mt76: mt7663: introduce coredump support
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68 #include <net/xfrm.h>
69 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
70 #include <net/tls.h>
71 #endif
72
73 #include "cxgb4.h"
74 #include "cxgb4_filter.h"
75 #include "t4_regs.h"
76 #include "t4_values.h"
77 #include "t4_msg.h"
78 #include "t4fw_api.h"
79 #include "t4fw_version.h"
80 #include "cxgb4_dcb.h"
81 #include "srq.h"
82 #include "cxgb4_debugfs.h"
83 #include "clip_tbl.h"
84 #include "l2t.h"
85 #include "smt.h"
86 #include "sched.h"
87 #include "cxgb4_tc_u32.h"
88 #include "cxgb4_tc_flower.h"
89 #include "cxgb4_tc_mqprio.h"
90 #include "cxgb4_tc_matchall.h"
91 #include "cxgb4_ptp.h"
92 #include "cxgb4_cudbg.h"
93
94 char cxgb4_driver_name[] = KBUILD_MODNAME;
95
96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97
98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
99                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
100                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101
102 /* Macros needed to support the PCI Device ID Table ...
103  */
104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
105         static const struct pci_device_id cxgb4_pci_tbl[] = {
106 #define CXGB4_UNIFIED_PF 0x4
107
108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109
110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
111  * called for both.
112  */
113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114
115 #define CH_PCI_ID_TABLE_ENTRY(devid) \
116                 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
119                 { 0, } \
120         }
121
122 #include "t4_pci_id_tbl.h"
123
124 #define FW4_FNAME "cxgb4/t4fw.bin"
125 #define FW5_FNAME "cxgb4/t5fw.bin"
126 #define FW6_FNAME "cxgb4/t6fw.bin"
127 #define FW4_CFNAME "cxgb4/t4-config.txt"
128 #define FW5_CFNAME "cxgb4/t5-config.txt"
129 #define FW6_CFNAME "cxgb4/t6-config.txt"
130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
132 #define PHY_AQ1202_DEVICEID 0x4409
133 #define PHY_BCM84834_DEVICEID 0x4486
134
135 MODULE_DESCRIPTION(DRV_DESC);
136 MODULE_AUTHOR("Chelsio Communications");
137 MODULE_LICENSE("Dual BSD/GPL");
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
142
143 /*
144  * The driver uses the best interrupt scheme available on a platform in the
145  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
146  * of these schemes the driver may consider as follows:
147  *
148  * msi = 2: choose from among all three options
149  * msi = 1: only consider MSI and INTx interrupts
150  * msi = 0: force INTx interrupts
151  */
152 static int msi = 2;
153
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
156
157 /*
158  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159  * offset by 2 bytes in order to have the IP headers line up on 4-byte
160  * boundaries.  This is a requirement for many architectures which will throw
161  * a machine check fault if an attempt is made to access one of the 4-byte IP
162  * header fields on a non-4-byte boundary.  And it's a major performance issue
163  * even on some architectures which allow it like some implementations of the
164  * x86 ISA.  However, some architectures don't mind this and for some very
165  * edge-case performance sensitive applications (like forwarding large volumes
166  * of small packets), setting this DMA offset to 0 will decrease the number of
167  * PCI-E Bus transfers enough to measurably affect performance.
168  */
169 static int rx_dma_offset = 2;
170
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172  * queue. Select between the kernel provided function (select_queue=0) or user
173  * cxgb_select_queue function (select_queue=1)
174  *
175  * Default: select_queue=0
176  */
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
181
182 static struct dentry *cxgb4_debugfs_root;
183
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
186 LIST_HEAD(uld_list);
187
188 static int cfg_queues(struct adapter *adap);
189
190 static void link_report(struct net_device *dev)
191 {
192         if (!netif_carrier_ok(dev))
193                 netdev_info(dev, "link down\n");
194         else {
195                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
196
197                 const char *s;
198                 const struct port_info *p = netdev_priv(dev);
199
200                 switch (p->link_cfg.speed) {
201                 case 100:
202                         s = "100Mbps";
203                         break;
204                 case 1000:
205                         s = "1Gbps";
206                         break;
207                 case 10000:
208                         s = "10Gbps";
209                         break;
210                 case 25000:
211                         s = "25Gbps";
212                         break;
213                 case 40000:
214                         s = "40Gbps";
215                         break;
216                 case 50000:
217                         s = "50Gbps";
218                         break;
219                 case 100000:
220                         s = "100Gbps";
221                         break;
222                 default:
223                         pr_info("%s: unsupported speed: %d\n",
224                                 dev->name, p->link_cfg.speed);
225                         return;
226                 }
227
228                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
229                             fc[p->link_cfg.fc]);
230         }
231 }
232
233 #ifdef CONFIG_CHELSIO_T4_DCB
234 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
235 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
236 {
237         struct port_info *pi = netdev_priv(dev);
238         struct adapter *adap = pi->adapter;
239         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
240         int i;
241
242         /* We use a simple mapping of Port TX Queue Index to DCB
243          * Priority when we're enabling DCB.
244          */
245         for (i = 0; i < pi->nqsets; i++, txq++) {
246                 u32 name, value;
247                 int err;
248
249                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
250                         FW_PARAMS_PARAM_X_V(
251                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
252                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
253                 value = enable ? i : 0xffffffff;
254
255                 /* Since we can be called while atomic (from "interrupt
256                  * level") we need to issue the Set Parameters Commannd
257                  * without sleeping (timeout < 0).
258                  */
259                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
260                                             &name, &value,
261                                             -FW_CMD_MAX_TIMEOUT);
262
263                 if (err)
264                         dev_err(adap->pdev_dev,
265                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
266                                 enable ? "set" : "unset", pi->port_id, i, -err);
267                 else
268                         txq->dcb_prio = enable ? value : 0;
269         }
270 }
271
272 int cxgb4_dcb_enabled(const struct net_device *dev)
273 {
274         struct port_info *pi = netdev_priv(dev);
275
276         if (!pi->dcb.enabled)
277                 return 0;
278
279         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
280                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
281 }
282 #endif /* CONFIG_CHELSIO_T4_DCB */
283
284 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
285 {
286         struct net_device *dev = adapter->port[port_id];
287
288         /* Skip changes from disabled ports. */
289         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
290                 if (link_stat)
291                         netif_carrier_on(dev);
292                 else {
293 #ifdef CONFIG_CHELSIO_T4_DCB
294                         if (cxgb4_dcb_enabled(dev)) {
295                                 cxgb4_dcb_reset(dev);
296                                 dcb_tx_queue_prio_enable(dev, false);
297                         }
298 #endif /* CONFIG_CHELSIO_T4_DCB */
299                         netif_carrier_off(dev);
300                 }
301
302                 link_report(dev);
303         }
304 }
305
306 void t4_os_portmod_changed(struct adapter *adap, int port_id)
307 {
308         static const char *mod_str[] = {
309                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
310         };
311
312         struct net_device *dev = adap->port[port_id];
313         struct port_info *pi = netdev_priv(dev);
314
315         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
316                 netdev_info(dev, "port module unplugged\n");
317         else if (pi->mod_type < ARRAY_SIZE(mod_str))
318                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
319         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
320                 netdev_info(dev, "%s: unsupported port module inserted\n",
321                             dev->name);
322         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
323                 netdev_info(dev, "%s: unknown port module inserted\n",
324                             dev->name);
325         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
326                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
327         else
328                 netdev_info(dev, "%s: unknown module type %d inserted\n",
329                             dev->name, pi->mod_type);
330
331         /* If the interface is running, then we'll need any "sticky" Link
332          * Parameters redone with a new Transceiver Module.
333          */
334         pi->link_cfg.redo_l1cfg = netif_running(dev);
335 }
336
337 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
338 module_param(dbfifo_int_thresh, int, 0644);
339 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
340
341 /*
342  * usecs to sleep while draining the dbfifo
343  */
344 static int dbfifo_drain_delay = 1000;
345 module_param(dbfifo_drain_delay, int, 0644);
346 MODULE_PARM_DESC(dbfifo_drain_delay,
347                  "usecs to sleep while draining the dbfifo");
348
349 static inline int cxgb4_set_addr_hash(struct port_info *pi)
350 {
351         struct adapter *adap = pi->adapter;
352         u64 vec = 0;
353         bool ucast = false;
354         struct hash_mac_addr *entry;
355
356         /* Calculate the hash vector for the updated list and program it */
357         list_for_each_entry(entry, &adap->mac_hlist, list) {
358                 ucast |= is_unicast_ether_addr(entry->addr);
359                 vec |= (1ULL << hash_mac_addr(entry->addr));
360         }
361         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
362                                 vec, false);
363 }
364
365 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
366 {
367         struct port_info *pi = netdev_priv(netdev);
368         struct adapter *adap = pi->adapter;
369         int ret;
370         u64 mhash = 0;
371         u64 uhash = 0;
372         /* idx stores the index of allocated filters,
373          * its size should be modified based on the number of
374          * MAC addresses that we allocate filters for
375          */
376
377         u16 idx[1] = {};
378         bool free = false;
379         bool ucast = is_unicast_ether_addr(mac_addr);
380         const u8 *maclist[1] = {mac_addr};
381         struct hash_mac_addr *new_entry;
382
383         ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
384                                    idx, ucast ? &uhash : &mhash, false);
385         if (ret < 0)
386                 goto out;
387         /* if hash != 0, then add the addr to hash addr list
388          * so on the end we will calculate the hash for the
389          * list and program it
390          */
391         if (uhash || mhash) {
392                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
393                 if (!new_entry)
394                         return -ENOMEM;
395                 ether_addr_copy(new_entry->addr, mac_addr);
396                 list_add_tail(&new_entry->list, &adap->mac_hlist);
397                 ret = cxgb4_set_addr_hash(pi);
398         }
399 out:
400         return ret < 0 ? ret : 0;
401 }
402
403 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
404 {
405         struct port_info *pi = netdev_priv(netdev);
406         struct adapter *adap = pi->adapter;
407         int ret;
408         const u8 *maclist[1] = {mac_addr};
409         struct hash_mac_addr *entry, *tmp;
410
411         /* If the MAC address to be removed is in the hash addr
412          * list, delete it from the list and update hash vector
413          */
414         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
415                 if (ether_addr_equal(entry->addr, mac_addr)) {
416                         list_del(&entry->list);
417                         kfree(entry);
418                         return cxgb4_set_addr_hash(pi);
419                 }
420         }
421
422         ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
423         return ret < 0 ? -EINVAL : 0;
424 }
425
426 /*
427  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
428  * If @mtu is -1 it is left unchanged.
429  */
430 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
431 {
432         struct port_info *pi = netdev_priv(dev);
433         struct adapter *adapter = pi->adapter;
434
435         __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
437
438         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
439                              mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
440                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
441                              sleep_ok);
442 }
443
444 /**
445  *      cxgb4_change_mac - Update match filter for a MAC address.
446  *      @pi: the port_info
447  *      @viid: the VI id
448  *      @tcam_idx: TCAM index of existing filter for old value of MAC address,
449  *                 or -1
450  *      @addr: the new MAC address value
451  *      @persist: whether a new MAC allocation should be persistent
452  *      @smt_idx: the destination to store the new SMT index.
453  *
454  *      Modifies an MPS filter and sets it to the new MAC address if
455  *      @tcam_idx >= 0, or adds the MAC address to a new filter if
456  *      @tcam_idx < 0. In the latter case the address is added persistently
457  *      if @persist is %true.
458  *      Addresses are programmed to hash region, if tcam runs out of entries.
459  *
460  */
461 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
462                      int *tcam_idx, const u8 *addr, bool persist,
463                      u8 *smt_idx)
464 {
465         struct adapter *adapter = pi->adapter;
466         struct hash_mac_addr *entry, *new_entry;
467         int ret;
468
469         ret = t4_change_mac(adapter, adapter->mbox, viid,
470                             *tcam_idx, addr, persist, smt_idx);
471         /* We ran out of TCAM entries. try programming hash region. */
472         if (ret == -ENOMEM) {
473                 /* If the MAC address to be updated is in the hash addr
474                  * list, update it from the list
475                  */
476                 list_for_each_entry(entry, &adapter->mac_hlist, list) {
477                         if (entry->iface_mac) {
478                                 ether_addr_copy(entry->addr, addr);
479                                 goto set_hash;
480                         }
481                 }
482                 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
483                 if (!new_entry)
484                         return -ENOMEM;
485                 ether_addr_copy(new_entry->addr, addr);
486                 new_entry->iface_mac = true;
487                 list_add_tail(&new_entry->list, &adapter->mac_hlist);
488 set_hash:
489                 ret = cxgb4_set_addr_hash(pi);
490         } else if (ret >= 0) {
491                 *tcam_idx = ret;
492                 ret = 0;
493         }
494
495         return ret;
496 }
497
498 /*
499  *      link_start - enable a port
500  *      @dev: the port to enable
501  *
502  *      Performs the MAC and PHY actions needed to enable a port.
503  */
504 static int link_start(struct net_device *dev)
505 {
506         struct port_info *pi = netdev_priv(dev);
507         unsigned int mb = pi->adapter->mbox;
508         int ret;
509
510         /*
511          * We do not set address filters and promiscuity here, the stack does
512          * that step explicitly.
513          */
514         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
515                             dev->mtu, -1, -1, -1,
516                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
517         if (ret == 0)
518                 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
519                                             dev->dev_addr, true, &pi->smt_idx);
520         if (ret == 0)
521                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
522                                     &pi->link_cfg);
523         if (ret == 0) {
524                 local_bh_disable();
525                 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
526                                           true, CXGB4_DCB_ENABLED);
527                 local_bh_enable();
528         }
529
530         return ret;
531 }
532
533 #ifdef CONFIG_CHELSIO_T4_DCB
534 /* Handle a Data Center Bridging update message from the firmware. */
535 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
536 {
537         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
538         struct net_device *dev = adap->port[adap->chan_map[port]];
539         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
540         int new_dcb_enabled;
541
542         cxgb4_dcb_handle_fw_update(adap, pcmd);
543         new_dcb_enabled = cxgb4_dcb_enabled(dev);
544
545         /* If the DCB has become enabled or disabled on the port then we're
546          * going to need to set up/tear down DCB Priority parameters for the
547          * TX Queues associated with the port.
548          */
549         if (new_dcb_enabled != old_dcb_enabled)
550                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
551 }
552 #endif /* CONFIG_CHELSIO_T4_DCB */
553
554 /* Response queue handler for the FW event queue.
555  */
556 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
557                           const struct pkt_gl *gl)
558 {
559         u8 opcode = ((const struct rss_header *)rsp)->opcode;
560
561         rsp++;                                          /* skip RSS header */
562
563         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
564          */
565         if (unlikely(opcode == CPL_FW4_MSG &&
566            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
567                 rsp++;
568                 opcode = ((const struct rss_header *)rsp)->opcode;
569                 rsp++;
570                 if (opcode != CPL_SGE_EGR_UPDATE) {
571                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
572                                 , opcode);
573                         goto out;
574                 }
575         }
576
577         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
578                 const struct cpl_sge_egr_update *p = (void *)rsp;
579                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
580                 struct sge_txq *txq;
581
582                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
583                 txq->restarts++;
584                 if (txq->q_type == CXGB4_TXQ_ETH) {
585                         struct sge_eth_txq *eq;
586
587                         eq = container_of(txq, struct sge_eth_txq, q);
588                         t4_sge_eth_txq_egress_update(q->adap, eq, -1);
589                 } else {
590                         struct sge_uld_txq *oq;
591
592                         oq = container_of(txq, struct sge_uld_txq, q);
593                         tasklet_schedule(&oq->qresume_tsk);
594                 }
595         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
596                 const struct cpl_fw6_msg *p = (void *)rsp;
597
598 #ifdef CONFIG_CHELSIO_T4_DCB
599                 const struct fw_port_cmd *pcmd = (const void *)p->data;
600                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
601                 unsigned int action =
602                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
603
604                 if (cmd == FW_PORT_CMD &&
605                     (action == FW_PORT_ACTION_GET_PORT_INFO ||
606                      action == FW_PORT_ACTION_GET_PORT_INFO32)) {
607                         int port = FW_PORT_CMD_PORTID_G(
608                                         be32_to_cpu(pcmd->op_to_portid));
609                         struct net_device *dev;
610                         int dcbxdis, state_input;
611
612                         dev = q->adap->port[q->adap->chan_map[port]];
613                         dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
614                           ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
615                           : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
616                                & FW_PORT_CMD_DCBXDIS32_F));
617                         state_input = (dcbxdis
618                                        ? CXGB4_DCB_INPUT_FW_DISABLED
619                                        : CXGB4_DCB_INPUT_FW_ENABLED);
620
621                         cxgb4_dcb_state_fsm(dev, state_input);
622                 }
623
624                 if (cmd == FW_PORT_CMD &&
625                     action == FW_PORT_ACTION_L2_DCB_CFG)
626                         dcb_rpl(q->adap, pcmd);
627                 else
628 #endif
629                         if (p->type == 0)
630                                 t4_handle_fw_rpl(q->adap, p->data);
631         } else if (opcode == CPL_L2T_WRITE_RPL) {
632                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
633
634                 do_l2t_write_rpl(q->adap, p);
635         } else if (opcode == CPL_SMT_WRITE_RPL) {
636                 const struct cpl_smt_write_rpl *p = (void *)rsp;
637
638                 do_smt_write_rpl(q->adap, p);
639         } else if (opcode == CPL_SET_TCB_RPL) {
640                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
641
642                 filter_rpl(q->adap, p);
643         } else if (opcode == CPL_ACT_OPEN_RPL) {
644                 const struct cpl_act_open_rpl *p = (void *)rsp;
645
646                 hash_filter_rpl(q->adap, p);
647         } else if (opcode == CPL_ABORT_RPL_RSS) {
648                 const struct cpl_abort_rpl_rss *p = (void *)rsp;
649
650                 hash_del_filter_rpl(q->adap, p);
651         } else if (opcode == CPL_SRQ_TABLE_RPL) {
652                 const struct cpl_srq_table_rpl *p = (void *)rsp;
653
654                 do_srq_table_rpl(q->adap, p);
655         } else
656                 dev_err(q->adap->pdev_dev,
657                         "unexpected CPL %#x on FW event queue\n", opcode);
658 out:
659         return 0;
660 }
661
662 static void disable_msi(struct adapter *adapter)
663 {
664         if (adapter->flags & CXGB4_USING_MSIX) {
665                 pci_disable_msix(adapter->pdev);
666                 adapter->flags &= ~CXGB4_USING_MSIX;
667         } else if (adapter->flags & CXGB4_USING_MSI) {
668                 pci_disable_msi(adapter->pdev);
669                 adapter->flags &= ~CXGB4_USING_MSI;
670         }
671 }
672
673 /*
674  * Interrupt handler for non-data events used with MSI-X.
675  */
676 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
677 {
678         struct adapter *adap = cookie;
679         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
680
681         if (v & PFSW_F) {
682                 adap->swintr = 1;
683                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
684         }
685         if (adap->flags & CXGB4_MASTER_PF)
686                 t4_slow_intr_handler(adap);
687         return IRQ_HANDLED;
688 }
689
690 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
691                        cpumask_var_t *aff_mask, int idx)
692 {
693         int rv;
694
695         if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
696                 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
697                 return -ENOMEM;
698         }
699
700         cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
701                         *aff_mask);
702
703         rv = irq_set_affinity_hint(vec, *aff_mask);
704         if (rv)
705                 dev_warn(adap->pdev_dev,
706                          "irq_set_affinity_hint %u failed %d\n",
707                          vec, rv);
708
709         return 0;
710 }
711
712 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
713 {
714         irq_set_affinity_hint(vec, NULL);
715         free_cpumask_var(aff_mask);
716 }
717
718 static int request_msix_queue_irqs(struct adapter *adap)
719 {
720         struct sge *s = &adap->sge;
721         struct msix_info *minfo;
722         int err, ethqidx;
723
724         if (s->fwevtq_msix_idx < 0)
725                 return -ENOMEM;
726
727         err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
728                           t4_sge_intr_msix, 0,
729                           adap->msix_info[s->fwevtq_msix_idx].desc,
730                           &s->fw_evtq);
731         if (err)
732                 return err;
733
734         for_each_ethrxq(s, ethqidx) {
735                 minfo = s->ethrxq[ethqidx].msix;
736                 err = request_irq(minfo->vec,
737                                   t4_sge_intr_msix, 0,
738                                   minfo->desc,
739                                   &s->ethrxq[ethqidx].rspq);
740                 if (err)
741                         goto unwind;
742
743                 cxgb4_set_msix_aff(adap, minfo->vec,
744                                    &minfo->aff_mask, ethqidx);
745         }
746         return 0;
747
748 unwind:
749         while (--ethqidx >= 0) {
750                 minfo = s->ethrxq[ethqidx].msix;
751                 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
752                 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
753         }
754         free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
755         return err;
756 }
757
758 static void free_msix_queue_irqs(struct adapter *adap)
759 {
760         struct sge *s = &adap->sge;
761         struct msix_info *minfo;
762         int i;
763
764         free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
765         for_each_ethrxq(s, i) {
766                 minfo = s->ethrxq[i].msix;
767                 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
768                 free_irq(minfo->vec, &s->ethrxq[i].rspq);
769         }
770 }
771
772 static int setup_ppod_edram(struct adapter *adap)
773 {
774         unsigned int param, val;
775         int ret;
776
777         /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
778          * if firmware supports ppod edram feature or not. If firmware
779          * returns 1, then driver can enable this feature by sending
780          * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
781          * enable ppod edram feature.
782          */
783         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
784                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
785
786         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
787         if (ret < 0) {
788                 dev_warn(adap->pdev_dev,
789                          "querying PPOD_EDRAM support failed: %d\n",
790                          ret);
791                 return -1;
792         }
793
794         if (val != 1)
795                 return -1;
796
797         ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
798         if (ret < 0) {
799                 dev_err(adap->pdev_dev,
800                         "setting PPOD_EDRAM failed: %d\n", ret);
801                 return -1;
802         }
803         return 0;
804 }
805
806 static void adap_config_hpfilter(struct adapter *adapter)
807 {
808         u32 param, val = 0;
809         int ret;
810
811         /* Enable HP filter region. Older fw will fail this request and
812          * it is fine.
813          */
814         param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
815         ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
816                             1, &param, &val);
817
818         /* An error means FW doesn't know about HP filter support,
819          * it's not a problem, don't return an error.
820          */
821         if (ret < 0)
822                 dev_err(adapter->pdev_dev,
823                         "HP filter region isn't supported by FW\n");
824 }
825
826 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
827                             u16 rss_size, u16 viid)
828 {
829         struct adapter *adap = pi->adapter;
830         int ret;
831
832         ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
833                                   rss_size);
834         if (ret)
835                 return ret;
836
837         /* If Tunnel All Lookup isn't specified in the global RSS
838          * Configuration, then we need to specify a default Ingress
839          * Queue for any ingress packets which aren't hashed.  We'll
840          * use our first ingress queue ...
841          */
842         return t4_config_vi_rss(adap, adap->mbox, viid,
843                                 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
844                                 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
845                                 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
846                                 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
847                                 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
848                                 rss[0]);
849 }
850
851 /**
852  *      cxgb4_write_rss - write the RSS table for a given port
853  *      @pi: the port
854  *      @queues: array of queue indices for RSS
855  *
856  *      Sets up the portion of the HW RSS table for the port's VI to distribute
857  *      packets to the Rx queues in @queues.
858  *      Should never be called before setting up sge eth rx queues
859  */
860 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
861 {
862         struct adapter *adapter = pi->adapter;
863         const struct sge_eth_rxq *rxq;
864         int i, err;
865         u16 *rss;
866
867         rxq = &adapter->sge.ethrxq[pi->first_qset];
868         rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
869         if (!rss)
870                 return -ENOMEM;
871
872         /* map the queue indices to queue ids */
873         for (i = 0; i < pi->rss_size; i++, queues++)
874                 rss[i] = rxq[*queues].rspq.abs_id;
875
876         err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
877         kfree(rss);
878         return err;
879 }
880
881 /**
882  *      setup_rss - configure RSS
883  *      @adap: the adapter
884  *
885  *      Sets up RSS for each port.
886  */
887 static int setup_rss(struct adapter *adap)
888 {
889         int i, j, err;
890
891         for_each_port(adap, i) {
892                 const struct port_info *pi = adap2pinfo(adap, i);
893
894                 /* Fill default values with equal distribution */
895                 for (j = 0; j < pi->rss_size; j++)
896                         pi->rss[j] = j % pi->nqsets;
897
898                 err = cxgb4_write_rss(pi, pi->rss);
899                 if (err)
900                         return err;
901         }
902         return 0;
903 }
904
905 /*
906  * Return the channel of the ingress queue with the given qid.
907  */
908 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
909 {
910         qid -= p->ingr_start;
911         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
912 }
913
914 void cxgb4_quiesce_rx(struct sge_rspq *q)
915 {
916         if (q->handler)
917                 napi_disable(&q->napi);
918 }
919
920 /*
921  * Wait until all NAPI handlers are descheduled.
922  */
923 static void quiesce_rx(struct adapter *adap)
924 {
925         int i;
926
927         for (i = 0; i < adap->sge.ingr_sz; i++) {
928                 struct sge_rspq *q = adap->sge.ingr_map[i];
929
930                 if (!q)
931                         continue;
932
933                 cxgb4_quiesce_rx(q);
934         }
935 }
936
937 /* Disable interrupt and napi handler */
938 static void disable_interrupts(struct adapter *adap)
939 {
940         struct sge *s = &adap->sge;
941
942         if (adap->flags & CXGB4_FULL_INIT_DONE) {
943                 t4_intr_disable(adap);
944                 if (adap->flags & CXGB4_USING_MSIX) {
945                         free_msix_queue_irqs(adap);
946                         free_irq(adap->msix_info[s->nd_msix_idx].vec,
947                                  adap);
948                 } else {
949                         free_irq(adap->pdev->irq, adap);
950                 }
951                 quiesce_rx(adap);
952         }
953 }
954
955 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
956 {
957         if (q->handler)
958                 napi_enable(&q->napi);
959
960         /* 0-increment GTS to start the timer and enable interrupts */
961         t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
962                      SEINTARM_V(q->intr_params) |
963                      INGRESSQID_V(q->cntxt_id));
964 }
965
966 /*
967  * Enable NAPI scheduling and interrupt generation for all Rx queues.
968  */
969 static void enable_rx(struct adapter *adap)
970 {
971         int i;
972
973         for (i = 0; i < adap->sge.ingr_sz; i++) {
974                 struct sge_rspq *q = adap->sge.ingr_map[i];
975
976                 if (!q)
977                         continue;
978
979                 cxgb4_enable_rx(adap, q);
980         }
981 }
982
983 static int setup_non_data_intr(struct adapter *adap)
984 {
985         int msix;
986
987         adap->sge.nd_msix_idx = -1;
988         if (!(adap->flags & CXGB4_USING_MSIX))
989                 return 0;
990
991         /* Request MSI-X vector for non-data interrupt */
992         msix = cxgb4_get_msix_idx_from_bmap(adap);
993         if (msix < 0)
994                 return -ENOMEM;
995
996         snprintf(adap->msix_info[msix].desc,
997                  sizeof(adap->msix_info[msix].desc),
998                  "%s", adap->port[0]->name);
999
1000         adap->sge.nd_msix_idx = msix;
1001         return 0;
1002 }
1003
1004 static int setup_fw_sge_queues(struct adapter *adap)
1005 {
1006         struct sge *s = &adap->sge;
1007         int msix, err = 0;
1008
1009         bitmap_zero(s->starving_fl, s->egr_sz);
1010         bitmap_zero(s->txq_maperr, s->egr_sz);
1011
1012         if (adap->flags & CXGB4_USING_MSIX) {
1013                 s->fwevtq_msix_idx = -1;
1014                 msix = cxgb4_get_msix_idx_from_bmap(adap);
1015                 if (msix < 0)
1016                         return -ENOMEM;
1017
1018                 snprintf(adap->msix_info[msix].desc,
1019                          sizeof(adap->msix_info[msix].desc),
1020                          "%s-FWeventq", adap->port[0]->name);
1021         } else {
1022                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1023                                        NULL, NULL, NULL, -1);
1024                 if (err)
1025                         return err;
1026                 msix = -((int)s->intrq.abs_id + 1);
1027         }
1028
1029         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1030                                msix, NULL, fwevtq_handler, NULL, -1);
1031         if (err && msix >= 0)
1032                 cxgb4_free_msix_idx_in_bmap(adap, msix);
1033
1034         s->fwevtq_msix_idx = msix;
1035         return err;
1036 }
1037
1038 /**
1039  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1040  *      @adap: the adapter
1041  *
1042  *      Determines how many sets of SGE queues to use and initializes them.
