
3663                 const struct firmware *fw;
3664                 const u8 *fw_data = NULL;
3665                 unsigned int fw_size = 0;
3666
3667                 /* This is the firmware whose headers the driver was compiled
3668                  * against
3669                  */
3670                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3671                 if (fw_info == NULL) {
3672                         dev_err(adap->pdev_dev,
3673                                 "unable to get firmware info for chip %d.\n",
3674                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3675                         return -EINVAL;
3676                 }
3677
3678                 /* allocate memory to read the header of the firmware on the
3679                  * card
3680                  */
3681                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3682
3683                 /* Get FW from from /lib/firmware/ */
3684                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3685                                        adap->pdev_dev);
3686                 if (ret < 0) {
3687                         dev_err(adap->pdev_dev,
3688                                 "unable to load firmware image %s, error %d\n",
3689                                 fw_info->fw_mod_name, ret);
3690                 } else {
3691                         fw_data = fw->data;
3692                         fw_size = fw->size;
3693                 }
3694
3695                 /* upgrade FW logic */
3696                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3697                                  state, &reset);
3698
3699                 /* Cleaning up */
3700                 release_firmware(fw);
3701                 t4_free_mem(card_fw);
3702
3703                 if (ret < 0)
3704                         goto bye;
3705         }
3706
3707         /*
3708          * Grab VPD parameters.  This should be done after we establish a
3709          * connection to the firmware since some of the VPD parameters
3710          * (notably the Core Clock frequency) are retrieved via requests to
3711          * the firmware.  On the other hand, we need these fairly early on
3712          * so we do this right after getting ahold of the firmware.
3713          */
3714         ret = get_vpd_params(adap, &adap->params.vpd);
3715         if (ret < 0)
3716                 goto bye;
3717
3718         /*
3719          * Find out what ports are available to us.  Note that we need to do
3720          * this before calling adap_init0_no_config() since it needs nports
3721          * and portvec ...
3722          */
3723         v =
3724             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3725             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3726         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
3727         if (ret < 0)
3728                 goto bye;
3729
3730         adap->params.nports = hweight32(port_vec);
3731         adap->params.portvec = port_vec;
3732
3733         /* If the firmware is initialized already, emit a simply note to that
3734          * effect. Otherwise, it's time to try initializing the adapter.
3735          */
3736         if (state == DEV_STATE_INIT) {
3737                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3738                          "Adapter already initialized\n",
3739                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3740         } else {
3741                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3742                          "Initializing adapter\n");
3743
3744                 /* Find out whether we're dealing with a version of the
3745                  * firmware which has configuration file support.
3746                  */
3747                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3748                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3749                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
3750                                       params, val);
3751
3752                 /* If the firmware doesn't support Configuration Files,
3753                  * return an error.
3754                  */
3755                 if (ret < 0) {
3756                         dev_err(adap->pdev_dev, "firmware doesn't support "
3757                                 "Firmware Configuration Files\n");
3758                         goto bye;
3759                 }
3760
3761                 /* The firmware provides us with a memory buffer where we can
3762                  * load a Configuration File from the host if we want to
3763                  * override the Configuration File in flash.
3764                  */
3765                 ret = adap_init0_config(adap, reset);
3766                 if (ret == -ENOENT) {
3767                         dev_err(adap->pdev_dev, "no Configuration File "
3768                                 "present on adapter.\n");
3769                         goto bye;
3770                 }
3771                 if (ret < 0) {
3772                         dev_err(adap->pdev_dev, "could not initialize "
3773                                 "adapter, error %d\n", -ret);
3774                         goto bye;
3775                 }
3776         }
3777
3778         /* Give the SGE code a chance to pull in anything that it needs ...
3779          * Note that this must be called after we retrieve our VPD parameters
3780          * in order to know how to convert core ticks to seconds, etc.
3781          */
3782         ret = t4_sge_init(adap);
3783         if (ret < 0)
3784                 goto bye;
3785
3786         if (is_bypass_device(adap->pdev->device))
3787                 adap->params.bypass = 1;
3788
3789         /*
3790          * Grab some of our basic fundamental operating parameters.
3791          */
3792 #define FW_PARAM_DEV(param) \
3793         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3794         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3795
3796 #define FW_PARAM_PFVF(param) \
3797         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3798         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3799         FW_PARAMS_PARAM_Y_V(0) | \
3800         FW_PARAMS_PARAM_Z_V(0)
3801
3802         params[0] = FW_PARAM_PFVF(EQ_START);
3803         params[1] = FW_PARAM_PFVF(L2T_START);
3804         params[2] = FW_PARAM_PFVF(L2T_END);
3805         params[3] = FW_PARAM_PFVF(FILTER_START);
3806         params[4] = FW_PARAM_PFVF(FILTER_END);
3807         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3808         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
3809         if (ret < 0)
3810                 goto bye;
3811         adap->sge.egr_start = val[0];
3812         adap->l2t_start = val[1];
3813         adap->l2t_end = val[2];
3814         adap->tids.ftid_base = val[3];
3815         adap->tids.nftids = val[4] - val[3] + 1;
3816         adap->sge.ingr_start = val[5];
3817
3818         /* qids (ingress/egress) returned from firmware can be anywhere
3819          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3820          * Hence driver needs to allocate memory for this range to
3821          * store the queue info. Get the highest IQFLINT/EQ index returned
3822          * in FW_EQ_*_CMD.alloc command.