1043  *      We support multiple queue sets per port if we have MSI-X, otherwise
1044  *      just one queue set per port.
1045  */
1046 static int setup_sge_queues(struct adapter *adap)
1047 {
1048         struct sge_uld_rxq_info *rxq_info = NULL;
1049         struct sge *s = &adap->sge;
1050         unsigned int cmplqid = 0;
1051         int err, i, j, msix = 0;
1052
1053         if (is_uld(adap))
1054                 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1055
1056         if (!(adap->flags & CXGB4_USING_MSIX))
1057                 msix = -((int)s->intrq.abs_id + 1);
1058
1059         for_each_port(adap, i) {
1060                 struct net_device *dev = adap->port[i];
1061                 struct port_info *pi = netdev_priv(dev);
1062                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1063                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1064
1065                 for (j = 0; j < pi->nqsets; j++, q++) {
1066                         if (msix >= 0) {
1067                                 msix = cxgb4_get_msix_idx_from_bmap(adap);
1068                                 if (msix < 0) {
1069                                         err = msix;
1070                                         goto freeout;
1071                                 }
1072
1073                                 snprintf(adap->msix_info[msix].desc,
1074                                          sizeof(adap->msix_info[msix].desc),
1075                                          "%s-Rx%d", dev->name, j);
1076                                 q->msix = &adap->msix_info[msix];
1077                         }
1078
1079                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1080                                                msix, &q->fl,
1081                                                t4_ethrx_handler,
1082                                                NULL,
1083                                                t4_get_tp_ch_map(adap,
1084                                                                 pi->tx_chan));
1085                         if (err)
1086                                 goto freeout;
1087                         q->rspq.idx = j;
1088                         memset(&q->stats, 0, sizeof(q->stats));
1089                 }
1090
1091                 q = &s->ethrxq[pi->first_qset];
1092                 for (j = 0; j < pi->nqsets; j++, t++, q++) {
1093                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1094                                         netdev_get_tx_queue(dev, j),
1095                                         q->rspq.cntxt_id,
1096                                         !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1097                         if (err)
1098                                 goto freeout;
1099                 }
1100         }
1101
1102         for_each_port(adap, i) {
1103                 /* Note that cmplqid below is 0 if we don't
1104                  * have RDMA queues, and that's the right value.
1105                  */
1106                 if (rxq_info)
1107                         cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1108
1109                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1110                                             s->fw_evtq.cntxt_id, cmplqid);
1111                 if (err)
1112                         goto freeout;
1113         }
1114
1115         if (!is_t4(adap->params.chip)) {
1116                 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1117                                            netdev_get_tx_queue(adap->port[0], 0)
1118                                            , s->fw_evtq.cntxt_id, false);
1119                 if (err)
1120                         goto freeout;
1121         }
1122
1123         t4_write_reg(adap, is_t4(adap->params.chip) ?
1124                                 MPS_TRC_RSS_CONTROL_A :
1125                                 MPS_T5_TRC_RSS_CONTROL_A,
1126                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1127                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1128         return 0;
1129 freeout:
1130         dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1131         t4_free_sge_resources(adap);
1132         return err;
1133 }
1134
1135 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1136                              struct net_device *sb_dev)
1137 {
1138         int txq;
1139
1140 #ifdef CONFIG_CHELSIO_T4_DCB
1141         /* If a Data Center Bridging has been successfully negotiated on this
1142          * link then we'll use the skb's priority to map it to a TX Queue.
1143          * The skb's priority is determined via the VLAN Tag Priority Code
1144          * Point field.
1145          */
1146         if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1147                 u16 vlan_tci;
1148                 int err;
1149
1150                 err = vlan_get_tag(skb, &vlan_tci);
1151                 if (unlikely(err)) {
1152                         if (net_ratelimit())
1153                                 netdev_warn(dev,
1154                                             "TX Packet without VLAN Tag on DCB Link\n");
1155                         txq = 0;
1156                 } else {
1157                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1158 #ifdef CONFIG_CHELSIO_T4_FCOE
1159                         if (skb->protocol == htons(ETH_P_FCOE))
1160                                 txq = skb->priority & 0x7;
1161 #endif /* CONFIG_CHELSIO_T4_FCOE */
1162                 }
1163                 return txq;
1164         }
1165 #endif /* CONFIG_CHELSIO_T4_DCB */
1166
1167         if (dev->num_tc) {
1168                 struct port_info *pi = netdev2pinfo(dev);
1169                 u8 ver, proto;
1170
1171                 ver = ip_hdr(skb)->version;
1172                 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1173                                      ip_hdr(skb)->protocol;
1174
1175                 /* Send unsupported traffic pattern to normal NIC queues. */
1176                 txq = netdev_pick_tx(dev, skb, sb_dev);
1177                 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1178                     skb->encapsulation ||
1179                     cxgb4_is_ktls_skb(skb) ||
1180                     (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1181                         txq = txq % pi->nqsets;
1182
1183                 return txq;
1184         }
1185
1186         if (select_queue) {
1187                 txq = (skb_rx_queue_recorded(skb)
1188                         ? skb_get_rx_queue(skb)
1189                         : smp_processor_id());
1190
1191                 while (unlikely(txq >= dev->real_num_tx_queues))
1192                         txq -= dev->real_num_tx_queues;
1193
1194                 return txq;
1195         }
1196
1197         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1198 }
1199
1200 static int closest_timer(const struct sge *s, int time)
1201 {
1202         int i, delta, match = 0, min_delta = INT_MAX;
1203
1204         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1205                 delta = time - s->timer_val[i];
1206                 if (delta < 0)
1207                         delta = -delta;
1208                 if (delta < min_delta) {
1209                         min_delta = delta;
1210                         match = i;
1211                 }
1212         }
1213         return match;
1214 }
1215
1216 static int closest_thres(const struct sge *s, int thres)
1217 {
1218         int i, delta, match = 0, min_delta = INT_MAX;
1219
1220         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1221                 delta = thres - s->counter_val[i];
1222                 if (delta < 0)
1223                         delta = -delta;
1224                 if (delta < min_delta) {
1225                         min_delta = delta;
1226                         match = i;
1227                 }
1228         }
1229         return match;
1230 }
1231
1232 /**
1233  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1234  *      @q: the Rx queue
1235  *      @us: the hold-off time in us, or 0 to disable timer
1236  *      @cnt: the hold-off packet count, or 0 to disable counter
1237  *
1238  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1239  *      one of the two needs to be enabled for the queue to generate interrupts.
1240  */
1241 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1242                                unsigned int us, unsigned int cnt)
1243 {
1244         struct adapter *adap = q->adap;
1245
1246         if ((us | cnt) == 0)
1247                 cnt = 1;
1248
1249         if (cnt) {
1250                 int err;
1251                 u32 v, new_idx;
1252
1253                 new_idx = closest_thres(&adap->sge, cnt);
1254                 if (q->desc && q->pktcnt_idx != new_idx) {
1255                         /* the queue has already been created, update it */
1256                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1257                             FW_PARAMS_PARAM_X_V(
1258                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1259                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1260                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1261                                             &v, &new_idx);
1262                         if (err)
1263                                 return err;
1264                 }
1265                 q->pktcnt_idx = new_idx;
1266         }
1267
1268         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1269         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1270         return 0;
1271 }
1272
1273 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1274 {
1275         netdev_features_t changed = dev->features ^ features;
1276         const struct port_info *pi = netdev_priv(dev);
1277         int err;
1278
1279         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1280                 return 0;
1281
1282         err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1283                             pi->viid_mirror, -1, -1, -1, -1,
1284                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1285         if (unlikely(err))
1286                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1287         return err;
1288 }
1289
1290 static int setup_debugfs(struct adapter *adap)
1291 {
1292         if (IS_ERR_OR_NULL(adap->debugfs_root))
1293                 return -1;
1294
1295 #ifdef CONFIG_DEBUG_FS
1296         t4_setup_debugfs(adap);
1297 #endif
1298         return 0;
1299 }
1300
1301 static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1302                                        struct sge_eth_rxq *mirror_rxq)
1303 {
1304         if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1305             !(adap->flags & CXGB4_SHUTTING_DOWN))
1306                 cxgb4_quiesce_rx(&mirror_rxq->rspq);
1307
1308         if (adap->flags & CXGB4_USING_MSIX) {
1309                 cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1310                                      mirror_rxq->msix->aff_mask);
1311                 free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1312                 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1313         }
1314
1315         free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1316 }
1317
1318 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1319 {
1320         struct port_info *pi = netdev2pinfo(dev);
1321         struct adapter *adap = netdev2adap(dev);
1322         struct sge_eth_rxq *mirror_rxq;
1323         struct sge *s = &adap->sge;
1324         int ret = 0, msix = 0;
1325         u16 i, rxqid;
1326         u16 *rss;
1327
1328         if (!pi->vi_mirror_count)
1329                 return 0;
1330
1331         if (s->mirror_rxq[pi->port_id])
1332                 return 0;
1333
1334         mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1335         if (!mirror_rxq)
1336                 return -ENOMEM;
1337
1338         s->mirror_rxq[pi->port_id] = mirror_rxq;
1339
1340         if (!(adap->flags & CXGB4_USING_MSIX))
1341                 msix = -((int)adap->sge.intrq.abs_id + 1);
1342
1343         for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1344                 mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1345
1346                 /* Allocate Mirror Rxqs */
1347                 if (msix >= 0) {
1348                         msix = cxgb4_get_msix_idx_from_bmap(adap);
1349                         if (msix < 0) {
1350                                 ret = msix;
1351                                 goto out_free_queues;
1352                         }
1353
1354                         mirror_rxq->msix = &adap->msix_info[msix];
1355                         snprintf(mirror_rxq->msix->desc,
1356                                  sizeof(mirror_rxq->msix->desc),
1357                                  "%s-mirrorrxq%d", dev->name, i);
1358                 }
1359
1360                 init_rspq(adap, &mirror_rxq->rspq,
1361                           CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1362                           CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1363                           CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1364                           CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1365
1366                 mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1367
1368                 ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1369                                        dev, msix, &mirror_rxq->fl,
1370                                        t4_ethrx_handler, NULL, 0);
1371                 if (ret)
1372                         goto out_free_msix_idx;
1373
1374                 /* Setup MSI-X vectors for Mirror Rxqs */
1375                 if (adap->flags & CXGB4_USING_MSIX) {
1376                         ret = request_irq(mirror_rxq->msix->vec,
1377                                           t4_sge_intr_msix, 0,
1378                                           mirror_rxq->msix->desc,
1379                                           &mirror_rxq->rspq);
1380                         if (ret)
1381                                 goto out_free_rxq;
1382
1383                         cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1384                                            &mirror_rxq->msix->aff_mask, i);
1385                 }
1386
1387                 /* Start NAPI for Mirror Rxqs */
1388                 cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1389         }
1390
1391         /* Setup RSS for Mirror Rxqs */
1392         rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1393         if (!rss) {
1394                 ret = -ENOMEM;
1395                 goto out_free_queues;
1396         }
1397
1398         mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1399         for (i = 0; i < pi->rss_size; i++)
1400                 rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1401
1402         ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1403         kfree(rss);
1404         if (ret)
1405                 goto out_free_queues;
1406
1407         return 0;
1408
1409 out_free_rxq:
1410         free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1411
1412 out_free_msix_idx:
1413         cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1414
1415 out_free_queues:
1416         while (rxqid-- > 0)
1417                 cxgb4_port_mirror_free_rxq(adap,
1418                                            &s->mirror_rxq[pi->port_id][rxqid]);
1419
1420         kfree(s->mirror_rxq[pi->port_id]);
1421         s->mirror_rxq[pi->port_id] = NULL;
1422         return ret;
1423 }
1424
1425 static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1426 {
1427         struct port_info *pi = netdev2pinfo(dev);
1428         struct adapter *adap = netdev2adap(dev);
1429         struct sge *s = &adap->sge;
1430         u16 i;
1431
1432         if (!pi->vi_mirror_count)
1433                 return;
1434
1435         if (!s->mirror_rxq[pi->port_id])
1436                 return;
1437
1438         for (i = 0; i < pi->nmirrorqsets; i++)
1439                 cxgb4_port_mirror_free_rxq(adap,
1440                                            &s->mirror_rxq[pi->port_id][i]);
1441
1442         kfree(s->mirror_rxq[pi->port_id]);
1443         s->mirror_rxq[pi->port_id] = NULL;
1444 }
1445
1446 static int cxgb4_port_mirror_start(struct net_device *dev)
1447 {
1448         struct port_info *pi = netdev2pinfo(dev);
1449         struct adapter *adap = netdev2adap(dev);
1450         int ret, idx = -1;
1451
1452         if (!pi->vi_mirror_count)
1453                 return 0;
1454
1455         /* Mirror VIs can be created dynamically after stack had
1456          * already setup Rx modes like MTU, promisc, allmulti, etc.
1457          * on main VI. So, parse what the stack had setup on the
1458          * main VI and update the same on the mirror VI.
1459          */
1460         ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1461                             dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1462                             (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1463                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1464         if (ret) {
1465                 dev_err(adap->pdev_dev,
1466                         "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1467                         pi->viid_mirror, ret);
1468                 return ret;
1469         }
1470
1471         /* Enable replication bit for the device's MAC address
1472          * in MPS TCAM, so that the packets for the main VI are
1473          * replicated to mirror VI.
1474          */
1475         ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1476                                     dev->dev_addr, true, NULL);
1477         if (ret) {
1478                 dev_err(adap->pdev_dev,
1479                         "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1480                         pi->viid_mirror, ret);
1481                 return ret;
1482         }
1483
1484         /* Enabling a Virtual Interface can result in an interrupt
1485          * during the processing of the VI Enable command and, in some
1486          * paths, result in an attempt to issue another command in the
1487          * interrupt context. Thus, we disable interrupts during the
1488          * course of the VI Enable command ...
1489          */
1490         local_bh_disable();
1491         ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1492                                   false);
1493         local_bh_enable();
1494         if (ret)
1495                 dev_err(adap->pdev_dev,
1496                         "Failed starting Mirror VI 0x%x, ret: %d\n",
1497                         pi->viid_mirror, ret);
1498
1499         return ret;
1500 }
1501
1502 static void cxgb4_port_mirror_stop(struct net_device *dev)
1503 {
1504         struct port_info *pi = netdev2pinfo(dev);
1505         struct adapter *adap = netdev2adap(dev);
1506
1507         if (!pi->vi_mirror_count)
1508                 return;
1509
1510         t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1511                             false);
1512 }
1513
1514 int cxgb4_port_mirror_alloc(struct net_device *dev)
1515 {
1516         struct port_info *pi = netdev2pinfo(dev);
1517         struct adapter *adap = netdev2adap(dev);
1518         int ret = 0;
1519
1520         if (!pi->nmirrorqsets)
1521                 return -EOPNOTSUPP;
1522
1523         mutex_lock(&pi->vi_mirror_mutex);
1524         if (pi->viid_mirror) {
1525                 pi->vi_mirror_count++;
1526                 goto out_unlock;
1527         }
1528
1529         ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1530                                   &pi->viid_mirror);
1531         if (ret)
1532                 goto out_unlock;
1533
1534         pi->vi_mirror_count = 1;
1535
1536         if (adap->flags & CXGB4_FULL_INIT_DONE) {
1537                 ret = cxgb4_port_mirror_alloc_queues(dev);
1538                 if (ret)
1539                         goto out_free_vi;
1540
1541                 ret = cxgb4_port_mirror_start(dev);
1542                 if (ret)
1543                         goto out_free_queues;
1544         }
1545
1546         mutex_unlock(&pi->vi_mirror_mutex);
1547         return 0;
1548
1549 out_free_queues:
1550         cxgb4_port_mirror_free_queues(dev);
1551
1552 out_free_vi:
1553         pi->vi_mirror_count = 0;
1554         t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1555         pi->viid_mirror = 0;
1556
1557 out_unlock:
1558         mutex_unlock(&pi->vi_mirror_mutex);
1559         return ret;
1560 }
1561
1562 void cxgb4_port_mirror_free(struct net_device *dev)
1563 {
1564         struct port_info *pi = netdev2pinfo(dev);
1565         struct adapter *adap = netdev2adap(dev);
1566
1567         mutex_lock(&pi->vi_mirror_mutex);
1568         if (!pi->viid_mirror)
1569                 goto out_unlock;
1570
1571         if (pi->vi_mirror_count > 1) {
1572                 pi->vi_mirror_count--;
1573                 goto out_unlock;
1574         }
1575
1576         cxgb4_port_mirror_stop(dev);
1577         cxgb4_port_mirror_free_queues(dev);
1578
1579         pi->vi_mirror_count = 0;
1580         t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1581         pi->viid_mirror = 0;
1582
1583 out_unlock:
1584         mutex_unlock(&pi->vi_mirror_mutex);
1585 }
1586
1587 /*
1588  * upper-layer driver support
1589  */
1590
1591 /*
1592  * Allocate an active-open TID and set it to the supplied value.
1593  */
1594 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1595 {
1596         int atid = -1;
1597
1598         spin_lock_bh(&t->atid_lock);
1599         if (t->afree) {
1600                 union aopen_entry *p = t->afree;
1601
1602                 atid = (p - t->atid_tab) + t->atid_base;
1603                 t->afree = p->next;
1604                 p->data = data;
1605                 t->atids_in_use++;
1606         }
1607         spin_unlock_bh(&t->atid_lock);
1608         return atid;
1609 }
1610 EXPORT_SYMBOL(cxgb4_alloc_atid);
1611
1612 /*
1613  * Release an active-open TID.
1614  */
1615 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1616 {
1617         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1618
1619         spin_lock_bh(&t->atid_lock);
1620         p->next = t->afree;
1621         t->afree = p;
1622         t->atids_in_use--;
1623         spin_unlock_bh(&t->atid_lock);
1624 }
1625 EXPORT_SYMBOL(cxgb4_free_atid);
1626
1627 /*
1628  * Allocate a server TID and set it to the supplied value.
1629  */
1630 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1631 {
1632         int stid;
1633
1634         spin_lock_bh(&t->stid_lock);
1635         if (family == PF_INET) {
1636                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1637                 if (stid < t->nstids)
1638                         __set_bit(stid, t->stid_bmap);
1639                 else
1640                         stid = -1;
1641         } else {
1642                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1643                 if (stid < 0)
1644                         stid = -1;
1645         }
1646         if (stid >= 0) {
1647                 t->stid_tab[stid].data = data;
1648                 stid += t->stid_base;
1649                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1650                  * This is equivalent to 4 TIDs. With CLIP enabled it
1651                  * needs 2 TIDs.
1652                  */
1653                 if (family == PF_INET6) {
1654                         t->stids_in_use += 2;
1655                         t->v6_stids_in_use += 2;
1656                 } else {
1657                         t->stids_in_use++;
1658                 }
1659         }
1660         spin_unlock_bh(&t->stid_lock);
1661         return stid;
1662 }
1663 EXPORT_SYMBOL(cxgb4_alloc_stid);
1664
1665 /* Allocate a server filter TID and set it to the supplied value.
1666  */
1667 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1668 {
1669         int stid;
1670
1671         spin_lock_bh(&t->stid_lock);
1672         if (family == PF_INET) {
1673                 stid = find_next_zero_bit(t->stid_bmap,
1674                                 t->nstids + t->nsftids, t->nstids);
1675                 if (stid < (t->nstids + t->nsftids))
1676                         __set_bit(stid, t->stid_bmap);
1677                 else
1678                         stid = -1;
1679         } else {
1680                 stid = -1;
1681         }
1682         if (stid >= 0) {
1683                 t->stid_tab[stid].data = data;
1684                 stid -= t->nstids;
1685                 stid += t->sftid_base;
1686                 t->sftids_in_use++;
1687         }
1688         spin_unlock_bh(&t->stid_lock);
1689         return stid;
1690 }
1691 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1692
1693 /* Release a server TID.
1694  */
1695 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1696 {
1697         /* Is it a server filter TID? */
1698         if (t->nsftids && (stid >= t->sftid_base)) {
1699                 stid -= t->sftid_base;
1700                 stid += t->nstids;
1701         } else {
1702                 stid -= t->stid_base;
1703         }
1704
1705         spin_lock_bh(&t->stid_lock);
1706         if (family == PF_INET)
1707                 __clear_bit(stid, t->stid_bmap);
1708         else
1709                 bitmap_release_region(t->stid_bmap, stid, 1);
1710         t->stid_tab[stid].data = NULL;
1711         if (stid < t->nstids) {
1712                 if (family == PF_INET6) {
1713                         t->stids_in_use -= 2;
1714                         t->v6_stids_in_use -= 2;
1715                 } else {
1716                         t->stids_in_use--;
1717                 }
1718         } else {
1719                 t->sftids_in_use--;
1720         }
1721
1722         spin_unlock_bh(&t->stid_lock);
1723 }
1724 EXPORT_SYMBOL(cxgb4_free_stid);
1725
1726 /*
1727  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1728  */
1729 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1730                            unsigned int tid)
1731 {
1732         struct cpl_tid_release *req;
1733
1734         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1735         req = __skb_put(skb, sizeof(*req));
1736         INIT_TP_WR(req, tid);
1737         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1738 }
1739
1740 /*
1741  * Queue a TID release request and if necessary schedule a work queue to
1742  * process it.
1743  */
1744 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1745                                     unsigned int tid)
1746 {
1747         struct adapter *adap = container_of(t, struct adapter, tids);
1748         void **p = &t->tid_tab[tid - t->tid_base];
1749
1750         spin_lock_bh(&adap->tid_release_lock);
1751         *p = adap->tid_release_head;
1752         /* Low 2 bits encode the Tx channel number */
1753         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1754         if (!adap->tid_release_task_busy) {
1755                 adap->tid_release_task_busy = true;
1756                 queue_work(adap->workq, &adap->tid_release_task);
1757         }
1758         spin_unlock_bh(&adap->tid_release_lock);
1759 }
1760
1761 /*
1762  * Process the list of pending TID release requests.
1763  */
1764 static void process_tid_release_list(struct work_struct *work)
1765 {
1766         struct sk_buff *skb;
1767         struct adapter *adap;
1768
1769         adap = container_of(work, struct adapter, tid_release_task);
1770
1771         spin_lock_bh(&adap->tid_release_lock);
1772         while (adap->tid_release_head) {
1773                 void **p = adap->tid_release_head;
1774                 unsigned int chan = (uintptr_t)p & 3;
1775                 p = (void *)p - chan;
1776
1777                 adap->tid_release_head = *p;
1778                 *p = NULL;
1779                 spin_unlock_bh(&adap->tid_release_lock);
1780
1781                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1782                                          GFP_KERNEL)))
1783                         schedule_timeout_uninterruptible(1);
1784
1785                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1786                 t4_ofld_send(adap, skb);
1787                 spin_lock_bh(&adap->tid_release_lock);
1788         }
1789         adap->tid_release_task_busy = false;
1790         spin_unlock_bh(&adap->tid_release_lock);
1791 }
1792
1793 /*
1794  * Release a TID and inform HW.  If we are unable to allocate the release
1795  * message we defer to a work queue.
1796  */
1797 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1798                       unsigned short family)
1799 {
1800         struct adapter *adap = container_of(t, struct adapter, tids);
1801         struct sk_buff *skb;
1802
1803         WARN_ON(tid_out_of_range(&adap->tids, tid));
1804
1805         if (t->tid_tab[tid - adap->tids.tid_base]) {
1806                 t->tid_tab[tid - adap->tids.tid_base] = NULL;
1807                 atomic_dec(&t->conns_in_use);
1808                 if (t->hash_base && (tid >= t->hash_base)) {
1809                         if (family == AF_INET6)
1810                                 atomic_sub(2, &t->hash_tids_in_use);
1811                         else
1812                                 atomic_dec(&t->hash_tids_in_use);
1813                 } else {
1814                         if (family == AF_INET6)
1815                                 atomic_sub(2, &t->tids_in_use);
1816                         else
1817                                 atomic_dec(&t->tids_in_use);
1818                 }
1819         }
1820
1821         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1822         if (likely(skb)) {
1823                 mk_tid_release(skb, chan, tid);
1824                 t4_ofld_send(adap, skb);
1825         } else
1826                 cxgb4_queue_tid_release(t, chan, tid);
1827 }
1828 EXPORT_SYMBOL(cxgb4_remove_tid);
1829
1830 /*
1831  * Allocate and initialize the TID tables.  Returns 0 on success.
1832  */
1833 static int tid_init(struct tid_info *t)
1834 {
1835         struct adapter *adap = container_of(t, struct adapter, tids);
1836         unsigned int max_ftids = t->nftids + t->nsftids;
1837         unsigned int natids = t->natids;
1838         unsigned int hpftid_bmap_size;
1839         unsigned int eotid_bmap_size;
1840         unsigned int stid_bmap_size;
1841         unsigned int ftid_bmap_size;
1842         size_t size;
1843
1844         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1845         ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1846         hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1847         eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1848         size = t->ntids * sizeof(*t->tid_tab) +
1849                natids * sizeof(*t->atid_tab) +
1850                t->nstids * sizeof(*t->stid_tab) +
1851                t->nsftids * sizeof(*t->stid_tab) +
1852                stid_bmap_size * sizeof(long) +
1853                t->nhpftids * sizeof(*t->hpftid_tab) +
1854                hpftid_bmap_size * sizeof(long) +
1855                max_ftids * sizeof(*t->ftid_tab) +
1856                ftid_bmap_size * sizeof(long) +
1857                t->neotids * sizeof(*t->eotid_tab) +
1858                eotid_bmap_size * sizeof(long);
1859
1860         t->tid_tab = kvzalloc(size, GFP_KERNEL);
1861         if (!t->tid_tab)
1862                 return -ENOMEM;
1863
1864         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1865         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1866         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1867         t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1868         t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1869         t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1870         t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1871         t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1872         t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1873         spin_lock_init(&t->stid_lock);
1874         spin_lock_init(&t->atid_lock);
1875         spin_lock_init(&t->ftid_lock);
1876
1877         t->stids_in_use = 0;
1878         t->v6_stids_in_use = 0;
1879         t->sftids_in_use = 0;
1880         t->afree = NULL;
1881         t->atids_in_use = 0;
1882         atomic_set(&t->tids_in_use, 0);
1883         atomic_set(&t->conns_in_use, 0);
1884         atomic_set(&t->hash_tids_in_use, 0);
1885         atomic_set(&t->eotids_in_use, 0);
1886
1887         /* Setup the free list for atid_tab and clear the stid bitmap. */
1888         if (natids) {
1889                 while (--natids)
1890                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1891                 t->afree = t->atid_tab;
1892         }
1893
1894         if (is_offload(adap)) {
1895                 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1896                 /* Reserve stid 0 for T4/T5 adapters */
1897                 if (!t->stid_base &&
1898                     CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1899                         __set_bit(0, t->stid_bmap);
1900
1901                 if (t->neotids)
1902                         bitmap_zero(t->eotid_bmap, t->neotids);
1903         }
1904
1905         if (t->nhpftids)
1906                 bitmap_zero(t->hpftid_bmap, t->nhpftids);
1907         bitmap_zero(t->ftid_bmap, t->nftids);
1908         return 0;
1909 }
1910
1911 /**
1912  *      cxgb4_create_server - create an IP server
1913  *      @dev: the device
1914  *      @stid: the server TID
1915  *      @sip: local IP address to bind server to
1916  *      @sport: the server's TCP port
1917  *      @vlan: the VLAN header information
1918  *      @queue: queue to direct messages from this server to
1919  *
1920  *      Create an IP server for the given port and address.
1921  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1922  */
1923 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1924                         __be32 sip, __be16 sport, __be16 vlan,
1925                         unsigned int queue)
1926 {
1927         unsigned int chan;
1928         struct sk_buff *skb;
1929         struct adapter *adap;
1930         struct cpl_pass_open_req *req;
1931         int ret;
1932
1933         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1934         if (!skb)
1935                 return -ENOMEM;
1936
1937         adap = netdev2adap(dev);
1938         req = __skb_put(skb, sizeof(*req));
1939         INIT_TP_WR(req, 0);
1940         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1941         req->local_port = sport;
1942         req->peer_port = htons(0);
1943         req->local_ip = sip;
1944         req->peer_ip = htonl(0);
1945         chan = rxq_to_chan(&adap->sge, queue);
1946         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1947         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1948                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1949         ret = t4_mgmt_tx(adap, skb);
1950         return net_xmit_eval(ret);
1951 }
1952 EXPORT_SYMBOL(cxgb4_create_server);
1953
1954 /*      cxgb4_create_server6 - create an IPv6 server
1955  *      @dev: the device
1956  *      @stid: the server TID
1957  *      @sip: local IPv6 address to bind server to
1958  *      @sport: the server's TCP port
1959  *      @queue: queue to direct messages from this server to
1960  *
1961  *      Create an IPv6 server for the given port and address.
1962  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1963  */
1964 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1965                          const struct in6_addr *sip, __be16 sport,
1966                          unsigned int queue)
1967 {
1968         unsigned int chan;
1969         struct sk_buff *skb;
1970         struct adapter *adap;
1971         struct cpl_pass_open_req6 *req;
1972         int ret;
1973
1974         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1975         if (!skb)
1976                 return -ENOMEM;
1977
1978         adap = netdev2adap(dev);
1979         req = __skb_put(skb, sizeof(*req));
1980         INIT_TP_WR(req, 0);
1981         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1982         req->local_port = sport;
1983         req->peer_port = htons(0);
1984         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1985         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1986         req->peer_ip_hi = cpu_to_be64(0);
1987         req->peer_ip_lo = cpu_to_be64(0);
1988         chan = rxq_to_chan(&adap->sge, queue);
1989         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1990         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1991                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1992         ret = t4_mgmt_tx(adap, skb);
1993         return net_xmit_eval(ret);
1994 }
1995 EXPORT_SYMBOL(cxgb4_create_server6);
1996
1997 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1998                         unsigned int queue, bool ipv6)
1999 {
2000         struct sk_buff *skb;
2001         struct adapter *adap;
2002         struct cpl_close_listsvr_req *req;
2003         int ret;
2004
2005         adap = netdev2adap(dev);
2006
2007         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2008         if (!skb)
2009                 return -ENOMEM;
2010
2011         req = __skb_put(skb, sizeof(*req));
2012         INIT_TP_WR(req, 0);
2013         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2014         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2015                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2016         ret = t4_mgmt_tx(adap, skb);
2017         return net_xmit_eval(ret);
2018 }
2019 EXPORT_SYMBOL(cxgb4_remove_server);
2020
2021 /**
2022  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2023  *      @mtus: the HW MTU table
2024  *      @mtu: the target MTU
2025  *      @idx: index of selected entry in the MTU table
2026  *
2027  *      Returns the index and the value in the HW MTU table that is closest to
2028  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
2029  *      table, in which case that smallest available value is selected.
2030  */
2031 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2032                             unsigned int *idx)
2033 {
2034         unsigned int i = 0;
2035
2036         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2037                 ++i;
2038         if (idx)
2039                 *idx = i;
2040         return mtus[i];
2041 }
2042 EXPORT_SYMBOL(cxgb4_best_mtu);
2043
2044 /**
2045  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2046  *     @mtus: the HW MTU table
2047  *     @header_size: Header Size
2048  *     @data_size_max: maximum Data Segment Size
2049  *     @data_size_align: desired Data Segment Size Alignment (2^N)
2050  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2051  *
2052  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
2053  *     MTU Table based solely on a Maximum MTU parameter, we break that
2054  *     parameter up into a Header Size and Maximum Data Segment Size, and
2055  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
2056  *     the Hardware MTU Table which will result in a Data Segment Size with
2057  *     the requested alignment _and_ that MTU isn't "too far" from the
2058  *     closest MTU, then we'll return that rather than the closest MTU.
2059  */
2060 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2061                                     unsigned short header_size,
2062                                     unsigned short data_size_max,
2063                                     unsigned short data_size_align,
2064                                     unsigned int *mtu_idxp)
2065 {
2066         unsigned short max_mtu = header_size + data_size_max;
2067         unsigned short data_size_align_mask = data_size_align - 1;
2068         int mtu_idx, aligned_mtu_idx;
2069
2070         /* Scan the MTU Table till we find an MTU which is larger than our
2071          * Maximum MTU or we reach the end of the table.  Along the way,
2072          * record the last MTU found, if any, which will result in a Data
2073          * Segment Length matching the requested alignment.
2074          */
2075         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2076                 unsigned short data_size = mtus[mtu_idx] - header_size;
2077
2078                 /* If this MTU minus the Header Size would result in a
2079                  * Data Segment Size of the desired alignment, remember it.
2080                  */
2081                 if ((data_size & data_size_align_mask) == 0)
2082                         aligned_mtu_idx = mtu_idx;
2083
2084                 /* If we're not at the end of the Hardware MTU Table and the
2085                  * next element is larger than our Maximum MTU, drop out of
2086                  * the loop.
2087                  */
2088                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2089                         break;
2090         }
2091
2092         /* If we fell out of the loop because we ran to the end of the table,
2093          * then we just have to use the last [largest] entry.
2094          */
2095         if (mtu_idx == NMTUS)
2096                 mtu_idx--;
2097
2098         /* If we found an MTU which resulted in the requested Data Segment
2099          * Length alignment and that's "not far" from the largest MTU which is
2100          * less than or equal to the maximum MTU, then use that.
2101          */
2102         if (aligned_mtu_idx >= 0 &&
2103             mtu_idx - aligned_mtu_idx <= 1)
2104                 mtu_idx = aligned_mtu_idx;
2105
2106         /* If the caller has passed in an MTU Index pointer, pass the
2107          * MTU Index back.  Return the MTU value.
2108          */
2109         if (mtu_idxp)
2110                 *mtu_idxp = mtu_idx;
2111         return mtus[mtu_idx];
2112 }
2113 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2114
2115 /**
2116  *      cxgb4_port_chan - get the HW channel of a port
2117  *      @dev: the net device for the port
2118  *
2119  *      Return the HW Tx channel of the given port.
2120  */
2121 unsigned int cxgb4_port_chan(const struct net_device *dev)
2122 {
2123         return netdev2pinfo(dev)->tx_chan;
2124 }
2125 EXPORT_SYMBOL(cxgb4_port_chan);
2126
2127 /**
2128  *      cxgb4_port_e2cchan - get the HW c-channel of a port
2129  *      @dev: the net device for the port
2130  *
2131  *      Return the HW RX c-channel of the given port.
2132  */
2133 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2134 {
2135         return netdev2pinfo(dev)->rx_cchan;
2136 }
2137 EXPORT_SYMBOL(cxgb4_port_e2cchan);
2138
2139 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2140 {
2141         struct adapter *adap = netdev2adap(dev);
2142         u32 v1, v2, lp_count, hp_count;
2143
2144         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2145         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2146         if (is_t4(adap->params.chip)) {
2147                 lp_count = LP_COUNT_G(v1);
2148                 hp_count = HP_COUNT_G(v1);
2149         } else {
2150                 lp_count = LP_COUNT_T5_G(v1);
2151                 hp_count = HP_COUNT_T5_G(v2);
2152         }
2153         return lpfifo ? lp_count : hp_count;
2154 }
2155 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2156
2157 /**
2158  *      cxgb4_port_viid - get the VI id of a port
2159  *      @dev: the net device for the port
2160  *
2161  *      Return the VI id of the given port.
2162  */
2163 unsigned int cxgb4_port_viid(const struct net_device *dev)
2164 {
2165         return netdev2pinfo(dev)->viid;
2166 }
2167 EXPORT_SYMBOL(cxgb4_port_viid);
2168
2169 /**
2170  *      cxgb4_port_idx - get the index of a port
2171  *      @dev: the net device for the port
2172  *
2173  *      Return the index of the given port.
2174  */
2175 unsigned int cxgb4_port_idx(const struct net_device *dev)
2176 {
2177         return netdev2pinfo(dev)->port_id;
2178 }
2179 EXPORT_SYMBOL(cxgb4_port_idx);
2180
2181 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2182                          struct tp_tcp_stats *v6)
2183 {
2184         struct adapter *adap = pci_get_drvdata(pdev);
2185
2186         spin_lock(&adap->stats_lock);
2187         t4_tp_get_tcp_stats(adap, v4, v6, false);
2188         spin_unlock(&adap->stats_lock);
2189 }
2190 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2191
2192 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2193                       const unsigned int *pgsz_order)
2194 {
2195         struct adapter *adap = netdev2adap(dev);
2196
2197         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2198         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2199                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2200                      HPZ3_V(pgsz_order[3]));
2201 }
2202 EXPORT_SYMBOL(cxgb4_iscsi_init);
2203
2204 int cxgb4_flush_eq_cache(struct net_device *dev)
2205 {
2206         struct adapter *adap = netdev2adap(dev);
2207
2208         return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2209 }
2210 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2211
2212 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2213 {
2214         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2215         __be64 indices;
2216         int ret;
2217
2218         spin_lock(&adap->win0_lock);
2219         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2220                            sizeof(indices), (__be32 *)&indices,
2221                            T4_MEMORY_READ);
2222         spin_unlock(&adap->win0_lock);
2223         if (!ret) {
2224                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2225                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2226         }
2227         return ret;
2228 }
2229
2230 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2231                         u16 size)
2232 {
2233         struct adapter *adap = netdev2adap(dev);
2234         u16 hw_pidx, hw_cidx;
2235         int ret;
2236
2237         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2238         if (ret)
2239                 goto out;
2240
2241         if (pidx != hw_pidx) {
2242                 u16 delta;
2243                 u32 val;
2244
2245                 if (pidx >= hw_pidx)
2246                         delta = pidx - hw_pidx;
2247                 else
2248                         delta = size - hw_pidx + pidx;
2249
2250                 if (is_t4(adap->params.chip))
2251                         val = PIDX_V(delta);
2252                 else
2253                         val = PIDX_T5_V(delta);
2254                 wmb();
2255                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2256                              QID_V(qid) | val);
2257         }
2258 out:
2259         return ret;
2260 }
2261 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2262
2263 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2264 {
2265         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2266         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2267         u32 offset, memtype, memaddr;
2268         struct adapter *adap;
2269         u32 hma_size = 0;
2270         int ret;
2271
2272         adap = netdev2adap(dev);
2273
2274         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2275
2276         /* Figure out where the offset lands in the Memory Type/Address scheme.
2277          * This code assumes that the memory is laid out starting at offset 0
2278          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2279          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2280          * MC0, and some have both MC0 and MC1.
2281          */
2282         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2283         edc0_size = EDRAM0_SIZE_G(size) << 20;
2284         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2285         edc1_size = EDRAM1_SIZE_G(size) << 20;
2286         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2287         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2288
2289         if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2290                 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2291                 hma_size = EXT_MEM1_SIZE_G(size) << 20;
2292         }
2293         edc0_end = edc0_size;
2294         edc1_end = edc0_end + edc1_size;
2295         mc0_end = edc1_end + mc0_size;
2296
2297         if (offset < edc0_end) {
2298                 memtype = MEM_EDC0;
2299                 memaddr = offset;
2300         } else if (offset < edc1_end) {
2301                 memtype = MEM_EDC1;
2302                 memaddr = offset - edc0_end;
2303         } else {
2304                 if (hma_size && (offset < (edc1_end + hma_size))) {
2305                         memtype = MEM_HMA;
2306                         memaddr = offset - edc1_end;
2307                 } else if (offset < mc0_end) {
2308                         memtype = MEM_MC0;
2309                         memaddr = offset - edc1_end;
2310                 } else if (is_t5(adap->params.chip)) {
2311                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2312                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2313                         mc1_end = mc0_end + mc1_size;
2314                         if (offset < mc1_end) {
2315                                 memtype = MEM_MC1;
2316                                 memaddr = offset - mc0_end;
2317                         } else {
2318                                 /* offset beyond the end of any memory */
2319                                 goto err;
2320                         }
2321                 } else {
2322                         /* T4/T6 only has a single memory channel */
2323                         goto err;
2324                 }
2325         }
2326
2327         spin_lock(&adap->win0_lock);
2328         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2329         spin_unlock(&adap->win0_lock);
2330         return ret;
2331
2332 err:
2333         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2334                 stag, offset);
2335         return -EINVAL;
2336 }
2337 EXPORT_SYMBOL(cxgb4_read_tpte);
2338
2339 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2340 {
2341         u32 hi, lo;
2342         struct adapter *adap;
2343
2344         adap = netdev2adap(dev);
2345         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2346         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2347
2348         return ((u64)hi << 32) | (u64)lo;
2349 }
2350 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2351
2352 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2353                          unsigned int qid,
2354                          enum cxgb4_bar2_qtype qtype,
2355                          int user,
2356                          u64 *pbar2_qoffset,
2357                          unsigned int *pbar2_qid)
2358 {
2359         return t4_bar2_sge_qregs(netdev2adap(dev),
2360                                  qid,
2361                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2362                                   ? T4_BAR2_QTYPE_EGRESS
2363                                   : T4_BAR2_QTYPE_INGRESS),
2364                                  user,
2365                                  pbar2_qoffset,
2366                                  pbar2_qid);
2367 }
2368 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2369
2370 static struct pci_driver cxgb4_driver;
2371
2372 static void check_neigh_update(struct neighbour *neigh)
2373 {
2374         const struct device *parent;
2375         const struct net_device *netdev = neigh->dev;
2376
2377         if (is_vlan_dev(netdev))
2378                 netdev = vlan_dev_real_dev(netdev);
2379         parent = netdev->dev.parent;
2380         if (parent && parent->driver == &cxgb4_driver.driver)
2381                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2382 }
2383
2384 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2385                        void *data)
2386 {
2387         switch (event) {
2388         case NETEVENT_NEIGH_UPDATE:
2389                 check_neigh_update(data);
2390                 break;
2391         case NETEVENT_REDIRECT:
2392         default:
2393                 break;
2394         }
2395         return 0;
2396 }
2397
2398 static bool netevent_registered;
2399 static struct notifier_block cxgb4_netevent_nb = {
2400         .notifier_call = netevent_cb
2401 };
2402
2403 static void drain_db_fifo(struct adapter *adap, int usecs)
2404 {
2405         u32 v1, v2, lp_count, hp_count;
2406
2407         do {
2408                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2409                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2410                 if (is_t4(adap->params.chip)) {
2411                         lp_count = LP_COUNT_G(v1);
2412                         hp_count = HP_COUNT_G(v1);
2413                 } else {
2414                         lp_count = LP_COUNT_T5_G(v1);
2415                         hp_count = HP_COUNT_T5_G(v2);
2416                 }
2417
2418                 if (lp_count == 0 && hp_count == 0)
2419                         break;
2420                 set_current_state(TASK_UNINTERRUPTIBLE);
2421                 schedule_timeout(usecs_to_jiffies(usecs));
2422         } while (1);
2423 }
2424
2425 static void disable_txq_db(struct sge_txq *q)
2426 {
2427         unsigned long flags;
2428
2429         spin_lock_irqsave(&q->db_lock, flags);
2430         q->db_disabled = 1;
2431         spin_unlock_irqrestore(&q->db_lock, flags);
2432 }
2433
2434 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2435 {
2436         spin_lock_irq(&q->db_lock);
2437         if (q->db_pidx_inc) {
2438                 /* Make sure that all writes to the TX descriptors
2439                  * are committed before we tell HW about them.
2440                  */
2441                 wmb();
2442                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2443                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2444                 q->db_pidx_inc = 0;
2445         }
2446         q->db_disabled = 0;
2447         spin_unlock_irq(&q->db_lock);
2448 }
2449
2450 static void disable_dbs(struct adapter *adap)
2451 {
2452         int i;
2453
2454         for_each_ethrxq(&adap->sge, i)
2455                 disable_txq_db(&adap->sge.ethtxq[i].q);
2456         if (is_offload(adap)) {
2457                 struct sge_uld_txq_info *txq_info =
2458                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2459
2460                 if (txq_info) {
2461                         for_each_ofldtxq(&adap->sge, i) {
2462                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2463
2464                                 disable_txq_db(&txq->q);
2465                         }
2466                 }
2467         }
2468         for_each_port(adap, i)
2469                 disable_txq_db(&adap->sge.ctrlq[i].q);
2470 }
2471
2472 static void enable_dbs(struct adapter *adap)
2473 {
2474         int i;
2475
2476         for_each_ethrxq(&adap->sge, i)
2477                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2478         if (is_offload(adap)) {
2479                 struct sge_uld_txq_info *txq_info =
2480                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2481
2482                 if (txq_info) {
2483                         for_each_ofldtxq(&adap->sge, i) {
2484                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2485
2486                                 enable_txq_db(adap, &txq->q);
2487                         }
2488                 }
2489         }
2490         for_each_port(adap, i)
2491                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2492 }
2493
2494 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2495 {
2496         enum cxgb4_uld type = CXGB4_ULD_RDMA;
2497
2498         if (adap->uld && adap->uld[type].handle)
2499                 adap->uld[type].control(adap->uld[type].handle, cmd);
2500 }
2501
2502 static void process_db_full(struct work_struct *work)
2503 {
2504         struct adapter *adap;
2505
2506         adap = container_of(work, struct adapter, db_full_task);
2507
2508         drain_db_fifo(adap, dbfifo_drain_delay);
2509         enable_dbs(adap);
2510         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2511         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2512                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2513                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2514                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2515         else
2516                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2517                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2518 }
2519
2520 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2521 {
2522         u16 hw_pidx, hw_cidx;
2523         int ret;
2524
2525         spin_lock_irq(&q->db_lock);
2526         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2527         if (ret)
2528                 goto out;
2529         if (q->db_pidx != hw_pidx) {
2530                 u16 delta;
2531                 u32 val;
2532
2533                 if (q->db_pidx >= hw_pidx)
2534                         delta = q->db_pidx - hw_pidx;
2535                 else
2536                         delta = q->size - hw_pidx + q->db_pidx;
2537
2538                 if (is_t4(adap->params.chip))
2539                         val = PIDX_V(delta);
2540                 else
2541                         val = PIDX_T5_V(delta);
2542                 wmb();
2543                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2544                              QID_V(q->cntxt_id) | val);
2545         }
2546 out:
2547         q->db_disabled = 0;
2548         q->db_pidx_inc = 0;
2549         spin_unlock_irq(&q->db_lock);
2550         if (ret)
2551                 CH_WARN(adap, "DB drop recovery failed.\n");
2552 }
2553
2554 static void recover_all_queues(struct adapter *adap)
2555 {
2556         int i;
2557
2558         for_each_ethrxq(&adap->sge, i)
2559                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2560         if (is_offload(adap)) {
2561                 struct sge_uld_txq_info *txq_info =
2562                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2563                 if (txq_info) {
2564                         for_each_ofldtxq(&adap->sge, i) {
2565                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2566
2567                                 sync_txq_pidx(adap, &txq->q);
2568                         }
2569                 }
2570         }
2571         for_each_port(adap, i)
2572                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2573 }
2574
2575 static void process_db_drop(struct work_struct *work)
2576 {
2577         struct adapter *adap;
2578
2579         adap = container_of(work, struct adapter, db_drop_task);
2580
2581         if (is_t4(adap->params.chip)) {
2582                 drain_db_fifo(adap, dbfifo_drain_delay);
2583                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2584                 drain_db_fifo(adap, dbfifo_drain_delay);
2585                 recover_all_queues(adap);
2586                 drain_db_fifo(adap, dbfifo_drain_delay);
2587                 enable_dbs(adap);
2588                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2589         } else if (is_t5(adap->params.chip)) {
2590                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2591                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2592                 u16 pidx_inc = dropped_db & 0x1fff;
2593                 u64 bar2_qoffset;
2594                 unsigned int bar2_qid;
2595                 int ret;
2596
2597                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2598                                         0, &bar2_qoffset, &bar2_qid);
2599                 if (ret)
2600                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2601                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2602                 else
2603                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2604                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2605
2606                 /* Re-enable BAR2 WC */
2607                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2608         }
2609
2610         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2611                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2612 }
2613
2614 void t4_db_full(struct adapter *adap)
2615 {
2616         if (is_t4(adap->params.chip)) {
2617                 disable_dbs(adap);
2618                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2619                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2620                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2621                 queue_work(adap->workq, &adap->db_full_task);
2622         }
2623 }
2624
2625 void t4_db_dropped(struct adapter *adap)
2626 {
2627         if (is_t4(adap->params.chip)) {
2628                 disable_dbs(adap);
2629                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2630         }
2631         queue_work(adap->workq, &adap->db_drop_task);
2632 }
2633
2634 void t4_register_netevent_notifier(void)
2635 {
2636         if (!netevent_registered) {
2637                 register_netevent_notifier(&cxgb4_netevent_nb);
2638                 netevent_registered = true;
2639         }
2640 }
2641
2642 static void detach_ulds(struct adapter *adap)
2643 {
2644         unsigned int i;
2645
2646         mutex_lock(&uld_mutex);
2647         list_del(&adap->list_node);
2648
2649         for (i = 0; i < CXGB4_ULD_MAX; i++)
2650                 if (adap->uld && adap->uld[i].handle)
2651                         adap->uld[i].state_change(adap->uld[i].handle,
2652                                              CXGB4_STATE_DETACH);
2653
2654         if (netevent_registered && list_empty(&adapter_list)) {
2655                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2656                 netevent_registered = false;
2657         }
2658         mutex_unlock(&uld_mutex);
2659 }
2660
2661 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2662 {
2663         unsigned int i;
2664
2665         mutex_lock(&uld_mutex);
2666         for (i = 0; i < CXGB4_ULD_MAX; i++)
2667                 if (adap->uld && adap->uld[i].handle)
2668                         adap->uld[i].state_change(adap->uld[i].handle,
2669                                                   new_state);
2670         mutex_unlock(&uld_mutex);
2671 }
2672
2673 #if IS_ENABLED(CONFIG_IPV6)
2674 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2675                                    unsigned long event, void *data)
2676 {
2677         struct inet6_ifaddr *ifa = data;
2678         struct net_device *event_dev = ifa->idev->dev;
2679         const struct device *parent = NULL;
2680 #if IS_ENABLED(CONFIG_BONDING)
2681         struct adapter *adap;
2682 #endif
2683         if (is_vlan_dev(event_dev))
2684                 event_dev = vlan_dev_real_dev(event_dev);
2685 #if IS_ENABLED(CONFIG_BONDING)
2686         if (event_dev->flags & IFF_MASTER) {
2687                 list_for_each_entry(adap, &adapter_list, list_node) {
2688                         switch (event) {
2689                         case NETDEV_UP:
2690                                 cxgb4_clip_get(adap->port[0],
2691                                                (const u32 *)ifa, 1);
2692                                 break;
2693                         case NETDEV_DOWN:
2694                                 cxgb4_clip_release(adap->port[0],
2695                                                    (const u32 *)ifa, 1);
2696                                 break;
2697                         default:
2698                                 break;
2699                         }
2700                 }
2701                 return NOTIFY_OK;
2702         }
2703 #endif
2704
2705         if (event_dev)
2706                 parent = event_dev->dev.parent;
2707
2708         if (parent && parent->driver == &cxgb4_driver.driver) {
2709                 switch (event) {
2710                 case NETDEV_UP:
2711                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2712                         break;
2713                 case NETDEV_DOWN:
2714                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2715                         break;
2716                 default:
2717                         break;
2718                 }
2719         }
2720         return NOTIFY_OK;
2721 }
2722
2723 static bool inet6addr_registered;
2724 static struct notifier_block cxgb4_inet6addr_notifier = {
2725         .notifier_call = cxgb4_inet6addr_handler
2726 };
2727
2728 static void update_clip(const struct adapter *adap)
2729 {
2730         int i;
2731         struct net_device *dev;
2732         int ret;
2733
2734         rcu_read_lock();
2735
2736         for (i = 0; i < MAX_NPORTS; i++) {
2737                 dev = adap->port[i];
2738                 ret = 0;
2739
2740                 if (dev)
2741                         ret = cxgb4_update_root_dev_clip(dev);
2742
2743                 if (ret < 0)
2744                         break;
2745         }
2746         rcu_read_unlock();
2747 }
2748 #endif /* IS_ENABLED(CONFIG_IPV6) */
2749
2750 /**
2751  *      cxgb_up - enable the adapter
2752  *      @adap: adapter being enabled
2753  *
2754  *      Called when the first port is enabled, this function performs the
2755  *      actions necessary to make an adapter operational, such as completing
2756  *      the initialization of HW modules, and enabling interrupts.
2757  *
2758  *      Must be called with the rtnl lock held.
2759  */
2760 static int cxgb_up(struct adapter *adap)
2761 {
2762         struct sge *s = &adap->sge;
2763         int err;
2764
2765         mutex_lock(&uld_mutex);
2766         err = setup_sge_queues(adap);
2767         if (err)
2768                 goto rel_lock;
2769         err = setup_rss(adap);
2770         if (err)
2771                 goto freeq;
2772
2773         if (adap->flags & CXGB4_USING_MSIX) {
2774                 if (s->nd_msix_idx < 0) {
2775                         err = -ENOMEM;
2776                         goto irq_err;
2777                 }
2778
2779                 err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2780                                   t4_nondata_intr, 0,
2781                                   adap->msix_info[s->nd_msix_idx].desc, adap);
2782                 if (err)
2783                         goto irq_err;
2784
2785                 err = request_msix_queue_irqs(adap);
2786                 if (err)
2787                         goto irq_err_free_nd_msix;
2788         } else {
2789                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2790                                   (adap->flags & CXGB4_USING_MSI) ? 0
2791                                                                   : IRQF_SHARED,
2792                                   adap->port[0]->name, adap);
2793                 if (err)
2794                         goto irq_err;
2795         }
2796
2797         enable_rx(adap);
2798         t4_sge_start(adap);
2799         t4_intr_enable(adap);
2800         adap->flags |= CXGB4_FULL_INIT_DONE;
2801         mutex_unlock(&uld_mutex);
2802
2803         notify_ulds(adap, CXGB4_STATE_UP);
2804 #if IS_ENABLED(CONFIG_IPV6)
2805         update_clip(adap);
2806 #endif
2807         return err;
2808
2809 irq_err_free_nd_msix:
2810         free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2811 irq_err:
2812         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2813 freeq:
2814         t4_free_sge_resources(adap);
2815 rel_lock:
2816         mutex_unlock(&uld_mutex);
2817         return err;
2818 }
2819
2820 static void cxgb_down(struct adapter *adapter)
2821 {
2822         cancel_work_sync(&adapter->tid_release_task);
2823         cancel_work_sync(&adapter->db_full_task);
2824         cancel_work_sync(&adapter->db_drop_task);
2825         adapter->tid_release_task_busy = false;
2826         adapter->tid_release_head = NULL;
2827
2828         t4_sge_stop(adapter);
2829         t4_free_sge_resources(adapter);
2830
2831         adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2832 }
2833
2834 /*
2835  * net_device operations
2836  */
2837 int cxgb_open(struct net_device *dev)
2838 {
2839         struct port_info *pi = netdev_priv(dev);
2840         struct adapter *adapter = pi->adapter;
2841         int err;
2842
2843         netif_carrier_off(dev);
2844
2845         if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2846                 err = cxgb_up(adapter);
2847                 if (err < 0)
2848                         return err;
2849         }
2850
2851         /* It's possible that the basic port information could have
2852          * changed since we first read it.
2853          */
2854         err = t4_update_port_info(pi);
2855         if (err < 0)
2856                 return err;
2857
2858         err = link_start(dev);
2859         if (err)
2860                 return err;
2861
2862         if (pi->nmirrorqsets) {
2863                 mutex_lock(&pi->vi_mirror_mutex);
2864                 err = cxgb4_port_mirror_alloc_queues(dev);
2865                 if (err)
2866                         goto out_unlock;
2867
2868                 err = cxgb4_port_mirror_start(dev);
2869                 if (err)
2870                         goto out_free_queues;
2871                 mutex_unlock(&pi->vi_mirror_mutex);
2872         }
2873
2874         netif_tx_start_all_queues(dev);
2875         return 0;
2876
2877 out_free_queues:
2878         cxgb4_port_mirror_free_queues(dev);
2879
2880 out_unlock:
2881         mutex_unlock(&pi->vi_mirror_mutex);
2882         return err;
2883 }
2884
2885 int cxgb_close(struct net_device *dev)
2886 {
2887         struct port_info *pi = netdev_priv(dev);
2888         struct adapter *adapter = pi->adapter;
2889         int ret;
2890
2891         netif_tx_stop_all_queues(dev);
2892         netif_carrier_off(dev);
2893         ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2894                                   false, false, false);
2895 #ifdef CONFIG_CHELSIO_T4_DCB
2896         cxgb4_dcb_reset(dev);
2897         dcb_tx_queue_prio_enable(dev, false);
2898 #endif
2899         if (ret)
2900                 return ret;
2901
2902         if (pi->nmirrorqsets) {
2903                 mutex_lock(&pi->vi_mirror_mutex);
2904                 cxgb4_port_mirror_stop(dev);
2905                 cxgb4_port_mirror_free_queues(dev);
2906                 mutex_unlock(&pi->vi_mirror_mutex);
2907         }
2908
2909         return 0;
2910 }
2911
2912 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2913                 __be32 sip, __be16 sport, __be16 vlan,
2914                 unsigned int queue, unsigned char port, unsigned char mask)
2915 {
2916         int ret;
2917         struct filter_entry *f;
2918         struct adapter *adap;
2919         int i;
2920         u8 *val;
2921
2922         adap = netdev2adap(dev);
2923
2924         /* Adjust stid to correct filter index */
2925         stid -= adap->tids.sftid_base;
2926         stid += adap->tids.nftids;
2927
2928         /* Check to make sure the filter requested is writable ...