3823          */
3824         params[0] = FW_PARAM_PFVF(EQ_END);
3825         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3826         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3827         if (ret < 0)
3828                 goto bye;
3829         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3830         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3831
3832         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3833                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3834         if (!adap->sge.egr_map) {
3835                 ret = -ENOMEM;
3836                 goto bye;
3837         }
3838
3839         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3840                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3841         if (!adap->sge.ingr_map) {
3842                 ret = -ENOMEM;
3843                 goto bye;
3844         }
3845
3846         /* Allocate the memory for the vaious egress queue bitmaps
3847          * ie starving_fl and txq_maperr.
3848          */
3849         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3850                                         sizeof(long), GFP_KERNEL);
3851         if (!adap->sge.starving_fl) {
3852                 ret = -ENOMEM;
3853                 goto bye;
3854         }
3855
3856         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3857                                        sizeof(long), GFP_KERNEL);
3858         if (!adap->sge.txq_maperr) {
3859                 ret = -ENOMEM;
3860                 goto bye;
3861         }
3862
3863         params[0] = FW_PARAM_PFVF(CLIP_START);
3864         params[1] = FW_PARAM_PFVF(CLIP_END);
3865         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3866         if (ret < 0)
3867                 goto bye;
3868         adap->clipt_start = val[0];
3869         adap->clipt_end = val[1];
3870
3871         /* query params related to active filter region */
3872         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3873         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3874         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3875         /* If Active filter size is set we enable establishing
3876          * offload connection through firmware work request
3877          */
3878         if ((val[0] != val[1]) && (ret >= 0)) {
3879                 adap->flags |= FW_OFLD_CONN;
3880                 adap->tids.aftid_base = val[0];
3881                 adap->tids.aftid_end = val[1];
3882         }
3883
3884         /* If we're running on newer firmware, let it know that we're
3885          * prepared to deal with encapsulated CPL messages.  Older
3886          * firmware won't understand this and we'll just get
3887          * unencapsulated messages ...
3888          */
3889         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3890         val[0] = 1;
3891         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
3892
3893         /*
3894          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3895          * capability.  Earlier versions of the firmware didn't have the
3896          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3897          * permission to use ULPTX MEMWRITE DSGL.
3898          */
3899         if (is_t4(adap->params.chip)) {
3900                 adap->params.ulptx_memwrite_dsgl = false;
3901         } else {
3902                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3903                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
3904                                       1, params, val);
3905                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3906         }
3907
3908         /*
3909          * Get device capabilities so we can determine what resources we need
3910          * to manage.
3911          */
3912         memset(&caps_cmd, 0, sizeof(caps_cmd));
3913         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3914                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3915         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3916         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3917                          &caps_cmd);
3918         if (ret < 0)
3919                 goto bye;
3920
3921         if (caps_cmd.ofldcaps) {
3922                 /* query offload-related parameters */
3923                 params[0] = FW_PARAM_DEV(NTID);
3924                 params[1] = FW_PARAM_PFVF(SERVER_START);
3925                 params[2] = FW_PARAM_PFVF(SERVER_END);
3926                 params[3] = FW_PARAM_PFVF(TDDP_START);
3927                 params[4] = FW_PARAM_PFVF(TDDP_END);
3928                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3929                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3930                                       params, val);
3931                 if (ret < 0)
3932                         goto bye;
3933                 adap->tids.ntids = val[0];
3934                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3935                 adap->tids.stid_base = val[1];
3936                 adap->tids.nstids = val[2] - val[1] + 1;
3937                 /*
3938                  * Setup server filter region. Divide the available filter
3939                  * region into two parts. Regular filters get 1/3rd and server
3940                  * filters get 2/3rd part. This is only enabled if workarond
3941                  * path is enabled.
3942                  * 1. For regular filters.
3943                  * 2. Server filter: This are special filters which are used
3944                  * to redirect SYN packets to offload queue.