2929          */
2930         f = &adap->tids.ftid_tab[stid];
2931         ret = writable_filter(f);
2932         if (ret)
2933                 return ret;
2934
2935         /* Clear out any old resources being used by the filter before
2936          * we start constructing the new filter.
2937          */
2938         if (f->valid)
2939                 clear_filter(adap, f);
2940
2941         /* Clear out filter specifications */
2942         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2943         f->fs.val.lport = be16_to_cpu(sport);
2944         f->fs.mask.lport  = ~0;
2945         val = (u8 *)&sip;
2946         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2947                 for (i = 0; i < 4; i++) {
2948                         f->fs.val.lip[i] = val[i];
2949                         f->fs.mask.lip[i] = ~0;
2950                 }
2951                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2952                         f->fs.val.iport = port;
2953                         f->fs.mask.iport = mask;
2954                 }
2955         }
2956
2957         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2958                 f->fs.val.proto = IPPROTO_TCP;
2959                 f->fs.mask.proto = ~0;
2960         }
2961
2962         f->fs.dirsteer = 1;
2963         f->fs.iq = queue;
2964         /* Mark filter as locked */
2965         f->locked = 1;
2966         f->fs.rpttid = 1;
2967
2968         /* Save the actual tid. We need this to get the corresponding
2969          * filter entry structure in filter_rpl.
2970          */
2971         f->tid = stid + adap->tids.ftid_base;
2972         ret = set_filter_wr(adap, stid);
2973         if (ret) {
2974                 clear_filter(adap, f);
2975                 return ret;
2976         }
2977
2978         return 0;
2979 }
2980 EXPORT_SYMBOL(cxgb4_create_server_filter);
2981
2982 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2983                 unsigned int queue, bool ipv6)
2984 {
2985         struct filter_entry *f;
2986         struct adapter *adap;
2987
2988         adap = netdev2adap(dev);
2989
2990         /* Adjust stid to correct filter index */
2991         stid -= adap->tids.sftid_base;
2992         stid += adap->tids.nftids;
2993
2994         f = &adap->tids.ftid_tab[stid];
2995         /* Unlock the filter */
2996         f->locked = 0;
2997
2998         return delete_filter(adap, stid);
2999 }
3000 EXPORT_SYMBOL(cxgb4_remove_server_filter);
3001
3002 static void cxgb_get_stats(struct net_device *dev,
3003                            struct rtnl_link_stats64 *ns)
3004 {
3005         struct port_stats stats;
3006         struct port_info *p = netdev_priv(dev);
3007         struct adapter *adapter = p->adapter;
3008
3009         /* Block retrieving statistics during EEH error
3010          * recovery. Otherwise, the recovery might fail
3011          * and the PCI device will be removed permanently
3012          */
3013         spin_lock(&adapter->stats_lock);
3014         if (!netif_device_present(dev)) {
3015                 spin_unlock(&adapter->stats_lock);
3016                 return;
3017         }
3018         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3019                                  &p->stats_base);
3020         spin_unlock(&adapter->stats_lock);
3021
3022         ns->tx_bytes   = stats.tx_octets;
3023         ns->tx_packets = stats.tx_frames;
3024         ns->rx_bytes   = stats.rx_octets;
3025         ns->rx_packets = stats.rx_frames;
3026         ns->multicast  = stats.rx_mcast_frames;
3027
3028         /* detailed rx_errors */
3029         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3030                                stats.rx_runt;
3031         ns->rx_over_errors   = 0;
3032         ns->rx_crc_errors    = stats.rx_fcs_err;
3033         ns->rx_frame_errors  = stats.rx_symbol_err;
3034         ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
3035                                stats.rx_ovflow2 + stats.rx_ovflow3 +
3036                                stats.rx_trunc0 + stats.rx_trunc1 +
3037                                stats.rx_trunc2 + stats.rx_trunc3;
3038         ns->rx_missed_errors = 0;
3039
3040         /* detailed tx_errors */
3041         ns->tx_aborted_errors   = 0;
3042         ns->tx_carrier_errors   = 0;
3043         ns->tx_fifo_errors      = 0;
3044         ns->tx_heartbeat_errors = 0;
3045         ns->tx_window_errors    = 0;
3046
3047         ns->tx_errors = stats.tx_error_frames;
3048         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3049                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3050 }
3051
3052 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3053 {
3054         unsigned int mbox;
3055         int ret = 0, prtad, devad;
3056         struct port_info *pi = netdev_priv(dev);
3057         struct adapter *adapter = pi->adapter;
3058         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3059
3060         switch (cmd) {
3061         case SIOCGMIIPHY:
3062                 if (pi->mdio_addr < 0)
3063                         return -EOPNOTSUPP;
3064                 data->phy_id = pi->mdio_addr;
3065                 break;
3066         case SIOCGMIIREG:
3067         case SIOCSMIIREG:
3068                 if (mdio_phy_id_is_c45(data->phy_id)) {
3069                         prtad = mdio_phy_id_prtad(data->phy_id);
3070                         devad = mdio_phy_id_devad(data->phy_id);
3071                 } else if (data->phy_id < 32) {
3072                         prtad = data->phy_id;
3073                         devad = 0;
3074                         data->reg_num &= 0x1f;
3075                 } else
3076                         return -EINVAL;
3077
3078                 mbox = pi->adapter->pf;
3079                 if (cmd == SIOCGMIIREG)
3080                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3081                                          data->reg_num, &data->val_out);
3082                 else
3083                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3084                                          data->reg_num, data->val_in);
3085                 break;
3086         case SIOCGHWTSTAMP:
3087                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3088                                     sizeof(pi->tstamp_config)) ?
3089                         -EFAULT : 0;
3090         case SIOCSHWTSTAMP:
3091                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3092                                    sizeof(pi->tstamp_config)))
3093                         return -EFAULT;
3094
3095                 if (!is_t4(adapter->params.chip)) {
3096                         switch (pi->tstamp_config.tx_type) {
3097                         case HWTSTAMP_TX_OFF:
3098                         case HWTSTAMP_TX_ON:
3099                                 break;
3100                         default:
3101                                 return -ERANGE;
3102                         }
3103
3104                         switch (pi->tstamp_config.rx_filter) {
3105                         case HWTSTAMP_FILTER_NONE:
3106                                 pi->rxtstamp = false;
3107                                 break;
3108                         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3109                         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3110                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
3111                                                          PTP_TS_L4);
3112                                 break;
3113                         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3114                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
3115                                                          PTP_TS_L2_L4);
3116                                 break;
3117                         case HWTSTAMP_FILTER_ALL:
3118                         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3119                         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3120                         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3121                         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3122                                 pi->rxtstamp = true;
3123                                 break;
3124                         default:
3125                                 pi->tstamp_config.rx_filter =
3126                                         HWTSTAMP_FILTER_NONE;
3127                                 return -ERANGE;
3128                         }
3129
3130                         if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3131                             (pi->tstamp_config.rx_filter ==
3132                                 HWTSTAMP_FILTER_NONE)) {
3133                                 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3134                                         pi->ptp_enable = false;
3135                         }
3136
3137                         if (pi->tstamp_config.rx_filter !=
3138                                 HWTSTAMP_FILTER_NONE) {
3139                                 if (cxgb4_ptp_redirect_rx_packet(adapter,
3140                                                                  pi) >= 0)
3141                                         pi->ptp_enable = true;
3142                         }
3143                 } else {
3144                         /* For T4 Adapters */
3145                         switch (pi->tstamp_config.rx_filter) {
3146                         case HWTSTAMP_FILTER_NONE:
3147                         pi->rxtstamp = false;
3148                         break;
3149                         case HWTSTAMP_FILTER_ALL:
3150                         pi->rxtstamp = true;
3151                         break;
3152                         default:
3153                         pi->tstamp_config.rx_filter =
3154                         HWTSTAMP_FILTER_NONE;
3155                         return -ERANGE;
3156                         }
3157                 }
3158                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3159                                     sizeof(pi->tstamp_config)) ?
3160                         -EFAULT : 0;
3161         default:
3162                 return -EOPNOTSUPP;
3163         }
3164         return ret;
3165 }
3166
3167 static void cxgb_set_rxmode(struct net_device *dev)
3168 {
3169         /* unfortunately we can't return errors to the stack */
3170         set_rxmode(dev, -1, false);
3171 }
3172
3173 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3174 {
3175         struct port_info *pi = netdev_priv(dev);
3176         int ret;
3177
3178         ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3179                             pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3180         if (!ret)
3181                 dev->mtu = new_mtu;
3182         return ret;
3183 }
3184
3185 #ifdef CONFIG_PCI_IOV
3186 static int cxgb4_mgmt_open(struct net_device *dev)
3187 {
3188         /* Turn carrier off since we don't have to transmit anything on this
3189          * interface.
3190          */
3191         netif_carrier_off(dev);
3192         return 0;
3193 }
3194
3195 /* Fill MAC address that will be assigned by the FW */
3196 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3197 {
3198         u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3199         unsigned int i, vf, nvfs;
3200         u16 a, b;
3201         int err;
3202         u8 *na;
3203
3204         adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
3205                                                             PCI_CAP_ID_VPD);
3206         err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3207         if (err)
3208                 return;
3209
3210         na = adap->params.vpd.na;
3211         for (i = 0; i < ETH_ALEN; i++)
3212                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3213                               hex2val(na[2 * i + 1]));
3214
3215         a = (hw_addr[0] << 8) | hw_addr[1];
3216         b = (hw_addr[1] << 8) | hw_addr[2];
3217         a ^= b;
3218         a |= 0x0200;    /* locally assigned Ethernet MAC address */
3219         a &= ~0x0100;   /* not a multicast Ethernet MAC address */
3220         macaddr[0] = a >> 8;
3221         macaddr[1] = a & 0xff;
3222
3223         for (i = 2; i < 5; i++)
3224                 macaddr[i] = hw_addr[i + 1];
3225
3226         for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3227                 vf < nvfs; vf++) {
3228                 macaddr[5] = adap->pf * nvfs + vf;
3229                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3230         }
3231 }
3232
3233 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3234 {
3235         struct port_info *pi = netdev_priv(dev);
3236         struct adapter *adap = pi->adapter;
3237         int ret;
3238
3239         /* verify MAC addr is valid */
3240         if (!is_valid_ether_addr(mac)) {
3241                 dev_err(pi->adapter->pdev_dev,
3242                         "Invalid Ethernet address %pM for VF %d\n",
3243                         mac, vf);
3244                 return -EINVAL;
3245         }
3246
3247         dev_info(pi->adapter->pdev_dev,
3248                  "Setting MAC %pM on VF %d\n", mac, vf);
3249         ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3250         if (!ret)
3251                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3252         return ret;
3253 }
3254
3255 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3256                                     int vf, struct ifla_vf_info *ivi)
3257 {
3258         struct port_info *pi = netdev_priv(dev);
3259         struct adapter *adap = pi->adapter;
3260         struct vf_info *vfinfo;
3261
3262         if (vf >= adap->num_vfs)
3263                 return -EINVAL;
3264         vfinfo = &adap->vfinfo[vf];
3265
3266         ivi->vf = vf;
3267         ivi->max_tx_rate = vfinfo->tx_rate;
3268         ivi->min_tx_rate = 0;
3269         ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3270         ivi->vlan = vfinfo->vlan;
3271         ivi->linkstate = vfinfo->link_state;
3272         return 0;
3273 }
3274
3275 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3276                                        struct netdev_phys_item_id *ppid)
3277 {
3278         struct port_info *pi = netdev_priv(dev);
3279         unsigned int phy_port_id;
3280
3281         phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3282         ppid->id_len = sizeof(phy_port_id);
3283         memcpy(ppid->id, &phy_port_id, ppid->id_len);
3284         return 0;
3285 }
3286
3287 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3288                                   int min_tx_rate, int max_tx_rate)
3289 {
3290         struct port_info *pi = netdev_priv(dev);
3291         struct adapter *adap = pi->adapter;
3292         unsigned int link_ok, speed, mtu;
3293         u32 fw_pfvf, fw_class;
3294         int class_id = vf;
3295         int ret;
3296         u16 pktsize;
3297
3298         if (vf >= adap->num_vfs)
3299                 return -EINVAL;
3300
3301         if (min_tx_rate) {
3302                 dev_err(adap->pdev_dev,
3303                         "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3304                         min_tx_rate, vf);
3305                 return -EINVAL;
3306         }
3307
3308         if (max_tx_rate == 0) {
3309                 /* unbind VF to to any Traffic Class */
3310                 fw_pfvf =
3311                     (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3312                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3313                 fw_class = 0xffffffff;
3314                 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3315                                     &fw_pfvf, &fw_class);
3316                 if (ret) {
3317                         dev_err(adap->pdev_dev,
3318                                 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3319                                 ret, adap->pf, vf);
3320                         return -EINVAL;
3321                 }
3322                 dev_info(adap->pdev_dev,
3323                          "PF %d VF %d is unbound from TX Rate Limiting\n",
3324                          adap->pf, vf);
3325                 adap->vfinfo[vf].tx_rate = 0;
3326                 return 0;
3327         }
3328
3329         ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3330         if (ret != FW_SUCCESS) {
3331                 dev_err(adap->pdev_dev,
3332                         "Failed to get link information for VF %d\n", vf);
3333                 return -EINVAL;
3334         }
3335
3336         if (!link_ok) {
3337                 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3338                 return -EINVAL;
3339         }
3340
3341         if (max_tx_rate > speed) {
3342                 dev_err(adap->pdev_dev,
3343                         "Max tx rate %d for VF %d can't be > link-speed %u",
3344                         max_tx_rate, vf, speed);
3345                 return -EINVAL;
3346         }
3347
3348         pktsize = mtu;
3349         /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3350         pktsize = pktsize - sizeof(struct ethhdr) - 4;
3351         /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3352         pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3353         /* configure Traffic Class for rate-limiting */
3354         ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3355                               SCHED_CLASS_LEVEL_CL_RL,
3356                               SCHED_CLASS_MODE_CLASS,
3357                               SCHED_CLASS_RATEUNIT_BITS,
3358                               SCHED_CLASS_RATEMODE_ABS,
3359                               pi->tx_chan, class_id, 0,
3360                               max_tx_rate * 1000, 0, pktsize, 0);
3361         if (ret) {
3362                 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3363                         ret);
3364                 return -EINVAL;
3365         }
3366         dev_info(adap->pdev_dev,
3367                  "Class %d with MSS %u configured with rate %u\n",
3368                  class_id, pktsize, max_tx_rate);
3369
3370         /* bind VF to configured Traffic Class */
3371         fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3372                    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3373         fw_class = class_id;
3374         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3375                             &fw_class);
3376         if (ret) {
3377                 dev_err(adap->pdev_dev,
3378                         "Err %d in binding PF %d VF %d to Traffic Class %d\n",
3379                         ret, adap->pf, vf, class_id);
3380                 return -EINVAL;
3381         }
3382         dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3383                  adap->pf, vf, class_id);
3384         adap->vfinfo[vf].tx_rate = max_tx_rate;
3385         return 0;
3386 }
3387
3388 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3389                                   u16 vlan, u8 qos, __be16 vlan_proto)
3390 {
3391         struct port_info *pi = netdev_priv(dev);
3392         struct adapter *adap = pi->adapter;
3393         int ret;
3394
3395         if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3396                 return -EINVAL;
3397
3398         if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3399                 return -EPROTONOSUPPORT;
3400
3401         ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3402         if (!ret) {
3403                 adap->vfinfo[vf].vlan = vlan;
3404                 return 0;
3405         }
3406
3407         dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3408                 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3409         return ret;
3410 }
3411
3412 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3413                                         int link)
3414 {
3415         struct port_info *pi = netdev_priv(dev);
3416         struct adapter *adap = pi->adapter;
3417         u32 param, val;
3418         int ret = 0;
3419
3420         if (vf >= adap->num_vfs)
3421                 return -EINVAL;
3422
3423         switch (link) {
3424         case IFLA_VF_LINK_STATE_AUTO:
3425                 val = FW_VF_LINK_STATE_AUTO;
3426                 break;
3427
3428         case IFLA_VF_LINK_STATE_ENABLE:
3429                 val = FW_VF_LINK_STATE_ENABLE;
3430                 break;
3431
3432         case IFLA_VF_LINK_STATE_DISABLE:
3433                 val = FW_VF_LINK_STATE_DISABLE;
3434                 break;
3435
3436         default:
3437                 return -EINVAL;
3438         }
3439
3440         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3441                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3442         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3443                             &param, &val);
3444         if (ret) {
3445                 dev_err(adap->pdev_dev,
3446                         "Error %d in setting PF %d VF %d link state\n",
3447                         ret, adap->pf, vf);
3448                 return -EINVAL;
3449         }
3450
3451         adap->vfinfo[vf].link_state = link;
3452         return ret;
3453 }
3454 #endif /* CONFIG_PCI_IOV */
3455
3456 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3457 {
3458         int ret;
3459         struct sockaddr *addr = p;
3460         struct port_info *pi = netdev_priv(dev);
3461
3462         if (!is_valid_ether_addr(addr->sa_data))
3463                 return -EADDRNOTAVAIL;
3464
3465         ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3466                                     addr->sa_data, true, &pi->smt_idx);
3467         if (ret < 0)
3468                 return ret;
3469
3470         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3471         return 0;
3472 }
3473
3474 #ifdef CONFIG_NET_POLL_CONTROLLER
3475 static void cxgb_netpoll(struct net_device *dev)
3476 {
3477         struct port_info *pi = netdev_priv(dev);
3478         struct adapter *adap = pi->adapter;
3479
3480         if (adap->flags & CXGB4_USING_MSIX) {
3481                 int i;
3482                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3483
3484                 for (i = pi->nqsets; i; i--, rx++)
3485                         t4_sge_intr_msix(0, &rx->rspq);
3486         } else
3487                 t4_intr_handler(adap)(0, adap);
3488 }
3489 #endif
3490
3491 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3492 {
3493         struct port_info *pi = netdev_priv(dev);
3494         struct adapter *adap = pi->adapter;
3495         struct ch_sched_queue qe = { 0 };
3496         struct ch_sched_params p = { 0 };
3497         struct sched_class *e;
3498         u32 req_rate;
3499         int err = 0;
3500
3501         if (!can_sched(dev))
3502                 return -ENOTSUPP;
3503
3504         if (index < 0 || index > pi->nqsets - 1)
3505                 return -EINVAL;
3506
3507         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3508                 dev_err(adap->pdev_dev,
3509                         "Failed to rate limit on queue %d. Link Down?\n",
3510                         index);
3511                 return -EINVAL;
3512         }
3513
3514         qe.queue = index;
3515         e = cxgb4_sched_queue_lookup(dev, &qe);
3516         if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3517                 dev_err(adap->pdev_dev,
3518                         "Queue %u already bound to class %u of type: %u\n",
3519                         index, e->idx, e->info.u.params.level);
3520                 return -EBUSY;
3521         }
3522
3523         /* Convert from Mbps to Kbps */
3524         req_rate = rate * 1000;
3525
3526         /* Max rate is 100 Gbps */
3527         if (req_rate > SCHED_MAX_RATE_KBPS) {
3528                 dev_err(adap->pdev_dev,
3529                         "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3530                         rate, SCHED_MAX_RATE_KBPS / 1000);
3531                 return -ERANGE;
3532         }
3533
3534         /* First unbind the queue from any existing class */
3535         memset(&qe, 0, sizeof(qe));
3536         qe.queue = index;
3537         qe.class = SCHED_CLS_NONE;
3538
3539         err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3540         if (err) {
3541                 dev_err(adap->pdev_dev,
3542                         "Unbinding Queue %d on port %d fail. Err: %d\n",
3543                         index, pi->port_id, err);
3544                 return err;
3545         }
3546
3547         /* Queue already unbound */
3548         if (!req_rate)
3549                 return 0;
3550
3551         /* Fetch any available unused or matching scheduling class */
3552         p.type = SCHED_CLASS_TYPE_PACKET;
3553         p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3554         p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3555         p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3556         p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3557         p.u.params.channel  = pi->tx_chan;
3558         p.u.params.class    = SCHED_CLS_NONE;
3559         p.u.params.minrate  = 0;
3560         p.u.params.maxrate  = req_rate;
3561         p.u.params.weight   = 0;
3562         p.u.params.pktsize  = dev->mtu;
3563
3564         e = cxgb4_sched_class_alloc(dev, &p);
3565         if (!e)
3566                 return -ENOMEM;
3567
3568         /* Bind the queue to a scheduling class */
3569         memset(&qe, 0, sizeof(qe));
3570         qe.queue = index;
3571         qe.class = e->idx;
3572
3573         err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3574         if (err)
3575                 dev_err(adap->pdev_dev,
3576                         "Queue rate limiting failed. Err: %d\n", err);
3577         return err;
3578 }
3579
3580 static int cxgb_setup_tc_flower(struct net_device *dev,
3581                                 struct flow_cls_offload *cls_flower)
3582 {
3583         switch (cls_flower->command) {
3584         case FLOW_CLS_REPLACE:
3585                 return cxgb4_tc_flower_replace(dev, cls_flower);
3586         case FLOW_CLS_DESTROY:
3587                 return cxgb4_tc_flower_destroy(dev, cls_flower);
3588         case FLOW_CLS_STATS:
3589                 return cxgb4_tc_flower_stats(dev, cls_flower);
3590         default:
3591                 return -EOPNOTSUPP;
3592         }
3593 }
3594
3595 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3596                                  struct tc_cls_u32_offload *cls_u32)
3597 {
3598         switch (cls_u32->command) {
3599         case TC_CLSU32_NEW_KNODE:
3600         case TC_CLSU32_REPLACE_KNODE:
3601                 return cxgb4_config_knode(dev, cls_u32);
3602         case TC_CLSU32_DELETE_KNODE:
3603                 return cxgb4_delete_knode(dev, cls_u32);
3604         default:
3605                 return -EOPNOTSUPP;
3606         }
3607 }
3608
3609 static int cxgb_setup_tc_matchall(struct net_device *dev,
3610                                   struct tc_cls_matchall_offload *cls_matchall,
3611                                   bool ingress)
3612 {
3613         struct adapter *adap = netdev2adap(dev);
3614
3615         if (!adap->tc_matchall)
3616                 return -ENOMEM;
3617
3618         switch (cls_matchall->command) {
3619         case TC_CLSMATCHALL_REPLACE:
3620                 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3621         case TC_CLSMATCHALL_DESTROY:
3622                 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3623         case TC_CLSMATCHALL_STATS:
3624                 if (ingress)
3625                         return cxgb4_tc_matchall_stats(dev, cls_matchall);
3626                 break;
3627         default:
3628                 break;
3629         }
3630
3631         return -EOPNOTSUPP;
3632 }
3633
3634 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3635                                           void *type_data, void *cb_priv)
3636 {
3637         struct net_device *dev = cb_priv;
3638         struct port_info *pi = netdev2pinfo(dev);
3639         struct adapter *adap = netdev2adap(dev);
3640
3641         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3642                 dev_err(adap->pdev_dev,
3643                         "Failed to setup tc on port %d. Link Down?\n",
3644                         pi->port_id);
3645                 return -EINVAL;
3646         }
3647
3648         if (!tc_cls_can_offload_and_chain0(dev, type_data))
3649                 return -EOPNOTSUPP;
3650
3651         switch (type) {
3652         case TC_SETUP_CLSU32:
3653                 return cxgb_setup_tc_cls_u32(dev, type_data);
3654         case TC_SETUP_CLSFLOWER:
3655                 return cxgb_setup_tc_flower(dev, type_data);
3656         case TC_SETUP_CLSMATCHALL:
3657                 return cxgb_setup_tc_matchall(dev, type_data, true);
3658         default:
3659                 return -EOPNOTSUPP;
3660         }
3661 }
3662
3663 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3664                                          void *type_data, void *cb_priv)
3665 {
3666         struct net_device *dev = cb_priv;
3667         struct port_info *pi = netdev2pinfo(dev);
3668         struct adapter *adap = netdev2adap(dev);
3669
3670         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3671                 dev_err(adap->pdev_dev,
3672                         "Failed to setup tc on port %d. Link Down?\n",
3673                         pi->port_id);
3674                 return -EINVAL;
3675         }
3676
3677         if (!tc_cls_can_offload_and_chain0(dev, type_data))
3678                 return -EOPNOTSUPP;
3679
3680         switch (type) {
3681         case TC_SETUP_CLSMATCHALL:
3682                 return cxgb_setup_tc_matchall(dev, type_data, false);
3683         default:
3684                 break;
3685         }
3686
3687         return -EOPNOTSUPP;
3688 }
3689
3690 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3691                                 struct tc_mqprio_qopt_offload *mqprio)
3692 {
3693         struct adapter *adap = netdev2adap(dev);
3694
3695         if (!is_ethofld(adap) || !adap->tc_mqprio)
3696                 return -ENOMEM;
3697
3698         return cxgb4_setup_tc_mqprio(dev, mqprio);
3699 }
3700
3701 static LIST_HEAD(cxgb_block_cb_list);
3702
3703 static int cxgb_setup_tc_block(struct net_device *dev,
3704                                struct flow_block_offload *f)
3705 {
3706         struct port_info *pi = netdev_priv(dev);
3707         flow_setup_cb_t *cb;
3708         bool ingress_only;
3709
3710         pi->tc_block_shared = f->block_shared;
3711         if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3712                 cb = cxgb_setup_tc_block_egress_cb;
3713                 ingress_only = false;
3714         } else {
3715                 cb = cxgb_setup_tc_block_ingress_cb;
3716                 ingress_only = true;
3717         }
3718
3719         return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3720                                           cb, pi, dev, ingress_only);
3721 }
3722
3723 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3724                          void *type_data)
3725 {
3726         switch (type) {
3727         case TC_SETUP_QDISC_MQPRIO:
3728                 return cxgb_setup_tc_mqprio(dev, type_data);
3729         case TC_SETUP_BLOCK:
3730                 return cxgb_setup_tc_block(dev, type_data);
3731         default:
3732                 return -EOPNOTSUPP;
3733         }
3734 }
3735
3736 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3737                                       unsigned int table, unsigned int entry,
3738                                       struct udp_tunnel_info *ti)
3739 {
3740         struct port_info *pi = netdev_priv(netdev);
3741         struct adapter *adapter = pi->adapter;
3742         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3743         int ret = 0, i;
3744
3745         switch (ti->type) {
3746         case UDP_TUNNEL_TYPE_VXLAN:
3747                 adapter->vxlan_port = 0;
3748                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3749                 break;
3750         case UDP_TUNNEL_TYPE_GENEVE:
3751                 adapter->geneve_port = 0;
3752                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3753                 break;
3754         default:
3755                 return -EINVAL;
3756         }
3757
3758         /* Matchall mac entries can be deleted only after all tunnel ports
3759          * are brought down or removed.
3760          */
3761         if (!adapter->rawf_cnt)
3762                 return 0;
3763         for_each_port(adapter, i) {
3764                 pi = adap2pinfo(adapter, i);
3765                 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3766                                            match_all_mac, match_all_mac,
3767                                            adapter->rawf_start + pi->port_id,
3768                                            1, pi->port_id, false);
3769                 if (ret < 0) {
3770                         netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3771                                     i);
3772                         return ret;
3773                 }
3774         }
3775
3776         return 0;
3777 }
3778
3779 static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3780                                     unsigned int table, unsigned int entry,
3781                                     struct udp_tunnel_info *ti)
3782 {
3783         struct port_info *pi = netdev_priv(netdev);
3784         struct adapter *adapter = pi->adapter;
3785         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3786         int i, ret;
3787
3788         switch (ti->type) {
3789         case UDP_TUNNEL_TYPE_VXLAN:
3790                 adapter->vxlan_port = ti->port;
3791                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3792                              VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3793                 break;
3794         case UDP_TUNNEL_TYPE_GENEVE:
3795                 adapter->geneve_port = ti->port;
3796                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3797                              GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3798                 break;
3799         default:
3800                 return -EINVAL;
3801         }
3802
3803         /* Create a 'match all' mac filter entry for inner mac,
3804          * if raw mac interface is supported. Once the linux kernel provides
3805          * driver entry points for adding/deleting the inner mac addresses,
3806          * we will remove this 'match all' entry and fallback to adding
3807          * exact match filters.
3808          */
3809         for_each_port(adapter, i) {
3810                 pi = adap2pinfo(adapter, i);
3811
3812                 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3813                                             match_all_mac,
3814                                             match_all_mac,
3815                                             adapter->rawf_start + pi->port_id,
3816                                             1, pi->port_id, false);
3817                 if (ret < 0) {
3818                         netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3819                                     be16_to_cpu(ti->port));
3820                         return ret;
3821                 }
3822         }
3823
3824         return 0;
3825 }
3826
3827 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3828         .set_port       = cxgb_udp_tunnel_set_port,
3829         .unset_port     = cxgb_udp_tunnel_unset_port,
3830         .tables         = {
3831                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
3832                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3833         },
3834 };
3835
3836 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3837                                              struct net_device *dev,
3838                                              netdev_features_t features)
3839 {
3840         struct port_info *pi = netdev_priv(dev);
3841         struct adapter *adapter = pi->adapter;
3842
3843         if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3844                 return features;
3845
3846         /* Check if hw supports offload for this packet */
3847         if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3848                 return features;
3849
3850         /* Offload is not supported for this encapsulated packet */
3851         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3852 }
3853
3854 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3855                                            netdev_features_t features)
3856 {
3857         /* Disable GRO, if RX_CSUM is disabled */
3858         if (!(features & NETIF_F_RXCSUM))
3859                 features &= ~NETIF_F_GRO;
3860
3861         return features;
3862 }
3863
3864 static const struct net_device_ops cxgb4_netdev_ops = {
3865         .ndo_open             = cxgb_open,
3866         .ndo_stop             = cxgb_close,
3867         .ndo_start_xmit       = t4_start_xmit,
3868         .ndo_select_queue     = cxgb_select_queue,
3869         .ndo_get_stats64      = cxgb_get_stats,
3870         .ndo_set_rx_mode      = cxgb_set_rxmode,
3871         .ndo_set_mac_address  = cxgb_set_mac_addr,
3872         .ndo_set_features     = cxgb_set_features,
3873         .ndo_validate_addr    = eth_validate_addr,
3874         .ndo_do_ioctl         = cxgb_ioctl,
3875         .ndo_change_mtu       = cxgb_change_mtu,
3876 #ifdef CONFIG_NET_POLL_CONTROLLER
3877         .ndo_poll_controller  = cxgb_netpoll,
3878 #endif
3879 #ifdef CONFIG_CHELSIO_T4_FCOE
3880         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3881         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3882 #endif /* CONFIG_CHELSIO_T4_FCOE */
3883         .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3884         .ndo_setup_tc         = cxgb_setup_tc,
3885         .ndo_features_check   = cxgb_features_check,
3886         .ndo_fix_features     = cxgb_fix_features,
3887 };
3888
3889 #ifdef CONFIG_PCI_IOV
3890 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3891         .ndo_open               = cxgb4_mgmt_open,
3892         .ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3893         .ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3894         .ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3895         .ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3896         .ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3897         .ndo_set_vf_link_state  = cxgb4_mgmt_set_vf_link_state,
3898 };
3899 #endif
3900
3901 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3902                                    struct ethtool_drvinfo *info)
3903 {
3904         struct adapter *adapter = netdev2adap(dev);
3905
3906         strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3907         strlcpy(info->bus_info, pci_name(adapter->pdev),
3908                 sizeof(info->bus_info));
3909 }
3910
3911 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3912         .get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3913 };
3914
3915 static void notify_fatal_err(struct work_struct *work)
3916 {
3917         struct adapter *adap;
3918
3919         adap = container_of(work, struct adapter, fatal_err_notify_task);
3920         notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3921 }
3922
3923 void t4_fatal_err(struct adapter *adap)
3924 {
3925         int port;
3926
3927         if (pci_channel_offline(adap->pdev))
3928                 return;
3929
3930         /* Disable the SGE since ULDs are going to free resources that
3931          * could be exposed to the adapter.  RDMA MWs for example...
3932          */
3933         t4_shutdown_adapter(adap);
3934         for_each_port(adap, port) {
3935                 struct net_device *dev = adap->port[port];
3936
3937                 /* If we get here in very early initialization the network
3938                  * devices may not have been set up yet.
3939                  */
3940                 if (!dev)
3941                         continue;
3942
3943                 netif_tx_stop_all_queues(dev);
3944                 netif_carrier_off(dev);
3945         }
3946         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3947         queue_work(adap->workq, &adap->fatal_err_notify_task);
3948 }
3949
3950 static void setup_memwin(struct adapter *adap)
3951 {
3952         u32 nic_win_base = t4_get_util_window(adap);
3953
3954         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3955 }
3956
3957 static void setup_memwin_rdma(struct adapter *adap)
3958 {
3959         if (adap->vres.ocq.size) {
3960                 u32 start;
3961                 unsigned int sz_kb;
3962
3963                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3964                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3965                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3966                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3967                 t4_write_reg(adap,
3968                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3969                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3970                 t4_write_reg(adap,
3971                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3972                              adap->vres.ocq.start);
3973                 t4_read_reg(adap,
3974                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3975         }
3976 }
3977
3978 /* HMA Definitions */
3979
3980 /* The maximum number of address that can be send in a single FW cmd */
3981 #define HMA_MAX_ADDR_IN_CMD     5
3982
3983 #define HMA_PAGE_SIZE           PAGE_SIZE
3984
3985 #define HMA_MAX_NO_FW_ADDRESS   (16 << 10)  /* FW supports 16K addresses */
3986
3987 #define HMA_PAGE_ORDER                                  \
3988         ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?      \
3989         ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3990
3991 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3992  * configuration(in units of MB).
3993  */
3994 #define HMA_MIN_TOTAL_SIZE      1
3995 #define HMA_MAX_TOTAL_SIZE                              \
3996         (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *           \
3997           HMA_MAX_NO_FW_ADDRESS) >> 20)
3998
3999 static void adap_free_hma_mem(struct adapter *adapter)
4000 {
4001         struct scatterlist *iter;
4002         struct page *page;
4003         int i;
4004
4005         if (!adapter->hma.sgt)
4006                 return;
4007
4008         if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4009                 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4010                              adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
4011                 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4012         }
4013
4014         for_each_sg(adapter->hma.sgt->sgl, iter,
4015                     adapter->hma.sgt->orig_nents, i) {
4016                 page = sg_page(iter);
4017                 if (page)
4018                         __free_pages(page, HMA_PAGE_ORDER);
4019         }
4020
4021         kfree(adapter->hma.phy_addr);
4022         sg_free_table(adapter->hma.sgt);
4023         kfree(adapter->hma.sgt);
4024         adapter->hma.sgt = NULL;
4025 }
4026
4027 static int adap_config_hma(struct adapter *adapter)
4028 {
4029         struct scatterlist *sgl, *iter;
4030         struct sg_table *sgt;
4031         struct page *newpage;
4032         unsigned int i, j, k;
4033         u32 param, hma_size;
4034         unsigned int ncmds;
4035         size_t page_size;
4036         u32 page_order;
4037         int node, ret;
4038
4039         /* HMA is supported only for T6+ cards.
4040          * Avoid initializing HMA in kdump kernels.
4041          */
4042         if (is_kdump_kernel() ||
4043             CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4044                 return 0;
4045
4046         /* Get the HMA region size required by fw */
4047         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4048                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4049         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4050                               1, &param, &hma_size);
4051         /* An error means card has its own memory or HMA is not supported by
4052          * the firmware. Return without any errors.
4053          */
4054         if (ret || !hma_size)
4055                 return 0;
4056
4057         if (hma_size < HMA_MIN_TOTAL_SIZE ||
4058             hma_size > HMA_MAX_TOTAL_SIZE) {
4059                 dev_err(adapter->pdev_dev,
4060                         "HMA size %uMB beyond bounds(%u-%lu)MB\n",
4061                         hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4062                 return -EINVAL;
4063         }
4064
4065         page_size = HMA_PAGE_SIZE;
4066         page_order = HMA_PAGE_ORDER;
4067         adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4068         if (unlikely(!adapter->hma.sgt)) {
4069                 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4070                 return -ENOMEM;
4071         }
4072         sgt = adapter->hma.sgt;
4073         /* FW returned value will be in MB's
4074          */
4075         sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4076         if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4077                 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4078                 kfree(adapter->hma.sgt);
4079                 adapter->hma.sgt = NULL;
4080                 return -ENOMEM;
4081         }
4082
4083         sgl = adapter->hma.sgt->sgl;
4084         node = dev_to_node(adapter->pdev_dev);
4085         for_each_sg(sgl, iter, sgt->orig_nents, i) {
4086                 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4087                                            __GFP_ZERO, page_order);
4088                 if (!newpage) {
4089                         dev_err(adapter->pdev_dev,
4090                                 "Not enough memory for HMA page allocation\n");
4091                         ret = -ENOMEM;
4092                         goto free_hma;
4093                 }
4094                 sg_set_page(iter, newpage, page_size << page_order, 0);
4095         }
4096
4097         sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4098                                 DMA_BIDIRECTIONAL);
4099         if (!sgt->nents) {
4100                 dev_err(adapter->pdev_dev,
4101                         "Not enough memory for HMA DMA mapping");
4102                 ret = -ENOMEM;
4103                 goto free_hma;
4104         }
4105         adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4106
4107         adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4108                                         GFP_KERNEL);
4109         if (unlikely(!adapter->hma.phy_addr))
4110                 goto free_hma;
4111
4112         for_each_sg(sgl, iter, sgt->nents, i) {
4113                 newpage = sg_page(iter);
4114                 adapter->hma.phy_addr[i] = sg_dma_address(iter);
4115         }
4116
4117         ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4118         /* Pass on the addresses to firmware */
4119         for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4120                 struct fw_hma_cmd hma_cmd;
4121                 u8 naddr = HMA_MAX_ADDR_IN_CMD;
4122                 u8 soc = 0, eoc = 0;
4123                 u8 hma_mode = 1; /* Presently we support only Page table mode */
4124
4125                 soc = (i == 0) ? 1 : 0;
4126                 eoc = (i == ncmds - 1) ? 1 : 0;
4127
4128                 /* For last cmd, set naddr corresponding to remaining
4129                  * addresses
4130                  */
4131                 if (i == ncmds - 1) {
4132                         naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4133                         naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4134                 }
4135                 memset(&hma_cmd, 0, sizeof(hma_cmd));
4136                 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4137                                        FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4138                 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4139
4140                 hma_cmd.mode_to_pcie_params =
4141                         htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4142                               FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4143
4144                 /* HMA cmd size specified in MB's */
4145                 hma_cmd.naddr_size =
4146                         htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4147                               FW_HMA_CMD_NADDR_V(naddr));
4148
4149                 /* Total Page size specified in units of 4K */
4150                 hma_cmd.addr_size_pkd =
4151                         htonl(FW_HMA_CMD_ADDR_SIZE_V
4152                                 ((page_size << page_order) >> 12));
4153
4154                 /* Fill the 5 addresses */
4155                 for (j = 0; j < naddr; j++) {
4156                         hma_cmd.phy_address[j] =
4157                                 cpu_to_be64(adapter->hma.phy_addr[j + k]);
4158                 }
4159                 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4160                                  sizeof(hma_cmd), &hma_cmd);
4161                 if (ret) {
4162                         dev_err(adapter->pdev_dev,
4163                                 "HMA FW command failed with err %d\n", ret);
4164                         goto free_hma;
4165                 }
4166         }
4167
4168         if (!ret)
4169                 dev_info(adapter->pdev_dev,
4170                          "Reserved %uMB host memory for HMA\n", hma_size);
4171         return ret;
4172
4173 free_hma:
4174         adap_free_hma_mem(adapter);
4175         return ret;
4176 }
4177
4178 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4179 {
4180         u32 v;
4181         int ret;
4182
4183         /* Now that we've successfully configured and initialized the adapter
4184          * can ask the Firmware what resources it has provisioned for us.
4185          */
4186         ret = t4_get_pfres(adap);
4187         if (ret) {
4188                 dev_err(adap->pdev_dev,
4189                         "Unable to retrieve resource provisioning information\n");
4190                 return ret;
4191         }
4192
4193         /* get device capabilities */
4194         memset(c, 0, sizeof(*c));
4195         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4196                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
4197         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4198         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4199         if (ret < 0)
4200                 return ret;
4201
4202         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4203                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4204         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4205         if (ret < 0)
4206                 return ret;
4207
4208         ret = t4_config_glbl_rss(adap, adap->pf,
4209                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4210                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4211                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4212         if (ret < 0)
4213                 return ret;
4214
4215         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4216                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4217                           FW_CMD_CAP_PF);
4218         if (ret < 0)
4219                 return ret;
4220
4221         t4_sge_init(adap);
4222
4223         /* tweak some settings */
4224         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4225         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4226         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4227         v = t4_read_reg(adap, TP_PIO_DATA_A);
4228         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4229
4230         /* first 4 Tx modulation queues point to consecutive Tx channels */
4231         adap->params.tp.tx_modq_map = 0xE4;
4232         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4233                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4234
4235         /* associate each Tx modulation queue with consecutive Tx channels */
4236         v = 0x84218421;
4237         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4238                           &v, 1, TP_TX_SCHED_HDR_A);
4239         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4240                           &v, 1, TP_TX_SCHED_FIFO_A);
4241         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4242                           &v, 1, TP_TX_SCHED_PCMD_A);
4243
4244 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4245         if (is_offload(adap)) {
4246                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4247                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4248                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4249                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4250                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4251                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4252                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4253                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4254                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4255                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4256         }
4257
4258         /* get basic stuff going */
4259         return t4_early_init(adap, adap->pf);
4260 }
4261
4262 /*
4263  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4264  */
4265 #define MAX_ATIDS 8192U
4266
4267 /*
4268  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4269  *
4270  * If the firmware we're dealing with has Configuration File support, then
4271  * we use that to perform all configuration
4272  */
4273
4274 /*
4275  * Tweak configuration based on module parameters, etc.  Most of these have
4276  * defaults assigned to them by Firmware Configuration Files (if we're using
4277  * them) but need to be explicitly set if we're using hard-coded
4278  * initialization.  But even in the case of using Firmware Configuration
4279  * Files, we'd like to expose the ability to change these via module
4280  * parameters so these are essentially common tweaks/settings for
4281  * Configuration Files and hard-coded initialization ...
4282  */
4283 static int adap_init0_tweaks(struct adapter *adapter)
4284 {
4285         /*
4286          * Fix up various Host-Dependent Parameters like Page Size, Cache
4287          * Line Size, etc.  The firmware default is for a 4KB Page Size and
4288          * 64B Cache Line Size ...
4289          */
4290         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4291
4292         /*
4293          * Process module parameters which affect early initialization.
4294          */
4295         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4296                 dev_err(&adapter->pdev->dev,
4297                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
4298                         rx_dma_offset);
4299                 rx_dma_offset = 2;
4300         }
4301         t4_set_reg_field(adapter, SGE_CONTROL_A,
4302                          PKTSHIFT_V(PKTSHIFT_M),
4303                          PKTSHIFT_V(rx_dma_offset));
4304
4305         /*
4306          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4307          * adds the pseudo header itself.
4308          */
4309         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4310                                CSUM_HAS_PSEUDO_HDR_F, 0);
4311
4312         return 0;
4313 }
4314
4315 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4316  * unto themselves and they contain their own firmware to perform their
4317  * tasks ...
4318  */
4319 static int phy_aq1202_version(const u8 *phy_fw_data,
4320                               size_t phy_fw_size)
4321 {
4322         int offset;
4323
4324         /* At offset 0x8 you're looking for the primary image's
4325          * starting offset which is 3 Bytes wide
4326          *
4327          * At offset 0xa of the primary image, you look for the offset
4328          * of the DRAM segment which is 3 Bytes wide.
4329          *
4330          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4331          * wide
4332          */
4333         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
4334         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4335         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
4336
4337         offset = le24(phy_fw_data + 0x8) << 12;
4338         offset = le24(phy_fw_data + offset + 0xa);
4339         return be16(phy_fw_data + offset + 0x27e);
4340
4341         #undef be16
4342         #undef le16
4343         #undef le24
4344 }
4345
4346 static struct info_10gbt_phy_fw {
4347         unsigned int phy_fw_id;         /* PCI Device ID */
4348         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
4349         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4350         int phy_flash;                  /* Has FLASH for PHY Firmware */
4351 } phy_info_array[] = {
4352         {
4353                 PHY_AQ1202_DEVICEID,
4354                 PHY_AQ1202_FIRMWARE,
4355                 phy_aq1202_version,
4356                 1,
4357         },
4358         {
4359                 PHY_BCM84834_DEVICEID,
4360                 PHY_BCM84834_FIRMWARE,
4361                 NULL,
4362                 0,
4363         },
4364         { 0, NULL, NULL },
4365 };
4366
4367 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4368 {
4369         int i;
4370
4371         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4372                 if (phy_info_array[i].phy_fw_id == devid)
4373                         return &phy_info_array[i];
4374         }
4375         return NULL;
4376 }
4377
4378 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4379  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4380  * we return a negative error number.  If we transfer new firmware we return 1
4381  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4382  */
4383 static int adap_init0_phy(struct adapter *adap)
4384 {
4385         const struct firmware *phyf;
4386         int ret;
4387         struct info_10gbt_phy_fw *phy_info;
4388
4389         /* Use the device ID to determine which PHY file to flash.
4390          */
4391         phy_info = find_phy_info(adap->pdev->device);
4392         if (!phy_info) {
4393                 dev_warn(adap->pdev_dev,
4394                          "No PHY Firmware file found for this PHY\n");
4395                 return -EOPNOTSUPP;
4396         }
4397
4398         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4399          * use that. The adapter firmware provides us with a memory buffer
4400          * where we can load a PHY firmware file from the host if we want to
4401          * override the PHY firmware File in flash.
4402          */
4403         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4404                                       adap->pdev_dev);
4405         if (ret < 0) {
4406                 /* For adapters without FLASH attached to PHY for their
4407                  * firmware, it's obviously a fatal error if we can't get the
4408                  * firmware to the adapter.  For adapters with PHY firmware
4409                  * FLASH storage, it's worth a warning if we can't find the
4410                  * PHY Firmware but we'll neuter the error ...
4411                  */
4412                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4413                         "/lib/firmware/%s, error %d\n",
4414                         phy_info->phy_fw_file, -ret);
4415                 if (phy_info->phy_flash) {
4416                         int cur_phy_fw_ver = 0;
4417
4418                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4419                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4420                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
4421                         ret = 0;
4422                 }
4423
4424                 return ret;
4425         }
4426
4427         /* Load PHY Firmware onto adapter.
4428          */
4429         spin_lock_bh(&adap->win0_lock);
4430         ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4431                              (u8 *)phyf->data, phyf->size);
4432         spin_unlock_bh(&adap->win0_lock);
4433         if (ret < 0)
4434                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4435                         -ret);
4436         else if (ret > 0) {
4437                 int new_phy_fw_ver = 0;
4438
4439                 if (phy_info->phy_fw_version)
4440                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4441                                                                   phyf->size);
4442                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
4443                          "Firmware /lib/firmware/%s, version %#x\n",
4444                          phy_info->phy_fw_file, new_phy_fw_ver);
4445         }
4446
4447         release_firmware(phyf);
4448
4449         return ret;
4450 }
4451
4452 /*
4453  * Attempt to initialize the adapter via a Firmware Configuration File.
4454  */
4455 static int adap_init0_config(struct adapter *adapter, int reset)
4456 {
4457         char *fw_config_file, fw_config_file_path[256];
4458         u32 finiver, finicsum, cfcsum, param, val;
4459         struct fw_caps_config_cmd caps_cmd;
4460         unsigned long mtype = 0, maddr = 0;
4461         const struct firmware *cf;
4462         char *config_name = NULL;
4463         int config_issued = 0;
4464         int ret;
4465
4466         /*
4467          * Reset device if necessary.
4468          */
4469         if (reset) {
4470                 ret = t4_fw_reset(adapter, adapter->mbox,
4471                                   PIORSTMODE_F | PIORST_F);
4472                 if (ret < 0)
4473                         goto bye;
4474         }
4475
4476         /* If this is a 10Gb/s-BT adapter make sure the chip-external
4477          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4478          * to be performed after any global adapter RESET above since some
4479          * PHYs only have local RAM copies of the PHY firmware.
4480          */
4481         if (is_10gbt_device(adapter->pdev->device)) {
4482                 ret = adap_init0_phy(adapter);
4483                 if (ret < 0)
4484                         goto bye;
4485         }
4486         /*
4487          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4488          * then use that.  Otherwise, use the configuration file stored
4489          * in the adapter flash ...
4490          */
4491         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4492         case CHELSIO_T4:
4493                 fw_config_file = FW4_CFNAME;
4494                 break;
4495         case CHELSIO_T5:
4496                 fw_config_file = FW5_CFNAME;
4497                 break;
4498         case CHELSIO_T6:
4499                 fw_config_file = FW6_CFNAME;
4500                 break;
4501         default:
4502                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4503                        adapter->pdev->device);
4504                 ret = -EINVAL;
4505                 goto bye;
4506         }
4507
4508         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4509         if (ret < 0) {
4510                 config_name = "On FLASH";
4511                 mtype = FW_MEMTYPE_CF_FLASH;
4512                 maddr = t4_flash_cfg_addr(adapter);
4513         } else {
4514                 u32 params[7], val[7];
4515
4516                 sprintf(fw_config_file_path,
4517                         "/lib/firmware/%s", fw_config_file);
4518                 config_name = fw_config_file_path;
4519
4520                 if (cf->size >= FLASH_CFG_MAX_SIZE)
4521                         ret = -ENOMEM;
4522                 else {
4523                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4524                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4525                         ret = t4_query_params(adapter, adapter->mbox,
4526                                               adapter->pf, 0, 1, params, val);
4527                         if (ret == 0) {
4528                                 /*
4529                                  * For t4_memory_rw() below addresses and
4530                                  * sizes have to be in terms of multiples of 4
4531                                  * bytes.  So, if the Configuration File isn't
4532                                  * a multiple of 4 bytes in length we'll have
4533                                  * to write that out separately since we can't
4534                                  * guarantee that the bytes following the
4535                                  * residual byte in the buffer returned by
4536                                  * request_firmware() are zeroed out ...
4537                                  */
4538                                 size_t resid = cf->size & 0x3;
4539                                 size_t size = cf->size & ~0x3;
4540                                 __be32 *data = (__be32 *)cf->data;
4541
4542                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4543                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4544
4545                                 spin_lock(&adapter->win0_lock);
4546                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
4547                                                    size, data, T4_MEMORY_WRITE);
4548                                 if (ret == 0 && resid != 0) {
4549                                         union {
4550                                                 __be32 word;
4551                                                 char buf[4];
4552                                         } last;
4553                                         int i;
4554
4555                                         last.word = data[size >> 2];
4556                                         for (i = resid; i < 4; i++)
4557                                                 last.buf[i] = 0;
4558                                         ret = t4_memory_rw(adapter, 0, mtype,
4559                                                            maddr + size,
4560                                                            4, &last.word,
4561                                                            T4_MEMORY_WRITE);
4562                                 }
4563                                 spin_unlock(&adapter->win0_lock);
4564                         }
4565                 }
4566
4567                 release_firmware(cf);
4568                 if (ret)
4569                         goto bye;
4570         }
4571
4572         val = 0;
4573
4574         /* Ofld + Hash filter is supported. Older fw will fail this request and
4575          * it is fine.
4576          */
4577         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4578                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4579         ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4580                             1, &param, &val);
4581
4582         /* FW doesn't know about Hash filter + ofld support,
4583          * it's not a problem, don't return an error.
4584          */
4585         if (ret < 0) {
4586                 dev_warn(adapter->pdev_dev,
4587                          "Hash filter with ofld is not supported by FW\n");
4588         }
4589
4590         /*
4591          * Issue a Capability Configuration command to the firmware to get it
4592          * to parse the Configuration File.  We don't use t4_fw_config_file()
4593          * because we want the ability to modify various features after we've
4594          * processed the configuration file ...
4595          */
4596         memset(&caps_cmd, 0, sizeof(caps_cmd));
4597         caps_cmd.op_to_write =
4598                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4599                       FW_CMD_REQUEST_F |
4600                       FW_CMD_READ_F);
4601         caps_cmd.cfvalid_to_len16 =
4602                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4603                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4604                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4605                       FW_LEN16(caps_cmd));
4606         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4607                          &caps_cmd);
4608
4609         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4610          * Configuration File in FLASH), our last gasp effort is to use the
4611          * Firmware Configuration File which is embedded in the firmware.  A
4612          * very few early versions of the firmware didn't have one embedded
4613          * but we can ignore those.
4614          */
4615         if (ret == -ENOENT) {
4616                 memset(&caps_cmd, 0, sizeof(caps_cmd));
4617                 caps_cmd.op_to_write =
4618                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4619                                         FW_CMD_REQUEST_F |
4620                                         FW_CMD_READ_F);
4621                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4622                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4623                                 sizeof(caps_cmd), &caps_cmd);
4624                 config_name = "Firmware Default";
4625         }
4626
4627         config_issued = 1;
4628         if (ret < 0)
4629                 goto bye;
4630
4631         finiver = ntohl(caps_cmd.finiver);
4632         finicsum = ntohl(caps_cmd.finicsum);
4633         cfcsum = ntohl(caps_cmd.cfcsum);
4634         if (finicsum != cfcsum)
4635                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4636                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4637                          finicsum, cfcsum);
4638
4639         /*
4640          * And now tell the firmware to use the configuration we just loaded.
4641          */
4642         caps_cmd.op_to_write =
4643                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4644                       FW_CMD_REQUEST_F |
4645                       FW_CMD_WRITE_F);
4646         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4647         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4648                          NULL);
4649         if (ret < 0)
4650                 goto bye;
4651
4652         /*
4653          * Tweak configuration based on system architecture, module
4654          * parameters, etc.
4655          */
4656         ret = adap_init0_tweaks(adapter);
4657         if (ret < 0)
4658                 goto bye;
4659
4660         /* We will proceed even if HMA init fails. */
4661         ret = adap_config_hma(adapter);
4662         if (ret)
4663                 dev_err(adapter->pdev_dev,
4664                         "HMA configuration failed with error %d\n", ret);
4665
4666         if (is_t6(adapter->params.chip)) {
4667                 adap_config_hpfilter(adapter);
4668                 ret = setup_ppod_edram(adapter);
4669                 if (!ret)
4670                         dev_info(adapter->pdev_dev, "Successfully enabled "
4671                                  "ppod edram feature\n");
4672         }
4673
4674         /*
4675          * And finally tell the firmware to initialize itself using the
4676          * parameters from the Configuration File.
4677          */
4678         ret = t4_fw_initialize(adapter, adapter->mbox);
4679         if (ret < 0)
4680                 goto bye;
4681
4682         /* Emit Firmware Configuration File information and return
4683          * successfully.
4684          */
4685         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4686                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4687                  config_name, finiver, cfcsum);
4688         return 0;
4689
4690         /*
4691          * Something bad happened.  Return the error ...  (If the "error"
4692          * is that there's no Configuration File on the adapter we don't
4693          * want to issue a warning since this is fairly common.)