3945                  */
3946                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3947                         adap->tids.sftid_base = adap->tids.ftid_base +
3948                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3949                         adap->tids.nsftids = adap->tids.nftids -
3950                                          DIV_ROUND_UP(adap->tids.nftids, 3);
3951                         adap->tids.nftids = adap->tids.sftid_base -
3952                                                 adap->tids.ftid_base;
3953                 }
3954                 adap->vres.ddp.start = val[3];
3955                 adap->vres.ddp.size = val[4] - val[3] + 1;
3956                 adap->params.ofldq_wr_cred = val[5];
3957
3958                 adap->params.offload = 1;
3959         }
3960         if (caps_cmd.rdmacaps) {
3961                 params[0] = FW_PARAM_PFVF(STAG_START);
3962                 params[1] = FW_PARAM_PFVF(STAG_END);
3963                 params[2] = FW_PARAM_PFVF(RQ_START);
3964                 params[3] = FW_PARAM_PFVF(RQ_END);
3965                 params[4] = FW_PARAM_PFVF(PBL_START);
3966                 params[5] = FW_PARAM_PFVF(PBL_END);
3967                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3968                                       params, val);
3969                 if (ret < 0)
3970                         goto bye;
3971                 adap->vres.stag.start = val[0];
3972                 adap->vres.stag.size = val[1] - val[0] + 1;
3973                 adap->vres.rq.start = val[2];
3974                 adap->vres.rq.size = val[3] - val[2] + 1;
3975                 adap->vres.pbl.start = val[4];
3976                 adap->vres.pbl.size = val[5] - val[4] + 1;
3977
3978                 params[0] = FW_PARAM_PFVF(SQRQ_START);
3979                 params[1] = FW_PARAM_PFVF(SQRQ_END);
3980                 params[2] = FW_PARAM_PFVF(CQ_START);
3981                 params[3] = FW_PARAM_PFVF(CQ_END);
3982                 params[4] = FW_PARAM_PFVF(OCQ_START);
3983                 params[5] = FW_PARAM_PFVF(OCQ_END);
3984                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
3985                                       val);
3986                 if (ret < 0)
3987                         goto bye;
3988                 adap->vres.qp.start = val[0];
3989                 adap->vres.qp.size = val[1] - val[0] + 1;
3990                 adap->vres.cq.start = val[2];
3991                 adap->vres.cq.size = val[3] - val[2] + 1;
3992                 adap->vres.ocq.start = val[4];
3993                 adap->vres.ocq.size = val[5] - val[4] + 1;
3994
3995                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3996                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3997                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
3998                                       val);
3999                 if (ret < 0) {
4000                         adap->params.max_ordird_qp = 8;
4001                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4002                         ret = 0;
4003                 } else {
4004                         adap->params.max_ordird_qp = val[0];
4005                         adap->params.max_ird_adapter = val[1];
4006                 }
4007                 dev_info(adap->pdev_dev,
4008                          "max_ordird_qp %d max_ird_adapter %d\n",
4009                          adap->params.max_ordird_qp,
4010                          adap->params.max_ird_adapter);
4011         }
4012         if (caps_cmd.iscsicaps) {
4013                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4014                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4015                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
4016                                       params, val);
4017                 if (ret < 0)
4018                         goto bye;
4019                 adap->vres.iscsi.start = val[0];
4020                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4021         }
4022 #undef FW_PARAM_PFVF
4023 #undef FW_PARAM_DEV
4024
4025         /* The MTU/MSS Table is initialized by now, so load their values.  If
4026          * we're initializing the adapter, then we'll make any modifications
4027          * we want to the MTU/MSS Table and also initialize the congestion
4028          * parameters.
4029          */
4030         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4031         if (state != DEV_STATE_INIT) {
4032                 int i;
4033
4034                 /* The default MTU Table contains values 1492 and 1500.
4035                  * However, for TCP, it's better to have two values which are
4036                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4037                  * This allows us to have a TCP Data Payload which is a
4038                  * multiple of 8 regardless of what combination of TCP Options
4039                  * are in use (always a multiple of 4 bytes) which is
4040                  * important for performance reasons.  For instance, if no
4041                  * options are in use, then we have a 20-byte IP header and a
4042                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4043                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4044                  * which is not a multiple of 8.  So using an MSS of 1488 in
4045                  * this case results in a TCP Data Payload of 1448 bytes which
4046                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4047                  * Stamps have been negotiated, then an MTU of 1500 bytes
4048                  * results in a TCP Data Payload of 1448 bytes which, as
4049                  * above, is a multiple of 8 bytes ...
4050                  */
4051                 for (i = 0; i < NMTUS; i++)
4052                         if (adap->params.mtus[i] == 1492) {
4053                                 adap->params.mtus[i] = 1488;
4054                                 break;
4055                         }
4056
4057                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4058                              adap->params.b_wnd);
4059         }
4060         t4_init_sge_params(adap);
4061         t4_init_tp_params(adap);
4062         adap->flags |= FW_OK;
4063         return 0;
4064
4065         /*
4066          * Something bad happened.  If a command timed out or failed with EIO
4067          * FW does not operate within its spec or something catastrophic
4068          * happened to HW/FW, stop issuing commands.
4069          */
4070 bye:
4071         kfree(adap->sge.egr_map);
4072         kfree(adap->sge.ingr_map);
4073         kfree(adap->sge.starving_fl);
4074         kfree(adap->sge.txq_maperr);
4075         if (ret != -ETIMEDOUT && ret != -EIO)
4076                 t4_fw_bye(adap, adap->mbox);
4077         return ret;
4078 }
4079
4080 /* EEH callbacks */
4081
4082 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4083                                          pci_channel_state_t state)
4084 {
4085         int i;
4086         struct adapter *adap = pci_get_drvdata(pdev);
4087
4088         if (!adap)
4089                 goto out;
4090
4091         rtnl_lock();
4092         adap->flags &= ~FW_OK;
4093         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4094         spin_lock(&adap->stats_lock);
4095         for_each_port(adap, i) {
4096                 struct net_device *dev = adap->port[i];
4097
4098                 netif_device_detach(dev);
4099                 netif_carrier_off(dev);
4100         }
4101         spin_unlock(&adap->stats_lock);
4102         disable_interrupts(adap);
4103         if (adap->flags & FULL_INIT_DONE)
4104                 cxgb_down(adap);
4105         rtnl_unlock();
4106         if ((adap->flags & DEV_ENABLED)) {
4107                 pci_disable_device(pdev);
4108                 adap->flags &= ~DEV_ENABLED;
4109         }
4110 out:    return state == pci_channel_io_perm_failure ?