4694          */
4695 bye:
4696         if (config_issued && ret != -ENOENT)
4697                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4698                          config_name, -ret);
4699         return ret;
4700 }
4701
4702 static struct fw_info fw_info_array[] = {
4703         {
4704                 .chip = CHELSIO_T4,
4705                 .fs_name = FW4_CFNAME,
4706                 .fw_mod_name = FW4_FNAME,
4707                 .fw_hdr = {
4708                         .chip = FW_HDR_CHIP_T4,
4709                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4710                         .intfver_nic = FW_INTFVER(T4, NIC),
4711                         .intfver_vnic = FW_INTFVER(T4, VNIC),
4712                         .intfver_ri = FW_INTFVER(T4, RI),
4713                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4714                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
4715                 },
4716         }, {
4717                 .chip = CHELSIO_T5,
4718                 .fs_name = FW5_CFNAME,
4719                 .fw_mod_name = FW5_FNAME,
4720                 .fw_hdr = {
4721                         .chip = FW_HDR_CHIP_T5,
4722                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4723                         .intfver_nic = FW_INTFVER(T5, NIC),
4724                         .intfver_vnic = FW_INTFVER(T5, VNIC),
4725                         .intfver_ri = FW_INTFVER(T5, RI),
4726                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4727                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
4728                 },
4729         }, {
4730                 .chip = CHELSIO_T6,
4731                 .fs_name = FW6_CFNAME,
4732                 .fw_mod_name = FW6_FNAME,
4733                 .fw_hdr = {
4734                         .chip = FW_HDR_CHIP_T6,
4735                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4736                         .intfver_nic = FW_INTFVER(T6, NIC),
4737                         .intfver_vnic = FW_INTFVER(T6, VNIC),
4738                         .intfver_ofld = FW_INTFVER(T6, OFLD),
4739                         .intfver_ri = FW_INTFVER(T6, RI),
4740                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4741                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4742                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4743                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
4744                 },
4745         }
4746
4747 };
4748
4749 static struct fw_info *find_fw_info(int chip)
4750 {
4751         int i;
4752
4753         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4754                 if (fw_info_array[i].chip == chip)
4755                         return &fw_info_array[i];
4756         }
4757         return NULL;
4758 }
4759
4760 /*
4761  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4762  */
4763 static int adap_init0(struct adapter *adap, int vpd_skip)
4764 {
4765         struct fw_caps_config_cmd caps_cmd;
4766         u32 params[7], val[7];
4767         enum dev_state state;
4768         u32 v, port_vec;
4769         int reset = 1;
4770         int ret;
4771
4772         /* Grab Firmware Device Log parameters as early as possible so we have
4773          * access to it for debugging, etc.
4774          */
4775         ret = t4_init_devlog_params(adap);
4776         if (ret < 0)
4777                 return ret;
4778
4779         /* Contact FW, advertising Master capability */
4780         ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4781                           is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4782         if (ret < 0) {
4783                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4784                         ret);
4785                 return ret;
4786         }
4787         if (ret == adap->mbox)
4788                 adap->flags |= CXGB4_MASTER_PF;
4789
4790         /*
4791          * If we're the Master PF Driver and the device is uninitialized,
4792          * then let's consider upgrading the firmware ...  (We always want
4793          * to check the firmware version number in order to A. get it for
4794          * later reporting and B. to warn if the currently loaded firmware
4795          * is excessively mismatched relative to the driver.)
4796          */
4797
4798         t4_get_version_info(adap);
4799         ret = t4_check_fw_version(adap);
4800         /* If firmware is too old (not supported by driver) force an update. */
4801         if (ret)
4802                 state = DEV_STATE_UNINIT;
4803         if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4804                 struct fw_info *fw_info;
4805                 struct fw_hdr *card_fw;
4806                 const struct firmware *fw;
4807                 const u8 *fw_data = NULL;
4808                 unsigned int fw_size = 0;
4809
4810                 /* This is the firmware whose headers the driver was compiled
4811                  * against
4812                  */
4813                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4814                 if (fw_info == NULL) {
4815                         dev_err(adap->pdev_dev,
4816                                 "unable to get firmware info for chip %d.\n",
4817                                 CHELSIO_CHIP_VERSION(adap->params.chip));
4818                         return -EINVAL;
4819                 }
4820
4821                 /* allocate memory to read the header of the firmware on the
4822                  * card
4823                  */
4824                 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4825                 if (!card_fw) {
4826                         ret = -ENOMEM;
4827                         goto bye;
4828                 }
4829
4830                 /* Get FW from from /lib/firmware/ */
4831                 ret = request_firmware(&fw, fw_info->fw_mod_name,
4832                                        adap->pdev_dev);
4833                 if (ret < 0) {
4834                         dev_err(adap->pdev_dev,
4835                                 "unable to load firmware image %s, error %d\n",
4836                                 fw_info->fw_mod_name, ret);
4837                 } else {
4838                         fw_data = fw->data;
4839                         fw_size = fw->size;
4840                 }
4841
4842                 /* upgrade FW logic */
4843                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4844                                  state, &reset);
4845
4846                 /* Cleaning up */
4847                 release_firmware(fw);
4848                 kvfree(card_fw);
4849
4850                 if (ret < 0)
4851                         goto bye;
4852         }
4853
4854         /* If the firmware is initialized already, emit a simply note to that
4855          * effect. Otherwise, it's time to try initializing the adapter.
4856          */
4857         if (state == DEV_STATE_INIT) {
4858                 ret = adap_config_hma(adap);
4859                 if (ret)
4860                         dev_err(adap->pdev_dev,
4861                                 "HMA configuration failed with error %d\n",
4862                                 ret);
4863                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4864                          "Adapter already initialized\n",
4865                          adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4866         } else {
4867                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4868                          "Initializing adapter\n");
4869
4870                 /* Find out whether we're dealing with a version of the
4871                  * firmware which has configuration file support.
4872                  */
4873                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4874                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4875                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4876                                       params, val);
4877
4878                 /* If the firmware doesn't support Configuration Files,
4879                  * return an error.
4880                  */
4881                 if (ret < 0) {
4882                         dev_err(adap->pdev_dev, "firmware doesn't support "
4883                                 "Firmware Configuration Files\n");
4884                         goto bye;
4885                 }
4886
4887                 /* The firmware provides us with a memory buffer where we can
4888                  * load a Configuration File from the host if we want to
4889                  * override the Configuration File in flash.
4890                  */
4891                 ret = adap_init0_config(adap, reset);
4892                 if (ret == -ENOENT) {
4893                         dev_err(adap->pdev_dev, "no Configuration File "
4894                                 "present on adapter.\n");
4895                         goto bye;
4896                 }
4897                 if (ret < 0) {
4898                         dev_err(adap->pdev_dev, "could not initialize "
4899                                 "adapter, error %d\n", -ret);
4900                         goto bye;
4901                 }
4902         }
4903
4904         /* Now that we've successfully configured and initialized the adapter
4905          * (or found it already initialized), we can ask the Firmware what
4906          * resources it has provisioned for us.
4907          */
4908         ret = t4_get_pfres(adap);
4909         if (ret) {
4910                 dev_err(adap->pdev_dev,
4911                         "Unable to retrieve resource provisioning information\n");
4912                 goto bye;
4913         }
4914
4915         /* Grab VPD parameters.  This should be done after we establish a
4916          * connection to the firmware since some of the VPD parameters
4917          * (notably the Core Clock frequency) are retrieved via requests to
4918          * the firmware.  On the other hand, we need these fairly early on
4919          * so we do this right after getting ahold of the firmware.
4920          *
4921          * We need to do this after initializing the adapter because someone
4922          * could have FLASHed a new VPD which won't be read by the firmware
4923          * until we do the RESET ...
4924          */
4925         if (!vpd_skip) {
4926                 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4927                 if (ret < 0)
4928                         goto bye;
4929         }
4930
4931         /* Find out what ports are available to us.  Note that we need to do
4932          * this before calling adap_init0_no_config() since it needs nports
4933          * and portvec ...
4934          */
4935         v =
4936             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4937             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4938         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4939         if (ret < 0)
4940                 goto bye;
4941
4942         adap->params.nports = hweight32(port_vec);
4943         adap->params.portvec = port_vec;
4944
4945         /* Give the SGE code a chance to pull in anything that it needs ...
4946          * Note that this must be called after we retrieve our VPD parameters
4947          * in order to know how to convert core ticks to seconds, etc.
4948          */
4949         ret = t4_sge_init(adap);
4950         if (ret < 0)
4951                 goto bye;
4952
4953         /* Grab the SGE Doorbell Queue Timer values.  If successful, that
4954          * indicates that the Firmware and Hardware support this.
4955          */
4956         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4957                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4958         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4959                               1, params, val);
4960
4961         if (!ret) {
4962                 adap->sge.dbqtimer_tick = val[0];
4963                 ret = t4_read_sge_dbqtimers(adap,
4964                                             ARRAY_SIZE(adap->sge.dbqtimer_val),
4965                                             adap->sge.dbqtimer_val);
4966         }
4967
4968         if (!ret)
4969                 adap->flags |= CXGB4_SGE_DBQ_TIMER;
4970
4971         if (is_bypass_device(adap->pdev->device))
4972                 adap->params.bypass = 1;
4973
4974         /*
4975          * Grab some of our basic fundamental operating parameters.
4976          */
4977         params[0] = FW_PARAM_PFVF(EQ_START);
4978         params[1] = FW_PARAM_PFVF(L2T_START);
4979         params[2] = FW_PARAM_PFVF(L2T_END);
4980         params[3] = FW_PARAM_PFVF(FILTER_START);
4981         params[4] = FW_PARAM_PFVF(FILTER_END);
4982         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4983         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4984         if (ret < 0)
4985                 goto bye;
4986         adap->sge.egr_start = val[0];
4987         adap->l2t_start = val[1];
4988         adap->l2t_end = val[2];
4989         adap->tids.ftid_base = val[3];
4990         adap->tids.nftids = val[4] - val[3] + 1;
4991         adap->sge.ingr_start = val[5];
4992
4993         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4994                 params[0] = FW_PARAM_PFVF(HPFILTER_START);
4995                 params[1] = FW_PARAM_PFVF(HPFILTER_END);
4996                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4997                                       params, val);
4998                 if (ret < 0)
4999                         goto bye;
5000
5001                 adap->tids.hpftid_base = val[0];
5002                 adap->tids.nhpftids = val[1] - val[0] + 1;
5003
5004                 /* Read the raw mps entries. In T6, the last 2 tcam entries
5005                  * are reserved for raw mac addresses (rawf = 2, one per port).
5006                  */
5007                 params[0] = FW_PARAM_PFVF(RAWF_START);
5008                 params[1] = FW_PARAM_PFVF(RAWF_END);
5009                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5010                                       params, val);
5011                 if (ret == 0) {
5012                         adap->rawf_start = val[0];
5013                         adap->rawf_cnt = val[1] - val[0] + 1;
5014                 }
5015
5016                 adap->tids.tid_base =
5017                         t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5018         }
5019
5020         /* qids (ingress/egress) returned from firmware can be anywhere
5021          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5022          * Hence driver needs to allocate memory for this range to
5023          * store the queue info. Get the highest IQFLINT/EQ index returned
5024          * in FW_EQ_*_CMD.alloc command.
5025          */
5026         params[0] = FW_PARAM_PFVF(EQ_END);
5027         params[1] = FW_PARAM_PFVF(IQFLINT_END);
5028         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5029         if (ret < 0)
5030                 goto bye;
5031         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5032         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5033
5034         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5035                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
5036         if (!adap->sge.egr_map) {
5037                 ret = -ENOMEM;
5038                 goto bye;
5039         }
5040
5041         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5042                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5043         if (!adap->sge.ingr_map) {
5044                 ret = -ENOMEM;
5045                 goto bye;
5046         }
5047
5048         /* Allocate the memory for the vaious egress queue bitmaps
5049          * ie starving_fl, txq_maperr and blocked_fl.
5050          */
5051         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5052                                         sizeof(long), GFP_KERNEL);
5053         if (!adap->sge.starving_fl) {
5054                 ret = -ENOMEM;
5055                 goto bye;
5056         }
5057
5058         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5059                                        sizeof(long), GFP_KERNEL);
5060         if (!adap->sge.txq_maperr) {
5061                 ret = -ENOMEM;
5062                 goto bye;
5063         }
5064
5065 #ifdef CONFIG_DEBUG_FS
5066         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5067                                        sizeof(long), GFP_KERNEL);
5068         if (!adap->sge.blocked_fl) {
5069                 ret = -ENOMEM;
5070                 goto bye;
5071         }
5072 #endif
5073
5074         params[0] = FW_PARAM_PFVF(CLIP_START);
5075         params[1] = FW_PARAM_PFVF(CLIP_END);
5076         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5077         if (ret < 0)
5078                 goto bye;
5079         adap->clipt_start = val[0];
5080         adap->clipt_end = val[1];
5081
5082         /* Get the supported number of traffic classes */
5083         params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5084         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5085         if (ret < 0) {
5086                 /* We couldn't retrieve the number of Traffic Classes
5087                  * supported by the hardware/firmware. So we hard
5088                  * code it here.
5089                  */
5090                 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5091         } else {
5092                 adap->params.nsched_cls = val[0];
5093         }
5094
5095         /* query params related to active filter region */
5096         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5097         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5098         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5099         /* If Active filter size is set we enable establishing
5100          * offload connection through firmware work request
5101          */
5102         if ((val[0] != val[1]) && (ret >= 0)) {
5103                 adap->flags |= CXGB4_FW_OFLD_CONN;
5104                 adap->tids.aftid_base = val[0];
5105                 adap->tids.aftid_end = val[1];
5106         }
5107
5108         /* If we're running on newer firmware, let it know that we're
5109          * prepared to deal with encapsulated CPL messages.  Older
5110          * firmware won't understand this and we'll just get
5111          * unencapsulated messages ...
5112          */
5113         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5114         val[0] = 1;
5115         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5116
5117         /*
5118          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5119          * capability.  Earlier versions of the firmware didn't have the
5120          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5121          * permission to use ULPTX MEMWRITE DSGL.
5122          */
5123         if (is_t4(adap->params.chip)) {
5124                 adap->params.ulptx_memwrite_dsgl = false;
5125         } else {
5126                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5127                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5128                                       1, params, val);
5129                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5130         }
5131
5132         /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5133         params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5134         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5135                               1, params, val);
5136         adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5137
5138         /* See if FW supports FW_FILTER2 work request */
5139         if (is_t4(adap->params.chip)) {
5140                 adap->params.filter2_wr_support = 0;
5141         } else {
5142                 params[0] = FW_PARAM_DEV(FILTER2_WR);
5143                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5144                                       1, params, val);
5145                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5146         }
5147
5148         /* Check if FW supports returning vin and smt index.
5149          * If this is not supported, driver will interpret
5150          * these values from viid.
5151          */
5152         params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5153         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5154                               1, params, val);
5155         adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5156
5157         /*
5158          * Get device capabilities so we can determine what resources we need
5159          * to manage.
5160          */
5161         memset(&caps_cmd, 0, sizeof(caps_cmd));
5162         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5163                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
5164         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5165         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5166                          &caps_cmd);
5167         if (ret < 0)
5168                 goto bye;
5169
5170         /* hash filter has some mandatory register settings to be tested and for
5171          * that it needs to test whether offload is enabled or not, hence
5172          * checking and setting it here.
5173          */
5174         if (caps_cmd.ofldcaps)
5175                 adap->params.offload = 1;
5176
5177         if (caps_cmd.ofldcaps ||
5178             (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5179             (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5180                 /* query offload-related parameters */
5181                 params[0] = FW_PARAM_DEV(NTID);
5182                 params[1] = FW_PARAM_PFVF(SERVER_START);
5183                 params[2] = FW_PARAM_PFVF(SERVER_END);
5184                 params[3] = FW_PARAM_PFVF(TDDP_START);
5185                 params[4] = FW_PARAM_PFVF(TDDP_END);
5186                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5187                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5188                                       params, val);
5189                 if (ret < 0)
5190                         goto bye;
5191                 adap->tids.ntids = val[0];
5192                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5193                 adap->tids.stid_base = val[1];
5194                 adap->tids.nstids = val[2] - val[1] + 1;
5195                 /*
5196                  * Setup server filter region. Divide the available filter
5197                  * region into two parts. Regular filters get 1/3rd and server
5198                  * filters get 2/3rd part. This is only enabled if workarond
5199                  * path is enabled.
5200                  * 1. For regular filters.
5201                  * 2. Server filter: This are special filters which are used
5202                  * to redirect SYN packets to offload queue.
5203                  */
5204                 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5205                         adap->tids.sftid_base = adap->tids.ftid_base +
5206                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5207                         adap->tids.nsftids = adap->tids.nftids -
5208                                          DIV_ROUND_UP(adap->tids.nftids, 3);
5209                         adap->tids.nftids = adap->tids.sftid_base -
5210                                                 adap->tids.ftid_base;
5211                 }
5212                 adap->vres.ddp.start = val[3];
5213                 adap->vres.ddp.size = val[4] - val[3] + 1;
5214                 adap->params.ofldq_wr_cred = val[5];
5215
5216                 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5217                         init_hash_filter(adap);
5218                 } else {
5219                         adap->num_ofld_uld += 1;
5220                 }
5221
5222                 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5223                         params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5224                         params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5225                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5226                                               params, val);
5227                         if (!ret) {
5228                                 adap->tids.eotid_base = val[0];
5229                                 adap->tids.neotids = min_t(u32, MAX_ATIDS,
5230                                                            val[1] - val[0] + 1);
5231                                 adap->params.ethofld = 1;
5232                         }
5233                 }
5234         }
5235         if (caps_cmd.rdmacaps) {
5236                 params[0] = FW_PARAM_PFVF(STAG_START);
5237                 params[1] = FW_PARAM_PFVF(STAG_END);
5238                 params[2] = FW_PARAM_PFVF(RQ_START);
5239                 params[3] = FW_PARAM_PFVF(RQ_END);
5240                 params[4] = FW_PARAM_PFVF(PBL_START);
5241                 params[5] = FW_PARAM_PFVF(PBL_END);
5242                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5243                                       params, val);
5244                 if (ret < 0)
5245                         goto bye;
5246                 adap->vres.stag.start = val[0];
5247                 adap->vres.stag.size = val[1] - val[0] + 1;
5248                 adap->vres.rq.start = val[2];
5249                 adap->vres.rq.size = val[3] - val[2] + 1;
5250                 adap->vres.pbl.start = val[4];
5251                 adap->vres.pbl.size = val[5] - val[4] + 1;
5252
5253                 params[0] = FW_PARAM_PFVF(SRQ_START);
5254                 params[1] = FW_PARAM_PFVF(SRQ_END);
5255                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5256                                       params, val);
5257                 if (!ret) {
5258                         adap->vres.srq.start = val[0];
5259                         adap->vres.srq.size = val[1] - val[0] + 1;
5260                 }
5261                 if (adap->vres.srq.size) {
5262                         adap->srq = t4_init_srq(adap->vres.srq.size);
5263                         if (!adap->srq)
5264                                 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5265                 }
5266
5267                 params[0] = FW_PARAM_PFVF(SQRQ_START);
5268                 params[1] = FW_PARAM_PFVF(SQRQ_END);
5269                 params[2] = FW_PARAM_PFVF(CQ_START);
5270                 params[3] = FW_PARAM_PFVF(CQ_END);
5271                 params[4] = FW_PARAM_PFVF(OCQ_START);
5272                 params[5] = FW_PARAM_PFVF(OCQ_END);
5273                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5274                                       val);
5275                 if (ret < 0)
5276                         goto bye;
5277                 adap->vres.qp.start = val[0];
5278                 adap->vres.qp.size = val[1] - val[0] + 1;
5279                 adap->vres.cq.start = val[2];
5280                 adap->vres.cq.size = val[3] - val[2] + 1;
5281                 adap->vres.ocq.start = val[4];
5282                 adap->vres.ocq.size = val[5] - val[4] + 1;
5283
5284                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5285                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5286                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5287                                       val);
5288                 if (ret < 0) {
5289                         adap->params.max_ordird_qp = 8;
5290                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5291                         ret = 0;
5292                 } else {
5293                         adap->params.max_ordird_qp = val[0];
5294                         adap->params.max_ird_adapter = val[1];
5295                 }
5296                 dev_info(adap->pdev_dev,
5297                          "max_ordird_qp %d max_ird_adapter %d\n",
5298                          adap->params.max_ordird_qp,
5299                          adap->params.max_ird_adapter);
5300
5301                 /* Enable write_with_immediate if FW supports it */
5302                 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5303                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5304                                       val);
5305                 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5306
5307                 /* Enable write_cmpl if FW supports it */
5308                 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5309                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5310                                       val);
5311                 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5312                 adap->num_ofld_uld += 2;
5313         }
5314         if (caps_cmd.iscsicaps) {
5315                 params[0] = FW_PARAM_PFVF(ISCSI_START);
5316                 params[1] = FW_PARAM_PFVF(ISCSI_END);
5317                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5318                                       params, val);
5319                 if (ret < 0)
5320                         goto bye;
5321                 adap->vres.iscsi.start = val[0];
5322                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5323                 if (is_t6(adap->params.chip)) {
5324                         params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5325                         params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5326                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5327                                               params, val);
5328                         if (!ret) {
5329                                 adap->vres.ppod_edram.start = val[0];
5330                                 adap->vres.ppod_edram.size =
5331                                         val[1] - val[0] + 1;
5332
5333                                 dev_info(adap->pdev_dev,
5334                                          "ppod edram start 0x%x end 0x%x size 0x%x\n",
5335                                          val[0], val[1],
5336                                          adap->vres.ppod_edram.size);
5337                         }
5338                 }
5339                 /* LIO target and cxgb4i initiaitor */
5340                 adap->num_ofld_uld += 2;
5341         }
5342         if (caps_cmd.cryptocaps) {
5343                 if (ntohs(caps_cmd.cryptocaps) &
5344                     FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5345                         params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5346                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5347                                               2, params, val);
5348                         if (ret < 0) {
5349                                 if (ret != -EINVAL)
5350                                         goto bye;
5351                         } else {
5352                                 adap->vres.ncrypto_fc = val[0];
5353                         }
5354                         adap->num_ofld_uld += 1;
5355                 }
5356                 if (ntohs(caps_cmd.cryptocaps) &
5357                     FW_CAPS_CONFIG_TLS_INLINE) {
5358                         params[0] = FW_PARAM_PFVF(TLS_START);
5359                         params[1] = FW_PARAM_PFVF(TLS_END);
5360                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5361                                               2, params, val);
5362                         if (ret < 0)
5363                                 goto bye;
5364                         adap->vres.key.start = val[0];
5365                         adap->vres.key.size = val[1] - val[0] + 1;
5366                         adap->num_uld += 1;
5367                 }
5368                 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5369         }
5370
5371         /* The MTU/MSS Table is initialized by now, so load their values.  If
5372          * we're initializing the adapter, then we'll make any modifications
5373          * we want to the MTU/MSS Table and also initialize the congestion
5374          * parameters.
5375          */
5376         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5377         if (state != DEV_STATE_INIT) {
5378                 int i;
5379
5380                 /* The default MTU Table contains values 1492 and 1500.
5381                  * However, for TCP, it's better to have two values which are
5382                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5383                  * This allows us to have a TCP Data Payload which is a
5384                  * multiple of 8 regardless of what combination of TCP Options
5385                  * are in use (always a multiple of 4 bytes) which is
5386                  * important for performance reasons.  For instance, if no
5387                  * options are in use, then we have a 20-byte IP header and a
5388                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
5389                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5390                  * which is not a multiple of 8.  So using an MSS of 1488 in
5391                  * this case results in a TCP Data Payload of 1448 bytes which
5392                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5393                  * Stamps have been negotiated, then an MTU of 1500 bytes
5394                  * results in a TCP Data Payload of 1448 bytes which, as
5395                  * above, is a multiple of 8 bytes ...
5396                  */
5397                 for (i = 0; i < NMTUS; i++)
5398                         if (adap->params.mtus[i] == 1492) {
5399                                 adap->params.mtus[i] = 1488;
5400                                 break;
5401                         }
5402
5403                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5404                              adap->params.b_wnd);
5405         }
5406         t4_init_sge_params(adap);
5407         adap->flags |= CXGB4_FW_OK;
5408         t4_init_tp_params(adap, true);
5409         return 0;
5410
5411         /*
5412          * Something bad happened.  If a command timed out or failed with EIO
5413          * FW does not operate within its spec or something catastrophic
5414          * happened to HW/FW, stop issuing commands.
5415          */
5416 bye:
5417         adap_free_hma_mem(adap);
5418         kfree(adap->sge.egr_map);
5419         kfree(adap->sge.ingr_map);
5420         kfree(adap->sge.starving_fl);
5421         kfree(adap->sge.txq_maperr);
5422 #ifdef CONFIG_DEBUG_FS
5423         kfree(adap->sge.blocked_fl);
5424 #endif
5425         if (ret != -ETIMEDOUT && ret != -EIO)
5426                 t4_fw_bye(adap, adap->mbox);
5427         return ret;
5428 }
5429
5430 /* EEH callbacks */
5431
5432 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5433                                          pci_channel_state_t state)
5434 {
5435         int i;
5436         struct adapter *adap = pci_get_drvdata(pdev);
5437
5438         if (!adap)
5439                 goto out;
5440
5441         rtnl_lock();
5442         adap->flags &= ~CXGB4_FW_OK;
5443         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5444         spin_lock(&adap->stats_lock);
5445         for_each_port(adap, i) {
5446                 struct net_device *dev = adap->port[i];
5447                 if (dev) {
5448                         netif_device_detach(dev);
5449                         netif_carrier_off(dev);
5450                 }
5451         }
5452         spin_unlock(&adap->stats_lock);
5453         disable_interrupts(adap);
5454         if (adap->flags & CXGB4_FULL_INIT_DONE)
5455                 cxgb_down(adap);
5456         rtnl_unlock();
5457         if ((adap->flags & CXGB4_DEV_ENABLED)) {
5458                 pci_disable_device(pdev);
5459                 adap->flags &= ~CXGB4_DEV_ENABLED;
5460         }
5461 out:    return state == pci_channel_io_perm_failure ?
5462                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5463 }
5464
5465 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5466 {
5467         int i, ret;
5468         struct fw_caps_config_cmd c;
5469         struct adapter *adap = pci_get_drvdata(pdev);
5470
5471         if (!adap) {
5472                 pci_restore_state(pdev);
5473                 pci_save_state(pdev);
5474                 return PCI_ERS_RESULT_RECOVERED;
5475         }
5476
5477         if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5478                 if (pci_enable_device(pdev)) {
5479                         dev_err(&pdev->dev, "Cannot reenable PCI "
5480                                             "device after reset\n");
5481                         return PCI_ERS_RESULT_DISCONNECT;
5482                 }
5483                 adap->flags |= CXGB4_DEV_ENABLED;
5484         }
5485
5486         pci_set_master(pdev);
5487         pci_restore_state(pdev);
5488         pci_save_state(pdev);
5489
5490         if (t4_wait_dev_ready(adap->regs) < 0)
5491                 return PCI_ERS_RESULT_DISCONNECT;
5492         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5493                 return PCI_ERS_RESULT_DISCONNECT;
5494         adap->flags |= CXGB4_FW_OK;
5495         if (adap_init1(adap, &c))
5496                 return PCI_ERS_RESULT_DISCONNECT;
5497
5498         for_each_port(adap, i) {
5499                 struct port_info *pi = adap2pinfo(adap, i);
5500                 u8 vivld = 0, vin = 0;
5501
5502                 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5503                                   NULL, NULL, &vivld, &vin);
5504                 if (ret < 0)
5505                         return PCI_ERS_RESULT_DISCONNECT;
5506                 pi->viid = ret;
5507                 pi->xact_addr_filt = -1;
5508                 /* If fw supports returning the VIN as part of FW_VI_CMD,
5509                  * save the returned values.