4111                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4112 }
4113
4114 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4115 {
4116         int i, ret;
4117         struct fw_caps_config_cmd c;
4118         struct adapter *adap = pci_get_drvdata(pdev);
4119
4120         if (!adap) {
4121                 pci_restore_state(pdev);
4122                 pci_save_state(pdev);
4123                 return PCI_ERS_RESULT_RECOVERED;
4124         }
4125
4126         if (!(adap->flags & DEV_ENABLED)) {
4127                 if (pci_enable_device(pdev)) {
4128                         dev_err(&pdev->dev, "Cannot reenable PCI "
4129                                             "device after reset\n");
4130                         return PCI_ERS_RESULT_DISCONNECT;
4131                 }
4132                 adap->flags |= DEV_ENABLED;
4133         }
4134
4135         pci_set_master(pdev);
4136         pci_restore_state(pdev);
4137         pci_save_state(pdev);
4138         pci_cleanup_aer_uncorrect_error_status(pdev);
4139
4140         if (t4_wait_dev_ready(adap->regs) < 0)
4141                 return PCI_ERS_RESULT_DISCONNECT;
4142         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
4143                 return PCI_ERS_RESULT_DISCONNECT;
4144         adap->flags |= FW_OK;
4145         if (adap_init1(adap, &c))
4146                 return PCI_ERS_RESULT_DISCONNECT;
4147
4148         for_each_port(adap, i) {
4149                 struct port_info *p = adap2pinfo(adap, i);
4150
4151                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
4152                                   NULL, NULL);
4153                 if (ret < 0)
4154                         return PCI_ERS_RESULT_DISCONNECT;
4155                 p->viid = ret;
4156                 p->xact_addr_filt = -1;
4157         }
4158
4159         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4160                      adap->params.b_wnd);
4161         setup_memwin(adap);
4162         if (cxgb_up(adap))
4163                 return PCI_ERS_RESULT_DISCONNECT;
4164         return PCI_ERS_RESULT_RECOVERED;
4165 }
4166
4167 static void eeh_resume(struct pci_dev *pdev)
4168 {
4169         int i;
4170         struct adapter *adap = pci_get_drvdata(pdev);
4171
4172         if (!adap)
4173                 return;
4174
4175         rtnl_lock();
4176         for_each_port(adap, i) {
4177                 struct net_device *dev = adap->port[i];
4178
4179                 if (netif_running(dev)) {
4180                         link_start(dev);
4181                         cxgb_set_rxmode(dev);
4182                 }
4183                 netif_device_attach(dev);
4184         }
4185         rtnl_unlock();
4186 }
4187
4188 static const struct pci_error_handlers cxgb4_eeh = {
4189         .error_detected = eeh_err_detected,
4190         .slot_reset     = eeh_slot_reset,
4191         .resume         = eeh_resume,
4192 };
4193
4194 static inline bool is_x_10g_port(const struct link_config *lc)
4195 {
4196         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4197                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4198 }
4199
4200 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4201                              unsigned int us, unsigned int cnt,
4202                              unsigned int size, unsigned int iqe_size)
4203 {
4204         q->adap = adap;
4205         cxgb4_set_rspq_intr_params(q, us, cnt);
4206         q->iqe_len = iqe_size;
4207         q->size = size;
4208 }
4209
4210 /*
4211  * Perform default configuration of DMA queues depending on the number and type
4212  * of ports we found and the number of available CPUs.  Most settings can be
4213  * modified by the admin prior to actual use.
4214  */
4215 static void cfg_queues(struct adapter *adap)
4216 {
4217         struct sge *s = &adap->sge;
4218         int i, n10g = 0, qidx = 0;
4219 #ifndef CONFIG_CHELSIO_T4_DCB
4220         int q10g = 0;
4221 #endif
4222         int ciq_size;
4223
4224         for_each_port(adap, i)
4225                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4226 #ifdef CONFIG_CHELSIO_T4_DCB
4227         /* For Data Center Bridging support we need to be able to support up
4228          * to 8 Traffic Priorities; each of which will be assigned to its
4229          * own TX Queue in order to prevent Head-Of-Line Blocking.
4230          */
4231         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4232                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4233                         MAX_ETH_QSETS, adap->params.nports * 8);
4234                 BUG_ON(1);
4235         }
4236
4237         for_each_port(adap, i) {
4238                 struct port_info *pi = adap2pinfo(adap, i);
4239
4240                 pi->first_qset = qidx;
4241                 pi->nqsets = 8;
4242                 qidx += pi->nqsets;
4243         }
4244 #else /* !CONFIG_CHELSIO_T4_DCB */
4245         /*
4246          * We default to 1 queue per non-10G port and up to # of cores queues
4247          * per 10G port.
4248          */
4249         if (n10g)
4250                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4251         if (q10g > netif_get_num_default_rss_queues())
4252                 q10g = netif_get_num_default_rss_queues();
4253
4254         for_each_port(adap, i) {
4255                 struct port_info *pi = adap2pinfo(adap, i);
4256
4257                 pi->first_qset = qidx;
4258                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4259                 qidx += pi->nqsets;
4260         }
4261 #endif /* !CONFIG_CHELSIO_T4_DCB */
4262
4263         s->ethqsets = qidx;
4264         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4265
4266         if (is_offload(adap)) {
4267                 /*
4268                  * For offload we use 1 queue/channel if all ports are up to 1G,
4269                  * otherwise we divide all available queues amongst the channels
4270                  * capped by the number of available cores.
4271                  */
4272                 if (n10g) {
4273                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4274                                   num_online_cpus());
4275                         s->ofldqsets = roundup(i, adap->params.nports);
4276                 } else
4277                         s->ofldqsets = adap->params.nports;
4278                 /* For RDMA one Rx queue per channel suffices */
4279                 s->rdmaqs = adap->params.nports;
4280                 /* Try and allow at least 1 CIQ per cpu rounding down
4281                  * to the number of ports, with a minimum of 1 per port.
4282                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4283                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4284                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4285                  */
4286                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4287                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4288                                 adap->params.nports;
4289                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4290         }
4291
4292         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4293                 struct sge_eth_rxq *r = &s->ethrxq[i];
4294
4295                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4296                 r->fl.size = 72;
4297         }
4298
4299         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4300                 s->ethtxq[i].q.size = 1024;
4301
4302         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4303                 s->ctrlq[i].q.size = 512;
4304
4305         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4306                 s->ofldtxq[i].q.size = 1024;
4307
4308         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4309                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4310
4311                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4312                 r->rspq.uld = CXGB4_ULD_ISCSI;
4313                 r->fl.size = 72;
4314         }
4315
4316         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4317                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4318
4319                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4320                 r->rspq.uld = CXGB4_ULD_RDMA;
4321                 r->fl.size = 72;
4322         }
4323
4324         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4325         if (ciq_size > SGE_MAX_IQ_SIZE) {
4326                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4327                 ciq_size = SGE_MAX_IQ_SIZE;
4328         }
4329
4330         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4331                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4332
4333                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4334                 r->rspq.uld = CXGB4_ULD_RDMA;
4335         }
4336
4337         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4338         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4339 }
4340
4341 /*
4342  * Reduce the number of Ethernet queues across all ports to at most n.
4343  * n provides at least one queue per port.
4344  */
4345 static void reduce_ethqs(struct adapter *adap, int n)
4346 {
4347         int i;
4348         struct port_info *pi;
4349
4350         while (n < adap->sge.ethqsets)
4351                 for_each_port(adap, i) {
4352                         pi = adap2pinfo(adap, i);
4353                         if (pi->nqsets > 1) {
4354                                 pi->nqsets--;
4355                                 adap->sge.ethqsets--;
4356                                 if (adap->sge.ethqsets <= n)
4357                                         break;
4358                         }
4359                 }
4360
4361         n = 0;
4362         for_each_port(adap, i) {
4363                 pi = adap2pinfo(adap, i);
4364                 pi->first_qset = n;
4365                 n += pi->nqsets;
4366         }
4367 }
4368
4369 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4370 #define EXTRA_VECS 2
4371
4372 static int enable_msix(struct adapter *adap)
4373 {
4374         int ofld_need = 0;
4375         int i, want, need, allocated;
4376         struct sge *s = &adap->sge;
4377         unsigned int nchan = adap->params.nports;
4378         struct msix_entry *entries;
4379
4380         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4381                           GFP_KERNEL);
4382         if (!entries)
4383                 return -ENOMEM;
4384
4385         for (i = 0; i < MAX_INGQ + 1; ++i)
4386                 entries[i].entry = i;
4387
4388         want = s->max_ethqsets + EXTRA_VECS;
4389         if (is_offload(adap)) {
4390                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4391                 /* need nchan for each possible ULD */
4392                 ofld_need = 3 * nchan;
4393         }
4394 #ifdef CONFIG_CHELSIO_T4_DCB
4395         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4396          * each port.
4397          */
4398         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4399 #else
4400         need = adap->params.nports + EXTRA_VECS + ofld_need;
4401 #endif
4402         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4403         if (allocated < 0) {
4404                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4405                          " not using MSI-X\n");
4406                 kfree(entries);
4407                 return allocated;
4408         }
4409
4410         /* Distribute available vectors to the various queue groups.
4411          * Every group gets its minimum requirement and NIC gets top
4412          * priority for leftovers.