5510                  */
5511                 if (adap->params.viid_smt_extn_support) {
5512                         pi->vivld = vivld;
5513                         pi->vin = vin;
5514                 } else {
5515                         /* Retrieve the values from VIID */
5516                         pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5517                         pi->vin = FW_VIID_VIN_G(pi->viid);
5518                 }
5519         }
5520
5521         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5522                      adap->params.b_wnd);
5523         setup_memwin(adap);
5524         if (cxgb_up(adap))
5525                 return PCI_ERS_RESULT_DISCONNECT;
5526         return PCI_ERS_RESULT_RECOVERED;
5527 }
5528
5529 static void eeh_resume(struct pci_dev *pdev)
5530 {
5531         int i;
5532         struct adapter *adap = pci_get_drvdata(pdev);
5533
5534         if (!adap)
5535                 return;
5536
5537         rtnl_lock();
5538         for_each_port(adap, i) {
5539                 struct net_device *dev = adap->port[i];
5540                 if (dev) {
5541                         if (netif_running(dev)) {
5542                                 link_start(dev);
5543                                 cxgb_set_rxmode(dev);
5544                         }
5545                         netif_device_attach(dev);
5546                 }
5547         }
5548         rtnl_unlock();
5549 }
5550
5551 static void eeh_reset_prepare(struct pci_dev *pdev)
5552 {
5553         struct adapter *adapter = pci_get_drvdata(pdev);
5554         int i;
5555
5556         if (adapter->pf != 4)
5557                 return;
5558
5559         adapter->flags &= ~CXGB4_FW_OK;
5560
5561         notify_ulds(adapter, CXGB4_STATE_DOWN);
5562
5563         for_each_port(adapter, i)
5564                 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5565                         cxgb_close(adapter->port[i]);
5566
5567         disable_interrupts(adapter);
5568         cxgb4_free_mps_ref_entries(adapter);
5569
5570         adap_free_hma_mem(adapter);
5571
5572         if (adapter->flags & CXGB4_FULL_INIT_DONE)
5573                 cxgb_down(adapter);
5574 }
5575
5576 static void eeh_reset_done(struct pci_dev *pdev)
5577 {
5578         struct adapter *adapter = pci_get_drvdata(pdev);
5579         int err, i;
5580
5581         if (adapter->pf != 4)
5582                 return;
5583
5584         err = t4_wait_dev_ready(adapter->regs);
5585         if (err < 0) {
5586                 dev_err(adapter->pdev_dev,
5587                         "Device not ready, err %d", err);
5588                 return;
5589         }
5590
5591         setup_memwin(adapter);
5592
5593         err = adap_init0(adapter, 1);
5594         if (err) {
5595                 dev_err(adapter->pdev_dev,
5596                         "Adapter init failed, err %d", err);
5597                 return;
5598         }
5599
5600         setup_memwin_rdma(adapter);
5601
5602         if (adapter->flags & CXGB4_FW_OK) {
5603                 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5604                 if (err) {
5605                         dev_err(adapter->pdev_dev,
5606                                 "Port init failed, err %d", err);
5607                         return;
5608                 }
5609         }
5610
5611         err = cfg_queues(adapter);
5612         if (err) {
5613                 dev_err(adapter->pdev_dev,
5614                         "Config queues failed, err %d", err);
5615                 return;
5616         }
5617
5618         cxgb4_init_mps_ref_entries(adapter);
5619
5620         err = setup_fw_sge_queues(adapter);
5621         if (err) {
5622                 dev_err(adapter->pdev_dev,
5623                         "FW sge queue allocation failed, err %d", err);
5624                 return;
5625         }
5626
5627         for_each_port(adapter, i)
5628                 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5629                         cxgb_open(adapter->port[i]);
5630 }
5631
5632 static const struct pci_error_handlers cxgb4_eeh = {
5633         .error_detected = eeh_err_detected,
5634         .slot_reset     = eeh_slot_reset,
5635         .resume         = eeh_resume,
5636         .reset_prepare  = eeh_reset_prepare,
5637         .reset_done     = eeh_reset_done,
5638 };
5639
5640 /* Return true if the Link Configuration supports "High Speeds" (those greater
5641  * than 1Gb/s).
5642  */
5643 static inline bool is_x_10g_port(const struct link_config *lc)
5644 {
5645         unsigned int speeds, high_speeds;
5646
5647         speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5648         high_speeds = speeds &
5649                         ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5650
5651         return high_speeds != 0;
5652 }
5653
5654 /* Perform default configuration of DMA queues depending on the number and type
5655  * of ports we found and the number of available CPUs.  Most settings can be
5656  * modified by the admin prior to actual use.
5657  */
5658 static int cfg_queues(struct adapter *adap)
5659 {
5660         u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5661         u32 ncpus = num_online_cpus();
5662         u32 niqflint, neq, num_ulds;
5663         struct sge *s = &adap->sge;
5664         u32 i, n10g = 0, qidx = 0;
5665         u32 q10g = 0, q1g;
5666
5667         /* Reduce memory usage in kdump environment, disable all offload. */
5668         if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5669                 adap->params.offload = 0;
5670                 adap->params.crypto = 0;
5671                 adap->params.ethofld = 0;
5672         }
5673
5674         /* Calculate the number of Ethernet Queue Sets available based on
5675          * resources provisioned for us.  We always have an Asynchronous
5676          * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5677          * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5678          * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5679          * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5680          *
5681          * Note that we should also take into account all of the various
5682          * Offload Queues.  But, in any situation where we're operating in
5683          * a Resource Constrained Provisioning environment, doing any Offload
5684          * at all is problematic ...
5685          */
5686         niqflint = adap->params.pfres.niqflint - 1;
5687         if (!(adap->flags & CXGB4_USING_MSIX))
5688                 niqflint--;
5689         neq = adap->params.pfres.neq / 2;
5690         avail_qsets = min(niqflint, neq);
5691
5692         if (avail_qsets < adap->params.nports) {
5693                 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5694                         avail_qsets, adap->params.nports);
5695                 return -ENOMEM;
5696         }
5697
5698         /* Count the number of 10Gb/s or better ports */
5699         for_each_port(adap, i)
5700                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5701
5702         avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5703
5704         /* We default to 1 queue per non-10G port and up to # of cores queues
5705          * per 10G port.
5706          */
5707         if (n10g)
5708                 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5709
5710 #ifdef CONFIG_CHELSIO_T4_DCB
5711         /* For Data Center Bridging support we need to be able to support up
5712          * to 8 Traffic Priorities; each of which will be assigned to its
5713          * own TX Queue in order to prevent Head-Of-Line Blocking.
5714          */
5715         q1g = 8;
5716         if (adap->params.nports * 8 > avail_eth_qsets) {
5717                 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5718                         avail_eth_qsets, adap->params.nports * 8);
5719                 return -ENOMEM;
5720         }
5721
5722         if (adap->params.nports * ncpus < avail_eth_qsets)
5723                 q10g = max(8U, ncpus);
5724         else
5725                 q10g = max(8U, q10g);
5726
5727         while ((q10g * n10g) >
5728                (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5729                 q10g--;
5730
5731 #else /* !CONFIG_CHELSIO_T4_DCB */
5732         q1g = 1;
5733         q10g = min(q10g, ncpus);
5734 #endif /* !CONFIG_CHELSIO_T4_DCB */
5735         if (is_kdump_kernel()) {
5736                 q10g = 1;
5737                 q1g = 1;
5738         }
5739
5740         for_each_port(adap, i) {
5741                 struct port_info *pi = adap2pinfo(adap, i);
5742
5743                 pi->first_qset = qidx;
5744                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5745                 qidx += pi->nqsets;
5746         }
5747
5748         s->ethqsets = qidx;
5749         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5750         avail_qsets -= qidx;
5751
5752         if (is_uld(adap)) {
5753                 /* For offload we use 1 queue/channel if all ports are up to 1G,
5754                  * otherwise we divide all available queues amongst the channels
5755                  * capped by the number of available cores.
5756                  */
5757                 num_ulds = adap->num_uld + adap->num_ofld_uld;
5758                 i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5759                 avail_uld_qsets = roundup(i, adap->params.nports);
5760                 if (avail_qsets < num_ulds * adap->params.nports) {
5761                         adap->params.offload = 0;
5762                         adap->params.crypto = 0;
5763                         s->ofldqsets = 0;
5764                 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5765                         s->ofldqsets = adap->params.nports;
5766                 } else {
5767                         s->ofldqsets = avail_uld_qsets;
5768                 }
5769
5770                 avail_qsets -= num_ulds * s->ofldqsets;
5771         }
5772
5773         /* ETHOFLD Queues used for QoS offload should follow same
5774          * allocation scheme as normal Ethernet Queues.
5775          */
5776         if (is_ethofld(adap)) {
5777                 if (avail_qsets < s->max_ethqsets) {
5778                         adap->params.ethofld = 0;
5779                         s->eoqsets = 0;
5780                 } else {
5781                         s->eoqsets = s->max_ethqsets;
5782                 }
5783                 avail_qsets -= s->eoqsets;
5784         }
5785
5786         /* Mirror queues must follow same scheme as normal Ethernet
5787          * Queues, when there are enough queues available. Otherwise,
5788          * allocate at least 1 queue per port. If even 1 queue is not
5789          * available, then disable mirror queues support.
5790          */
5791         if (avail_qsets >= s->max_ethqsets)
5792                 s->mirrorqsets = s->max_ethqsets;
5793         else if (avail_qsets >= adap->params.nports)
5794                 s->mirrorqsets = adap->params.nports;
5795         else
5796                 s->mirrorqsets = 0;
5797         avail_qsets -= s->mirrorqsets;
5798
5799         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5800                 struct sge_eth_rxq *r = &s->ethrxq[i];
5801
5802                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5803                 r->fl.size = 72;
5804         }
5805
5806         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5807                 s->ethtxq[i].q.size = 1024;
5808
5809         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5810                 s->ctrlq[i].q.size = 512;
5811
5812         if (!is_t4(adap->params.chip))
5813                 s->ptptxq.q.size = 8;
5814
5815         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5816         init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5817
5818         return 0;
5819 }
5820
5821 /*
5822  * Reduce the number of Ethernet queues across all ports to at most n.
5823  * n provides at least one queue per port.
5824  */
5825 static void reduce_ethqs(struct adapter *adap, int n)
5826 {
5827         int i;
5828         struct port_info *pi;
5829
5830         while (n < adap->sge.ethqsets)
5831                 for_each_port(adap, i) {
5832                         pi = adap2pinfo(adap, i);
5833                         if (pi->nqsets > 1) {
5834                                 pi->nqsets--;
5835                                 adap->sge.ethqsets--;
5836                                 if (adap->sge.ethqsets <= n)
5837                                         break;
5838                         }
5839                 }
5840
5841         n = 0;
5842         for_each_port(adap, i) {
5843                 pi = adap2pinfo(adap, i);
5844                 pi->first_qset = n;
5845                 n += pi->nqsets;
5846         }
5847 }
5848
5849 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5850 {
5851         struct msix_info *msix_info;
5852
5853         msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5854         if (!msix_info)
5855                 return -ENOMEM;
5856
5857         adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
5858                                             sizeof(long), GFP_KERNEL);
5859         if (!adap->msix_bmap.msix_bmap) {
5860                 kfree(msix_info);
5861                 return -ENOMEM;
5862         }
5863
5864         spin_lock_init(&adap->msix_bmap.lock);
5865         adap->msix_bmap.mapsize = num_vec;
5866
5867         adap->msix_info = msix_info;
5868         return 0;
5869 }
5870
5871 static void free_msix_info(struct adapter *adap)
5872 {
5873         kfree(adap->msix_bmap.msix_bmap);
5874         kfree(adap->msix_info);
5875 }
5876
5877 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5878 {
5879         struct msix_bmap *bmap = &adap->msix_bmap;
5880         unsigned int msix_idx;
5881         unsigned long flags;
5882
5883         spin_lock_irqsave(&bmap->lock, flags);
5884         msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5885         if (msix_idx < bmap->mapsize) {
5886                 __set_bit(msix_idx, bmap->msix_bmap);
5887         } else {
5888                 spin_unlock_irqrestore(&bmap->lock, flags);
5889                 return -ENOSPC;
5890         }
5891
5892         spin_unlock_irqrestore(&bmap->lock, flags);
5893         return msix_idx;
5894 }
5895
5896 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5897                                  unsigned int msix_idx)
5898 {
5899         struct msix_bmap *bmap = &adap->msix_bmap;
5900         unsigned long flags;
5901
5902         spin_lock_irqsave(&bmap->lock, flags);
5903         __clear_bit(msix_idx, bmap->msix_bmap);
5904         spin_unlock_irqrestore(&bmap->lock, flags);
5905 }
5906
5907 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5908 #define EXTRA_VECS 2
5909
5910 static int enable_msix(struct adapter *adap)
5911 {
5912         u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5913         u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5914         u8 num_uld = 0, nchan = adap->params.nports;
5915         u32 i, want, need, num_vec;
5916         struct sge *s = &adap->sge;
5917         struct msix_entry *entries;
5918         struct port_info *pi;
5919         int allocated, ret;
5920
5921         want = s->max_ethqsets;
5922 #ifdef CONFIG_CHELSIO_T4_DCB
5923         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5924          * each port.
5925          */
5926         need = 8 * nchan;
5927 #else
5928         need = nchan;
5929 #endif
5930         eth_need = need;
5931         if (is_uld(adap)) {
5932                 num_uld = adap->num_ofld_uld + adap->num_uld;
5933                 want += num_uld * s->ofldqsets;
5934                 uld_need = num_uld * nchan;
5935                 need += uld_need;
5936         }
5937
5938         if (is_ethofld(adap)) {
5939                 want += s->eoqsets;
5940                 ethofld_need = eth_need;
5941                 need += ethofld_need;
5942         }
5943
5944         if (s->mirrorqsets) {
5945                 want += s->mirrorqsets;
5946                 mirror_need = nchan;
5947                 need += mirror_need;
5948         }
5949
5950         want += EXTRA_VECS;
5951         need += EXTRA_VECS;
5952
5953         entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5954         if (!entries)
5955                 return -ENOMEM;
5956
5957         for (i = 0; i < want; i++)
5958                 entries[i].entry = i;
5959
5960         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5961         if (allocated < 0) {
5962                 /* Disable offload and attempt to get vectors for NIC
5963                  * only mode.
5964                  */
5965                 want = s->max_ethqsets + EXTRA_VECS;
5966                 need = eth_need + EXTRA_VECS;
5967                 allocated = pci_enable_msix_range(adap->pdev, entries,
5968                                                   need, want);
5969                 if (allocated < 0) {
5970                         dev_info(adap->pdev_dev,
5971                                  "Disabling MSI-X due to insufficient MSI-X vectors\n");
5972                         ret = allocated;
5973                         goto out_free;
5974                 }
5975
5976                 dev_info(adap->pdev_dev,
5977                          "Disabling offload due to insufficient MSI-X vectors\n");
5978                 adap->params.offload = 0;
5979                 adap->params.crypto = 0;
5980                 adap->params.ethofld = 0;
5981                 s->ofldqsets = 0;
5982                 s->eoqsets = 0;
5983                 s->mirrorqsets = 0;
5984                 uld_need = 0;
5985                 ethofld_need = 0;
5986                 mirror_need = 0;
5987         }
5988
5989         num_vec = allocated;
5990         if (num_vec < want) {
5991                 /* Distribute available vectors to the various queue groups.
5992                  * Every group gets its minimum requirement and NIC gets top
5993                  * priority for leftovers.
5994                  */
5995                 ethqsets = eth_need;
5996                 if (is_uld(adap))
5997                         ofldqsets = nchan;
5998                 if (is_ethofld(adap))
5999                         eoqsets = ethofld_need;
6000                 if (s->mirrorqsets)
6001                         mirrorqsets = mirror_need;
6002
6003                 num_vec -= need;
6004                 while (num_vec) {
6005                         if (num_vec < eth_need + ethofld_need ||
6006                             ethqsets > s->max_ethqsets)
6007                                 break;
6008
6009                         for_each_port(adap, i) {
6010                                 pi = adap2pinfo(adap, i);
6011                                 if (pi->nqsets < 2)
6012                                         continue;
6013
6014                                 ethqsets++;
6015                                 num_vec--;
6016                                 if (ethofld_need) {
6017                                         eoqsets++;
6018                                         num_vec--;
6019                                 }
6020                         }
6021                 }
6022
6023                 if (is_uld(adap)) {
6024                         while (num_vec) {
6025                                 if (num_vec < uld_need ||
6026                                     ofldqsets > s->ofldqsets)
6027                                         break;
6028
6029                                 ofldqsets++;
6030                                 num_vec -= uld_need;
6031                         }
6032                 }
6033
6034                 if (s->mirrorqsets) {
6035                         while (num_vec) {
6036                                 if (num_vec < mirror_need ||
6037                                     mirrorqsets > s->mirrorqsets)
6038                                         break;
6039
6040                                 mirrorqsets++;
6041                                 num_vec -= mirror_need;
6042                         }
6043                 }
6044         } else {
6045                 ethqsets = s->max_ethqsets;
6046                 if (is_uld(adap))
6047                         ofldqsets = s->ofldqsets;
6048                 if (is_ethofld(adap))
6049                         eoqsets = s->eoqsets;
6050                 if (s->mirrorqsets)
6051                         mirrorqsets = s->mirrorqsets;
6052         }
6053
6054         if (ethqsets < s->max_ethqsets) {
6055                 s->max_ethqsets = ethqsets;
6056                 reduce_ethqs(adap, ethqsets);
6057         }
6058
6059         if (is_uld(adap)) {
6060                 s->ofldqsets = ofldqsets;
6061                 s->nqs_per_uld = s->ofldqsets;
6062         }
6063
6064         if (is_ethofld(adap))
6065                 s->eoqsets = eoqsets;
6066
6067         if (s->mirrorqsets) {
6068                 s->mirrorqsets = mirrorqsets;
6069                 for_each_port(adap, i) {
6070                         pi = adap2pinfo(adap, i);
6071                         pi->nmirrorqsets = s->mirrorqsets / nchan;
6072                         mutex_init(&pi->vi_mirror_mutex);
6073                 }
6074         }
6075
6076         /* map for msix */
6077         ret = alloc_msix_info(adap, allocated);
6078         if (ret)
6079                 goto out_disable_msix;
6080
6081         for (i = 0; i < allocated; i++) {
6082                 adap->msix_info[i].vec = entries[i].vector;
6083                 adap->msix_info[i].idx = i;
6084         }
6085
6086         dev_info(adap->pdev_dev,
6087                  "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6088                  allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6089                  s->mirrorqsets);
6090
6091         kfree(entries);
6092         return 0;
6093
6094 out_disable_msix:
6095         pci_disable_msix(adap->pdev);
6096
6097 out_free:
6098         kfree(entries);
6099         return ret;
6100 }
6101
6102 #undef EXTRA_VECS
6103
6104 static int init_rss(struct adapter *adap)
6105 {
6106         unsigned int i;
6107         int err;
6108
6109         err = t4_init_rss_mode(adap, adap->mbox);
6110         if (err)
6111                 return err;
6112
6113         for_each_port(adap, i) {
6114                 struct port_info *pi = adap2pinfo(adap, i);
6115
6116                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6117                 if (!pi->rss)
6118                         return -ENOMEM;
6119         }
6120         return 0;
6121 }
6122
6123 /* Dump basic information about the adapter */
6124 static void print_adapter_info(struct adapter *adapter)
6125 {
6126         /* Hardware/Firmware/etc. Version/Revision IDs */
6127         t4_dump_version_info(adapter);
6128
6129         /* Software/Hardware configuration */
6130         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6131                  is_offload(adapter) ? "R" : "",
6132                  ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6133                   (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6134                  is_offload(adapter) ? "Offload" : "non-Offload");
6135 }
6136
6137 static void print_port_info(const struct net_device *dev)
6138 {
6139         char buf[80];
6140         char *bufp = buf;
6141         const struct port_info *pi = netdev_priv(dev);
6142         const struct adapter *adap = pi->adapter;
6143
6144         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6145                 bufp += sprintf(bufp, "100M/");
6146         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6147                 bufp += sprintf(bufp, "1G/");
6148         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6149                 bufp += sprintf(bufp, "10G/");
6150         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6151                 bufp += sprintf(bufp, "25G/");
6152         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6153                 bufp += sprintf(bufp, "40G/");
6154         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6155                 bufp += sprintf(bufp, "50G/");
6156         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6157                 bufp += sprintf(bufp, "100G/");
6158         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6159                 bufp += sprintf(bufp, "200G/");
6160         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6161                 bufp += sprintf(bufp, "400G/");
6162         if (bufp != buf)
6163                 --bufp;
6164         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6165
6166         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
6167                     dev->name, adap->params.vpd.id, adap->name, buf);
6168 }
6169
6170 /*
6171  * Free the following resources:
6172  * - memory used for tables
6173  * - MSI/MSI-X
6174  * - net devices
6175  * - resources FW is holding for us
6176  */
6177 static void free_some_resources(struct adapter *adapter)
6178 {
6179         unsigned int i;
6180
6181         kvfree(adapter->smt);
6182         kvfree(adapter->l2t);
6183         kvfree(adapter->srq);
6184         t4_cleanup_sched(adapter);
6185         kvfree(adapter->tids.tid_tab);
6186         cxgb4_cleanup_tc_matchall(adapter);
6187         cxgb4_cleanup_tc_mqprio(adapter);
6188         cxgb4_cleanup_tc_flower(adapter);
6189         cxgb4_cleanup_tc_u32(adapter);
6190         cxgb4_cleanup_ethtool_filters(adapter);
6191         kfree(adapter->sge.egr_map);
6192         kfree(adapter->sge.ingr_map);
6193         kfree(adapter->sge.starving_fl);
6194         kfree(adapter->sge.txq_maperr);
6195 #ifdef CONFIG_DEBUG_FS
6196         kfree(adapter->sge.blocked_fl);
6197 #endif
6198         disable_msi(adapter);
6199
6200         for_each_port(adapter, i)
6201                 if (adapter->port[i]) {
6202                         struct port_info *pi = adap2pinfo(adapter, i);
6203
6204                         if (pi->viid != 0)
6205                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
6206                                            0, pi->viid);
6207                         kfree(adap2pinfo(adapter, i)->rss);
6208                         free_netdev(adapter->port[i]);
6209                 }
6210         if (adapter->flags & CXGB4_FW_OK)
6211                 t4_fw_bye(adapter, adapter->pf);
6212 }
6213
6214 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6215                    NETIF_F_GSO_UDP_L4)
6216 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6217                    NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6218 #define SEGMENT_SIZE 128
6219
6220 static int t4_get_chip_type(struct adapter *adap, int ver)
6221 {
6222         u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6223
6224         switch (ver) {
6225         case CHELSIO_T4:
6226                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6227         case CHELSIO_T5:
6228                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6229         case CHELSIO_T6:
6230                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6231         default:
6232                 break;
6233         }
6234         return -EINVAL;
6235 }
6236
6237 #ifdef CONFIG_PCI_IOV
6238 static void cxgb4_mgmt_setup(struct net_device *dev)
6239 {
6240         dev->type = ARPHRD_NONE;
6241         dev->mtu = 0;
6242         dev->hard_header_len = 0;
6243         dev->addr_len = 0;
6244         dev->tx_queue_len = 0;
6245         dev->flags |= IFF_NOARP;
6246         dev->priv_flags |= IFF_NO_QUEUE;
6247
6248         /* Initialize the device structure. */
6249         dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6250         dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6251 }
6252
6253 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6254 {
6255         struct adapter *adap = pci_get_drvdata(pdev);
6256         int err = 0;
6257         int current_vfs = pci_num_vf(pdev);
6258         u32 pcie_fw;
6259
6260         pcie_fw = readl(adap->regs + PCIE_FW_A);
6261         /* Check if fw is initialized */
6262         if (!(pcie_fw & PCIE_FW_INIT_F)) {
6263                 dev_warn(&pdev->dev, "Device not initialized\n");
6264                 return -EOPNOTSUPP;
6265         }
6266
6267         /* If any of the VF's is already assigned to Guest OS, then
6268          * SRIOV for the same cannot be modified
6269          */
6270         if (current_vfs && pci_vfs_assigned(pdev)) {
6271                 dev_err(&pdev->dev,
6272                         "Cannot modify SR-IOV while VFs are assigned\n");
6273                 return current_vfs;
6274         }
6275         /* Note that the upper-level code ensures that we're never called with
6276          * a non-zero "num_vfs" when we already have VFs instantiated.  But
6277          * it never hurts to code defensively.
6278          */
6279         if (num_vfs != 0 && current_vfs != 0)
6280                 return -EBUSY;
6281
6282         /* Nothing to do for no change. */
6283         if (num_vfs == current_vfs)
6284                 return num_vfs;
6285
6286         /* Disable SRIOV when zero is passed. */
6287         if (!num_vfs) {
6288                 pci_disable_sriov(pdev);
6289                 /* free VF Management Interface */
6290                 unregister_netdev(adap->port[0]);
6291                 free_netdev(adap->port[0]);
6292                 adap->port[0] = NULL;
6293
6294                 /* free VF resources */
6295                 adap->num_vfs = 0;
6296                 kfree(adap->vfinfo);
6297                 adap->vfinfo = NULL;
6298                 return 0;
6299         }
6300
6301         if (!current_vfs) {
6302                 struct fw_pfvf_cmd port_cmd, port_rpl;
6303                 struct net_device *netdev;
6304                 unsigned int pmask, port;
6305                 struct pci_dev *pbridge;
6306                 struct port_info *pi;
6307                 char name[IFNAMSIZ];
6308                 u32 devcap2;
6309                 u16 flags;
6310
6311                 /* If we want to instantiate Virtual Functions, then our
6312                  * parent bridge's PCI-E needs to support Alternative Routing
6313                  * ID (ARI) because our VFs will show up at function offset 8
6314                  * and above.
6315                  */
6316                 pbridge = pdev->bus->self;
6317                 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6318                 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6319
6320                 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6321                     !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6322                         /* Our parent bridge does not support ARI so issue a
6323                          * warning and skip instantiating the VFs.  They
6324                          * won't be reachable.