4413          */
4414         i = allocated - EXTRA_VECS - ofld_need;
4415         if (i < s->max_ethqsets) {
4416                 s->max_ethqsets = i;
4417                 if (i < s->ethqsets)
4418                         reduce_ethqs(adap, i);
4419         }
4420         if (is_offload(adap)) {
4421                 if (allocated < want) {
4422                         s->rdmaqs = nchan;
4423                         s->rdmaciqs = nchan;
4424                 }
4425
4426                 /* leftovers go to OFLD */
4427                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4428                     s->rdmaqs - s->rdmaciqs;
4429                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
4430         }
4431         for (i = 0; i < allocated; ++i)
4432                 adap->msix_info[i].vec = entries[i].vector;
4433
4434         kfree(entries);
4435         return 0;
4436 }
4437
4438 #undef EXTRA_VECS
4439
4440 static int init_rss(struct adapter *adap)
4441 {
4442         unsigned int i;
4443         int err;
4444
4445         err = t4_init_rss_mode(adap, adap->mbox);
4446         if (err)
4447                 return err;
4448
4449         for_each_port(adap, i) {
4450                 struct port_info *pi = adap2pinfo(adap, i);
4451
4452                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4453                 if (!pi->rss)
4454                         return -ENOMEM;
4455         }
4456         return 0;
4457 }
4458
4459 static void print_port_info(const struct net_device *dev)
4460 {
4461         char buf[80];
4462         char *bufp = buf;
4463         const char *spd = "";
4464         const struct port_info *pi = netdev_priv(dev);
4465         const struct adapter *adap = pi->adapter;
4466
4467         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4468                 spd = " 2.5 GT/s";
4469         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4470                 spd = " 5 GT/s";
4471         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4472                 spd = " 8 GT/s";
4473
4474         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4475                 bufp += sprintf(bufp, "100/");
4476         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4477                 bufp += sprintf(bufp, "1000/");
4478         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4479                 bufp += sprintf(bufp, "10G/");
4480         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4481                 bufp += sprintf(bufp, "40G/");
4482         if (bufp != buf)
4483                 --bufp;
4484         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4485
4486         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4487                     adap->params.vpd.id,
4488                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4489                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4490                     (adap->flags & USING_MSIX) ? " MSI-X" :
4491                     (adap->flags & USING_MSI) ? " MSI" : "");
4492         netdev_info(dev, "S/N: %s, P/N: %s\n",
4493                     adap->params.vpd.sn, adap->params.vpd.pn);
4494 }
4495
4496 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4497 {
4498         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4499 }
4500
4501 /*
4502  * Free the following resources:
4503  * - memory used for tables
4504  * - MSI/MSI-X
4505  * - net devices
4506  * - resources FW is holding for us
4507  */
4508 static void free_some_resources(struct adapter *adapter)
4509 {
4510         unsigned int i;
4511
4512         t4_free_mem(adapter->l2t);
4513         t4_free_mem(adapter->tids.tid_tab);
4514         kfree(adapter->sge.egr_map);
4515         kfree(adapter->sge.ingr_map);
4516         kfree(adapter->sge.starving_fl);
4517         kfree(adapter->sge.txq_maperr);
4518         disable_msi(adapter);
4519
4520         for_each_port(adapter, i)
4521                 if (adapter->port[i]) {
4522                         kfree(adap2pinfo(adapter, i)->rss);
4523                         free_netdev(adapter->port[i]);
4524                 }
4525         if (adapter->flags & FW_OK)
4526                 t4_fw_bye(adapter, adapter->fn);
4527 }
4528
4529 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4530 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4531                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4532 #define SEGMENT_SIZE 128
4533
4534 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4535 {
4536         int func, i, err, s_qpp, qpp, num_seg;
4537         struct port_info *pi;
4538         bool highdma = false;
4539         struct adapter *adapter = NULL;
4540         void __iomem *regs;
4541
4542         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4543
4544         err = pci_request_regions(pdev, KBUILD_MODNAME);
4545         if (err) {
4546                 /* Just info, some other driver may have claimed the device. */
4547                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4548                 return err;
4549         }
4550
4551         err = pci_enable_device(pdev);
4552         if (err) {
4553                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4554                 goto out_release_regions;
4555         }
4556
4557         regs = pci_ioremap_bar(pdev, 0);
4558         if (!regs) {
4559                 dev_err(&pdev->dev, "cannot map device registers\n");
4560                 err = -ENOMEM;
4561                 goto out_disable_device;
4562         }
4563
4564         err = t4_wait_dev_ready(regs);
4565         if (err < 0)
4566                 goto out_unmap_bar0;
4567
4568         /* We control everything through one PF */
4569         func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
4570         if (func != ent->driver_data) {
4571                 iounmap(regs);
4572                 pci_disable_device(pdev);
4573                 pci_save_state(pdev);        /* to restore SR-IOV later */
4574                 goto sriov;
4575         }
4576
4577         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4578                 highdma = true;
4579                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4580                 if (err) {
4581                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4582                                 "coherent allocations\n");
4583                         goto out_unmap_bar0;
4584                 }
4585         } else {
4586                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4587                 if (err) {
4588                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4589                         goto out_unmap_bar0;
4590                 }
4591         }
4592
4593         pci_enable_pcie_error_reporting(pdev);
4594         enable_pcie_relaxed_ordering(pdev);
4595         pci_set_master(pdev);
4596         pci_save_state(pdev);
4597
4598         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4599         if (!adapter) {
4600                 err = -ENOMEM;
4601                 goto out_unmap_bar0;
4602         }
4603
4604         adapter->workq = create_singlethread_workqueue("cxgb4");
4605         if (!adapter->workq) {
4606                 err = -ENOMEM;
4607                 goto out_free_adapter;
4608         }
4609
4610         /* PCI device has been enabled */
4611         adapter->flags |= DEV_ENABLED;
4612
4613         adapter->regs = regs;
4614         adapter->pdev = pdev;
4615         adapter->pdev_dev = &pdev->dev;
4616         adapter->mbox = func;
4617         adapter->fn = func;
4618         adapter->msg_enable = dflt_msg_enable;
4619         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4620
4621         spin_lock_init(&adapter->stats_lock);
4622         spin_lock_init(&adapter->tid_release_lock);
4623         spin_lock_init(&adapter->win0_lock);
4624
4625         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4626         INIT_WORK(&adapter->db_full_task, process_db_full);
4627         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4628
4629         err = t4_prep_adapter(adapter);
4630         if (err)
4631                 goto out_free_adapter;
4632
4633
4634         if (!is_t4(adapter->params.chip)) {
4635                 s_qpp = (QUEUESPERPAGEPF0_S +
4636                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4637                         adapter->fn);
4638                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4639                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4640                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4641
4642                 /* Each segment size is 128B. Write coalescing is enabled only
4643                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4644                  * queue is less no of segments that can be accommodated in
4645                  * a page size.
4646                  */
4647                 if (qpp > num_seg) {
4648                         dev_err(&pdev->dev,
4649                                 "Incorrect number of egress queues per page\n");
4650                         err = -EINVAL;
4651                         goto out_free_adapter;
4652                 }
4653                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4654                 pci_resource_len(pdev, 2));
4655                 if (!adapter->bar2) {
4656                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4657                         err = -ENOMEM;
4658                         goto out_free_adapter;
4659                 }
4660         }
4661
4662         setup_memwin(adapter);
4663         err = adap_init0(adapter);
4664         setup_memwin_rdma(adapter);
4665         if (err)
4666                 goto out_unmap_bar;
4667
4668         for_each_port(adapter, i) {
4669                 struct net_device *netdev;
4670
4671                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4672                                            MAX_ETH_QSETS);
4673                 if (!netdev) {
4674                         err = -ENOMEM;
4675                         goto out_free_dev;
4676                 }
4677
4678                 SET_NETDEV_DEV(netdev, &pdev->dev);
4679
4680                 adapter->port[i] = netdev;
4681                 pi = netdev_priv(netdev);
4682                 pi->adapter = adapter;
4683                 pi->xact_addr_filt = -1;
4684                 pi->port_id = i;
4685                 netdev->irq = pdev->irq;
4686
4687                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4688                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4689                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4690                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4691                 if (highdma)
4692                         netdev->hw_features |= NETIF_F_HIGHDMA;
4693                 netdev->features |= netdev->hw_features;
4694                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4695
4696                 netdev->priv_flags |= IFF_UNICAST_FLT;
4697
4698                 netdev->netdev_ops = &cxgb4_netdev_ops;
4699 #ifdef CONFIG_CHELSIO_T4_DCB
4700                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4701                 cxgb4_dcb_state_init(netdev);
4702 #endif
4703                 cxgb4_set_ethtool_ops(netdev);
4704         }
4705
4706         pci_set_drvdata(pdev, adapter);
4707
4708         if (adapter->flags & FW_OK) {
4709                 err = t4_port_init(adapter, func, func, 0);
4710                 if (err)
4711                         goto out_free_dev;
4712         }
4713
4714         /*
4715          * Configure queues and allocate tables now, they can be needed as
4716          * soon as the first register_netdev completes.
4717          */
4718         cfg_queues(adapter);
4719
4720         adapter->l2t = t4_init_l2t();
4721         if (!adapter->l2t) {
4722                 /* We tolerate a lack of L2T, giving up some functionality */
4723                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4724                 adapter->params.offload = 0;
4725         }
4726
4727 #if IS_ENABLED(CONFIG_IPV6)
4728         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4729                                           adapter->clipt_end);
4730         if (!adapter->clipt) {
4731                 /* We tolerate a lack of clip_table, giving up
4732                  * some functionality
4733                  */
4734                 dev_warn(&pdev->dev,
4735                          "could not allocate Clip table, continuing\n");
4736                 adapter->params.offload = 0;
4737         }
4738 #endif
4739         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4740                 dev_warn(&pdev->dev, "could not allocate TID table, "
4741                          "continuing\n");
4742                 adapter->params.offload = 0;
4743         }
4744
4745         /* See what interrupts we'll be using */
4746         if (msi > 1 && enable_msix(adapter) == 0)
4747                 adapter->flags |= USING_MSIX;
4748         else if (msi > 0 && pci_enable_msi(pdev) == 0)
4749                 adapter->flags |= USING_MSI;
4750
4751         err = init_rss(adapter);
4752         if (err)
4753                 goto out_free_dev;
4754
4755         /*
4756          * The card is now ready to go.  If any errors occur during device
4757          * registration we do not fail the whole card but rather proceed only
4758          * with the ports we manage to register successfully.  However we must
4759          * register at least one net device.