6325                          */
6326                         dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6327                                  pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6328                                  PCI_FUNC(pbridge->devfn));
6329                         return -ENOTSUPP;
6330                 }
6331                 memset(&port_cmd, 0, sizeof(port_cmd));
6332                 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6333                                                  FW_CMD_REQUEST_F |
6334                                                  FW_CMD_READ_F |
6335                                                  FW_PFVF_CMD_PFN_V(adap->pf) |
6336                                                  FW_PFVF_CMD_VFN_V(0));
6337                 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6338                 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6339                                  &port_rpl);
6340                 if (err)
6341                         return err;
6342                 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6343                 port = ffs(pmask) - 1;
6344                 /* Allocate VF Management Interface. */
6345                 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6346                          adap->pf);
6347                 netdev = alloc_netdev(sizeof(struct port_info),
6348                                       name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6349                 if (!netdev)
6350                         return -ENOMEM;
6351
6352                 pi = netdev_priv(netdev);
6353                 pi->adapter = adap;
6354                 pi->lport = port;
6355                 pi->tx_chan = port;
6356                 SET_NETDEV_DEV(netdev, &pdev->dev);
6357
6358                 adap->port[0] = netdev;
6359                 pi->port_id = 0;
6360
6361                 err = register_netdev(adap->port[0]);
6362                 if (err) {
6363                         pr_info("Unable to register VF mgmt netdev %s\n", name);
6364                         free_netdev(adap->port[0]);
6365                         adap->port[0] = NULL;
6366                         return err;
6367                 }
6368                 /* Allocate and set up VF Information. */
6369                 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6370                                        sizeof(struct vf_info), GFP_KERNEL);
6371                 if (!adap->vfinfo) {
6372                         unregister_netdev(adap->port[0]);
6373                         free_netdev(adap->port[0]);
6374                         adap->port[0] = NULL;
6375                         return -ENOMEM;
6376                 }
6377                 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6378         }
6379         /* Instantiate the requested number of VFs. */
6380         err = pci_enable_sriov(pdev, num_vfs);
6381         if (err) {
6382                 pr_info("Unable to instantiate %d VFs\n", num_vfs);
6383                 if (!current_vfs) {
6384                         unregister_netdev(adap->port[0]);
6385                         free_netdev(adap->port[0]);
6386                         adap->port[0] = NULL;
6387                         kfree(adap->vfinfo);
6388                         adap->vfinfo = NULL;
6389                 }
6390                 return err;
6391         }
6392
6393         adap->num_vfs = num_vfs;
6394         return num_vfs;
6395 }
6396 #endif /* CONFIG_PCI_IOV */
6397
6398 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6399
6400 static int chcr_offload_state(struct adapter *adap,
6401                               enum cxgb4_netdev_tls_ops op_val)
6402 {
6403         switch (op_val) {
6404 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6405         case CXGB4_TLSDEV_OPS:
6406                 if (!adap->uld[CXGB4_ULD_KTLS].handle) {
6407                         dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
6408                         return -EOPNOTSUPP;
6409                 }
6410                 if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
6411                         dev_dbg(adap->pdev_dev,
6412                                 "ch_ktls driver has no registered tlsdev_ops\n");
6413                         return -EOPNOTSUPP;
6414                 }
6415                 break;
6416 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6417 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6418         case CXGB4_XFRMDEV_OPS:
6419                 if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
6420                         dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
6421                         return -EOPNOTSUPP;
6422                 }
6423                 if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
6424                         dev_dbg(adap->pdev_dev,
6425                                 "chipsec driver has no registered xfrmdev_ops\n");
6426                         return -EOPNOTSUPP;
6427                 }
6428                 break;
6429 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6430         default:
6431                 dev_dbg(adap->pdev_dev,
6432                         "driver has no support for offload %d\n", op_val);
6433                 return -EOPNOTSUPP;
6434         }
6435
6436         return 0;
6437 }
6438
6439 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
6440
6441 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6442
6443 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6444                               enum tls_offload_ctx_dir direction,
6445                               struct tls_crypto_info *crypto_info,
6446                               u32 tcp_sn)
6447 {
6448         struct adapter *adap = netdev2adap(netdev);
6449         int ret;
6450
6451         mutex_lock(&uld_mutex);
6452         ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
6453         if (ret)
6454                 goto out_unlock;
6455
6456         ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6457         if (ret)
6458                 goto out_unlock;
6459
6460         ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
6461                                                                 direction,
6462                                                                 crypto_info,
6463                                                                 tcp_sn);
6464         /* if there is a failure, clear the refcount */
6465         if (ret)
6466                 cxgb4_set_ktls_feature(adap,
6467                                        FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6468 out_unlock:
6469         mutex_unlock(&uld_mutex);
6470         return ret;
6471 }
6472
6473 static void cxgb4_ktls_dev_del(struct net_device *netdev,
6474                                struct tls_context *tls_ctx,
6475                                enum tls_offload_ctx_dir direction)
6476 {
6477         struct adapter *adap = netdev2adap(netdev);
6478
6479         mutex_lock(&uld_mutex);
6480         if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
6481                 goto out_unlock;
6482
6483         adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6484                                                           direction);
6485         cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6486
6487 out_unlock:
6488         mutex_unlock(&uld_mutex);
6489 }
6490
6491 static const struct tlsdev_ops cxgb4_ktls_ops = {
6492         .tls_dev_add = cxgb4_ktls_dev_add,
6493         .tls_dev_del = cxgb4_ktls_dev_del,
6494 };
6495 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6496
6497 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6498
6499 static int cxgb4_xfrm_add_state(struct xfrm_state *x)
6500 {
6501         struct adapter *adap = netdev2adap(x->xso.dev);
6502         int ret;
6503
6504         if (!mutex_trylock(&uld_mutex)) {
6505                 dev_dbg(adap->pdev_dev,
6506                         "crypto uld critical resource is under use\n");
6507                 return -EBUSY;
6508         }
6509         ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
6510         if (ret)
6511                 goto out_unlock;
6512
6513         ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x);
6514
6515 out_unlock:
6516         mutex_unlock(&uld_mutex);
6517
6518         return ret;
6519 }
6520
6521 static void cxgb4_xfrm_del_state(struct xfrm_state *x)
6522 {
6523         struct adapter *adap = netdev2adap(x->xso.dev);
6524
6525         if (!mutex_trylock(&uld_mutex)) {
6526                 dev_dbg(adap->pdev_dev,
6527                         "crypto uld critical resource is under use\n");
6528                 return;
6529         }
6530         if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6531                 goto out_unlock;
6532
6533         adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
6534
6535 out_unlock:
6536         mutex_unlock(&uld_mutex);
6537 }
6538
6539 static void cxgb4_xfrm_free_state(struct xfrm_state *x)
6540 {
6541         struct adapter *adap = netdev2adap(x->xso.dev);
6542
6543         if (!mutex_trylock(&uld_mutex)) {
6544                 dev_dbg(adap->pdev_dev,
6545                         "crypto uld critical resource is under use\n");
6546                 return;
6547         }
6548         if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6549                 goto out_unlock;
6550
6551         adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
6552
6553 out_unlock:
6554         mutex_unlock(&uld_mutex);
6555 }
6556
6557 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
6558 {
6559         struct adapter *adap = netdev2adap(x->xso.dev);
6560         bool ret = false;
6561
6562         if (!mutex_trylock(&uld_mutex)) {
6563                 dev_dbg(adap->pdev_dev,
6564                         "crypto uld critical resource is under use\n");
6565                 return ret;
6566         }
6567         if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6568                 goto out_unlock;
6569
6570         ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
6571
6572 out_unlock:
6573         mutex_unlock(&uld_mutex);
6574         return ret;
6575 }
6576
6577 static void cxgb4_advance_esn_state(struct xfrm_state *x)
6578 {
6579         struct adapter *adap = netdev2adap(x->xso.dev);
6580
6581         if (!mutex_trylock(&uld_mutex)) {
6582                 dev_dbg(adap->pdev_dev,
6583                         "crypto uld critical resource is under use\n");
6584                 return;
6585         }
6586         if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6587                 goto out_unlock;
6588
6589         adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
6590
6591 out_unlock:
6592         mutex_unlock(&uld_mutex);
6593 }
6594
6595 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
6596         .xdo_dev_state_add      = cxgb4_xfrm_add_state,
6597         .xdo_dev_state_delete   = cxgb4_xfrm_del_state,
6598         .xdo_dev_state_free     = cxgb4_xfrm_free_state,
6599         .xdo_dev_offload_ok     = cxgb4_ipsec_offload_ok,
6600         .xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
6601 };
6602
6603 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6604
6605 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6606 {
6607         struct net_device *netdev;
6608         struct adapter *adapter;
6609         static int adap_idx = 1;
6610         int s_qpp, qpp, num_seg;
6611         struct port_info *pi;
6612         bool highdma = false;
6613         enum chip_type chip;
6614         void __iomem *regs;
6615         int func, chip_ver;
6616         u16 device_id;
6617         int i, err;
6618         u32 whoami;
6619
6620         err = pci_request_regions(pdev, KBUILD_MODNAME);
6621         if (err) {
6622                 /* Just info, some other driver may have claimed the device. */
6623                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6624                 return err;
6625         }
6626
6627         err = pci_enable_device(pdev);
6628         if (err) {
6629                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6630                 goto out_release_regions;
6631         }
6632
6633         regs = pci_ioremap_bar(pdev, 0);
6634         if (!regs) {
6635                 dev_err(&pdev->dev, "cannot map device registers\n");
6636                 err = -ENOMEM;
6637                 goto out_disable_device;
6638         }
6639
6640         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6641         if (!adapter) {
6642                 err = -ENOMEM;
6643                 goto out_unmap_bar0;
6644         }
6645
6646         adapter->regs = regs;
6647         err = t4_wait_dev_ready(regs);
6648         if (err < 0)
6649                 goto out_free_adapter;
6650
6651         /* We control everything through one PF */
6652         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6653         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6654         chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6655         if ((int)chip < 0) {
6656                 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6657                 err = chip;
6658                 goto out_free_adapter;
6659         }
6660         chip_ver = CHELSIO_CHIP_VERSION(chip);
6661         func = chip_ver <= CHELSIO_T5 ?
6662                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6663
6664         adapter->pdev = pdev;
6665         adapter->pdev_dev = &pdev->dev;
6666         adapter->name = pci_name(pdev);
6667         adapter->mbox = func;
6668         adapter->pf = func;
6669         adapter->params.chip = chip;
6670         adapter->adap_idx = adap_idx;
6671         adapter->msg_enable = DFLT_MSG_ENABLE;
6672         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6673                                     (sizeof(struct mbox_cmd) *
6674                                      T4_OS_LOG_MBOX_CMDS),
6675                                     GFP_KERNEL);
6676         if (!adapter->mbox_log) {
6677                 err = -ENOMEM;
6678                 goto out_free_adapter;
6679         }
6680         spin_lock_init(&adapter->mbox_lock);
6681         INIT_LIST_HEAD(&adapter->mlist.list);
6682         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6683         pci_set_drvdata(pdev, adapter);
6684
6685         if (func != ent->driver_data) {
6686                 pci_disable_device(pdev);
6687                 pci_save_state(pdev);        /* to restore SR-IOV later */
6688                 return 0;
6689         }
6690
6691         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6692                 highdma = true;
6693                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6694                 if (err) {
6695                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6696                                 "coherent allocations\n");
6697                         goto out_free_adapter;
6698                 }
6699         } else {
6700                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6701                 if (err) {
6702                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6703                         goto out_free_adapter;
6704                 }
6705         }
6706
6707         pci_enable_pcie_error_reporting(pdev);
6708         pci_set_master(pdev);
6709         pci_save_state(pdev);
6710         adap_idx++;
6711         adapter->workq = create_singlethread_workqueue("cxgb4");
6712         if (!adapter->workq) {
6713                 err = -ENOMEM;
6714                 goto out_free_adapter;
6715         }
6716
6717         /* PCI device has been enabled */
6718         adapter->flags |= CXGB4_DEV_ENABLED;
6719         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6720
6721         /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6722          * Ingress Packet Data to Free List Buffers in order to allow for
6723          * chipset performance optimizations between the Root Complex and
6724          * Memory Controllers.  (Messages to the associated Ingress Queue
6725          * notifying new Packet Placement in the Free Lists Buffers will be
6726          * send without the Relaxed Ordering Attribute thus guaranteeing that
6727          * all preceding PCIe Transaction Layer Packets will be processed
6728          * first.)  But some Root Complexes have various issues with Upstream
6729          * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6730          * The PCIe devices which under the Root Complexes will be cleared the
6731          * Relaxed Ordering bit in the configuration space, So we check our
6732          * PCIe configuration space to see if it's flagged with advice against
6733          * using Relaxed Ordering.
6734          */
6735         if (!pcie_relaxed_ordering_enabled(pdev))
6736                 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6737
6738         spin_lock_init(&adapter->stats_lock);
6739         spin_lock_init(&adapter->tid_release_lock);
6740         spin_lock_init(&adapter->win0_lock);
6741
6742         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6743         INIT_WORK(&adapter->db_full_task, process_db_full);
6744         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6745         INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6746
6747         err = t4_prep_adapter(adapter);
6748         if (err)
6749                 goto out_free_adapter;
6750
6751         if (is_kdump_kernel()) {
6752                 /* Collect hardware state and append to /proc/vmcore */
6753                 err = cxgb4_cudbg_vmcore_add_dump(adapter);
6754                 if (err) {
6755                         dev_warn(adapter->pdev_dev,
6756                                  "Fail collecting vmcore device dump, err: %d. Continuing\n",
6757                                  err);
6758                         err = 0;
6759                 }
6760         }
6761
6762         if (!is_t4(adapter->params.chip)) {
6763                 s_qpp = (QUEUESPERPAGEPF0_S +
6764                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6765                         adapter->pf);
6766                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6767                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6768                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6769
6770                 /* Each segment size is 128B. Write coalescing is enabled only
6771                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6772                  * queue is less no of segments that can be accommodated in
6773                  * a page size.
6774                  */
6775                 if (qpp > num_seg) {
6776                         dev_err(&pdev->dev,
6777                                 "Incorrect number of egress queues per page\n");
6778                         err = -EINVAL;
6779                         goto out_free_adapter;
6780                 }
6781                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6782                 pci_resource_len(pdev, 2));
6783                 if (!adapter->bar2) {
6784                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6785                         err = -ENOMEM;
6786                         goto out_free_adapter;
6787                 }
6788         }
6789
6790         setup_memwin(adapter);
6791         err = adap_init0(adapter, 0);
6792 #ifdef CONFIG_DEBUG_FS
6793         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
6794 #endif
6795         setup_memwin_rdma(adapter);
6796         if (err)
6797                 goto out_unmap_bar;
6798
6799         /* configure SGE_STAT_CFG_A to read WC stats */
6800         if (!is_t4(adapter->params.chip))
6801                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6802                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6803                               T6_STATMODE_V(0)));
6804
6805         /* Initialize hash mac addr list */
6806         INIT_LIST_HEAD(&adapter->mac_hlist);
6807
6808         for_each_port(adapter, i) {
6809                 /* For supporting MQPRIO Offload, need some extra
6810                  * queues for each ETHOFLD TIDs. Keep it equal to
6811                  * MAX_ATIDs for now. Once we connect to firmware
6812                  * later and query the EOTID params, we'll come to
6813                  * know the actual # of EOTIDs supported.
6814                  */
6815                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6816                                            MAX_ETH_QSETS + MAX_ATIDS);
6817                 if (!netdev) {
6818                         err = -ENOMEM;
6819                         goto out_free_dev;
6820                 }
6821
6822                 SET_NETDEV_DEV(netdev, &pdev->dev);
6823
6824                 adapter->port[i] = netdev;
6825                 pi = netdev_priv(netdev);
6826                 pi->adapter = adapter;
6827                 pi->xact_addr_filt = -1;
6828                 pi->port_id = i;
6829                 netdev->irq = pdev->irq;
6830
6831                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6832                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6833                         NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6834                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6835                         NETIF_F_HW_TC | NETIF_F_NTUPLE;
6836
6837                 if (chip_ver > CHELSIO_T5) {
6838                         netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6839                                                    NETIF_F_IPV6_CSUM |
6840                                                    NETIF_F_RXCSUM |
6841                                                    NETIF_F_GSO_UDP_TUNNEL |
6842                                                    NETIF_F_GSO_UDP_TUNNEL_CSUM |
6843                                                    NETIF_F_TSO | NETIF_F_TSO6;
6844
6845                         netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6846                                                NETIF_F_GSO_UDP_TUNNEL_CSUM |
6847                                                NETIF_F_HW_TLS_RECORD;
6848
6849                         if (adapter->rawf_cnt)
6850                                 netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6851                 }
6852
6853                 if (highdma)
6854                         netdev->hw_features |= NETIF_F_HIGHDMA;
6855                 netdev->features |= netdev->hw_features;
6856                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6857 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6858                 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6859                         netdev->hw_features |= NETIF_F_HW_TLS_TX;
6860                         netdev->tlsdev_ops = &cxgb4_ktls_ops;
6861                         /* initialize the refcount */
6862                         refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6863                 }
6864 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6865 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6866                 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
6867                         netdev->hw_enc_features |= NETIF_F_HW_ESP;
6868                         netdev->features |= NETIF_F_HW_ESP;
6869                         netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
6870                 }
6871 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6872
6873                 netdev->priv_flags |= IFF_UNICAST_FLT;
6874
6875                 /* MTU range: 81 - 9600 */
6876                 netdev->min_mtu = 81;              /* accommodate SACK */
6877                 netdev->max_mtu = MAX_MTU;
6878
6879                 netdev->netdev_ops = &cxgb4_netdev_ops;
6880 #ifdef CONFIG_CHELSIO_T4_DCB
6881                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6882                 cxgb4_dcb_state_init(netdev);
6883                 cxgb4_dcb_version_init(netdev);
6884 #endif
6885                 cxgb4_set_ethtool_ops(netdev);
6886         }
6887
6888         cxgb4_init_ethtool_dump(adapter);
6889
6890         pci_set_drvdata(pdev, adapter);
6891
6892         if (adapter->flags & CXGB4_FW_OK) {
6893                 err = t4_port_init(adapter, func, func, 0);
6894                 if (err)
6895                         goto out_free_dev;
6896         } else if (adapter->params.nports == 1) {
6897                 /* If we don't have a connection to the firmware -- possibly
6898                  * because of an error -- grab the raw VPD parameters so we
6899                  * can set the proper MAC Address on the debug network
6900                  * interface that we've created.
6901                  */
6902                 u8 hw_addr[ETH_ALEN];
6903                 u8 *na = adapter->params.vpd.na;
6904
6905                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6906                 if (!err) {
6907                         for (i = 0; i < ETH_ALEN; i++)
6908                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6909                                               hex2val(na[2 * i + 1]));
6910                         t4_set_hw_addr(adapter, 0, hw_addr);
6911                 }
6912         }
6913
6914         if (!(adapter->flags & CXGB4_FW_OK))
6915                 goto fw_attach_fail;
6916
6917         /* Configure queues and allocate tables now, they can be needed as
6918          * soon as the first register_netdev completes.
6919          */
6920         err = cfg_queues(adapter);
6921         if (err)
6922                 goto out_free_dev;
6923
6924         adapter->smt = t4_init_smt();
6925         if (!adapter->smt) {
6926                 /* We tolerate a lack of SMT, giving up some functionality */
6927                 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6928         }
6929
6930         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6931         if (!adapter->l2t) {
6932                 /* We tolerate a lack of L2T, giving up some functionality */
6933                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6934                 adapter->params.offload = 0;
6935         }
6936
6937 #if IS_ENABLED(CONFIG_IPV6)
6938         if (chip_ver <= CHELSIO_T5 &&
6939             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6940                 /* CLIP functionality is not present in hardware,
6941                  * hence disable all offload features
6942                  */
6943                 dev_warn(&pdev->dev,
6944                          "CLIP not enabled in hardware, continuing\n");
6945                 adapter->params.offload = 0;
6946         } else {
6947                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6948                                                   adapter->clipt_end);
6949                 if (!adapter->clipt) {
6950                         /* We tolerate a lack of clip_table, giving up
6951                          * some functionality
6952                          */
6953                         dev_warn(&pdev->dev,
6954                                  "could not allocate Clip table, continuing\n");
6955                         adapter->params.offload = 0;
6956                 }
6957         }
6958 #endif
6959
6960         for_each_port(adapter, i) {
6961                 pi = adap2pinfo(adapter, i);
6962                 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6963                 if (!pi->sched_tbl)
6964                         dev_warn(&pdev->dev,
6965                                  "could not activate scheduling on port %d\n",
6966                                  i);
6967         }
6968
6969         if (is_offload(adapter) || is_hashfilter(adapter)) {
6970                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6971                         u32 v;
6972
6973                         v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6974                         if (chip_ver <= CHELSIO_T5) {
6975                                 adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6976                                 v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6977                                 adapter->tids.hash_base = v / 4;
6978                         } else {
6979                                 adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6980                                 v = t4_read_reg(adapter,
6981                                                 T6_LE_DB_HASH_TID_BASE_A);
6982                                 adapter->tids.hash_base = v;
6983                         }
6984                 }
6985         }
6986
6987         if (tid_init(&adapter->tids) < 0) {
6988                 dev_warn(&pdev->dev, "could not allocate TID table, "
6989                          "continuing\n");
6990                 adapter->params.offload = 0;
6991         } else {
6992                 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6993                 if (!adapter->tc_u32)
6994                         dev_warn(&pdev->dev,
6995                                  "could not offload tc u32, continuing\n");
6996
6997                 if (cxgb4_init_tc_flower(adapter))
6998                         dev_warn(&pdev->dev,
6999                                  "could not offload tc flower, continuing\n");
7000
7001                 if (cxgb4_init_tc_mqprio(adapter))
7002                         dev_warn(&pdev->dev,
7003                                  "could not offload tc mqprio, continuing\n");
7004
7005                 if (cxgb4_init_tc_matchall(adapter))
7006                         dev_warn(&pdev->dev,
7007                                  "could not offload tc matchall, continuing\n");
7008                 if (cxgb4_init_ethtool_filters(adapter))
7009                         dev_warn(&pdev->dev,
7010                                  "could not initialize ethtool filters, continuing\n");
7011         }
7012
7013         /* See what interrupts we'll be using */
7014         if (msi > 1 && enable_msix(adapter) == 0)
7015                 adapter->flags |= CXGB4_USING_MSIX;
7016         else if (msi > 0 && pci_enable_msi(pdev) == 0) {
7017                 adapter->flags |= CXGB4_USING_MSI;
7018                 if (msi > 1)
7019                         free_msix_info(adapter);
7020         }
7021
7022         /* check for PCI Express bandwidth capabiltites */
7023         pcie_print_link_status(pdev);
7024
7025         cxgb4_init_mps_ref_entries(adapter);
7026
7027         err = init_rss(adapter);
7028         if (err)
7029                 goto out_free_dev;
7030
7031         err = setup_non_data_intr(adapter);
7032         if (err) {
7033                 dev_err(adapter->pdev_dev,
7034                         "Non Data interrupt allocation failed, err: %d\n", err);
7035                 goto out_free_dev;
7036         }
7037
7038         err = setup_fw_sge_queues(adapter);
7039         if (err) {
7040                 dev_err(adapter->pdev_dev,
7041                         "FW sge queue allocation failed, err %d", err);
7042                 goto out_free_dev;
7043         }
7044
7045 fw_attach_fail:
7046         /*
7047          * The card is now ready to go.  If any errors occur during device
7048          * registration we do not fail the whole card but rather proceed only
7049          * with the ports we manage to register successfully.  However we must
7050          * register at least one net device.
7051          */
7052         for_each_port(adapter, i) {
7053                 pi = adap2pinfo(adapter, i);
7054                 adapter->port[i]->dev_port = pi->lport;
7055                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
7056                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
7057
7058                 netif_carrier_off(adapter->port[i]);
7059
7060                 err = register_netdev(adapter->port[i]);
7061                 if (err)
7062                         break;
7063                 adapter->chan_map[pi->tx_chan] = i;
7064                 print_port_info(adapter->port[i]);
7065         }
7066         if (i == 0) {
7067                 dev_err(&pdev->dev, "could not register any net devices\n");
7068                 goto out_free_dev;
7069         }
7070         if (err) {
7071                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
7072                 err = 0;
7073         }
7074
7075         if (cxgb4_debugfs_root) {
7076                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
7077                                                            cxgb4_debugfs_root);
7078                 setup_debugfs(adapter);
7079         }
7080
7081         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7082         pdev->needs_freset = 1;
7083
7084         if (is_uld(adapter))
7085                 cxgb4_uld_enable(adapter);
7086
7087         if (!is_t4(adapter->params.chip))
7088                 cxgb4_ptp_init(adapter);
7089
7090         if (IS_REACHABLE(CONFIG_THERMAL) &&
7091             !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
7092                 cxgb4_thermal_init(adapter);
7093
7094         print_adapter_info(adapter);
7095         return 0;
7096
7097  out_free_dev:
7098         t4_free_sge_resources(adapter);
7099         free_some_resources(adapter);
7100         if (adapter->flags & CXGB4_USING_MSIX)
7101                 free_msix_info(adapter);
7102         if (adapter->num_uld || adapter->num_ofld_uld)
7103                 t4_uld_mem_free(adapter);
7104  out_unmap_bar:
7105         if (!is_t4(adapter->params.chip))
7106                 iounmap(adapter->bar2);
7107  out_free_adapter:
7108         if (adapter->workq)
7109                 destroy_workqueue(adapter->workq);
7110
7111         kfree(adapter->mbox_log);
7112         kfree(adapter);
7113  out_unmap_bar0:
7114         iounmap(regs);
7115  out_disable_device:
7116         pci_disable_pcie_error_reporting(pdev);
7117         pci_disable_device(pdev);
7118  out_release_regions:
7119         pci_release_regions(pdev);
7120         return err;
7121 }
7122
7123 static void remove_one(struct pci_dev *pdev)
7124 {
7125         struct adapter *adapter = pci_get_drvdata(pdev);
7126         struct hash_mac_addr *entry, *tmp;
7127
7128         if (!adapter) {
7129                 pci_release_regions(pdev);
7130                 return;
7131         }
7132
7133         /* If we allocated filters, free up state associated with any
7134          * valid filters ...
7135          */
7136         clear_all_filters(adapter);
7137
7138         adapter->flags |= CXGB4_SHUTTING_DOWN;
7139
7140         if (adapter->pf == 4) {
7141                 int i;
7142
7143                 /* Tear down per-adapter Work Queue first since it can contain
7144                  * references to our adapter data structure.
7145                  */
7146                 destroy_workqueue(adapter->workq);
7147
7148                 if (is_uld(adapter)) {
7149                         detach_ulds(adapter);
7150                         t4_uld_clean_up(adapter);
7151                 }
7152
7153                 adap_free_hma_mem(adapter);
7154
7155                 disable_interrupts(adapter);
7156
7157                 cxgb4_free_mps_ref_entries(adapter);
7158
7159                 for_each_port(adapter, i)
7160                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7161                                 unregister_netdev(adapter->port[i]);
7162
7163                 debugfs_remove_recursive(adapter->debugfs_root);
7164
7165                 if (!is_t4(adapter->params.chip))
7166                         cxgb4_ptp_stop(adapter);
7167                 if (IS_REACHABLE(CONFIG_THERMAL))
7168                         cxgb4_thermal_remove(adapter);
7169
7170                 if (adapter->flags & CXGB4_FULL_INIT_DONE)
7171                         cxgb_down(adapter);
7172
7173                 if (adapter->flags & CXGB4_USING_MSIX)
7174                         free_msix_info(adapter);
7175                 if (adapter->num_uld || adapter->num_ofld_uld)
7176                         t4_uld_mem_free(adapter);
7177                 free_some_resources(adapter);
7178                 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7179                                          list) {
7180                         list_del(&entry->list);
7181                         kfree(entry);
7182                 }
7183
7184 #if IS_ENABLED(CONFIG_IPV6)
7185                 t4_cleanup_clip_tbl(adapter);
7186 #endif
7187                 if (!is_t4(adapter->params.chip))
7188                         iounmap(adapter->bar2);
7189         }
7190 #ifdef CONFIG_PCI_IOV
7191         else {
7192                 cxgb4_iov_configure(adapter->pdev, 0);
7193         }
7194 #endif
7195         iounmap(adapter->regs);
7196         pci_disable_pcie_error_reporting(pdev);
7197         if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7198                 pci_disable_device(pdev);
7199                 adapter->flags &= ~CXGB4_DEV_ENABLED;
7200         }
7201         pci_release_regions(pdev);
7202         kfree(adapter->mbox_log);
7203         synchronize_rcu();
7204         kfree(adapter);
7205 }
7206
7207 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7208  * delivery.  This is essentially a stripped down version of the PCI remove()
7209  * function where we do the minimal amount of work necessary to shutdown any
7210  * further activity.
7211  */
7212 static void shutdown_one(struct pci_dev *pdev)
7213 {
7214         struct adapter *adapter = pci_get_drvdata(pdev);
7215
7216         /* As with remove_one() above (see extended comment), we only want do
7217          * do cleanup on PCI Devices which went all the way through init_one()
7218          * ...
7219          */
7220         if (!adapter) {
7221                 pci_release_regions(pdev);
7222                 return;
7223         }
7224
7225         adapter->flags |= CXGB4_SHUTTING_DOWN;
7226
7227         if (adapter->pf == 4) {
7228                 int i;
7229
7230                 for_each_port(adapter, i)
7231                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7232                                 cxgb_close(adapter->port[i]);
7233
7234                 rtnl_lock();
7235                 cxgb4_mqprio_stop_offload(adapter);
7236                 rtnl_unlock();
7237
7238                 if (is_uld(adapter)) {
7239                         detach_ulds(adapter);
7240                         t4_uld_clean_up(adapter);
7241                 }
7242
7243                 disable_interrupts(adapter);
7244                 disable_msi(adapter);
7245
7246                 t4_sge_stop(adapter);
7247                 if (adapter->flags & CXGB4_FW_OK)
7248                         t4_fw_bye(adapter, adapter->mbox);
7249         }
7250 }
7251
7252 static struct pci_driver cxgb4_driver = {
7253         .name     = KBUILD_MODNAME,
7254         .id_table = cxgb4_pci_tbl,
7255         .probe    = init_one,
7256         .remove   = remove_one,
7257         .shutdown = shutdown_one,
7258 #ifdef CONFIG_PCI_IOV
7259         .sriov_configure = cxgb4_iov_configure,
7260 #endif
7261         .err_handler = &cxgb4_eeh,
7262 };
7263
7264 static int __init cxgb4_init_module(void)
7265 {
7266         int ret;
7267
7268         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7269
7270         ret = pci_register_driver(&cxgb4_driver);
7271         if (ret < 0)
7272                 goto err_pci;
7273
7274 #if IS_ENABLED(CONFIG_IPV6)
7275         if (!inet6addr_registered) {
7276                 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7277                 if (ret)
7278                         pci_unregister_driver(&cxgb4_driver);
7279                 else
7280                         inet6addr_registered = true;
7281         }
7282 #endif
7283
7284         if (ret == 0)
7285                 return ret;
7286
7287 err_pci:
7288         debugfs_remove(cxgb4_debugfs_root);
7289
7290         return ret;
7291 }
7292
7293 static void __exit cxgb4_cleanup_module(void)
7294 {
7295 #if IS_ENABLED(CONFIG_IPV6)
7296         if (inet6addr_registered) {
7297                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7298                 inet6addr_registered = false;
7299         }
7300 #endif
7301         pci_unregister_driver(&cxgb4_driver);
7302         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
7303 }
7304
7305 module_init(cxgb4_init_module);
7306 module_exit(cxgb4_cleanup_module);