4760          */
4761         for_each_port(adapter, i) {
4762                 pi = adap2pinfo(adapter, i);
4763                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4764                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4765
4766                 err = register_netdev(adapter->port[i]);
4767                 if (err)
4768                         break;
4769                 adapter->chan_map[pi->tx_chan] = i;
4770                 print_port_info(adapter->port[i]);
4771         }
4772         if (i == 0) {
4773                 dev_err(&pdev->dev, "could not register any net devices\n");
4774                 goto out_free_dev;
4775         }
4776         if (err) {
4777                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4778                 err = 0;
4779         }
4780
4781         if (cxgb4_debugfs_root) {
4782                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4783                                                            cxgb4_debugfs_root);
4784                 setup_debugfs(adapter);
4785         }
4786
4787         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4788         pdev->needs_freset = 1;
4789
4790         if (is_offload(adapter))
4791                 attach_ulds(adapter);
4792
4793 sriov:
4794 #ifdef CONFIG_PCI_IOV
4795         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4796                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4797                         dev_info(&pdev->dev,
4798                                  "instantiated %u virtual functions\n",
4799                                  num_vf[func]);
4800 #endif
4801         return 0;
4802
4803  out_free_dev:
4804         free_some_resources(adapter);
4805  out_unmap_bar:
4806         if (!is_t4(adapter->params.chip))
4807                 iounmap(adapter->bar2);
4808  out_free_adapter:
4809         if (adapter->workq)
4810                 destroy_workqueue(adapter->workq);
4811
4812         kfree(adapter);
4813  out_unmap_bar0:
4814         iounmap(regs);
4815  out_disable_device:
4816         pci_disable_pcie_error_reporting(pdev);
4817         pci_disable_device(pdev);
4818  out_release_regions:
4819         pci_release_regions(pdev);
4820         return err;
4821 }
4822
4823 static void remove_one(struct pci_dev *pdev)
4824 {
4825         struct adapter *adapter = pci_get_drvdata(pdev);
4826
4827 #ifdef CONFIG_PCI_IOV
4828         pci_disable_sriov(pdev);
4829
4830 #endif
4831
4832         if (adapter) {
4833                 int i;
4834
4835                 /* Tear down per-adapter Work Queue first since it can contain
4836                  * references to our adapter data structure.
4837                  */
4838                 destroy_workqueue(adapter->workq);
4839
4840                 if (is_offload(adapter))
4841                         detach_ulds(adapter);
4842
4843                 disable_interrupts(adapter);
4844
4845                 for_each_port(adapter, i)
4846                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4847                                 unregister_netdev(adapter->port[i]);
4848
4849                 debugfs_remove_recursive(adapter->debugfs_root);
4850
4851                 /* If we allocated filters, free up state associated with any
4852                  * valid filters ...
4853                  */
4854                 if (adapter->tids.ftid_tab) {
4855                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
4856                         for (i = 0; i < (adapter->tids.nftids +
4857                                         adapter->tids.nsftids); i++, f++)
4858                                 if (f->valid)
4859                                         clear_filter(adapter, f);
4860                 }
4861
4862                 if (adapter->flags & FULL_INIT_DONE)
4863                         cxgb_down(adapter);
4864
4865                 free_some_resources(adapter);
4866 #if IS_ENABLED(CONFIG_IPV6)
4867                 t4_cleanup_clip_tbl(adapter);
4868 #endif
4869                 iounmap(adapter->regs);
4870                 if (!is_t4(adapter->params.chip))
4871                         iounmap(adapter->bar2);
4872                 pci_disable_pcie_error_reporting(pdev);
4873                 if ((adapter->flags & DEV_ENABLED)) {
4874                         pci_disable_device(pdev);
4875                         adapter->flags &= ~DEV_ENABLED;
4876                 }
4877                 pci_release_regions(pdev);
4878                 synchronize_rcu();
4879                 kfree(adapter);
4880         } else
4881                 pci_release_regions(pdev);
4882 }
4883
4884 static struct pci_driver cxgb4_driver = {
4885         .name     = KBUILD_MODNAME,
4886         .id_table = cxgb4_pci_tbl,
4887         .probe    = init_one,
4888         .remove   = remove_one,
4889         .shutdown = remove_one,
4890         .err_handler = &cxgb4_eeh,
4891 };
4892
4893 static int __init cxgb4_init_module(void)
4894 {
4895         int ret;
4896
4897         /* Debugfs support is optional, just warn if this fails */
4898         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4899         if (!cxgb4_debugfs_root)
4900                 pr_warn("could not create debugfs entry, continuing\n");
4901
4902         ret = pci_register_driver(&cxgb4_driver);
4903         if (ret < 0)
4904                 debugfs_remove(cxgb4_debugfs_root);
4905
4906 #if IS_ENABLED(CONFIG_IPV6)
4907         if (!inet6addr_registered) {
4908                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4909                 inet6addr_registered = true;
4910         }
4911 #endif
4912
4913         return ret;
4914 }
4915
4916 static void __exit cxgb4_cleanup_module(void)
4917 {
4918 #if IS_ENABLED(CONFIG_IPV6)
4919         if (inet6addr_registered) {
4920                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4921                 inet6addr_registered = false;
4922         }
4923 #endif
4924         pci_unregister_driver(&cxgb4_driver);
4925         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
4926 }
4927
4928 module_init(cxgb4_init_module);
4929 module_exit(cxgb4_cleanup_module);